WO2022083708A1 - 放电电路、浪涌保护电路、点火电路及电子设备 - Google Patents

放电电路、浪涌保护电路、点火电路及电子设备 Download PDF

Info

Publication number
WO2022083708A1
WO2022083708A1 PCT/CN2021/125460 CN2021125460W WO2022083708A1 WO 2022083708 A1 WO2022083708 A1 WO 2022083708A1 CN 2021125460 W CN2021125460 W CN 2021125460W WO 2022083708 A1 WO2022083708 A1 WO 2022083708A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole
gas discharge
branch
discharge tube
discharge
Prior art date
Application number
PCT/CN2021/125460
Other languages
English (en)
French (fr)
Inventor
沈能文
周垠群
Original Assignee
深圳市槟城电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市槟城电子股份有限公司 filed Critical 深圳市槟城电子股份有限公司
Publication of WO2022083708A1 publication Critical patent/WO2022083708A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/06Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using spark-gap arresters

Definitions

  • the present application relates to the technical field of overvoltage protection, such as a discharge circuit, a surge protection circuit, an ignition circuit and an electronic device.
  • Electromagnetic pulse electromagnetic pulse
  • LEMP lightning electromagnetic pulse
  • GDT Gas discharge Tube
  • the Penning effect is used to fill the packaging space with a certain pressure of gas, and the cathode material is coated on the metal electrode, so that the device exhibits certain DC withstand voltage characteristics and pulse breakdown voltage characteristics.
  • the impact breakdown voltage of the GDT is about 3600V.
  • the environment where the GDT is used is mostly an environment with a withstand voltage of 1500VAC, and the peak voltage of the AC environment is 2121VDC, even if the environment The design increases the withstand voltage by 20%.
  • Embodiments of the present application provide a discharge circuit, a surge protection circuit, an ignition circuit, and an electronic device, so as to reduce the impact breakdown voltage of the triode gas discharge tube and reduce the protection dead zone.
  • an embodiment of the present application provides a discharge circuit, including:
  • the first pole of the three-pole gas discharge tube is electrically connected to the first end of the discharge circuit, and the third pole of the three-pole gas discharge tube is electrically connected to the second end of the discharge circuit;
  • first impedance branch the first end of the first impedance branch is electrically connected to the first pole of the triode gas discharge tube; the second end of the first impedance branch is electrically connected to the second pole of the triode gas discharge tube;
  • the first end of the second impedance branch is electrically connected to the second pole of the triode gas discharge tube; the second end of the second impedance branch is electrically connected to the third pole of the triode gas discharge tube;
  • the high-frequency impedance mode of the first impedance branch is greater than the high-frequency impedance mode of the second impedance branch;
  • the power frequency impedance mode of the first impedance branch is less than or equal to the power frequency impedance mode of the second impedance branch;
  • the DC breakdown voltage of the discharge gap between the first and second poles of the three-pole gas discharge tube is less than or equal to the DC breakdown voltage of the discharge gap between the second and third poles of the three-pole gas discharge tube.
  • the first impedance branch includes: a first sub-branch and a first capacitive element connected in series, and the two ends of the series are electrically connected to the first end and the second end of the first impedance branch, respectively;
  • the first sub-branch The branch includes at least one of a first resistive element and a first inductive element;
  • the second impedance branch includes: a second capacitive element, the capacitance of the first capacitive element is greater than or equal to the capacitance of the second capacitive element, and the high-frequency impedance mode of the first sub-branch is greater than the capacitance of the second capacitive element High frequency impedance mode, the power frequency impedance mode of the first sub-branch is smaller than the power frequency impedance mode of the second capacitive element.
  • the second impedance branch further includes: a second sub-branch, the second sub-branch is connected in series with the second capacitive element, and the two ends after the series connection are respectively connected with the first end and the second end of the second impedance branch. electrical connection;
  • the second sub-branch includes at least one of a second resistive element and a second inductive element, and the high-frequency impedance mode of the first sub-branch is greater than the high-frequency impedance mode of the second sub-branch.
  • first sub-branch includes a first resistive element
  • second sub-branch includes a second resistive element
  • R 1 >5R 2 , wherein R 1 is the resistance value of the first resistive element, and R 2 is the resistance value of the second resistive element.
  • first sub-branch includes a first inductive element
  • second sub-branch includes a second inductive element
  • L 1 >5L 2 , where L 1 is the inductance value of the first inductive element, and L 2 is the inductance value of the second inductive element.
  • V BR1 : V BR2 C 2 : C 1 , wherein C 1 is the capacitance of the first capacitive element, and C 2 is the capacitance of the second capacitive element.
  • the discharge circuit further includes a first varistor, and the capacitance of the second capacitive element is smaller than the capacitance of the inter-electrode capacitance of the first varistor;
  • the first pole of the triode gas discharge tube is electrically connected to the first end of the discharge circuit through the first varistor; or, the third pole of the triode gas discharge tube is connected to the second end of the discharge circuit through the first varistor. terminal electrical connection.
  • the discharge circuit also includes a second varistor, and the capacitance of the second capacitive element is smaller than the capacitance of the inter-electrode capacitance of the second varistor;
  • the pole of the three-pole gas discharge tube connected to the first varistor is electrically connected to the third end of the discharge circuit through the second varistor.
  • V BR3 ⁇ V BR1 +V BR2 , wherein V BR3 is the DC breakdown voltage of the discharge gap between the first pole and the third pole of the triode gas discharge tube;
  • the triode gas discharge tube includes a first end electrode, a first insulating tube body, a first intermediate electrode, a second insulating tube body and a second end electrode, and the two nozzles of the first insulating tube body are respectively connected to the first end electrode.
  • the electrode and the first intermediate electrode are hermetically connected to form a first discharge inner cavity;
  • the two nozzles of the second insulating tube body are respectively hermetically connected to the second end electrode and the first intermediate electrode to form a second discharge inner cavity;
  • the first The middle electrode is provided with a first through hole, the first through hole communicates with the first discharge inner cavity and the second discharge inner cavity, the first through hole is located between the opposite regions of the first end electrode and the second end electrode, and the first discharge inner cavity and the second discharge inner cavity is filled with discharge gas;
  • the first end electrode serves as the first pole of the triode gas discharge tube
  • the first middle electrode serves as the second pole of the triode gas discharge tube
  • the second end electrode serves as the third pole of the triode gas discharge tube.
  • the discharge circuit also includes K two-pole gas discharge tubes and K third capacitors, wherein K is an integer greater than or equal to 2, and the K two-pole gas discharge tubes are connected in series to form a first series branch;
  • the first pole of the three-pole gas discharge tube is electrically connected to the first end of the discharge circuit through the first series branch; or, the third pole of the three-pole gas discharge tube is electrically connected to the second terminal of the discharge circuit through the first series branch connect;
  • K two-pole gas discharge tubes are connected in series to form K+1 first nodes. Except for the first node connected to the first end of the first series branch, the remaining K first nodes are in one-to-one correspondence with K third capacitors , any first node is electrically connected to the first end of the first series branch via the corresponding third capacitor;
  • the DC breakdown voltage of the two-pole gas discharge tube is smaller than the DC breakdown voltage of the discharge gap between the first pole and the second pole of the three-pole gas discharge tube.
  • the high frequency is greater than or equal to 25000 Hz, and the power frequency is less than or equal to 68 Hz.
  • an embodiment of the present application further provides a surge protection circuit, including the discharge circuit provided by any embodiment of the present application.
  • the embodiments of the present application further provide an ignition circuit, including the discharge circuit provided by any embodiment of the present application.
  • an embodiment of the present application further provides an electronic device, including the discharge circuit provided by any embodiment of the present application.
  • the discharge circuit in the technical solutions of the embodiments of the present application includes a three-pole gas discharge tube, a first impedance branch and a second impedance branch, wherein the first pole of the three-pole gas discharge tube and the first voltage of the surge protection circuit
  • the protection terminal is electrically connected, the third pole of the triode gas discharge tube is electrically connected with the second voltage protection terminal of the surge protection circuit;
  • the first end of the first impedance branch is electrically connected with the first pole of the tripole gas discharge tube;
  • the second end of the first impedance branch is electrically connected to the second pole of the triode gas discharge tube;
  • the first end of the second impedance branch is electrically connected to the second pole of the triode gas discharge tube;
  • the second end is electrically connected to the third pole of the triode gas discharge tube; for the same high frequency,
  • FIG. 1 is a schematic structural diagram of a discharge circuit provided by an embodiment of the present application.
  • FIG. 2 is an application scenario of a discharge circuit provided by an embodiment of the present application
  • FIG. 3 is a schematic cross-sectional structure diagram of a triode gas discharge tube provided by an embodiment of the present application.
  • FIG. 4 is a schematic cross-sectional structure diagram of another triode gas discharge tube provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another discharge circuit provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another discharge circuit provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another discharge circuit provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another discharge circuit provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another discharge circuit provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another discharge circuit provided by an embodiment of the application.
  • FIG. 11 is a schematic structural diagram of another discharge circuit provided by an embodiment of the application.
  • FIG. 12 is a schematic structural diagram of another discharge circuit provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another discharge circuit provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another discharge circuit provided by an embodiment of the application.
  • FIG. 15 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a discharge circuit according to an embodiment of the present application.
  • FIG. 2 is an application scenario of a discharge circuit provided by an embodiment of the present application.
  • the discharge circuit includes: a triode gas discharge tube GDT1 , a first impedance branch 10 and a second impedance branch 20 .
  • the first pole N1 of the triode gas discharge tube GDT1 is electrically connected to the first end V1 of the discharge circuit, and the third pole N3 of the triode gas discharge tube GDT1 is electrically connected to the second end V2 of the discharge circuit; the first impedance branch The first end of the circuit 10 is electrically connected to the first pole N1 of the three-pole gas discharge tube GDT1; the second end of the first impedance branch 10 is electrically connected to the second pole N2 of the three-pole gas discharge tube GDT1; the second impedance branch The first end of the circuit 20 is electrically connected to the second pole N2 of the three-pole gas discharge tube GDT1; the second end of the second impedance branch 20 is electrically connected to the third pole N3 of the three-pole gas discharge tube GDT1; for the same high frequency ,
  • the first impedance branch 10 may include at least one of the following elements: a resistive element, an inductive element, and a capacitive element, and the elements may be connected in series and/or in parallel, which is not the case in this embodiment of the present application Do limit.
  • the impedance mode of the first impedance branch 10 may increase with increasing frequency.
  • the second impedance branch 20 may include at least one of the following elements: a resistive element, an inductive element, and a capacitive element, and the elements may be connected in series and/or in parallel, which is not limited in this embodiment of the present application .
  • the impedance mode of the second impedance branch 20 may decrease with increasing frequency.
  • the first impedance branch 10 includes a capacitor
  • the second impedance branch 20 includes a capacitive element, that is, at least one of the first impedance branch 10 and the second impedance branch 20 includes a capacitor, so as to avoid using only electricity Inductance and resistance will cause the insulation to drop.
  • Resistive elements may include resistors.
  • the inductive element may include an inductor.
  • the inductor can be a magnetic bead inductor, which is smaller in size and lower in cost than ordinary inductors.
  • Capacitive elements may include at least one of the following: capacitors and elements with inter-electrode capacitance. Elements with inter-electrode capacitance may include varistors or TVS diodes.
  • the discharge circuit 1 exemplarily shows the application of the discharge circuit in the surge protection circuit.
  • the first terminal V1 of the discharge circuit 1 may be electrically connected to the first AC power supply line
  • the second terminal V2 of the discharge circuit 1 may be electrically connected to the second AC power supply line.
  • the first AC power supply line may be the live wire L
  • the second AC power supply line may be the neutral line N.
  • the discharge circuit 1 can be turned on when an overvoltage such as surge interference occurs on the first AC power supply line and the second AC power supply line, so as to discharge the surge current, so as to realize the overvoltage protection of the protection circuit 2 .
  • the DC breakdown voltage can be the average voltage value at which the discharge gap of the gas discharge tube starts to break down under the action of a voltage with a rising steepness lower than 100V/s.
  • the impulse breakdown voltage may be the voltage value at which the discharge gap of the discharge tube begins to break down under the action of a transient voltage pulse with a specified rising steepness, and the specified rising steepness may be 100V/us or 1KV/us.
  • the response time or action delay of the discharge tube is related to the rising steepness of the voltage pulse. For different rising steepnesses, the impulse breakdown voltage of the discharge tube is different. The smaller the DC breakdown voltage of the discharge gap, the smaller the impact breakdown voltage.
  • the DC breakdown voltage and impulse breakdown voltage of each discharge gap of the triode gas discharge tube GDT1 may be obtained by testing when the first impedance branch 10 and the second impedance branch 20 are not connected.
  • the surge voltage will decrease due to the decrease in the voltage of the discharge gaps where the breakdown occurs first. It is almost completely applied to the other discharge gap. As the voltage of the other discharge gap increases, the negative electrons break down the other discharge gap under the action of the electric field, and then the entire gap switches to the arc voltage and discharges the current.
  • the actual impulse breakdown voltage V BR0 ' of the triode gas discharge tube GDT1 is greater than the impulse breakdown voltage of the discharge gap where breakdown occurs first, and the actual impulse breakdown voltage V BR0 ' of the triode gas discharge tube GDT1 is smaller than that of the triode gas discharge tube GDT1
