EP2422066B1 - Method for operating an injection valve - Google Patents

Method for operating an injection valve Download PDF

Info

Publication number
EP2422066B1
EP2422066B1 EP10709516.8A EP10709516A EP2422066B1 EP 2422066 B1 EP2422066 B1 EP 2422066B1 EP 10709516 A EP10709516 A EP 10709516A EP 2422066 B1 EP2422066 B1 EP 2422066B1
Authority
EP
European Patent Office
Prior art keywords
actuator
variable
electromagnetic actuator
valve needle
armature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10709516.8A
Other languages
German (de)
French (fr)
Other versions
EP2422066A1 (en
Inventor
Helerson Kemmer
Holger Rapp
Anh-Tuan Hoang
Achim Deistler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2422066A1 publication Critical patent/EP2422066A1/en
Application granted granted Critical
Publication of EP2422066B1 publication Critical patent/EP2422066B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0685Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature and the valve being allowed to move relatively to each other or not being attached to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2051Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using voltage control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value

Definitions

  • the invention relates to a method for operating an injection valve, in particular an internal combustion engine of a motor vehicle, in which a component of the injection valve, in particular a valve needle, is driven by means of an electromagnetic author.
  • This object is achieved in the operating method of the type mentioned in the present invention that in dependence on at least one electrical operating variable of the electromagnetic actuator, the acceleration of a movable component of the electromagnetic actuator, in particular a magnet armature of the electromagnetic actuator, characterizing size is formed, and that in dependence the magnitude characterizing the acceleration is inferred to an operating state of the injection valve.
  • the acceleration of a movable component of the electromagnetic actuator, in particular of the magnet armature, characterizing size has a value characterizing the operating state or the state transition and / or time characteristic, so that precise information about an operating state of the injection valve can be obtained from the consideration according to the invention of the variable characterizing the acceleration.
  • the acceleration-based method according to the invention advantageously makes it possible to obtain information about an operating state of the injection valve, even if the transmission of power from the electromagnetic actuator to the valve needle by means of a complex Mass system takes place, which does not provide a simple, rigid mechanical coupling between the armature and the valve needle.
  • the valve needle preferably in a closing direction of the valve needle, spring-loaded, the armature is connected to the valve needle, that the armature relative to a direction of movement of the valve needle with a non-disappearing mechanical clearance is movable relative to the valve needle , And from a characteristic feature of the acceleration of the armature characterizing magnitude is concluded that the armature detaches from the valve needle.
  • the impact of the valve needle on its associated valve seat (closing time) can be determined because in this case the armature of the valve needle using the existing mechanical clearance dissolves, resulting in a corresponding acceleration change of the armature reflected.
  • This acceleration change of the magnet armature results in the present embodiment of the operating method according to the invention in that after releasing the armature of the valve needle, the still spring-loaded valve needle exerts no more force on the armature.
  • the armature moves itself accordingly in contrast to the valve needle initially in the closing direction, but henceforth with a lower acceleration.
  • Conventional methods based solely on the evaluation of the speed of the armature do not allow detection of the closing time in the present configuration.
  • the method according to the invention by utilizing the variable characterizing the acceleration of the magnet armature, enables precise information as to when the magnet armature releases itself from the valve needle or when the valve needle has reached its closed position in the region of the valve seat.
  • the operating method according to the invention is used as the electrical operating variable of the electromagnetic actuator applied to a solenoid coil of the electromagnetic actuator actuator voltage, and the first time derivative of the actuator voltage is formed as the acceleration of the armature characterizing size. For example, it can advantageously be concluded from the occurrence of a local minimum of the first time derivative of the actuator voltage that the magnet armature is released from the valve needle.
  • a particularly simple and reliable evaluation of the size characterizing the acceleration is, according to a further advantageous variant of the invention, possible if an actuator current flowing through the magnet coil is impressed to a predeterminable value.
  • Particularly advantageous is a temporally constant actuator current, more preferably also a vanishing actuator current, impressed.
  • an actuator current flowing through a magnet coil of the electromagnetic actuator in order to determine the acceleration of the actuator Magnetankers characterizing size, in this case the first time derivative of the Aktorstroms to determine.
  • variable characterizing the acceleration it is also possible to compare a time profile of the variable characterizing the acceleration with a predetermined reference curve or also other features such as a bend over time or the like identify.
  • a particularly precise determination of the operating state of the injector is again given when - in the case of detecting the actuator current - an applied to the solenoid of the electromagnetic actuator actuator voltage to a predetermined value, in particular zero, impressed, which by a corresponding control of the injection valve can be accomplished by controlling ECU final stage.
  • a first electrical operating variable of the electromagnetic actuator is detected and fed to an observer member, which simulates the electromagnetic actuator without considering the reaction of an armature movement to electrical operating variables of the electromagnetic actuator, the observer member having an observed second electrical operating variable the electromagnetic actuator determines that the observed second electrical operating variable is compared with a detected second electrical operating variable, and that the acceleration characterizing variable is determined as a function of the comparison result.
  • the comparison result obtained using the observer member has significant information about an operating state of the injection valve and therefore advantageous for Determination of opening and / or closing times of the injection valve can be used.
  • the operating method according to the invention by the evaluation of the acceleration characterizing size allows the precise determination of an actual hydraulic opening or closing time, in which the Lifting valve needle from its closing seat or again hits its closing seat.
  • An internal combustion engine carries in FIG. 1 overall, the reference numeral 10. It comprises a tank 12 from which a conveyor system 14 promotes fuel in a common rail 16. To this a plurality of electromagnetically operated injection valves 18a to 18d are connected, which inject the fuel directly into them associated combustion chambers 20a to 20d. The operation of the internal combustion engine 10 is controlled or regulated by a control and regulating device 22 which, among other things, also controls the injection valves 18a to 18d.
  • FIGS. 2a to 2c schematically show the injection valve 18a according to FIG. 1 in a total of three different operating states.
  • the others in FIG. 1 illustrated injectors 18b, 18c, 18d have a corresponding structure and functionality.
  • the injection valve 18a has an electromagnetic actuator which has a magnetic coil 26 and a magnetic armature 30 cooperating with the magnetic coil 26.
  • the armature 30 is connected to a valve needle 28 of the injection valve 18 a, that he referred to a in FIG. 2a vertical direction of movement of the valve needle 28 with a non-disappearing mechanical clearance relative to the valve needle 28 is movable.
  • valve needle 28 is actuated by a valve spring 36 as in FIG. 2a shown acted upon with a corresponding spring force against the valve seat 38 in the region of the housing 40.
  • FIG. 2a the injection valve 18a is shown in its opened state.
  • the magnet armature 30 is energized by the solenoid 26 in FIG. 2a moved upward so that it moves out of its valve seat 38 against the spring force by engaging in the stop 32, the valve needle 28. This allows fuel 42 from the injection valve 18a into the combustion chamber 20a (FIG. FIG. 1 ) are injected.
  • valve needle 28 moves under the action of the force exerted by the valve spring 36 spring force to its valve seat 38 and takes the armature 30 with.
  • a power transmission from the valve needle 28 to the armature 30 is in this case again by the upper stop 32nd
  • At least one electrical operating variable of the electromagnetic actuator 26, 30 is detected. This may be, for example, an actuator voltage applied to the magnetic coil 26 or else an actuator current flowing through the magnetic coil 26.
  • a variable characterizing the acceleration of a movable component of the electromagnetic actuator 26, 30, in particular of the magnet armature 30 of the electromagnetic actuator is formed as a function of the at least one electrical operating variable of the electromagnetic actuator 26, 30, which takes place in step 110.
  • an operating state of the injection valve 18a is finally closed in step 120.
  • the operating method according to the invention can be used to determine an actual hydraulic closing time at which the valve needle 28 (FIG. FIG. 2a ) meets its valve seat 38.
  • the operating method according to the invention is used as an electrical operating variable of the electromagnetic actuator applied to the solenoid 26 actuator voltage u, and as the acceleration of the armature 30 characterizing size, the first time derivative u ⁇ the actuator voltage u is formed and used.
  • FIG. 4 shows by way of example a simplified time profile of a needle stroke h of the valve needle 28 (FIG. FIG. 2a ) And a corresponding section of the time course of the first time derivative u ⁇ the actuator voltage u.
  • valve needle 28 is lifted out of its rest position marked by the needle stroke value h0 on the valve seat 38, which is accomplished by the solenoid coil 26 being energized accordingly and the magnet armature 30 in FIG FIG. 2a is moved upward, whereby it entrains the valve needle 28 under power transmission via the stop 32.
  • FIG. 4 shows for t> t1 accordingly a decreasing needle stroke h.
  • the first time derivative u.sub.u of the actuator voltage u when the valve needle strikes its valve seat 38 has a local minimum Mu, which represents a clearly discernible deviation from the otherwise exponentially decaying time profile of the first derivative u.sub.o.
  • this local minimum Mu results from the fact that, when the valve needle 28 impinges on its valve seat 38, the armature 30 loosens from the valve needle 28 by virtue of the non-vanishing mechanical backlash and initially continues in the closing direction, that is to say in FIG FIG. 2b down, moved on before he hits the stop 34.
  • a particularly precise detection of the local minimum Mu is possible if in the time range of interest around the closing time t2 an actuator current flowing through the magnetic coil 26 is impressed to a predeterminable value, preferably a constant value, in particular zero.
  • the time derivative u of the actuator voltage u can be subjected to filtering for interference suppression and thus more efficient signal processing before the evaluation, it may be advantageous to perform the differentiation of the actuator voltage u and the filtering of the derived signal in one step, for example by filtering the voltage signal u by means of a high-pass filter.
  • variable characterizing the acceleration of the armature 30 can also be formed as a function of the actuator current i flowing through the magnet coil 26.
  • the first time derivative i ⁇ of the actuator current i is used as the variable characterizing the acceleration of the magnet armature 30.
  • FIG. 5 shows a time course of the needle stroke h, as already described with reference to FIG. 4 has been described.
  • the stroke course hA of the magnet armature 30 is shown in dashed lines to make it clear that the magnet armature 30 after the time t2 first in the closing direction, that is in FIG. 2b down, moved on before he hits the stop 34.
  • FIG. 5 further schematically shows a section of the time course of the first time derivative i of the inventively considered Aktorstroms i. How out FIG. 5 It can be seen that the present time as the acceleration of the armature 30 characterizing size used first time derivative i of the actuator current i has a local maximum Mi or a kink at the time t2 at which the valve needle 28 impinges on the valve seat 38.
  • the local maximum Mi or the bend at the time t2 can be analyzed and used as a criterion for the actual hydraulic closing of the injection valve 18a.
  • a particularly precise evaluation of the first time derivative i of the actuator current i is in turn possible when the actuator voltage u applied to the magnetic coil 26 of the electromagnetic actuator 26, 30 is impressed on a presettable value, in particular zero.
  • the time derivative i of the actuator current i can be subjected to filtering for interference suppression and thus more efficient signal processing before the evaluation, it may be advantageous to carry out the differentiation of the actuator current i and the filtering of the derived signal in one step, for example by filtering the current signal i by means of a high-pass filter.
  • a first electrical operating variable of the electromagnetic actuator 26, 30 is detected and fed to an observer member which simulates the electromagnetic actuator 26, 30 without consideration of the retroactivity of an armature movement to electrical operating variables of the electromagnetic actuator, wherein the observer member an observed second electrical operating variable of the electromagnetic actuator determined.
  • the observed second electrical operating variable is compared according to the invention with a detected second electrical operating variable and the acceleration characterizing variable is determined as a function of the comparison result.
  • FIG. 6 shows a simplified equivalent circuit diagram of the magnetic actuator 26, 30 (FIG. FIG. 2a ), wherein the reference numeral 46 denotes a main current path and the reference numeral 48 is an eddy current path.
  • the resistor R s in this case represents a series resistance of the magnetic coil 26 (FIG. FIG. 2a ).
  • the inductive elements L h , L o represent the respective inductance of the main current path 46 and the eddy current path 48.
  • the resistance R w * represents an ohmic resistance of the eddy current path 48.
  • the current flows through the main current path while the current i w * flows through the eddy current path 48.
  • the currents i m , i w * together form the drive current i, with which the electromagnetic actuator 26, 30 is acted upon by the control unit 22.
  • the actuator voltage u is applied to the terminals of the electromagnetic actuator 26, 30.
  • FIG. 7 shows a block diagram showing the function of the above with reference to FIG. 6 realized equivalent circuit diagram.
  • the eddy current path 48 is shown in the block diagram of FIG. 7 represented by an unspecified integrator with the time constant T ⁇ and a proportional member associated with the gain K Rw .
  • the main current path 46 is shown in the block diagram of FIG. 7 represented by the unspecified integrator with the time constant T h and associated with this integrator proportional element with the gain K Rs .
  • FIG. 8 shows a structure of the observer member 56 according to the invention, the input side, as already described, the actuator voltage u is supplied, and outputs at its output an observed actuator current ib.
  • the adder 58 By means of the adder 58, a comparison is made between the observed actuator current ib and the actual measured actuator current i, for example, measured, which leads to the comparison result .DELTA.ib.
  • the comparison result .Dib will look like FIG. 8 can be fed to the feedback element 60, which forms therefrom an output u cor , which is subtracted via the adder 62 from the detected actuator voltage u.
  • the feedback element 60 may be formed, for example, as a proportional element, as a proportional-integral element or as a feedback element of higher order and / or more complex structure.
  • the gradient of the output u corr to the closing time t2 (FIG. FIG. 4 ) is usually subjected to a sign change, whereby it comes to an extremum in the time course of the output u cor .
  • This extremum is inventively detected and used as a signal for the closing time t2 of the injection valve 18a.
  • the transmission behavior between the speed of the armature 30 and the output u corr can be influenced.
  • a filtering of interference signals can thereby be carried out, resulting in an even more precise evaluation.
  • an internal size of the feedback element 60 can also be used to detect the closing instant t2 (FIG. FIG. 4 ) be used. If the feedback element 60 is designed, for example, as a proportional-integral element, instead of the output variable u corr, for example, only the integral component of the feedback quantity can be used.
  • the inventive method is also suitable for closing time detection in conventional injectors with a rigid coupling between the electromagnetic actuator and the valve needle.
  • observer member 56 may be performed both digitally and analogously and is preferably in a computing unit of the control unit 22 (FIG. FIG. 1 ) implemented.
  • the operating method according to the invention also makes it possible to detect other operating states or state transitions of the injection valve 18a (FIG. FIG. 2a ), which are accompanied by a corresponding characteristic change in the acceleration of the magnet armature 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetically Actuated Valves (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Verfahren zum Betreiben eines Einspritzventils, insbesondere einer Brennkraftmaschine eines Kraftfahrzeugs, bei dem eine Komponente des Einspritzventils, insbesondere eine Ventilnadel, mittels eines elektromagnetischen Autors angetrieben wird.The invention relates to a method for operating an injection valve, in particular an internal combustion engine of a motor vehicle, in which a component of the injection valve, in particular a valve needle, is driven by means of an electromagnetic author.

