WO2022085085A1 - High strength fiber assembly, rope, and rope structure - Google Patents

High strength fiber assembly, rope, and rope structure Download PDF

Info

Publication number
WO2022085085A1
WO2022085085A1 PCT/JP2020/039444 JP2020039444W WO2022085085A1 WO 2022085085 A1 WO2022085085 A1 WO 2022085085A1 JP 2020039444 W JP2020039444 W JP 2020039444W WO 2022085085 A1 WO2022085085 A1 WO 2022085085A1
Authority
WO
WIPO (PCT)
Prior art keywords
strength fiber
rope
resin
strength
steel materials
Prior art date
Application number
PCT/JP2020/039444
Other languages
French (fr)
Japanese (ja)
Inventor
晋也 内藤
政彦 肥田
豊弘 野口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/039444 priority Critical patent/WO2022085085A1/en
Priority to KR1020237010545A priority patent/KR20230056776A/en
Priority to DE112020007718.7T priority patent/DE112020007718T5/en
Priority to CN202080106046.5A priority patent/CN116323459A/en
Priority to JP2022556866A priority patent/JPWO2022085085A1/ja
Publication of WO2022085085A1 publication Critical patent/WO2022085085A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/06Arrangements of ropes or cables
    • B66B7/062Belts
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • D07B1/025Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics comprising high modulus, or high tenacity, polymer filaments or fibres, e.g. liquid-crystal polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/06Arrangements of ropes or cables
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/005Composite ropes, i.e. ropes built-up from fibrous or filamentary material and metal wires
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0673Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core having a rope configuration
    • D07B1/0686Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core having a rope configuration characterised by the core design
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B5/00Making ropes or cables from special materials or of particular form
    • D07B5/06Making ropes or cables from special materials or of particular form from natural or artificial staple fibres
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • D07B1/162Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber enveloping sheathing
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • D07B1/165Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber inlay
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/22Flat or flat-sided ropes; Sets of ropes consisting of a series of parallel ropes
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/104Rope or cable structures twisted
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2055Cores characterised by their structure comprising filaments or fibers
    • D07B2201/2057Cores characterised by their structure comprising filaments or fibers resulting in a twisted structure
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2059Cores characterised by their structure comprising wires
    • D07B2201/2062Cores characterised by their structure comprising wires comprising fillers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2067Cores characterised by the elongation or tension behaviour
    • D07B2201/2068Cores characterised by the elongation or tension behaviour having a load bearing function
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2071Spacers
    • D07B2201/2074Spacers in radial direction
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2075Fillers
    • D07B2201/2082Fillers characterised by the materials used
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2046Polyamides, e.g. nylons
    • D07B2205/205Aramides
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2096Poly-p-phenylenebenzo-bisoxazole [PBO]
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3003Glass
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3007Carbon
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2401/00Aspects related to the problem to be solved or advantage
    • D07B2401/20Aspects related to the problem to be solved or advantage related to ropes or cables
    • D07B2401/208Enabling filler penetration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2007Elevators

