WO2022084140A1 - Method and device for diagnosing the movement of an armature of a solenoid valve - Google Patents

Method and device for diagnosing the movement of an armature of a solenoid valve Download PDF

Info

Publication number
WO2022084140A1
WO2022084140A1 PCT/EP2021/078430 EP2021078430W WO2022084140A1 WO 2022084140 A1 WO2022084140 A1 WO 2022084140A1 EP 2021078430 W EP2021078430 W EP 2021078430W WO 2022084140 A1 WO2022084140 A1 WO 2022084140A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
valve
armature
movement
solenoid valve
Prior art date
Application number
PCT/EP2021/078430
Other languages
German (de)
French (fr)
Inventor
Michael Ernst
Original Assignee
Vitesco Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies GmbH filed Critical Vitesco Technologies GmbH
Publication of WO2022084140A1 publication Critical patent/WO2022084140A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/0227Control aspects; Arrangement of sensors; Diagnostics; Actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • F02D2041/2027Control of the current by pulse width modulation or duty cycle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/025Adding water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present disclosure relates to a method and a device for diagnosing the movement of an armature of a solenoid valve, the solenoid valve having a coil to which a control voltage is applied and having an armature which is attracted by a magnetic field induced by the coil when the control voltage is applied.
  • Conventional injectors or magnetic valves are controlled by applying a constant voltage to the magnetic coil for the duration of the desired opening.
  • the opening itself and the time of the opening movement is dependent on numerous parameters and the design of the magnetic circuit or the injector or the solenoid valve.
  • the opening movement is initiated by an armature being attracted by the magnetic field induced by the coil.
  • the movement of the armature itself induces a voltage that counteracts the voltage in the coil.
  • a deviation a reduction in the current in the current profile of the solenoid valve during operation can be seen.
  • the movement of the armature can be diagnosed by this deviation in the current curve.
  • this deviation in the current profile during the armature movement depends on parameters such as the control voltage, a medium pressure in the valve, a viscosity of the medium, the design of the magnetic circuit and other parameters. Accordingly, the deviation in the course of the current can only be very small, which means that it cannot be evaluated safely and reliably.
  • the object of the present disclosure is therefore to create a method and a device with which a reliable movement diagnosis of an armature of a magnet valve is possible.
  • a method for diagnosing the movement of an armature of a solenoid valve wherein the solenoid valve has a coil to which a control voltage is applied, and the armature, which is attracted by a magnetic field induced by the coil when the control voltage is applied, has the following steps:
  • valve current profile which is influenced by the controlled drive voltage and the movement-induced voltage, the controlled drive voltage being determined based on the provided operating parameters of the solenoid valve in such a way that the valve current profile has a change in the direction of increase when the solenoid valve is functioning properly;
  • operating parameters of the solenoid valve are provided in the first-mentioned method step.
  • Operating parameters of the magnetic valve can be, for example, a medium pressure in the magnetic valve, a viscosity of the medium, a design of the magnetic circuit and/or additional parameters of the magnetic valve.
  • the drive voltage is applied in a further step.
  • the control voltage is controlled by means of the control element.
  • the control element controls how and how much voltage is supplied to the coil of the solenoid valve. through the movement of the armature, the movement-induced stress is built up. This motion-induced voltage opposes the voltage built up by the coil's magnetic field.
  • the valve current curve initially increases accordingly.
  • the induced movement voltage which is built up by the armature movement, allows the rise in the valve current curve to flatten out or leads to a change in the direction of rise.
  • the valve current curve is detected in a further step.
  • the controlled drive voltage is controlled based on the provided operating parameters of the solenoid valve in such a way that the valve current profile should have the change in the direction of increase when the solenoid valve is functioning properly.
  • the deviation in the valve current profile due to the movement-induced voltage is so large that the valve current profile changes in the direction of increase.
  • the valve current profile initially shows an increase, then a flattening out, which leads to a reduction in the valve current profile, as a result of which the change in the direction of increase is initiated.
  • the valve current curve can then increase again.
  • the subsequent increase is caused, for example, by the armature being decelerated by a stop, as a result of which the voltage induced by the movement of the armature decreases or drops to zero.
  • the recorded valve current profile is evaluated in a further step.
  • the armature movement has taken place properly if the recorded valve current profile has the change in the direction of increase. If, for example, the valve current profile rises constantly without the required change in the direction of rise being present, then the armature has accordingly not moved in the direction of the coil, as a result of which no induced movement voltage has set in. Accordingly, in such a case, the lack of movement of the armature can advantageously be diagnosed easily and accurately.
  • the control voltage can be set such that the valve current profile always shows the change in the direction of increase, so that the movement of the armature of the solenoid valve can advantageously be precisely diagnosed.
  • the method of the present disclosure enables movement of the armature of the solenoid valve to be advantageously accurately and reliably diagnosed, which in turn advantageously allows the operation of the solenoid valve to be accurately diagnosed.
  • the drive voltage is clocked by means of the drive element.
  • the control element can reduce the control voltage sufficiently in the mean value so that the change in the direction of increase occurs as required in the valve current curve.
  • the frequency and the duty cycle of the clocking are selected in such a way that the clocking itself is not recognized as an armature movement in the valve current curve. According to one embodiment, this can be implemented, for example, by using filters for the frequency components of the drive voltage.
  • the valve current is not reduced to zero during the clock gap of the control voltage, but can continue to flow by means of a freewheeling diode, so that the solenoid valve continues to be energized.
  • the negative diode voltage is applied to the solenoid valve instead of the positive control voltage, so that the average control voltage composed of both voltage parts is reduced, so that the movement-induced voltage can be greater than the control voltage.
  • the drive voltage is clocked using pulse width modulation.
  • the controlled drive voltage is additionally determined by selecting the frequency and the duty cycle of the pulse width modulation.
  • the drive voltage can be controlled as a function of the provided operating parameters of the solenoid valve in such a way that the valve current curve has the required change in the direction of increase. Accordingly, the movement diagnosis of the armature can advantageously be implemented simply and precisely by means of the pulse width modulation.
  • control element is a voltage regulator or a voltage drop element.
  • the control voltage can also be reduced by means of the voltage regulator and by means of the voltage drop element in such a way that the valve current curve has the change in the direction of increase. Accordingly, by means of this Elements, the movement diagnosis can be realized easily, because these components are relatively simple and inexpensive.
  • the voltage drop element is a series resistor or a diode.
  • the series resistance or the diode are known components, electrical components that reduce the control voltage as required, so that the valve current curve has a change in the direction of increase.
  • the diode is connected in series with the drive voltage, so the drive voltage is reduced by one diode voltage.
  • the series resistor and the diode are, in particular, inexpensive and reliable components, as a result of which the method can advantageously be carried out inexpensively and reliably.
  • the recorded valve current curve is evaluated by means of an evaluation circuit and/or an evaluation logic and/or an evaluation software.
  • the valve current curve is detected by means of a sensor.
  • the valve current profile is detected using a current measurement shunt.
  • the signal of the current measuring sensor or the current measuring shunt is made available to the evaluation circuit or the evaluation logic or the evaluation software.
  • the evaluation circuit, the evaluation logic or the evaluation software each offer a simple and precise possibility of evaluating the valve current profile for detecting the change in the direction of increase.
  • a derivation of the valve current profile is formed in order to evaluate the detected valve current profile.
  • the derivation of the valve current profile is formed, wherein the change in the direction of increase can advantageously be easily recognized in the derivation of the valve current profile, since the derivation has a zero crossing when the valve current profile has a change in the direction of increase.
  • the change in the direction of increase in the valve current curve can be detected particularly advantageously simply by means of the derivation.
  • the solenoid valve is used to inject water.
  • Water as the injection medium has different properties/parameters than fuel, for example. These parameters can be a viscosity or a density, for example.
  • the solenoid valve that injects water has to be adapted or redesigned accordingly. A diagnosis of the armature movement must also be carried out so that water can also be advantageously injected well with conventional solenoid valves.
  • control voltage for injecting water can be regulated or controlled by means of the control element in such a way that the increase direction change for diagnosing the armature movement is advantageously clearly visible in the detected valve current profile.
  • a conventional solenoid valve can be used for injecting water, with the armature movement advantageously being able to be diagnosed well according to the present method by means of the control element.
  • the control voltage is adjusted if it is recognized during the evaluation that the detected valve current curve has no change in the direction of increase.
  • the drive voltage is controlled or regulated accordingly.
  • the control voltage is regulated as a function of the valve current.
  • the control voltage can advantageously be regulated in a simple manner.
  • the position of the moving component within the solenoid valve in the valve current profile can also be advantageously controlled/regulated at a specific time position by regulating the resulting control voltage.
  • a device for diagnosing the movement of an armature of a solenoid valve the solenoid valve having a coil to which a control voltage is applied, and the armature, which is attracted by a magnetic field induced by means of the coil when the control voltage is applied, a control unit on, which is designed to control one of the methods described above.
  • the device can be, for example, an engine control unit. It is also conceivable that the device is a separate part in the engine control unit or is installed as an external additional control unit to the engine control unit, for example in a vehicle.
  • Figure 1 shows a schematic representation of an equivalent circuit diagram of a solenoid valve according to one embodiment
  • FIG. 2 shows a schematic representation of a first valve flow curve diagram according to a first embodiment
  • FIG. 3 shows a schematic representation of a second valve flow curve diagram according to a second embodiment
  • FIG. 4 shows a schematic representation of a block diagram according to an embodiment.
  • Figure 1 shows a schematic representation of an equivalent circuit diagram 100 of a solenoid valve 110.
  • the equivalent circuit diagram 100 is a control voltage 120 (U_valve), a movement-induced voltage 130 (U_ind), a solenoid valve resistance 140 (R_valve), an ideal solenoid valve inductance 150 (L_valve) and a Valve current 160 (l_valve) shown.
  • the equivalent circuit diagram 100 schematically shows a coil resistance voltage drop 170 (U_R) and a coil voltage 180 (U_L) induced by a current change.
  • the control voltage 120 generates a magnetic field in the solenoid valve 120 by means of a coil.
  • the coil has an ohmic resistance, which is shown schematically in equivalent circuit diagram 100 with solenoid valve resistance 140 .
  • the magnetic field causes an armature to be drawn into the magnetic field, causing the armature to move.
  • the movement-induced voltage 130 is the voltage that is built up by the movement of the armature and counteracts the drive voltage 120 .
  • the coil resistance voltage drop 170 is the voltage dropped across the resistive portion of the real valve coil.
  • the valve current 160 results from the voltage equation at the ideal inductance 150 of the equivalent circuit diagram 100 from the sum of the drive voltage 120 building up the magnetic field, the current change-induced coil voltage 180 and the movement-induced voltage 130, with the movement-induced voltage 130 and the drive voltage 120 having different signs.
  • FIG. 2 shows a first valve current curve diagram 200.
  • the time is plotted on the x-axis 210 of the first valve current curve diagram 200.
  • the y-axis 220 of the first valve current curve diagram 200 represents the valve current 160.
  • the first valve current curve diagram 200 shows the valve current curve 230 over time according to a first embodiment.
  • the valve current curve 230 initially rises, then flattens out slightly, but then rises more sharply again and then remains constant. Accordingly, no change in the direction of rise is evident in the first valve current profile 230 , only a flattening of the change in rise 240 .
  • valve current 160 the result of the calculation of valve current 160 over time does not result in a change in the direction of increase in valve current profile 230.
  • control voltage 120 is not reduced sufficiently so that there is no change in the direction of increase. Accordingly, according to this embodiment, a diagnosis of the armature movement is only possible under difficult circumstances or not possible at all.
  • FIG. 3 shows a second valve current profile diagram 300 according to a second specific embodiment, the time being plotted on the x-axis 310 and the valve current 160 on the y-axis 320 here as well.
  • the second valve current curve diagram 300 accordingly also shows a valve current curve 330 over time according to a second specific embodiment.
  • the valve current profile 330 initially increases, then flattens out, briefly reduces, in order to then subsequently increase again and remain constant at the end.
  • the valve current profile 330 accordingly has a change in the direction of increase 340 .
  • This increase direction change 340 results from the fact that the movement-induced voltage 130 briefly exceeds the drive voltage 120 due to the movement of the armature, so that the valve current 160 is reduced briefly during the armature movement.
  • FIG. 4 shows a schematic block diagram 400 according to an embodiment.
  • the block diagram 400 accordingly shows a Current path 410 of the solenoid valve 110.
  • the block diagram 400 has a control element 420, a freewheeling diode 430, the solenoid valve 110 shown symbolically and a current measuring shunt 440.
  • the control voltage 120 that is provided to the solenoid valve 110 or its coil is controlled by means of the control element 420 .
  • This is shown schematically in block diagram 400 by means of a continuous pulse control 422 and a pulse-width modulation control 424 .
  • the continuous pulse drive 422 the drive is unclocked, whereas in the case of the pulse width modulation drive 424, the drive is clocked.
  • the continuous pulse drive 422 the drive is unclocked
  • the pulse width modulation drive 424 the drive is clocked.
  • the freewheeling diode 430 fulfills the function of allowing the current to continue to flow in the solenoid valve 110 during the clock gap, with a negative diode voltage being applied to the solenoid valve 110 instead of the positive control voltage 120 .
  • the mean reduced drive voltage 120 is a mean value of the positive drive voltage 120 and the negative diode voltage. This can be controlled by clocking (clock ratio).
  • the current measurement shunt 440 is set up to record the valve current 160 over time and accordingly the valve current curve 230/330.
  • the block diagram 400 also shows the evaluation of the valve current curve 230/330 detected by means of the current measuring shunt 440.
  • the valve current profile 230/330 is initially amplified by means of an amplifier/amplifier 450.
  • the valve current profile 230/330 is then filtered by means of a PWM filter (pulse width modulation filter) 460 .
  • PWM filter pulse width modulation filter
  • a derivation is then formed by means of a differentiator 470 with the valve current profile 230/330 filtered in this way.
  • This is shown schematically in block diagram 400 by means of one of differentiator 470 .
  • the derivation of the valve current curve 230/330 is then evaluated by means of a zero comparator 480 for any zero crossings. This is shown schematically in the block diagram using zero comparator 480 . If the zero comparator 480 determines a zero crossing of the derived valve current profile 230/330, the change in the direction of increase 340 of the valve current profile 230/330 can be inferred. Accordingly, a digital Anchor movement identifier are issued. This is represented in block diagram 400 by element 490 . Accordingly, the digital motion detector 490 outputs whether an anchor movement has taken place or not.

