EP0837479B1 - Driver circuit for electromagnet - Google Patents

Driver circuit for electromagnet Download PDF

Info

Publication number
EP0837479B1
EP0837479B1 EP97117371A EP97117371A EP0837479B1 EP 0837479 B1 EP0837479 B1 EP 0837479B1 EP 97117371 A EP97117371 A EP 97117371A EP 97117371 A EP97117371 A EP 97117371A EP 0837479 B1 EP0837479 B1 EP 0837479B1
Authority
EP
European Patent Office
Prior art keywords
current
signal
voltage
value
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97117371A
Other languages
German (de)
French (fr)
Other versions
EP0837479A2 (en
EP0837479A3 (en
Inventor
Trent Lynn Goodnight
Vijay Manilal Dharia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deere and Co
Original Assignee
Deere and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deere and Co filed Critical Deere and Co
Publication of EP0837479A2 publication Critical patent/EP0837479A2/en
Publication of EP0837479A3 publication Critical patent/EP0837479A3/en
Application granted granted Critical
Publication of EP0837479B1 publication Critical patent/EP0837479B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • H01F2007/1855Monitoring or fail-safe circuits using a stored table to deduce one variable from another

Definitions

  • the invention relates to an electrical circuit for applying of an oscillating electric current to a coil of a Electromagnets, through which the electromagnet is dependent on Input or guide signals can be controlled.
  • Electromagnets are preferably the electromagnet a hydraulic control valve.
  • the control of the current is in such an application difficult because of the primary electrical properties of the Control valves, resistors and inductors not known and are not predictable.
  • the resistance of the coil of the Electromagnets can move within the temperature range the coil is exposed to change over 100%.
  • the inductance of the coil due to changes in the Temperature, the voltage pulse frequency and the supply voltage change by well over 100%.
  • the Amplitude of the voltage pulses in a range between 9 and 16 Volts.
  • US-A-4,764,840 describes a driver control circuit for one Solenoid through the for an initial pull-in period maximum current flow is adjustable to a fast ensure initial tripping of the solenoid. It a second hold period closes with a shorter one Holding current that is sufficient to the solenoid in its hold triggered position. For this, a Coil current value recorded and two separate comparators fed. Each comparator receives during the pull-in period, their duration by a monostable multivibrator fixed maximum and minimum Reference thresholds by which a maximum and a minimum Current limit set for a pulsating coil current become. After the pull-in period is over, the holding period a maximum and a minimum holding current limit set. No measures are specified to avoid the Coil current during the tripping phase, for example during switching a transmission between two gears Taxes.
  • DE-A-43 29 917 discloses a circuit arrangement for clocked supply of an electromagnetic consumer, in which a control unit is provided by means of which from the difference between an instantaneous signal on Consumer and a definable guide signal pulse width modulated control signal is formed. With this pulse width modulated control signal becomes a circuit breaker controlled by which the electromagnetic consumer with an electric current is applied. A modulation upper and lower limit current values are not described.
  • the object underlying the invention is seen in to design a generic electromagnetic driver circuit in such a way that the problems mentioned at the beginning are overcome.
  • an average current is to be generated, which in linear relationship with the input or command signal stands.
  • an electrical circuit provides one oscillating electrical current to the coil of a Electromagnets to cause the electromagnet to move in Dependency of a predetermined variable command signal to move.
  • the solenoid driver circuit powers the coil with a stream which variable upper and lower Has limit voltage values.
  • the lower limit voltage value increases essentially a constant relationship to the upper one Limit voltage value.
  • the limit voltage values can also with Peak current value or peak current value.
  • the solution according to the invention enables precise current control of the solenoid driver with an immediate Respond, i.e. a minimal time delay between the current setpoint and the actual current in the coil.
  • the Solenoid driver can be used with just a few components produce low cost.
  • the requirements for the microprocessor are very small because the microprocessor is only marginal intervenes in the current control (software effectiveness).
  • the frequency of the electromagnetic driver can be easily Way at a nominal operating point (nominal current, resistance, Optimize inductance and power supply) by suitable resistors for the circuit can be selected.
  • the circuit according to the invention enables maximum fault detection of the solenoid driver circuit. It is also advantageous that when switching on and / or during a Reset mode of the microprocessor from the solenoid driver circuit current output to the solenoid is zero.
  • the Circuit a signal divider through which of the command signal an upper limit voltage signal value and a lower limit voltage signal value, which is a constant relationship to the upper one Limit voltage signal value takes, are generated.
  • a current measuring resistor generates a current measurement voltage that flows through the current the coil corresponds.
  • a first comparator compares them Current measurement voltage with the upper limit voltage signal value.
  • a second Comparator compares the flow measurement voltage with the lower one Limit voltage signal value.
  • a current driver supplies a driver current the electromagnetic coil as a function of the output signals, which generated by the first comparator and the second comparator be so that the coil current has a lower limit current value which is essentially in a constant ratio to the upper limit current value.
  • the average current follows linear to the limit current because the lower peak is always in one constant percentage ratio to the given upper Limit current stands. Because the relationship between the borders or Peaks is constant, the linearity is maintained between Average current and specified limit current even if the inductance and / or the resistance of the coil or when the supply voltage changes. Because the amplitude value between the limits or peaks with the average current increases, is the frequency range of the electromagnetic driver minimized.
  • the electromagnetic driver circuit 10 controls that to the coil L1 an electromagnetically operated transmission control valve, not shown applied current depending on an analog Voltage control signal V-CMD, which from the PWM output (Pulse pause modulation) of a microprocessor MP is generated.
  • the command signal preferably has a voltage range of 0 to 5 volts, which with a desired coil current from 0 to Corresponds to 1000 mA. Therefore, convert one to a regulated one Power supply from 5 volt connected pull-up resistor R15 and an inverter 12 the command signal from PWM, which has a duty cycle of 0% to 100% has an analog voltage of 5 to 0 volts.
  • there becomes a 2 millisecond filter circuit consisting of the Resistor R14 and capacitor C5 are used.
  • the filtered command signal is then sent to a voltage divider applied, which is formed from the resistors R11 and R10 and a lead voltage at the connection between R11 and R10 V-PU (upper voltage limit) delivers.
  • a capacitor C4 which is connected in parallel to resistor R10 additionally a slight filtering contribution.
  • the voltage V-PU becomes the + input of a reset command comparator 14 and one between V-PU and earth through the resistors R8 and R9 Formed voltage divider supplied.
  • V-PL lower voltage limit
  • the output of the reset command comparator 14 is via a Resistor R6 connected to + 5 volts and connected to an input of a Set-reset flip-flops 18 (with Schmidt trigger input), that of two cross-linked NAND grids 20, 22 and a capacitor C2 is formed.
  • the output of the set command comparator 16 is via a resistor R7 connected to + 5 volts and to another input of the Set-reset flip-flops 18 created.
  • V-PU is also connected to the + input of a comparator 24 with a grounded capacitor C3 part of a shutdown circuit 26 is created.
  • a threshold which corresponds to a coil current of approximately 150 mA.
  • Capacitor C6 Between Earth and the connection point between R12 and R13 is located Capacitor C6.
  • the output of the comparator 24 (and the Switch-off circuit 26) has the input IN of a driver 28 connected.
  • the output OUT of driver 28 is at one end the solenoid coil L1 and a freewheeling diode D1 with earth connected.
  • the other end of the coil L1 is above the current measuring resistor R2 connected to earth.
  • the voltage across resistor R2 is proportional to the current flowing through coil L1. High frequency noise of this voltage is caused by the resistance R3, the capacitor C1 and the resistor R5 filtered out, to generate a voltage VSENSE. Through the diode D2 voltage compensation is suppressed (voltage transients).
  • the voltage VSENSE is connected to the + input of the Comparator 16 and applied to the input of the comparator 14.
  • a comparator 30 has a + input at which VSENSE is present, and an input at which the voltage VSHUTOFF is present.
  • the output of the comparator 30 is via a pull-up resistor R1 connected to + 5 volts and is directly connected to the status input ST of the driver 28 connected. He pulls the ST Entrance down if VSENSE is below VSHUTOFF.
  • the exit of the comparator 30 generates a status signal which is sent to a digital input of the microprocessor MP is applied.
  • the microprocessor can detect errors in the circuit, if the command voltage V-PU is greater than a value that corresponds to a coil current of 150 mA. The status signal will ignored if the command signal is not greater than 150 mA is.
  • the driver is preferably a Profet from Siemens or a Equivalent to this, which is capable of a line break or detect a short in coil L1. If the driver 28 detects an error, it pulls his status line ST down.
  • Comparator 16 pulls its output to ground when VSENSE closes becomes small (smaller than V-PL).
  • the comparator 14 pulls its Output to earth if VSENSE becomes too large (larger than V-PU).
  • the resistors R8 and R9 are like this selected that V-PL is 78.5% of V-PU. If VSENSE under V-PL, the driver 28 is turned on (set) and remains switched on until VSENSE rises above V-PU. If VSENSE reaches the value V-PU, the driver is switched off (reset) until VSENSE falls below V-PL again.
  • V-PU To ensure that driver 28 is off when the lead tension is too low (for example, static friction of the electromagnet), V-PU and a small constant voltage VSHUTOFF in the comparator 24 fed. If the lead voltage of the microprocessor MP is less than a value with a coil current of 150 mA corresponds, the comparator 24 pulls the input of the driver 28 low, turns off the driver 28 and prevents the flip-flop 18 turns on the driver 28.
  • the average current follows through the Coil L1 linear to the limit current, because the lower limit current always is in a constant relationship to the upper limit current.
  • the peak-to-peak amplitude also increases the ratio between the lower limit and however, the upper limit remains constant. The linearity remains even if the inductance and / or the Change the resistance of the coil L1 and / or if the Supply voltage fluctuates.
  • This circuit operates at a variable frequency.
  • the Frequency varies as a function of the command voltage, the Resistance and inductance of the coil as well as the Supply voltage. However, since the peak-to-peak amplitude increases in the same way as the average current Frequency variation much less than when the peak-to-peak amplitude would be constant.
  • R8, R9 can be the frequency of the nominal Operating point (nominal current, resistance and inductance the coil and supply voltage) can be optimized.
  • Only one of these control circuits can be used for several drivers be used provided the drivers are never at the same time are switched on.
  • a forward driver and a backward driver on a common drive and Use current measuring circuit.
  • the Input of the forward driver via an AND gate with a Forward switch and the reverse driver with an AND gate a reverse switch.
  • the microprocessor then drives the same command signal circuit regardless which valve (forward or reverse valve) is actually controlled.
  • the circuit is simple and consists of inexpensive Components.
  • the load on the microprocessor is extreme low since he. only has to generate the PWM command signal. Its A / D inputs are not used unnecessarily because of the Average current is not measured by the microprocessor. No equations or tables are required to To convert switching break ratios into current values, because of the Relationship is linear.
  • the PWM signal should be one have a fairly high frequency, so the time constant of the R14-C5 filter can be minimized or D / A converter can be used. It should be emphasized that resistance R2 is like this be chosen as large as possible and preferably a tolerance of ⁇ 1%.
  • Resistors R8, R9, R10, R11 and R14 preferably have a tolerance of ⁇ 1%.
  • the Ground path between the current measuring resistor R2 and the Comparators 14, 16, 24 and 30 should have a very low impedance exhibit.
  • the accuracy of the 5 volt control supply voltage for inverter 12 is also important.
  • inverted Power switching device instead of inverted Power switching device with an inverted device an inverting driver intermediate stage can be used.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electronic Switches (AREA)
  • Magnetically Actuated Valves (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Feedback Control In General (AREA)
  • Control Of Linear Motors (AREA)
  • Electromagnets (AREA)
  • Color Printing (AREA)