Definitions

  • This disclosure relates to high-strength fiber aggregates, ropes, and rope structures.
  • Patent Document 1 discloses an elevator rope. According to the rope, the gap between a plurality of high-strength fiber filaments can be reduced in the core material.
  • This disclosure was made to solve the above-mentioned problems. It is an object of the present disclosure to provide high-strength fiber aggregates, ropes, rope structures capable of higher strength.
  • the high-strength fiber aggregate according to the present disclosure includes a plurality of high-strength fiber filaments, which are maintained in a state of being gathered together and have been shaped and processed.
  • the high-strength fiber aggregate according to the present disclosure comprises a plurality of high-strength fiber yarns, each of which is formed in a state in which a plurality of high-strength fiber filaments are twisted to each other, is maintained in a state of being twisted to each other, and is deformed. rice field.
  • the high-strength fiber aggregate according to the present disclosure is a plurality of high-strength fiber yarns in which a plurality of high-strength fiber filaments are maintained in a twisted state and are deformed, respectively, and are deformed in a state in which the longitudinal directions of the plurality of high-strength fiber filaments are aligned with each other. , Equipped with.
  • the high-strength fiber aggregate according to the present disclosure comprises a plurality of high-strength fiber yarns in which a plurality of high-strength fiber filaments are maintained in a twisted state and are deformed, respectively, and in a twisted state, the plurality of high-strength fiber yarns are deformed. Prepared.
  • the high-strength fiber aggregate according to the present disclosure is maintained in a state in which a plurality of high-strength fiber yarns formed by twisting a plurality of high-strength fiber filaments are twisted to each other and formed by twisting each other in the longitudinal direction. It was equipped with multiple high-strength fiber strands, which were shaped and machined.
  • a plurality of high-strength fiber yarns formed by twisting a plurality of high-strength fiber filaments to each other are twisted to each other to form a plurality of high-strength fiber yarns, and the high-strength fiber aggregate is maintained in a twisted state. It was equipped with a plurality of high-strength fiber strands, which had been shaped.
  • the rope according to the present disclosure includes a core material formed of the high-strength fiber aggregate and a plurality of first steel materials arranged on the outer periphery of the core material.
  • the rope according to the present disclosure includes a core material made of steel, a plurality of first fiber aggregates each formed of the high-strength fiber aggregate and arranged on the outer periphery of the core material, and the plurality of first fibers. It was provided with a plurality of first steel materials, each of which was arranged on the outside of one fiber laminated wood.
  • the rope according to the present disclosure includes a core material made of steel, a plurality of first fiber aggregates each formed of the high-strength fiber aggregate and arranged on the outer periphery of the core material, and the plurality of first fibers. It was provided with a plurality of first steel materials, each of which was arranged on the outside of one fiber laminated wood.
  • the rope structure according to the present disclosure is a plurality of linear structures each formed of the rope, and the plurality of linear structures in a state where the plurality of linear structures are aligned in the longitudinal direction and arranged in the horizontal direction. It was provided with a covering structure for covering.
  • a plurality of high-strength fiber filaments are maintained in a state of being grouped together.
  • the plurality of high-strength fiber filaments are deformed. Therefore, the strength of the high-strength fiber aggregate can be further increased.
  • FIG. 5 is an enlarged cross-sectional view of a high-strength fiber aggregate of a rope according to the first embodiment. It is a side view of the 1st modification of the high-strength fiber assembly of a rope in Embodiment 1. FIG. It is a side view of the 2nd modification of the high-strength fiber assembly of a rope in Embodiment 1.
  • FIG. It is a side view of the high-strength fiber assembly of a rope in Embodiment 2.
  • FIG. It is a side view of the modification of the high-strength fiber assembly of a rope in Embodiment 2.
  • FIG. It is a side view of the high-strength fiber assembly of a rope in Embodiment 3.
  • FIG. It is a side view of the modification of the high-strength fiber assembly of a rope in Embodiment 3.
  • FIG. It is sectional drawing of the rope in Embodiment 4.
  • FIG. It is sectional drawing of the modification of the rope in Embodiment 4.
  • FIG. It is sectional drawing of the rope in Embodiment 5.
  • FIG. It is sectional drawing of the modification of the rope in Embodiment 5.
  • FIG. It is sectional drawing of the modification of the rope in Embodiment 5.
  • FIG. 11 is a cross-sectional view of the rope according to the eleventh embodiment. It is sectional drawing of the rope in Embodiment 12. It is sectional drawing of the rope in Embodiment 13. It is sectional drawing of the rope in Embodiment 14. FIG. It is sectional drawing of the modification of the rope in Embodiment 14. It is sectional drawing of the rope in Embodiment 15. FIG. It is sectional drawing of the rope structure in Embodiment 16. FIG. It is sectional drawing of the modification of the rope structure in Embodiment 16. FIG.
  • FIG. 1 is an example of a configuration diagram of an elevator to which a rope is applied according to the first embodiment.
  • the hoistway 1 penetrates each floor of the building.
  • the machine room 2 is provided directly above the hoistway 1.
  • the hoisting machine 3 is provided in the machine room 2.
  • the sheave 4 is attached to the rotating shaft of the hoisting machine 3.
  • the plurality of ropes 5 are wound side by side on the outer peripheral surface of the sheave 4 as a plurality of hoisting ropes.
  • the car 6 is provided inside the hoistway 1.
  • the car 6 is supported on one side of the plurality of ropes 5.
  • the counterweight 7 is provided inside the hoistway 1.
  • the counterweight 7 is supported on the other side of the plurality of ropes 5.
  • the hoisting machine 3 is driven based on a command from a control device (not shown).
  • the sheave 4 rotates following the drive of the hoisting machine 3.
  • the rope 5 moves following the rotation of the sheave 4.
  • the cage 6 and the counterweight 7 move up and down in opposite directions following the movement of the rope 5.
  • FIG. 2 is a cross-sectional view of the rope according to the first embodiment.
  • the rope 5 includes a core material 8 and a plurality of first steel materials 9.
  • the core material 8 is a high-strength fiber aggregate.
  • the core material 8 is deformed.
  • each of the plurality of first steel materials 9 is a steel wire strand.
  • the plurality of first steel materials 9 are arranged on the outer periphery of the core material 8, respectively.
  • the plurality of first steel materials 9 are twisted together around the core material 8.
  • the core material 8 and the plurality of first steel materials 9 share and receive the load in the tensile direction of the rope 5.
  • FIG. 3 is a side view of the high-strength fiber aggregate of the rope in the first embodiment.
  • FIG. 4 is an enlarged cross-sectional view of the high-strength fiber aggregate of the rope according to the first embodiment.
  • the high-strength fiber aggregate includes a plurality of high-strength fiber filaments 10.
  • the number of high-strength filaments is several hundred to tens of thousands.
  • the number of high-strength filaments is tens of thousands.
  • the outer diameter of the high-strength filament is several ⁇ m to several tens of ⁇ m.
  • the plurality of high-strength fiber filaments 10 are maintained in a state of being grouped together.
  • the plurality of high-strength fiber filaments 10 are maintained in a state in which their longitudinal directions are aligned with each other.
  • the orientation of the high-strength fiber filament 10 is shown by a solid line.
  • the plurality of high-strength fiber filaments 10 are deformed so that the cross section has a preset shape.
  • the plurality of high-strength fiber filaments 10 are deformed so as to have a circular cross section.
  • the plurality of high-strength fiber filaments 10 are maintained in a state of being filled inside the matrix resin 11.
  • the plurality of high-strength fiber filaments 10 are impregnated with the liquid matrix resin 11 before curing. After that, the plurality of high-strength fiber filaments 10 are aligned inside the mold having a preset shape. After that, the plurality of high-strength fiber filters are pulled out from the mold. Inside the mold, the plurality of high-strength fiber filaments 10 are continuously heated. At this time, in the plurality of high-strength fiber filaments 10, the matrix resin 11 is cured by heating.
  • the plurality of high-strength fiber filaments 10 are maintained in a state of being put together.
  • the plurality of high-strength fiber filaments 10 are maintained in a state in which their longitudinal directions are aligned with each other.
  • the plurality of high-strength fiber filaments 10 are deformed. Therefore, it is possible to maintain a state in which the density of the plurality of high-strength fiber filaments 10 is increased. As a result, the strength of the high-strength fiber aggregate can be further increased.
  • the plurality of high-strength fiber filaments 10 are maintained in a state of being filled inside the matrix resin 11. Therefore, the plurality of high-strength fiber filaments 10 can be easily maintained in a grouped state. As a result, the rope 5 can be easily and inexpensively manufactured without losing the shape of the plurality of high-strength fiber filaments 10.
  • the flexible resin may be the matrix resin 11.
  • the matrix resin 11 may be a resin that has flexibility and bends without being easily broken when subjected to an external force. In this case, the flexibility of the rope 5 can be ensured. As a result, the flexibility of the rope 5 can be ensured.
  • thermosetting epoxy resin or a thermosetting urethane resin may be used as the flexible resin.
  • thermosetting epoxy resin if a liquid main agent containing one or more of polyoxyalkylene bond, urethane bond, and butadiene rubber in the molecule and two or more epoxy groups in the molecule is used. good.
  • the epoxy resin may be cured by mixing the main agent and the curing agent and then heating the resin.
  • ether-based urethane may be used from the viewpoint of hydrolysis resistance.
  • ether-based polyols such as polytetramethylene ether glycol and polypropylene glycol may be cured with various polyisocyanate compounds.
  • the high-strength fiber aggregate can be easily maintained in a preset shape. Therefore, the adhesion of the plurality of high-strength fiber filaments 10 can be ensured. As a result, the flexibility of the rope 5 can be ensured after the resin is cured.
  • thermoplastic resin may be used as the flexible resin.
  • FIG. 5 is a side view of the first modification of the high-strength fiber assembly of the rope in the first embodiment.
  • the high-strength fiber aggregate is the high-strength fiber yarn 12.
  • the plurality of high-strength fiber filaments 10 are maintained in a twisted state.
  • the orientation of the high-strength fiber filament 10 is shown by a solid line. In this state, the plurality of high-strength fiber filaments 10 are deformed.
  • the high-strength fiber yarn 12 is first impregnated with the liquid matrix resin 11 before curing. After that, the high-strength fiber yarn 12 is squeezed. As a result, the excess matrix resin 11 is removed. In this state, the high-strength fiber yarn 12 is continuously heated. As a result, the matrix resin 11 is cured in the high-strength fiber yarn 12. At this time, the cross section of the high-strength fiber aggregate is naturally circular. In this case, the fiber content of the high-strength fiber yarn 12 is higher than the fiber content of the high-strength fiber aggregate of FIG. The mass ratio strength of the high-strength fiber yarn 12 is higher than the mass ratio strength of the high-strength fiber aggregate of FIG.
  • the high-strength fiber yarn 12 is first impregnated with the liquid matrix resin 11 before curing. After that, the high-strength fiber yarn 12 is sent to the inside of the mold having a preset shape. At this time, the high-strength fiber yarn 12 is continuously heated inside the mold. As a result, the matrix resin 11 is cured in the high-strength fiber yarn 12.
  • the plurality of high-strength fiber filaments 10 are maintained in a state of being twisted to each other. Therefore, a highly flexible high-strength fiber aggregate can be easily and inexpensively manufactured.
  • the high-strength fiber aggregate when the high-strength fiber aggregate is bent, local stress due to compression or tension is unlikely to occur in the plurality of high-strength fiber filaments 10. Therefore, it is possible to prevent the high-strength fiber aggregate from buckling. As a result, the fatigue durability of the high-strength fiber aggregate can be enhanced. Further, the fatigue durability of the rope 5 can be enhanced by increasing the fatigue durability of the high-strength fiber aggregate.
  • the plurality of high-strength fiber filaments 10 share the load more evenly. Therefore, a larger load can be supported in the high-strength fiber aggregate.
  • FIG. 6 is a side view of a second modification of the high-strength fiber aggregate of the rope in the first embodiment.
  • the high-strength fiber aggregate is a high-strength fiber strand 13.
  • the plurality of high-strength fiber yarns 12 are twisted together.
  • six high-strength fiber yarns 12 are twisted together around one high-strength fiber yarn 12.
  • the plurality of high-strength fiber filaments 10 are twisted together. In this state, the high-strength fiber strand 13 is deformed.
  • FIG. 6 the boundary between adjacent high-strength fiber yarns 12 is shown by a solid line. In practice, the boundaries are often invisible.
  • the plurality of high-strength fiber yarns 12 are twisted together. Therefore, the load can be shared over the entire high-strength fiber strand 13.
  • the high-strength fiber yarn 12 does not have to be seamlessly connected over the entire length of the rope 5. In this case, it is not necessary to prepare the high-strength fiber filament 10 having a length corresponding to the length of the rope 5. As a result, the manufacturing cost of the high-strength fiber yarn 12 can be reduced.
  • FIG. 7 is a side view of the high-strength fiber assembly of the rope according to the second embodiment.
  • the same or corresponding parts as those of the first embodiment are designated by the same reference numerals. The explanation of this part is omitted.
  • the high-strength fiber aggregate comprises a plurality of high-strength fiber yarns 12.
  • the plurality of high-strength fiber filaments 10 are maintained in a twisted state with respect to each other.
  • the plurality of high-strength fiber filaments 10 are maintained in a state of being twisted together with the first matrix resin. In this state, the plurality of high-strength fiber yarns 12 are each deformed so as to have a circular cross section.
  • the plurality of high-strength fiber yarns 12 are maintained in a grouped state. Specifically, the plurality of high-strength fiber yarns 12 are maintained in a state in which the longitudinal directions are aligned with each other. For example, the plurality of high-strength fiber yarns 12 are maintained in a state of being aligned in the longitudinal direction with the second matrix resin.
  • the plurality of high-strength fiber yarns 12 are deformed.
  • the plurality of high-strength fiber yarns 12 are irregularly processed so that the cross section has a shape similar to a trapezoid. Specifically, the shape of the cross section is a shape in which the fan shape at the center is removed from the fan shape having a preset size.
  • the plurality of high-strength fiber yarns 12 are formed in the same manner as in the modification of the first embodiment. After that, the plurality of high-strength fiber yarns 12 are each wound up on a plurality of bobbins and the like. After that, the plurality of high-strength fiber yarns 12 are each drawn from the plurality of bobbins and the like. After that, the plurality of high-strength fiber yarns 12 are impregnated into the second matrix resin. After that, the plurality of high-strength fiber yarns 12 are put together in the longitudinal direction of each other.
  • the plurality of high-strength fiber yarns 12 are drawn into the mold having a preset shape.
  • the plurality of high-strength yarns are then continuously heated inside the mold.
  • the second matrix resin is cured in the plurality of high-strength fiber yarns 12.
  • the second matrix resin is a thermoplastic resin
  • the plurality of high-strength fiber yarns 12 are drawn into the mold in a state where the longitudinal directions are aligned with each other. In this state, the plurality of high-strength fiber yarns 12 are impregnated with the second matrix resin in the molten state. After that, the plurality of high-strength fiber yarns 12 are pulled out from the mold. After that, the plurality of high-strength fiber yarns 12 are cooled. As a result, the second matrix resin is cured in the plurality of high-strength fiber yarns 12.
  • the plurality of high-strength fiber yarns 12 are maintained in a grouped state. Specifically, the plurality of high-strength fiber yarns 12 are maintained in a state in which the longitudinal directions are aligned with each other. Therefore, a larger load can be supported in the high-strength fiber aggregate.
  • the first matrix resin and the second matrix resin are appropriately selected.
  • the first matrix resin may be the same as the matrix resin 11 in FIG.
  • the first matrix resin needs to be impregnated collectively into the high-strength fiber filament 10 having an outer diameter of several ⁇ m to several tens of ⁇ m per fiber. Therefore, the first matrix resin needs to have a low viscosity before curing.
  • the second matrix resin may be impregnated into a plurality of high-strength fiber yarns 12. Therefore, before curing, the second matrix resin may have a higher viscosity than the first matrix resin.
  • FIG. 8 is a side view of a modified example of the high-strength fiber aggregate of the rope in the second embodiment.
  • the plurality of high-strength fiber yarns 12 are maintained in a twisted state with each other.
  • the plurality of high-strength fiber yarns 12 are deformed.
  • the plurality of high-strength fiber yarns 12 are formed in the same manner as in the modified example of the first embodiment. After that, the plurality of high-strength fiber yarns 12 are each wound up on a plurality of bobbins and the like. After that, the plurality of high-strength fiber yarns 12 are each drawn from the plurality of bobbins and the like. The plurality of high-strength yarns are then twisted together. After that, the plurality of high-strength fiber yarns 12 are impregnated into the second matrix resin.
  • the plurality of high-strength fiber yarns 12 are drawn into the mold having a preset shape. At this time, the plurality of high-strength yarns are continuously heated inside the mold. As a result, the second resin is cured in the plurality of high-strength fiber yarns 12.
  • the second matrix resin is a thermoplastic resin
  • the plurality of high-strength fiber yarns 12 are drawn into the mold in a state of being twisted to each other. In this state, the plurality of high-strength fiber yarns 12 are impregnated with the second matrix resin in the molten state. After that, the plurality of high-strength fiber yarns 12 are pulled out from the mold. After that, the plurality of high-strength fiber yarns 12 are cooled. As a result, the second matrix resin is cured in the plurality of high-strength fiber yarns 12.
  • the plurality of high-strength fiber yarns 12 are maintained in a twisted state. Therefore, it is possible to prevent the shape of the high-strength fiber aggregate from being deformed during the production of the high-strength fiber aggregate. Further, even if the rope 5 is repeatedly bent, it is possible to prevent the shape of the high-strength fiber aggregate from being deformed.
  • FIG. 9 is a side view of the high-strength fiber aggregate of the rope according to the third embodiment.
  • the same or corresponding parts as those of the first embodiment are designated by the same reference numerals. The explanation of this part is omitted.
  • the high-strength fiber aggregate comprises a plurality of high-strength fiber strands 13.
  • the plurality of high-strength fiber yarns 12 are twisted together.
  • the plurality of high-strength fiber filaments 10 are twisted together.
  • the plurality of high-strength fiber strands 13 are maintained in a state in which their longitudinal directions are aligned with each other.
  • the plurality of high-strength fiber strands 13 are deformed.
  • the plurality of high-strength fiber strands 13 are deformed with the matrix resin 11.
  • the seven high-strength fiber strands 13 are deformed so that the overall cross section is trapezoidal.
  • FIG. 9 the boundary between adjacent high-strength fiber strands 13 is shown by a solid line. In practice, the boundaries are often invisible.
  • the plurality of high-strength fiber strands 13 are maintained in a state in which their longitudinal directions are aligned with each other.
  • the plurality of high-strength fiber strands 13 are deformed. Therefore, the outer diameter of the high-strength fiber aggregate can be made larger. As a result, the outer diameter of the rope 5 can be made larger. The breaking strength of the rope 5 can be further increased.
  • FIG. 10 is a side view of a modified example of the high-strength fiber aggregate of the rope in the third embodiment.
  • the plurality of high-strength fiber strands 13 are maintained in a twisted state.
  • the plurality of high-strength fiber strands 13 are deformed.
  • the plurality of high-strength fiber strands 13 are deformed with the matrix resin 11.
  • six high-strength fiber strands 13 are twisted to each other around one high-strength fiber strand 13.
  • the seven high-strength fiber strands 13 are deformed so that the overall cross section is trapezoidal.
  • FIG. 10 the boundary between adjacent high-strength fiber strands 13 is shown by a solid line. In practice, the boundaries are often invisible.
  • the plurality of high-strength fiber strands 13 are maintained in a twisted state.
  • the plurality of high-strength fiber strands 13 are deformed. Therefore, it is possible to prevent the shape of the high-strength fiber aggregate from being deformed after the plurality of high-strength fiber strands 13 are deformed. Further, the load can be more evenly distributed to the plurality of high-strength fiber strands 13 as compared with the case where the plurality of high-strength fiber strands 13 are deformed in a state where the longitudinal directions of the plurality of high-strength fiber strands are aligned with each other.
  • FIG. 11 is a cross-sectional view of the rope according to the fourth embodiment.
  • the same or corresponding parts as those of the first embodiment are designated by the same reference numerals. The explanation of this part is omitted.
  • the core material 8 is formed into a deformed shape by twisting linear bodies formed of a plurality of high-strength fiber aggregates with each other.
  • the six high-strength fiber aggregates are formed by twisting the high-strength fiber aggregates around one high-strength fiber aggregate.
  • the central high-strength fiber aggregate has a circular cross section.
  • the cross sections of the surrounding six high-strength fiber aggregates are trapezoidal. In this state, the core material 8 is deformed.
  • the core material 8 is formed into a deformed shape by twisting linear bodies formed of a plurality of high-strength fiber aggregates with each other. Therefore, the flexibility of the rope 5 can be increased.
  • FIG. 12 is a cross-sectional view of a modified example of the rope in the fourth embodiment.
  • the core material 8 is formed by twisting six high-strength fiber aggregates that have been fan-shaped into a fan shape. In this state, the core material 8 is deformed.
  • the core material 8 is formed by twisting six high-strength fiber aggregates that have been deformed into a fan shape.
  • the flexibility of the rope 5 can be increased without requiring a plurality of types of high-strength fiber aggregates.
  • FIG. 13 is a cross-sectional view of the rope according to the fifth embodiment.
  • the same reference numerals are given to the same or corresponding parts as the parts of the modified example of the fourth embodiment. The explanation of this part is omitted.
  • the rope 5 includes a plurality of first fiber laminated wood 16 and a plurality of second steel materials 17.
  • the plurality of first fiber aggregates 16 are each formed by twisting a plurality of high-strength fiber aggregates.
  • the plurality of first fiber laminated wood 16 is arranged on the outside of each of the plurality of first steel materials 9.
  • Each of the plurality of second steel materials 17 is a steel wire strand.
  • the plurality of second steel materials 17 are respectively arranged on the outside of the plurality of first fiber laminated wood 16.
  • the layer of the high-strength fiber laminated wood and the layer of the steel material are alternately provided from the center of the cross section of the rope 5 toward the outside. Therefore, the outer diameter of the rope 5 can be increased without increasing the outer diameter of the high-strength fiber laminated wood and the outer diameter of the steel material. As a result, the breaking strength of the rope 5 can be increased without sacrificing the flexibility of the rope 5.
  • FIG. 14 is a cross-sectional view of a modified example of the rope in the fifth embodiment.
  • a plurality of high-strength fiber line aggregates are each formed of an aggregate equivalent to the high-strength fiber aggregate shown in FIG. 7 or FIG.
  • the cross sections of the plurality of high-strength fiber aggregates are each fan-shaped.
  • the cross section of the plurality of first fiber laminated wood 16 is trapezoidal.
  • the layer of high-strength fiber laminated wood and the layer of steel material are alternately provided from the center of the cross section of the rope 5 toward the outside. Therefore, the outer diameter of the rope 5 can be increased without increasing the outer diameter of the high-strength fiber laminated wood and the outer diameter of the steel material. As a result, the breaking strength of the rope 5 can be increased without sacrificing the flexibility of the rope 5.
  • FIG. 15 is a cross-sectional view of the rope according to the sixth embodiment.
  • the same or corresponding parts as those of the fifth embodiment are designated by the same reference numerals. The explanation of this part is omitted.
  • the rope 5 includes a plurality of second fiber laminated wood 18 and a plurality of third steel materials 19.
  • the plurality of second fiber aggregates 18 are each formed by twisting a plurality of high-strength fiber aggregates.
  • the plurality of second fiber laminated wood 18s are respectively arranged on the outside of the plurality of second steel materials 17.
  • Each of the plurality of third steel materials 19 is a steel wire strand.
  • the plurality of third steel materials 19 are respectively arranged on the outside of the plurality of first fiber laminated wood 16.
  • the layer of the high-strength fiber laminated wood and the layer of the steel material are alternately provided from the center of the cross section of the rope 5 toward the outside. Therefore, the outer diameter of the rope 5 can be made larger without increasing the outer diameter of the high-strength fiber laminated wood and the outer diameter of the steel material. As a result, the breaking strength of the rope 5 can be further increased without sacrificing the flexibility of the rope 5.
  • FIG. 16 is a cross-sectional view of the rope according to the seventh embodiment.
  • the same or corresponding parts as those of the first embodiment are designated by the same reference numerals. The explanation of this part is omitted.
  • the rope 5 includes a core material 8, a plurality of first fiber laminated lumbers 16, and a plurality of first steel materials 9.
  • the core material 8 is made of steel.
  • the core material 8 is made of steel wire.
  • the plurality of first fiber aggregates 16 are each formed of high-strength fiber aggregates.
  • the plurality of first fiber laminated lumbers 16 are arranged on the outer periphery of the core material 8, respectively.
  • the plurality of first steel materials 9 are each formed of steel wire strands.
  • the plurality of first steel materials 9 are respectively arranged on the outside of the plurality of first fiber laminated wood 16.
  • the core material 8 is made of steel. Therefore, the rope 5 can be easily formed into a shape close to a perfect circle. Further, even if a load is applied in the radial direction of the rope 5, the shape of the rope 5 can be prevented from collapsing.
  • FIG. 17 is a cross-sectional view of a modified example of the rope in the seventh embodiment.
  • the core material 8 is formed of steel wire strands.
  • the core material 8 is formed of steel wire strands. Therefore, the flexibility of the rope 5 can be further increased.
  • FIG. 18 is a cross-sectional view of the rope according to the eighth embodiment.
  • the same or corresponding parts as those of the seventh embodiment are designated by the same reference numerals. The explanation of this part is omitted.
  • the rope 5 includes a plurality of second fiber laminated wood 18 and a plurality of second steel materials 17.
  • the plurality of second fiber aggregates 18 are each formed by twisting a plurality of high-strength fiber aggregates.
  • the plurality of second fiber laminated wood 18s are respectively arranged on the outside of the plurality of first steel materials 9.
  • Each of the plurality of third steel materials 19 is a steel wire strand.
  • the plurality of third steel materials 19 are respectively arranged on the outside of the plurality of second fiber laminated wood 18.
  • the steel material layer and the high-strength fiber laminated wood layer are alternately provided from the center of the cross section of the rope 5 toward the outside. Therefore, the outer diameter of the rope 5 can be made larger without increasing the outer diameter of the steel material layer and the outer diameter of the high-strength fiber laminated wood. As a result, the breaking strength of the rope 5 can be further increased without sacrificing the flexibility of the rope 5.
  • FIG. 19 is a cross-sectional view of the rope according to the ninth embodiment.
  • the same or corresponding parts as those of the eighth embodiment are designated by the same reference numerals. The explanation of this part is omitted.
  • the rope 5 includes a plurality of third fiber laminated wood 20 and a plurality of third steel materials 19.
  • the plurality of third fiber aggregates 20 are each formed by twisting a plurality of high-strength fiber aggregates.
  • the plurality of third fiber laminated wood 20s are respectively arranged on the outside of the plurality of second steel materials 17.
  • Each of the plurality of third steel materials 19 is a steel wire strand.
  • the plurality of third steel materials 19 are respectively arranged on the outside of the plurality of third fiber laminated wood 20.
  • the steel material layer and the high-strength fiber laminated wood layer are alternately provided from the center of the cross section of the rope 5 toward the outside. Therefore, the outer diameter of the rope 5 can be made larger without increasing the outer diameter of the steel material layer and the outer diameter of the high-strength fiber laminated wood. As a result, the breaking strength of the rope 5 can be further increased without sacrificing the flexibility of the rope 5.
  • FIG. 20 is a cross-sectional view of the rope according to the tenth embodiment.
  • the same or corresponding parts as those of the first embodiment and the like are designated by the same reference numerals. The explanation of this part is omitted.
  • the rope 5 includes a first resin layer 22, a second resin layer 23, and a third resin layer 24.
  • the first resin layer 22 forms a layer between the core material 8 and the plurality of first steel materials 9.
  • the second resin layer 23 forms a layer between the plurality of first steel materials 9 and the plurality of first fiber laminated wood 16.
  • the third resin layer 24 forms a layer between the plurality of first fiber laminated wood 16 and the plurality of second steel materials 17.
  • the resin layer forms a layer between the high-strength fiber laminated wood and the steel material. Therefore, it is possible to suppress the wear of the high-strength fiber filament 10 in the high-strength fiber laminated wood due to the contact of the high-strength fiber laminated wood with the steel material.
  • the first resin layer 22, the second resin layer 23, and the third resin layer 24 may be formed of polyethylene or polypropylene.
  • the wear resistance and the low frictional property of the first resin layer 22, the second resin layer 23, and the third resin layer 24 can be compatible with each other.
  • FIG. 21 is a cross-sectional view of the rope according to the eleventh embodiment.
  • the same or corresponding parts as those of the first embodiment and the like are designated by the same reference numerals. The explanation of this part is omitted.
  • the rope 5 includes a plurality of second resin bodies 25.
  • the plurality of second resin bodies 25 are each formed of resin.
  • the plurality of second resin bodies 25 each cover the plurality of first steel materials 9.
  • the second resin body 25 covers the first steel material 9. Therefore, it is possible to suppress the wear of the high-strength fiber filament 10 in the high-strength fiber laminated wood due to the contact of the high-strength fiber laminated wood with the steel material.
  • the second resin body 25 may be formed of polyethylene or polypropylene. In this case, it is possible to achieve both wear resistance and low friction resistance of the resin layer.
  • FIG. 22 is a cross-sectional view of the rope according to the twelfth embodiment.
  • the same or corresponding parts as those of the first embodiment and the like are designated by the same reference numerals. The explanation of this part is omitted.
  • the rope 5 includes a first resin body 26 and a plurality of third resin bodies 27.
  • the first resin body 26 is made of resin.
  • the first resin body 26 covers the core material 8.
  • the plurality of third resin bodies 27 are each formed of resin.
  • the plurality of third resin bodies 27 each cover the plurality of first fiber laminated wood 16.
  • the first resin body 26 covers the core material 8. Therefore, it is possible to suppress the wear of the high-strength fiber filament 10 in the high-strength fiber laminated wood due to the contact of the high-strength fiber laminated wood with the steel material.
  • the plurality of third resin bodies 27 each coat the plurality of first fiber laminated wood 16. Therefore, it is possible to prevent the high-strength fiber filament 10 from being worn due to the scraping of the adjacent first fiber laminated wood 16.
  • FIG. 23 is a cross-sectional view of the rope according to the thirteenth embodiment.
  • the same or corresponding parts as those of the first embodiment are designated by the same reference numerals. The explanation of this part is omitted.
  • the first steel material 9 includes a first central portion 9a and a plurality of first steel portions 9b.
  • the first central portion 9a is formed of a high-strength fiber aggregate.
  • the plurality of first steel portions 9b are each formed of steel wire.
  • the first steel portion 9b is arranged on the outer periphery of the first central portion 9a, respectively.
  • the second steel material 17 includes a second central portion 17a and a plurality of second steel portions 17b.
  • the second central portion 17a is formed of a high-strength fiber aggregate.
  • the plurality of second steel portions 17b are each formed of steel.
  • the second steel portion 17b is arranged on the outer periphery of the second central portion 17a, respectively.
  • the first central portion 9a is formed of a high-strength fiber aggregate.
  • the second central portion 17a is formed of a high-strength fiber aggregate. Therefore, not only the rope 5 can be made lighter, but also the mass ratio strength of the rope 5 can be increased.
  • a resin layer may be provided between the first central portion 9a and the plurality of first steel portions 9b. In this case, it is possible to prevent the high-strength fiber filament 10 in the first central portion 9a from being worn by the contact of the first central portion 9a with the first steel portion 9b.
  • a resin layer may be provided between the second central portion 17a and the plurality of second steel portions 17b. In this case, it is possible to prevent the high-strength fiber filament 10 in the second central portion 17a from being worn by the contact of the second central portion 17a with the second steel portion 17b.
  • FIG. 24 is a cross-sectional view of the rope according to the fourteenth embodiment.
  • the same or corresponding parts as those of the first embodiment and the like are designated by the same reference numerals. The explanation of this part is omitted.
  • the second steel material 17 is deformed so as to have a circular cross section.
  • the second steel material 17 is deformed so as to have a circular cross section. Therefore, the surface pressure when the second steel material 17 comes into contact with the first fiber laminated wood 16 can be reduced. As a result, wear of the high-strength fiber filament 10 in the first fiber laminated wood 16 can be suppressed.
  • the surface pressure when the rope 5 comes into contact with the sheave 4 can be reduced.
  • the fatigue resistance of the steel wire in the second steel material 17 can be improved.
  • FIG. 25 is a cross-sectional view of a modified example of the rope in the fourteenth embodiment.
  • the first steel material 9 is deformed so as to have a circular cross section.
  • the first steel material 9 is deformed so as to have a circular cross section. Therefore, the surface pressure when the first steel material 9 comes into contact with the core material 8 and the surface pressure when the first steel material 9 comes into contact with the first fiber laminated lumber 16 can be reduced. As a result, it is possible to suppress the wear of the high-strength fiber filament 10 in the core material 8 and the wear of the high-strength fiber filament 10 in the first fiber laminated wood 16.
  • the outermost layer is a steel wire strand.
  • the outermost steel wire is damaged before the high-strength fiber filament 10. Therefore, it is possible to eliminate the need for a device for detecting damage to the high-strength fiber filament 10. As a result, the maintenance of the rope 5 can be operated by the conventional maintenance technique.
  • the steel wire strand of the outermost layer may be impregnated with rope oil.
  • the coefficient of friction of the rope 5 with the sheave 4 is almost the same as that of the conventional one. Therefore, the equipment to which the conventional rope 5 is applied can be used as it is.
  • FIG. 26 is a cross-sectional view of the rope according to the fifteenth embodiment.
  • the same or corresponding parts as those of the 14th embodiment are designated by the same reference numerals. The explanation of this part is omitted.
  • the rope 5 includes an outer layer 28.
  • the outer layer 28 is made of resin.
  • the outer layer 28 is formed of a thermoplastic polyurethane elastomer.
  • the outer layer 28 is formed of an ether-based thermoplastic polyurethane elastomer.
  • the outer layer 28 forms a layer on the outside of the plurality of second steel materials 17.
  • the outer layer 28 is formed of a resin.
  • the outer layer 28 forms a layer on the outside of the plurality of second steel materials 17. Therefore, in the rope 5, the coefficient of friction with the sheave 4 can be increased. As a result, the compensating rope or compensating chain can be lightened or removed even in an elevator with a long ascent / descent distance.
  • FIG. 27 is a cross-sectional view of the rope structure according to the sixteenth embodiment.
  • the same or corresponding parts as those of the first embodiment and the like are designated by the same reference numerals. The explanation of this part is omitted.
  • the rope structure is formed in a belt shape.
  • the rope structure includes a plurality of linear structures 29 and a covering structure 30.
  • the plurality of linear structures 29 are formed in the same manner as the rope 5.
  • the rope 5 is equivalent to the rope 5 of FIG.
  • the covering structure 30 is made of resin.
  • the coating structure 30 is formed of an ether-based thermoplastic polyurethane elastomer.
  • the covering structure 30 covers the plurality of linear structures 29 in a state where the plurality of linear structures 29 are aligned in the longitudinal direction and arranged in the horizontal direction.
  • the rope structure is formed in a belt shape. Therefore, the rope 5 using the high-strength aggregate can be applied to the sheave 4 having a small radius.
  • high-strength fiber collecting filament carbon fiber, glass fiber, polyparaphenylene benzoxazole fiber, aramid fiber, polyallylate fiber, basalt fiber and the like may be used. In this case, the mass ratio strength of the high-strength fiber aggregate can be increased.
  • FIG. 28 is a cross-sectional view of a modified example of the rope structure in the sixteenth embodiment.
  • the rope 5 is equivalent to the rope 5 in FIG.
  • the core material 8 is formed of one high-strength fiber aggregate.
  • the rope 5 is equivalent to the rope 5 in FIG. Therefore, the breaking strength of the rope structure can be further increased.
  • rope 5 of FIG. 26 of the embodiment 15 and some of the long bodies of the rope structures of FIGS. 27 and 28 of the embodiment 16 are other than the elevator of FIG. May be applied.
  • any of these ropes 5 and rope structures may be applied to a machine roomless elevator.
  • any of these ropes 5 and rope structures may be applied to a 2: 1 roping type elevator.
  • any of these ropes 5 and rope structures may be applied to a double-deck elevator.
  • either the rope 5 or the rope structure may be applied to the governor of the elevator.
  • any of these ropes 5 and the rope structure may be applied to a high-rise elevator having a hoisting height of more than 75 meters.
  • the higher the winding height the greater the effect of reducing the total weight of the rope 5 as compared with the conventional rope 5.
  • the friction coefficient of these ropes 5 and the rope structure becomes larger. Therefore, the compensating rope or compensating chain can be lightened or removed.
  • the rope disclosed in this disclosure can be used for elevators.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ropes Or Cables (AREA)