  • the impact breakdown voltage V BR1 ' of the discharge gap between the first pole N1 and the second pole N2 of the gas discharge tube GDT1 and the impact of the discharge gap between the second pole N2 and the third pole N3 of the three-pole gas discharge tube GDT1 The sum of the breakdown voltages V BR2 ', namely V BR0 ' ⁇ V BR1 '+V BR2 '.
  • the first impedance branch 10 is connected to the first pole N1 and the second pole N2 of the triode gas discharge tube GDT1, and the second pole N2 and the third pole N3 of the triode gas discharge tube GDT1 are connected to the second pole Impedance branch 20, so that when a surge such as a lightning strike occurs, the discharge gap between the first pole and the second pole of the three-pole gas discharge tube and between the second pole and the third pole of the three-pole gas discharge tube
  • the discharge gaps do not reach their respective impulse breakdown voltages at the same time.
  • the discharge gap that breaks down first generates a large number of negative electrons. As the voltage of the other discharge gap increases, the negative electrons break down the other discharge gap under the action of the electric field.
  • the entire gas discharge tube GDT1 will be broken down and turned on, and the actual impact breakdown voltage V BR0 ' of the three-pole gas discharge tube GDT1 is less than the discharge gap between the first pole N1 and the second pole N2 of the three-pole gas discharge tube GDT1.
  • the two-pole gas discharge tube of BR1 + V BR2 solves the problem that when the surge impulse such as lightning strike occurs, when the surge impulse voltage increases to the DC breakdown voltage equal to the impulse breakdown voltage of the two-pole gas discharge tube of V BR1 + V BR2 , the two-pole gas discharge tube will be broken down and turned on, resulting in an excessively high impact breakdown voltage, and there is a problem of protecting the blind zone.
  • the discharge circuit in the technical solution of this embodiment includes a triode gas discharge tube, a first impedance branch and a second impedance branch, wherein the first pole of the triode gas discharge tube is electrically connected to the first end of the discharge circuit, The third pole of the triode gas discharge tube is electrically connected to the second end of the discharge circuit; the first end of the first impedance branch is electrically connected to the first pole of the triode gas discharge tube; the second end of the first impedance branch is electrically connected to the second pole of the triode gas discharge tube; the first end of the second impedance branch is electrically connected to the second pole of the triode gas discharge tube; the second end of the second impedance branch is electrically connected to the triode gas discharge tube;
  • of the first impedance branch 10 is greater than the high-frequency impedance mode
  • the DC breakdown voltage V BR1 of the discharge gap between the first pole N1 and the second pole N2 of the three-pole gas discharge tube GDT1 is less than or equal to the voltage V BR1 between the second pole N2 and the third pole N3 of the three-pole gas discharge tube GDT1
  • the DC breakdown voltage V BR2 of the discharge gap that is, V BR1 ⁇ V BR2 .
  • the cathode Under the action of the electric field, the electrons break down the discharge gap between the second pole N2 and the third pole N3 of the triode gas discharge tube GDT1, and then the entire gap turns the arc voltage and discharges the current.
  • the actual impulse breakdown voltage V BR0 ' of the triode gas discharge tube GDT1 is greater than the impulse breakdown voltage V BR1 ' of the discharge gap where the DC breakdown voltage of the triode gas discharge tube GDT1 is small, and is smaller than that of the triode gas discharge tube GDT1
  • the impact breakdown voltage V BR2 ' of the discharge gap with a large DC breakdown voltage is V BR1 ' ⁇ V BR0 ' ⁇ V BR2 '.
  • the first impedance branch 10 is connected to the first pole N1 and the second pole N2 of the triode gas discharge tube GDT1, and the second pole N2 and the third pole N3 of the triode gas discharge tube GDT1 are connected to the second pole Impedance branch circuit 20, so that when a surge shock such as a lightning strike occurs, when the surge shock voltage increases to the shock breakdown voltage of the discharge gap where the DC breakdown voltage of the triode gas discharge tube GDT1 is small, the triode gas discharge The tube GDT1 will be broken down and turned on, so the triode gas discharge tube GDT1 has a lower impact breakdown voltage.
  • the triode gas discharge tube GDT1 connected with the first impedance branch 10 and the second impedance branch 20 will be replaced
  • the two-pole gas discharge tube whose DC breakdown voltage is equal to V BR1 +V BR2 solves the problem of the two-pole gas discharge tube whose DC breakdown voltage is equal to V BR1 +V BR2 when the surge impulse voltage increases to V BR1 +V BR2 in the event of a surge such as a lightning strike.
  • the bipolar gas discharge tube will be broken down and turned on, resulting in an excessively high impulse breakdown voltage and the problem of protecting blind spots.
  • of the first impedance branch 10 is less than or equal to the power frequency impedance mode
  • the triode gas discharge tube GDT1 is not conducting, and the voltage between the first pole N1 and the second pole N2 of the triode gas discharge tube GDT1 is smaller than the first pole N1 and the second pole of the triode gas discharge tube GDT1.
  • the opening voltage of the discharge gap between N2; the voltage between the second pole N2 and the third pole N3 of the gas discharge tube GDT1 is less than the discharge between the second pole N2 and the third pole N3 of the three-pole gas discharge tube GDT1
  • the turn-on voltage of the gap is optionally, the high frequency f H is greater than or equal to 25000 Hz.
  • the magnitude of the high frequency can be equal to the frequency of surge shocks such as lightning strikes.
  • the power frequency f L is less than or equal to 68 Hz.
  • the power frequency can be the frequency of the power supply voltage during normal operation.
  • the power frequency f L may be 50 Hz, 60 Hz or 0 Hz.
  • the supply voltage can be AC or DC.
  • V BR3 ⁇ V BR1 +V BR2 , and the size of V BR3 should meet the DC breakdown voltage level of the triode gas discharge tube.
  • V BR1 is the DC breakdown voltage of the discharge gap between the first pole N1 and the second pole N2 of the three-pole gas discharge tube GDT1
  • V BR2 is the second pole N2 and the third pole of the three-pole gas discharge tube GDT1
  • the DC breakdown voltage of the discharge gap between N3, V BR3 is the DC breakdown voltage of the discharge gap between the first pole N1 and the third pole N3 of the three-pole gas discharge tube GDT1.
  • the discharge gap between the first pole N1 and the second pole N2 of the three-pole gas discharge tube GDT1 and the discharge gap between the second pole N2 and the third pole N3 of the three-pole gas discharge tube GDT1 are connected, so that in the event of a surge such as a lightning strike, after the discharge gap between the first pole N1 and the second pole N2 of the three-pole gas discharge tube GDT1 breaks down, the first pole of the three-pole gas discharge tube GDT1
  • the cathode electrons generated between the discharge gap between N1 and the second pole N2 move to the discharge gap between the second pole N2 and the third pole N3 of the triode gas discharge tube GDT1 under the action of the electric field, so that the three poles
  • the discharge gap between the second pole N2 and the third pole N3 of the gas discharge tube GDT1 is rapidly broken down and turned on.
  • FIG. 3 is a schematic cross-sectional structure diagram of a triode gas discharge tube provided by the embodiment of the present application.
  • the triode gas discharge tube GDT1 includes a first end electrode 31 and a first insulating tube.
  • the body 32, the first intermediate electrode 33, the second insulating tube body 34 and the second end electrode 35, the two nozzles of the first insulating tube body 32 are sealed with the first end electrode 31 and the first middle electrode 33, respectively, to form The first discharge inner cavity 36; the two nozzles of the second insulating tube body 34 are respectively sealed with the second end electrode 35 and the first middle electrode 33 to form the second discharge inner cavity 37; the first middle electrode 33 is provided with a second discharge cavity 37; A through hole 38, the first through hole 38 communicates with the first discharge cavity 36 and the second discharge cavity 37, the first through hole 38 is located between the opposite areas of the first end electrode 31 and the second end electrode 35, the first discharge The inner cavity 36 and the second discharge inner cavity 37 are filled with discharge gas; wherein, the first end electrode 31 serves as the first pole N1 of the triode gas discharge tube GDT1, and the first intermediate electrode 33 serves as the third pole of the triode gas discharge tube GDT1.
  • the diode N2 and the second terminal electrode 35 serve as the third electrode N3 of the triode gas discharge tube GDT1.
  • the discharge gap between the first pole N1 and the second pole N2 of the three-pole gas discharge tube GDT1 is D1
  • the discharge gap between the second pole N2 and the third pole N3 of the three-pole gas discharge tube GDT1 is D2
  • the discharge gap between the first pole N1 and the third pole N3 of the gas discharge tube GDT1 is D3.
  • V BR3 V BR1 +V BR2 .
  • FIG. 4 is a schematic cross-sectional structure diagram of another triode gas discharge tube provided by the embodiment of the present application.
  • the triode gas discharge tube GDT1 includes a third end electrode 41, a second insulating The tube body 42, the first inner electrode 43, the second inner electrode 44 and the insulating member 45, the third end electrode 41 and the mouth of the third insulating tube body 42 are connected by solder sealing to form a discharge inner cavity.
  • the first inner electrode 43 and the second inner electrode 44 are arranged at intervals, the first inner electrode 43 and the second inner electrode 44 are located in the discharge inner cavity, and the two inner electrodes are arranged at intervals from the third end electrode; the inner electrode The surface adjacent to the third terminal electrode is parallel and opposite to the part of the inner surface of the third terminal electrode 41 adjacent to the inner discharge cavity to form a first discharge gap; the opposite surfaces of two adjacent inner electrodes are parallel to form a second discharge gap.
  • the extending direction of the third insulating tube body 42 is parallel to the opposite surfaces of the two adjacent inner electrodes, and the first discharge gap and the second discharge gap are located in the accommodating space of the third insulating tube body 42 .
  • the third insulating tube body 42 has two nozzles, one nozzle of the third insulating tube body 42 is connected to the third terminal electrode 41 through solder sealing to form a discharge inner cavity, and the other nozzle of the third insulating tube body 42 Connected with the insulating part 45 through solder sealing, all the inner electrodes are provided with pins, and the pins of all the inner electrodes pass through the insulating part and extend to the outside of the discharge inner cavity.
  • the first inner electrode 43 serves as the first electrode N1 of the triode gas discharge tube GDT1
  • the third end electrode 41 serves as the second electrode N2 of the triode gas discharge tube GDT1
  • the second inner electrode 35 serves as the triode gas discharge tube GDT1 the third pole N3.
  • D1, D2, and D3 can be sized as needed so that V BR3 ⁇ V BR1 +V BR2 , which in turn satisfies the DC breakdown voltage level required by the circuit.
  • FIG. 5 is a schematic structural diagram of another discharge circuit provided by the embodiment of the present application.
  • the first impedance branch 10 includes: a first sub-branch 11 and a first capacitor connected in series.
  • a resistive element C1 the two ends of which are connected in series are respectively electrically connected to the first end and the second end of the first impedance branch 10;
  • the first sub-branch 11 includes at least one of the first resistive element R1 and the first inductive element L1 A sort of.
  • R 1 is the resistance value of the first resistive element R1
  • C 1 is the capacitance value of the first capacitive element C1 .
  • the larger the R 1 the larger the
  • FIG. 6 is a schematic structural diagram of another discharge circuit provided by an embodiment of the present application.
  • FIG. 6 exemplarily depicts the case where the first sub-branch 11 includes the first inductive element L1, and the high-frequency impedance of the first impedance branch 10 mold
  • L1 is the inductance value of the first inductive element L1. The larger the L 1 , the larger the f H and the larger the
  • the second impedance branch 20 includes: a second capacitive element C2, and the capacitance of the first capacitive element C1 is greater than or equal to the second capacitive element
  • the capacitance of the element C2, the high-frequency impedance mode of the first sub-branch 11 is greater than the high-frequency impedance mode of the second capacitive element C2, and the power-frequency impedance mode of the first sub-branch 11 is smaller than that of the second capacitive element C2. frequency impedance mode.
  • the first capacitive element C1 and the second capacitive element C2 play the main role of voltage dividing, and the power frequency capacitance of the first capacitive element C1 and the second capacitive element C2
  • the anti-mode can be much larger than the power-frequency impedance mode of the first sub-branch 11 .
  • the first sub-branch 11 plays a major role, and the high-frequency impedance mode of the first sub-branch 11 can be much larger than the high-frequency capacitive reactance of the second capacitive element C2 and the first capacitive element C1 mold.
  • the high-frequency impedance mode of the second impedance branch 20 The power frequency impedance mode of the second impedance branch 20 Wherein, C 2 is the capacitance of the second capacitive element C2. The smaller the C 2 , the larger the
  • FIG. 7 is a schematic structural diagram of another discharge circuit provided by the embodiment of the present application
  • the second impedance branch 20 further includes: a second sub-branch 21, a second sub-branch
  • the circuit 21 is connected in series with the second capacitive element C2 , and the two ends of the circuit 21 are electrically connected to the first end and the second end of the second impedance branch circuit 20 respectively.
  • the second sub-branch 21 includes at least one of a second resistive element R2 and a second inductive element L2 , and the high-frequency impedance mode of the first sub-branch 11 is greater than the high-frequency impedance of the second sub-branch 21 . Impedance mode.
  • the first capacitive element C1 and the second capacitive element C2 play the main role of voltage dividing, and the power frequency capacitance of the first capacitive element C1 and the second capacitive element C2
  • the anti-mode can be much larger than the power-frequency impedance modes of the first sub-branch 11 and the second sub-branch 21 .
  • the first sub-branch 11 and the second sub-branch 21 play a major role in dividing the voltage, and the high-frequency impedance modes of the first sub-branch 11 and the second sub-branch 21 can be much larger than High-frequency capacitive reactance modes of the second capacitive element C2 and the first capacitive element C1.
  • R 7 exemplarily depicts the case where the first sub-branch 11 includes the first resistive element R1 and the second sub-branch 21 includes the second resistive element R2, the high-frequency impedance mode of the second impedance branch 20
  • R 2 is the resistance value of the second resistive element R2.
  • the smaller the C 2 the larger the
  • the smaller the R 2 the smaller the
  • the first capacitive element C1 and the second capacitive element C2 play the main role of voltage dividing during normal power supply and in the power frequency voltage state. When a surge such as a lightning strike occurs, the first resistive element R1 and the second resistive element R2 play a major role in dividing the voltage.
  • a surge such as a lightning strike
  • the DC breakdown voltage of the discharge circuit is 3000V
  • the pulse voltage ie the impulse breakdown voltage
  • the AC withstand voltage is 1600VAC
  • the insulation resistance is greater than 1G ⁇
  • the pole of the triode gas discharge tube GDT1 is
  • the inter-capacitance (equivalent to the equivalent capacitance after the first capacitive element C1 and the second capacitive element C2 are connected in series) is less than or equal to the capacitance of the second capacitive element C2.