Description

Die Erfindung betrifft eine elektrische Schaltung zum Anlegen eines oszillierenden elektrischen Stromes an eine Spule eines Elektromagneten, durch die der Elektromagnet in Abhängigkeit von Eingangs- oder Führungssignalen ansteuerbar ist. Bei dem Elektromagneten handelt es sich vorzugsweise um den Elektromagneten eines Hydrauliksteuerventils.The invention relates to an electrical circuit for applying of an oscillating electric current to a coil of a Electromagnets, through which the electromagnet is dependent on Input or guide signals can be controlled. In which Electromagnets are preferably the electromagnet a hydraulic control valve.

Um den an die Kupplungen eines Lastschaltgetriebes angelegten Hydraulikdruck zu steuern ist es wünschenswert, mit Analogstrom gesteuerte Elektromagnetventile zu verwenden. Für eine gleichmäßige, vorhersehbare Einstellung der Getriebeelemente beim Umschalten zwischen zwei Gängen wird eine genaue Stromsteuerung gefordert. Wegen der Belastbarkeit ist es bei Fahrzeugen nicht zweckmäßig den Strom für ein analoges Ventil durch die Steuerung der Spannungszufuhr zu dem Ventil einzustellen. Zur Erzeugung der gewünschten Führungsgröße wird daher die Speisespannung pulsförmig in schneller Frequenz einund ausgeschaltet. Die Induktivität in der Spule des Elektromagneten speichert beim pulsweisen Einschalten der Spannung Energie und gibt Energie frei, wenn die Spannung abgeschaltet wird, so daß eine Durchschnittspannung erzeugt wird.To the applied to the clutches of a powershift transmission It is desirable to control hydraulic pressure with analog current to use controlled solenoid valves. For one uniform, predictable setting of the gear elements when switching between two gears becomes an accurate Current control required. Because of the resilience it is at Vehicles do not use the power for an analog valve by controlling the voltage supply to the valve adjust. To generate the desired command variable hence the supply voltage pulsed in and out at a fast frequency switched off. The inductance in the coil of the Electromagnets save the pulse when switched on Tension energy and releases energy when the tension is turned off so that an average voltage is generated becomes.