Abstract

Provided are a high strength fiber assembly, rope, and rope structure capable of further increasing strength. This high strength fiber assembly comprises a plurality of profiled high strength fiber filaments that are kept in a gathered state. This rope comprises: a core material formed from the high strength fiber assembly; and multiple first steel materials each of which is disposed on the outer periphery of the core material. This rope structure comprises: multiple linear structures each of which is formed from the rope; and a covering structure that covers the multiple linear structures in a state where the multiple linear structures are aligned in the horizontal direction, with the longitudinal directions thereof matched. An elevator comprises a long body formed from any one of the rope and the rope structure.

Description

高強度繊維集合体、ロープ、ロープ構造体High-strength fiber aggregates, ropes, rope structures
 本開示は、高強度繊維集合体、ロープ、ロープ構造体に関する。 This disclosure relates to high-strength fiber aggregates, ropes, and rope structures.
 特許文献1は、エレベーターのロープを開示する。当該ロープによれば、芯材において、複数の高強度繊維フィラメントの隙間を縮小し得る。 Patent Document 1 discloses an elevator rope. According to the rope, the gap between a plurality of high-strength fiber filaments can be reduced in the core material.
日本特許第6452839号公報Japanese Patent No. 6452839
 しかしながら、特許文献1に記載のロープにおいては、複数の高強度繊維フィラメント同士は、拘束されない。このため、高強度繊維の充填量を増やすと、荷重がロープにかかった際に当該荷重がロープの中心に近い高強度繊維フィラメントに伝わらない。その結果、ロープの強度を高めることができない。 However, in the rope described in Patent Document 1, a plurality of high-strength fiber filaments are not restrained from each other. Therefore, if the filling amount of the high-strength fiber is increased, when the load is applied to the rope, the load is not transmitted to the high-strength fiber filament near the center of the rope. As a result, the strength of the rope cannot be increased.
 本開示は、上述の課題を解決するためになされた。本開示の目的は、強度をより高めることができる高強度繊維集合体、ロープ、ロープ構造体を提供することである。 This disclosure was made to solve the above-mentioned problems. It is an object of the present disclosure to provide high-strength fiber aggregates, ropes, rope structures capable of higher strength.
 本開示に係る高強度繊維集合体は、互いにまとめられた状態に維持され、異形加工された複数の高強度繊維フィラメント、を備えた。 The high-strength fiber aggregate according to the present disclosure includes a plurality of high-strength fiber filaments, which are maintained in a state of being gathered together and have been shaped and processed.
 本開示に係る高強度繊維集合体は、複数の高強度繊維フィラメントが互いに撚り合わされた状態にそれぞれ形成され、互いに撚り合わされた状態に維持され、異形加工された複数の高強度繊維ヤーン、を備えた。 The high-strength fiber aggregate according to the present disclosure comprises a plurality of high-strength fiber yarns, each of which is formed in a state in which a plurality of high-strength fiber filaments are twisted to each other, is maintained in a state of being twisted to each other, and is deformed. rice field.
 本開示に係る高強度繊維集合体は、複数の高強度繊維フィラメントが互いに撚り合わされた状態に維持されてそれぞれ異形加工され、互いに長手方向を合わせた状態で異形加工された複数の高強度繊維ヤーン、を備えた。 The high-strength fiber aggregate according to the present disclosure is a plurality of high-strength fiber yarns in which a plurality of high-strength fiber filaments are maintained in a twisted state and are deformed, respectively, and are deformed in a state in which the longitudinal directions of the plurality of high-strength fiber filaments are aligned with each other. , Equipped with.
 本開示に係る高強度繊維集合体は、複数の高強度繊維フィラメントが互いに撚り合わされた状態に維持されてそれぞれ異形加工され、互いに撚り合わされた状態で異形加工された複数の高強度繊維ヤーン、を備えた。 The high-strength fiber aggregate according to the present disclosure comprises a plurality of high-strength fiber yarns in which a plurality of high-strength fiber filaments are maintained in a twisted state and are deformed, respectively, and in a twisted state, the plurality of high-strength fiber yarns are deformed. Prepared.
 本開示に係る高強度繊維集合体は、複数の高強度繊維フィラメントが互いに撚り合わされてそれぞれ形成された複数の高強度繊維ヤーンが互いに撚り合わされてそれぞれ形成され、互いに長手方向を合わせた状態に維持され、異形加工された複数の高強度繊維ストランド、を備えた。 The high-strength fiber aggregate according to the present disclosure is maintained in a state in which a plurality of high-strength fiber yarns formed by twisting a plurality of high-strength fiber filaments are twisted to each other and formed by twisting each other in the longitudinal direction. It was equipped with multiple high-strength fiber strands, which were shaped and machined.
 本開示に係る高強度繊維集合体は、複数の高強度繊維フィラメントが互いに撚り合わされてそれぞれ形成された複数の高強度繊維ヤーンが互いに撚り合わされてそれぞれ形成され、互いに撚り合わされた状態に維持され、異形加工された複数の高強度繊維ストランド、を備えた。 In the high-strength fiber aggregate according to the present disclosure, a plurality of high-strength fiber yarns formed by twisting a plurality of high-strength fiber filaments to each other are twisted to each other to form a plurality of high-strength fiber yarns, and the high-strength fiber aggregate is maintained in a twisted state. It was equipped with a plurality of high-strength fiber strands, which had been shaped.
 本開示に係るロープは、前記高強度繊維集合体で形成された芯材と、前記芯材の外周にそれぞれ配置された複数の第1鋼材と、を備えた。 The rope according to the present disclosure includes a core material formed of the high-strength fiber aggregate and a plurality of first steel materials arranged on the outer periphery of the core material.
 本開示に係るロープは、鋼で形成された芯材と、前記高強度繊維集合体でそれぞれ形成され、前記芯材の外周にそれぞれ配置された複数の第1繊維集合材と、前記複数の第1繊維集合材の外側にそれぞれ配置された複数の第1鋼材と、を備えた。 The rope according to the present disclosure includes a core material made of steel, a plurality of first fiber aggregates each formed of the high-strength fiber aggregate and arranged on the outer periphery of the core material, and the plurality of first fibers. It was provided with a plurality of first steel materials, each of which was arranged on the outside of one fiber laminated wood.
 本開示に係るロープは、鋼で形成された芯材と、前記高強度繊維集合体でそれぞれ形成され、前記芯材の外周にそれぞれ配置された複数の第1繊維集合材と、前記複数の第1繊維集合材の外側にそれぞれ配置された複数の第1鋼材と、を備えた。 The rope according to the present disclosure includes a core material made of steel, a plurality of first fiber aggregates each formed of the high-strength fiber aggregate and arranged on the outer periphery of the core material, and the plurality of first fibers. It was provided with a plurality of first steel materials, each of which was arranged on the outside of one fiber laminated wood.
 本開示に係るロープ構造体は、前記ロープでそれぞれ形成された複数の線状構造体と、複数の線状構造体が長手方向を合わせて水平方向に並んだ状態で前記複数の線状構造体を被覆する被覆構造体と、を備えた。 The rope structure according to the present disclosure is a plurality of linear structures each formed of the rope, and the plurality of linear structures in a state where the plurality of linear structures are aligned in the longitudinal direction and arranged in the horizontal direction. It was provided with a covering structure for covering.
 本開示によれば、複数の高強度繊維フィラメントは、互いにまとめられた状態に維持される。複数の高強度繊維フィラメントは、異形加工される。このため、高強度繊維集合体の強度をより高めることができる。 According to the present disclosure, a plurality of high-strength fiber filaments are maintained in a state of being grouped together. The plurality of high-strength fiber filaments are deformed. Therefore, the strength of the high-strength fiber aggregate can be further increased.
実施の形態1におけるロープが適用されるエレベーターの構成図の一例である。It is an example of the block diagram of the elevator to which the rope is applied in Embodiment 1. 実施の形態1におけるロープの断面図である。It is sectional drawing of the rope in Embodiment 1. FIG. 実施の形態1におけるロープの高強度繊維集合体の側面図である。It is a side view of the high-strength fiber assembly of a rope in Embodiment 1. FIG. 実施の形態1におけるロープの高強度繊維集合体の断面拡大図である。FIG. 5 is an enlarged cross-sectional view of a high-strength fiber aggregate of a rope according to the first embodiment. 実施の形態1におけるロープの高強度繊維集合体の第1変形例の側面図である。It is a side view of the 1st modification of the high-strength fiber assembly of a rope in Embodiment 1. FIG. 実施の形態1におけるロープの高強度繊維集合体の第2変形例の側面図である。It is a side view of the 2nd modification of the high-strength fiber assembly of a rope in Embodiment 1. FIG. 実施の形態2におけるロープの高強度繊維集合体の側面図である。It is a side view of the high-strength fiber assembly of a rope in Embodiment 2. FIG. 実施の形態2におけるロープの高強度繊維集合体の変形例の側面図である。It is a side view of the modification of the high-strength fiber assembly of a rope in Embodiment 2. FIG. 実施の形態3におけるロープの高強度繊維集合体の側面図である。It is a side view of the high-strength fiber assembly of a rope in Embodiment 3. FIG. 実施の形態3におけるロープの高強度繊維集合体の変形例の側面図である。It is a side view of the modification of the high-strength fiber assembly of a rope in Embodiment 3. FIG. 実施の形態4におけるロープの断面図である。It is sectional drawing of the rope in Embodiment 4. FIG. 実施の形態4におけるロープの変形例の断面図である。It is sectional drawing of the modification of the rope in Embodiment 4. FIG. 実施の形態5におけるロープの断面図である。It is sectional drawing of the rope in Embodiment 5. FIG. 実施の形態5におけるロープの変形例の断面図である。It is sectional drawing of the modification of the rope in Embodiment 5. FIG. 実施の形態6におけるロープの断面図である。It is sectional drawing of the rope in Embodiment 6. 実施の形態7におけるロープの断面図である。It is sectional drawing of the rope in Embodiment 7. FIG. 実施の形態7におけるロープの変形例の断面図である。It is sectional drawing of the modification of the rope in Embodiment 7. FIG. 実施の形態8におけるロープの断面図である。It is sectional drawing of the rope in Embodiment 8. FIG. 実施の形態9におけるロープの断面図である。It is sectional drawing of the rope in Embodiment 9. FIG. 実施の形態10におけるロープの断面図である。It is sectional drawing of the rope in Embodiment 10. FIG. 実施の形態11におけるロープの断面図である。11 is a cross-sectional view of the rope according to the eleventh embodiment. 実施の形態12におけるロープの断面図である。It is sectional drawing of the rope in Embodiment 12. 実施の形態13におけるロープの断面図である。It is sectional drawing of the rope in Embodiment 13. 実施の形態14におけるロープの断面図である。It is sectional drawing of the rope in Embodiment 14. FIG. 実施の形態14におけるロープの変形例の断面図である。It is sectional drawing of the modification of the rope in Embodiment 14. 実施の形態15におけるロープの断面図である。It is sectional drawing of the rope in Embodiment 15. FIG. 実施の形態16におけるロープ構造体の断面図である。It is sectional drawing of the rope structure in Embodiment 16. FIG. 実施の形態16におけるロープ構造体の変形例の断面図である。It is sectional drawing of the modification of the rope structure in Embodiment 16. FIG.
 実施の形態について添付の図面に従って説明する。なお、各図中、同一または相当する部分には同一の符号が付される。当該部分の重複説明は適宜に簡略化ないし省略される。 The embodiment will be described according to the attached drawings. In each figure, the same or corresponding parts are designated by the same reference numerals. The duplicate description of the relevant part will be simplified or omitted as appropriate.
実施の形態1.
 図1は実施の形態1におけるロープが適用されるエレベーターの構成図の一例である。
Embodiment 1.
FIG. 1 is an example of a configuration diagram of an elevator to which a rope is applied according to the first embodiment.
 図1のエレベーターにおいて、昇降路1は、建築物の各階を貫く。機械室2は、昇降路1の直上に設けられる。 In the elevator of FIG. 1, the hoistway 1 penetrates each floor of the building. The machine room 2 is provided directly above the hoistway 1.
 巻上機3は、機械室2に設けられる。綱車4は、巻上機3の回転軸に取り付けられる。複数のロープ5は、複数の巻上ロープとして綱車4の外周面に並んで巻き掛けられる。 The hoisting machine 3 is provided in the machine room 2. The sheave 4 is attached to the rotating shaft of the hoisting machine 3. The plurality of ropes 5 are wound side by side on the outer peripheral surface of the sheave 4 as a plurality of hoisting ropes.
 かご6は、昇降路1の内部に設けられる。かご6は、複数のロープ5の一側に支持される。釣合い錘7は、昇降路1の内部に設けられる。釣合い錘7は、複数のロープ5の他側に支持される。 The car 6 is provided inside the hoistway 1. The car 6 is supported on one side of the plurality of ropes 5. The counterweight 7 is provided inside the hoistway 1. The counterweight 7 is supported on the other side of the plurality of ropes 5.
 巻上機3は、図示されない制御装置からの指令に基づいて駆動する。綱車4は、巻上機3の駆動に追従して回転する。ロープ5は、綱車4の回転に追従して移動する。かご6と釣合い錘7とは、ロープ5の移動に追従して互いに反対方向に昇降する。 The hoisting machine 3 is driven based on a command from a control device (not shown). The sheave 4 rotates following the drive of the hoisting machine 3. The rope 5 moves following the rotation of the sheave 4. The cage 6 and the counterweight 7 move up and down in opposite directions following the movement of the rope 5.
 次に、図2を用いて、ロープ5を説明する。
 図2は実施の形態1におけるロープの断面図である。
Next, the rope 5 will be described with reference to FIG.
FIG. 2 is a cross-sectional view of the rope according to the first embodiment.
 図2に示されるように、ロープ5は、芯材8と複数の第1鋼材9とを備える。 As shown in FIG. 2, the rope 5 includes a core material 8 and a plurality of first steel materials 9.
 芯材8は、高強度繊維集合体である。芯材8は、異形加工される。 The core material 8 is a high-strength fiber aggregate. The core material 8 is deformed.
 例えば、複数の第1鋼材9の各々は、鋼線ストランドである。複数の第1鋼材9は、芯材8の外周にそれぞれ配置される。例えば、複数の第1鋼材9は、芯材8を中心として互いに撚り合わされる。 For example, each of the plurality of first steel materials 9 is a steel wire strand. The plurality of first steel materials 9 are arranged on the outer periphery of the core material 8, respectively. For example, the plurality of first steel materials 9 are twisted together around the core material 8.
 芯材8と複数の第1鋼材9とは、ロープ5の引張方向の荷重を分担して受ける。 The core material 8 and the plurality of first steel materials 9 share and receive the load in the tensile direction of the rope 5.
 次に、図3と図4とを用いて、高強度繊維集合体を説明する。
 図3は実施の形態1におけるロープの高強度繊維集合体の側面図である。図4は実施の形態1におけるロープの高強度繊維集合体の断面拡大図である。
Next, a high-strength fiber aggregate will be described with reference to FIGS. 3 and 4.
FIG. 3 is a side view of the high-strength fiber aggregate of the rope in the first embodiment. FIG. 4 is an enlarged cross-sectional view of the high-strength fiber aggregate of the rope according to the first embodiment.
 図3に示されるように、高強度繊維集合体は、複数の高強度繊維フィラメント10を備える。例えば、高強度フィラメントの本数は、数百本から数万本である。例えば、高強度フィラメントの本数は、数万本である。例えば、高強度フィラメントの外径は、数μmから数十μmである。 As shown in FIG. 3, the high-strength fiber aggregate includes a plurality of high-strength fiber filaments 10. For example, the number of high-strength filaments is several hundred to tens of thousands. For example, the number of high-strength filaments is tens of thousands. For example, the outer diameter of the high-strength filament is several μm to several tens of μm.
 複数の高強度繊維フィラメント10は、互いにまとめられた状態に維持される。例えば、複数の高強度繊維フィラメント10は、互いに長手方向を合わせた状態に維持される。図3において、高強度繊維フィラメント10の配向は実線で示される。この状態において、複数の高強度繊維フィラメント10は、断面が予め設定された形状となるように異形加工される。例えば、複数の高強度繊維フィラメント10は、断面が円形となるように異形加工される。 The plurality of high-strength fiber filaments 10 are maintained in a state of being grouped together. For example, the plurality of high-strength fiber filaments 10 are maintained in a state in which their longitudinal directions are aligned with each other. In FIG. 3, the orientation of the high-strength fiber filament 10 is shown by a solid line. In this state, the plurality of high-strength fiber filaments 10 are deformed so that the cross section has a preset shape. For example, the plurality of high-strength fiber filaments 10 are deformed so as to have a circular cross section.
 図4に示されるように、複数の高強度繊維フィラメント10は、マトリクス樹脂11の内部に充填された状態に維持される。 As shown in FIG. 4, the plurality of high-strength fiber filaments 10 are maintained in a state of being filled inside the matrix resin 11.
 長尺の高強度繊維集合体の断面が予め設定された形状にされる場合は、最初に、複数の高強度繊維フィラメント10は、硬化前の液状のマトリクス樹脂11に含浸される。その後、複数の高強度繊維フィラメント10は、予め設定された形状の金型の内部に引き揃えられる。その後、複数の高強度繊維フィルタは、金型から引き抜かれる。金型の内部において、複数の高強度繊維フィラメント10は、連続的に加熱される。この際、複数の高強度繊維フィラメント10において、マトリクス樹脂11は、加熱により硬化する。 When the cross section of the long high-strength fiber aggregate is formed into a preset shape, first, the plurality of high-strength fiber filaments 10 are impregnated with the liquid matrix resin 11 before curing. After that, the plurality of high-strength fiber filaments 10 are aligned inside the mold having a preset shape. After that, the plurality of high-strength fiber filters are pulled out from the mold. Inside the mold, the plurality of high-strength fiber filaments 10 are continuously heated. At this time, in the plurality of high-strength fiber filaments 10, the matrix resin 11 is cured by heating.
 以上で説明した実施の形態1によれば、複数の高強度繊維フィラメント10は、互いにまとめられた状態に維持される。例えば、複数の高強度繊維フィラメント10は、互いに長手方向を合わせた状態に維持される。複数の高強度繊維フィラメント10は、異形加工される。このため、複数の高強度繊維フィラメント10の密度を高めた状態に維持することができる。その結果、高強度繊維集合体の強度をより高めることができる。 According to the first embodiment described above, the plurality of high-strength fiber filaments 10 are maintained in a state of being put together. For example, the plurality of high-strength fiber filaments 10 are maintained in a state in which their longitudinal directions are aligned with each other. The plurality of high-strength fiber filaments 10 are deformed. Therefore, it is possible to maintain a state in which the density of the plurality of high-strength fiber filaments 10 is increased. As a result, the strength of the high-strength fiber aggregate can be further increased.
 具体的には、複数の高強度繊維フィラメント10は、マトリクス樹脂11の内部に充填された状態に維持される。このため、複数の高強度繊維フィラメント10をまとめられた状態に容易に維持することができる。その結果、複数の高強度繊維フィラメント10の形状が崩れることなく、容易かつ安価にロープ5を製造することができる。 Specifically, the plurality of high-strength fiber filaments 10 are maintained in a state of being filled inside the matrix resin 11. Therefore, the plurality of high-strength fiber filaments 10 can be easily maintained in a grouped state. As a result, the rope 5 can be easily and inexpensively manufactured without losing the shape of the plurality of high-strength fiber filaments 10.
 なお、可撓性樹脂をマトリクス樹脂11とすればよい。具体的には、柔軟性を有して外力を受けたときに容易に破壊しないで撓む樹脂をマトリクス樹脂11とすればよい。この場合、ロープ5の柔軟性を確保することができる。その結果、ロープ5の屈曲性を確保することができる。 The flexible resin may be the matrix resin 11. Specifically, the matrix resin 11 may be a resin that has flexibility and bends without being easily broken when subjected to an external force. In this case, the flexibility of the rope 5 can be ensured. As a result, the flexibility of the rope 5 can be ensured.
 例えば、可撓性樹脂として、熱硬化性のエポキシ樹脂または熱硬化性のウレタン樹脂を用いればよい。 For example, a thermosetting epoxy resin or a thermosetting urethane resin may be used as the flexible resin.