  • the impact breakdown voltage of the triode gas discharge tube can be reduced by 30% to 60%.
  • the devices that mainly divide the voltage are the first capacitive element C1 and the second capacitive element C2, according to the ratio of the first capacitive element C1 to the second capacitive element C2, and the three-pole gas discharge
  • the ratio of the voltage V BR2 , the highest DC withstand voltage when the entire circuit does not break down is V BR3
  • the AC withstand voltage is the value of V BR3 /1.414
  • the 20% error of the discharge tube is planned
  • the withstand voltage of the final solution is 1600VAC.
  • the main voltage dividing devices are the first resistive element R1 and the second resistive element R2, and the ratio of R 1 : R 2 is 10:1, so the voltage division priority is the first pole N1 and the second resistive element R2.
  • V BR1 600V DC breakdown voltage
  • the first sub-branch 11 includes a first resistive element R1
  • the second sub-branch 21 includes a second resistive element R2, where R 1 >5R 2 , where R 1 is the resistance value of the first resistive element R1, and R 2 is the resistance value of the second resistive element R2.
  • the larger R 1 is compared to R 2 , when a surge such as a lightning strike occurs, the higher the voltage of the discharge gap between the first pole N1 and the second pole N2 of the triode gas discharge tube GDT1, the higher the voltage of the discharge gap between the first pole N1 and the second pole N2 of the triode gas discharge tube GDT1.
  • FIG. 8 is a schematic structural diagram of another discharge circuit provided by an embodiment of the present application.
  • FIG. 8 exemplarily depicts the case where the first sub-branch 11 includes the first resistive element R1 and the second sub-branch 21 includes the second inductive element L2, and the high-frequency impedance mode of the second impedance branch 20
  • L 2 is the inductance value of the second inductive element L2.
  • the smaller the C 2 the larger the
  • the first capacitive element C1 and the second capacitive element C2 play a main role of voltage dividing.
  • the first resistive element R1 and the second inductive element L2 play a major role in dividing the voltage.
  • the first sub-branch 11 includes a first resistive element R1
  • the second sub-branch 21 includes a second inductive element L2, where R 1 >5
  • FIG. 9 is a schematic structural diagram of yet another discharge circuit provided by an embodiment of the present application.
  • FIG. 9 exemplarily depicts the case where the first sub-branch 11 includes the first inductive element L1, and the second sub-branch 21 includes the second inductive element L2.
  • the first capacitive element C1 and the second capacitive element C2 play a main role of voltage dividing.
  • the first inductive element L1 and the second inductive element L2 play the main role of dividing the voltage.
  • the first sub-branch 11 includes a first inductive element L1
  • the second sub-branch 21 includes a second inductive element L2, where L 1 >5L 2 , wherein , L1 is the inductance value of the first inductive element L1, and L2 is the inductance value of the second inductive element L2.
  • the larger L 1 is compared to L 2 , the higher the discharge gap voltage between the first pole N1 and the second pole N2 of the triode gas discharge tube GDT1 when a surge such as a lightning strike occurs, the triode gas discharge tube GDT1
  • the DC breakdown voltage of the gas discharge tube GDT1 is the impulse breakdown voltage of the discharge gap.
  • FIG. 10 is a schematic structural diagram of another discharge circuit provided by an embodiment of the present application.
  • FIG. 10 exemplarily depicts the case where the first sub-branch 11 includes the first inductive element L1, and the second sub-branch 21 includes the second resistive element R2.
  • the first capacitive element C1 and the second capacitive element C2 play a main role of voltage dividing.
  • the first inductive element L1 and the second resistive element R2 play a major role in dividing the voltage.
  • the first sub-branch 11 includes a first inductive element L1
  • the second sub-branch 21 includes a second resistive element R2,
  • the higher the modulus value of the high-frequency inductive reactance of L 2 than that of R 2 the higher the discharge gap voltage between the first pole N1 and the second pole N2 of the three-pole gas discharge tube GDT1 when a surge such as a lightning strike occurs.
  • V BR1 : V BR2
  • V BR1 : V BR2 C 2 : C 1
  • V BR1 is the discharge gap between the first pole N1 and the second pole N2 of the three-pole gas discharge tube GDT1
  • V BR2 is the DC breakdown voltage of the discharge gap between the second pole N2 and the third pole N3 of the three-pole gas discharge tube GDT1
  • C 1 is the capacitance of the first capacitive element C1
  • C 2 is the capacitance of the second capacitive element C2.
  • V BR1 the lower the impulse breakdown voltage of the triode gas discharge tube GDT1, and the smaller the protection dead zone, but the V BR1 cannot be too small, and it is also necessary to ensure that the triode gas discharge tube GDT1 will not be turned on under the power frequency state.
  • FIG. 11 is a schematic structural diagram of another discharge circuit provided by the embodiment of the present application, and the discharge circuit further includes a first varistor MOV1.
  • the third pole N3 of the triode gas discharge tube GDT1 is electrically connected to the second terminal V2 of the discharge circuit through the first varistor MOV1.
  • of the second impedance branch 20 is greater than the high-frequency impedance mode of the inter-electrode capacitance of the first varistor MOV1 which is Among them, C 4 is the capacitance value of the inter-electrode capacitance of the first varistor MOV1, so that when a surge such as a lightning strike occurs, the partial pressure of the triode gas discharge tube GDT1 is large, and the first varistor MOV1 is turned on; The partial pressure is small, after the conduction.
  • the capacitance of the second capacitive element C2 is smaller than the capacitance of the inter-electrode capacitance of the first varistor MOV1.
  • the inter-electrode capacitance of the first varistor MOV1 may be the parasitic capacitance of the first varistor MOV1.
  • the gas discharge tube is used with a varistor, and the low leakage current characteristic of the gas discharge tube when it is not turned on is used to overcome the problem that the leakage current is too large when a single varistor is used and it is easy to catch fire.
  • the high voltage combined by the clamping high voltage characteristic of the varistor and the gas discharge tube is far greater than the working voltage of the power supply, so that the current of the power supply cannot be poured into the circuit, which is equivalent to a barrage.
  • FIG. 12 is a schematic structural diagram of another discharge circuit provided by the embodiment of the application.
  • the first pole N1 of the triode gas discharge tube GDT1 is discharged through the first varistor MOV1 and discharged
  • the first terminal V1 of the circuit is electrically connected.
  • the discharge circuit further includes a second varistor MOV2.
  • the pole of the three-pole gas discharge tube GDT1 connected to the first varistor MOV1 is electrically connected to the third terminal V3 of the discharge circuit via the second varistor MOV2.
  • of the second impedance branch 20 is greater than the high-frequency impedance mode of the inter-electrode capacitance of the second varistor MOV2 which is Among them, C 5 is the capacitance value of the inter-electrode capacitance of the second varistor MOV2, so that when a surge such as a lightning strike occurs on the second terminal V2 and the third terminal V3 of the discharge circuit, the three-pole gas discharge tube GDT1 When the partial pressure is large, it is turned on first; the partial pressure of the second varistor MOV2 is small, and it is turned on later.
  • the capacitance of the second capacitive element C2 is smaller than the capacitance of the inter-electrode capacitance of the second varistor MOV2.
  • the inter-electrode capacitance of the second varistor MOV2 may be the parasitic capacitance of the second varistor MOV2.
  • the first terminal V1 of the discharge circuit may be electrically connected to the live wire
  • the third terminal V3 of the discharge circuit may be electrically connected to the neutral wire
  • the second terminal V2 of the discharge circuit may be grounded.
  • FIG. 13 is a schematic structural diagram of another discharge circuit provided by the embodiment of the present application, and the discharge circuit further includes K two-pole gas discharge tubes GDT2 and K third capacitors C3, Wherein, K is an integer greater than or equal to 2, and K two-pole gas discharge tubes GDT2 are connected in series to form a first series branch 40 .
  • the first pole N1 of the three-pole gas discharge tube GDT1 is electrically connected to the first terminal V1 of the discharge circuit through the first series branch 40; K two-pole gas discharge tubes GDT2 are connected in series to form K+1 first nodes N4, except for Except for the first node N4 connected to the first end X1 of the first series branch 40, the remaining K first nodes N4 are in one-to-one correspondence with the K third capacitors C3, and any first node N4 is connected to the corresponding third capacitor C3.
  • the DC breakdown voltage V BR4 of the two-pole gas discharge tube GDT2 is less than the discharge gap between the first pole N1 and the second pole N2 of the three-pole gas discharge tube GDT1. DC breakdown voltage.
  • of the second impedance branch 20 is greater than the high-frequency impedance mode of the third capacitor C3 which is Among them, C3 is the capacitance value of the third capacitor C3, so that when a surge such as a lightning strike occurs, the partial pressure of the three-pole gas discharge tube GDT1 is large and conducts first; the partial pressure of a plurality of series-connected two-pole gas discharge tubes GDT2 small, after turn-on.
  • the capacitance of the second capacitive element C2 is smaller than the capacitance of the third capacitor C3.
  • the K bipolar gas discharge tubes GDT2 can be integrated into a multi-gap gas discharge tube.
  • Multiple series-connected two-pole gas discharge tubes GDT2 can increase the arc voltage, so that after the overvoltage such as lightning strike disappears, when the power frequency current continues to flow through the series-connected two-pole gas discharge tube GDT2, during the zero-crossing process of the power frequency freewheeling current, the two-pole gas discharges.
  • the discharge tube GDT2 can be turned off by itself, breaking the power frequency freewheeling current.
  • the high freewheeling interrupting capability of multiple series-connected bipolar gas discharge tubes GDT2 enables the freewheeling current under the working voltage of abnormal voltage to automatically cut off the freewheeling current to achieve the purpose of breaking freewheeling.
  • the first pole N1 of the triode gas discharge tube GDT1 is electrically connected to the first terminal X1 of the first series branch 40, and the second terminal X2 of the first series branch 40 is electrically connected to the first terminal V1 of the discharge circuit. connect.
  • the first pole N1 of the triode gas discharge tube GDT1 is electrically connected to the second terminal X2 of the first series branch 40, and the first terminal X1 of the first series branch 40 is electrically connected to the first terminal V1 of the discharge circuit. connect.
  • FIG. 14 is a schematic structural diagram of another discharge circuit provided by the embodiment of the present application.
  • the second terminal V2 of the circuit is electrically connected.
  • the third pole N3 of the triode gas discharge tube GDT1 is electrically connected to the first terminal X1 of the first series branch 40, and the second terminal X2 of the first series branch 40 is electrically connected to the second terminal V2 of the discharge circuit. connect.
  • the third pole N3 of the triode gas discharge tube GDT1 is electrically connected to the second terminal X2 of the first series branch 40, and the first terminal X1 of the first series branch 40 is electrically connected to the second terminal V2 of the discharge circuit. connect.
  • the three-pole gas discharge tube may be an open-circuit failure type gas discharge tube or a repeatable freewheeling and breaking type gas discharge tube.
  • the repeatable freewheeling type gas discharge tube can break the freewheeling current and recover by itself when the freewheeling current flows through the freewheeling type gas discharge tube, so as to realize the discharge device. of repeated use.
  • the electrodes in the open-circuit failure type gas discharge tube and the insulating tube body are hermetically connected through a low-temperature insulating sealing adhesive.
  • the open-circuit failure type gas discharge tube is turned on to discharge the surge current.
  • the freewheeling current generated by the normal working voltage after the power supply is restored is injected into the open-circuit failure type gas discharge tube, making the The low-temperature insulating sealing adhesive will melt, allowing outside air to enter the discharge cavity, resulting in open-circuit failure of the open-circuit failure type gas discharge tube. If other devices connected to the open-circuit failure type gas discharge tube are short-circuited and fail, the open-circuit failure gas discharge tube can only withstand one lightning strike or overvoltage and fail.
  • the insulating tube body in the repeatable freewheeling type gas discharge tube may be a retractable corrugated tube, or the insulating tube body is sealedly connected to the electrode through the retractable corrugated tube to form a discharge inner cavity.
  • the retractable bellows is used to discharge between at least two electrodes to make the discharge gas warm up and expand. Tube freewheeling interruption.
  • the retractable corrugated tube is also used to restore the retractable corrugated tube to a preset length when the discharge gas cools to a low temperature region after the freewheeling flow of the gas discharge tube is interrupted. If other devices connected to the repeatable freewheeling type gas discharge tube are short-circuited and fail, the repeatable freewheeling type gas discharge tube can still withstand multiple lightning strikes or overvoltages and fail.
  • Embodiments of the present application provide a surge protection circuit.
  • the surge protection circuit includes the discharge circuit provided by any embodiment of the present application.
  • the surge protection circuit provided by the embodiment of the present application includes the discharge circuit in the above embodiment, so the surge protection circuit provided by the embodiment of the present application also has the beneficial effects described in the above embodiment, which will not be repeated here.
  • Embodiments of the present application provide an ignition circuit.
  • the ignition circuit includes the discharge circuit provided in any embodiment of the present application.
  • the ignition circuit may further include a step-up transformer, a rectifier circuit, an energy storage capacitor and a nozzle.
  • the AC power is boosted and rectified by a step-up transformer and a rectifier circuit, and then charges the energy storage capacitor.
  • the charging voltage of the energy storage capacitor reaches the impulse breakdown voltage of the discharge circuit, it is turned on, and the energy storage capacitor releases the voltage to the nozzle, causing the nozzle to break down and generate electric sparks, thereby igniting the gas in the combustion chamber of the engine, gas equipment, etc. mixture.
  • the discharge circuit can be substituted for the gas discharge tube in the ignition circuit.
  • the ignition circuit provided by the embodiment of the present application includes the discharge circuit in the above embodiment, so the ignition circuit provided by the embodiment of the present application also has the beneficial effects described in the above embodiment, which will not be repeated here.
  • Embodiments of the present application provide an electronic device.
  • FIG. 15 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device 100 includes the discharge circuit provided in any embodiment of the present application.
  • the electronic device 100 may include the surge protection circuit or the ignition circuit provided in any embodiment of the present application.
  • the electronic device 100 may be a television, a notebook computer, an air conditioner, a communication power supply, a video camera, a network switch, and the like.
  • the electronic device provided by the embodiment of the present application includes the discharge circuit in the above-mentioned embodiment. Therefore, the electronic device provided by the embodiment of the present application also has the beneficial effects described in the above-mentioned embodiment, which will not be repeated here.