Offenbarung der ErfindungDisclosure of the invention

Es ist Aufgabe der vorliegenden Erfindung, ein verbessertes Betriebsverfahren der eingangs genannten Art anzugeben, bei dem präzise Informationen über einen Betriebszustand des Einspritzventils ohne die Verwendung von zusätzlicher, das Einspritzventil überwachender, Sensorik erhalten werden.It is an object of the present invention to provide an improved method of operation of the type mentioned, in which precise information about an operating state of the injector without the use of additional, the injection valve monitoring, sensors are obtained.

Diese Aufgabe wird bei dem Betriebsverfahren der eingangs genannten Art erfindungsgemäß dadurch gelöst, dass in Abhängigkeit mindestens einer elektrischen Betriebsgröße des elektromagnetischen Aktors eine die Beschleunigung einer beweglichen Komponente des elektromagnetischen Aktors, insbesondere eines Magnetankers des elektromagnetischen Aktors, charakterisierende Größe gebildet wird, und dass in Abhängigkeit der die Beschleunigung charakterisierenden Größe auf einen Betriebszustand des Einspritzventils geschlossen wird.This object is achieved in the operating method of the type mentioned in the present invention that in dependence on at least one electrical operating variable of the electromagnetic actuator, the acceleration of a movable component of the electromagnetic actuator, in particular a magnet armature of the electromagnetic actuator, characterizing size is formed, and that in dependence the magnitude characterizing the acceleration is inferred to an operating state of the injection valve.

Erfindungsgemäß ist erkannt worden, dass in mehreren unterschiedlichen Betriebszuständen beziehungsweise Übergängen zwischen diesen Betriebszuständen eine die Beschleunigung einer beweglichen Komponente des elektromagnetischen Aktors, insbesondere des Magnetankers,
charakterisierende Größe einen den Betriebszustand beziehungsweise den Zustandsübergang kennzeichnenden Wert und/oder Zeitverlauf aufweist, so dass aus der erfindungsgemäßen Betrachtung der die Beschleunigung charakterisierenden Größe präzise Informationen über einen Betriebszustand des Einspritzventils erhalten werden können.
According to the invention, it has been recognized that, in a plurality of different operating states or transitions between these operating states, the acceleration of a movable component of the electromagnetic actuator, in particular of the magnet armature,
characterizing size has a value characterizing the operating state or the state transition and / or time characteristic, so that precise information about an operating state of the injection valve can be obtained from the consideration according to the invention of the variable characterizing the acceleration.

Im Unterschied zu herkömmlichen Verfahren, welche schwerpunktmäßig eine Auswertung einer Geschwindigkeit einer bewegbaren Komponente zum Gegenstand haben, ermöglicht das erfindungsgemäße beschleunigungsbasierte Verfahren vorteilhaft die Gewinnung von Informationen über einen Betriebszustand des Einspritzventils auch dann, wenn die Kraftübertragung von dem elektromagnetischen Aktor auf die Ventilnadel mittels eines komplexen Massensystems erfolgt, welches keine einfache, starre mechanische Kopplung zwischen dem Magnetanker und der Ventilnadel vorsieht.In contrast to conventional methods, which focus on evaluating a speed of a movable component, the acceleration-based method according to the invention advantageously makes it possible to obtain information about an operating state of the injection valve, even if the transmission of power from the electromagnetic actuator to the valve needle by means of a complex Mass system takes place, which does not provide a simple, rigid mechanical coupling between the armature and the valve needle.

Untersuchungen der Anmelderin zufolge ergeben sich aufgrund unterschiedlicher Wechselwirkungen einzelner Komponenten eines die Ventilnadel und den Magnetanker enthaltenden Massensystems je nach Betriebszustand des Einspritzventils charakteristische Werte beziehungsweise Zeitverläufe für eine die Beschleunigung charakterisierende Größe, so dass hieraus vorteilhaft mit großer Präzision Rückschlüsse auf den Betriebszustand des Einspritzventils gezogen werden können.According to investigations by the Applicant, due to the different interactions of individual components of a mass system containing the valve needle and the armature, depending on the operating state of the injector, characteristic values or time profiles for a variable characterizing the acceleration result, advantageously being drawn with great precision on the operating state of the injection valve can.

Bei einer besonders vorteilhaften Ausführungsform des erfindungsgemäßen Verfahrens ist die Ventilnadel, bevorzugt in einer Schließrichtung der Ventilnadel, federkraftbeaufschlagt, der Magnetanker ist so mit der Ventilnadel verbunden, dass der Magnetanker bezogen auf eine Bewegungsrichtung der Ventilnadel mit einem nichtverschwindenden mechanischen Spiel relativ zu der Ventilnadel bewegbar ist, und aus einem charakteristischen Merkmal der die Beschleunigung des Magnetankers charakterisierenden Größe wird darauf geschlossen, dass sich der Magnetanker von der Ventilnadel löst.In a particularly advantageous embodiment of the method according to the invention, the valve needle, preferably in a closing direction of the valve needle, spring-loaded, the armature is connected to the valve needle, that the armature relative to a direction of movement of the valve needle with a non-disappearing mechanical clearance is movable relative to the valve needle , And from a characteristic feature of the acceleration of the armature characterizing magnitude is concluded that the armature detaches from the valve needle.