Die Steuerung des Stroms ist bei solch einer Anwendung jedoch schwierig, da die primären elektrischen Eigenschaften der Steuerventile, Widerstände und Induktivitäten nicht bekannt und nicht vorhersehbar sind. Der Widerstand der Spule des Elektromagneten kann sich innerhalb des Temperaturbereichs, dem die Spule ausgesetzt ist, um über 100% ändern. Ebenso kann sich die Induktivität der Spule infolge von Änderungen der Temperatur, der Spannungspulsfrequenz und der Versorgungsspannung um weit über 100% ändern. Desweiteren kann die Amplitude der Spannungspulse in einem Bereich zwischen 9 und 16 Volt liegen.However, the control of the current is in such an application difficult because of the primary electrical properties of the Control valves, resistors and inductors not known and are not predictable. The resistance of the coil of the Electromagnets can move within the temperature range the coil is exposed to change over 100%. Likewise can the inductance of the coil due to changes in the Temperature, the voltage pulse frequency and the supply voltage change by well over 100%. Furthermore, the Amplitude of the voltage pulses in a range between 9 and 16 Volts.

Es ist bekannt die pulsierende Spannung zu filtern, ihren Durchschnittswert zu messen und die Führungsgröße solange zu kompensieren bis der gewünschte Durchschnittsstromwert erreicht ist. Solch eine Technik arbeitet jedoch bei Anwendungen für Getriebesteuerungen nicht befriedigend. Dies liegt daran, daß während einer Umschaltung der an das Ventil angelegte Führungswert sich schnell ändert. Der Führungswert steigt entweder schnell an oder fällt schnell ab, je nachdem, ob das Getriebeelement herankommt oder weggeht. Um den Realzeitmittelwertstrom zu messen muß die Führungsgröße für eine bestimmte Zeit konstant gehalten werden. Hierfür steht während einer Umschaltung jedoch nicht die erforderliche Zeit zur Verfügung. Es ist daher wünschenswert einen Ventiltreiber zur Verfügung zu haben, welcher einen genauen Strommittelwert für eine Spule mit einem unbekannten Widerstand und einer unbekannten Induktion erzeugt, ohne daß eine Feedback-Messung des Strommittelwerts erforderlich ist. It is known to filter the pulsating voltage Average value to measure and the leader size as long as compensate until the desired average current value is reached is. However, such a technique works in applications for Transmission controls are not satisfactory. This is because during a changeover of the applied to the valve Leadership value changes quickly. The leadership value increases either quickly or quickly, depending on whether that Gear element comes up or goes away. Around the real-time average current to measure the benchmark for a particular Time kept constant. This stands for during one Switching however does not have the time required. It is therefore desirable to have a valve driver available have an exact average current value for a coil an unknown resistance and an unknown induction generated without a feedback measurement of the current average is required.

Die US-A-4,764,840 beschreibt einen Treibersteuerkreis für eine Magnetspule durch den für eine anfängliche Einzieh-Periode ein maximaler Stromfluß einstellbar ist, um eine schnelle anfängliche Auslösung der Magnetspule sicherzustellen. Es schließt sich eine zweite Halte-Periode mit einem geringeren Haltestrom an, der ausreicht, um die Magnetspule in ihrer ausgelösten Stellung zu halten. Hierfür wird ein Spulenstromwert erfaßt und zwei separaten Komparatoren zugeführt. Jeder Komparator empfängt während der Einzieh-Periode, deren Dauer durch einen monostabilen Multivibrator vorgegeben wird, feste maximale und minimale Referenzschwellwerte, durch die ein maximaler und ein minimaler Stromgrenzwert für einen pulsierenden Spulenstrom festgesetzt werden. Nach Ablauf der Einzieh-Periode wird während der Halte-Periode ein maximaler und ein minimaler Haltestromgrenzwert eingestellt. Es werden keine Maßnahmen angegeben, um den Spulenstrom während der Auslösephase, beispielsweise während einer Umschaltung eines Getriebes zwischen zwei Gängen, zu steuern.US-A-4,764,840 describes a driver control circuit for one Solenoid through the for an initial pull-in period maximum current flow is adjustable to a fast ensure initial tripping of the solenoid. It a second hold period closes with a shorter one Holding current that is sufficient to the solenoid in its hold triggered position. For this, a Coil current value recorded and two separate comparators fed. Each comparator receives during the pull-in period, their duration by a monostable multivibrator fixed maximum and minimum Reference thresholds by which a maximum and a minimum Current limit set for a pulsating coil current become. After the pull-in period is over, the holding period a maximum and a minimum holding current limit set. No measures are specified to avoid the Coil current during the tripping phase, for example during switching a transmission between two gears Taxes.

Die DE-A-43 29 917 offenbart eine Schaltungsanordnung zur getakteten Versorgung eines elektromagnetischen Verbrauchers, bei der eine Regeleinheit vorgesehen ist, mittels der abhängig von der Differenz zwischen einem Momentanwertsignal am Verbraucher und einem festlegbaren Führungssignal ein pulsweitenmoduliertes Steuersignal gebildet wird. Mit diesem pulsweitenmodulierten Steuersignal wird ein Leistungsschalter angesteuert, durch den der elektromagnetische Verbraucher mit einem elektrischen Strom beaufschlagt wird. Eine Modulation oberer und unterer Grenzstromwerte wird nicht beschrieben. DE-A-43 29 917 discloses a circuit arrangement for clocked supply of an electromagnetic consumer, in which a control unit is provided by means of which from the difference between an instantaneous signal on Consumer and a definable guide signal pulse width modulated control signal is formed. With this pulse width modulated control signal becomes a circuit breaker controlled by which the electromagnetic consumer with an electric current is applied. A modulation upper and lower limit current values are not described.

Die der Erfindung zugrunde liegende Aufgabe wird darin gesehen, eine gattungsgemäße Elektromagnettreiberschaltung derart auszubilden, daß die eingangs genannten Probleme überwunden werden. Insbesondere soll ein Durchschnittstrom erzeugt werden, der in linearem Zusammenhang mit den Eingangs- oder Führungssignal steht.The object underlying the invention is seen in to design a generic electromagnetic driver circuit in such a way that the problems mentioned at the beginning are overcome. In particular, an average current is to be generated, which in linear relationship with the input or command signal stands.

Die Aufgabe wird erfindungsgemäß durch die Lehre des Patentanspruchs 1 gelöst. Weitere vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung gehen aus den Unteransprüchen hervor.The object is achieved by the teaching of Claim 1 solved. Further advantageous configurations and further developments of the invention result from the subclaims out.

Erfindungsgemäß liefert eine elektrische Schaltung einen oszillierenden elektrischen Strom an die Spule eines Elektromagneten, um den Elektromagneten zu veranlassen, sich in Abhängigkeit eines vorgegebenen veränderlichen Führungssignals zu bewegen. Die Elektromagnettreiberschaltung versorgt die Spule mit einem Strom, welcher veränderliche obere und untere Grenzspannungswerte aufweist. Dabei nimmt der untere Grenzspannungswert im wesentlichen ein konstantes Verhältnis zu dem oberen Grenzspannungswert ein. Die Grenzspannungswerte können auch mit Spitzenstromwert oder Scheitelstromwert bezeichnet werden. According to the invention, an electrical circuit provides one oscillating electrical current to the coil of a Electromagnets to cause the electromagnet to move in Dependency of a predetermined variable command signal to move. The solenoid driver circuit powers the coil with a stream which variable upper and lower Has limit voltage values. The lower limit voltage value increases essentially a constant relationship to the upper one Limit voltage value. The limit voltage values can also with Peak current value or peak current value.