 例えば、熱硬化性のエポキシ樹脂において、ポリオキシアルキレン結合、ウレタン結合、ブタジエンゴムのうちの1種類以上を分子中に含んで2つ以上のエポキシ基を分子中に含んだ液状の主剤を用いればよい。当該主剤と硬化剤とを混合した後に加熱することでエポキシ樹脂を硬化させればよい。 For example, in a thermosetting epoxy resin, if a liquid main agent containing one or more of polyoxyalkylene bond, urethane bond, and butadiene rubber in the molecule and two or more epoxy groups in the molecule is used. good. The epoxy resin may be cured by mixing the main agent and the curing agent and then heating the resin.
 例えば、熱硬化性のウレタン樹脂として、耐加水分解性の観点から、エーテル系ウレタンを用いればよい。例えば、ポリテトラメチレンエーテルグリコール、ポリプロピレングリコール等のエーテル系ポリオールを各種のポリイソシアネート化合物で硬化させればよい。 For example, as a thermosetting urethane resin, ether-based urethane may be used from the viewpoint of hydrolysis resistance. For example, ether-based polyols such as polytetramethylene ether glycol and polypropylene glycol may be cured with various polyisocyanate compounds.
 これらの樹脂によれば、高強度繊維集合体を予め設定された形状に容易に維持することができる。このため、複数の高強度繊維フィラメント10の密着性を確保することができる。その結果、樹脂の硬化後において、ロープ5の可撓性を確保することができる。 According to these resins, the high-strength fiber aggregate can be easily maintained in a preset shape. Therefore, the adhesion of the plurality of high-strength fiber filaments 10 can be ensured. As a result, the flexibility of the rope 5 can be ensured after the resin is cured.
 なお、製造上の問題がなければ、可撓性樹脂として、熱可塑性の樹脂を用いてもよい。 If there is no manufacturing problem, a thermoplastic resin may be used as the flexible resin.
 次に、図5を用いて、高強度繊維集合体の第1変形例を説明する。
 図5は実施の形態1におけるロープの高強度繊維集合体の第1変形例の側面図である。
Next, a first modification example of the high-strength fiber aggregate will be described with reference to FIG.
FIG. 5 is a side view of the first modification of the high-strength fiber assembly of the rope in the first embodiment.
 図5に示されるように、高強度繊維集合体は、高強度繊維ヤーン12である。高強度繊維ヤーン12において、複数の高強度繊維フィラメント10は、互いに撚り合わされた状態に維持される。図5において、高強度繊維フィラメント10の配向は実線で示される。この状態において、複数の高強度繊維フィラメント10は、異形加工される。 As shown in FIG. 5, the high-strength fiber aggregate is the high-strength fiber yarn 12. In the high-strength fiber yarn 12, the plurality of high-strength fiber filaments 10 are maintained in a twisted state. In FIG. 5, the orientation of the high-strength fiber filament 10 is shown by a solid line. In this state, the plurality of high-strength fiber filaments 10 are deformed.
 例えば、長尺の高強度繊維集合体の断面が円形にされる場合は、最初に、高強度繊維ヤーン12は、硬化前の液状のマトリクス樹脂11に含浸される。その後、高強度繊維ヤーン12は、絞られる。その結果、余剰のマトリクス樹脂11が除去される。この状態において、高強度繊維ヤーン12は連続的に加熱される。その結果、高強度繊維ヤーン12において、マトリクス樹脂11は硬化する。この際、高強度繊維集合体の断面は、自ずと円形になる。この場合、当該高強度繊維ヤーン12の繊維含有率は、図4の高強度繊維集合体の繊維含有率よりも高い。当該高強度繊維ヤーン12の質量比強度は、図4の高強度繊維集合体の質量比強度よりも高い。 For example, when the cross section of a long high-strength fiber aggregate is circular, the high-strength fiber yarn 12 is first impregnated with the liquid matrix resin 11 before curing. After that, the high-strength fiber yarn 12 is squeezed. As a result, the excess matrix resin 11 is removed. In this state, the high-strength fiber yarn 12 is continuously heated. As a result, the matrix resin 11 is cured in the high-strength fiber yarn 12. At this time, the cross section of the high-strength fiber aggregate is naturally circular. In this case, the fiber content of the high-strength fiber yarn 12 is higher than the fiber content of the high-strength fiber aggregate of FIG. The mass ratio strength of the high-strength fiber yarn 12 is higher than the mass ratio strength of the high-strength fiber aggregate of FIG.
 例えば、長尺の高強度繊維集合体の断面が円形以外の形状にされる場合は、最初に、高強度繊維ヤーン12は、硬化前の液状のマトリクス樹脂11に含浸される。その後、高強度繊維ヤーン12は、予め設定された形状の金型の内部に送られる。この際、高強度繊維ヤーン12は、金型の内部で連続的に加熱される。その結果、高強度繊維ヤーン12において、マトリクス樹脂11は硬化する。 For example, when the cross section of a long high-strength fiber aggregate has a shape other than a circular shape, the high-strength fiber yarn 12 is first impregnated with the liquid matrix resin 11 before curing. After that, the high-strength fiber yarn 12 is sent to the inside of the mold having a preset shape. At this time, the high-strength fiber yarn 12 is continuously heated inside the mold. As a result, the matrix resin 11 is cured in the high-strength fiber yarn 12.
 以上で説明した第1変形例によれば、複数の高強度繊維フィラメント10は、互いに撚り合わされた状態に維持される。このため、より可撓性の高い高強度繊維集合体を容易かつ安価に製造することができる。 According to the first modification described above, the plurality of high-strength fiber filaments 10 are maintained in a state of being twisted to each other. Therefore, a highly flexible high-strength fiber aggregate can be easily and inexpensively manufactured.
 この場合、高強度繊維集合体が曲がった際に複数の高強度繊維フィラメント10において圧縮または引張による局所的な応力が発生しにくい。このため、高強度繊維集合体が座屈することを抑制できる。その結果、高強度繊維集合体の疲労耐久性を高めることができる。さらに、高強度繊維集合体の疲労耐久性が高まることで、ロープ5の疲労耐久性を高めることができる。 In this case, when the high-strength fiber aggregate is bent, local stress due to compression or tension is unlikely to occur in the plurality of high-strength fiber filaments 10. Therefore, it is possible to prevent the high-strength fiber aggregate from buckling. As a result, the fatigue durability of the high-strength fiber aggregate can be enhanced. Further, the fatigue durability of the rope 5 can be enhanced by increasing the fatigue durability of the high-strength fiber aggregate.
 また、高強度繊維ヤーン12が異形加工されることで、複数の高強度繊維フィラメント10は、荷重をより均等に分担する。このため、高強度繊維集合体において、より大きな荷重を支持することができる。 Further, by processing the high-strength fiber yarn 12 into a deformed shape, the plurality of high-strength fiber filaments 10 share the load more evenly. Therefore, a larger load can be supported in the high-strength fiber aggregate.
 次に、図6を用いて、高強度繊維集合体の第2変形例を説明する。
 図6は実施の形態1におけるロープの高強度繊維集合体の第2変形例の側面図である。
Next, a second modification of the high-strength fiber aggregate will be described with reference to FIG.
FIG. 6 is a side view of a second modification of the high-strength fiber aggregate of the rope in the first embodiment.
 図6に示されるように、高強度繊維集合体は、高強度繊維ストランド13である。高強度繊維ストランド13において、複数の高強度繊維ヤーン12は、互いに撚り合わされる。例えば、図6においては、6本の高強度繊維ヤーン12は、1本の高強度繊維ヤーン12を中心にして互いに撚り合わされる。図6に示されないが、高強度繊維ヤーン12において、複数の高強度繊維フィラメント10は、互いに撚り合わされる。この状態において、高強度繊維ストランド13は、異形加工される。 As shown in FIG. 6, the high-strength fiber aggregate is a high-strength fiber strand 13. In the high-strength fiber strand 13, the plurality of high-strength fiber yarns 12 are twisted together. For example, in FIG. 6, six high-strength fiber yarns 12 are twisted together around one high-strength fiber yarn 12. Although not shown in FIG. 6, in the high-strength fiber yarn 12, the plurality of high-strength fiber filaments 10 are twisted together. In this state, the high-strength fiber strand 13 is deformed.
 図6において、隣接した高強度繊維ヤーン12の境界は実線で示される。実際には、当該境界は、目視できない場合が多い。 In FIG. 6, the boundary between adjacent high-strength fiber yarns 12 is shown by a solid line. In practice, the boundaries are often invisible.
 以上で説明した第2変形例によれば、複数の高強度繊維ヤーン12は、互いに撚り合わされる。このため、高強度繊維ストランド13の全体に荷重を分担させることができる。 According to the second modification described above, the plurality of high-strength fiber yarns 12 are twisted together. Therefore, the load can be shared over the entire high-strength fiber strand 13.
 また、複数の高強度繊維ヤーン12を撚り合わせて高強度繊維ストランド13としていることで、高強度繊維ヤーン12の継ぎ目がある場合でも、高強度繊維ストランド13ないしロープ5の全体的な強度は確保される。このため、高強度繊維ヤーン12がロープ5の全長にわたって継ぎ目なくつながってなくてもよい。この場合、ロープ5の長さに応じた長さの高強度繊維フィラメント10を用意する必要がない。その結果、高強度繊維ヤーン12の製造コストを削減することができる。 Further, by twisting a plurality of high-strength fiber yarns 12 into a high-strength fiber strand 13, the overall strength of the high-strength fiber strand 13 to the rope 5 is ensured even if there is a seam of the high-strength fiber yarn 12. Will be done. Therefore, the high-strength fiber yarn 12 does not have to be seamlessly connected over the entire length of the rope 5. In this case, it is not necessary to prepare the high-strength fiber filament 10 having a length corresponding to the length of the rope 5. As a result, the manufacturing cost of the high-strength fiber yarn 12 can be reduced.
実施の形態2.
 図7は実施の形態2におけるロープの高強度繊維集合体の側面図である。なお、実施の形態1の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
Embodiment 2.
FIG. 7 is a side view of the high-strength fiber assembly of the rope according to the second embodiment. The same or corresponding parts as those of the first embodiment are designated by the same reference numerals. The explanation of this part is omitted.
 図7に示されるように、高強度繊維集合体は、複数の高強度繊維ヤーン12を備える。図7に示されないが、複数の高強度繊維ヤーン12のそれぞれにおいて、複数の高強度繊維フィラメント10は、互いに撚り合わされた状態に維持される。例えば、複数の高強度繊維フィラメント10は、第1マトリクス樹脂で互いに撚り合わされた状態に維持される。この状態において、複数の高強度繊維ヤーン12は、断面が円形になるようにそれぞれ異形加工される。 As shown in FIG. 7, the high-strength fiber aggregate comprises a plurality of high-strength fiber yarns 12. Although not shown in FIG. 7, in each of the plurality of high-strength fiber yarns 12, the plurality of high-strength fiber filaments 10 are maintained in a twisted state with respect to each other. For example, the plurality of high-strength fiber filaments 10 are maintained in a state of being twisted together with the first matrix resin. In this state, the plurality of high-strength fiber yarns 12 are each deformed so as to have a circular cross section.
 複数の高強度繊維ヤーン12は、まとめられた状態に維持される。具体的には、複数の高強度繊維ヤーン12は、互いに長手方向を合わせた状態に維持される。例えば、複数の高強度繊維ヤーン12は、第2マトリクス樹脂で互いに長手方向を合わせた状態に維持される。複数の高強度繊維ヤーン12は、異形加工される。例えば、複数の高強度繊維ヤーン12は、断面が台形に類した形状になるように異形加工される。具体的には、当該断面の形状は、予め設定された大きさの扇形からより中心部の扇形が削除された形状である。 The plurality of high-strength fiber yarns 12 are maintained in a grouped state. Specifically, the plurality of high-strength fiber yarns 12 are maintained in a state in which the longitudinal directions are aligned with each other. For example, the plurality of high-strength fiber yarns 12 are maintained in a state of being aligned in the longitudinal direction with the second matrix resin. The plurality of high-strength fiber yarns 12 are deformed. For example, the plurality of high-strength fiber yarns 12 are irregularly processed so that the cross section has a shape similar to a trapezoid. Specifically, the shape of the cross section is a shape in which the fan shape at the center is removed from the fan shape having a preset size.
 例えば、長尺の高強度繊維集合体の断面が予め設定された形状にされる場合は、複数の高強度繊維ヤーン12は、実施の形態1の変形例と同様にそれぞれ形成される。その後、複数の高強度繊維ヤーン12は、複数のボビン等にそれぞれ巻き取られる。その後、複数の高強度繊維ヤーン12は、複数のボビン等からそれぞれ引き出される。その後、複数の高強度繊維ヤーン12は、第2マトリクス樹脂に含浸される。その後、複数の高強度繊維ヤーン12は、互いに長手方向を合わせてまとめられる。その後、複数の高強度繊維ヤーン12は、予め設定された形状の金型の内部に引き込まれる。その後、複数の高強度ヤーンは、金型の内部において連続的に加熱される。その結果、複数の高強度繊維ヤーン12において、第2マトリクス樹脂は硬化する。 For example, when the cross section of the long high-strength fiber aggregate is formed into a preset shape, the plurality of high-strength fiber yarns 12 are formed in the same manner as in the modification of the first embodiment. After that, the plurality of high-strength fiber yarns 12 are each wound up on a plurality of bobbins and the like. After that, the plurality of high-strength fiber yarns 12 are each drawn from the plurality of bobbins and the like. After that, the plurality of high-strength fiber yarns 12 are impregnated into the second matrix resin. After that, the plurality of high-strength fiber yarns 12 are put together in the longitudinal direction of each other. After that, the plurality of high-strength fiber yarns 12 are drawn into the mold having a preset shape. The plurality of high-strength yarns are then continuously heated inside the mold. As a result, the second matrix resin is cured in the plurality of high-strength fiber yarns 12.
 例えば、第2マトリクス樹脂が熱可塑性樹脂である場合は、複数の高強度繊維ヤーン12は、互いに長手方向を合わせた状態で金型の内部に引き込まれる。この状態において、複数の高強度繊維ヤーン12は、溶融状態の第2マトリクス樹脂に含浸される。その後、複数の高強度繊維ヤーン12は、金型から引き出される。その後、複数の高強度繊維ヤーン12は、冷却される。その結果、複数の高強度繊維ヤーン12において、第2マトリクス樹脂は硬化する。 For example, when the second matrix resin is a thermoplastic resin, the plurality of high-strength fiber yarns 12 are drawn into the mold in a state where the longitudinal directions are aligned with each other. In this state, the plurality of high-strength fiber yarns 12 are impregnated with the second matrix resin in the molten state. After that, the plurality of high-strength fiber yarns 12 are pulled out from the mold. After that, the plurality of high-strength fiber yarns 12 are cooled. As a result, the second matrix resin is cured in the plurality of high-strength fiber yarns 12.
 以上で説明した実施の形態2によれば、複数の高強度繊維ヤーン12は、まとめられた状態に維持される。具体的には、複数の高強度繊維ヤーン12は、互いに長手方向を合わせた状態に維持される。このため、高強度繊維集合体において、より大きな荷重を支持することができる。 According to the second embodiment described above, the plurality of high-strength fiber yarns 12 are maintained in a grouped state. Specifically, the plurality of high-strength fiber yarns 12 are maintained in a state in which the longitudinal directions are aligned with each other. Therefore, a larger load can be supported in the high-strength fiber aggregate.
 なお、第1マトリクス樹脂と第2マトリクス樹脂とは、適宜選定される。例えば、第1マトリクス樹脂を図3のマトリクス樹脂11と同じとしてもよい。 The first matrix resin and the second matrix resin are appropriately selected. For example, the first matrix resin may be the same as the matrix resin 11 in FIG.
 第1マトリクス樹脂は、1本当たりの外径が数μmから数十μmである高強度繊維フィラメント10にまとめて含浸することを要する。このため、硬化前において、第1マトリクス樹脂は、低粘度であることを要する。これに対し、第2マトリクス樹脂は、複数の高強度繊維ヤーン12に含浸すればよい。このため、硬化前において、第2マトリクス樹脂は、第1マトリクス樹脂よりも高粘度でよい。 The first matrix resin needs to be impregnated collectively into the high-strength fiber filament 10 having an outer diameter of several μm to several tens of μm per fiber. Therefore, the first matrix resin needs to have a low viscosity before curing. On the other hand, the second matrix resin may be impregnated into a plurality of high-strength fiber yarns 12. Therefore, before curing, the second matrix resin may have a higher viscosity than the first matrix resin.
 次に、図8を用いて、高強度繊維集合体の変形例を説明する。
 図8は実施の形態2におけるロープの高強度繊維集合体の変形例の側面図である。
Next, a modified example of the high-strength fiber aggregate will be described with reference to FIG.
FIG. 8 is a side view of a modified example of the high-strength fiber aggregate of the rope in the second embodiment.
 図8に示されるように、複数の高強度繊維ヤーン12は、互いに撚り合わされた状態に維持される。複数の高強度繊維ヤーン12は、異形加工される。 As shown in FIG. 8, the plurality of high-strength fiber yarns 12 are maintained in a twisted state with each other. The plurality of high-strength fiber yarns 12 are deformed.
 例えば、長尺の高強度繊維体の断面が予め設定された形状にされる場合は、複数の高強度繊維ヤーン12は、実施の形態1の変形例と同様にそれぞれ形成される。その後、複数の高強度繊維ヤーン12は、複数のボビン等にそれぞれ巻き取られる。その後、複数の高強度繊維ヤーン12は、複数のボビン等からそれぞれ引き出される。その後、複数の高強度ヤーンは、互いに撚り合わされる。その後、複数の高強度繊維ヤーン12は、第2マトリクス樹脂に含浸される。その後、複数の高強度繊維ヤーン12は、予め設定された形状の金型の内部に引き込まれる。この際、複数の高強度ヤーンは、金型の内部において連続的に加熱される。その結果、複数の高強度繊維ヤーン12において、第2樹脂は硬化する。 For example, when the cross section of the long high-strength fiber body is formed into a preset shape, the plurality of high-strength fiber yarns 12 are formed in the same manner as in the modified example of the first embodiment. After that, the plurality of high-strength fiber yarns 12 are each wound up on a plurality of bobbins and the like. After that, the plurality of high-strength fiber yarns 12 are each drawn from the plurality of bobbins and the like. The plurality of high-strength yarns are then twisted together. After that, the plurality of high-strength fiber yarns 12 are impregnated into the second matrix resin. After that, the plurality of high-strength fiber yarns 12 are drawn into the mold having a preset shape. At this time, the plurality of high-strength yarns are continuously heated inside the mold. As a result, the second resin is cured in the plurality of high-strength fiber yarns 12.
 例えば、第2マトリクス樹脂が熱可塑性樹脂である場合は、複数の高強度繊維ヤーン12は、互いに撚り合わされた状態で金型の内部に引き込まれる。この状態において、複数の高強度繊維ヤーン12は、溶融状態の第2マトリクス樹脂に含浸される。その後、複数の高強度繊維ヤーン12は、金型から引き出される。その後、複数の高強度繊維ヤーン12は、冷却される。その結果、複数の高強度繊維ヤーン12において、第2マトリクス樹脂は硬化する。 For example, when the second matrix resin is a thermoplastic resin, the plurality of high-strength fiber yarns 12 are drawn into the mold in a state of being twisted to each other. In this state, the plurality of high-strength fiber yarns 12 are impregnated with the second matrix resin in the molten state. After that, the plurality of high-strength fiber yarns 12 are pulled out from the mold. After that, the plurality of high-strength fiber yarns 12 are cooled. As a result, the second matrix resin is cured in the plurality of high-strength fiber yarns 12.
 以上で説明した変形例によれば、複数の高強度繊維ヤーン12は、互いに撚り合わされた状態に維持される。このため、高強度繊維集合体の製造時において、高強度繊維集合体の形が崩れることを抑制できる。さらに、ロープ5が繰り返し曲げられても、高強度繊維集合体の形が崩れることを抑制できる。 According to the modification described above, the plurality of high-strength fiber yarns 12 are maintained in a twisted state. Therefore, it is possible to prevent the shape of the high-strength fiber aggregate from being deformed during the production of the high-strength fiber aggregate. Further, even if the rope 5 is repeatedly bent, it is possible to prevent the shape of the high-strength fiber aggregate from being deformed.
実施の形態3.
 図9は実施の形態3におけるロープの高強度繊維集合体の側面図である。なお、実施の形態1の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
Embodiment 3.
FIG. 9 is a side view of the high-strength fiber aggregate of the rope according to the third embodiment. The same or corresponding parts as those of the first embodiment are designated by the same reference numerals. The explanation of this part is omitted.
 図9に示されるように、高強度繊維集合体は、複数の高強度繊維ストランド13を備える。複数の高強度繊維ストランド13のそれぞれにおいて、複数の高強度繊維ヤーン12は、互いに撚り合わされる。複数の高強度繊維ヤーン12のそれぞれにおいて、複数の高強度繊維フィラメント10は、互いに撚り合わされる。 As shown in FIG. 9, the high-strength fiber aggregate comprises a plurality of high-strength fiber strands 13. In each of the plurality of high-strength fiber strands 13, the plurality of high-strength fiber yarns 12 are twisted together. In each of the plurality of high-strength fiber yarns 12, the plurality of high-strength fiber filaments 10 are twisted together.