Bei dieser erfindungsgemäßen Konfiguration kann besonders vorteilhaft das Auftreffen der Ventilnadel auf den ihr zugeordneten Ventilsitz (Schließzeitpunkt) festgestellt werden, weil sich hierbei der Magnetanker von der Ventilnadel unter Ausnutzung des vorhandenen mechanischen Spiels löst, was sich in einer entsprechenden Beschleunigungsänderung des Magnetankers niederschlägt. Diese Beschleunigungsänderung des Magnetankers ergibt sich bei der vorliegenden Ausführungsform des erfindungsgemäßen Betriebsverfahrens dadurch, dass nach dem Lösen des Magnetankers von der Ventilnadel die nach wie vor federkraftbeaufschlagte Ventilnadel keine Kraft mehr auf den Magnetanker ausübt. Der Magnetanker bewegt sich selbst demnach im Gegensatz zu der Ventilnadel zunächst in Schließrichtung weiter, allerdings fortan mit einer geringeren Beschleunigung. Herkömmliche, allein auf der Auswertung der Geschwindigkeit des Magnetankers beruhende Verfahren, erlauben bei der vorliegenden Konfiguration nicht die Erkennung des Schließzeitpunkts. Im Unterschied hierzu ermöglicht das erfindungsgemäße Verfahren unter Ausnutzung der die Beschleunigung des Magnetankers charakterisierenden Größe eine präzise Information darüber, wann der Magnetanker sich von der Ventilnadel löst beziehungsweise wann die Ventilnadel ihre Schließlage im Bereich des Ventilsitzes erreicht hat.In this configuration according to the invention particularly advantageously the impact of the valve needle on its associated valve seat (closing time) can be determined because in this case the armature of the valve needle using the existing mechanical clearance dissolves, resulting in a corresponding acceleration change of the armature reflected. This acceleration change of the magnet armature results in the present embodiment of the operating method according to the invention in that after releasing the armature of the valve needle, the still spring-loaded valve needle exerts no more force on the armature. The armature moves itself accordingly in contrast to the valve needle initially in the closing direction, but henceforth with a lower acceleration. Conventional methods based solely on the evaluation of the speed of the armature do not allow detection of the closing time in the present configuration. By contrast, the method according to the invention, by utilizing the variable characterizing the acceleration of the magnet armature, enables precise information as to when the magnet armature releases itself from the valve needle or when the valve needle has reached its closed position in the region of the valve seat.

Bei einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Betriebsverfahrens wird als elektrische Betriebsgröße des elektromagnetischen Aktors eine an einer Magnetspule des elektromagnetischen Aktors anliegende Aktorspannung verwendet, und die erste zeitliche Ableitung der Aktorspannung wird als die Beschleunigung des Magnetankers charakterisierende Größe gebildet. Beispielsweise kann hierbei vorteilhaft aus dem Auftreten eines lokalen Minimums der ersten zeitlichen Ableitung der Aktorspannung darauf geschlossen werden, dass sich der Magnetanker von der Ventilnadel löst.In a further preferred embodiment of the operating method according to the invention is used as the electrical operating variable of the electromagnetic actuator applied to a solenoid coil of the electromagnetic actuator actuator voltage, and the first time derivative of the actuator voltage is formed as the acceleration of the armature characterizing size. For example, it can advantageously be concluded from the occurrence of a local minimum of the first time derivative of the actuator voltage that the magnet armature is released from the valve needle.

Eine ganz besonders einfache und zuverlässige Auswertung der die Beschleunigung charakterisierenden Größe ist einer weiteren vorteilhaften Erfindungsvariante zufolge dann möglich, wenn ein durch die Magnetspule fließender Aktorstrom auf einen vorgebbaren Wert eingeprägt wird. Besonders vorteilhaft wird ein zeitlich konstanter Aktorstrom, weiter vorzugsweise auch ein verschwindender Aktorstrom, eingeprägt.A particularly simple and reliable evaluation of the size characterizing the acceleration is, according to a further advantageous variant of the invention, possible if an actuator current flowing through the magnet coil is impressed to a predeterminable value. Particularly advantageous is a temporally constant actuator current, more preferably also a vanishing actuator current, impressed.

Alternativ zu der vorstehend beschriebenen Verwendung der Aktorspannung kann auch ein durch eine Magnetspule des elektromagnetischen Aktors fließender Aktorstrom verwendet werden, um hieraus die die Beschleunigung des Magnetankers charakterisierende Größe, vorliegend die erste zeitliche Ableitung des Aktorstroms, zu ermitteln.As an alternative to the use of the actuator voltage described above, it is also possible to use an actuator current flowing through a magnet coil of the electromagnetic actuator in order to determine the acceleration of the actuator Magnetankers characterizing size, in this case the first time derivative of the Aktorstroms to determine.

Bei einer weiteren vorteilhaften Ausführungsform des erfindungsgemäßen Betriebsverfahrens wird aus dem Auftreten eines lokalen Maximums der ersten zeitlichen Ableitung des Aktorstroms darauf geschlossen, dass sich der Magnetanker von der Ventilnadel löst.In a further advantageous embodiment of the operating method according to the invention, it is concluded from the occurrence of a local maximum of the first time derivative of the actuator current that the magnet armature is released from the valve needle.

Alternativ oder ergänzend zu der vorstehend beschriebenen Betrachtung von lokalen Extrema der die Beschleunigung charakterisierenden Größe ist es ferner möglich, einen zeitlichen Verlauf der die Beschleunigung charakterisierenden Größe mit einem vorgegebenen Referenzverlauf zu vergleichen oder auch weitere Merkmale, wie beispielsweise einen Knick im zeitlichen Verlauf oder dergleichen zu identifizieren.As an alternative or in addition to the above-described consideration of local extremes of the variable characterizing the acceleration, it is also possible to compare a time profile of the variable characterizing the acceleration with a predetermined reference curve or also other features such as a bend over time or the like identify.

Eine besonders präzise Ermittlung des Betriebszustands des Einspritzventils ergibt sich wiederum dann, wenn - im Falle der Erfassung des Aktorstroms - eine an der Magnetspule des elektromagnetischen Aktors anliegende Aktorspannung auf einen vorgebbaren Wert, insbesondere Null, eingeprägt wird, was durch eine entsprechende Ansteuerung einer das Einspritzventil ansteuernden Steuergeräteendstufe bewerkstelligt werden kann.A particularly precise determination of the operating state of the injector is again given when - in the case of detecting the actuator current - an applied to the solenoid of the electromagnetic actuator actuator voltage to a predetermined value, in particular zero, impressed, which by a corresponding control of the injection valve can be accomplished by controlling ECU final stage.

Bei einer weiteren sehr vorteilhaften Erfindungsvariante ist vorgesehen, dass eine erste elektrische Betriebsgröße des elektromagnetischen Aktors erfasst und einem Beobachterglied zugeführt wird, das den elektromagnetischen Aktor ohne Berücksichtigung der Rückwirkung einer Ankerbewegung auf elektrische Betriebsgrößen des elektromagnetischen Aktors nachbildet, wobei das Beobachterglied eine beobachtete zweite elektrische Betriebsgröße des elektromagnetischen Aktors ermittelt, dass die beobachtete zweite elektrische Betriebsgröße mit einer erfassten zweiten elektrischen Betriebsgröße verglichen wird, und dass die die Beschleunigung charakterisierende Größe in Abhängigkeit des Vergleichsergebnisses ermittelt wird.In a further very advantageous variant of the invention, it is provided that a first electrical operating variable of the electromagnetic actuator is detected and fed to an observer member, which simulates the electromagnetic actuator without considering the reaction of an armature movement to electrical operating variables of the electromagnetic actuator, the observer member having an observed second electrical operating variable the electromagnetic actuator determines that the observed second electrical operating variable is compared with a detected second electrical operating variable, and that the acceleration characterizing variable is determined as a function of the comparison result.

Erfindungsgemäß ist erkannt worden, dass das unter Verwendung des Beobachterglieds erhaltene Vergleichsergebnis signifikante Informationen über einen Betriebszustand des Einspritzventils aufweist und demnach vorteilhaft zur Ermittlung von Öffnungs- und/oder Schließzeitpunkten des Einspritzventils verwendet werden kann.According to the invention it has been recognized that the comparison result obtained using the observer member has significant information about an operating state of the injection valve and therefore advantageous for Determination of opening and / or closing times of the injection valve can be used.

Im Unterschied zu herkömmlichen Verfahren, wie z.B. aus der US 2008/148831 bekannt, welche alleine einen "elektrischen" Öffnungszeitpunkt beziehungsweise Schließzeitpunkt durch Auswertung der Ansteuergrößen des Einspritzventils beziehungsweise seines elektromagnetischen Stellglieds feststellen können, ermöglicht das erfindungsgemäße Betriebsverfahren durch die Auswertung der die Beschleunigung charakterisierenden Größe die präzise Ermittlung eines tatsächlichen hydraulischen Öffnungs- beziehungsweise Schließzeitpunkts, bei dem die Ventilnadel von ihrem Schließsitz abhebt beziehungsweise wieder auf ihren Schließsitz auftrifft.In contrast to conventional methods, such as from the US 2008/148831 Known which alone can determine an "electrical" opening time or closing time by evaluating the control variables of the injection valve or its electromagnetic actuator, the operating method according to the invention by the evaluation of the acceleration characterizing size allows the precise determination of an actual hydraulic opening or closing time, in which the Lifting valve needle from its closing seat or again hits its closing seat.

Von besonderer Bedeutung ist die Realisierung des erfindungsgemäßen Betriebsverfahrens in Form eines Computerprogramms, das auf einem elektronischen oder optischen Speichermedium abgespeichert sein kann, und das von einer Steuer- und/oder Regeleinrichtung z.B. für eine Brennkraftmaschine ausführbar ist.Of particular importance is the realization of the operating method according to the invention in the form of a computer program which can be stored on an electronic or optical storage medium and which is controlled by a control and / or regulating device, e.g. is executable for an internal combustion engine.

Weitere Vorteile, Merkmale und Einzelheiten ergeben sich aus der nachfolgenden Beschreibung, in der unter Bezugnahme auf die Zeichnung verschiedene Ausführungsbeispiele der Erfindung dargestellt sind. Dabei können die in den Ansprüchen und in der Beschreibung erwähnten Merkmale jeweils einzeln für sich oder in beliebiger Kombination erfindungswesentlich sein.Further advantages, features and details will become apparent from the following description in which, with reference to the drawings, various embodiments of the invention are shown. The features mentioned in the claims and in the description may each be essential to the invention individually or in any desired combination.