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

本申请实施例公开了一种放电电路、浪涌保护电路、点火电路及电子设备。该放电电路包括:三极气体放电管、第一阻抗支路和第二阻抗支路,三极气体放电管的第一极通过第一阻抗支路与其第二极电连接;三极气体放电管的第二极通过第二阻抗支路与其第三极电连接;对于同一高频,|Z 11|:|Z 12|≠V BR1:V BR2,其中,|Z 11|为第一阻抗支路的高频阻抗模,|Z 12|为第二阻抗支路的高频阻抗模,V BR1为三极气体放电管的第一极与第二极之间的放电间隙的直流击穿电压,V BR2为三极气体放电管的第二极与第三极之间的放电间隙的直流击穿电压,其中,高频大于工频。

Description

放电电路、浪涌保护电路、点火电路及电子设备
本申请要求在2020年10月22日提交中国专利局、申请号为202011140573.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及过电压保护技术领域,例如涉及一种放电电路、浪涌保护电路、点火电路及电子设备。
背景技术
电磁脉冲(electromagnetic pulse,EMP)和雷击电磁脉冲(Lightning electromagnetic pulse,LEMP)的防护,主要是利用EMP和LEMP的高压特性做针对性的进行防护,气体放电管(Gas Discharge Tube,GDT)正是针对高压或者过压特性设计,利用潘宁效应,在封装空间里充一定气压的气体,在金属电极上涂上阴极材料,使该器件呈现一定的直流耐压特性和脉冲击穿电压特性。有玻璃气体放电管和陶瓷气体放电管。
以直流击穿电压为3000V的GDT为例,该GDT的冲击击穿电压约为3600V,该GDT的所使用的环境多为耐压1500VAC的环境中,该交流环境峰值电压为2121VDC,就算该环境设计把耐压提高20%,设备的耐压是1500*1.2*1.414=2545VDC,从数据上看2545~3600V之间EMP或LEMP是没办法防护的,这个就是该型3000VGDT的盲区,在实际应用中没有很好的办法解决;在实际应用和测试中,设备被EMP和LEMP损坏概率非常高,其它电压等级的GDT都存在同样的问题,冲击击穿电压过高,存在保护盲区。
发明内容
本申请实施例提供一种放电电路、浪涌保护电路、点火电路及电子设备,以降低三极气体放电管的冲击击穿电压,减小保护盲区。
第一方面,本申请实施例提供了一种放电电路,包括:
三极气体放电管,三极气体放电管的第一极与放电电路的第一端电连接,三极气体放电管的第三极与放电电路的第二端电连接;
第一阻抗支路,第一阻抗支路的第一端与三极气体放电管的第一极电连接;第一阻抗支路的第二端与三极气体放电管的第二极电连接;
第二阻抗支路,第二阻抗支路的第一端与三极气体放电管的第二极电连接; 第二阻抗支路的第二端与三极气体放电管的第三极电连接;
对于同一高频,|Z 11|:|Z 12|≠V BR1:V BR2,其中,|Z 11|为第一阻抗支路的高频阻抗模,|Z 12|为第二阻抗支路的高频阻抗模,V BR1为三极气体放电管的第一极与第二极之间的放电间隙的直流击穿电压,V BR2为三极气体放电管的第二极与第三极之间的放电间隙的直流击穿电压,高频大于工频。
进一步地,第一阻抗支路的高频阻抗模大于第二阻抗支路的高频阻抗模;
第一阻抗支路的工频阻抗模小于或等于第二阻抗支路的工频阻抗模;
三极气体放电管的第一极与第二极之间的放电间隙的直流击穿电压小于或等于三极气体放电管的第二极与第三极之间的放电间隙的直流击穿电压。
进一步地,第一阻抗支路包括:串联的第一子支路和第一容性元件,串联后的两端分别与第一阻抗支路的第一端和第二端电连接;第一子支路包括第一阻性元件和第一感性元件中的至少一种;
第二阻抗支路包括:第二容性元件,第一容性元件的容值大于或等于第二容性元件的容值,第一子支路的高频阻抗模大于第二容性元件的高频阻抗模,第一子支路的工频阻抗模小于第二容性元件的工频阻抗模。
进一步地,第二阻抗支路还包括:第二子支路,第二子支路与第二容性元件串联,串联后的两端分别与第二阻抗支路的第一端和第二端电连接;
第二子支路包括第二阻性元件和第二感性元件中的至少一种,第一子支路的高频阻抗模大于第二子支路的高频阻抗模。
进一步地,第一子支路包括第一阻性元件,第二子支路包括第二阻性元件;
R 1>5R 2,其中,R 1为第一阻性元件的阻值,R 2为第二阻性元件的阻值。
进一步地,第一子支路包括第一感性元件,第二子支路包括第二感性元件;
L 1>5L 2,其中,L 1为第一感性元件的电感值,L 2为第二感性元件的电感值。
进一步地,V BR1:V BR2=C 2:C 1,其中,C 1为第一容性元件的容值,C 2为第二容性元件的容值。
进一步地,该放电电路还包括第一压敏电阻,第二容性元件的容值小于第一压敏电阻的极间电容的容值;
其中,三极气体放电管的第一极经第一压敏电阻与放电电路的第一端电连接;或者,三极气体放电管的第三极经第一压敏电阻与放电电路的第二端电连接。
进一步地,该放电电路还包括第二压敏电阻,第二容性元件的容值小于第 二压敏电阻的极间电容的容值;
其中,三极气体放电管与第一压敏电阻连接的那一极经第二压敏电阻与放电电路的第三端电连接。
进一步地,V BR3≥V BR1+V BR2,其中,V BR3为三极气体放电管的第一极与第三极之间的放电间隙的直流击穿电压;
三极气体放电管的第一极与第二极之间的放电间隙和三极气体放电管的第二极与第三极之间的放电间隙之间是连通的。
进一步地,三极气体放电管包括第一端电极、第一绝缘管体、第一中间电极、第二绝缘管体和第二端电极,第一绝缘管体的两管口分别与第一端电极和第一中间电极密封连接,以形成第一放电内腔;第二绝缘管体的两管口分别与第二端电极和第一中间电极密封连接,以形成第二放电内腔;第一中间电极设置有第一通孔,第一通孔连通第一放电内腔和第二放电内腔,第一通孔位于第一端电极和第二端电极相对区域之间,第一放电内腔和第二放电内腔内充有放电气体;
其中,第一端电极作为三极气体放电管的第一极,第一中间电极作为三极气体放电管的第二极,第二端电极作为三极气体放电管的第三极。
进一步地,该放电电路还包括K个两极气体放电管和K个第三电容,其中,K为大于或等于2的整数,K个两极气体放电管串联连接,形成第一串联支路;
三极气体放电管的第一极经第一串联支路与放电电路的第一端电连接;或者,三极气体放电管的第三极经第一串联支路与放电电路的第二端电连接;
K个两极气体放电管串联连接形成K+1个第一节点,除与第一串联支路的第一端连接的第一节点外,其余K个第一节点与K个第三电容一一对应,任一第一节点经对应的第三电容与第一串联支路的第一端电连接;
两极气体放电管的直流击穿电压小于三极气体放电管的第一极与第二极之间的放电间隙的直流击穿电压。
进一步地,高频大于或等于25000Hz,工频为小于或等于68Hz。
进一步地,|Z 11|>5|Z 12|。
第二方面,本申请实施例还提供了一种浪涌保护电路,包括本申请任意实施例提供的放电电路。
第三方面,本申请实施例还提供了一种点火电路,包括本申请任意实施例提供的放电电路。
第四方面,本申请实施例还提供了一种电子设备,包括本申请任意实施例提供的放电电路。
本申请实施例的技术方案中的放电电路包括三极气体放电管、第一阻抗支路和第二阻抗支路,其中,三极气体放电管的第一极与浪涌保护电路的第一电压保护端电连接,三极气体放电管的第三极与浪涌保护电路的第二电压保护端电连接;第一阻抗支路的第一端与三极气体放电管的第一极电连接;第一阻抗支路的第二端与三极气体放电管的第二极电连接;第二阻抗支路的第一端与三极气体放电管的第二极电连接;第二阻抗支路的第二端与三极气体放电管的第三极电连接;对于同一高频,|Z 11|:|Z 12|≠V BR1:V BR2,其中,|Z 11|为第一阻抗支路的高频阻抗模,|Z 12|为第二阻抗支路的高频阻抗模,V BR1为三极气体放电管的第一极与第二极之间的放电间隙的直流击穿电压,V BR2为三极气体放电管的第二极与第三极之间的放电间隙的直流击穿电压,其中,高频大于工频,以使得在发生雷击等浪涌冲击时,三极气体放电管的第一极与第二极之间的放电间隙和三极气体放电管的第二极与第三极之间的放电间隙不同时达到各自的冲击击穿电压,先发生击穿的放电间隙产生大量阴电子,随着另一个放电间隙的电压升高,阴电子在电场作用下击穿另一个放电间隙,三极气体放电管的实际冲击击穿电压V BR0'小于三极气体放电管第一极与第二极之间的放电间隙的冲击击穿电压V BR1'和三极气体放电管的第二极与第三极之间的放电间隙的冲击击穿电压V BR2'的和,即V BR0'<V BR1'+V BR2',解决了在发生雷击等浪涌冲击时,在浪涌冲击电压增大到直流击穿电压等于V BR1+V BR2的两极气体放电管的冲击击穿电压时,两极气体放电管将被击穿导通,导致冲击击穿电压过高,存在保护盲区的问题。
附图说明
图1为本申请实施例提供的一种放电电路的结构示意图;
图2为本申请实施例提供的一种放电电路的应用场景;
图3为本申请实施例提供的一种三极气体放电管的剖面结构示意图;
图4为本申请实施例提供的又一种三极气体放电管的剖面结构示意图;
图5为本申请实施例提供的又一种放电电路的结构示意图;
图6为本申请实施例提供的又一种放电电路的结构示意图;
图7为本申请实施例提供的又一种放电电路的结构示意图;
图8为本申请实施例提供的又一种放电电路的结构示意图;
图9为本申请实施例提供的又一种放电电路的结构示意图;
图10为本申请实施例提供的又一种放电电路的结构示意图;
图11为本申请实施例提供的又一种放电电路的结构示意图;
图12为本申请实施例提供的又一种放电电路的结构示意图;
图13为本申请实施例提供的又一种放电电路的结构示意图;
图14为本申请实施例提供的又一种放电电路的结构示意图;
图15为本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
本申请实施例提供一种放电电路。图1为本申请实施例提供的一种放电电路的结构示意图。图2为本申请实施例提供的一种放电电路的应用场景。该放电电路包括:三极气体放电管GDT1、第一阻抗支路10和第二阻抗支路20。
其中,三极气体放电管GDT1的第一极N1与放电电路的第一端V1电连接,三极气体放电管GDT1的第三极N3与放电电路的第二端V2电连接;第一阻抗支路10的第一端与三极气体放电管GDT1的第一极N1电连接;第一阻抗支路10的第二端与三极气体放电管GDT1的第二极N2电连接;第二阻抗支路20的第一端与三极气体放电管GDT1的第二极N2电连接;第二阻抗支路20的第二端与三极气体放电管GDT1的第三极N3电连接;对于同一高频,|Z 11|:|Z 12|≠V BR1:V BR2,其中,|Z 11|为第一阻抗支路10的高频阻抗模,|Z 12|为第二阻抗支路20的高频阻抗模,V BR1为三极气体放电管GDT1的第一极N1与第二极N2之间的放电间隙的直流击穿电压,V BR2为三极气体放电管GDT1的第二极N2与第三极N3之间的放电间隙的直流击穿电压,其中,高频大于工频。
