WO2020108035A1 - 一种电涌保护装置及系统 - Google Patents

一种电涌保护装置及系统 Download PDF

Info

Publication number
WO2020108035A1
WO2020108035A1 PCT/CN2019/106808 CN2019106808W WO2020108035A1 WO 2020108035 A1 WO2020108035 A1 WO 2020108035A1 CN 2019106808 W CN2019106808 W CN 2019106808W WO 2020108035 A1 WO2020108035 A1 WO 2020108035A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
surge
protector
type surge
surge protection
Prior art date
Application number
PCT/CN2019/106808
Other languages
English (en)
French (fr)
Inventor
张祥贵
Original Assignee
厦门赛尔特电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门赛尔特电子有限公司 filed Critical 厦门赛尔特电子有限公司
Publication of WO2020108035A1 publication Critical patent/WO2020108035A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/041Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using a short-circuiting device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/06Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using spark-gap arresters

Definitions

  • This application relates to the technical field of overvoltage protection, in particular to a surge protection device and system.
  • Surge protection device is an overvoltage protection device connected in electronic equipment or low voltage distribution system, which is mainly used to discharge surge current caused by lightning current, lightning induction and switching operation, and limit the amplitude of overvoltage In order to avoid the damage of the surge current to other equipment in the loop.
  • This surge protection device uses a single gap to discharge lightning impulse current.
  • the surge protection device has a strong ability to discharge lightning impulse current, but due to its blind zone of freewheel interruption, when the freewheel generated by the protected system is large enough (usually in the kiloampere level), the arc is easily The gas generated by the thermal erosion of the insulating material by electromagnetic force or current is sent to the arc extinguishing device.
  • the continuous current is hundreds of amps or tens of amps, the arc is not easily sent to the arc extinguishing device, which may cause the arc extinguishing to fail.
  • the surge protection device realizes arc extinction by setting multiple discharge gaps in the freewheeling channel, which includes N+1 discharge gaps and N capacitance values The same capacitance, each discharge gap is connected in series, the first discharge gap SG 1 is connected to the live wire, the last discharge gap SG N+1 is grounded, one end of each capacitor is connected to the conductive member between the two discharge gaps, and the other end is ground .
  • the capacitor in the trigger circuit will be charged in the trigger process and cannot be discharged in time, so the residual charge affects the next trigger of the surge protector, causing the trigger of the surge protector The voltage rises and the voltage protection level is unstable.
  • the existing surge protection device has the problems of low arc extinction reliability and unstable voltage protection level.
  • a surge protection device and system of the present application can effectively avoid arc extinction failure and can improve the stability of voltage protection.
  • a surge protection device of the present application includes: a first switch type surge protector, a second switch type surge protector and an impedance device; the second switch type surge protector and The first switch-type surge protector is connected in series to form a discharge channel for lightning surge current, and the impedance device is connected in parallel with the first switch-type surge protector to limit the The amplitude of the freewheeling current, and forming a discharge channel of the freewheeling current with the second switch-type surge protector.
  • the surge protection device further includes: a thermal protector connected to the series branch where the second switch-type surge protector is located; the thermal protector acts when the temperature reaches a preset temperature threshold, Cut off the connection to the series branch where the second switch-type surge protector is located.
  • the thermal protector includes a temperature fuse, a resettable thermostat, a thermal disconnector, a bimetal thermal breaker, a mechanical thermal disconnection mechanism, or a low-melting alloy disconnector.
  • the low melting point alloy disconnector includes an elastic metal sheet, and one end of the elastic metal sheet is welded to the second switch-type surge protector through the low melting point alloy.
  • the impedance device includes a resistor or a series branch formed by the resistor and the inductor.
  • both the first switch-type surge protector and the second switch-type surge protector include a gas discharge tube, a semiconductor discharge tube, or a discharge gap.
  • the discharge gap includes a graphite discharge gap, an insulating tube and two copper electrodes; wherein,
  • the graphite discharge gap includes two graphite electrodes, a polytetrafluoroethylene ring film disposed between the two graphite electrodes, and an insulating ring sleeved on each graphite electrode;
  • Both ends of the insulating tube are provided with internal threads
  • the outer walls of the two copper electrodes are provided with external threads
  • the graphite discharge gap is sleeved in the insulating tube, and the external thread portions of the two copper electrodes are screwed into the two ends of the insulating tube to achieve assembly.