 複数の高強度繊維ストランド13は、互いに長手方向を合わせた状態に維持される。複数の高強度繊維ストランド13は、異形加工される。例えば、複数の高強度繊維ストランド13は、マトリクス樹脂11で異形加工される。図9においては、7本の高強度繊維ストランド13は、全体的な断面が台形になるように異形加工される。 The plurality of high-strength fiber strands 13 are maintained in a state in which their longitudinal directions are aligned with each other. The plurality of high-strength fiber strands 13 are deformed. For example, the plurality of high-strength fiber strands 13 are deformed with the matrix resin 11. In FIG. 9, the seven high-strength fiber strands 13 are deformed so that the overall cross section is trapezoidal.
 図9において、隣接した高強度繊維ストランド13の境界は実線で示される。実際には、当該境界は、目視できない場合が多い。 In FIG. 9, the boundary between adjacent high-strength fiber strands 13 is shown by a solid line. In practice, the boundaries are often invisible.
 以上で説明した実施の形態3によれば、複数の高強度繊維ストランド13は、互いに長手方向を合わせた状態に維持される。複数の高強度繊維ストランド13は、異形加工される。このため、高強度繊維集合体の外径をより大きくすることができる。その結果、ロープ5の外径をより大きくすることができる。ロープ5の破断強度をより高めることができる。 According to the third embodiment described above, the plurality of high-strength fiber strands 13 are maintained in a state in which their longitudinal directions are aligned with each other. The plurality of high-strength fiber strands 13 are deformed. Therefore, the outer diameter of the high-strength fiber aggregate can be made larger. As a result, the outer diameter of the rope 5 can be made larger. The breaking strength of the rope 5 can be further increased.
 次に、図10を用いて、高強度繊維集合体の変形例を説明する。
 図10は実施の形態3におけるロープの高強度繊維集合体の変形例の側面図である。
Next, a modified example of the high-strength fiber aggregate will be described with reference to FIG.
FIG. 10 is a side view of a modified example of the high-strength fiber aggregate of the rope in the third embodiment.
 図10に示されるように、複数の高強度繊維ストランド13は、互いに撚り合わせた状態に維持される。複数の高強度繊維ストランド13は、異形加工される。例えば、複数の高強度繊維ストランド13は、マトリクス樹脂11で異形加工される。図10においては6本の高強度繊維ストランド13は、1本の高強度繊維ストランド13を中心にして互いに撚り合わされる。7本の高強度繊維ストランド13は、全体的な断面が台形になるように異形加工される。 As shown in FIG. 10, the plurality of high-strength fiber strands 13 are maintained in a twisted state. The plurality of high-strength fiber strands 13 are deformed. For example, the plurality of high-strength fiber strands 13 are deformed with the matrix resin 11. In FIG. 10, six high-strength fiber strands 13 are twisted to each other around one high-strength fiber strand 13. The seven high-strength fiber strands 13 are deformed so that the overall cross section is trapezoidal.
 図10において、隣接した高強度繊維ストランド13の境界は実線で示される。実際には、当該境界は、目視できない場合が多い。 In FIG. 10, the boundary between adjacent high-strength fiber strands 13 is shown by a solid line. In practice, the boundaries are often invisible.
 以上で説明した変形例によれば、複数の高強度繊維ストランド13は、互いに撚り合わせた状態に維持される。複数の高強度繊維ストランド13は、異形加工される。このため、複数の高強度繊維ストランド13が異形加工された後、高強度繊維集合体の形が崩れることを抑制できる。さらに、複数の高強度繊維ストランド13が互いに長手方向を合わせた状態で異形加工される場合よりも、複数の高強度繊維ストランド13に荷重をより均等に分担させることができる。 According to the modification described above, the plurality of high-strength fiber strands 13 are maintained in a twisted state. The plurality of high-strength fiber strands 13 are deformed. Therefore, it is possible to prevent the shape of the high-strength fiber aggregate from being deformed after the plurality of high-strength fiber strands 13 are deformed. Further, the load can be more evenly distributed to the plurality of high-strength fiber strands 13 as compared with the case where the plurality of high-strength fiber strands 13 are deformed in a state where the longitudinal directions of the plurality of high-strength fiber strands are aligned with each other.
実施の形態4.
 図11は実施の形態4におけるロープの断面図である。なお、実施の形態1の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
Embodiment 4.
FIG. 11 is a cross-sectional view of the rope according to the fourth embodiment. The same or corresponding parts as those of the first embodiment are designated by the same reference numerals. The explanation of this part is omitted.
 図11に示されるように、芯材8は、複数の高強度繊維集合体でそれぞれ形成された線状体が互いに撚り合わされて異形加工される。図11においては、6本の高強度繊維集合体は、1本の高強度繊維集合体を中心として高強度繊維集合体が互いに撚り合わされて形成される。中心の高強度繊維集合体は、断面が円形である。周りの6本の高強度繊維集合体の断面は、それぞれ台形である。この状態において、芯材8は、異形加工される。 As shown in FIG. 11, the core material 8 is formed into a deformed shape by twisting linear bodies formed of a plurality of high-strength fiber aggregates with each other. In FIG. 11, the six high-strength fiber aggregates are formed by twisting the high-strength fiber aggregates around one high-strength fiber aggregate. The central high-strength fiber aggregate has a circular cross section. The cross sections of the surrounding six high-strength fiber aggregates are trapezoidal. In this state, the core material 8 is deformed.
 以上で説明した実施の形態4によれば、芯材8は、複数の高強度繊維集合体でそれぞれ形成された線状体が互いに撚り合わされて異形加工される。このため、ロープ5の柔軟性を高めることができる。 According to the fourth embodiment described above, the core material 8 is formed into a deformed shape by twisting linear bodies formed of a plurality of high-strength fiber aggregates with each other. Therefore, the flexibility of the rope 5 can be increased.
 次に、図12を用いて、ロープ5の変形例を説明する。
 図12は実施の形態4におけるロープの変形例の断面図である。
Next, a modified example of the rope 5 will be described with reference to FIG.
FIG. 12 is a cross-sectional view of a modified example of the rope in the fourth embodiment.
 図12において、芯材8は、扇形に異形加工された6本の高強度繊維集合体が互いに撚り合わされて形成される。この状態において、芯材8は、異形加工される。 In FIG. 12, the core material 8 is formed by twisting six high-strength fiber aggregates that have been fan-shaped into a fan shape. In this state, the core material 8 is deformed.
 以上で説明した変形例によれば、芯材8は、扇形に異形加工された6本の高強度繊維集合体が互いに撚り合わされて形成される。この場合、複数種類の高強度繊維集合体を要することなく、ロープ5の柔軟性を高めることができる。 According to the modification described above, the core material 8 is formed by twisting six high-strength fiber aggregates that have been deformed into a fan shape. In this case, the flexibility of the rope 5 can be increased without requiring a plurality of types of high-strength fiber aggregates.
実施の形態5.
 図13は実施の形態5におけるロープの断面図である。なお、実施の形態4の変形例の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
Embodiment 5.
FIG. 13 is a cross-sectional view of the rope according to the fifth embodiment. In addition, the same reference numerals are given to the same or corresponding parts as the parts of the modified example of the fourth embodiment. The explanation of this part is omitted.
 図13に示されるように、ロープ5は、複数の第1繊維集合材16と複数の第2鋼材17とを備える。 As shown in FIG. 13, the rope 5 includes a plurality of first fiber laminated wood 16 and a plurality of second steel materials 17.
 複数の第1繊維集合材16は、複数の高強度繊維集合体を撚り合わせてそれぞれ形成される。複数の第1繊維集合材16は、複数の第1鋼材9の外側にそれぞれ配置される。 The plurality of first fiber aggregates 16 are each formed by twisting a plurality of high-strength fiber aggregates. The plurality of first fiber laminated wood 16 is arranged on the outside of each of the plurality of first steel materials 9.
 複数の第2鋼材17の各々は、鋼線ストランドである。複数の第2鋼材17は、複数の第1繊維集合材16の外側にそれぞれ配置される。 Each of the plurality of second steel materials 17 is a steel wire strand. The plurality of second steel materials 17 are respectively arranged on the outside of the plurality of first fiber laminated wood 16.
 以上で説明した実施の形態5によれば、高強度繊維集合材の層と鋼材の層とがロープ5の断面の中心から外側に向かって交互に設けられる。このため、高強度繊維集合材の外径と鋼材の外径とを大きくすることなく、ロープ5の外径を大きくすることができる。その結果、ロープ5の柔軟性を犠牲にすることなく、ロープ5の破断強度を高めることができる。 According to the fifth embodiment described above, the layer of the high-strength fiber laminated wood and the layer of the steel material are alternately provided from the center of the cross section of the rope 5 toward the outside. Therefore, the outer diameter of the rope 5 can be increased without increasing the outer diameter of the high-strength fiber laminated wood and the outer diameter of the steel material. As a result, the breaking strength of the rope 5 can be increased without sacrificing the flexibility of the rope 5.
 次に、図14を用いて、変形例を説明する。
 図14は実施の形態5におけるロープの変形例の断面図である。
Next, a modified example will be described with reference to FIG.
FIG. 14 is a cross-sectional view of a modified example of the rope in the fifth embodiment.
 図14の芯材8において、複数の高強度繊維線集合体は、図7または図8で示された高強度繊維集合体と同等の集合体でそれぞれ形成される。例えば、芯材8において、複数の高強度繊維集合体の断面は、それぞれ扇形である。例えば、複数の第1繊維集合材16の断面は、それぞれ台形である。 In the core material 8 of FIG. 14, a plurality of high-strength fiber line aggregates are each formed of an aggregate equivalent to the high-strength fiber aggregate shown in FIG. 7 or FIG. For example, in the core material 8, the cross sections of the plurality of high-strength fiber aggregates are each fan-shaped. For example, the cross section of the plurality of first fiber laminated wood 16 is trapezoidal.
 以上で説明した変形例によれば、高強度繊維集合材の層と鋼材の層とがロープ5の断面の中心から外側に向かって交互に設けられる。このため、高強度繊維集合材の外径と鋼材の外径とを大きくすることなく、ロープ5の外径を大きくすることができる。その結果、ロープ5の柔軟性を犠牲にすることなく、ロープ5の破断強度を高めることができる。 According to the modification described above, the layer of high-strength fiber laminated wood and the layer of steel material are alternately provided from the center of the cross section of the rope 5 toward the outside. Therefore, the outer diameter of the rope 5 can be increased without increasing the outer diameter of the high-strength fiber laminated wood and the outer diameter of the steel material. As a result, the breaking strength of the rope 5 can be increased without sacrificing the flexibility of the rope 5.
実施の形態6.
 図15は実施の形態6におけるロープの断面図である。なお、実施の形態5の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
Embodiment 6.
FIG. 15 is a cross-sectional view of the rope according to the sixth embodiment. The same or corresponding parts as those of the fifth embodiment are designated by the same reference numerals. The explanation of this part is omitted.
 図15に示されるように、ロープ5は、複数の第2繊維集合材18と複数の第3鋼材19とを備える。 As shown in FIG. 15, the rope 5 includes a plurality of second fiber laminated wood 18 and a plurality of third steel materials 19.
 複数の第2繊維集合材18は、複数の高強度繊維集合体を撚り合わせてそれぞれ形成される。複数の第2繊維集合材18は、複数の第2鋼材17の外側にそれぞれ配置される。 The plurality of second fiber aggregates 18 are each formed by twisting a plurality of high-strength fiber aggregates. The plurality of second fiber laminated wood 18s are respectively arranged on the outside of the plurality of second steel materials 17.
 複数の第3鋼材19の各々は、鋼線ストランドである。複数の第3鋼材19は、複数の第1繊維集合材16の外側にそれぞれ配置される。 Each of the plurality of third steel materials 19 is a steel wire strand. The plurality of third steel materials 19 are respectively arranged on the outside of the plurality of first fiber laminated wood 16.
 以上で説明した実施の形態6によれば、高強度繊維集合材の層と鋼材の層とがロープ5の断面の中心から外側に向かって交互に設けられる。このため、高強度繊維集合材の外径と鋼材の外径とを大きくすることなく、ロープ5の外径をより大きくすることができる。その結果、ロープ5の柔軟性を犠牲にすることなく、ロープ5の破断強度をより高めることができる。 According to the sixth embodiment described above, the layer of the high-strength fiber laminated wood and the layer of the steel material are alternately provided from the center of the cross section of the rope 5 toward the outside. Therefore, the outer diameter of the rope 5 can be made larger without increasing the outer diameter of the high-strength fiber laminated wood and the outer diameter of the steel material. As a result, the breaking strength of the rope 5 can be further increased without sacrificing the flexibility of the rope 5.
 なお、より多くの高強度繊維集合材の層とより多くの鋼材の層とを交互に設けてもよい。 Note that more layers of high-strength fiber laminated wood and more layers of steel material may be provided alternately.
実施の形態7.
 図16は実施の形態7におけるロープの断面図である。なお、実施の形態1の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
Embodiment 7.
FIG. 16 is a cross-sectional view of the rope according to the seventh embodiment. The same or corresponding parts as those of the first embodiment are designated by the same reference numerals. The explanation of this part is omitted.
 図16に示されるように、ロープ5は、芯材8と複数の第1繊維集合材16と複数の第1鋼材9とを備える。 As shown in FIG. 16, the rope 5 includes a core material 8, a plurality of first fiber laminated lumbers 16, and a plurality of first steel materials 9.
 芯材8は、鋼で形成される。例えば、芯材8は、鋼線で形成される。 The core material 8 is made of steel. For example, the core material 8 is made of steel wire.
 複数の第1繊維集合材16は、高強度繊維集合体でそれぞれ形成される。複数の第1繊維集合材16は、芯材8の外周にそれぞれ配置される。 The plurality of first fiber aggregates 16 are each formed of high-strength fiber aggregates. The plurality of first fiber laminated lumbers 16 are arranged on the outer periphery of the core material 8, respectively.
 複数の第1鋼材9は、鋼線ストランドでそれぞれ形成される。複数の第1鋼材9は、複数の第1繊維集合材16の外側にそれぞれ配置される。 The plurality of first steel materials 9 are each formed of steel wire strands. The plurality of first steel materials 9 are respectively arranged on the outside of the plurality of first fiber laminated wood 16.
 以上で説明した実施の形態7によれば、芯材8は、鋼で形成される。このため、ロープ5を容易に真円に近い形状にすることができる。さらに、荷重がロープ5の径方向にかかっても、ロープ5の形状を崩れにくくすることができる。 According to the seventh embodiment described above, the core material 8 is made of steel. Therefore, the rope 5 can be easily formed into a shape close to a perfect circle. Further, even if a load is applied in the radial direction of the rope 5, the shape of the rope 5 can be prevented from collapsing.
 次に、図17を用いて、ロープ5の変形例を説明する。
 図17は実施の形態7におけるロープの変形例の断面図である。
Next, a modified example of the rope 5 will be described with reference to FIG.
FIG. 17 is a cross-sectional view of a modified example of the rope in the seventh embodiment.
 図17において、芯材8は、鋼線ストランドで形成される。 In FIG. 17, the core material 8 is formed of steel wire strands.
 以上で説明した変形例によれば、芯材8は、鋼線ストランドで形成される。このため、ロープ5の柔軟性をより高めることができる。 According to the modification described above, the core material 8 is formed of steel wire strands. Therefore, the flexibility of the rope 5 can be further increased.
実施の形態8.
 図18は実施の形態8におけるロープの断面図である。なお、実施の形態7の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
Embodiment 8.
FIG. 18 is a cross-sectional view of the rope according to the eighth embodiment. The same or corresponding parts as those of the seventh embodiment are designated by the same reference numerals. The explanation of this part is omitted.
 図18に示されるように、ロープ5は、複数の第2繊維集合材18と複数の第2鋼材17とを備える。 As shown in FIG. 18, the rope 5 includes a plurality of second fiber laminated wood 18 and a plurality of second steel materials 17.
 複数の第2繊維集合材18は、複数の高強度繊維集合体を撚り合わせてそれぞれ形成される。複数の第2繊維集合材18は、複数の第1鋼材9の外側にそれぞれ配置される。 The plurality of second fiber aggregates 18 are each formed by twisting a plurality of high-strength fiber aggregates. The plurality of second fiber laminated wood 18s are respectively arranged on the outside of the plurality of first steel materials 9.
 複数の第3鋼材19の各々は、鋼線ストランドである。複数の第3鋼材19は、複数の第2繊維集合材18の外側にそれぞれ配置される。 Each of the plurality of third steel materials 19 is a steel wire strand. The plurality of third steel materials 19 are respectively arranged on the outside of the plurality of second fiber laminated wood 18.
 以上で説明した実施の形態8によれば、鋼材の層と高強度繊維集合材の層とがロープ5の断面の中心から外側に向かって交互に設けられる。このため、鋼材の層の外径と高強度繊維集合材の外径とを大きくすることなく、ロープ5の外径をより大きくすることができる。その結果、ロープ5の柔軟性を犠牲にすることなく、ロープ5の破断強度をより高めることができる。 According to the eighth embodiment described above, the steel material layer and the high-strength fiber laminated wood layer are alternately provided from the center of the cross section of the rope 5 toward the outside. Therefore, the outer diameter of the rope 5 can be made larger without increasing the outer diameter of the steel material layer and the outer diameter of the high-strength fiber laminated wood. As a result, the breaking strength of the rope 5 can be further increased without sacrificing the flexibility of the rope 5.
実施の形態9.
 図19は実施の形態9におけるロープの断面図である。なお、実施の形態8の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
Embodiment 9.
FIG. 19 is a cross-sectional view of the rope according to the ninth embodiment. The same or corresponding parts as those of the eighth embodiment are designated by the same reference numerals. The explanation of this part is omitted.
 図19に示されるように、ロープ5は、複数の第3繊維集合材20と複数の第3鋼材19とを備える。 As shown in FIG. 19, the rope 5 includes a plurality of third fiber laminated wood 20 and a plurality of third steel materials 19.
 複数の第3繊維集合材20は、複数の高強度繊維集合体を撚り合わせてそれぞれ形成される。複数の第3繊維集合材20は、複数の第2鋼材17の外側にそれぞれ配置される。 The plurality of third fiber aggregates 20 are each formed by twisting a plurality of high-strength fiber aggregates. The plurality of third fiber laminated wood 20s are respectively arranged on the outside of the plurality of second steel materials 17.
 複数の第3鋼材19の各々は、鋼線ストランドである。複数の第3鋼材19は、複数の第3繊維集合材20の外側にそれぞれ配置される。 Each of the plurality of third steel materials 19 is a steel wire strand. The plurality of third steel materials 19 are respectively arranged on the outside of the plurality of third fiber laminated wood 20.
 以上で説明した実施の形態9によれば、鋼材の層と高強度繊維集合材の層とがロープ5の断面の中心から外側に向かって交互に設けられる。このため、鋼材の層の外径と高強度繊維集合材の外径とを大きくすることなく、ロープ5の外径をより大きくすることができる。その結果、ロープ5の柔軟性を犠牲にすることなく、ロープ5の破断強度をより高めることができる。 According to the ninth embodiment described above, the steel material layer and the high-strength fiber laminated wood layer are alternately provided from the center of the cross section of the rope 5 toward the outside. Therefore, the outer diameter of the rope 5 can be made larger without increasing the outer diameter of the steel material layer and the outer diameter of the high-strength fiber laminated wood. As a result, the breaking strength of the rope 5 can be further increased without sacrificing the flexibility of the rope 5.
実施の形態10.
 図20は実施の形態10におけるロープの断面図である。なお、実施の形態1等の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
Embodiment 10.
FIG. 20 is a cross-sectional view of the rope according to the tenth embodiment. The same or corresponding parts as those of the first embodiment and the like are designated by the same reference numerals. The explanation of this part is omitted.
 図20に示されるように、ロープ5は、第1樹脂層22と第2樹脂層23と第3樹脂層24とを備える。 As shown in FIG. 20, the rope 5 includes a first resin layer 22, a second resin layer 23, and a third resin layer 24.