In der Zeichnung zeigt:

Figur 1
eine schematische Darstellung einer Brennkraftmaschine mit mehreren erfindungsgemäß betriebenen Einspritzventilen,
Figur 2a bis 2c
schematisch eine Detailansicht eines Einspritzventils aus Figur 1 in drei unterschiedlichen Betriebszuständen,
Figur 3
ein vereinfachtes Flussdiagramm einer Ausführungsform des erfindungsgemäßen Verfahrens,
Figur 4
einen zeitlichen Verlauf erfindungsgemäß betrachteter Betriebsgrößen des Einspritzventils,
Figur 5
einen weiteren zeitlichen Verlauf erfindungsgemäß betrachteter Betriebsgrößen des Einspritzventils,
Figur 6
ein einfaches elektrisches Ersatzschaltbild des elektromagnetischen Stellglieds des Einspritzventils gemäß Figur 2a,
Figur 7
ein mit dem Ersatzschaltbild gemäß Figur 6 korrespondierendes Blockdiagramm, und
Figur 8
ein Blockschaltbild eines Verfahrens zum Ermitteln einer Korrekturgröße unter Verwendung eines Beobachterglieds gemäß Figur 7.
In the drawing shows:
FIG. 1
a schematic representation of an internal combustion engine with a plurality of inventively operated injectors,
FIGS. 2a to 2c
schematically a detailed view of an injector FIG. 1 in three different operating states,
FIG. 3
a simplified flow chart of an embodiment of the method according to the invention,
FIG. 4
a time course according to the invention considered operating variables of the injection valve,
FIG. 5
a further time course according to the invention considered operating variables of the injection valve,
FIG. 6
a simple electrical equivalent circuit diagram of the electromagnetic actuator of the injection valve according to FIG. 2a .
FIG. 7
one with the equivalent circuit diagram according to FIG. 6 corresponding block diagram, and
FIG. 8
a block diagram of a method for determining a correction amount using an observer member according to FIG. 7 ,

Eine Brennkraftmaschine trägt in Figur 1 insgesamt das Bezugszeichen 10. Sie umfasst einen Tank 12, aus dem ein Fördersystem 14 Kraftstoff in ein Common-Rail 16 fördert. An dieses sind mehrere elektromagnetisch betätigte Einspritzventile 18a bis 18d angeschlossen, die den Kraftstoff direkt in ihnen zugeordnete Brennräume 20a bis 20d einspritzen. Der Betrieb der Brennkraftmaschine 10 wird von einer Steuer- und Regeleinrichtung 22 gesteuert beziehungsweise geregelt, die unter anderem auch die Einspritzventile 18a bis 18d ansteuert.An internal combustion engine carries in FIG. 1 overall, the reference numeral 10. It comprises a tank 12 from which a conveyor system 14 promotes fuel in a common rail 16. To this a plurality of electromagnetically operated injection valves 18a to 18d are connected, which inject the fuel directly into them associated combustion chambers 20a to 20d. The operation of the internal combustion engine 10 is controlled or regulated by a control and regulating device 22 which, among other things, also controls the injection valves 18a to 18d.

Die Figuren 2a bis 2c zeigen schematisch das Einspritzventil 18a gemäß Figur 1 in insgesamt drei verschiedenen Betriebszuständen. Die weiteren in Figur 1 abgebildeten Einspritzventile 18b, 18c, 18d weisen eine entsprechende Struktur und Funktionalität auf.The FIGS. 2a to 2c schematically show the injection valve 18a according to FIG. 1 in a total of three different operating states. The others in FIG. 1 illustrated injectors 18b, 18c, 18d have a corresponding structure and functionality.

Das Einspritzventil 18a weist einen elektromagnetischen Aktor auf, der eine Magnetspule 26 und einen mit der Magnetspule 26 zusammenwirkenden Magnetanker 30 besitzt. Der Magnetanker 30 ist so mit einer Ventilnadel 28 des Einspritzventils 18a verbunden, dass er bezogen auf eine in Figur 2a vertikale Bewegungsrichtung der Ventilnadel 28 mit einem nichtverschwindenden mechanischen Spiel relativ zu der Ventilnadel 28 bewegbar ist.The injection valve 18a has an electromagnetic actuator which has a magnetic coil 26 and a magnetic armature 30 cooperating with the magnetic coil 26. The armature 30 is connected to a valve needle 28 of the injection valve 18 a, that he referred to a in FIG. 2a vertical direction of movement of the valve needle 28 with a non-disappearing mechanical clearance relative to the valve needle 28 is movable.

Dadurch ergibt sich ein zweiteiliges Massensystem 28, 30, welches den Antrieb der Ventilnadel 28 durch den elektromagnetischen Aktor 26, 30 bewirkt. Durch diese zweiteilige Konfiguration wird die Montierbarkeit des Einspritzventils 18a verbessert und ein unerwünschtes Zurückprellen der Ventilnadel 28 bei dem Auftreffen in ihrem Ventilsitz 38 wird verringert.This results in a two-part mass system 28, 30, which causes the drive of the valve needle 28 by the electromagnetic actuator 26, 30. This two-part configuration improves the mountability of the injector 18a and reduces undesirable bouncing of the valve needle 28 upon impact with its valve seat 38.

Bei der vorliegend in Figur 2a veranschaulichten Konfiguration wird das axiale Spiel des Magnetankers 30 auf der Ventilnadel 28 durch zwei Anschläge 32 und 34 begrenzt. Zumindest der in Figur 2a untere Anschlag 34 könnte jedoch auch durch einen Bereich des Gehäuses des Einspritzventils 18a realisiert sein.In the present case in FIG. 2a illustrated configuration, the axial play of the armature 30 on the valve needle 28 by two stops 32 and 34 limited. At least the in FIG. 2a However, lower stop 34 could also be realized by a portion of the housing of the injection valve 18 a.

Die Ventilnadel 28 wird von einer Ventilfeder 36 wie in Figur 2a abgebildet mit einer entsprechenden Federkraft gegen den Ventilsitz 38 im Bereich des Gehäuses 40 beaufschlagt. In Figur 2a ist das Einspritzventil 18a in seinem geöffneten Zustand gezeigt. In diesem geöffneten Zustand wird der Magnetanker 30 durch eine Bestromung der Magnetspule 26 in Figur 2a nach oben bewegt, so dass er unter Eingreifen in den Anschlag 32 die Ventilnadel 28 gegen die Federkraft aus ihrem Ventilsitz 38 herausbewegt. Dadurch kann Kraftstoff 42 von dem Einspritzventil 18a in den Brennraum 20a (Figur 1) eingespritzt werden.The valve needle 28 is actuated by a valve spring 36 as in FIG. 2a shown acted upon with a corresponding spring force against the valve seat 38 in the region of the housing 40. In FIG. 2a the injection valve 18a is shown in its opened state. In this open state, the magnet armature 30 is energized by the solenoid 26 in FIG. 2a moved upward so that it moves out of its valve seat 38 against the spring force by engaging in the stop 32, the valve needle 28. This allows fuel 42 from the injection valve 18a into the combustion chamber 20a (FIG. FIG. 1 ) are injected.

Sobald die Bestromung der Magnetspule 26 durch das Steuergerät 22 (Figur 1) beendet wird, bewegt sich die Ventilnadel 28 unter Einwirkung der von der Ventilfeder 36 ausgeübten Federkraft auf ihren Ventilsitz 38 zu und nimmt den Magnetanker 30 mit. Eine Kraftübertragung von der Ventilnadel 28 auf den Magnetanker 30 erfolgt hierbei wiederum durch den oberen Anschlag 32.Once the energization of the solenoid 26 by the control unit 22 ( FIG. 1 ) is stopped, the valve needle 28 moves under the action of the force exerted by the valve spring 36 spring force to its valve seat 38 and takes the armature 30 with. A power transmission from the valve needle 28 to the armature 30 is in this case again by the upper stop 32nd

Sobald die Ventilnadel 28 ihre Schließbewegung mit dem Auftreffen auf dem Ventilsitz 38 beendet, kann sich der Magnetanker 30, wie in Figur 2b abgebildet, aufgrund des axialen Spiels in Figur 2b nach unten weiterbewegen, bis er, wie in Figur 2c veranschaulicht ist, an dem zweiten Anschlag 34 anliegt.As soon as the valve needle 28 ends its closing movement with the impact on the valve seat 38, the magnet armature 30, as in FIG FIG. 2b imaged, due to the axial play in FIG. 2b Move down until he, as in Figure 2c is illustrated, abuts against the second stop 34.

Erfindungsgemäß wird das nachfolgend unter Bezugnahme auf das Flussdiagramm gemäß Figur 3 beschriebene Verfahren durchgeführt, um Informationen über einen Betriebszustand des Einspritzventils 18a zu erhalten.According to the invention, the below with reference to the flowchart according to FIG. 3 described method performed to obtain information about an operating condition of the injection valve 18 a.

In einem ersten Schritt 100 des erfindungsgemäßen Verfahrens wird mindestens eine elektrische Betriebsgröße des elektromagnetischen Aktors 26, 30 erfasst. Hierbei kann es sich beispielsweise um eine an der Magnetspule 26 anliegende Aktorspannung oder auch um einen durch die Magnetspule 26 fließenden Aktorstrom handeln.In a first step 100 of the method according to the invention, at least one electrical operating variable of the electromagnetic actuator 26, 30 is detected. This may be, for example, an actuator voltage applied to the magnetic coil 26 or else an actuator current flowing through the magnetic coil 26.

Erfindungsgemäß wird in Abhängigkeit der mindestens einen elektrischen Betriebsgröße des elektromagnetischen Aktors 26, 30 eine die Beschleunigung einer beweglichen Komponente des elektromagnetischen Aktors 26, 30, insbesondere des Magnetankers 30 des elektromagnetischen Aktors, charakterisierende Größe gebildet, was in Schritt 110 erfolgt.According to the invention, a variable characterizing the acceleration of a movable component of the electromagnetic actuator 26, 30, in particular of the magnet armature 30 of the electromagnetic actuator, is formed as a function of the at least one electrical operating variable of the electromagnetic actuator 26, 30, which takes place in step 110.

In Abhängigkeit der die Beschleunigung charakterisierenden Größe wird schließlich in dem Schritt 120 auf einen Betriebszustand des Einspritzventils 18a geschlossen.Depending on the variable characterizing the acceleration, an operating state of the injection valve 18a is finally closed in step 120.

Insbesondere kann das erfindungsgemäße Betriebsverfahren dazu verwendet werden, einen tatsächlichen hydraulischen Schließzeitpunkt zu ermitteln, zu dem die Ventilnadel 28 (Figur 2a) auf ihren Ventilsitz 38 trifft.In particular, the operating method according to the invention can be used to determine an actual hydraulic closing time at which the valve needle 28 (FIG. FIG. 2a ) meets its valve seat 38.

Bei einer ersten bevorzugten Ausführungsform des erfindungsgemäßen Betriebsverfahrens wird als elektrische Betriebsgröße des elektromagnetischen Aktors eine an der Magnetspule 26 anliegende Aktorspannung u verwendet, und als die Beschleunigung des Magnetankers 30 charakterisierende Größe wird die erste zeitliche Ableitung der Aktorspannung u gebildet und verwendet.In a first preferred embodiment of the operating method according to the invention is used as an electrical operating variable of the electromagnetic actuator applied to the solenoid 26 actuator voltage u, and as the acceleration of the armature 30 characterizing size, the first time derivative the actuator voltage u is formed and used.