Die erfindungsgemäße Lösung ermöglicht eine genaue StromSteuerung des Magnetspulentreibers mit einem unmittelbaren Ansprechen, d.h. einer minimalen zeitlichen Verzögerung zwischen dem Stromsollwert und dem tatsächlichen Strom in der Spule. Der Magnetspulentreiber läßt sich mit wenigen Komponenten bei niedrigen Kosten herstellen. Die Anforderungen an den Mikroprozessor sind sehr gering, da der Mikroprozessor nur geringfügig in die Stromregelung eingreift (Software-Effektivität). Die Frequenz des Elektromagnettreibers läßt sich auf einfache Weise bei einem nominalen Betriebspunkt (Nominalstrom, Widerstand, Induktivität und Spannungsversorgung) optimieren, indem geeignete Widerstände für die Schaltung ausgewählt werden. Desweiteren ermöglicht die erfindungsgemäße Schaltung eine maximale Fehlererkennung der Elektromagnettreiberschaltung. Es ist auch von Vorteil, daß beim Anschalten und/oder während eines Rücksetz-Modus des Mikroprozessors der von der Elektromagnettreiberschaltung an die Magnetspule ausgegebenen Strom Null ist.The solution according to the invention enables precise current control of the solenoid driver with an immediate Respond, i.e. a minimal time delay between the current setpoint and the actual current in the coil. The Solenoid driver can be used with just a few components produce low cost. The requirements for the microprocessor are very small because the microprocessor is only marginal intervenes in the current control (software effectiveness). The frequency of the electromagnetic driver can be easily Way at a nominal operating point (nominal current, resistance, Optimize inductance and power supply) by suitable resistors for the circuit can be selected. Furthermore, the circuit according to the invention enables maximum fault detection of the solenoid driver circuit. It is also advantageous that when switching on and / or during a Reset mode of the microprocessor from the solenoid driver circuit current output to the solenoid is zero.

Gemäß einer bevorzugten Ausgestaltung der Erfindung enthält die Schaltung einen Signalteiler, durch den von dem Führungssignal ein oberer Grenzspannungssignalwert und ein unterer Grenzspannungssignalwert, welcher ein konstantes Verhältnis zu dem oberen Grenzspannungssignalwert einnimmt, erzeugt werden. Ein Strommeßwiderstand erzeugt eine Strommeßspannung, die dem Strom durch die Spule entspricht. Ein erster Komparator vergleicht die Strommeßspannung mit dem oberen Grenzspannungssignalwert. Ein zweiter Komparator vergleicht die Strömmeßspannung mit dem unteren Grenzspannungssignalwert. Ein Stromtreiber liefert einen Treiberstrom an die Elektromagnetspule als Funktion der Ausgangssignale, welche durch den ersten Komparator und den zweiten Komparator erzeugt werden, so daß der Spulenstrom einen unteren Grenzstromwert aufweist, der im wesentlichen in einem konstanten Verhältnis zu dem oberen Grenzstromwert steht. Der Durchschnittsstrom folgt linear dem Grenzstrom, weil die untere Spitze immer in einem konstanten Prozentverhältnis zu dem vorgegebenen oberen Grenzstrom steht. Weil das Verhältnis zwischen den Grenzen oder Spitzen konstant ist, erhält sich die Linearität zwischen Durchschnittsstrom und vorgegebenem Grenzstrom selbst dann, wenn sich die Induktivität und/oder der Widerstand der Spule oder wenn sich die Versorgungsspannung ändert. Da der Amplitudenwert zwischen den Grenzen oder Spitzen mit dem Durchschnittsstrom zunimmt, ist der Frequenzbereich des Elektromagnettreibers minimiert.According to a preferred embodiment of the invention, the Circuit a signal divider through which of the command signal an upper limit voltage signal value and a lower limit voltage signal value, which is a constant relationship to the upper one Limit voltage signal value takes, are generated. A current measuring resistor generates a current measurement voltage that flows through the current the coil corresponds. A first comparator compares them Current measurement voltage with the upper limit voltage signal value. A second Comparator compares the flow measurement voltage with the lower one Limit voltage signal value. A current driver supplies a driver current the electromagnetic coil as a function of the output signals, which generated by the first comparator and the second comparator be so that the coil current has a lower limit current value which is essentially in a constant ratio to the upper limit current value. The average current follows linear to the limit current because the lower peak is always in one constant percentage ratio to the given upper Limit current stands. Because the relationship between the borders or Peaks is constant, the linearity is maintained between Average current and specified limit current even if the inductance and / or the resistance of the coil or when the supply voltage changes. Because the amplitude value between the limits or peaks with the average current increases, is the frequency range of the electromagnetic driver minimized.

Anhand der Zeichnung, die in einer Figur ein Ausführungsbeispiel der Erfindung zeigt, werden nachfolgend die Erfindung sowie weitere Vorteile und vorteilhafte Weiterbildungen und Ausgestaltungen der Erfindung näher beschrieben und erläutert.Based on the drawing, an embodiment in a figure shows the invention, the invention as well as further advantages and advantageous further training and Embodiments of the invention described and explained in more detail.

Die Elektromagnettreiberschaltung 10 steuert den an die Spule L1 eines nicht dargestellten elektromagnetisch betätigten Getriebesteuerventils angelegten Strom in Abhängigkeit eines analogen Spannungsführungssignals V-CMD, welches von dem PWM-Ausgang (Pulspausenmodulation) eines Mikroprozessors MP erzeugt wird. Vorzugsweise hat das Führungssignal einen Spannungsbereich von 0 bis 5 Volt, welcher mit einem gewünschten Spulenstrom von 0 bis 1000 mA korrespondiert. Daher wandeln ein an eine geregelte Spannungsversorgung von 5 Volt angeschlossener Pull-up-Widerstand R15 und ein Inverter 12 das Führungssignal von PWM, welches ein Pulspausenverhältnis (duty cycle) von 0% bis 100% aufweist, in eine analoge Spannung von 5 bis 0 Volt um. Dabei wird eine 2-Millisekundenfilterschaltung bestehend aus dem Widerstand R14 und der Kondensator C5 verwendet.The electromagnetic driver circuit 10 controls that to the coil L1 an electromagnetically operated transmission control valve, not shown applied current depending on an analog Voltage control signal V-CMD, which from the PWM output (Pulse pause modulation) of a microprocessor MP is generated. The command signal preferably has a voltage range of 0 to 5 volts, which with a desired coil current from 0 to Corresponds to 1000 mA. Therefore, convert one to a regulated one Power supply from 5 volt connected pull-up resistor R15 and an inverter 12 the command signal from PWM, which has a duty cycle of 0% to 100% has an analog voltage of 5 to 0 volts. there becomes a 2 millisecond filter circuit consisting of the Resistor R14 and capacitor C5 are used.