Abstract

The present disclosure relates to a method and a device for diagnosing the movement of an armature of a solenoid valve (110), wherein the solenoid valve comprises a coil, to which a drive voltage (120) can be applied, and the armature, which is attracted by a magnetic field induced by means of the coil when the drive voltage (120) is applied, wherein the method comprises the following steps: detecting a valve current profile, which is influenced by the controlled drive voltage (120) and a movement-induced voltage (130), wherein the controlled drive voltage (120) is controlled based on the provided operating parameters of the solenoid valve (110) in such a way that the valve current profile exhibits a change in the direction of the rise when the solenoid valve (110) functions correctly; evaluating the detected valve current profile, wherein it is identified that the armature moved correctly when the detected valve current profile exhibits the change in the direction of the rise.

Description

Beschreibung description
Verfahren und Vorrichtung zur Bewegungsdiagnose eines Ankers eines Magnetventils Method and device for diagnosing the movement of an armature of a magnetic valve
Die vorliegende Offenbarung betrifft ein Verfahren und eine Vorrichtung zur Bewegungsdiagnose eines Ankers eines Magnetventils, wobei das Magnetventil eine Spule, an der eine Ansteuerspannung anliegt, aufweist und einen Anker aufweist, der bei angelegter Ansteuerspannung von einem mittels der Spule induzierten Magnetfeld angezogen wird. The present disclosure relates to a method and a device for diagnosing the movement of an armature of a solenoid valve, the solenoid valve having a coil to which a control voltage is applied and having an armature which is attracted by a magnetic field induced by the coil when the control voltage is applied.
Herkömmliche Injektoren bzw. Magnetventile werde durch Anlegen einer konstanten Spannung an der Magnetspule für die Zeitdauer der gewünschten Öffnung angesteuert. Die Öffnung an sich und der Zeitpunkt der Öffnungsbewegung ist dabei abhängig von zahlreichen Parametern und des Designs des Magnetkreises bzw. des Injektors bzw. des Magnetventils. Die Öffnungsbewegung wird dadurch eingeleitet, dass ein Anker von dem durch die Spule induzierten Magnetfeld angezogen wird. Durch die Bewegung des Ankers wird selbst eine Spannung induziert, die der Spannung der Spule entgegenwirkt. Dadurch ist eine Abweichung, eine Reduktion des Stroms in dem Stromverlauf des Magnetventils während des Betriebs ersichtlich. Die Bewegung des Ankers kann bei herkömmlichen Magnetventilen durch diese Abweichung in dem Stromverlauf diagnostiziert werden. Conventional injectors or magnetic valves are controlled by applying a constant voltage to the magnetic coil for the duration of the desired opening. The opening itself and the time of the opening movement is dependent on numerous parameters and the design of the magnetic circuit or the injector or the solenoid valve. The opening movement is initiated by an armature being attracted by the magnetic field induced by the coil. The movement of the armature itself induces a voltage that counteracts the voltage in the coil. As a result, a deviation, a reduction in the current in the current profile of the solenoid valve during operation can be seen. In conventional solenoid valves, the movement of the armature can be diagnosed by this deviation in the current curve.
Allerdings hängt diese Abweichung im Stromverlauf bei der Ankerbewegung von Parametern wie der Ansteuerspannung, einem Mediumdruck im Ventil, einer Viskosität des Mediums, dem Design des Magnetkreises und weiteren Parametern ab. Dementsprechend kann die Abweichung im Stromverlauf nur sehr klein sein, wodurch diese nicht sicher und zuverlässig ausgewertet werden kann. However, this deviation in the current profile during the armature movement depends on parameters such as the control voltage, a medium pressure in the valve, a viscosity of the medium, the design of the magnetic circuit and other parameters. Accordingly, the deviation in the course of the current can only be very small, which means that it cannot be evaluated safely and reliably.
Aufgabe der vorliegenden Offenbarung ist es daher, ein Verfahren und eine Vorrichtung zu schaffen mit dem bzw. mit der eine zuverlässige Bewegungsdiagnose eines Ankers eines Magnetventils möglich ist. The object of the present disclosure is therefore to create a method and a device with which a reliable movement diagnosis of an armature of a magnet valve is possible.
Die Aufgabe wird gelöst durch die Merkmale der unabhängigen Patentansprüche. Vorteilhafte Ausgestaltungen der vorliegenden Offenbarung sind in den abhängigen Ansprüchen angegeben. Gemäß der vorliegenden Offenbarung weist ein Verfahren zur Bewegungsdiagnose eines Ankers eines Magnetventils, wobei das Magnetventil eine Spule, an der eine Ansteuerspannung anliegt, und den Anker aufweist, der bei angelegter Ansteuerspannung von einem mittels der Spule induzierten Magnetfeld angezogen wird, die folgenden Schritte auf: The object is solved by the features of the independent patent claims. Advantageous developments of the present disclosure are specified in the dependent claims. According to the present disclosure, a method for diagnosing the movement of an armature of a solenoid valve, wherein the solenoid valve has a coil to which a control voltage is applied, and the armature, which is attracted by a magnetic field induced by the coil when the control voltage is applied, has the following steps:
- Bereitstellen von Betriebsparametern des Magnetfeldventils; - Providing operating parameters of the magnetic valve;
- Anlegen der Ansteuerspannung, die mittels eines Ansteuerelementes gesteuert ist, wodurch das Magnetfeld aufgebaut und der Anker bewegt wird und aufgrund der Ankerbewegung eine bewegungsinduzierte Spannung aufgebaut wird, die der mittels des Magnetfelds aufgebauten Spannung entgegenwirkt; - Applying the control voltage, which is controlled by means of a control element, whereby the magnetic field is built up and the armature is moved and due to the armature movement, a movement-induced voltage is built up, which counteracts the voltage built up by means of the magnetic field;
- Erfassen eines Ventilstromverlaufs, der durch die gesteuerte Ansteuerspannung und die bewegungsinduzierte Spannung beeinflusst wird, wobei die gesteuerte Ansteuerspannung basierend auf den bereitgestellten Betriebsparametern des Magnetventils derart festgelegt wird, dass der Ventilstromverlauf eine Anstiegsrichtungsänderung aufweist, wenn das Magnetventil ordnungsgemäß funktioniert; - detecting a valve current profile which is influenced by the controlled drive voltage and the movement-induced voltage, the controlled drive voltage being determined based on the provided operating parameters of the solenoid valve in such a way that the valve current profile has a change in the direction of increase when the solenoid valve is functioning properly;
- Auswerten des erfassten Ventilstromverlaufs, wobei erkannt wird, dass die Ankerbewegung ordnungsgemäß erfolgt, wenn der erfasste Ventilstromverlauf auch die Anstiegsrichtungsänderung aufweist. - Evaluation of the detected valve current curve, it being recognized that the armature movement is carried out properly if the detected valve current curve also has the change in the direction of increase.
Gemäß der vorliegenden Offenbarung werden in dem erstgenannten Verfahrensschritt die Betriebsparameter des Magnetventils bereitgestellt. Betriebsparameter des Magnetventils können beispielsweise ein Mediumdruck in dem Magnetventil, eine Viskosität des Mediums, ein Design des Magnetkreises und / oder zusätzliche Parameter des Magnetventils sein. According to the present disclosure, the operating parameters of the solenoid valve are provided in the first-mentioned method step. Operating parameters of the magnetic valve can be, for example, a medium pressure in the magnetic valve, a viscosity of the medium, a design of the magnetic circuit and/or additional parameters of the magnetic valve.
Diese Betriebsparameter beeinflussen die Bewegung des Ankers, wodurch sie das induzierte Magnetfeld bzw. einen Verlauf des induzierten Magnetventils beeinflussen. Dadurch, dass sie das induzierte Magnetfeld beeinflussen, beeinflussen sie dementsprechend auch den Ventilstromverlauf. Diese Betriebsparameter sind allerdings für das gegebenes Magnetventil bekannt und konstant bzw. können kaum beeinflusst oder verändert werden. These operating parameters influence the movement of the armature, as a result of which they influence the induced magnetic field or a course of the induced magnetic valve. By influencing the induced magnetic field, they also affect the valve current curve accordingly. However, these operating parameters are known and constant for the given solenoid valve and can hardly be influenced or changed.