Figur 4 zeigt beispielhaft einen vereinfachten zeitlichen Verlauf eines Nadelhubs h der Ventilnadel 28 (Figur 2a) und einen entsprechenden Ausschnitt des zeitlichen Verlaufs der ersten zeitlichen Ableitung der Aktorspannung u. FIG. 4 shows by way of example a simplified time profile of a needle stroke h of the valve needle 28 (FIG. FIG. 2a ) And a corresponding section of the time course of the first time derivative the actuator voltage u.

Zu dem Zeitpunkt t0 wird die Ventilnadel 28 aus ihrer durch den Nadelhubwert h0 gekennzeichneten Ruhelage auf dem Ventilsitz 38 herausgehoben, was dadurch bewerkstelligt wird, dass die Magnetspule 26 entsprechend bestromt und der Magnetanker 30 in Figur 2a nach oben bewegt wird, wobei er unter Kraftübertragung über den Anschlag 32 die Ventilnadel 28 mitnimmt.At the time t0, the valve needle 28 is lifted out of its rest position marked by the needle stroke value h0 on the valve seat 38, which is accomplished by the solenoid coil 26 being energized accordingly and the magnet armature 30 in FIG FIG. 2a is moved upward, whereby it entrains the valve needle 28 under power transmission via the stop 32.

Zu dem Zeitpunkt t1 hat die Ventilnadel 28 ihren maximalen Nadelhub erreicht, und die Bestromung der Magnetspule 26 wird durch das Steuergerät 22 (Figur 1) beendet. Dadurch wirkt keine Magnetkraft mehr von der Magnetspule 26 auf den Magnetanker 30, so dass das die Ventilnadel 28 und den Magnetanker 30 aufweisende Massensystem unter Einwirkung der Federkraft der Ventilfeder 36 in Figur 2a nach unten bewegt wird. Figur 4 zeigt für t > t1 dementsprechend einen sich verringernden Nadelhub h. Bei der ab dem Zeitpunkt t1 einsetzenden Verringerung des Nadelhubs h ergibt sich ein im Wesentlichen exponentiell abklingender Verlauf der ersten zeitlichen Ableitung der Aktorspannung u an der Magnetspule 26.At the time t1, the valve needle 28 has reached its maximum needle stroke, and the energization of the solenoid 26 is controlled by the control unit 22 (FIG. FIG. 1 ) completed. As a result, no magnetic force from the solenoid 26 acts on the armature 30, so that the valve needle 28 and the armature 30 having mass system under the action of the spring force of the valve spring 36 in FIG. 2a is moved down. FIG. 4 shows for t> t1 accordingly a decreasing needle stroke h. When the needle lift h begins to decrease as of time t1, there is an essentially exponential decay of the first time derivative u̇ of the actuator voltage u at the magnet coil 26.

Erfindungsgemäß ist erkannt worden, dass die erste zeitliche Ableitung der Aktorspannung u bei dem Auftreffen der Ventilnadel 28 auf ihren Ventilsitz 38 ein lokales Minimum Mu aufweist, das eine deutlich erkennbare Abweichung von dem ansonsten exponentiell abklingenden zeitlichen Verlauf der ersten Ableitung darstellt. According to the invention, it has been recognized that the first time derivative u.sub.u of the actuator voltage u when the valve needle strikes its valve seat 38 has a local minimum Mu, which represents a clearly discernible deviation from the otherwise exponentially decaying time profile of the first derivative u.sub.o.

Untersuchungen der Anmelderin zufolge ergibt sich dieses lokale Minimum Mu dadurch, dass sich bei dem Auftreffen der Ventilnadel 28 auf ihren Ventilsitz 38 der Magnetanker 30 vermöge des nichtverschwindenden mechanischen Spiels von der Ventilnadel 28 löst und sich zunächst weiter in Schließrichtung, das heißt in Figur 2b nach unten, weiterbewegt, bevor er auf den Anschlag 34 trifft.According to investigations by the Applicant, this local minimum Mu results from the fact that, when the valve needle 28 impinges on its valve seat 38, the armature 30 loosens from the valve needle 28 by virtue of the non-vanishing mechanical backlash and initially continues in the closing direction, that is to say in FIG FIG. 2b down, moved on before he hits the stop 34.

Das bedeutet, dass ab dem Zeitpunkt t = t2 nicht mehr die von der Ventilfeder 36 ausgeübte Federkraft über den Anschlag 32 auf den Magnetanker 30 wirkt, wodurch sich eine erfindungsgemäß ausgewertete Änderung der Beschleunigung des Magnetankers 30 ergibt.This means that from the time t = t2, the spring force exerted by the valve spring 36 no longer acts on the magnet armature 30 via the stop 32, resulting in a change in the acceleration of the magnet armature 30 evaluated according to the invention.

Wie bereits vorstehend beschrieben, resultiert die zu dem Zeitpunkt t2 auftretende Änderung der Beschleunigung des Magnetankers 30 in einem Minimum Mu der ersten zeitlichen Ableitung der Aktorspannung u.As already described above, the change in the acceleration of the magnet armature 30 occurring at the time t2 results in a minimum Mu of the first time derivative u̇ of the actuator voltage u.

Dementsprechend kann unter Auswertung der ersten zeitlichen Ableitung durch das Steuergerät 22 (Figur 1) der tatsächliche hydraulische Schließzeitpunkt t2 des Einspritzventils 18a (Figur 2a) festgestellt werden.Accordingly, by evaluating the first time derivative μ̇ by the control unit 22 ( FIG. FIG. 1 ) the actual hydraulic closing time t2 of the injection valve 18a ( FIG. 2a ).

Eine besonders präzise Detektion des lokalen Minimums Mu ist dann möglich, wenn in dem interessierenden Zeitbereich um den Schließzeitpunkt t2 herum ein durch die Magnetspule 26 fließender Aktorstrom auf einen vorgebbaren Wert, vorzugsweise einen konstanten Wert, insbesondere Null, eingeprägt wird.A particularly precise detection of the local minimum Mu is possible if in the time range of interest around the closing time t2 an actuator current flowing through the magnetic coil 26 is impressed to a predeterminable value, preferably a constant value, in particular zero.

Die zeitliche Ableitung u der Aktorspannung u kann zur Störungsunterdrückung und damit effizienteren Signalverarbeitung vor der Auswertung noch einer Filterung unterzogen werden, wobei es vorteilhaft sein kann, die Differentiation der Aktorspannung u und die Filterung des abgeleiteten Signals in einem Schritt vorzunehmen, z.B. durch Filterung des Spannungssignals u mittels eines Hochpassfilters.The time derivative u of the actuator voltage u can be subjected to filtering for interference suppression and thus more efficient signal processing before the evaluation, it may be advantageous to perform the differentiation of the actuator voltage u and the filtering of the derived signal in one step, for example by filtering the voltage signal u by means of a high-pass filter.

Alternativ zu der vorstehend beschriebenen Ausführungsform kann die die Beschleunigung des Magnetankers 30 charakterisierende Größe erfindungsgemäß auch in Abhängigkeit des durch die Magnetspule 26 fließenden Aktorstroms i gebildet werden. In diesem Fall wird als die Beschleunigung des Magnetankers 30 charakterisierende Größe die erste zeitliche Ableitung des Aktorstroms i verwendet.As an alternative to the embodiment described above, according to the invention, the variable characterizing the acceleration of the armature 30 can also be formed as a function of the actuator current i flowing through the magnet coil 26. In this case, the first time derivative i̇ of the actuator current i is used as the variable characterizing the acceleration of the magnet armature 30.

Figur 5 zeigt einen zeitlichen Verlauf des Nadelhubs h, wie er bereits unter Bezugnahme auf Figur 4 beschrieben worden ist. Zusätzlich zu dem Nadelhubverlauf h ist für den Zeitpunkt t2, zu dem die Ventilnadel 28 in ihrer Schließbewegung auf dem Ventilsitz 38 (Figur 2a) auftrifft, der Hubverlauf hA des Magnetankers 30 gestrichelt eingezeichnet, um zu verdeutlichen, dass sich der Magnetanker 30 nach dem Zeitpunkt t2 zunächst in Schließrichtung, das heißt in Figur 2b nach unten, weiterbewegt, bevor er auf den Anschlag 34 trifft. FIG. 5 shows a time course of the needle stroke h, as already described with reference to FIG. 4 has been described. In addition to the Nadelhubverlauf h is for the time t2, at which the valve needle 28 in its closing movement on the valve seat 38 ( FIG. 2a ), the stroke course hA of the magnet armature 30 is shown in dashed lines to make it clear that the magnet armature 30 after the time t2 first in the closing direction, that is in FIG. 2b down, moved on before he hits the stop 34.

Das Auftreffen des Magnetankers 30 auf dem Anschlag 34 erfolgt gemäß Figur 5 zu dem Zeitpunkt t3.The impact of the magnet armature 30 on the stop 34 takes place according to FIG. 5 at time t3.

Figur 5 zeigt weiter schematisch einen Ausschnitt des zeitlichen Verlaufs der ersten zeitlichen Ableitung i des erfindungsgemäß betrachteten Aktorstroms i. Wie aus Figur 5 ersichtlich ist, weist die vorliegend als die Beschleunigung des Magnetankers 30 charakterisierende Größe verwendete erste zeitliche Ableitung i des Aktorstroms i ein lokales Maximum Mi beziehungsweise einen Knick zu dem Zeitpunkt t2 auf, zu dem die Ventilnadel 28 auf den Ventilsitz 38 auftrifft. FIG. 5 further schematically shows a section of the time course of the first time derivative i of the inventively considered Aktorstroms i. How out FIG. 5 It can be seen that the present time as the acceleration of the armature 30 characterizing size used first time derivative i of the actuator current i has a local maximum Mi or a kink at the time t2 at which the valve needle 28 impinges on the valve seat 38.

Daher kann das lokale Maximum Mi beziehungsweise der Knick zu dem Zeitpunkt t2 erfindungsgemäß als Kriterium für das tatsächliche hydraulische Schließen des Einspritzventils 18a analysiert und verwendet werden.Therefore, according to the invention, the local maximum Mi or the bend at the time t2 can be analyzed and used as a criterion for the actual hydraulic closing of the injection valve 18a.

Eine besonders präzise Auswertung der ersten zeitlichen Ableitung i des Aktorstroms i ist wiederum dann möglich, wenn die an der Magnetspule 26 des elektromagnetischen Aktors 26, 30 anliegende Aktorspannung u auf einen vorgebbaren Wert, insbesondere Null, eingeprägt wird.A particularly precise evaluation of the first time derivative i of the actuator current i is in turn possible when the actuator voltage u applied to the magnetic coil 26 of the electromagnetic actuator 26, 30 is impressed on a presettable value, in particular zero.