Das gefilterte Führungssignal wird dann an einen Spannungsteiler angelegt, welcher aus den Widerständen R11 und R10 gebildet wird und an der Verbindung zwischen R11 und R10 eine Führungsspannung V-PU (oberer Spannungsgrenzwert) liefert. Ein Kondensator C4, der parallel zum Widerstand R10 angeschlossen ist, liefert zusätzlich einen leichten Filterungsbeitrag. Die Spannung V-PU wird dem + Eingang eines Rücksetzbefehl-Komparators 14 und einem zwischen V-PU und Erde liegenden durch die Widerstände R8 und R9 gebildeten Spannungsteiler zugeführt. An der Verbindung zwischen R8 und R9 steht ein Signal V-PL (unterer Spannungsgrenzwert) an, das in einem konstanten Verhältnis (Prozentwert) zu V-PU steht und das an den - Eingang eines Setzbefehl-Komparators 16 angelegt ist. The filtered command signal is then sent to a voltage divider applied, which is formed from the resistors R11 and R10 and a lead voltage at the connection between R11 and R10 V-PU (upper voltage limit) delivers. A capacitor C4, which is connected in parallel to resistor R10 additionally a slight filtering contribution. The voltage V-PU becomes the + input of a reset command comparator 14 and one between V-PU and earth through the resistors R8 and R9 Formed voltage divider supplied. At the connection between R8 and R9 there is a signal V-PL (lower voltage limit), which is in a constant ratio (percentage) to V-PU and that to the - input of a set command comparator 16 is created.

Der Ausgang des Rücksetzbefehl-Komparators 14 ist über einen Widerstand R6 mit + 5 Volt verbunden und an einen Eingang eines Setz-Rücksetz-Flipflops 18 (mit Schmidt-Trigger-Eingang) angelegt, der aus zwei überkreuz miteinander verbundenen NAND-Gittern 20, 22 und einem Kondensator C2 gebildet ist. Der Ausgang des Setzbefehl-Komparators 16 ist über einen Widerstand R7 mit + 5 Volt verbunden und an einen weiteren Eingang des Setz-Rücksetz-Flipflops 18 angelegt.The output of the reset command comparator 14 is via a Resistor R6 connected to + 5 volts and connected to an input of a Set-reset flip-flops 18 (with Schmidt trigger input), that of two cross-linked NAND grids 20, 22 and a capacitor C2 is formed. The The output of the set command comparator 16 is via a resistor R7 connected to + 5 volts and to another input of the Set-reset flip-flops 18 created.

V-PU ist desweiteren an den + Eingang eines Komparators 24, der mit einem geerdeten Kondensator C3 Teil einer Abschalt-Schaltung 26 ist, angelegt. Ein durch die Widerstände R12 und R13 gebildeter Spannungsteiler, der zwischen + 5 Volt und Erde liegt, erzeugt eine Abschaltspannung VSHUTOFF, die an den - Eingang des Komparators 24 angelegt ist, so daß der Komparator 24 so lange ein Abschaltsignal erzeugt, bis V-PU einen Schwellwert erreicht, der einem Spulenstrom von ungefähr 150 mA entspricht. Zwischen Erde und der Verbindungsstelle zwischen R12 und R13 liegt ein Kondensator C6. Der Ausgang des Komparators 24 (und der Abschalt-Schaltung 26) ist mit dem Eingang IN eines Treibers 28 verbunden. Der Ausgang OUT des Treibers 28 ist mit einem Ende der Magnetspule L1 sowie über eine Freilaufdiode D1 mit Erde verbunden.V-PU is also connected to the + input of a comparator 24 with a grounded capacitor C3 part of a shutdown circuit 26 is created. One formed by resistors R12 and R13 Voltage divider between + 5 volts and earth, generates a shutdown voltage VSHUTOFF which is applied to the - input of the Comparator 24 is applied, so that the comparator 24 for so long generates a shutdown signal until V-PU reaches a threshold, which corresponds to a coil current of approximately 150 mA. Between Earth and the connection point between R12 and R13 is located Capacitor C6. The output of the comparator 24 (and the Switch-off circuit 26) has the input IN of a driver 28 connected. The output OUT of driver 28 is at one end the solenoid coil L1 and a freewheeling diode D1 with earth connected.

Das andere Ende der Spule L1 steht über den Strommeßwiderstand R2 mit Erde in Verbindung. Die Spannung über dem Widerstand R2 ist proportional zu dem durch die Spule L1 fließenden Strom. Hochfrequentes Rauschen dieser Spannung wird durch den Widerstand R3, den Kondensator C1 und den Widerstand R5 herausgefiltert, um eine Spannung VSENSE zu erzeugen. Durch die Diode D2 erfolgt die Unterdrückung eines Spannungsausgleichs (Spannungstransienten). Die Spannung VSENSE wird an den + Eingang des Komparators 16 und an den - Eingang des Komparators 14 angelegt.The other end of the coil L1 is above the current measuring resistor R2 connected to earth. The voltage across resistor R2 is proportional to the current flowing through coil L1. High frequency noise of this voltage is caused by the resistance R3, the capacitor C1 and the resistor R5 filtered out, to generate a voltage VSENSE. Through the diode D2 voltage compensation is suppressed (voltage transients). The voltage VSENSE is connected to the + input of the Comparator 16 and applied to the input of the comparator 14.

Ein Komparator 30 weist einen + Eingang, an dem VSENSE anliegt, und einen - Eingang, an dem die Spannung VSHUTOFF anliegt, auf. Der Ausgang des Komparators 30 ist über einen Pull-up-Widerstand R1 mit + 5 Volt verbunden und ist unmittelbar an den Status-Eingang ST des Treibers 28 angeschlossen. Er zieht den ST Eingang runter, wenn VSENSE unter VSHUTOFF liegt. Der Ausgang des Komparators 30 erzeugt ein Statussignal, welches an einen digitalen Eingang des Mikroprozessors MP angelegt wird. Damit kann der Mikroprozessor Fehler in der Schaltung feststellen, sofern die Führungsspannung V-PU größer als ein Wert ist, der einem Spulenstrom von 150 mA entspricht. Das Statussignal wird ignoriert, sofern das Führungssignal nicht größer als 150 mA ist.A comparator 30 has a + input at which VSENSE is present, and an input at which the voltage VSHUTOFF is present. The output of the comparator 30 is via a pull-up resistor R1 connected to + 5 volts and is directly connected to the status input ST of the driver 28 connected. He pulls the ST Entrance down if VSENSE is below VSHUTOFF. The exit of the comparator 30 generates a status signal which is sent to a digital input of the microprocessor MP is applied. In order to the microprocessor can detect errors in the circuit, if the command voltage V-PU is greater than a value that corresponds to a coil current of 150 mA. The status signal will ignored if the command signal is not greater than 150 mA is.

Vorzugsweise ist der Treiber ein Profet von Siemens oder ein Äquivalent hierzu, welches in der Lage ist, eine Leitungsunterbrechung oder einen Kurzschluß in der Spule L1 festzustellen. Wenn der Treiber 28 einen Fehler feststellt, zieht es seine Statusleitung ST nach unten.The driver is preferably a Profet from Siemens or a Equivalent to this, which is capable of a line break or detect a short in coil L1. If the driver 28 detects an error, it pulls his status line ST down.