Gemäß der vorliegenden Offenbarung wird in einem weiteren Schritt die Ansteuerspannung angelegt. Dabei wird die Ansteuerspannung mittels des Ansteuerelements gesteuert. Das Ansteuerelement steuert demgemäß wie und wieviel Spannung der Spule des Magnetventils zugeführt wird. Durch die Bewegung des Ankers wird die bewegungsinduzierte Spannung aufgebaut. Diese bewegungsinduzierte Spannung wirkt der durch das Magnetfeld der Spule aufgebauten Spannung entgegen. Durch das Anlegen der Ansteuerspannung steigt dementsprechend zunächst der Ventilstromverlauf an. Die induzierte Bewegungsspannung, die durch die Ankerbewegung aufgebaut wird, lässt den Anstieg des Ventilstromverlaufs abflachen, bzw. führt zu der Anstiegsrichtungsänderung. According to the present disclosure, the drive voltage is applied in a further step. In this case, the control voltage is controlled by means of the control element. Accordingly, the control element controls how and how much voltage is supplied to the coil of the solenoid valve. through the movement of the armature, the movement-induced stress is built up. This motion-induced voltage opposes the voltage built up by the coil's magnetic field. As a result of the application of the control voltage, the valve current curve initially increases accordingly. The induced movement voltage, which is built up by the armature movement, allows the rise in the valve current curve to flatten out or leads to a change in the direction of rise.
Gemäß der vorliegenden Offenbarung wird in einem weiteren Schritt der Ventilstromverlaufs erfasst. Dabei wird die gesteuerte Ansteuerspannung basierend auf den bereitgestellten Betriebsparametern des Magnetventils derart gesteuert, dass der Ventilstromverlauf die Anstiegsrichtungsänderung aufweisen soll, wenn das Magnetventil ordnungsgemäß funktioniert. Mit anderen Worten ist die Abweichung in dem Ventilstromverlauf durch die bewegungsinduzierte Spannung derart groß, dass die Anstiegsrichtungsänderung des Ventilstromverlaufs vorliegt. Der Ventilstromverlauf weist bei ordnungsgemäß funktionierendem Magnetventil zunächst einen Anstieg auf, anschließend eine Abflachung, die in eine Reduktion des Ventilstromverlaufs mündet, wodurch die Anstiegsrichtungsänderung eingeleitet wird. Anschließend kann der Ventilstromverlauf wiederum ansteigen. Der anschließende Anstieg wird beispielsweise dadurch bewirkt, dass der Anker von einem Anschlag abgebremst wird, wodurch die durch die Ankerbewegung bewegungsinduzierte Spannung abnimmt bzw. auf null sinkt. According to the present disclosure, the valve current curve is detected in a further step. In this case, the controlled drive voltage is controlled based on the provided operating parameters of the solenoid valve in such a way that the valve current profile should have the change in the direction of increase when the solenoid valve is functioning properly. In other words, the deviation in the valve current profile due to the movement-induced voltage is so large that the valve current profile changes in the direction of increase. When the solenoid valve is functioning properly, the valve current profile initially shows an increase, then a flattening out, which leads to a reduction in the valve current profile, as a result of which the change in the direction of increase is initiated. The valve current curve can then increase again. The subsequent increase is caused, for example, by the armature being decelerated by a stop, as a result of which the voltage induced by the movement of the armature decreases or drops to zero.
Gemäß der vorliegenden Offenbarung wird in einem weiteren Schritt der erfasste Ventilstromverlauf ausgewertet. Dabei wird erkannt, dass die Ankerbewegung ordnungsgemäß erfolgte, wenn der erfasste Ventilstromverlauf die Anstiegsrichtungsänderung aufweist. Steigt beispielsweise der Ventilstromverlauf konstant an, ohne dass die geforderte Anstiegsrichtungsänderung vorliegt, dann hat sich dementsprechend der Anker nicht in Richtung der Spule bewegt, wodurch sich keine induzierte Bewegungsspannung eingestellt hat. Demgemäß kann in einem solchen Fall vorteilhaft einfach und genau die fehlende Bewegung des Ankers diagnostiziert werden. Mittels des Ansteuerelements und basierend auf dem bereitgestellten Betriebsparametern des Magnetventils kann die Ansteuerspannung derart festgelegt werden, dass in dem Ventilstromverlauf immer die Anstiegsrichtungsänderung vorliegt, so dass die Bewegung des Ankers des Magnetventils vorteilhaft genau diagnostiziert werden kann. Insgesamt ermöglicht demgemäß das Verfahren der vorliegenden Offenbarung die Bewegung des Ankers des Magnetventils vorteilhaft genau und zuverlässig zu diagnostizieren, wodurch wiederum der Betrieb des Magnetventils vorteilhaft genau diagnostiziert werden kann. According to the present disclosure, the recorded valve current profile is evaluated in a further step. In this case, it is recognized that the armature movement has taken place properly if the recorded valve current profile has the change in the direction of increase. If, for example, the valve current profile rises constantly without the required change in the direction of rise being present, then the armature has accordingly not moved in the direction of the coil, as a result of which no induced movement voltage has set in. Accordingly, in such a case, the lack of movement of the armature can advantageously be diagnosed easily and accurately. By means of the control element and based on the provided operating parameters of the solenoid valve, the control voltage can be set such that the valve current profile always shows the change in the direction of increase, so that the movement of the armature of the solenoid valve can advantageously be precisely diagnosed. Overall, accordingly, the method of the present disclosure enables movement of the armature of the solenoid valve to be advantageously accurately and reliably diagnosed, which in turn advantageously allows the operation of the solenoid valve to be accurately diagnosed.
Gemäß einer Ausführungsform wird die Ansteuerspannung mittels des Ansteuerelements getaktet. Das Ansteuerelement kann mittels einer Taktung die Ansteuerspannung im Mittelwert stark genug verringern, so dass die Anstiegsrichtungsänderung wie erforderlich in dem Ventilstromverlauf auftritt. Die Frequenz und der Lastzyklus der Taktung wird dabei gemäß einer Ausführungsform derart gewählt, dass die Taktung nicht selbst als Ankerbewegung in dem Ventilstromverlauf erkannt wird. Dies kann gemäß einer Ausführungsform beispielsweise mittels eines Einsatzes von Filtern für die Frequenzanteile der Ansteuerspannung realisiert werden. Gemäß einer weiteren Ausführungsform wird während der Taktlücke der Ansteuerspannung der Ventilstrom nicht auf null abgebaut, sondern kann mittels einer Freilaufdiode in weiterfließen, sodass das Magnetventil weiter bestromt wird. Während der Taktlücke wird an dem Magnetventil anstatt der positiven Ansteuerspannung die negative Diodenspannung angelegt, sodass sich die aus beiden Spannungsteilen zusammengesetzte mittlere Ansteuerspannung reduziert, sodass die bewegungsinduzierte Spannung größer werden kann als die Ansteuerspannung. According to one embodiment, the drive voltage is clocked by means of the drive element. By means of clocking, the control element can reduce the control voltage sufficiently in the mean value so that the change in the direction of increase occurs as required in the valve current curve. According to one embodiment, the frequency and the duty cycle of the clocking are selected in such a way that the clocking itself is not recognized as an armature movement in the valve current curve. According to one embodiment, this can be implemented, for example, by using filters for the frequency components of the drive voltage. According to a further embodiment, the valve current is not reduced to zero during the clock gap of the control voltage, but can continue to flow by means of a freewheeling diode, so that the solenoid valve continues to be energized. During the clock gap, the negative diode voltage is applied to the solenoid valve instead of the positive control voltage, so that the average control voltage composed of both voltage parts is reduced, so that the movement-induced voltage can be greater than the control voltage.