  • the second switch-type surge protector includes n discharge gaps and n-1 capacitors, and the n discharge gaps are sequentially connected to the first switch-type surge protector; the n- The first end of one capacitor is respectively connected to the second end of the first switch-type surge protector, and the second end of the n-1 capacitors is respectively discharged to the first one of the n discharge gaps A one-to-one connection is made from the gap to the second end of the n-1th discharge gap; where n ⁇ 2, and n is an integer.
  • the present application also provides a surge protection system, including: m any of the above-mentioned surge protection devices and m-1 capacitors; the m surge protection devices are connected in series in series, the m-1 capacitors are connected in parallel with the first switch-type surge protector in the m th surge protection device from the first to the m-1 th surge protection device; where m ⁇ 2, and m Is an integer.
  • a surge protection device and system provided by the present application have the following beneficial effects: a first switch-type surge protector and a second switch-type surge protector are connected in series to form a discharge channel for lightning surge current (or surge current) , And as the freewheeling path in the first half-wave of the lightning frequency surge current that may cause power frequency freewheeling; the first switch-type surge protector is connected in parallel with the impedance device to limit the potential difference of the first switch-type surge protector, where After the first switch-type surge protector flows through the power frequency freewheeling, the impedance device will switch the first switch-type surge protector after the first current of the freewheeling current crosses the zero point because the impedance of the impedance device is low The potential difference between the two electrodes is limited to a very low range, to ensure that the gas dielectric of the first switch-type surge protector can be restored in time, and then effectively extinguish the freewheeling arc to avoid arc extinction failure; in addition, when the power frequency freewheeling is The first current still has freewheeling current after the
  • This impedance device can limit the amplitude of the freewheeling current and form a discharge channel for the freewheeling current with the second switch-type surge protector, so that the freewheeling current can pass through
  • the bleeder channel conducts a stable bleed, and then when the second current free-wheeling triggers the second current zero-crossing point of the free-wheeling current, the free-wheeling current has been limited due to the impedance device and the second switch-type surge protector At a lower level, the second switch-type surge protector can safely interrupt the freewheeling, so that the surge protection device has a higher voltage protection level.
  • FIG. 1 schematically shows a structure diagram of a multi-gap surge protection device in the prior art
  • FIG. 2 schematically shows a structural schematic diagram of an embodiment of a surge protection device of the present application
  • FIG. 3 schematically shows a structural schematic diagram of another embodiment of a surge protection device of the present application.
  • FIG. 4 schematically shows a structural schematic diagram of a connection mode of a thermal protector in a surge protection device of the present application
  • FIG. 5 schematically shows a structural schematic diagram of another connection method of a thermal protector in a surge protection device of the present application
  • FIG. 6 schematically shows a structural schematic diagram of yet another embodiment of a surge protection device of the present application.
  • FIG. 7 schematically shows a schematic structural diagram of a surge protection device of the present application having 2 discharge gaps and 1 capacitor C1;
  • FIG. 8 schematically shows a schematic structural view of a surge protection device of the present application having n discharge gaps and n-1 capacitors C1;
  • FIG. 9 schematically shows a structural schematic diagram of an embodiment of a surge protection system of the present application.
  • FIG. 10 schematically shows a structural schematic diagram of an embodiment of a discharge gap in the surge protection device of the present application.
  • FIG. 2 is a schematic structural diagram of an embodiment of a surge protection device of the present application.
  • the surge protection device includes: a first switch type surge protector PG, a second switch type surge protector SG and an impedance device SI; the second switch type surge protector SG and the first switch type A surge protector PG is connected in series to form a discharge channel for lightning surge current, and the impedance device SI is connected in parallel with the first switch-type surge protector PG to limit the freewheeling of the first switch-type surge protector PG The amplitude of the current and the second switch-type surge protector SG form a discharge channel of the freewheeling current.
  • the surge protection device has a T1 end and a T2 end, the T1 end and the T2 end are made of copper sheet, when the surge protection device is tested with a lightning surge waveform, the lightning surge The waveform flows into the surge protection device from the T1 end, and the surge protection device discharges the lightning impulse current and freewheeling current outward from the T2 end.
  • the surge protection device is suitable for single-phase systems, single-phase distribution systems, multi-phase systems, and any circuits that require lightning surge protection.
  • the surge protection device can be connected between L-PE and N-PE of a single-phase system, or between L-PE, N-PE and LN, or L1-L2, L2- of a three-phase system L3, L1-L3, L1-PE, L2-PE, L3-PE and N-PE, or L1-PE, L2-PE, L3-PE and N-PE connected to a multi-phase system, where , L is the phase line/live line, N is the neutral line/zero line, and PE is the protection line/ground line.