Der Komparator 16 zieht seinen Ausgang nach Erde, wenn VSENSE zu klein wird (kleiner als V-PL). Der Komparator 14 zieht seinen Ausgang nach Erde, wenn VSENSE zu groß wird (größer als V-PU). In dem vorliegenden Beispiel sind die Widerstände R8 und R9 so ausgewählt, daß V-PL 78,5% von V-PU beträgt. Wenn VSENSE unter V-PL liegt, wird der Treiber 28 eingeschaltet (gesetzt) und bleibt eingeschaltet bis VSENSE über V-PU ansteigt. Wenn VSENSE den Wert V-PU erreicht, wird der Treiber ausgeschaltet (zurückgesetzt) bis VSENSE wieder unter V-PL fällt.Comparator 16 pulls its output to ground when VSENSE closes becomes small (smaller than V-PL). The comparator 14 pulls its Output to earth if VSENSE becomes too large (larger than V-PU). In the present example, the resistors R8 and R9 are like this selected that V-PL is 78.5% of V-PU. If VSENSE under V-PL, the driver 28 is turned on (set) and remains switched on until VSENSE rises above V-PU. If VSENSE reaches the value V-PU, the driver is switched off (reset) until VSENSE falls below V-PL again.

Um sicherzustellen daß der Treiber 28 ausgeschaltet ist, wenn die Führungsspannung zu tief liegt (um beispielsweise Haftreibungen des Elektromagneten zu überwinden), werden V-PU und eine kleine konstante Spannung VSHUTOFF in den Komparator 24 eingespeist. Wenn die Führungsspannung des Mikroprozessors MP kleiner ist als ein Wert, der mit einem Spulenstrom von 150 mA korrespondiert, zieht der Komparator 24 den Eingang des Treibers 28 nach tief, schaltet den Treiber 28 aus und verhindert, daß der Flipflop 18 den Treiber 28 einschaltet.To ensure that driver 28 is off when the lead tension is too low (for example, static friction of the electromagnet), V-PU and a small constant voltage VSHUTOFF in the comparator 24 fed. If the lead voltage of the microprocessor MP is less than a value with a coil current of 150 mA corresponds, the comparator 24 pulls the input of the driver 28 low, turns off the driver 28 and prevents the flip-flop 18 turns on the driver 28.

Mit dieser Schaltung folgt der Durchschnittsstrom durch die Spule L1 linear dem Grenzstrom, weil der untere Grenzstrom immer in einem konstanten Verhältnis zum oberen Grenzstrom steht. Mit ansteigendem Führungswert steigt auch die Spitzen-zu-Spitzen-Amplitude an, das Verhältnis zwischen unterem Grenzwert und oberem Grenzwert bleibt jedoch konstant. Die Linearität bleibt sogar dann bestehen, wenn sich die Induktivität und/oder der Widerstand der Spule L1 ändern und/oder wenn die Versorgungsspannung schwankt.With this circuit the average current follows through the Coil L1 linear to the limit current, because the lower limit current always is in a constant relationship to the upper limit current. With as the command value increases, the peak-to-peak amplitude also increases the ratio between the lower limit and however, the upper limit remains constant. The linearity remains even if the inductance and / or the Change the resistance of the coil L1 and / or if the Supply voltage fluctuates.

Diese Schaltung arbeitet bei einer veränderlichen Frequenz. Die Frequenz variiert als Funktion der Führungsspannung, des Widerstands und der Induktivität der Spule sowie der Versorgungsspannung. Da jedoch die Spitzen-zu-Spitzen-Amplitude in gleicher Weise ansteigt wie der Durchschnittsstrom, ist die Frequenzvariation viel geringer als wenn die Spitzen-zu-Spitzen-Amplitude konstant wäre. Durch die Einstellung des Verhältnisses des Spannungsteilers R8, R9 kann die Frequenz des nominalen Betriebspunktes (nominaler Strom, Widerstand und Induktivität der Spule und Versorgungsspannung) optimiert werden.This circuit operates at a variable frequency. The Frequency varies as a function of the command voltage, the Resistance and inductance of the coil as well as the Supply voltage. However, since the peak-to-peak amplitude increases in the same way as the average current Frequency variation much less than when the peak-to-peak amplitude would be constant. By setting the ratio of the voltage divider R8, R9 can be the frequency of the nominal Operating point (nominal current, resistance and inductance the coil and supply voltage) can be optimized.

Für mehrere Treiber kann lediglich eine dieser Steuerschaltungen verwendet werden, sofern die Treiber niemals zur selben Zeit eingeschaltet sind. Beispielsweise können ein Vorwärtstreiber und ein Rückwärtstreiber auf eine gemeinsame Ansteuer- und Strommeßschaltung zurückgreifen. Auf einfache Weise kann der Eingang des Vorwärtstreibers über eine UND-Glied mit einem Vorwärtsschalter und der Rückwärtstreiber über ein UND-Glied mit einem Rückwärtsschalter verknüpft werden. Der Mikroprozessor treibt dann die selbe Führungssignalschaltung an ohne Rücksicht darauf, welches Ventil (Vorwärts- oder Rückwärtsventil) tatsächlich angesteuert wird.Only one of these control circuits can be used for several drivers be used provided the drivers are never at the same time are switched on. For example, a forward driver and a backward driver on a common drive and Use current measuring circuit. In a simple way, the Input of the forward driver via an AND gate with a Forward switch and the reverse driver with an AND gate a reverse switch. The microprocessor then drives the same command signal circuit regardless which valve (forward or reverse valve) is actually controlled.

Die Schaltung ist einfach aufgebaut und besteht aus preiswerten Komponenten. Die Belastung des Mikroprozessors ist extrem gering, da er. lediglich das PWM Führungssignal erzeugen muß. Seine A/D-Eingänge sind nicht unnötig belegt, weil der Durchschnittsstrom nicht durch den Mikroprozessor gemessen wird. Es sind keine Gleichungen oder Tabellen erforderlich, um Schaltpausenverhältnisse in Stromwerte umzuwandeln, da der Zusammenhang linear ist. Das PWM Signal sollte jedoch eine ziemlich hohe Frequenz haben, so daß die Zeitkonstante des R14-C5-Filters minimiert werden kann oder auch D/A-Konverter verwendet werden können. Es sei betont, daß der Widerstand R2 so groß wie möglich gewählt werden und vorzugsweise eine Toleranz von ± 1% haben sollte. Ebenso sollten die Widerstände R8, R9, R10, R11 und R14 vorzugsweise eine Toleranz von ± 1% haben. Der Erdungspfad zwischen dem Strommeßwiderstand R2 und den Komparatoren 14, 16, 24 und 30 sollte eine sehr geringe Impedanz aufweisen. Die Genauigkeit der 5 Volt Regelversorgungsspannung für den Inverter 12 ist ebenfalls wichtig.The circuit is simple and consists of inexpensive Components. The load on the microprocessor is extreme low since he. only has to generate the PWM command signal. Its A / D inputs are not used unnecessarily because of the Average current is not measured by the microprocessor. No equations or tables are required to To convert switching break ratios into current values, because of the Relationship is linear. However, the PWM signal should be one have a fairly high frequency, so the time constant of the R14-C5 filter can be minimized or D / A converter can be used. It should be emphasized that resistance R2 is like this be chosen as large as possible and preferably a tolerance of ± 1%. Resistors R8, R9, R10, R11 and R14 preferably have a tolerance of ± 1%. The Ground path between the current measuring resistor R2 and the Comparators 14, 16, 24 and 30 should have a very low impedance exhibit. The accuracy of the 5 volt control supply voltage for inverter 12 is also important.