Gemäß einer Ausführungsform wird die Ansteuerspannung mittels einer Pulsweitenmodulation getaktet. Dabei wird die gesteuerte Ansteuerspannung zusätzlich mittels einer Auswahl der Frequenz und des Lastzyklus der Pulsweitenmodulation festgelegt. Durch die geeignete Auswahl der Frequenz und des Lastzyklus der Pulsweitenmodulation kann die Ansteuerspannung in Abhängigkeit von den bereitgestellten Betriebsparametern des Magnetventils derart gesteuert werden, dass der Ventilstromverlauf die geforderte Anstiegsrichtungsänderung aufweist. Mittels der Pulsweitenmodulation kann demgemäß vorteilhaft einfach und genau die Bewegungsdiagnose des Ankers realisiert werden. According to one embodiment, the drive voltage is clocked using pulse width modulation. In this case, the controlled drive voltage is additionally determined by selecting the frequency and the duty cycle of the pulse width modulation. By suitably selecting the frequency and the duty cycle of the pulse width modulation, the drive voltage can be controlled as a function of the provided operating parameters of the solenoid valve in such a way that the valve current curve has the required change in the direction of increase. Accordingly, the movement diagnosis of the armature can advantageously be implemented simply and precisely by means of the pulse width modulation.
Gemäß einer weiteren Ausführungsform ist das Ansteuerelement ein Spannungsregler oder ein Spannungsabfallelement. Mittels des Spannungsreglers und mittels des Spannungsabfallelements kann ebenso die Ansteuerspannung derart reduziert werden, dass der Ventilstromverlauf die Anstiegsrichtungsänderung aufweist. Dementsprechend kann auch mittels dieser Elemente die Bewegungsdiagnose vorteilhaft einfach realisiert werden, da diese Bauteile relativ einfach aufgebaut und kostengünstig sind. According to a further embodiment, the control element is a voltage regulator or a voltage drop element. The control voltage can also be reduced by means of the voltage regulator and by means of the voltage drop element in such a way that the valve current curve has the change in the direction of increase. Accordingly, by means of this Elements, the movement diagnosis can be realized easily, because these components are relatively simple and inexpensive.
Gemäß einer weiteren Ausführungsform ist das Spannungsabfallelement ein Serienwiderstand oder eine Diode. Der Serienwiderstand oder die Diode sind bekannte Bauteile elektrotechnische Bauteile, die die Ansteuerspannung wie gefordert reduzieren, so dass in dem Ventilstromverlauf die Anstiegsrichtungsänderung vorliegt. Die Diode ist in Serie zur Ansteuerspannung geschaltet, sodass die Ansteuerspannung um eine Diodenspannung reduziert wird. Der Serienwiderstand und die Diode sind insbesondere kostengünstige und zuverlässige Bauteile, wodurch das Verfahren vorteilhaft günstig und zuverlässig durchgeführt werden kann. According to another embodiment, the voltage drop element is a series resistor or a diode. The series resistance or the diode are known components, electrical components that reduce the control voltage as required, so that the valve current curve has a change in the direction of increase. The diode is connected in series with the drive voltage, so the drive voltage is reduced by one diode voltage. The series resistor and the diode are, in particular, inexpensive and reliable components, as a result of which the method can advantageously be carried out inexpensively and reliably.
Gemäß einer Ausführungsform wird der erfasste Ventilstromverlauf mittels einer Auswerteschaltung und/oder einer Auswertelogik und/oder einer Auswertesoftware ausgewertet. Der Ventilstromverlauf wird gemäß einer Ausführungsform mittels eines Sensors erfasst. Gemäß einer Ausführungsform wird der Ventilstromverlauf mittels eines Strommessshunts erfasst. Das Signal des Strommesssensors bzw. des Strommessshunts wird gemäß dieser Ausführungsform der Auswerteschaltung bzw. der Auswertelogik bzw. der Auswertesoftware bereitgestellt. Die Auswerteschaltung, die Auswertelogik oder die Auswertesoftware bieten jeweils eine einfache und genaue Möglichkeit dem Ventilstromverlauf zur Erkennung der Anstiegsrichtungsänderung auszuwerten. According to one specific embodiment, the recorded valve current curve is evaluated by means of an evaluation circuit and/or an evaluation logic and/or an evaluation software. According to one embodiment, the valve current curve is detected by means of a sensor. According to one specific embodiment, the valve current profile is detected using a current measurement shunt. According to this embodiment, the signal of the current measuring sensor or the current measuring shunt is made available to the evaluation circuit or the evaluation logic or the evaluation software. The evaluation circuit, the evaluation logic or the evaluation software each offer a simple and precise possibility of evaluating the valve current profile for detecting the change in the direction of increase.
Gemäß einer Ausführungsform wird zur Auswertung des erfassten Ventilstromverlaufs eine Ableitung des Ventilstromverlaufs gebildet. Gemäß dieser Ausführungsform wird die Ableitung des Ventilstromverlaufs gebildet, wobei die Anstiegsrichtungsänderung vorteilhaft einfach in der Ableitung des Ventilstromverlaufs erkannt werden kann, da die Ableitung einen Nullstellendurchgang aufweist, wenn der Ventilstromverlauf eine Anstiegsrichtungsänderung aufweist. According to one specific embodiment, a derivation of the valve current profile is formed in order to evaluate the detected valve current profile. According to this embodiment, the derivation of the valve current profile is formed, wherein the change in the direction of increase can advantageously be easily recognized in the derivation of the valve current profile, since the derivation has a zero crossing when the valve current profile has a change in the direction of increase.
Demgemäß kann mittels der Ableitung insbesondere vorteilhaft einfach die Anstiegsrichtungsänderung in dem Ventilstromverlauf erkannt werden. Accordingly, the change in the direction of increase in the valve current curve can be detected particularly advantageously simply by means of the derivation.
Gemäß einer Ausführungsform wird das Magnetventil zur Einspritzung von Wasser herangezogen. Wasser als Einspritzmedium weist andere Eigenschaften/Parameter als beispielsweise Kraftstoff auf. Diese Parameter können beispielsweise eine Viskosität oder eine Dichte sein. Das Magnetventil, das Wasser einspritzt, muss demgemäß angepasst bzw. umkonstruiert werden. Damit auch mit herkömmlichen Magnetventilen Wasser vorteilhaft gut eingespritzt werden kann, muss ebenso eine Diagnose der Ankerbewegung erfolgen. According to one embodiment, the solenoid valve is used to inject water. Water as the injection medium has different properties/parameters than fuel, for example. These parameters can be a viscosity or a density, for example. The solenoid valve that injects water has to be adapted or redesigned accordingly. A diagnosis of the armature movement must also be carried out so that water can also be advantageously injected well with conventional solenoid valves.
Dementsprechend kann mittels des Ansteuerelements die Ansteuerspannung zur Einspritzung von Wasser derart geregelt bzw. gesteuert werden, dass die Anstiegsrichtungsänderung zur Diagnose der Ankerbewegung in dem erfassten Ventilstromverlauf vorteilhaft gut sichtbar ist. Dementsprechend kann dieser Ausführungsform ein herkömmliches Magnetventil zur Einspritzung von Wasser herangezogen werden, wobei mittels des Ansteuerelements die Ankerbewegung gemäß dem vorliegenden Verfahren vorteilhaft gut diagnostiziert werden kann. Accordingly, the control voltage for injecting water can be regulated or controlled by means of the control element in such a way that the increase direction change for diagnosing the armature movement is advantageously clearly visible in the detected valve current profile. Accordingly, in this embodiment, a conventional solenoid valve can be used for injecting water, with the armature movement advantageously being able to be diagnosed well according to the present method by means of the control element.