  • the first switch type surge protector PG and the second switch type surge protector SG are connected in series to form a discharge channel for lightning surge current (or surge current), And in the first half wave of lightning frequency impulse current may cause power frequency freewheeling as a freewheeling path; the first switch type surge protector PG is connected in parallel with the impedance device SI to limit the potential difference of the first switch type surge protector PG Among them, when the first switching type surge protector PG flows through the power frequency freewheeling, because the impedance of the impedance device SI is low, the impedance device SI switches the first switch after the first current of the freewheeling current crosses the zero point The potential difference between the two electrodes of the PG type surge protector PG is limited to a very low range, ensuring that the gas dielectric of the first switch type PG can be restored in time, and then the continuous current arc is effectively extinguished to avoid arc extinction failure; in addition When the power frequency freewheeling still has freewheeling current
  • the surge protection device adopts two switch-type surge protectors to achieve the protection performance and safety performance that can be achieved by multiple discharge gaps in the existing surge protection device, which greatly reduces the surge protection device.
  • the volume saves the production cost of the surge protection device and the stable voltage protection level.
  • the first switch-type surge protector PG includes a gas discharge tube, a semiconductor discharge tube, or a discharge gap
  • the second switch-type surge protector SG includes a gas discharge tube, a semiconductor discharge tube, or Discharge gap
  • the impedance device SI includes a series branch of resistance or resistance and inductance.
  • the impedance device SI may also be a structural device with a certain resistance value, for example, a spiral formed by mechanical processing with inductance and resistance values Conductor; a certain shape of resistance wound with a metal wire of higher resistivity.
  • the first switch-type surge protector PG as a gas discharge tube PG1
  • the second switch-type surge protector SG as a graphite discharge gap SG1
  • the impedance device SI as a series branch consisting of a resistor R and an inductor L as an example
  • FIG. 3 it is a schematic structural diagram of another embodiment of a surge protection device of the present application.
  • the gas discharge tube PG1 has a diameter of 20mm, a height of 4mm, a DC breakdown voltage of 600V, and a surge withstand capability of 60kA (8/20us);
  • the graphite discharge gap SG1 is composed of two graphite electrodes 0.4 mm air gap.
  • the resistance R and the inductance L are made of 6J20 type resistance wire, wherein the resistance of the resistance wire is 1.4 ⁇ m, the resistance value of the resistance R is about 1 ⁇ , and the inductance value of the inductor L is about 1.1 ⁇ H.
  • the gas discharge tube PG1 and the graphite discharge gap SG1 are connected in series to form a discharge channel for the lightning impulse current, and serve as a freewheel path in the first half-wave of the lightning frequency impulse current that may cause power frequency freewheeling;
  • the series branch formed with the inductor L is connected in parallel with the gas discharge tube PG1.
  • the series branch formed with the resistor R and the inductor L is used to limit the amplitude of the freewheeling current of the gas discharge tube PG1 and form a freewheeling with the graphite discharge gap SG1 Channel for current bleed.
  • FIG. 4 is a schematic structural diagram of a connection mode of a thermal protector in a surge protection device of the present application.
  • the surge protection device further includes: a thermal protector TP connected to the series branch where the second switch-type surge protector SG is located; the thermal protector TP is at a temperature Acting when the preset temperature threshold is reached, the connection to the series branch where the second switch-type surge protector SG is located is cut off.
  • the thermal protector TP may be connected between the second switch type surge protector SG and the T2 terminal, or may be connected between the impedance device SI and the first switch type surge Between the parallel branch formed by the protector PG and the second switch type surge protector SG.
  • the thermal protector TP acts to cut off the connection with the second switch-type surge protector SG, so that the surge protector is in a safe failure state, avoiding Secondary fire disaster caused by excessive temperature or damage to the surge protection device.
  • the thermal protector TP includes a temperature fuse, a resettable thermostat, a thermal disconnector, a bimetal thermal circuit breaker, a mechanical thermal disconnection mechanism, or a low melting point alloy disconnector.
  • the structure of the surge protection device will be described below by taking a thermal protector as a temperature fuse as an example.
  • FIG. 6 it is a schematic structural diagram of yet another embodiment of a surge protection device of the present application.
  • the thermal protector uses a thermal fuse TP1.