其中,第一阻抗支路10可包括下述至少一种元件:阻性元件、感性元件和容性元件,该元件之间可以是串联和/或并联等方式连接,本申请实施例对此不做限定。第一阻抗支路10的阻抗模可随频率的增大而增大。第二阻抗支路20可包括下述至少一种元件:阻性元件、感性元件和容性元件,该元件之间可以是串联和/或并联等方式连接,本申请实施例对此不做限定。第二阻抗支路20的阻抗模可随频率的增大而减小。第一阻抗支路10包括电容,和/或,第二阻抗支路20包括容性元件,即第一阻抗支路10和第二阻抗支路20中的至少一个包括电容,以避免只用电感和电阻会引起绝缘下降的情况发生。阻性元件可以包括 电阻。感性元件可包括电感。电感可以是磁珠电感,相比于普通电感,体积较小,成本较低。容性元件可包括下述至少一种:电容和带极间电容的元件。带极间电容的元件可包括压敏电阻或瞬态抑制二极管。图2示例性的画出放电电路应用在浪涌保护电路中的情况。放电电路1的第一端V1可与第一交流供电线电连接,放电电路1的第二端V2可与第二交流供电线电连接,示例性的,第一交流供电线可以是火线L,第二交流供电线可以是零线N。放电电路1可在第一交流供电线与第二交流供电线上发生浪涌干扰等过电压时导通,以泄放浪涌电流,以实现对待保护电路2的过电压保护。
其中,|Z 11|:|Z 12|≠V BR1:V BR2,以使在放电电路的第一端V1和第二端V2之间的电压发生高频浪涌冲击干扰时,三极气体放电管GDT1的第一极N1与第二极N2之间的放电间隙和三极气体放电管GDT1的第二极N2与第三极N3之间的放电间隙不同时达到各自的冲击击穿电压。
直流击穿电压可以是在上升陡度低于100V/s的电压作用下,气体放电管的放电间隙开始击穿的平均电压值。冲击击穿电压可以是在规定上升陡度的暂态电压脉冲作用下,放电管的放电间隙开始击穿的电压值,规定上升陡度可以是100V/us或1KV/us。放电管的响应时间或动作时延与电压脉冲的上升陡度有关,对于不同的上升陡度,放电管的冲击击穿电压是不同的。直流击穿电压越小的放电间隙,其冲击击穿电压越小。三极气体放电管GDT1的各放电间隙的直流击穿电压和冲击击穿电压可以是在未接入第一阻抗支路10和第二阻抗支路20时测试得到的。
在放电电路的第一端V1和第二端V2之间的电压发生高频浪涌冲击干扰时,浪涌电压的频率很高,三极气体放电管GDT1的第一极N1与第二极N2之间的放电间隙和三极气体放电管GDT1的第二极N2与第三极N3之间的放电间隙中的一个放电间隙的电压先达到其冲击击穿电压时发生击穿,此时另一个放电间隙的电压未达到其冲击击穿电压。由于先发生击穿的放电间隙之间的电压转为辉光电压,并在先发生击穿的放电间隙之间产生大量阴电子,由于先发生击穿的放电间隙的电压降低,浪涌电压将几乎完全施加在另一个放电间隙,随着另一个放电间隙的电压升高,阴电子在电场作用下击穿另一个放电间隙,后整个间隙转弧光电压,泄放电流。此时,三极气体放电管GDT1的实际冲击击穿电压V BR0'大于先发生击穿的放电间隙的冲击击穿电压,三极气体放电管GDT1的实际冲击击穿电压V BR0'小于三极气体放电管GDT1第一极N1与第二极N2之间的放电间隙的冲击击穿电压V BR1'和三极气体放电管GDT1的第二极N2与第三极N3之间的放电间隙的冲击击穿电压V BR2'的和,即V BR0'<V BR1'+V BR2'。
其中,若|Z 11|:|Z 12|>V BR1:V BR2,则在发生雷击等浪涌冲击时,三极气体 放电管GDT1的第一极N1与第二极N2之间的放电间隙先发生击穿。若|Z 11|:|Z 12|<V BR1:V BR2,则在发生雷击等浪涌冲击时,三极气体放电管GDT1的第二极N2与第三极N3之间的放电间隙先发生击穿。
通过在三极气体放电管GDT1的第一极N1与第二极N2上接入第一阻抗支路10,在三极气体放电管GDT1的第二极N2与第三极N3上接入第二阻抗支路20,以使得在发生雷击等浪涌冲击时,三极气体放电管的第一极与第二极之间的放电间隙和三极气体放电管的第二极与第三极之间的放电间隙不同时达到各自的冲击击穿电压,先发生击穿的放电间隙产生大量阴电子,随着另一个放电间隙的电压升高,阴电子在电场作用下击穿另一个放电间隙,三极气体放电管GDT1整个将被击穿导通,三极气体放电管GDT1的实际冲击击穿电压V BR0'小于三极气体放电管GDT1第一极N1与第二极N2之间的放电间隙的冲击击穿电压V BR1'和三极气体放电管GDT1的第二极N2与第三极N3之间的放电间隙的冲击击穿电压V BR2'的和,即V BR0'<V BR1'+V BR2',故三极气体放电管GDT1具有较低的冲击击穿电压,将接有第一阻抗支路10和第二阻抗支路20的三极气体放电管GDT1,替代直流击穿电压等于V BR1+V BR2的两极气体放电管,解决了在发生雷击等浪涌冲击时,在浪涌冲击电压增大到直流击穿电压等于V BR1+V BR2的两极气体放电管的冲击击穿电压时,两极气体放电管将被击穿导通,导致冲击击穿电压过高,存在保护盲区的问题。
本实施例的技术方案中的放电电路包括三极气体放电管、第一阻抗支路和第二阻抗支路,其中,三极气体放电管的第一极与放电电路的第一端电连接,三极气体放电管的第三极与放电电路的第二端电连接;第一阻抗支路的第一端与三极气体放电管的第一极电连接;第一阻抗支路的第二端与三极气体放电管的第二极电连接;第二阻抗支路的第一端与三极气体放电管的第二极电连接;第二阻抗支路的第二端与三极气体放电管的第三极电连接;对于同一高频,|Z 11|:|Z 12|≠V BR1:V BR2,其中,|Z 11|为第一阻抗支路的高频阻抗模,|Z 12|为第二阻抗支路的高频阻抗模,V BR1为三极气体放电管的第一极与第二极之间的放电间隙的直流击穿电压,V BR2为三极气体放电管的第二极与第三极之间的放电间隙的直流击穿电压其中,高频大于工频,以使得在发生雷击等浪涌冲击时,三极气体放电管的第一极与第二极之间的放电间隙和三极气体放电管的第二极与第三极之间的放电间隙不同时达到各自的冲击击穿电压,先发生击穿的放电间隙产生大量阴电子,随着另一个放电间隙的电压升高,阴电子在电场作用下击穿另一个放电间隙,三极气体放电管的实际冲击击穿电压V BR0'小于三极气体放电管第一极与第二极之间的放电间隙的冲击击穿电压V BR1'和三极气体放电管的第二极与第三极之间的放电间隙的冲击击穿电压V BR2'的和,即V BR0'<V BR1'+V BR2',解决了在发生雷击等浪涌冲击时,在浪涌冲击电压增大到直流击穿电 压等于V BR1+V BR2的两极气体放电管的冲击击穿电压(等于V BR1'+V BR2')时,两极气体放电管将被击穿导通,导致冲击击穿电压过高,存在保护盲区的问题。
可选的,第一阻抗支路10的高频阻抗模|Z 11|大于第二阻抗支路20的高频阻抗模|Z 12|,即|Z 11|>|Z 12|。可选的。三极气体放电管GDT1的第一极N1与第二极N2之间的放电间隙的直流击穿电压V BR1小于或等于三极气体放电管GDT1的第二极N2与第三极N3之间的放电间隙的直流击穿电压V BR2,即V BR1≤V BR2
在发生雷击等浪涌冲击时,浪涌电压的频率很高,由于|Z 11|>|Z 12|,V BR1≤V BR2,可知直流击穿电压小的放电间隙(三极气体放电管GDT1的第一极N1与第二极N2之间的放电间隙)电压较高,直流击穿电压大的放电间隙(三极气体放电管GDT1的第二极N2与第三极N3之间的放电间隙)电压较低,直流击穿电压小的放电间隙先发生击穿,三极气体放电管GDT1的第一极N1与第二极N2之间的电压转为辉光电压,并在三极气体放电管GDT1的第一极N1与第二极N2之间的放电间隙之间产生大量阴电子,随着三极气体放电管GDT1的第二极N2与第三极N3之间的电压升高,阴电子在电场作用下击穿三极气体放电管GDT1的第二极N2与第三极N3之间的放电间隙,后整个间隙转弧光电压,泄放电流。此时,三极气体放电管GDT1的实际冲击击穿电压V BR0'大于三极气体放电管GDT1的直流击穿电压小的放电间隙的冲击击穿电压V BR1',小于三极气体放电管GDT1的直流击穿电压大的放电间隙的冲击击穿电压V BR2',即V BR1'<V BR0'<V BR2'。
|Z 11|越大,|Z 12|越小,在发生雷击等浪涌冲击时,三极气体放电管GDT1的第一极N1与第二极N2之间的放电间隙电压越高,三极气体放电管GDT1的第二极N2与第三极N3之间的放电间隙越低。若|Z 11|远大于|Z 12|,则浪涌冲击电压几乎完全施加在三极气体放电管GDT1的第一极N1与第二极N2之间,在浪涌冲击电压增大到三极气体放电管GDT1的直流击穿电压小的放电间隙的冲击击穿电压时,三极气体放电管GDT1将被击穿导通。
通过在三极气体放电管GDT1的第一极N1与第二极N2上接入第一阻抗支路10,在三极气体放电管GDT1的第二极N2与第三极N3上接入第二阻抗支路20,以使得在发生雷击等浪涌冲击时,在浪涌冲击电压增大到三极气体放电管GDT1的直流击穿电压小的放电间隙的冲击击穿电压时,三极气体放电管GDT1将被击穿导通,故三极气体放电管GDT1具有较低的冲击击穿电压,将接有第一阻抗支路10和第二阻抗支路20的三极气体放电管GDT1,替代直流击穿电压等于V BR1+V BR2的两极气体放电管,解决了在发生雷击等浪涌冲击时,在浪涌冲击电压增大到直流击穿电压等于V BR1+V BR2的两极气体放电管的冲击击穿电压 时,两极气体放电管将被击穿导通,导致冲击击穿电压过高,存在保护盲区的问题。
可选的,第一阻抗支路10的工频阻抗模|Z 21|小于或等于第二阻抗支路20的工频阻抗模|Z 22|,即|Z 21|≤|Z 22|。
正常供电时,在工频电压状态时,由于|Z 21|≤|Z 22|,故三极气体放电管GDT1的第一极N1与第二极N2之间的电压小于或等于极气体放电管GDT1的第二极N2与第三极N3之间的电压,即直流击穿电压大的放电间隙之间的分压较大,直流击穿电压小的放电间隙之间的分压较小,以保证整个电路不发生击穿,保证交流耐压水平。正常供电时,三极气体放电管GDT1不导通,三极气体放电管GDT1的第一极N1与第二极N2之间的电压小于三极气体放电管GDT1的第一极N1与第二极N2之间的放电间隙的开启电压;极气体放电管GDT1的第二极N2与第三极N3之间的电压小于三极气体放电管GDT1的第二极N2与第三极N3之间的放电间隙的开启电压。可选的,高频f H大于或等于25000Hz。高频的大小可与雷击等浪涌冲击的频率相等。可选的,工频f L为小于或等于68Hz。工频可为正常工作时,供电电压的频率。可选的,工频f L可以是50Hz、60Hz或0Hz。正常工作时,供电电压可以是交流或直流。
可选的,在上述实施例的基础上,|Z 11|>5|Z 12|,其中,|Z 11|为第一阻抗支路10的高频阻抗模,|Z 12|为第二阻抗支路20的高频阻抗模。|Z 11|相比于|Z 12|越大,在发生雷击等浪涌冲击时,三极气体放电管GDT1的第一极N1与第二极N2之间的放电间隙电压越高,三极气体放电管GDT1的第二极N2与第三极N3之间的放电间隙越低,三极气体放电管GDT1越早被击穿导通,故三极气体放电管GDT1的冲击击穿电压越低,越接近三极气体放电管GDT1的直流击穿电压小的放电间隙的冲击击穿电压。