Die zeitliche Ableitung i des Aktorstroms i kann zur Störungsunterdrückung und damit effizienteren Signalverarbeitung vor der Auswertung noch einer Filterung unterzogen werden, wobei es vorteilhaft sein kann, die Differentiation des Aktorstroms i und die Filterung des abgeleiteten Signals in einem Schritt vorzunehmen, z.B. durch Filterung des Stromsignals i mittels eines Hochpassfilters.The time derivative i of the actuator current i can be subjected to filtering for interference suppression and thus more efficient signal processing before the evaluation, it may be advantageous to carry out the differentiation of the actuator current i and the filtering of the derived signal in one step, for example by filtering the current signal i by means of a high-pass filter.

Bei einer weiteren sehr vorteilhaften Ausführungsform des erfindungsgemäßen Verfahrens wird eine erste elektrische Betriebsgröße des elektromagnetischen Aktors 26, 30 erfasst und einem Beobachterglied zugeführt, das den elektromagnetischen Aktor 26, 30 ohne Berücksichtigung der Rückwirkung einer Ankerbewegung auf elektrische Betriebsgrößen des elektromagnetischen Aktors nachbildet, wobei das Beobachterglied eine beobachtete zweite elektrische Betriebsgröße des elektromagnetischen Aktors ermittelt. Die beobachtete zweite elektrische Betriebsgröße wird erfindungsgemäß mit einer erfassten zweiten elektrischen Betriebsgröße verglichen und die die Beschleunigung charakterisierende Größe wird in Abhängigkeit des Vergleichsergebnisses ermittelt.In a further very advantageous embodiment of the method according to the invention, a first electrical operating variable of the electromagnetic actuator 26, 30 is detected and fed to an observer member which simulates the electromagnetic actuator 26, 30 without consideration of the retroactivity of an armature movement to electrical operating variables of the electromagnetic actuator, wherein the observer member an observed second electrical operating variable of the electromagnetic actuator determined. The observed second electrical operating variable is compared according to the invention with a detected second electrical operating variable and the acceleration characterizing variable is determined as a function of the comparison result.

Figur 6 zeigt ein vereinfachtes Ersatzschaltbild des magnetischen Aktors 26, 30 (Figur 2a), wobei mit dem Bezugszeichen 46 ein Hauptstrompfad und mit dem Bezugszeichen 48 ein Wirbelstrompfad bezeichnet ist. Der Widerstand Rs repräsentiert hierbei einen Serienwiderstand der Magnetspule 26 (Figur 2a). Die induktiven Elemente Lh, Lo repräsentieren die jeweilige Induktivität des Hauptstrompfades 46 und des Wirbelstrompfades 48. Der Widerstand Rw* repräsentiert einen Ohmwiderstand des Wirbelstrompfads 48. FIG. 6 shows a simplified equivalent circuit diagram of the magnetic actuator 26, 30 (FIG. FIG. 2a ), wherein the reference numeral 46 denotes a main current path and the reference numeral 48 is an eddy current path. The resistor R s in this case represents a series resistance of the magnetic coil 26 (FIG. FIG. 2a ). The inductive elements L h , L o represent the respective inductance of the main current path 46 and the eddy current path 48. The resistance R w * represents an ohmic resistance of the eddy current path 48.

Durch den Hauptstrompfad fließt der Strom im, während durch den Wirbelstrompfad 48 der Strom iw* fließt. Die Ströme im, iw* ergeben zusammen den Ansteuerstrom i, mit dem der elektromagnetische Aktor 26, 30 durch das Steuergerät 22 beaufschlagt wird. An den Klemmen des elektromagnetischen Aktors 26, 30 liegt wie bereits beschrieben die Aktorspannung u an.The current flows through the main current path while the current i w * flows through the eddy current path 48. The currents i m , i w * together form the drive current i, with which the electromagnetic actuator 26, 30 is acted upon by the control unit 22. As already described, the actuator voltage u is applied to the terminals of the electromagnetic actuator 26, 30.

Figur 7 zeigt ein Blockschaltbild, das die Funktion des vorstehend unter Bezugnahme auf Figur 6 beschriebenen Ersatzschaltbilds realisiert. FIG. 7 shows a block diagram showing the function of the above with reference to FIG. 6 realized equivalent circuit diagram.

Der Wirbelstrompfad 48 wird in dem Blockschaltbild gemäß Figur 7 durch einen nicht näher bezeichneten Integrierer mit der Zeitkonstante Tσ und ein ihm zugeordnetes Proportionalglied mit der Verstärkung KRw repräsentiert.The eddy current path 48 is shown in the block diagram of FIG FIG. 7 represented by an unspecified integrator with the time constant T σ and a proportional member associated with the gain K Rw .

Der Hauptstrompfad 46 wird in dem Blockdiagramm gemäß Figur 7 durch den nicht näher bezeichneten Integrierer mit der Zeitkonstante Th und ein diesem Integrierer zugeordnetes Proportionalglied mit der Verstärkung KRs repräsentiert.The main current path 46 is shown in the block diagram of FIG FIG. 7 represented by the unspecified integrator with the time constant T h and associated with this integrator proportional element with the gain K Rs .

Figur 8 zeigt eine Struktur des erfindungsgemäßen Beobachterglieds 56, dem eingangsseitig wie bereits beschrieben die Aktorspannung u zugeführt wird, und das an seinem Ausgang einen beobachteten Aktorstrom ib ausgibt. Durch den Addiererer 58 wird ein Vergleich zwischen dem beobachteten Aktorstrom ib und dem beispielsweise messtechnisch erfassten tatsächlichen Aktorstrom i durchgeführt, der auf das Vergleichsergebnis Δib führt. Das Vergleichsergebnis Δib wird wie aus Figur 8 ersichtlich dem Rückkoppelglied 60 zugeführt, das daraus eine Ausgangsgröße ukorr bildet, die über den Addierer 62 von der erfassten Aktorspannung u subtrahiert wird. FIG. 8 shows a structure of the observer member 56 according to the invention, the input side, as already described, the actuator voltage u is supplied, and outputs at its output an observed actuator current ib. By means of the adder 58, a comparison is made between the observed actuator current ib and the actual measured actuator current i, for example, measured, which leads to the comparison result .DELTA.ib. The comparison result .Dib will look like FIG. 8 can be fed to the feedback element 60, which forms therefrom an output u cor , which is subtracted via the adder 62 from the detected actuator voltage u.

Das Rückkoppelglied 60 kann beispielsweise als Proportionalglied, als Proportional-Integral-Glied oder auch als Rückkoppelglied höherer Ordnung und/oder komplexerer Struktur ausgebildet sein.The feedback element 60 may be formed, for example, as a proportional element, as a proportional-integral element or as a feedback element of higher order and / or more complex structure.

Durch die Subtraktion der Ausgangsgröße ukorr erfolgt eine Nachführung des mittels des Beobachterglieds 56 beobachteten Stroms ib zu dem messtechnisch erfassten Strom i hin. Da der Unterschied zwischen dem realen elektromagnetischen Aktor 26, 30 und der in Figur 8 abgebildeten Nachbildung einer entsprechenden Regelstrecke in dem Beobachterglied 56 in einer fehlenden Rückwirkung der Ankerbewegung besteht, bildet die Ausgangsgröße ukorr exakt diese Rückwirkung nach, wobei diese Rückwirkung eine Proportionalität zu der Geschwindigkeit des Magnetankers 30 aufweist. Zu dem Zeitpunkt des Schließens des Einspritzventils 18a (Figur 2a) kommt es wie bereits beschrieben nicht zu einer abrupten Veränderung der Geschwindigkeit des Magnetankers 30, sondern nur der Ventilnadel 28.Due to the subtraction of the output variable u corr , the current ib observed by means of the observer element 56 is tracked to the current i measured by measurement. Since the difference between the real electromagnetic actuator 26, 30 and the in FIG. 8 imitated replica a corresponding control path in the observer member 56 in a lack of reaction of the armature movement, the output u cor exactly this reaction, this reaction has a proportionality to the speed of the armature 30. At the time of closing of the injection valve 18a (FIG. FIG. 2a ), as already described, there is no abrupt change in the speed of the magnet armature 30, but only the valve needle 28.

Zu dem Zeitpunkt des Ventilschließens ergibt sich jedoch eine verhältnismäßig starke Änderung der ersten zeitlichen Ableitung der Ausgangsgröße ukorr.At the time of valve closure, however, there is a relatively large change in the first time derivative of the output u corr .

Untersuchungen der Anmelderin zufolge wird der Gradient der Ausgangsgröße ukorr zu dem Schließzeitpunkt t2 (Figur 4) üblicherweise einem Vorzeichenwechsel unterworfen, wodurch es zu einem Extremum in dem zeitlichen Verlauf der Ausgangsgröße ukorr kommt. Dieses Extremum wird erfindungsgemäß detektiert und als Signal für den Schließzeitpunkt t2 des Einspritzventils 18a herangezogen.According to investigations of the Applicant, the gradient of the output u corr to the closing time t2 (FIG. FIG. 4 ) is usually subjected to a sign change, whereby it comes to an extremum in the time course of the output u cor . This extremum is inventively detected and used as a signal for the closing time t2 of the injection valve 18a.

Durch eine entsprechende Parametrierung des Rückkoppelglieds 60 (Figur 8) kann das Übertragungsverhalten zwischen der Geschwindigkeit des Magnetankers 30 und der Ausgangsgröße ukorr beeinflusst werden. Insbesondere kann hierdurch eine Filterung von Störsignalen durchgeführt werden, wodurch sich eine noch präzisere Auswertung ergibt.By a corresponding parameterization of the feedback element 60 ( FIG. 8 ), the transmission behavior between the speed of the armature 30 and the output u corr can be influenced. In particular, a filtering of interference signals can thereby be carried out, resulting in an even more precise evaluation.

Das unter Bezugnahme auf die Figuren 6, 7, 8 beschriebene Verfahren arbeitet vorteilhaft unabhängig von einem tatsächlichen Aktorstrom i, einer Aktorspannung u oder einer Einprägung einer oder beider dieser Größen und insbesondere auch unabhängig von einem gegebenenfalls vorhandenen Wirkzusammenhang zwischen den beiden Größen u, i.With reference to the FIGS. 6, 7 . 8th described method operates advantageously independent of an actual actuator current i, an actuator voltage u or an impression of one or both of these variables and in particular also independent of an optionally existing operative relationship between the two variables u, i.