Gemäß einer Ausführungsform wird die Ansteuerspannung angepasst, wenn bei der Auswertung erkannt wird, dass der erfasste Ventilstromverlauf keine Anstiegsrichtungsänderung aufweist. Dementsprechend wird die Ansteuerspannung gesteuert bzw. geregelt. Die Ansteuerspannung wird gemäß einer Ausführungsform in Abhängigkeit des Ventilstroms geregelt. Dadurch kann die Ansteuerspannung vorteilhaft einfach geregelt werden. In Abhängigkeit von dem Ventilstrom kann durch Regelung der resultierenden Ansteuerspannung damit auch die Position der sich bewegenden Bauteil innerhalb des Magnetventils in dem Ventilstromverlauf an einer bestimmten Zeitposition vorteilhaft gesteuert / geregelt werden. According to one specific embodiment, the control voltage is adjusted if it is recognized during the evaluation that the detected valve current curve has no change in the direction of increase. The drive voltage is controlled or regulated accordingly. According to one embodiment, the control voltage is regulated as a function of the valve current. As a result, the control voltage can advantageously be regulated in a simple manner. Depending on the valve current, the position of the moving component within the solenoid valve in the valve current profile can also be advantageously controlled/regulated at a specific time position by regulating the resulting control voltage.
Gemäß einem weiteren Aspekt der vorliegenden Offenbarung weist eine Vorrichtung zur Bewegungsdiagnose eines Ankers eines Magnetventils, wobei das Magnetventil eine Spule, an der eine Ansteuerspannung anliegt, und den Anker aufweist, der bei angelegter Ansteuerspannung von einem mittels der Spule induzierten Magnetfeld angezogen wird, eine Steuereinheit auf, die zur Steuerung eines der oben beschriebenen Verfahren ausgebildet ist. Die Vorrichtung kann beispielsweise eine Motorsteuereinheit sein. Es ist auch denkbar, dass die Vorrichtung ein separater Teil in der Motorsteuereinheit ist oder als externe zusätzliche Steuereinheit zu der Motorsteuereinheit verbaut ist, beispielsweise in einem Fahrzeug. According to a further aspect of the present disclosure, a device for diagnosing the movement of an armature of a solenoid valve, the solenoid valve having a coil to which a control voltage is applied, and the armature, which is attracted by a magnetic field induced by means of the coil when the control voltage is applied, a control unit on, which is designed to control one of the methods described above. The device can be, for example, an engine control unit. It is also conceivable that the device is a separate part in the engine control unit or is installed as an external additional control unit to the engine control unit, for example in a vehicle.
Ausführungsbeispiele und Weiterbildungen des Verfahrens gemäß der vorliegenden Offenbarung sind in den Figuren dargestellt und werden anhand der nachfolgenden Beschreibung näher erläutert. Es zeigen: Exemplary embodiments and developments of the method according to the present disclosure are shown in the figures and are explained in more detail on the basis of the following description. Show it:
Figur 1 eine schematische Darstellung eines Ersatzschaltbildes eines Magnetventils gemäß einer Ausführungsform, Figure 1 shows a schematic representation of an equivalent circuit diagram of a solenoid valve according to one embodiment,
Figur 2 eine schematische Darstellung eines ersten Ventilstromverlaufsdiagramms gemäß einer ersten Ausführungsform, FIG. 2 shows a schematic representation of a first valve flow curve diagram according to a first embodiment,
Figur 3 eine schematische Darstellung eines zweiten Ventilstromverlaufsdiagramm gemäß einer zweiten Ausführungsform, FIG. 3 shows a schematic representation of a second valve flow curve diagram according to a second embodiment,
Figur 4 eine schematische Darstellung eines Blockschaltbildes gemäß einer Ausführungsform. FIG. 4 shows a schematic representation of a block diagram according to an embodiment.
Die Figur 1 zeigt in schematischer Darstellung ein Ersatzschaltbild 100 eines Magnetventils 110. In dem Ersatzschaltbild 100 ist eine Ansteuerspannung 120 (U_valve), eine bewegungsinduzierte Spannung 130 (U_ind), ein Magnetventilwiderstand 140 (R_valve), eine ideale Magnetventilinduktivität 150 (L_valve) und ein Ventilstrom 160 (l_valve) dargestellt. Zusätzlich zeigt das Ersatzschaltbild 100 schematisch einen Spulenwiderstandsspannungsabfalls 170 (U_R) und eine stromänderungsinduzierte Spulenspannung 180 (U_L). Die Ansteuerspannung 120 erzeugt mittels einer Spule in dem Magnetventil 120 ein Magnetfeld. Die Spule weist einen ohmschen Widerstand, der in dem Ersatzschaltbild 100 mit dem Magnetventilwiderstand 140 schematisch dargestellt ist, auf. Das Magnetfeld bewirkt, dass ein Anker in das Magnetfeld hineingezogen wird, wodurch der Anker in Bewegung versetzt wird. Die bewegungsinduzierte Spannung130 ist jene Spannung, die durch die Ankerbewegung aufgebaut wird und der Ansteuerspannung 120 entgegenwirkt. Der Spulenwiderstandsspannungsabfall 170 ist jene Spannung, die über dem ohmschen Anteil der realen Ventilspule abfällt. Der Ventilstrom 160 resultiert aus der Spannungsgleichung an der idealen Induktivität 150 des Ersatzschaltbildes 100 aus der Summe der das Magnetfeld aufbauenden Ansteuerspannung 120, der Stromänderungsinduzierte Spulenspannung 180 und der bewegungsinduzierten Spannung 130, wobei die bewegungsinduzierte Spannung 130 und die Ansteuerspannung 120 unterschiedliche Vorzeichen haben. Zusätzlich ist die Ansteuerspannung 120 mit Spulenwiderstandsspannungsabfalls 170 der Ventilspule zu reduzieren. Die Figur 2 zeigt ein erstes Ventilstromverlaufsdiagramm 200. Dabei ist auf der x-Achse 210 des ersten Ventilstromverlaufsdiagramms 200 die Zeit aufgetragen. Die y-Achse 220 des ersten Ventilstromverlaufsdiagramms 200 stellt den Ventilstrom 160 dar. Dementsprechend zeigt das erste Ventilstromverlaufsdiagramm 200 den Ventilstromverlauf 230 über die Zeit gemäß einer ersten Ausführungsform. In dem ersten Ventilstromverlaufsdiagramm 200 ist ersichtlich, dass zunächst der Ventilstromverlauf 230 ansteigt, dann zwar leicht abflacht, dann aber wieder stärker ansteigt und anschließend konstant bleibt. In dem ersten Ventilstromverlauf 230 ist demgemäß keine Anstiegsrichtungsänderung, sondern lediglich eine Anstiegsänderungsabflachung 240 ersichtlich. Das Ergebnis der die Berechnung des Ventilstroms 160 über die Zeit führt gemäß dieser Ausführungsform demgemäß nicht zu einer Anstiegsrichtungsänderung in dem Ventilstromverlauf 230. Die Ansteuerspannung 120 ist gemäß dieser Ausführungsform nicht stark genug reduziert, so dass sich dementsprechend keine Anstiegsrichtungsänderung einstellt. Dementsprechend ist gemäß dieser Ausführungsform eine Diagnose der Ankerbewegung nur unter erschwerten Umständen möglich bzw. gar nicht möglich. Figure 1 shows a schematic representation of an equivalent circuit diagram 100 of a solenoid valve 110. In the equivalent circuit diagram 100 is a control voltage 120 (U_valve), a movement-induced voltage 130 (U_ind), a solenoid valve resistance 140 (R_valve), an ideal solenoid valve inductance 150 (L_valve) and a Valve current 160 (l_valve) shown. In addition, the equivalent circuit diagram 100 schematically shows a coil resistance voltage drop 170 (U_R) and a coil voltage 180 (U_L) induced by a current change. The control voltage 120 generates a magnetic field in the solenoid valve 120 by means of a coil. The coil has an ohmic resistance, which is shown schematically in equivalent circuit diagram 100 with solenoid valve resistance 140 . The magnetic field causes an armature to be drawn into the magnetic field, causing the armature to move. The movement-induced voltage 130 is the voltage that is built up by the movement of the armature and counteracts the drive voltage 120 . The coil resistance voltage drop 170 is the voltage dropped across the resistive portion of the real valve coil. The valve current 160 results from the voltage equation at the ideal inductance 150 of the equivalent circuit diagram 100 from the sum of the drive voltage 120 building up the magnetic field, the current change-induced coil voltage 180 and the movement-induced voltage 130, with the movement-induced voltage 130 and the drive voltage 120 having different signs. In addition, the control voltage 120 with the coil resistance voltage drop 170 of the valve coil is to be reduced. FIG. 2 shows a first valve current curve diagram 200. The time is plotted on the x-axis 210 of the first valve current curve diagram 200. The y-axis 220 of the first valve current curve diagram 200 represents the valve current 160. Accordingly, the first valve current curve diagram 200 shows the valve current curve 230 over time according to a first embodiment. In the first valve current curve diagram 200 it can be seen that the valve current curve 230 initially rises, then flattens out slightly, but then rises more sharply again and then remains constant. Accordingly, no change in the direction of rise is evident in the first valve current profile 230 , only a flattening of the change in rise 240 . According to this embodiment, the result of the calculation of valve current 160 over time does not result in a change in the direction of increase in valve current profile 230. According to this embodiment, control voltage 120 is not reduced sufficiently so that there is no change in the direction of increase. Accordingly, according to this embodiment, a diagnosis of the armature movement is only possible under difficult circumstances or not possible at all.