 第1樹脂層22は、芯材8と複数の第1鋼材9との間において層をなす。第2樹脂層23は、複数の第1鋼材9と複数の第1繊維集合材16との間において層をなす。第3樹脂層24は、複数の第1繊維集合材16と複数の第2鋼材17との間において層をなす。 The first resin layer 22 forms a layer between the core material 8 and the plurality of first steel materials 9. The second resin layer 23 forms a layer between the plurality of first steel materials 9 and the plurality of first fiber laminated wood 16. The third resin layer 24 forms a layer between the plurality of first fiber laminated wood 16 and the plurality of second steel materials 17.
 以上で説明した実施の形態10によれば、樹脂層は、高強度繊維集合材と鋼材との間において層をなす。このため、高強度繊維集合材が鋼材と接触することにより高強度繊維集合材における高強度繊維フィラメント10が摩耗することを抑制できる。 According to the tenth embodiment described above, the resin layer forms a layer between the high-strength fiber laminated wood and the steel material. Therefore, it is possible to suppress the wear of the high-strength fiber filament 10 in the high-strength fiber laminated wood due to the contact of the high-strength fiber laminated wood with the steel material.
 なお、第1樹脂層22と第2樹脂層23と第3樹脂層24とをポリエチレン,ポリプロピレンで形成すればよい。この場合、第1樹脂層22と第2樹脂層23と第3樹脂層24との耐摩耗性と低摩擦性とを両立させることができる。 The first resin layer 22, the second resin layer 23, and the third resin layer 24 may be formed of polyethylene or polypropylene. In this case, the wear resistance and the low frictional property of the first resin layer 22, the second resin layer 23, and the third resin layer 24 can be compatible with each other.
実施の形態11.
 図21は実施の形態11におけるロープの断面図である。なお、実施の形態1等の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
Embodiment 11.
FIG. 21 is a cross-sectional view of the rope according to the eleventh embodiment. The same or corresponding parts as those of the first embodiment and the like are designated by the same reference numerals. The explanation of this part is omitted.
 図21に示されるように、ロープ5は、複数の第2樹脂体25を備える。 As shown in FIG. 21, the rope 5 includes a plurality of second resin bodies 25.
 複数の第2樹脂体25は、樹脂でそれぞれ形成される。複数の第2樹脂体25は、複数の第1鋼材9をそれぞれ被覆する。 The plurality of second resin bodies 25 are each formed of resin. The plurality of second resin bodies 25 each cover the plurality of first steel materials 9.
 以上で説明した実施の形態11によれば、第2樹脂体25は、第1鋼材9を被覆する。このため、高強度繊維集合材が鋼材と接触することにより高強度繊維集合材における高強度繊維フィラメント10が摩耗することを抑制できる。 According to the eleventh embodiment described above, the second resin body 25 covers the first steel material 9. Therefore, it is possible to suppress the wear of the high-strength fiber filament 10 in the high-strength fiber laminated wood due to the contact of the high-strength fiber laminated wood with the steel material.
 なお、第2樹脂体25をポリエチレン,ポリプロピレンで形成すればよい。この場合、樹脂層の耐摩耗性と低摩擦性とを両立させることができる。 The second resin body 25 may be formed of polyethylene or polypropylene. In this case, it is possible to achieve both wear resistance and low friction resistance of the resin layer.
実施の形態12.
 図22は実施の形態12におけるロープの断面図である。なお、実施の形態1等の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
Embodiment 12.
FIG. 22 is a cross-sectional view of the rope according to the twelfth embodiment. The same or corresponding parts as those of the first embodiment and the like are designated by the same reference numerals. The explanation of this part is omitted.
 図22に示されるように、ロープ5は、第1樹脂体26と複数の第3樹脂体27を備える。 As shown in FIG. 22, the rope 5 includes a first resin body 26 and a plurality of third resin bodies 27.
 第1樹脂体26は、樹脂で形成される。第1樹脂体26は、芯材8を被覆する。 The first resin body 26 is made of resin. The first resin body 26 covers the core material 8.
 複数の第3樹脂体27は、樹脂でそれぞれ形成される。複数の第3樹脂体27は、複数の第1繊維集合材16をそれぞれ被覆する。 The plurality of third resin bodies 27 are each formed of resin. The plurality of third resin bodies 27 each cover the plurality of first fiber laminated wood 16.
 以上で説明した実施の形態12によれば、第1樹脂体26は、芯材8を被覆する。このため、高強度繊維集合材が鋼材と接触することにより高強度繊維集合材における高強度繊維フィラメント10が摩耗することを抑制できる。 According to the twelfth embodiment described above, the first resin body 26 covers the core material 8. Therefore, it is possible to suppress the wear of the high-strength fiber filament 10 in the high-strength fiber laminated wood due to the contact of the high-strength fiber laminated wood with the steel material.
 また、複数の第3樹脂体27は、複数の第1繊維集合材16をそれぞれ被覆する。このため、隣接した第1繊維集合材16が擦過することにより高強度繊維フィラメント10が摩耗することを抑制できる。 Further, the plurality of third resin bodies 27 each coat the plurality of first fiber laminated wood 16. Therefore, it is possible to prevent the high-strength fiber filament 10 from being worn due to the scraping of the adjacent first fiber laminated wood 16.
実施の形態13.
 図23は実施の形態13におけるロープの断面図である。なお、実施の形態1の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
Embodiment 13.
FIG. 23 is a cross-sectional view of the rope according to the thirteenth embodiment. The same or corresponding parts as those of the first embodiment are designated by the same reference numerals. The explanation of this part is omitted.
 図23に示されるように、第1鋼材9は、第1中心部9aと複数の第1鋼部9bとを備える。 As shown in FIG. 23, the first steel material 9 includes a first central portion 9a and a plurality of first steel portions 9b.
 第1中心部9aは、高強度繊維集合体で形成される。 The first central portion 9a is formed of a high-strength fiber aggregate.
 複数の第1鋼部9bは、鋼線でそれぞれ形成される。第1鋼部9bは、第1中心部9aの外周にそれぞれ配置される。 The plurality of first steel portions 9b are each formed of steel wire. The first steel portion 9b is arranged on the outer periphery of the first central portion 9a, respectively.
 図23に示されるように、第2鋼材17は、第2中心部17aと複数の第2鋼部17bとを備える。 As shown in FIG. 23, the second steel material 17 includes a second central portion 17a and a plurality of second steel portions 17b.
 第2中心部17aは、高強度繊維集合体で形成される。 The second central portion 17a is formed of a high-strength fiber aggregate.
 複数の第2鋼部17bは、鋼でそれぞれ形成される。第2鋼部17bは、第2中心部17aの外周にそれぞれ配置される。 The plurality of second steel portions 17b are each formed of steel. The second steel portion 17b is arranged on the outer periphery of the second central portion 17a, respectively.
 以上で説明した実施の形態13によれば、第1鋼材9において、第1中心部9aは、高強度繊維集合体で形成される。第2鋼材17において、第2中心部17aは、高強度繊維集合体で形成される。このため、ロープ5をより軽くするだけでなく、ロープ5の質量比強度を高めることができる。 According to the thirteenth embodiment described above, in the first steel material 9, the first central portion 9a is formed of a high-strength fiber aggregate. In the second steel material 17, the second central portion 17a is formed of a high-strength fiber aggregate. Therefore, not only the rope 5 can be made lighter, but also the mass ratio strength of the rope 5 can be increased.
 第1鋼材9において、第1中心部9aと複数の第1鋼部9bとの間に樹脂層を設けてもよい。この場合、第1中心部9aが第1鋼部9bと接触することにより第1中心部9aにおける高強度繊維フィラメント10が摩耗することを抑制できる。 In the first steel material 9, a resin layer may be provided between the first central portion 9a and the plurality of first steel portions 9b. In this case, it is possible to prevent the high-strength fiber filament 10 in the first central portion 9a from being worn by the contact of the first central portion 9a with the first steel portion 9b.
 第2鋼材17において、第2中心部17aと複数の第2鋼部17bとの間に樹脂層を設けてもよい。この場合、第2中心部17aが第2鋼部17bと接触することにより第2中心部17aにおける高強度繊維フィラメント10が摩耗することを抑制できる。 In the second steel material 17, a resin layer may be provided between the second central portion 17a and the plurality of second steel portions 17b. In this case, it is possible to prevent the high-strength fiber filament 10 in the second central portion 17a from being worn by the contact of the second central portion 17a with the second steel portion 17b.
実施の形態14.
 図24は実施の形態14におけるロープの断面図である。なお、実施の形態1等の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
Embodiment 14.
FIG. 24 is a cross-sectional view of the rope according to the fourteenth embodiment. The same or corresponding parts as those of the first embodiment and the like are designated by the same reference numerals. The explanation of this part is omitted.
 図24に示されるように、第2鋼材17は、断面が円形となるように異形加工される。 As shown in FIG. 24, the second steel material 17 is deformed so as to have a circular cross section.
 以上で説明した実施の形態14によれば、第2鋼材17は、断面が円形となるように異形加工される。このため、第2鋼材17が第1繊維集合材16と接触する際の面圧を下げることができる。その結果、第1繊維集合材16における高強度繊維フィラメント10の摩耗を抑制することができる。 According to the 14th embodiment described above, the second steel material 17 is deformed so as to have a circular cross section. Therefore, the surface pressure when the second steel material 17 comes into contact with the first fiber laminated wood 16 can be reduced. As a result, wear of the high-strength fiber filament 10 in the first fiber laminated wood 16 can be suppressed.
 また、複数の第2鋼材17が最外層のストランドである場合は、ロープ5が綱車4と接触する際の面圧を下げることができる。その結果、第2鋼材17における鋼線の耐疲労性を高めることができる。 Further, when the plurality of second steel materials 17 are the strands of the outermost layer, the surface pressure when the rope 5 comes into contact with the sheave 4 can be reduced. As a result, the fatigue resistance of the steel wire in the second steel material 17 can be improved.
 次に、図25を用いて、変形例を説明する。
 図25は実施の形態14におけるロープの変形例の断面図である。
Next, a modified example will be described with reference to FIG. 25.
FIG. 25 is a cross-sectional view of a modified example of the rope in the fourteenth embodiment.
 図25に示されるように、第1鋼材9は、断面が円形となるように異形加工される。 As shown in FIG. 25, the first steel material 9 is deformed so as to have a circular cross section.
 以上で説明した変形例によれば、第1鋼材9は、断面が円形となるように異形加工される。このため、第1鋼材9が芯材8と接触する際の面圧と第1繊維集合材16と接触する際の面圧とを下げることができる。その結果、芯材8における高強度繊維フィラメント10の摩耗と第1繊維集合材16における高強度繊維フィラメント10の摩耗とを抑制することができる。 According to the modification described above, the first steel material 9 is deformed so as to have a circular cross section. Therefore, the surface pressure when the first steel material 9 comes into contact with the core material 8 and the surface pressure when the first steel material 9 comes into contact with the first fiber laminated lumber 16 can be reduced. As a result, it is possible to suppress the wear of the high-strength fiber filament 10 in the core material 8 and the wear of the high-strength fiber filament 10 in the first fiber laminated wood 16.
 なお、実施の形態4の図11から実施の形態14の図25のロープ5において、最外層は、鋼線ストランドである。これらのロープ5がエレベーターに用いられる際、最外層の鋼線は、高強度繊維フィラメント10よりも先に損傷する。このため、高強度繊維フィラメント10の損傷を検知する装置を不要とすることができる。その結果、従来の保守技術においてロープ5の保守を運用することができる。 In the rope 5 of FIG. 11 to FIG. 25 of the fourth embodiment, the outermost layer is a steel wire strand. When these ropes 5 are used in an elevator, the outermost steel wire is damaged before the high-strength fiber filament 10. Therefore, it is possible to eliminate the need for a device for detecting damage to the high-strength fiber filament 10. As a result, the maintenance of the rope 5 can be operated by the conventional maintenance technique.
 また、実施の形態4の図11から実施の形態14の図25のロープ5において、最外層の鋼線ストランドにロープ油を含浸させてもよい。この場合、ロープ5において、綱車4との摩擦係数は、従来とほぼ同じとなる。このため、従来のロープ5が適用される機器をそのまま用いることができる。 Further, in the rope 5 of FIG. 11 to FIG. 25 of the fourth embodiment, the steel wire strand of the outermost layer may be impregnated with rope oil. In this case, the coefficient of friction of the rope 5 with the sheave 4 is almost the same as that of the conventional one. Therefore, the equipment to which the conventional rope 5 is applied can be used as it is.
実施の形態15.
 図26は実施の形態15におけるロープの断面図である。なお、実施の形態14の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
Embodiment 15.
FIG. 26 is a cross-sectional view of the rope according to the fifteenth embodiment. The same or corresponding parts as those of the 14th embodiment are designated by the same reference numerals. The explanation of this part is omitted.
 図26に示されるように、ロープ5は、外層28を備える。 As shown in FIG. 26, the rope 5 includes an outer layer 28.
 外層28は、樹脂で形成される。例えば、外層28は、熱可塑性ポリウレタンエラストマーで形成される。例えば、外層28は、エーテル系の熱可塑性ポリウレタンエラストマーで形成される。外層28は、複数の第2鋼材17の外側において層をなす。 The outer layer 28 is made of resin. For example, the outer layer 28 is formed of a thermoplastic polyurethane elastomer. For example, the outer layer 28 is formed of an ether-based thermoplastic polyurethane elastomer. The outer layer 28 forms a layer on the outside of the plurality of second steel materials 17.
 以上で説明した実施の形態15によれば、外層28は、樹脂で形成される。外層28は、複数の第2鋼材17の外側において層をなす。このため、ロープ5において、綱車4との摩擦係数を大きくすることができる。その結果、昇降距離の長いエレベーターにおいても補償ロープあるいは補償鎖を軽くしたり、削除したりすることができる。 According to the 15th embodiment described above, the outer layer 28 is formed of a resin. The outer layer 28 forms a layer on the outside of the plurality of second steel materials 17. Therefore, in the rope 5, the coefficient of friction with the sheave 4 can be increased. As a result, the compensating rope or compensating chain can be lightened or removed even in an elevator with a long ascent / descent distance.
実施の形態16.
 図27は実施の形態16におけるロープ構造体の断面図である。なお、実施の形態1等の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
Embodiment 16.
FIG. 27 is a cross-sectional view of the rope structure according to the sixteenth embodiment. The same or corresponding parts as those of the first embodiment and the like are designated by the same reference numerals. The explanation of this part is omitted.
 図28において、ロープ構造体は、ベルト状に形成される。ロープ構造体は、複数の線状構造体29と被覆構造体30とを備える。 In FIG. 28, the rope structure is formed in a belt shape. The rope structure includes a plurality of linear structures 29 and a covering structure 30.
 複数の線状構造体29は、ロープ5と同等にそれぞれ形成される。図28において、ロープ5は、図11のロープ5と同等である。 The plurality of linear structures 29 are formed in the same manner as the rope 5. In FIG. 28, the rope 5 is equivalent to the rope 5 of FIG.
 被覆構造体30は、樹脂で形成される。例えば、被覆構造体30は、エーテル系の熱可塑性ポリウレタンエラストマーで形成される。被覆構造体30は、複数の線状構造体29が長手方向を合わせて水平方向に並んだ状態で複数の線状構造体29を被覆する。 The covering structure 30 is made of resin. For example, the coating structure 30 is formed of an ether-based thermoplastic polyurethane elastomer. The covering structure 30 covers the plurality of linear structures 29 in a state where the plurality of linear structures 29 are aligned in the longitudinal direction and arranged in the horizontal direction.
 以上で説明した実施の形態16によれば、ロープ構造体は、ベルト状に形成される。このため、半径が小さい綱車4に対しても、高強度維集合体が用いられたロープ5を適用することができる。 According to the 16th embodiment described above, the rope structure is formed in a belt shape. Therefore, the rope 5 using the high-strength aggregate can be applied to the sheave 4 having a small radius.
 高強度繊維集フィラメントとしては、炭素繊維、ガラス繊維、ポリパラフェニレンベンズオキサゾール繊維、アラミド繊維、ポリアリレート繊維、バサルト繊維等を用いればよい。この場合、高強度繊維集合体の質量比強度を高めることができる。 As the high-strength fiber collecting filament, carbon fiber, glass fiber, polyparaphenylene benzoxazole fiber, aramid fiber, polyallylate fiber, basalt fiber and the like may be used. In this case, the mass ratio strength of the high-strength fiber aggregate can be increased.
 次に、図28を用いて、変形例を説明する。
 図28は実施の形態16におけるロープ構造体の変形例の断面図である。
Next, a modified example will be described with reference to FIG. 28.
FIG. 28 is a cross-sectional view of a modified example of the rope structure in the sixteenth embodiment.
 ロープ5は、図13のロープ5と同等である。ただし、芯材8は、1つの高強度繊維集合体で形成される。 The rope 5 is equivalent to the rope 5 in FIG. However, the core material 8 is formed of one high-strength fiber aggregate.
 以上で説明した変形例によれば、ロープ5は、図13のロープ5と同等である。このため、ロープ構造体の破断強度をより高めることができる。 According to the modification described above, the rope 5 is equivalent to the rope 5 in FIG. Therefore, the breaking strength of the rope structure can be further increased.
 なお、実施の形態4の図11から実施の形態15の図26のロープ5と実施の形態16の図27、図28のロープ構造体のいずかの長尺体を図1のエレベーター以外に適用してもよい。例えば、これらのロープ5、ロープ構造体のいずれかを機械室レスエレベーターに適用してもよい。例えば、これらのロープ5、ロープ構造体のいずれかを2:1ローピング方式のエレベーターに適用してもよい。例えば、これらのロープ5、ロープ構造体のいずれかをダブルデッキエレベーターに適用してもよい。 In addition, the rope 5 of FIG. 26 of the embodiment 15 and some of the long bodies of the rope structures of FIGS. 27 and 28 of the embodiment 16 are other than the elevator of FIG. May be applied. For example, any of these ropes 5 and rope structures may be applied to a machine roomless elevator. For example, any of these ropes 5 and rope structures may be applied to a 2: 1 roping type elevator. For example, any of these ropes 5 and rope structures may be applied to a double-deck elevator.
 また、これらのロープ5、ロープ構造体のいずれかをエレベーターのガバナに適用してもよい。 Further, either the rope 5 or the rope structure may be applied to the governor of the elevator.
 また、これらのロープ5、ロープ構造体のいずれかを巻き上げ高さが75メートルを超える高層エレベーターに適用してもよい。この場合、巻き上げ高さが高くなるほど、従来のロープ5と比較してロープ5の総重量の軽量化効果を大きくすることができる。 Further, any of these ropes 5 and the rope structure may be applied to a high-rise elevator having a hoisting height of more than 75 meters. In this case, the higher the winding height, the greater the effect of reducing the total weight of the rope 5 as compared with the conventional rope 5.
 また、ロープ5、ロープ構造体において、最外層が樹脂であれば、これらのロープ5、ロープ構造体の摩擦係数はより大きくなる。このため、補償用ロープあるいは補償鎖を軽くしたり、削除したりすることができる。 Further, in the rope 5 and the rope structure, if the outermost layer is a resin, the friction coefficient of these ropes 5 and the rope structure becomes larger. Therefore, the compensating rope or compensating chain can be lightened or removed.
 以上のように、本開示のロープは、エレベーターに利用できる。 As described above, the rope disclosed in this disclosure can be used for elevators.
 1 昇降路、 2 機械室、 3 巻上機、 4 綱車、 5 ロープ、 6 かご、 7 釣合い錘、 8 芯材、 9 第1鋼材、 9a 第1中心部、 9b 第1鋼部、 10 高強度繊維フィラメント、 11 マトリクス樹脂、 12 高強度繊維ヤーン、 13 高強度繊維ストランド、 16 第1繊維集合材、 17 第2鋼材、 17a 第2中心部、 17b 第2鋼部、 18 第2繊維集合材、 19 第3鋼材、 20 第3繊維集合材、 21 第4鋼材、 22 第1樹脂層、 23 第2樹脂層、 24 第3樹脂層、 25 第2樹脂体、 26 第1樹脂体、 27 第3樹脂体、 28 外層、 29 線状構造体、 30 被覆構造体 1 hoistway, 2 machine room, 3 hoist, 4 rope wheel, 5 rope, 6 basket, 7 balanced weight, 8 glulam, 9 1st steel, 9a 1st center, 9b 1st steel, 10 high Strong fiber filament, 11 matrix resin, 12 high strength fiber yarn, 13 high strength fiber strand, 16 first fiber laminated wood, 17 second steel material, 17a second center part, 17b second steel part, 18 second fiber laminated wood , 19 3rd steel, 20 3rd fiber laminated wood, 21 4th steel, 22 1st resin layer, 23 2nd resin layer, 24 3rd resin layer, 25 2nd resin body, 26 1st resin body, 27th 3 resin body, 28 outer layer, 29 linear structure, 30 coated structure