In folgender Tabelle sind konkrete Komponenten angegeben, die in der in der Figur dargestellten elektrischen Schaltung verwendet werden können. Diese Komponenten sind lediglich beispielhaft angegeben. Es können auch andere Komponenten verwendet werden, ohne daß der Schutzumfang vorliegender Erfindung verlassen wird.The following table shows specific components that can be found in of the electrical circuit shown in the figure can be. These components are only examples specified. Other components can also be used, without departing from the scope of the present invention.

Beispielhafte KomponentenExemplary components

Widerständeresistors R1, R6, R7, R15R1, R6, R7, R15 10 kOhms10 kOhms R2R2 1.0 kOhms1.0 kOhms R3, R5R3, R5 4.7 k4.7 k R4R4 2.7 k2.7 k R8R8 13 k13 k R9R9 47.5 k47.5 k R10R10 10.2 k10.2 k R11R11 23.7 k23.7 k R12R12 27.4 k27.4 k R13R13 1.0 k1.0 k R14R14 6.04 k6.04 k Kondensatorencapacitors C1C1 47 pf47 pf C2, C3, C4, C6, C7C2, C3, C4, C6, C7 .047 Mf.047 Mf C5C5 .33 Mf.33 Mf Diodendiodes D1D1 GI S2GGI S2G D2D2 BAV99BAV99 integrierte Schaltungenintegrated circuits 1212 74HC14 (Sechsfach-Schmidt-Trigger-Inverter)74HC14 (six-fold Schmidt trigger inverter) 14, 16, 24, 30 20, 2214, 16, 24, 30 20, 22 LM2901 (Vierfach-Komparator) 74HC132 (Vierfach-Schmidt-Trigger-NAND-Gitter)LM2901 (Quadruple Comparator) 74HC132 (Quadruple Schmidt Trigger NAND Grid) 2828 BTS410FBTS410F Mikroprozessormicroprocessor 8 Bit (80C517A)8 bit (80C517A)

Auch wenn die Erfindung lediglich anhand eines Ausführungsbeispiels beschrieben wurde, erschließen sich für den Fachmann im Lichte der vorstehenden Beschreibung sowie der Zeichnung viele verschiedenartige Alternativen, Modifikationen und Varianten, die unter die vorliegende Erfindung fallen.Even if the invention is based only on one Embodiment has been described, open up for the Expert in the light of the above description and the Drawing many different alternatives, modifications and variants which fall under the present invention.

Beispielsweise könnte anstelle der invertierten Leistungsschalteinrichtung eine invertierte Einrichtung mit einer invertierenden Treiberzwischenstufe verwendet werden.For example, instead of inverted Power switching device with an inverted device an inverting driver intermediate stage can be used.

Claims (6)

  1. An electric circuit for applying an oscillating electric current to a coil (L1) of an electromagnet, in order to move the electromagnet in dependence on voltage command signals (V-CMD), characterized in that the circuit supplies the coil (L1) with a current, to which there correspond variable upper and lower voltage limit values (V-PU, V-PL), wherein the lower voltage limit value (V-PL) takes a substantially constant percentage of the upper voltage limit value (V-PU), which voltage limit values (V-PU, V-PL) serve for comparison with a voltage measurement signal (VSENSE) which corresponds to the said oscillating electric current in the coil (L1)
  2. A circuit according to claim 1, characterized by
    a signal divider (R8, R9) which creates an upper signal value (V-PU) and a lower signal value (V-PL) from the voltage command signal (V-CMD), wherein the lower signal value (V-PL) takes a constant percentage value of the upper signal value (V-PU),
    a current sensor (R2) for generating a voltage measurement signal (VSENSE) which represents the current through the coil (L1),
    a first comparator (14) which compares the voltage measurement signal (VSENSE) with the upper signal value (V-PU),
    a second comparator (16) which compares the voltage measurement signal (VSENSE) with the lower signal value (V-PL),
    a power switching device (28) which is connected to a voltage source and the magnet coil (L1) and which controllably connects the coil (L1) to the voltage source or disconnects it therefrom in dependence on the output signals of the first and second comparators (14, 16).
  3. A circuit according to claim 1 or 2, characterized by a set-reset flip-flop circuit (18) between the comparators (14, 16) and the power switching device (28).
  4. A circuit according to claim 2 or 3, characterized by a shut-off circuit (26), to whose first input is applied the upper signal value (V-PU) and to whose second input is applied a shut-off signal (VSHUTOFF) and whose output is connected to an input (ST) of the power switching device (28), wherein the shut-off circuit (26) so operates that the power switching device (28) is switched off until the upper signal value (V-PU) reaches the level of the shut-off signal (VSHUTOFF).
  5. A circuit according to any of claims 1 to 4, characterized by an error detector circuit (30) for generating an error signal should the voltage command signal (V-PU) be greater that a specific value (VSHUTOFF).
  6. A circuit according to any of claims 3 to 5, characterized by a current driver (28) for applying a driver current to the magnet coil (L1) as a function of output signals of the set-reset flip-flop circuit (18), wherein the current driver (28) supplies the magnet coil (L1) with a current which has variable upper and lower current limit values and wherein the lower current limit value takes a substantially fixed percentage value of the upper current limit value.
EP97117371A 1996-10-16 1997-10-08 Driver circuit for electromagnet Expired - Lifetime EP0837479B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US731472 1996-10-16
US08/731,472 US5748431A (en) 1996-10-16 1996-10-16 Solenoid driver circuit

Publications (3)

Publication Number Publication Date
EP0837479A2 EP0837479A2 (en) 1998-04-22
EP0837479A3 EP0837479A3 (en) 1999-01-13
EP0837479B1 true EP0837479B1 (en) 2003-01-15

Family

ID=24939650

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97117371A Expired - Lifetime EP0837479B1 (en) 1996-10-16 1997-10-08 Driver circuit for electromagnet

Country Status (10)