Die Figur 3 zeigt ein zweites Ventilstromverlaufsdiagramm 300 gemäß einer zweiten Ausführungsform, wobei auch hier auf der x-Achse 310 die Zeit und auf der y-Achse 320 der Ventilstrom 160 aufgetragen wird. Das zweite Ventilstromverlaufsdiagramm 300 zeigt dementsprechend auch einen Ventilstromverlauf 330 über die Zeit gemäß einer zweiten Ausführungsform. Der Ventilstromverlauf 330 steigt vorliegend zunächst an, flacht dann ab, reduziert sich kurzzeitig, um dann anschließend wieder anzusteigen und am Ende konstant zu bleiben. Der Ventilstromverlauf 330 weist demgemäß eine Anstiegsrichtungsänderung 340 auf. Diese Anstiegsrichtungsänderung 340 resultiert daraus, dass die bewegungsinduzierte Spannung 130 durch die Bewegung des Ankers kurzzeitig die Ansteuerspannung 120 übersteigt, so dass sich der Ventilstrom 160 kurzfristig während der Ankerbewegung reduziert. Sobald der Anker abgebremst wird sinkt die bewegungsinduzierte Spannung130 wieder, sodass der Ventilstromverlauf 330 wieder ansteigt. Diese Anstiegsrichtungsänderung 340 kann vorteilhaft einfach ermittelt werden, wodurch die Bewegung des Ankers des Magnetventils 110 vorteilhaft einfach diagnostiziert werden kann. FIG. 3 shows a second valve current profile diagram 300 according to a second specific embodiment, the time being plotted on the x-axis 310 and the valve current 160 on the y-axis 320 here as well. The second valve current curve diagram 300 accordingly also shows a valve current curve 330 over time according to a second specific embodiment. In the present case, the valve current profile 330 initially increases, then flattens out, briefly reduces, in order to then subsequently increase again and remain constant at the end. The valve current profile 330 accordingly has a change in the direction of increase 340 . This increase direction change 340 results from the fact that the movement-induced voltage 130 briefly exceeds the drive voltage 120 due to the movement of the armature, so that the valve current 160 is reduced briefly during the armature movement. As soon as the armature is braked, the movement-induced voltage 130 falls again, so that the valve current curve 330 rises again. This change in the direction of increase 340 can advantageously be determined easily, as a result of which the movement of the armature of the solenoid valve 110 can advantageously be diagnosed easily.
Die Figur 4 zeigt ein schematisches Blockschaltbild 400 gemäß einer Ausführungsform. Das Blockschaltbild 400 zeigt dementsprechend einen Strompfad 410 des Magnetventils 110. Das Blockschaltbild 400 weist ein Ansteuerelement 420, eine Freilaufdiode 430, das symbolisch dargestellte Magnetventil 110 und einen Strommessshunt 440 auf. Mittels des Ansteuerelements 420 wird die Ansteuerspannung 120, die dem Magnetventil 110 bzw. dessen Spule, bereitgestellt wird, gesteuert. In dem Blockschaltbild 400 ist dies mittels einer Dauerpulsansteuerung 422 und einer pulsweiten Modulationsansteuerung 424 schematisch dargestellt. Bei der Dauerpulsansteuerung 422 erfolgt die Ansteuerung ungetaktet, wohingegen bei der Pulsweitenmodulationsansteuerung 424 die Ansteuerung getaktet erfolgt. Dies ist in dem Blockschaltbild 400 schematisch dargestellt. Die Freilaufdiode 430 erfüllt bei einer getakteten Ansteuerung die Funktion während der Taktlücke den Strom im Magnetventil 110 weiterfließen zu lassen, wobei anstatt der positiven Ansteuerspannung 120 eine negative Diodenspannung an das Magnetventil 110 angelegt wird. Dadurch ist die mittlere reduzierte Ansteuerspannung 120 ein Mittelwert aus positiver Ansteuerspannung 120 und negativer Diodenspannung. Die kann mittels der Taktung (Taktverhältnis) gesteuert werden. FIG. 4 shows a schematic block diagram 400 according to an embodiment. The block diagram 400 accordingly shows a Current path 410 of the solenoid valve 110. The block diagram 400 has a control element 420, a freewheeling diode 430, the solenoid valve 110 shown symbolically and a current measuring shunt 440. The control voltage 120 that is provided to the solenoid valve 110 or its coil is controlled by means of the control element 420 . This is shown schematically in block diagram 400 by means of a continuous pulse control 422 and a pulse-width modulation control 424 . In the case of the continuous pulse drive 422, the drive is unclocked, whereas in the case of the pulse width modulation drive 424, the drive is clocked. This is shown schematically in block diagram 400 . In the case of clocked control, the freewheeling diode 430 fulfills the function of allowing the current to continue to flow in the solenoid valve 110 during the clock gap, with a negative diode voltage being applied to the solenoid valve 110 instead of the positive control voltage 120 . As a result, the mean reduced drive voltage 120 is a mean value of the positive drive voltage 120 and the negative diode voltage. This can be controlled by clocking (clock ratio).
Der Strommessshunt 440 ist dazu eingerichtet, den Ventilstrom 160 über die Zeit und dementsprechend den Ventilstromverlauf 230 / 330 zu erfassen. In dem Blockschaltbild 400 ist schematisch auch die Auswertung des mittels des Strommessshunts 440 erfassten Ventilstromverlaufs 230/330 dargestellt. Dementsprechend wird gemäß dieser Ausführungsform der Ventilstromverlauf 230/330 zunächst mittels eines Amplifier/Verstärkers 450 verstärkt. Anschließend erfolgt mittels eines PWM-Filters (Pulsweitenmodulationsfilters) 460 eine Filterung des Ventilstromverlaufs 230/330. Die PWM Taktung mit positiver Ansteuerspannung 120 und negativer Diodenspannung führt ebenso wie die Bewegung des Ankers zu Stromanstieg und Stromabfall in der Spule und jede Taktung könnte als Nullstellen in dem Ventilstromverlauf 230 / 330, bzw. in dessen Ableitung, detektiert werden. Anschließend wird mit dem derart gefilterten Ventilstromverlauf 230/330 eine Ableitung mittels eines Differentiators 470 gebildet. Dies ist im Blockschaltbild 400 mittels eines des Differentiators 470 schematisch dargestellt. Die Ableitung des Ventilstromverlaufs 230/330 wird anschließend auf eventuelle Nullstellendurchgänge mittels eines Nullstellenkomparators 480 ausgewertet. Dies ist in dem Blockschaltbild mittels des Nullstellenkomparators 480 schematisch dargestellt. Sofern der Nullstellenkomparator 480 einen Nullstellendurchgang des abgeleiteten Ventilstromverlaufs 230/330 ermittelt, kann auf die Anstiegsrichtungsänderung 340 des Ventilstromverlaufs 230/330 rückgeschlossen werden. Dementsprechend kann anschließend eine digitale Ankerbewegungskennung ausgegeben werden. Dies ist in dem Blockschaltbild 400 mittels des Gliedes 490 dargestellt. Die digitale Bewegungserkennung 490 gibt demgemäß aus, ob eine Ankerbewegung erfolgt ist oder nicht. The current measurement shunt 440 is set up to record the valve current 160 over time and accordingly the valve current curve 230/330. The block diagram 400 also shows the evaluation of the valve current curve 230/330 detected by means of the current measuring shunt 440. Accordingly, according to this embodiment, the valve current profile 230/330 is initially amplified by means of an amplifier/amplifier 450. The valve current profile 230/330 is then filtered by means of a PWM filter (pulse width modulation filter) 460 . The PWM clocking with positive control voltage 120 and negative diode voltage, like the movement of the armature, leads to a current rise and fall in the coil and each clocking could be detected as zeros in the valve current profile 230 / 330 or in its derivative. A derivation is then formed by means of a differentiator 470 with the valve current profile 230/330 filtered in this way. This is shown schematically in block diagram 400 by means of one of differentiator 470 . The derivation of the valve current curve 230/330 is then evaluated by means of a zero comparator 480 for any zero crossings. This is shown schematically in the block diagram using zero comparator 480 . If the zero comparator 480 determines a zero crossing of the derived valve current profile 230/330, the change in the direction of increase 340 of the valve current profile 230/330 can be inferred. Accordingly, a digital Anchor movement identifier are issued. This is represented in block diagram 400 by element 490 . Accordingly, the digital motion detector 490 outputs whether an anchor movement has taken place or not.