Claims (52)

  1.  互いにまとめられた状態に維持され、異形加工された複数の高強度繊維フィラメント、
    を備えた高強度繊維集合体。
    Multiple high-strength fiber filaments, which are kept together and deformed,
    High-strength fiber aggregate with.
  2.  前記複数の高強度繊維フィラメントは、互いに長手方向を合わせた状態に維持され、異形加工された請求項1に記載の高強度繊維集合体。 The high-strength fiber aggregate according to claim 1, wherein the plurality of high-strength fiber filaments are maintained in a state in which their longitudinal directions are aligned with each other and are deformed.
  3.  前記複数の高強度繊維フィラメントは、互いに撚り合わされた状態に維持され、異形加工された請求項1に記載の高強度繊維集合体。 The high-strength fiber aggregate according to claim 1, wherein the plurality of high-strength fiber filaments are maintained in a twisted state and processed into a deformed shape.
  4.  複数の高強度繊維フィラメントが互いに撚り合わされた状態にそれぞれ形成され、互いに撚り合わされた状態に維持され、異形加工された複数の高強度繊維ヤーン、
    を備えた高強度繊維集合体。
    Multiple high-strength fiber yarns, in which multiple high-strength fiber filaments are formed in a twisted state with each other, maintained in a twisted state with each other, and deformed.
    High-strength fiber aggregate with.
  5.  前記複数の高強度繊維ヤーンのうちのいずれかは、継ぎ目を有した請求項4に記載の高強度繊維集合体。 The high-strength fiber aggregate according to claim 4, wherein any one of the plurality of high-strength fiber yarns has a seam.
  6.  前記複数の高強度繊維フィラメントは、マトリクス樹脂の内部に充填された状態に維持された請求項1から請求項5のいずれか一項に記載の高強度繊維集合体。 The high-strength fiber aggregate according to any one of claims 1 to 5, wherein the plurality of high-strength fiber filaments are maintained in a state of being filled inside the matrix resin.
  7.  前記マトリクス樹脂は、可撓性樹脂である請求項6に記載の高強度繊維集合体。 The high-strength fiber aggregate according to claim 6, wherein the matrix resin is a flexible resin.
  8.  前記マトリクス樹脂は、エポキシ樹脂またはウレタン樹脂である請求項7に記載の高強度繊維集合体。 The high-strength fiber aggregate according to claim 7, wherein the matrix resin is an epoxy resin or a urethane resin.
  9.  前記マトリクス樹脂は、ポリオキシアルキレン結合、ウレタン結合、ブタジエンゴムのうちの1種類以上を分子中に含んで2つ以上のエポキシ基を分子中に含んだ液状の主剤に対して硬化剤と混合することで硬化したエポキシ樹脂である請求項7に記載の高強度繊維集合体。 The matrix resin contains one or more of polyoxyalkylene bond, urethane bond, and butadiene rubber in the molecule and mixes the curing agent with a liquid main agent containing two or more epoxy groups in the molecule. The high-strength fiber aggregate according to claim 7, which is a cured epoxy resin.
  10.  複数の高強度繊維フィラメントが互いに撚り合わされた状態に維持されてそれぞれ異形加工され、互いに長手方向を合わせた状態で異形加工された複数の高強度繊維ヤーン、
    を備えた高強度繊維集合体。
    Multiple high-strength fiber yarns, in which a plurality of high-strength fiber filaments are maintained in a twisted state and are deformed, respectively, and are deformed in a state in which the longitudinal directions are aligned with each other.
    High-strength fiber aggregate with.
  11.  複数の高強度繊維フィラメントが互いに撚り合わされた状態に維持されてそれぞれ異形加工され、互いに撚り合わされた状態で異形加工された複数の高強度繊維ヤーン、
    を備えた高強度繊維集合体。
    Multiple high-strength fiber yarns, in which a plurality of high-strength fiber filaments are maintained in a twisted state and deformed, respectively, and then deformed in a twisted state.
    High-strength fiber aggregate with.
  12.  前記複数の高強度繊維ヤーンのうちのいずれかは、継ぎ目を有した請求項10または請求項11に記載の高強度繊維集合体。 The high-strength fiber aggregate according to claim 10 or claim 11, wherein any one of the plurality of high-strength fiber yarns has a seam.
  13.  前記複数の高強度繊維ヤーンは、マトリクス樹脂の内部に充填された状態に維持された請求項10から請求項12のいずれか一項に記載の高強度繊維集合体。 The high-strength fiber aggregate according to any one of claims 10 to 12, wherein the plurality of high-strength fiber yarns are maintained in a state of being filled inside the matrix resin.
  14.  前記マトリクス樹脂は、可撓性樹脂である請求項13に記載の高強度繊維集合体。 The high-strength fiber aggregate according to claim 13, wherein the matrix resin is a flexible resin.
  15.  前記マトリクス樹脂は、エポキシ樹脂、ウレタン樹脂のいずれかである請求項14に記載の高強度繊維集合体。 The high-strength fiber aggregate according to claim 14, wherein the matrix resin is either an epoxy resin or a urethane resin.
  16.  前記マトリクス樹脂は、ポリオキシアルキレン結合、ウレタン結合、ブタジエンゴムのうちの1種類以上を分子中に含んで2つ以上のエポキシ基を分子中に含んだ種類以上の液状の主剤に対して硬化剤を混合することで硬化したエポキシ樹脂である請求項14に記載の高強度繊維集合体。 The matrix resin contains one or more of polyoxyalkylene bond, urethane bond, and butadiene rubber in the molecule and contains two or more epoxy groups in the molecule. The high-strength fiber aggregate according to claim 14, which is an epoxy resin cured by mixing the above.
  17.  複数の高強度繊維フィラメントが互いに撚り合わされてそれぞれ形成された複数の高強度繊維ヤーンが互いに撚り合わされてそれぞれ形成され、互いに長手方向を合わせた状態に維持され、異形加工された複数の高強度繊維ストランド、
    を備えた高強度繊維集合体。
    Multiple high-strength fiber yarns formed by twisting a plurality of high-strength fiber filaments to each other are twisted to each other to form a plurality of high-strength fibers that are maintained in a state of being aligned in the longitudinal direction with each other and are deformed. Strand,
    High-strength fiber aggregate with.
  18.  複数の高強度繊維フィラメントが互いに撚り合わされてそれぞれ形成された複数の高強度繊維ヤーンが互いに撚り合わされてそれぞれ形成され、互いに撚り合わされた状態に維持され、異形加工された複数の高強度繊維ストランド、
    を備えた高強度繊維集合体。
    Multiple high-strength fiber strands, each of which is formed by twisting a plurality of high-strength fiber filaments to each other, are formed by twisting each other to form a plurality of high-strength fiber strands, which are maintained in a twisted state and are deformed.
    High-strength fiber aggregate with.
  19.  前記複数の高強度繊維ヤーンのうちのいずれかは、継ぎ目を有した請求項17または請求項18に記載の高強度繊維集合体。 The high-strength fiber aggregate according to claim 17 or claim 18, wherein any one of the plurality of high-strength fiber yarns has a seam.
  20.  前記複数の高強度繊維ストランドは、マトリクス樹脂の内部に充填された状態に維持された請求項17から請求項19のいずれか一項に記載の高強度繊維集合体。 The high-strength fiber aggregate according to any one of claims 17 to 19, wherein the plurality of high-strength fiber strands are maintained in a state of being filled inside the matrix resin.
  21.  前記マトリクス樹脂は、可撓性樹脂である請求項20に記載の高強度繊維集合体。 The high-strength fiber aggregate according to claim 20, wherein the matrix resin is a flexible resin.
  22.  前記マトリクス樹脂は、エポキシ樹脂、ウレタン樹脂のいずれかである請求項21に記載の高強度繊維集合体。 The high-strength fiber aggregate according to claim 21, wherein the matrix resin is either an epoxy resin or a urethane resin.
  23.  前記マトリクス樹脂は、ポリオキシアルキレン結合、ウレタン結合、ブタジエンゴムのうちの1種類以上を分子中に含んで2つ以上のエポキシ基を分子中に含んだ種類以上の液状の主剤に対して硬化剤を混合することで硬化したエポキシ樹脂である請求項21に記載の高強度繊維集合体。 The matrix resin contains one or more of polyoxyalkylene bond, urethane bond, and butadiene rubber in the molecule and contains two or more epoxy groups in the molecule. The high-strength fiber aggregate according to claim 21, which is an epoxy resin cured by mixing the above.
  24.  前記複数の高強度繊維フィラメントは、炭素繊維、ガラス繊維、ポリパラフェニレンベンズオキサゾール繊維、アラミド繊維、ポリアリレート繊維、バサルト繊維で形成された複数のフィラメントである請求項1から請求項23のいずれか一項に記載の高強度繊維集合体。 One of claims 1 to 23, wherein the plurality of high-strength fiber filaments are a plurality of filaments formed of carbon fiber, glass fiber, polyparaphenylene benzoxazole fiber, aramid fiber, polyallylate fiber, and basalt fiber. The high-strength fiber aggregate according to item 1.
  25.  請求項1から請求項24のいずれか一項に記載の高強度繊維集合体で形成された芯材と、
     前記芯材の外周にそれぞれ配置された複数の第1鋼材と、
    を備えたロープ。
    A core material formed of the high-strength fiber aggregate according to any one of claims 1 to 24,
    A plurality of first steel materials arranged on the outer periphery of the core material, and
    Rope with.
  26.  請求項1から請求項24のいずれか一項に記載の高強度繊維集合体でそれぞれ形成された複数の線状体が互いに撚り合わされて形成された芯材と、
     前記芯材の外周にそれぞれ配置された複数の第1鋼材と、
    を備えたロープ。
    A core material formed by twisting a plurality of linear bodies formed of the high-strength fiber aggregate according to any one of claims 1 to 24 to each other.
    A plurality of first steel materials arranged on the outer periphery of the core material, and
    Rope with.
  27.  樹脂で形成され、前記芯材と前記複数の第1鋼材との間において層をなした第1樹脂層、
    を備えた請求項25または請求項26に記載のロープ。
    A first resin layer formed of a resin and formed into a layer between the core material and the plurality of first steel materials.
    25 or 26 of the rope according to claim 26.
  28.  鋼で形成された芯材と、
     請求項1から請求項24のいずれか一項に記載の高強度繊維集合体でそれぞれ形成され、前記芯材の外周にそれぞれ配置された複数の第1繊維集合材と、
     前記複数の第1繊維集合材の外側にそれぞれ配置された複数の第1鋼材と、
    を備えたロープ。
    With a core made of steel,
    A plurality of first fiber aggregates formed from the high-strength fiber aggregates according to any one of claims 1 to 24 and respectively arranged on the outer periphery of the core material, and a plurality of first fiber aggregates.
    A plurality of first steel materials arranged outside each of the plurality of first fiber laminated wood, and a plurality of first steel materials.
    Rope with.
  29.  前記芯材は、鋼線ストランドで形成された請求項28に記載のロープ。 The rope according to claim 28, wherein the core material is a steel wire strand.
  30.  樹脂で形成され、前記芯材と前記複数の第1繊維集合材との間において層をなした基礎樹脂層、
    を備えた請求項28または請求項29に記載のロープ。
    A basic resin layer formed of a resin and formed into a layer between the core material and the plurality of first fiber laminated materials.
    28 or 29 of the rope according to claim 29.
  31.  樹脂で形成され、前記複数の第1繊維集合材と前記複数の第1鋼材との間において層をなした第1樹脂層、
    を備えた請求項28から請求項30のいずれか一項に記載のロープ。
    A first resin layer formed of a resin and formed into a layer between the plurality of first fiber laminated wood and the plurality of first steel materials.
    28. The rope according to any one of claims 28 to 30.
  32.  樹脂で形成され、前記芯材を被覆した第1樹脂体、
    を備えた請求項25から請求項31のいずれか一項に記載のロープ。
    A first resin body formed of a resin and coated with the core material,
    25. The rope according to any one of claims 25 to 31.
  33.  前記複数の第1鋼材の各々は、
     請求項1から請求項24のいずれか一項に記載の高強度繊維集合体でそれぞれ形成された第1中心部と、
     鋼でそれぞれ形成され、前記第1中心部の外周にそれぞれ配置された複数の第1鋼部と、
    を備えた請求項25から請求項32のいずれか一項に記載のロープ。
    Each of the plurality of first steel materials
    A first central portion formed of the high-strength fiber aggregate according to any one of claims 1 to 24, and a first central portion thereof.
    A plurality of first steel portions each formed of steel and arranged on the outer periphery of the first central portion,
    25. The rope according to any one of claims 25 to 32.
  34.  樹脂で形成され、前記複数の第1鋼材9の外側において層をなした外層、
    を備えた請求項25から請求項32のいずれか一項に記載のロープ。
    An outer layer formed of a resin and formed of a layer on the outside of the plurality of first steel materials 9.
    25. The rope according to any one of claims 25 to 32.
  35.  請求項1から請求項24のいずれか一項に記載の高強度繊維集合体でそれぞれ形成され、前記複数の第1鋼材の外側にそれぞれ配置された複数の第1繊維集合材と、
     前記複数の第1繊維集合材の外側にそれぞれ配置された複数の第2鋼材と、
    を備えた請求項25から請求項32のいずれかに記載のロープ。
    A plurality of first fiber laminated woods formed of the high-strength fiber laminated wood according to any one of claims 1 to 24 and respectively arranged outside the plurality of first steel materials, and a plurality of first fiber laminated wood materials.
    A plurality of second steel materials respectively arranged on the outside of the plurality of first fiber laminated wood, and a plurality of second steel materials.
    25. The rope according to any one of claims 25 to 32.
  36.  樹脂で形成され、前記複数の第1鋼材と前記複数の第1繊維集合材との間において層をなした第2樹脂層、
    を備えた請求項35に記載のロープ。
    A second resin layer formed of a resin and formed into a layer between the plurality of first steel materials and the plurality of first fiber laminated woods.
    35. The rope according to claim 35.
  37.  前記複数の第1繊維集合材と前記複数の第2鋼材との間において層をなした第3樹脂層、
    を備えた請求項33または請求項36に記載のロープ。
    A third resin layer formed between the plurality of first fiber laminated wood and the plurality of second steel materials.
    33 or 36 of the rope according to claim 36.
  38.  樹脂でそれぞれ形成され、前記複数の第1鋼材をそれぞれ被覆した複数の第2樹脂体、
    を備えた請求項33から請求項37のいずれか一項に記載のロープ。
    A plurality of second resin bodies each formed of a resin and coated with the plurality of first steel materials.
    33. The rope according to any one of claims 37.
  39.  樹脂でそれぞれ形成され、前記複数の第1繊維集合材をそれぞれ被覆した複数の第3樹脂体、
    を備えた請求項33から請求項38のいずれか一項に記載のロープ。
    A plurality of third resin bodies each formed of a resin and coated with the plurality of first fiber laminated woods, respectively.
    33. The rope according to any one of claims 38.
  40.  前記複数の第2鋼材の各々は、
     請求項1から請求項24のいずれか一項に記載の高強度繊維集合体でそれぞれ形成された第2中心部と、
     前記第2中心部の外周にそれぞれ配置された複数の第2鋼部と、
    を備えた請求項33から請求項39のいずれか一項に記載のロープ。
    Each of the plurality of second steel materials
    A second central portion formed of the high-strength fiber aggregate according to any one of claims 1 to 24, and a second central portion, respectively.
    A plurality of second steel portions arranged on the outer periphery of the second central portion, and
    33. The rope according to any one of claims 39.
  41.  樹脂で形成され、前記複数の第2鋼材の外側において層をなした外層、
    を備えた請求項33から請求項40のいずれか一項に記載のロープ。
    An outer layer formed of resin and layered on the outside of the plurality of second steel materials,
    The rope according to any one of claims 33 to 40.
  42.  請求項1から請求項24のいずれか一項に記載の高強度繊維集合体でそれぞれ形成され、前記複数の第2鋼材の外側にそれぞれ配置された複数の第2繊維集合体と、
     前記複数の第2繊維集合材の外側にそれぞれ配置された複数の第3鋼材と、
    を備えた請求項33から請求項41のいずれか一項に記載のロープ。
    A plurality of second fiber aggregates formed from the high-strength fiber aggregates according to any one of claims 1 to 24 and respectively arranged outside the plurality of second steel materials, and a plurality of second fiber aggregates.
    A plurality of third steel materials respectively arranged on the outside of the plurality of second fiber laminated wood, and a plurality of third steel materials.
    The rope according to any one of claims 33 to 41.
  43.  樹脂で形成され、前記複数の第2鋼材と前記複数の第2繊維集合材との間において層をなした第3樹脂層、
    を備えた請求項42に記載のロープ。
    A third resin layer formed of a resin and formed into a layer between the plurality of second steel materials and the plurality of second fiber aggregates.
    42. The rope according to claim 42.
  44.  前記複数の第2繊維集合材と前記複数の第3鋼材との間において層をなした第4樹脂層、
    を備えた請求項42または請求項43に記載のロープ。
    A fourth resin layer formed between the plurality of second fiber laminated wood and the plurality of third steel materials.
    42 or the rope according to claim 43.
  45.  樹脂でそれぞれ形成され、前記複数の第2鋼材をそれぞれ被覆した複数の第4樹脂体、
    を備えた請求項42から請求項44のいずれか一項に記載のロープ。
    A plurality of fourth resin bodies each formed of a resin and coated with the plurality of second steel materials, respectively.
    42. The rope according to any one of claims 42 to 44.
  46.  樹脂でそれぞれ形成され、前記複数の第2繊維集合材をそれぞれ被覆した複数の第5樹脂体、
    を備えた請求項42から請求項45のいずれか一項に記載のロープ。
    A plurality of fifth resin bodies each formed of a resin and coated with the plurality of second fiber laminated woods, respectively.
    42. The rope according to any one of claims 42 to 45.
  47.  前記複数の第3鋼材の各々は、
     請求項1から請求項22のいずれか一項に記載の高強度繊維集合体でそれぞれ形成された第3中心部と、
     前記第3中心部の外周にそれぞれ配置された複数の第3鋼部と、
    を備えた請求項42から請求項46のいずれか一項に記載のロープ。
    Each of the plurality of third steel materials
    A third central portion formed of the high-strength fiber aggregate according to any one of claims 1 to 22, respectively.
    A plurality of third steel portions arranged on the outer periphery of the third central portion, and
    42. The rope according to any one of claims 42 to 46.
  48.  前記複数の第1鋼材の各々、前記複数の第2鋼材の各々および前記複数の第3鋼材の各々のいずれかは、異形加工された請求項42から請求項47のいずれか一項に記載のロープ。 The one of claims 42 to 47, wherein each of the plurality of first steel materials, each of the plurality of second steel materials, and each of the plurality of third steel materials is deformed. rope.
  49.  樹脂で形成され、前記複数の第3鋼材の外側において層をなした外層、
    を備えた請求項42から請求項48のいずれか一項に記載のロープ。
    An outer layer formed of resin and layered on the outside of the plurality of third steel materials,
    42. The rope according to any one of claims 42 to 48.
  50.  前記高強度繊維集合体は、円形、扇形、台形のいずれかの断面を有した請求項25から請求項49のいずれかに記載のロープ。 The rope according to any one of claims 25 to 49, wherein the high-strength fiber aggregate has a cross section of any of a circle, a fan, and a trapezoid.
  51.  請求項25から請求項33、請求項35から請求項40、請求項42から請求項48のいずれか一項に記載のロープでそれぞれ形成された複数の線状構造体と、
     前記複数の線状構造体が長手方向を合わせて水平方向に並んだ状態で前記複数の線状構造体を被覆する被覆構造体と、
    を備えたロープ構造体。
    A plurality of linear structures formed by the rope according to any one of claims 25 to 33, claims 35 to 40, and claims 42 to 48, respectively.
    A covering structure that covers the plurality of linear structures in a state where the plurality of linear structures are aligned in the longitudinal direction and arranged in the horizontal direction.
    Rope structure with.
  52.  前記高強度繊維集合体は、円形、扇形、台形のいずれかの断面を有した請求項51に記載のロープ構造体。 The rope structure according to claim 51, wherein the high-strength fiber aggregate has a cross section of any of a circular shape, a fan shape, and a trapezoidal shape.
PCT/JP2020/039444 2020-10-20 2020-10-20 High strength fiber assembly, rope, and rope structure WO2022085085A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2020/039444 WO2022085085A1 (en) 2020-10-20 2020-10-20 High strength fiber assembly, rope, and rope structure
KR1020237010545A KR20230056776A (en) 2020-10-20 2020-10-20 High-strength fiber aggregate, rope, rope structure
DE112020007718.7T DE112020007718T5 (en) 2020-10-20 2020-10-20 High-strength fiber assembly, rope and rope structure
CN202080106046.5A CN116323459A (en) 2020-10-20 2020-10-20 High-strength fiber aggregate, rope structure
JP2022556866A JPWO2022085085A1 (en) 2020-10-20 2020-10-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/039444 WO2022085085A1 (en) 2020-10-20 2020-10-20 High strength fiber assembly, rope, and rope structure