可选的,V BR3≥V BR1+V BR2,V BR3的大小要满足三极气体放电管的直流击穿电压水平。其中,V BR1为三极气体放电管GDT1的第一极N1与第二极N2之间的放电间隙的直流击穿电压,V BR2为三极气体放电管GDT1的第二极N2与第三极N3之间的放电间隙的直流击穿电压,V BR3为三极气体放电管GDT1的第一极N1与第三极N3之间的放电间隙的直流击穿电压。
可选的,三极气体放电管GDT1的第一极N1与第二极N2之间的放电间隙和三极气体放电管GDT1的第二极N2与第三极N3之间的放电间隙之间是连通的,以使在发生雷击等浪涌冲击时,三极气体放电管GDT1的第一极N1与第二极N2之间的放电间隙发生击穿后,三极气体放电管GDT1的第一极N1与第二极N2之间的放电间隙之间产生的阴电子,在电场作用下移动至三极气体放电管GDT1的第二极N2与第三极N3之间的放电间隙,以使三极气体放电管GDT1 的第二极N2与第三极N3之间的放电间隙快速击穿导通。
可选的,在上述实施例的基础上,图3为本申请实施例提供的一种三极气体放电管的剖面结构示意图,三极气体放电管GDT1包括第一端电极31、第一绝缘管体32、第一中间电极33、第二绝缘管体34和第二端电极35,第一绝缘管体32的两管口分别与第一端电极31和第一中间电极33密封连接,以形成第一放电内腔36;第二绝缘管体34的两管口分别与第二端电极35和第一中间电极33密封连接,以形成第二放电内腔37;第一中间电极33设置有第一通孔38,第一通孔38连通第一放电内腔36和第二放电内腔37,第一通孔38位于第一端电极31和第二端电极35相对区域之间,第一放电内腔36和第二放电内腔37内充有放电气体;其中,第一端电极31作为三极气体放电管GDT1的第一极N1,第一中间电极33作为三极气体放电管GDT1的第二极N2,第二端电极35作为三极气体放电管GDT1的第三极N3。三极气体放电管GDT1的第一极N1与第二极N2之间的放电间隙为D1,三极气体放电管GDT1的第二极N2与第三极N3之间的放电间隙为D2,三极气体放电管GDT1的第一极N1与第三极N3之间的放电间隙为D3。其中,D1<D2,D3=D1+D2,V BR3=V BR1+V BR2
可选的,在上述实施例的基础上,图4为本申请实施例提供的又一种三极气体放电管的剖面结构示意图,三极气体放电管GDT1包括第三端电极41、第二绝缘管体42、第一内电极43、第二内电极44和绝缘部件45,第三端电极41与第三绝缘管体42的管口通过焊料密封连接,以形成放电内腔,放电内腔内充有放电气体;第一内电极43和第二内电极44间隔设置,第一内电极43和第二内电极44位于放电内腔内,两个内电极与第三端电极间隔设置;内电极的临近第三端电极的表面与第三端电极41的临近放电内腔的内侧表面的部分平行且相对,以形成第一放电间隙;相邻两个内电极相对的表面平行,以形成第二放电间隙,第三绝缘管体42的延伸方向平行于相邻两个内电极相对的表面,第一放电间隙和第二放电间隙位于第三绝缘管体42的容纳空间内。第三绝缘管体42具有两个管口,第三绝缘管体42的一个管口与第三端电极41通过焊料密封连接,以形成放电内腔,第三绝缘管体42的另一个管口与绝缘部件45通过焊料密封连接,所有内电极设置有引脚,所有内电极的引脚穿过绝缘部件,并延伸至放电内腔的外面。其中,第一内电极43作为三极气体放电管GDT1的第一极N1,第三端电极41作为三极气体放电管GDT1的第二极N2,第二内电极35作为三极气体放电管GDT1的第三极N3。可根据需要设置D1、D2和D3的大小,以使V BR3≥V BR1+V BR2,进而满足电路所需的直流击穿电压水平。
可选的,在上述实施例的基础上,图5为本申请实施例提供的又一种放电电路的结构示意图,第一阻抗支路10包括:串联的第一子支路11和第一容性元件C1,串联后的两端分别与第一阻抗支路10的第一端和第二端电连接;第一 子支路11包括第一阻性元件R1和第一感性元件L1中的至少一种。
其中,图5示例性的画出第一子支路11包括第一阻性元件R1的情况,第一阻抗支路10的高频阻抗模
Figure PCTCN2021125460-appb-000001
w H=2πgf H,f H为高频频率;第一阻抗支路10的工频阻抗模
Figure PCTCN2021125460-appb-000002
w L=2πgf L,f L为工频频率。其中,其中,R 1为第一阻性元件R1的阻值,C 1为第一容性元件C1的容值。R 1越大,|Z 11|越大。C 1越大,|Z 21|越小。
图6为本申请实施例提供的又一种放电电路的结构示意图,图6示例性的画出第一子支路11包括第一感性元件L1的情况,第一阻抗支路10的高频阻抗模
Figure PCTCN2021125460-appb-000003
第一阻抗支路10的工频阻抗模
Figure PCTCN2021125460-appb-000004
其中,L 1为第一感性元件L1的电感值。L 1越大,f H越大,|Z 11|越大。
可选的,在上述实施的基础上,继续参见图5和图6,第二阻抗支路20包括:第二容性元件C2,第一容性元件C1的容值大于或等于第二容性元件C2的容值,第一子支路11的高频阻抗模大于第二容性元件C2的高频阻抗模,第一子支路11的工频阻抗模小于第二容性元件C2的工频阻抗模。
其中,正常供电时,在工频电压状态时,由第一容性元件C1和第二容性元件C2起主要分压作用,第一容性元件C1和第二容性元件C2的工频容抗模可远大于第一子支路11的工频阻抗模。在发生雷击等浪涌冲击时,由第一子支路11起主要作用,第一子支路11的高频阻抗模可远大于第二容性元件C2和第一容性元件C1的高频容抗模。
其中,第二阻抗支路20的高频阻抗模
Figure PCTCN2021125460-appb-000005
第二阻抗支路20的工频阻抗模
Figure PCTCN2021125460-appb-000006
其中,C 2为第二容性元件C2的容值。C 2越小,|Z 22|越大。
可选的,在上述实施例的基础上,图7为本申请实施例提供的又一种放电电路的结构示意图,第二阻抗支路20还包括:第二子支路21,第二子支路21与第二容性元件C2串联,串联后的两端分别与第二阻抗支路20的第一端和第二端电连接。可选的,第二子支路21包括第二阻性元件R2和第二感性元件L2中的至少一种,第一子支路11的高频阻抗模大于第二子支路21的高频阻抗模。
其中,正常供电时,在工频电压状态时,由第一容性元件C1和第二容性元 件C2起主要分压作用,第一容性元件C1和第二容性元件C2的工频容抗模可远大于第一子支路11和第二子支路21的工频阻抗模。在发生雷击等浪涌冲击时,由第一子支路11和第二子支路21起主要分压作用,第一子支路11和第二子支路21的高频阻抗模可远大于第二容性元件C2和第一容性元件C1的高频容抗模。
其中,图7示例性的画出第一子支路11包括第一阻性元件R1,第二子支路21包括第二阻性元件R2的情况,第二阻抗支路20的高频阻抗模
Figure PCTCN2021125460-appb-000007
Figure PCTCN2021125460-appb-000008
第二阻抗支路20的工频阻抗模
Figure PCTCN2021125460-appb-000009
其中,R 2为第二阻性元件R2的阻值。C 2越小,|Z 22|越大。R 2越小,|Z 12|越小。其中,正常供电时,在工频电压状态时,由第一容性元件C1和第二容性元件C2起主要分压作用。在发生雷击等浪涌冲击时,由第一阻性元件R1和第二阻性元件R2起主要分压作用。可选的,
Figure PCTCN2021125460-appb-000010
示例性的,如图7所示,放电电路的直流击穿电压3000V,脉冲电压(即冲击击穿电压)为1200V,交流耐压为1600VAC,绝缘阻抗大于1GΩ,三极气体放电管GDT1的极间电容(相当于第一容性元件C1和第二容性元件C2串联后的等效电容)小于或等于第二容性元件C2的容值。可将三极气体放电管的冲击击穿电压降低30%~60%。
当工频电压状态时,主要分压作用的器件为第一容性元件C1与第二容性元件C2,按照第一容性元件C1与第二容性元件C2的比例,以及三极气体放电管GDT1的第一极N1与第二极N2之间的放电间隙的直流击穿电压V BR1与三极气体放电管GDT1的第二极N2与第三极N3之间的放电间隙的直流击穿电压V BR2的比例,得出整个电路不发生击穿时的最高直流耐受是V BR3,交流耐受是V BR3/1.414之值,计划放电管20%误差,得到最终方案的耐受电压为1600VAC。
当浪涌冲击时,主要分压作用的器件为第一阻性元件R1与第二阻性元件R2,R 1:R 2满足10:1,所以电压优先分压为第一极N1与第二极N2之间,因V BR1:V BR2=C 2:C 1=1:4,V BR1=600V直流击穿电压,所以浪涌冲击电压到达1200V之前,第一极N1与第二极N2之间发生击穿,电压转为辉光电压,并在第一极N1与第二极N2的间隙之间产生大量阴电子,随着第二极N2与第三极N3之间的电压升高,阴电子在电场作用下击穿第二极N2与第三极N3的间隙,后整个间隙转弧光电压,泄放电流开始。
可选的,在上述实施例的基础上,继续参见图7,第一子支路11包括第一阻性元件R1,第二子支路21包括第二阻性元件R2,R 1>5R 2,其中,R 1为第一阻性元件R1的阻值,R 2为第二阻性元件R2的阻值。R 1相比于R 2越大,在发生雷击等浪涌冲击时,三极气体放电管GDT1的第一极N1与第二极N2之间的放电间隙的电压越高,三极气体放电管GDT1的第二极N2与第三极N3之间的放电间隙的电压越低,三极气体放电管GDT1越早被击穿导通,故三极气体放电管GDT1的冲击击穿电压越低,越接近三极气体放电管GDT1的直流击穿电压小的放电间隙的冲击击穿电压。
图8为本申请实施例提供的又一种放电电路的结构示意图。图8示例性的画出第一子支路11包括第一阻性元件R1,第二子支路21包括第二感性元件L2的情况,第二阻抗支路20的高频阻抗模
Figure PCTCN2021125460-appb-000011
第二阻抗支路20的工频阻抗模
Figure PCTCN2021125460-appb-000012
其中,L 2为第二感性元件L2的电感值。C 2越小,|Z 22|越大。L 2越小,|Z 12|越小。其中,正常供电时,在工频电压状态时,由第一容性元件C1和第二容性元件C2起主要分压作用。在发生雷击等浪涌冲击时,由第一阻性元件R1和第二感性元件L2起主要分压作用。