Country Link
US (1) US5748431A (en)
EP (1) EP0837479B1 (en)
JP (1) JP3068043B2 (en)
AR (1) AR010497A1 (en)
AU (1) AU693746B2 (en)
BR (1) BR9705040A (en)
CA (1) CA2209425C (en)
DE (1) DE59709139D1 (en)
ES (1) ES2185854T3 (en)
MX (1) MX9707840A (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818678A (en) * 1997-10-09 1998-10-06 Delco Electronics Corporation Tri-state control apparatus for a solenoid having on off and PWM control modes
US6256185B1 (en) 1999-07-30 2001-07-03 Trombetta, Llc Low voltage direct control universal pulse width modulation module
US6407902B1 (en) 2000-02-29 2002-06-18 Dietrich Industries, Inc. Control system for a solenoid valve driver used to drive a valve of a compression cylinder
US6538345B1 (en) 2000-10-24 2003-03-25 Trombetta, Llc Load bank alternating current regulating control
US6978978B2 (en) * 2000-10-31 2005-12-27 Nordson Corporation PWM voltage clamp for driver circuit of an electric fluid dispensing gun and method
US7740225B1 (en) * 2000-10-31 2010-06-22 Nordson Corporation Self adjusting solenoid driver and method
FR2848019A1 (en) * 2002-11-28 2004-06-04 Johnson Controls Tech Co ELECTROMAGNETIC RELAY CONTROL
US6765412B1 (en) 2003-05-01 2004-07-20 Sauer-Danfoss Inc. Multi-range current sampling half-bridge output driver
US7124047B2 (en) 2004-09-03 2006-10-17 Eaton Corporation Mathematical model useful for determining and calibrating output of a linear sensor
KR101190316B1 (en) * 2005-07-29 2012-10-11 그라코 미네소타 인크. Reciprocating Pump with Electronically Monitored Air Valve Having Battery And Solenoid Electronic Monitoring
US8059382B2 (en) * 2008-04-18 2011-11-15 Siemens Industry, Inc. Intrinsically safe circuit for driving a solenoid valve at low power
EP2662554A1 (en) 2012-05-11 2013-11-13 Continental Automotive GmbH Driving circuit for a magnetic valve
DE102012212670B3 (en) * 2012-07-19 2014-02-13 Continental Automotive Gmbh Circuit device for actuation of solenoid injection valve in battery of motor car, has comparator whose non-inverting input is connected with nodal point, negative pole of supply voltage source and control unit outputs through resistors
DE102013103387A1 (en) 2013-04-05 2014-10-09 Continental Automotive Gmbh Method and device for controlling a solenoid valve
US20150167589A1 (en) * 2013-12-13 2015-06-18 Hyundai Motor Company Method and apparatus for controlling high pressure shut-off valve
US20170299081A1 (en) * 2014-11-25 2017-10-19 Aerojet Rocketdyne, Inc. Actuator controller
CN104633225B (en) * 2014-12-05 2017-02-22 中国航空工业集团公司第六三一研究所 Drive and control circuit for fast solenoid valve
US11621134B1 (en) 2020-06-02 2023-04-04 Smart Wires Inc. High speed solenoid driver circuit

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2964900D1 (en) * 1978-08-24 1983-03-31 Lucas Ind Plc Control circuits for solenoids
JPS5579679A (en) * 1978-12-08 1980-06-16 Hitachi Ltd Controller for transistor chopper
DE2916322A1 (en) * 1979-04-23 1980-11-13 Vdo Schindling Overload protection semiconductor circuit - has AND=gate driven by signals due to drop across protective resistor and by delayed input
FR2548840B1 (en) * 1983-07-08 1986-07-18 Peugeot STATIC CIRCUIT BREAKER
DE3338764A1 (en) * 1983-10-26 1985-05-09 Robert Bosch Gmbh, 7000 Stuttgart Circuit arrangement for switching electrical loads on and off and monitoring them
EP0251529B1 (en) * 1986-06-14 1991-01-30 Massey-Ferguson Services N.V. Tractor hitch control system
GB8616965D0 (en) * 1986-07-11 1986-08-20 Lucas Ind Plc Drive circuit
US4764840A (en) * 1986-09-26 1988-08-16 Motorola, Inc. Dual limit solenoid driver control circuit
DE3741765A1 (en) * 1987-12-10 1989-06-22 Wabco Westinghouse Fahrzeug CURRENT CONTROLLER
US4964014A (en) * 1989-01-06 1990-10-16 Deere & Company Solenoid valve driver
US5075568A (en) * 1991-01-22 1991-12-24 Allegro Microsystems, Inc. Switching bipolar driver circuit for inductive load
DE4329917A1 (en) * 1993-09-04 1995-03-09 Bosch Gmbh Robert Set arrangement for the switched feeding of an electromagnetic load

Also Published As

Publication number Publication date
AU693746B2 (en) 1998-07-02
MX9707840A (en) 1998-04-30
ES2185854T3 (en) 2003-05-01
EP0837479A2 (en) 1998-04-22
CA2209425A1 (en) 1998-04-16
CA2209425C (en) 2000-02-22
JPH10125529A (en) 1998-05-15
DE59709139D1 (en) 2003-02-20
AR010497A1 (en) 2000-06-28
US5748431A (en) 1998-05-05
AU3996197A (en) 1998-05-14
BR9705040A (en) 1999-03-30
JP3068043B2 (en) 2000-07-24
EP0837479A3 (en) 1999-01-13

Similar Documents

Publication Publication Date Title
EP0837479B1 (en) Driver circuit for electromagnet
DE2811345C2 (en) Pressure regulators for pneumatic pressures, in particular in vehicles
DE2751743C2 (en) Method and control device for metering flowing media
DE4140586C2 (en) Method and control device for controlling the current through a magnetic coil
DE69912877T2 (en) Method for controlling the speed of an armature in an electromagnetic actuator
DE3730523C2 (en)
EP2867629B1 (en) Method of controlling a solenoid current of an electromagnetic flowmeter
EP0721692B1 (en) Fly back converter
WO1995000966A1 (en) Switching contactor driving circuitry
DE102008036113B4 (en) Current regulator and method for current regulation
EP3226264B1 (en) Power control with a dither signal
EP0471891A2 (en) Circuit arrangement for controlling a group of relays
DE3320110A1 (en) Magnetic control valve
EP0986039B1 (en) Device for supplying power to a current loop transmitter
DE19910497A1 (en) Magnetic core position determining during its actuation by magnetic field by measuring differential induction from a temporal value of coil current from ohmic resistance of magnetic coil and change of coil current over time interval
EP2884233B1 (en) Measuring of parameters in an electromagnetic drive of a switching device
EP0014369A1 (en) Pressure control system for pneumatic vehicle brakes, in particular of rail vehicles
DE4426021A1 (en) Method and device for controlling an electromagnetic consumer
DE4209474A1 (en) Controller with bridge circuit e.g. for at least one electrical load in vehicle - establishes different patterns for operation of controlled switches for various ranges of values of measured variables
DE10134346B4 (en) Device for controlling an electromagnet
DE69107246T2 (en) Device and method for improving the control of switching power supplies.
DE3610500A1 (en) DEVICE AND METHOD FOR REGULATING THE CURRENT IN AN INDUCTIVE LOAD
EP1226594A1 (en) Electrical circuit arrangement for converting an input voltage
DE2545193A1 (en) CONTROL DEVICE
DE102020213169B3 (en) Method and device for diagnosing the movement of an armature of a magnetic valve

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19981212

AKX Designation fees paid

Free format text: DE ES FR GB IT

17Q First examination report despatched

Effective date: 20000322

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEERE & COMPANY

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59709139

Country of ref document: DE

Date of ref document: 20030220

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030324

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2185854

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20031017

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031024

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20031028

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031031

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050503

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051008

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20041009