Claims

Patentansprüche patent claims
1 . Verfahren zur Bewegungsdiagnose eines Ankers eines Magnetventils (110), wobei das Magnetventil eine Spule, an der eine Ansteuerspannung (120) anlegbar ist, und den Anker aufweist, der bei angelegter Ansteuerspannung (120) von einem mittels der Spule induzierten Magnetfeld angezogen wird, wobei das Verfahren die folgenden Schritte aufweist: 1 . Method for diagnosing the movement of an armature of a solenoid valve (110), the solenoid valve having a coil to which a control voltage (120) can be applied, and the armature which, when the control voltage (120) is applied, is attracted by a magnetic field induced by the coil, wherein the procedure has the following steps:
Bereitstellen von Betriebsparametern des Magnetventils (110); providing operating parameters of the solenoid valve (110);
Anlegen der Ansteuerspannung (120), die mittels eines Ansteuerelements (420) gesteuert ist, wodurch das Magnetfeld aufgebaut und der Anker bewegt wird und aufgrund der Ankerbewegung eine bewegungsinduzierte Spannung (130) aufgebaut wird, die der mittels des Magnetfelds aufgebauten Spannung entgegenwirkt; applying the drive voltage (120) controlled by a drive element (420), whereby the magnetic field is built up and the armature is moved and a movement-induced voltage (130) is built up due to the armature movement, which counteracts the voltage built up by means of the magnetic field;
Erfassen eines Ventilstromverlaufs (230, 330), der durch die gesteuerte Ansteuerspannung (120) und die bewegungsinduzierte Spannung(130) beeinflusst wird, wobei die gesteuerte Ansteuerspannung (120) basierend auf den bereitgestellten Betriebsparametern des Magnetventils (110) derart gesteuert wird, dass der Ventilstromverlauf (230, 330) eine Anstiegsrichtungsänderung (340) aufweist, wenn das Magnetventil (110) ordnungsgemäß funktioniert; Detecting a valve current profile (230, 330), which is influenced by the controlled drive voltage (120) and the movement-induced voltage (130), the controlled drive voltage (120) being controlled based on the provided operating parameters of the solenoid valve (110) in such a way that the Valve current waveform (230, 330) has a slew direction change (340) when the solenoid valve (110) is functioning properly;
Auswerten des erfassten Ventilstromverlaufs (230, 330), wobei erkannt wird, dass die Ankerbewegung ordnungsgemäß erfolgte, wenn der erfasste Ventilstromverlauf (230, 330) die Anstiegsrichtungsänderung (340) aufweist. Evaluating the detected valve current profile (230, 330), it being recognized that the armature movement took place properly if the detected valve current profile (230, 330) has the change in direction of increase (340).
2. Verfahren gemäß Anspruch 1 , wobei die Ansteuerspannung (120) mittels des Ansteuerelements (420) getaktet wird. 2. The method according to claim 1, wherein the control voltage (120) is clocked by means of the control element (420).
3. Verfahren gemäß Anspruch 2, wobei die Ansteuerspannung (120) mittels einer Pulsweitenmodulation getaktet wird, wobei die gesteuerte Ansteuerspannung (120) zusätzlich mittels einer Auswahl der Frequenz und des Lastzyklus der Pulsweitenmodulation festgelegt wird. 3. The method according to claim 2, wherein the control voltage (120) is clocked by means of a pulse width modulation, the controlled control voltage (120) being additionally determined by means of a selection of the frequency and the duty cycle of the pulse width modulation.
4. Verfahren gemäß Anspruch 1 , wobei das Ansteuerelement (420) ein Spannungsregler oder ein Spannungsabfallelement ist. 4. The method according to claim 1, wherein the control element (420) is a voltage regulator or a voltage drop element.
5. Verfahren gemäß Anspruch 4, wobei das Spannungsabfallelement ein Serienwiderstand oder eine Diode ist. 5. The method of claim 4, wherein the voltage dropping element is a series resistor or a diode.
6. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei das Auswerten des erfassten Ventilstromverlaufs (230, 330) mittels einer Auswerteschaltung und / oder einer Auswertelogik und / oder einer Auswertesoftware erfolgt. 6. The method according to any one of the preceding claims, wherein the evaluation of the detected valve current profile (230, 330) is carried out by means of an evaluation circuit and / or an evaluation logic and / or evaluation software.
7. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei zur Auswertung des erfassten Ventilstromverlaufs (230, 330) eine Ableitung des Ventilstromverlaufs (230, 330) gebildet wird. 7. The method according to any one of the preceding claims, wherein a derivation of the valve current curve (230, 330) is formed to evaluate the detected valve current curve (230, 330).
8. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei das Magnetventil (110) zur Einspritzung von Wasser herangezogen wird. 8. The method according to any one of the preceding claims, wherein the solenoid valve (110) is used to inject water.
9. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die Ansteuerspannung (120) angepasst wird, wenn bei der Auswertung erkannt wird, dass der erfasste Ventilstromverlaufs (230, 330) keine Anstiegsrichtungsänderung (340) aufweist. 9. The method according to any one of the preceding claims, wherein the control voltage (120) is adjusted if it is recognized during the evaluation that the detected valve current profile (230, 330) has no change in the direction of increase (340).
10. Vorrichtung zur Bewegungsdiagnose eines Ankers eines Magnetventils (110), wobei das Magnetventil eine Spule, an der eine Ansteuerspannung (120) anlegbar ist, und den Anker aufweist, der bei angelegter Ansteuerspannung (120) von einem mittels der Spule induzierten Magnetfeld angezogen wird, wobei die Vorrichtung eine Steuereinheit aufweist, die zur Steuerung eines Verfahrens gemäß einem der vorhergehenden Ansprüche ausgebildet ist. 10. Device for diagnosing the movement of an armature of a magnetic valve (110), the magnetic valve having a coil to which a control voltage (120) can be applied, and the armature which, when the control voltage (120) is applied, is attracted by a magnetic field induced by the coil , wherein the device has a control unit which is designed to control a method according to any one of the preceding claims.
PCT/EP2021/078430 2020-10-19 2021-10-14 Method and device for diagnosing the movement of an armature of a solenoid valve WO2022084140A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020213169.4 2020-10-19
DE102020213169.4A DE102020213169B3 (en) 2020-10-19 2020-10-19 Method and device for diagnosing the movement of an armature of a magnetic valve