可选的,在上述实施例的基础上,继续参见图8,第一子支路11包括第一阻性元件R1,第二子支路21包括第二感性元件L2,R 1>5|jw HL 2|。R 1相比于L 2的高频感抗的模值越大,在发生雷击等浪涌冲击时,三极气体放电管GDT1的第一极N1与第二极N2之间的放电间隙电压越高,三极气体放电管GDT1的第二极N2与第三极N3之间的放电间隙越低,三极气体放电管GDT1越早被击穿导通,故三极气体放电管GDT1的冲击击穿电压越低,越接近三极气体放电管GDT1的直流击穿电压小的放电间隙的冲击击穿电压。
图9为本申请实施例提供的又一种放电电路的结构示意图。图9示例性的画出第一子支路11包括第一感性元件L1,第二子支路21包括第二感性元件L2的情况。其中,正常供电时,在工频电压状态时,由第一容性元件C1和第二容性元件C2起主要分压作用。在发生雷击等浪涌冲击时,由第一感性元件L1和第二感性元件L2起主要分压作用。
可选的,在上述实施例的基础上,继续参见图9,第一子支路11包括第一感性元件L1,第二子支路21包括第二感性元件L2,L 1>5L 2,其中,L 1为第一感性元件L1的电感值,L 2为第二感性元件L2的电感值。L 1相比于L 2越大,在发生雷击等浪涌冲击时,三极气体放电管GDT1的第一极N1与第二极N2之间的放电间隙电压越高,三极气体放电管GDT1的第二极N2与第三极N3之间的 放电间隙越低,三极气体放电管GDT1越早被击穿导通,故三极气体放电管GDT1的冲击击穿电压越低,越接近三极气体放电管GDT1的直流击穿电压小的放电间隙的冲击击穿电压。
图10为本申请实施例提供的又一种放电电路的结构示意图。图10示例性的画出第一子支路11包括第一感性元件L1,第二子支路21包括第二阻性元件R2的情况。其中,正常供电时,在工频电压状态时,由第一容性元件C1和第二容性元件C2起主要分压作用。在发生雷击等浪涌冲击时,由第一感性元件L1和第二阻性元件R2起主要分压作用。
可选的,在上述实施例的基础上,继续参见图10,第一子支路11包括第一感性元件L1,第二子支路21包括第二阻性元件R2,|jw HL 1|>5R 2。L 2的高频感抗的模值相比于R 2越大,在发生雷击等浪涌冲击时,三极气体放电管GDT1的第一极N1与第二极N2之间的放电间隙电压越高,三极气体放电管GDT1的第二极N2与第三极N3之间的放电间隙越低,三极气体放电管GDT1越早被击穿导通,故三极气体放电管GDT1的冲击击穿电压越低,越接近三极气体放电管GDT1的直流击穿电压小的放电间隙的冲击击穿电压。
可选的,在上述实施例的基础上,V BR1:V BR2=|Z 22|:|Z 21|,以使在工频电压状态时,直流击穿电压大的放电间隙之间的分压较大,直流击穿电压小的放电间隙之间的分压较小,以保证整个电路不发生击穿,保证交流耐压水平。
可选的,在上述实施例的基础上,V BR1:V BR2=C 2:C 1,其中,V BR1为三极气体放电管GDT1的第一极N1与第二极N2之间的放电间隙的直流击穿电压,V BR2为三极气体放电管GDT1的第二极N2与第三极N3之间的放电间隙的直流击穿电压,C 1为第一容性元件C1的容值,C 2为第二容性元件C2的容值。V BR1越小,三极气体放电管GDT1的冲击击穿电压越低,保护盲区越小,但是V BR1不能太小,还需要保证三极气体放电管GDT1在工频状态下不会导通。
可选的,在上述实施例的基础上,图11为本申请实施例提供的又一种放电电路的结构示意图,该放电电路还包括第一压敏电阻MOV1。
其中,三极气体放电管GDT1的第三极N3经第一压敏电阻MOV1与放电电路的第二端V2电连接。
其中,对于同一高频,第二阻抗支路20的高频阻抗模|Z 12|大于第一压敏电阻MOV1的极间电容的高频阻抗模
Figure PCTCN2021125460-appb-000013
Figure PCTCN2021125460-appb-000014
其中,C 4为第一压敏电阻MOV1的极间电容的容值,以使在发生雷击等浪涌冲击时,三极气体放电管GDT1的分压大,先导通;第一压敏电阻MOV1的分压小,后导通。 可选的,
Figure PCTCN2021125460-appb-000015
可选的,第二容性元件C2的容值小于第一压敏电阻MOV1的极间电容的容值。第一压敏电阻MOV1的极间电容可为第一压敏电阻MOV1的寄生电容。气体放电管搭配压敏电阻使用,利用气体放电管的在未导通时低漏电流特性克服单独压敏电阻使用时漏电流过大容易起火的问题。利用压敏电阻的钳位高电压特性和气体放电管组合的高电压远远大于电源的工作电压,使得电源的电流灌入不到电路中,相当于拦河坝。
可选的,在上述实施例的基础上,图12为本申请实施例提供的又一种放电电路的结构示意图,三极气体放电管GDT1的第一极N1经第一压敏电阻MOV1与放电电路的第一端V1电连接。
可选的,在上述实施例的基础上,继续参见图12,该放电电路还包括第二压敏电阻MOV2。其中,三极气体放电管GDT1与第一压敏电阻MOV1连接的那一极经第二压敏电阻MOV2与放电电路的第三端V3电连接。
其中,对于同一高频,第二阻抗支路20的高频阻抗模|Z 12|大于第二压敏电阻MOV2的极间电容的高频阻抗模
Figure PCTCN2021125460-appb-000016
Figure PCTCN2021125460-appb-000017
其中,C 5为第二压敏电阻MOV2的极间电容的容值,以使在放电电路的第二端V2和第三端V3上发生雷击等浪涌冲击时,三极气体放电管GDT1的分压大,先导通;第二压敏电阻MOV2的分压小,后导通。可选的,第二容性元件C2的容值小于第二压敏电阻MOV2的极间电容的容值。第二压敏电阻MOV2的极间电容可为第二压敏电阻MOV2的寄生电容。可选的,放电电路的第一端V1可与火线电连接,放电电路的第三端V3可与零线电连接,放电电路的第二端V2可接地。
可选的,在上述实施例的基础上,图13为本申请实施例提供的又一种放电电路的结构示意图,该放电电路还包括K个两极气体放电管GDT2和K个第三电容C3,其中,K为大于或等于2的整数,K个两极气体放电管GDT2串联连接,形成第一串联支路40。
三极气体放电管GDT1的第一极N1经第一串联支路40与放电电路的第一端V1电连接;K个两极气体放电管GDT2串联连接形成K+1个第一节点N4,除与第一串联支路40的第一端X1连接的第一节点N4外,其余K个第一节点N4与K个第三电容C3一一对应,任一第一节点N4经对应的第三电容C3与第一串联支路40的第一端X1电连接;两极气体放电管GDT2的直流击穿电压V BR4小于三极气体放电管GDT1的第一极N1与第二极N2之间的放电间隙的直流击穿电压。
其中,对于同一高频,第二阻抗支路20的高频阻抗模|Z 12|大于第三电容 C3的高频阻抗模
Figure PCTCN2021125460-appb-000018
Figure PCTCN2021125460-appb-000019
其中,C 3为第三电容C3的容值,以使在发生雷击等浪涌冲击时,三极气体放电管GDT1的分压大,先导通;多个串联的两极气体放电管GDT2的分压小,后导通。可选的,第二容性元件C2的容值小于第三电容C3的容值。K个两极气体放电管GDT2可集成为多间隙气体放电管。多个串联的两极气体放电管GDT2可以抬高弧光压,使得雷击等过电压消失后,工频电流继续流过串联的两极气体放电管GDT2时,在工频续电流过零点过程中,两极气体放电管GDT2可自行关断,折断工频续电流。多个串联的两极气体放电管GDT2的高续流遮断能力,使得在异常电压的工作电压下的续流能够自行切断续流达到续流折断的目的。
可选的,三极气体放电管GDT1的第一极N1与第一串联支路40的第一端X1电连接,第一串联支路40的第二端X2与放电电路的第一端V1电连接。可选的,三极气体放电管GDT1的第一极N1与第一串联支路40的第二端X2电连接,第一串联支路40的第一端X1与放电电路的第一端V1电连接。
可选的,在上述实施例的基础上,图14为本申请实施例提供的又一种放电电路的结构示意图,三极气体放电管GDT1的第三极N3经第一串联支路40与放电电路的第二端V2电连接。
可选的,三极气体放电管GDT1的第三极N3与第一串联支路40的第一端X1电连接,第一串联支路40的第二端X2与放电电路的第二端V2电连接。可选的,三极气体放电管GDT1的第三极N3与第一串联支路40的第二端X2电连接,第一串联支路40的第一端X1与放电电路的第二端V2电连接。
可选的,三极气体放电管可以是开路失效型气体放电管或可重复续流折断型气体放电管。可重复续流折断型气体放电管在浪涌电压消失后,供电电压恢复正常时,在续电流流过续流折断型气体放电管时,能够自行折断续电流,能自恢复,以实现放电器件的重复使用。
可选的,开路失效型气体放电管中的电极与绝缘管体之间通过低温绝缘密封粘合物密封连接。在发生浪涌干扰,开路失效型气体放电管导通,以泄放浪涌电流,待浪涌干扰消失后,供电恢复后的正常工作电压产生的续电流灌入开路失效型气体放电管,使得低温绝缘密封粘合物将熔融,使得外界空气进入放电内腔,造成开路失效型气体放电管开路失效。若与开路失效型气体放电管连接的其他器件均短路失效,则该开路失效气体放电管仅能承受一次雷击或过电压而失效。
可选的,可重复续流折断型气体放电管中的绝缘管体可以是可伸缩波纹管,或者,绝缘管体通过可伸缩波纹管与电极密封连接以形成放电内腔。可伸缩波 纹管用于在至少两个电极之间放电使放电气体升温膨胀时,可伸缩波纹管拉伸或收缩,以增大至少两个导电电极的放电电极面之间的放电间隙,使气体放电管续流遮断。可伸缩波纹管还用于在气体放电管续流遮断后,随着放电气体冷却至低温区时,可伸缩波纹管恢复至预设长度。若与可重复续流折断型气体放电管连接的其他器件均短路失效,则该可重复续流折断型气体放电管仍能承受多次雷击或过电压而失效。
本申请实施例提供一种浪涌保护电路。在上述实施例的基础上,继续参见图2,该浪涌保护电路包括本申请任意实施例提供的放电电路。
其中,本申请实施例提供的浪涌保护电路包括上述实施例中的放电电路,因此本申请实施例提供的浪涌保护电路也具备上述实施例中所描述的有益效果,此处不再赘述。
本申请实施例提供一种点火电路。在上述实施例的基础上,该点火电路包括本申请任意实施例提供的放电电路。
其中,可选的,点火电路还可包括升压变压器、整流电路、储能电容和电嘴。在需要点火时,交流电源经升压变压器、整流电路升压整流后,向储能电容充电。当储能电容的充电电压达到放电电路的冲击击穿电压时导通,储能电容向电嘴释放电压,使电嘴击穿产生电火花,从而点燃发动机的燃烧室、燃气设备等中的燃气混合物。可将放电电路替代点火电路中的气体放电管。
本申请实施例提供的点火电路包括上述实施例中的放电电路,因此本申请实施例提供的点火电路也具备上述实施例中所描述的有益效果,此处不再赘述。
本申请实施例提供一种电子设备。图15为本申请实施例提供的一种电子设备的结构示意图。该电子设备100包括本申请任意实施例提供的放电电路。
其中,该电子设备100可包括本申请任意实施例提供的浪涌保护电路或点火电路。电子设备100可以是电视机、笔记本电脑、空调、通信电源、摄像机、网络交换机等。本申请实施例提供的电子设备包括上述实施例中的放电电路,因此本申请实施例提供的电子设备也具备上述实施例中所描述的有益效果,此处不再赘述。