Publications (1)

Publication Number Publication Date
WO2022085085A1 true WO2022085085A1 (en) 2022-04-28

Family

ID=81290184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039444 WO2022085085A1 (en) 2020-10-20 2020-10-20 High strength fiber assembly, rope, and rope structure

Country Status (5)

Country Link
JP (1) JPWO2022085085A1 (en)
KR (1) KR20230056776A (en)
CN (1) CN116323459A (en)
DE (1) DE112020007718T5 (en)
WO (1) WO2022085085A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024154350A1 (en) * 2023-01-20 2024-07-25 三菱電機ビルソリューションズ株式会社 Elevator rope and elevator belt using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09501207A (en) * 1993-08-04 1997-02-04 ブライドン ピーエルシー High strength core of wire rope
JPH108388A (en) * 1996-06-25 1998-01-13 Tokyo Seiko Co Ltd Modified line wire rope and its production
WO2002010050A1 (en) * 2000-07-27 2002-02-07 Mitsubishi Denki Kabushiki Kaisha Elevator device, and method of producing main cables for elevator devices
WO2004043844A1 (en) * 2002-11-12 2004-05-27 Mitsubishi Denki Kabushiki Kaisha Rope for elevator and elevator equipment
JP2010532430A (en) * 2007-05-18 2010-10-07 サムソン ロープ テクノロジーズ Composite rope structure and system and method for making composite rope structure
JP2019131029A (en) * 2018-01-31 2019-08-08 トヨタ紡織株式会社 Luminaire for vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6452839B2 (en) 2015-10-16 2019-01-16 三菱電機株式会社 Elevator rope and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09501207A (en) * 1993-08-04 1997-02-04 ブライドン ピーエルシー High strength core of wire rope
JPH108388A (en) * 1996-06-25 1998-01-13 Tokyo Seiko Co Ltd Modified line wire rope and its production
WO2002010050A1 (en) * 2000-07-27 2002-02-07 Mitsubishi Denki Kabushiki Kaisha Elevator device, and method of producing main cables for elevator devices
WO2004043844A1 (en) * 2002-11-12 2004-05-27 Mitsubishi Denki Kabushiki Kaisha Rope for elevator and elevator equipment
JP2010532430A (en) * 2007-05-18 2010-10-07 サムソン ロープ テクノロジーズ Composite rope structure and system and method for making composite rope structure
JP2019131029A (en) * 2018-01-31 2019-08-08 トヨタ紡織株式会社 Luminaire for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024154350A1 (en) * 2023-01-20 2024-07-25 三菱電機ビルソリューションズ株式会社 Elevator rope and elevator belt using same

Also Published As

Publication number Publication date
JPWO2022085085A1 (en) 2022-04-28
DE112020007718T5 (en) 2023-08-10
CN116323459A (en) 2023-06-23
KR20230056776A (en) 2023-04-27

Similar Documents

Publication Publication Date Title
TWI420009B (en) Synthetic fibre cable and producing method thereof, lift installation with such a synthetic fibre cable, and synthetic fiber cable for supporting and drive means for the lift
AU756246B2 (en) Stranded synthetic fiber rope
AU758414B2 (en) Sheathless synthetic fiber rope
US7137483B2 (en) Rope and elevator using the same
AU765731B2 (en) Synthetic fiber rope to be driven by a rope sheave
CA2297520C (en) Sheathed synthetic fiber rope
AU752488B2 (en) Synthetic fiber rope
JP4832714B2 (en) Synthetic fiber rope for power transmission with reinforcing elements and frictionally engaged, and synthetic fiber rope for power transmission with reinforcing elements and positively engaged
KR102518963B1 (en) Hybrid fabric-laminated belt for elevator system
JP2011509899A5 (en)
JP4064668B2 (en) Composite wire rope
WO2017064808A1 (en) Elevator rope and manufacturing method therefor
WO2022085085A1 (en) High strength fiber assembly, rope, and rope structure
JP7357803B2 (en) Belt, its manufacturing method, and elevator
WO2023157165A1 (en) Rope and belt using same
JP7279267B2 (en) Composite strands, methods of manufacture thereof, ropes, belts, and elevators
JP7170901B2 (en) Elevator Suspension and Elevator
WO2024089885A1 (en) Rope and belt using same
KR100830777B1 (en) Rope for elevat0r and elevator
KR100837466B1 (en) Rope for elevator and method for producing the same
WO2024013793A1 (en) Rope for elevator and elevator device
WO2024154350A1 (en) Elevator rope and elevator belt using same
WO2024142321A1 (en) Wire rope for elevator, and method for repairing elevator
WO2023053192A1 (en) Rope and manufacturing method therefor
CN107934716A (en) A kind of lifting medium for elevator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958638

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022556866

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237010545

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20958638

Country of ref document: EP

Kind code of ref document: A1