Publications (1)

Publication Number Publication Date
WO2022084140A1 true WO2022084140A1 (en) 2022-04-28

Family

ID=78302734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/078430 WO2022084140A1 (en) 2020-10-19 2021-10-14 Method and device for diagnosing the movement of an armature of a solenoid valve

Country Status (2)

Country Link
DE (1) DE102020213169B3 (en)
WO (1) WO2022084140A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0563760A2 (en) * 1992-03-26 1993-10-06 Zexel Corporation Fuel-injection device
DE102011076363A1 (en) * 2011-05-24 2012-11-29 Continental Automotive Gmbh Determining the standard series opening behavior of a fuel injector based on a test opening behavior under the influence of a test pulse with constant voltage
DE102011083481A1 (en) * 2011-06-16 2012-12-20 Robert Bosch Gmbh Method for evaluating operability of magnetic valve utilized for e.g. dosing fuel for combustion in combustion engine of motor car, involves comparing magnitude representing detected current flow with magnitude representing defect flow
DE102013209070A1 (en) * 2013-05-16 2014-11-20 Robert Bosch Gmbh Method and device for detecting a start of movement of electromechanical actuators
DE102014203364A1 (en) * 2014-02-25 2015-08-27 Continental Automotive Gmbh Method and device for operating a valve, in particular for a storage injection system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3843138A1 (en) 1988-12-22 1990-06-28 Bosch Gmbh Robert METHOD OF CONTROLLING AND DETECTING THE MOVEMENT OF AN ARMATURE OF AN ELECTROMAGNETIC SWITCHING DEVICE
DE3942836A1 (en) 1989-12-23 1991-06-27 Daimler Benz Ag METHOD FOR DETECTING THE MOTION AND POSITION OF A COMPONENT OF A INDUCTIVE ELECTRICAL CONSUMER THROUGH MAGNETIC INTERACTION BETWEEN TWO END POSITIONS
DE4322199C2 (en) 1993-07-03 2003-06-18 Bosch Gmbh Robert Method and device for controlling an electromagnetic consumer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0563760A2 (en) * 1992-03-26 1993-10-06 Zexel Corporation Fuel-injection device
DE102011076363A1 (en) * 2011-05-24 2012-11-29 Continental Automotive Gmbh Determining the standard series opening behavior of a fuel injector based on a test opening behavior under the influence of a test pulse with constant voltage
DE102011083481A1 (en) * 2011-06-16 2012-12-20 Robert Bosch Gmbh Method for evaluating operability of magnetic valve utilized for e.g. dosing fuel for combustion in combustion engine of motor car, involves comparing magnitude representing detected current flow with magnitude representing defect flow
DE102013209070A1 (en) * 2013-05-16 2014-11-20 Robert Bosch Gmbh Method and device for detecting a start of movement of electromechanical actuators
DE102014203364A1 (en) * 2014-02-25 2015-08-27 Continental Automotive Gmbh Method and device for operating a valve, in particular for a storage injection system

Also Published As

Publication number Publication date
DE102020213169B3 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
DE3730523C2 (en)
DE102011075521B4 (en) Method for detecting a closing time of a valve having a coil drive and valve
DE102011005672B4 (en) Method, device and computer program for the electrical control of an actuator for determining the time of an anchor stop
DE3843138C2 (en)
DE102005044886B4 (en) Apparatus and method for detecting an end of movement of a valve piston in a valve
DE4308811B9 (en) Method and device for controlling a solenoid-controlled fuel metering device
EP2422066B1 (en) Method for operating an injection valve
DE102010063009B4 (en) Method and device for characterizing a movement of a fuel injector by detecting and evaluating a magnetic hysteresis curve
DE10235188B3 (en) Method for determining the position of an actuating element of an electrically drivable actuator, associated circuit arrangement and device
WO2016166142A1 (en) Controlling a fuel injection solenoid valve
EP0837479B1 (en) Driver circuit for electromagnet
DE102014223066A1 (en) Method and control unit for detecting an armature stop of an electromechanical actuator
DE102010064048B4 (en) Method and device for operating a high-pressure pump
DE19834405B4 (en) Method of estimating a needle lift of a solenoid valve
DE102020213169B3 (en) Method and device for diagnosing the movement of an armature of a magnetic valve
DE10108425C1 (en) Electromagnetic valve monitoring unit, consists of switching circuit, differentiating units, comparator and monostable member
DE102009044969A1 (en) Method for determining switch-off time of solenoid valve of rail-diesel engine, involves providing reference characteristic as simulation characteristic by solenoid valve simulation circuit that imitates reference measurement characteristic
EP0720770B1 (en) Process and device for driving an electromagnetic consumer
DE102011078159A1 (en) Fuel injection valve
DE102012209967A1 (en) Method of operating solenoid valve, involves comparing time integral with threshold value such that to judge state of solenoid valve
WO2015150049A1 (en) Method and apparatus for monitoring the temperature of the coil wire of a solenoid valve
DE102021210321A1 (en) Method for determining a characteristic variable of a solenoid valve and method for training a pattern recognition method based on artificial intelligence
WO2017118541A1 (en) Method for determining the opening current of an analogue-actuated valve and pressure regulating device
DE102015104108A1 (en) PARAMETER ESTIMATION IN AN ACTOR
DE102016219189B4 (en) Determining a solenoid valve opening time

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21794771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21794771

Country of ref document: EP

Kind code of ref document: A1