Anstelle der Ausgangsgröße ukorr des Rückkoppelglieds 60 kann auch eine innere Größe des Rückkoppelglieds 60 zur Detektion des Schließzeitpunkts t2 (Figur 4) verwendet werden. Sofern das Rückkoppelglied 60 beispielsweise als Proportional-Integral-Glied ausgebildet ist, kann anstelle der Ausgangsgröße ukorr beispielsweise auch allein der Integralanteil der Rückkoppelgröße verwendet werden.Instead of the output variable u corr of the feedback element 60, an internal size of the feedback element 60 can also be used to detect the closing instant t2 (FIG. FIG. 4 ) be used. If the feedback element 60 is designed, for example, as a proportional-integral element, instead of the output variable u corr, for example, only the integral component of the feedback quantity can be used.

Sofern weniger hohe Anforderungen an die Signifikanz des Ausgangssignals ukorr hinsichtlich des Schließzeitpunkts t2 gestellt werden, kann der Streupfad 48 des in Figur 6 abgebildeten Ersatzschaltbilds auch vernachlässigt werden, wodurch sich eine einfachere Auswertung ergibt.If less stringent requirements are placed on the significance of the output signal u korr with regard to the closing time t 2, the scatter path 48 of the in FIG. 6 shown equivalent circuit diagram are also neglected, resulting in a simpler evaluation.

Erfindungsgemäß ist es ferner möglich, mehrere unterschiedliche Wirbelstrompfade mit jeweils abweichender Kommutierungsinduktivität zu der Magnetspule 26 zu berücksichtigen. Hierzu können in dem Blockdiagramm gemäß Figur 7 zusätzlich zu dem Hauptstrompfad 48 weitere Strompfade parallel geschaltet werden, die jeweils über unterschiedliche Integrator- und Rückkoppelglied-Parameter verfügen können.According to the invention, it is also possible to take into account a plurality of different eddy current paths each having a different commutation inductance to the magnet coil 26. For this purpose, in the block diagram according to FIG. 7 In addition to the main current path, 48 additional current paths are connected in parallel, each of which can have different integrator and feedback element parameters.

Darüber hinaus ist es auch möglich, nichtlineare Zusammenhänge zwischen den betrachteten Größen in dem erfindungsgemäß verwendeten Beobachterglied 56 (Figur 8) zu berücksichtigen, wodurch Sättigungs- und Hystereseeffekten eines realen magnetischen Kreisen beziehungsweise elektromagnetischen Aktors 26, 30 Rechnung getragen werden kann.Moreover, it is also possible to have non-linear relationships between the variables under consideration in the observer member 56 (FIG. FIG. 8 ), whereby saturation and hysteresis effects of a real magnetic circuit or electromagnetic actuator 26, 30 can be taken into account.

Neben der Anwendung des erfindungsgemäßen Betriebsverfahrens zur Schließzeitdetektion bei solchen Einspritzventilen 18a, die ein komplexes Massensystem 28, 30 zur Ventilbetätigung aufweisen eignet sich das erfindungsgemäße Verfahren auch zur Schließzeitdetektion bei herkömmlichen Einspritzventilen mit einer starren Kopplung zwischen dem elektromagnetischen Aktor und der Ventilnadel.In addition to the application of the operating method according to the invention for closing time detection in such injection valves 18a, which have a complex mass system 28, 30 for valve actuation, the inventive method is also suitable for closing time detection in conventional injectors with a rigid coupling between the electromagnetic actuator and the valve needle.

Das unter Bezugnahme auf Figur 8 beschriebene Beobachterglied 56 kann sowohl digital als auch analog ausgeführt sein und wird bevorzugt in einer Recheneinheit des Steuergeräts 22 (Figur 1) implementiert.With reference to FIG. 8 described observer member 56 may be performed both digitally and analogously and is preferably in a computing unit of the control unit 22 (FIG. FIG. 1 ) implemented.

Neben der präzisen Detektion des Schließzeitpunkts t2 (Figur 4) ermöglicht das erfindungsgemäße Betriebsverfahren auch die Erkennung anderer Betriebszustände beziehungsweise Zustandsübergänge des Einspritzventils 18a (Figur 2a), die mit einer entsprechend charakteristischen Änderung der Beschleunigung des Magnetankers 30 einhergehen.In addition to the precise detection of the closing time t2 ( FIG. 4 ), the operating method according to the invention also makes it possible to detect other operating states or state transitions of the injection valve 18a (FIG. FIG. 2a ), which are accompanied by a corresponding characteristic change in the acceleration of the magnet armature 30.

Alternativ oder ergänzend zu der vorstehend beschriebenen Betrachtung von lokalen Extrema der die Beschleunigung charakterisierenden Größen ist es ferner möglich, einen zeitlichen Verlauf der die Beschleunigung charakterisierenden Größen mit einem vorgegebenen Referenzverlauf zu vergleichen oder auch weitere Merkmale, wie beispielsweise einen Knick im zeitlichen Verlauf oder dergleichen, zu identifizieren.As an alternative or in addition to the above-described consideration of local extrema of the variables characterizing the acceleration, it is also possible to compare a time profile of the variables characterizing the acceleration with a predetermined reference curve or also other features, such as a bend over time or the like, to identify.

Besonders bevorzugt werden die erfindungsgemäß erhaltenen Informationen zur Regelung eines Betriebs der Einspritzventile 18a, ...18d verwendet.Particular preference is given to the information obtained according to the invention for controlling an operation of the injection valves 18a,... 18d.

Claims (12)

  1. Method for operating an injection valve (18a) of an internal combustion engine (10) of a motor vehicle, in which a valve needle (28) of the injection valve (18a) is driven by means of an electromagnetic actuator (26, 30), and a variable which characterizes the acceleration of a magnet armature (30) of the electromagnetic actuator is formed as a function of at least one electrical operating variable of the electromagnetic actuator (26, 30), and an operating state of the injection valve (18a) is determined as a function of the variable which characterizes the acceleration, characterized in that spring force is preferably applied to the valve needle (28) in a closing direction of the valve needle, in that the magnet armature (30) is connected to the valve needle (28) in such a way that the magnet armature (30) can be moved relative to the valve needle (28) with a non-diminishing mechanical play in relation to a direction of movement of the valve needle (28), and in that from a characteristic feature of the variable which characterizes the acceleration of the magnetic armature (30) it is determined that the magnetic armature (30) becomes detached from the valve needle (28).
  2. Method according to one of the preceding claims, characterized in that an actuator voltage (u) which is applied to a solenoid (26) of the electromagnetic actuator (26, 30) is used as an electrical operating variable of the electromagnetic actuator (26, 30), and in that the first time derivative () of the actuator voltage (u) is formed as variable which characterizes the acceleration of the magnetic armature (30).
  3. Method according to Claim 2, characterized in that from the occurrence of a local minimum (Mu) of the first time derivative () of the actuator voltage (u) it is determined that the magnetic armature (30) becomes detached from the valve needle (28).
  4. Method according to Claim 3, characterized in that an actuator current (i) which flows through the solenoid (26) is impressed on a predefined value, in particular zero.
  5. Method according to one of the preceding claims, characterized in that an actuator current (i) which flows through a solenoid (26) of the electromagnetic actuator (26, 30) is used as an electrical operating variable of the electromagnetic actuator (26, 30), and in that the first time derivative (t) of the actuator current (i) is formed as variable which characterizes the acceleration of the magnet armature (30).
  6. Method according to Claim 5, characterized in that from the appearance of a local maximum (Mi) of the first time derivative (t) of the actuator current (i) it is determined that the magnet armature (30) becomes detached from the valve needle (28).
  7. Method according to Claim 6, characterized in that an actuator voltage (u) which is applied to the solenoid (26) of the electromagnetic actuator (26, 30) is impressed on a predefinable value, in particular zero.
  8. Method according to one of the preceding claims, characterized in that a first electrical operating variable (u) of the electromagnetic actuator (26, 30) is acquired and is fed to an observer element (56) which models the electromagnetic actuator (26, 30) without taking into account the reaction of an armature movement on electrical operating variables (u, i) of the electromagnetic actuator (26, 30), wherein the observer element (56) obtains an observed second electrical operating variable (ib) of the electromagnetic actuator (26, 30), in that the observed second electrical operating variable (ib) is compared with an acquired second electrical operating variable (i), and in that the variable (ukorr) which characterizes the acceleration is obtained as a function of the comparison result (Δib).
  9. Method according to one of Claims 3 to 8, characterized in that the first time derivative (u) of the actuator voltage (u) and/or the first time derivative (t) of the actuator current (i) is subjected to filtering by a filter element, in particular before a further evaluation, wherein formation of the first time derivative (u, t) and the filtering are preferably carried out in one step, for example by means of a high-pass filtering.
  10. Computer program, characterized in that it is programmed for use in a method according to one of the preceding claims.
  11. Electronic or optical storage medium for an open-loop and/or closed-loop control device (22) of an internal combustion engine (10), characterized in that a computer program for use in a method in Claims 1 to 10 is stored in said storage medium.
  12. Open-loop and/or closed-loop control device (22) for an internal combustion engine (10), characterized in that it is designed for use in a method according to one of Claims 1 to 10.
EP10709516.8A 2009-04-20 2010-03-18 Method for operating an injection valve Active EP2422066B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009002483A DE102009002483A1 (en) 2009-04-20 2009-04-20 Method for operating an injection valve
PCT/EP2010/053503 WO2010121868A1 (en) 2009-04-20 2010-03-18 Method for operating an injection valve

Publications (2)

Publication Number Publication Date
EP2422066A1 EP2422066A1 (en) 2012-02-29
EP2422066B1 true EP2422066B1 (en) 2016-11-09

Family

ID=42227767

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10709516.8A Active EP2422066B1 (en) 2009-04-20 2010-03-18 Method for operating an injection valve

Country Status (6)