Claims (17)

  1. 一种放电电路,包括:
    三极气体放电管,所述三极气体放电管的第一极与所述放电电路的第一端电连接,所述三极气体放电管的第三极与所述放电电路的第二端电连接;
    第一阻抗支路,所述第一阻抗支路的第一端与所述三极气体放电管的第一极电连接;所述第一阻抗支路的第二端与所述三极气体放电管的第二极电连接;
    第二阻抗支路,所述第二阻抗支路的第一端与所述三极气体放电管的第二极电连接;所述第二阻抗支路的第二端与所述三极气体放电管的第三极电连接;
    对于同一高频,|Z 11|:|Z 12|≠V BR1:V BR2,其中,|Z 11|为所述第一阻抗支路的高频阻抗模,|Z 12|为所述第二阻抗支路的高频阻抗模,V BR1为所述三极气体放电管的第一极与第二极之间的放电间隙的直流击穿电压,V BR2为所述三极气体放电管的第二极与第三极之间的放电间隙的直流击穿电压,其中,所述高频大于工频。
  2. 根据权利要求1所述的放电电路,其中,所述第一阻抗支路的高频阻抗模大于所述第二阻抗支路的高频阻抗模;
    所述第一阻抗支路的工频阻抗模小于或等于所述第二阻抗支路的工频阻抗模;
    所述三极气体放电管的第一极与第二极之间的放电间隙的直流击穿电压小于或等于所述三极气体放电管的第二极与第三极之间的放电间隙的直流击穿电压。
  3. 根据权利要求2所述的放电电路,其中,所述第一阻抗支路包括:串联的第一子支路和第一容性元件,串联后的两端分别与所述第一阻抗支路的第一端和第二端电连接;所述第一子支路包括第一阻性元件和第一感性元件中的至少一种;
    所述第二阻抗支路包括:第二容性元件,所述第一容性元件的容值大于或等于所述第二容性元件的容值,所述第一子支路的高频阻抗模大于所述第二容性元件的高频阻抗模,所述第一子支路的工频阻抗模小于所述第二容性元件的工频阻抗模。
  4. 根据权利要求3所述的放电电路,其中,所述第二阻抗支路还包括:第二子支路,所述第二子支路与所述第二容性元件串联,串联后的两端分别与所述第二阻抗支路的第一端和第二端电连接;
    所述第二子支路包括第二阻性元件和第二感性元件中的至少一种,所述第一子支路的高频阻抗模大于所述第二子支路的高频阻抗模。
  5. 根据权利要求4所述的放电电路,其中,所述第一子支路包括第一阻性元件,所述第二子支路包括第二阻性元件;
    R 1>5R 2,其中,R 1为所述第一阻性元件的阻值,R 2为所述第二阻性元件的阻值。
  6. 根据权利要求4所述的放电电路,其中,所述第一子支路包括第一感性元件,所述第二子支路包括第二感性元件;
    L 1>5L 2,其中,L 1为所述第一感性元件的电感值,L 2为所述第二感性元件的电感值。
  7. 根据权利要求3所述的放电电路,其中,V BR1:V BR2=C 2:C 1,其中,C 1为所述第一容性元件的容值,C 2为所述第二容性元件的容值。
  8. 根据权利要求3所述的放电电路,还包括第一压敏电阻,所述第二容性元件的容值小于所述第一压敏电阻的极间电容的容值;
    其中,所述三极气体放电管的第一极经所述第一压敏电阻与所述放电电路的第一端电连接;或者,所述三极气体放电管的第三极经所述第一压敏电阻与所述放电电路的第二端电连接。
  9. 根据权利要求8所述的放电电路,还包括第二压敏电阻,所述第二容性元件的容值小于所述第二压敏电阻的极间电容的容值;
    其中,所述三极气体放电管与所述第一压敏电阻连接的那一极经所述第二压敏电阻与所述放电电路的第三端电连接。
  10. 根据权利要求2所述的放电电路,其中,
    V BR3≥V BR1+V BR2,其中,V BR3为所述三极气体放电管的第一极与第三极之间的放电间隙的直流击穿电压;
    所述三极气体放电管的第一极与第二极之间的放电间隙和所述三极气体放电管的第二极与第三极之间的放电间隙之间是连通的。
  11. 根据权利要求10所述的放电电路,其中,所述三极气体放电管包括第一端电极、第一绝缘管体、第一中间电极、第二绝缘管体和第二端电极,所述第一绝缘管体的两管口分别与所述第一端电极和所述第一中间电极密封连接,以形成第一放电内腔;所述第二绝缘管体的两管口分别与所述第二端电极和所述第一中间电极密封连接,以形成第二放电内腔;所述第一中间电极设置有第一通孔,所述第一通孔连通所述第一放电内腔和所述第二放电内腔,所述第一通孔位于所述第一端电极和所述第二端电极相对区域之间,所述第一放电内腔和所述第二放电内腔内充有放电气体;
    其中,所述第一端电极作为所述三极气体放电管的第一极,所述第一中间电极作为所述三极气体放电管的第二极,所述第二端电极作为所述三极气体放电管的第三极。
  12. 根据权利要求10所述的放电电路,还包括K个两极气体放电管和K个第三电容,其中,K为大于或等于2的整数,所述K个两极气体放电管串联连接,形成第一串联支路;
    所述三极气体放电管的第一极经所述第一串联支路与所述放电电路的第一端电连接;或者,所述三极气体放电管的第三极经所述第一串联支路与所述放电电路的第二端电连接;
    所述K个两极气体放电管串联连接形成K+1个第一节点,除与所述第一串联支路的第一端连接的第一节点外,其余K个第一节点与所述K个第三电容一一对应,任一所述第一节点经对应的第三电容与所述第一串联支路的第一端电连接;
    所述两极气体放电管的直流击穿电压小于所述三极气体放电管的第一极与第二极之间的放电间隙的直流击穿电压。
  13. 根据权利要求1所述的放电电路,其中,所述高频大于或等于25000Hz,所述工频为小于或等于68Hz。
  14. 根据权利要求2所述的放电电路,其中,
    |Z 11|>5|Z 12|。
  15. 一种浪涌保护电路,包括如权利要求1-14任一项所述的放电电路。
  16. 一种点火电路,包括如权利要求1-7、10-14任一项所述的放电电路。
  17. 一种电子设备,包括如权利要求1-14任一项所述的放电电路。
PCT/CN2021/125460 2020-10-22 2021-10-22 放电电路、浪涌保护电路、点火电路及电子设备 WO2022083708A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011140573.6 2020-10-22
CN202011140573.6A CN112332396A (zh) 2020-10-22 2020-10-22 放电电路、浪涌保护电路、点火电路及电子设备

Publications (1)

Publication Number Publication Date
WO2022083708A1 true WO2022083708A1 (zh) 2022-04-28

Family

ID=74311324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125460 WO2022083708A1 (zh) 2020-10-22 2021-10-22 放电电路、浪涌保护电路、点火电路及电子设备

Country Status (2)

Country Link
CN (1) CN112332396A (zh)
WO (1) WO2022083708A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112332395B (zh) * 2020-10-22 2022-11-29 马鞍山市槟城电子有限公司 放电电路、浪涌保护电路、点火电路及电子设备
CN112332396A (zh) * 2020-10-22 2021-02-05 马鞍山市槟城电子有限公司 放电电路、浪涌保护电路、点火电路及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050099755A1 (en) * 2003-11-10 2005-05-12 David Martin Broadband surge protector with non-resetting current limiter
CN101640956A (zh) * 2009-03-18 2010-02-03 河海大学常州校区 通用型铁路信号灯智能电源电子变换器的设计方法
CN105098993A (zh) * 2015-09-16 2015-11-25 成都比善科技开发有限公司 智能变电站网络报文分析与故障录波系统
CN105098748A (zh) * 2014-07-25 2015-11-25 厦门赛尔特电子有限公司 一种浪涌保护器及提升其暂时过电压耐受能力的方法
CN112332396A (zh) * 2020-10-22 2021-02-05 马鞍山市槟城电子有限公司 放电电路、浪涌保护电路、点火电路及电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4204855B2 (ja) * 2002-12-03 2009-01-07 音羽電機工業株式会社 サージ吸収装置およびサージ吸収回路
JP4983677B2 (ja) * 2008-03-25 2012-07-25 三菱電機株式会社 サージ吸収回路
CZ305623B6 (cs) * 2014-01-03 2016-01-13 Saltek S.R.O. Zapojení zapalovacího obvodu přepěťové ochrany s asymetrickým prvkem
CN104638629B (zh) * 2015-02-13 2019-03-05 菲尼克斯亚太电气(南京)有限公司 分压触发的对称式过电压防雷电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050099755A1 (en) * 2003-11-10 2005-05-12 David Martin Broadband surge protector with non-resetting current limiter
CN101640956A (zh) * 2009-03-18 2010-02-03 河海大学常州校区 通用型铁路信号灯智能电源电子变换器的设计方法
CN105098748A (zh) * 2014-07-25 2015-11-25 厦门赛尔特电子有限公司 一种浪涌保护器及提升其暂时过电压耐受能力的方法
CN105098993A (zh) * 2015-09-16 2015-11-25 成都比善科技开发有限公司 智能变电站网络报文分析与故障录波系统
CN112332396A (zh) * 2020-10-22 2021-02-05 马鞍山市槟城电子有限公司 放电电路、浪涌保护电路、点火电路及电子设备

Also Published As

Publication number Publication date
CN112332396A (zh) 2021-02-05

Similar Documents

Publication Publication Date Title
WO2022083708A1 (zh) 放电电路、浪涌保护电路、点火电路及电子设备
WO2020108034A1 (zh) 一种电涌保护装置及系统
CN102545196B (zh) 一种多层放电间隙型电涌保护器
CN206164495U (zh) 一种带陡化间隙的触发真空开关触发源
CN111276957A (zh) 一种过电压保护装置及电子设备
JP6556333B2 (ja) 多重火花間隙避雷器
CN201663544U (zh) 具有抗电磁干扰和瞬变抑制功能的滤波模块
CN112332394A (zh) 一种浪涌保护电路及电子设备
JP5650914B2 (ja) 直列コンデンサバンクを保護するシステムおよび方法
WO2022083709A1 (zh) 放电电路、浪涌保护电路、点火电路及电子设备
CN111064172A (zh) 保护电路和变桨系统
CN108063432B (zh) 一种高稳定性多极多层间隙型电涌保护器
WO2020108035A1 (zh) 一种电涌保护装置及系统
CN209267172U (zh) 一种电涌保护装置及系统
US9705316B2 (en) Overvoltage protection apparatus and luminaire having such an overvoltage protection apparatus
CN207910454U (zh) 一种高稳定性多极多层间隙型电涌保护器
US20230318288A1 (en) Surge protective device
KR101000484B1 (ko) 방전제어전극을 갖는 방전소자 및 제어장치
CN209298880U (zh) 一种电涌保护装置及系统
CN1467895A (zh) 承载雷电流的火花放电装置
CN212518395U (zh) 一种过电压保护装置及电子设备
JP2004185982A (ja) サージ吸収装置およびサージ吸収回路
CN207098607U (zh) 一种hd高清二合一防雷器
CN214255710U (zh) 一种放电电路及浪涌保护电路
CN211209575U (zh) 一种固态调制器的负载匹配保护电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882122

Country of ref document: EP

Kind code of ref document: A1