Country Link
US (1) US20120101707A1 (en)
EP (1) EP2422066B1 (en)
JP (1) JP5474178B2 (en)
CN (1) CN102405342B (en)
DE (1) DE102009002483A1 (en)
WO (1) WO2010121868A1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2455601B1 (en) * 2010-11-17 2018-06-06 Continental Automotive GmbH Method and apparatus for operating an injection valve
EP2455600A1 (en) * 2010-11-17 2012-05-23 Continental Automotive GmbH Method and apparatus for operating an injection valve
DE102010063380A1 (en) 2010-12-17 2012-06-21 Robert Bosch Gmbh Method for operating an internal combustion engine
JP5806021B2 (en) * 2011-07-12 2015-11-10 有限会社メカノトランスフォーマ Actuator contact detection method, constant force generation mechanism, and generation force estimation method
DE102011080858B4 (en) 2011-08-11 2021-04-08 Robert Bosch Gmbh Method for operating a solenoid valve taking a variable into account
DE102011083033A1 (en) 2011-09-20 2013-03-21 Robert Bosch Gmbh Method for assessing an injection behavior of at least one injection valve of an internal combustion engine and operating method for internal combustion engine
EP2662555A1 (en) 2012-05-10 2013-11-13 Continental Automotive GmbH Method for monitoring an injection valve
DE102012210415A1 (en) * 2012-06-20 2013-12-24 Robert Bosch Gmbh Injector
WO2013191267A1 (en) * 2012-06-21 2013-12-27 日立オートモティブシステムズ株式会社 Control device for internal combustion engine
JP6169404B2 (en) 2013-04-26 2017-07-26 日立オートモティブシステムズ株式会社 Control device for solenoid valve and control device for internal combustion engine using the same
JP6130280B2 (en) * 2013-09-25 2017-05-17 日立オートモティブシステムズ株式会社 Drive device for fuel injection device
DE102013226849B3 (en) * 2013-12-20 2015-04-30 Continental Automotive Gmbh Method for operating an injection valve
US9863355B2 (en) * 2014-03-20 2018-01-09 GM Global Technology Operations LLC Magnetic force based actuator control
DE102015104117B4 (en) * 2014-03-20 2019-12-05 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) MOTION CONTROL OF AN ACTOR
US9657699B2 (en) 2014-03-20 2017-05-23 GM Global Technology Operations LLC Actuator with integrated flux sensor
US9777660B2 (en) 2014-03-20 2017-10-03 GM Global Technology Operations LLC Parameter estimation in an actuator
US9777686B2 (en) 2014-03-20 2017-10-03 GM Global Technology Operations LLC Actuator motion control
US9932947B2 (en) 2014-03-20 2018-04-03 GM Global Technology Operations LLC Actuator with residual magnetic hysteresis reset
WO2015143107A1 (en) 2014-03-20 2015-09-24 GM Global Technology Operations LLC Electromagnetic actuator structure
US9726099B2 (en) * 2014-03-20 2017-08-08 GM Global Technology Operations LLC Actuator with feed forward control
WO2015143109A1 (en) 2014-03-20 2015-09-24 GM Global Technology Operations LLC Optimum current drive for actuator control
US9664158B2 (en) 2014-03-20 2017-05-30 GM Global Technology Operations LLC Actuator with integrated driver
DE102014206430B4 (en) * 2014-04-03 2016-04-14 Continental Automotive Gmbh Method and control unit for detecting the start of opening of a nozzle needle
DE102014209587B4 (en) * 2014-05-20 2016-03-31 Continental Automotive Gmbh Characterization of a measurement channel for measuring a feedback signal generated by an operating fuel injector
DE102015217955A1 (en) * 2014-10-21 2016-04-21 Robert Bosch Gmbh Device for controlling at least one switchable valve
DE102015202389A1 (en) 2015-02-11 2016-08-11 Robert Bosch Gmbh Method for operating an injection valve
DE102016219067A1 (en) 2016-09-30 2018-04-05 Robert Bosch Gmbh Method for operating an internal combustion engine
JP6268261B1 (en) 2016-10-26 2018-01-24 本田技研工業株式会社 Control device for internal combustion engine
JP6508228B2 (en) 2017-02-07 2019-05-08 トヨタ自動車株式会社 Fuel injection control device for internal combustion engine
US11073105B2 (en) 2018-10-02 2021-07-27 Rohr, Inc. Acoustic torque box

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1051454B (en) * 1975-12-09 1981-04-21 Fiat Spa FLOW RATE STABILIZATION PROCEDURE AND DEVICE IN ELECTROMAGNETIC INJECTORS BY CORRELATION BETWEEN OPENING INSTANT AND EXCITATION CURRENT
DE3314899A1 (en) * 1983-04-25 1984-10-25 Mesenich, Gerhard, Dipl.-Ing., 4630 Bochum SPRING ARRANGEMENT WITH ADDITIONAL DIMENSIONS FOR IMPROVING THE DYNAMIC BEHAVIOR OF ELECTROMAGNET SYSTEMS
DE3408012A1 (en) * 1984-03-05 1985-09-05 Gerhard Dipl.-Ing. Warren Mich. Mesenich ELECTROMAGNETIC INJECTION VALVE
US5267545A (en) * 1989-05-19 1993-12-07 Orbital Engine Company (Australia) Pty. Limited Method and apparatus for controlling the operation of a solenoid
US4978074A (en) * 1989-06-21 1990-12-18 General Motors Corporation Solenoid actuated valve assembly
GB9225622D0 (en) * 1992-12-08 1993-01-27 Pi Research Ltd Electromagnetic valves
US5299776A (en) * 1993-03-26 1994-04-05 Siemens Automotive L.P. Impact dampened armature and needle valve assembly
DE4420282A1 (en) * 1994-06-10 1995-12-14 Bosch Gmbh Robert Method and device for controlling an electromagnetic consumer
DE4434684A1 (en) * 1994-09-28 1996-04-04 Fev Motorentech Gmbh & Co Kg Electromagnetic circuit armature movement control method e.g. for IC engine positioning element
SE515565C2 (en) * 1995-07-17 2001-08-27 Scania Cv Ab Method for controlling and detecting the position of a solenoid-influenced luminaire
DE19733138A1 (en) * 1997-07-31 1999-02-04 Fev Motorentech Gmbh & Co Kg Identification of the armature position in an electromagnetic actuator
DE19834405B4 (en) * 1998-07-30 2007-04-05 Robert Bosch Gmbh Method of estimating a needle lift of a solenoid valve
ATE306013T1 (en) * 1999-05-19 2005-10-15 Fev Motorentech Gmbh METHOD FOR CONTROLLING AN ELECTROMAGNETIC VALVE DRIVE FOR A GAS EXCHANGE VALVE ON A PISTON COMBUSTION ENGINE
US6848626B2 (en) * 2001-03-15 2005-02-01 Siemens Vdo Automotive Corporation End of valve motion detection for a spool control valve
DE10150199A1 (en) * 2001-10-12 2003-04-24 Wolfgang E Schultz Method and circuit for detecting the armature position of an electromagnet
FI115008B (en) * 2003-05-13 2005-02-15 Waertsilae Finland Oy Method for monitoring solenoid activity
DE10340137A1 (en) * 2003-09-01 2005-04-07 Robert Bosch Gmbh Method for determining the drive voltage of a piezoelectric actuator of an injection valve
DE102005002242A1 (en) * 2005-01-18 2006-07-20 Robert Bosch Gmbh Method for operating a fuel injection device of an internal combustion engine
DE102005036190A1 (en) * 2005-08-02 2007-02-08 Robert Bosch Gmbh Method and device for controlling an injection system of an internal combustion engine
DE102005044886B4 (en) * 2005-09-20 2009-12-24 Continental Automotive Gmbh Apparatus and method for detecting an end of movement of a valve piston in a valve
US7404397B2 (en) * 2006-09-07 2008-07-29 Total Fuel Systems, Llc Method and apparatus for modifying fuel injection scheme
US7430899B2 (en) * 2006-10-27 2008-10-07 Ford Motor Company Methods and systems for testing electromagnetically actuated fuel injectors
DE102007038512A1 (en) * 2007-08-16 2009-02-19 Robert Bosch Gmbh Injection valve's opening monitoring method for internal-combustion engine, involves forming deviation characteritics from comparison of current flows, where unopening of valve is detected when characteristic lies in preset value range

Also Published As

Publication number Publication date
WO2010121868A1 (en) 2010-10-28
EP2422066A1 (en) 2012-02-29
JP2012524210A (en) 2012-10-11
US20120101707A1 (en) 2012-04-26
JP5474178B2 (en) 2014-04-16
DE102009002483A1 (en) 2010-10-21
CN102405342A (en) 2012-04-04
CN102405342B (en) 2014-10-29

Similar Documents

Publication Publication Date Title
EP2422066B1 (en) Method for operating an injection valve
EP2422067B1 (en) Method and control device for operating a valve actuated by an actuator
DE102011076363B4 (en) Method and device for determining the opening behavior of a fuel injector for an internal combustion engine
WO2011039043A1 (en) Method and control device for operating a valve
DE102010063009B4 (en) Method and device for characterizing a movement of a fuel injector by detecting and evaluating a magnetic hysteresis curve
DE102011087418B4 (en) Determining the opening behavior of a fuel injector by means of an electrical test excitation without a magnetic saturation
DE102012205573B4 (en) Determining the temporal movement behavior of a fuel injector based on an evaluation of the time course of various electrical parameters
WO2011042281A1 (en) Method and control tool for operating a valve
WO2016166142A1 (en) Controlling a fuel injection solenoid valve
DE102015208573B3 (en) Pressure determination in a fuel injection valve
DE102016203136B3 (en) Determining an electrical activation time for a fuel injector with solenoid drive
DE102008054877A1 (en) Electromechanical actuator operating method for fuel injecting valve of internal-combustion engine of motor vehicle, involves describing behavior of actuator, and supplying control variables of actuator to model as input variable
WO2017063824A1 (en) Detecting a predetermined opening state of a fuel injector having a solenoid drive
WO2012041936A1 (en) Ascertaining the ballistic trajectory of an electromagnetically driven armature of a coil actuator
DE19834405B4 (en) Method of estimating a needle lift of a solenoid valve
DE102013209077B4 (en) Method and device for determining the electrical activation duration of a fuel injector for an internal combustion engine
DE102015206739A1 (en) Determining a stroke of a solenoid valve
WO2011082902A1 (en) Method and control appliance for operating a valve
DE102018207417A1 (en) Determining a characteristic of a magnetic switching valve
DE102008040250A1 (en) Electromagnetic actuator operating method for magnetic valve of internal combustion engine for motor vehicle, involves evaluating electrical operating parameters of electromagnetic actuator to close inductance of magnetic coil
DE102009003215A1 (en) Method and control device for operating an injection valve
EP3394866B1 (en) Determination of armature stroke by measurement of hysteresis characteristics
DE102009054588A1 (en) Method and control device for operating a valve
DE102013207152B4 (en) Method and device for controlling an injection valve in a non-linear operating range
DE102008055008B4 (en) Method for operating an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160802

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 844151

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010012693

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010012693

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161109

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170210

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170309

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010012693

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170209

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170810

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170318

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 844151

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190321

Year of fee payment: 10

Ref country code: FR

Payment date: 20190326

Year of fee payment: 10

Ref country code: GB

Payment date: 20190325

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200318

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230524

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502010012693

Country of ref document: DE