  • the rated operating temperature of the thermal fuse TP1 is 125°C
  • the actual fusing temperature is 121°C ⁇ 3°C
  • the rated current is 30A
  • the surge tolerance is 40kA (8/20us);
  • the impedance device is the resistance R.
  • the low-melting point alloy disconnector in the thermal protector includes an elastic metal sheet, which is stamped from 0.5-thick phosphor bronze and has a width of 10 mm.
  • the elastic metal sheet is welded to the second switch-type surge protector through a low-temperature alloy, wherein the melting point of the low-temperature alloy is 145°C ⁇ 3°C. When the low temperature is melted, the elastic metal sheet springs away from the second switch-type surge protector.
  • the second switch-type surge protector may be composed of two or more switch-type surge protectors.
  • the second switch-type surge protector includes n discharge gaps SG2 and n-1 capacitors C1, and the n discharge gaps SG2 are sequentially connected to the gas discharge tube PG1;
  • the first ends of the n-1 capacitors C1 are respectively connected to the second ends of the gas discharge tube PG1, and the second ends of the n-1 capacitors C2 are respectively connected to the second ends of the n discharge gaps SG2
  • a one-to-one connection is made from one discharge gap to the second end of the n-1th discharge gap; where n ⁇ 2, and n is an integer.
  • the n discharge gaps SG2 and the gas discharge tube PG1 in the second switch-type surge protector are sequentially connected to form a lightning surge current discharge channel, and the lightning surge current may cause
  • the half-wave is used as a freewheeling path;
  • n discharge gaps SG2 and resistor R form a discharge channel for freewheeling current;
  • the first end of n-1 capacitors C1 is connected to the second end of gas discharge tube PG1,
  • the second ends of the n-1 capacitors C1 are connected one-to-one with the second ends of the first discharge gap to the n-1 discharge gap, respectively, to couple the surge pulse voltage formed by the lightning surge waveform,
  • each discharge gap SG2 of the n discharge gaps SG2 can be triggered, and the free-wheel breaking triggering capability of the n discharge gaps SG2 in the second switch-type surge protector is improved.
  • the gas discharge tube PG1 has a diameter of 12mm, a height of 6mm, a DC breakdown voltage of 600V, a surge withstand capability of 20kA (8/20us), and a freewheeling interruption capability of 50A at 255V; capacitor C1 is selected Ordinary ceramic chip capacitors have a capacitance value of 1000pf and a rated withstand voltage of 2000V.
  • the surge protection system includes: m any of the above-mentioned surge protection devices and m-1 capacitor C2; the m surge protection devices Secondary series connection, the m-1 capacitors C2 are respectively connected in parallel with the second switch-type surge protector in the first to m-1 surge protection devices of the m surge protection devices; , M ⁇ 2, and m is an integer.
  • the first switch type surge protector in each surge protection device is a gas discharge tube PG1
  • the second switch type surge protector is a graphite discharge gap SG1
  • the impedance device is a series support of a resistor R and an inductor L Take the road as an example, the embodiment will be described.
  • m surge protection devices are serially connected in series to realize the partial discharge of lightning impulse current and freewheeling current, so that the surge protection system has stronger stability, while achieving reliable arc extinction It can also improve the stability of the voltage protection level; and, the m-1 capacitors C2 are used to couple the surge pulse voltage formed by the lightning surge waveform, which can trigger the second switching type of the m surge protection devices.
  • the surge protector improves the freewheeling and tripping ability of the second switch type surge protector.
  • the discharge gap includes a graphite discharge gap, an insulating tube 21, and two copper electrodes 31; wherein, the graphite discharge gap includes two graphite electrodes 11
  • each graphite electrode 11 is 18 mm and the thickness is 2 mm; the thickness of the polytetrafluoroethylene ring film 12 is 0.4 mm, the outer diameter is 20 mm, and the inner diameter is 15 mm; the outer diameter of the insulating ring is 20.5 mm, inner diameter 18.2mm, thickness 1.8mm, the function of the insulating ring is to facilitate assembly; the inner diameter of the insulating tube 21 is 20.6mm, the length is 10mm; each copper electrode 31 has a diameter of 20mm, a thickness of 3mm, copper electrode After being screwed into the insulating tube, it is exposed to about 0.2mm.
  • the device embodiments described above are only schematic, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located One place, or can be distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve one of the objectives of the solution of this embodiment. Those of ordinary skill in the art can understand and implement without paying creative labor.
  • any reference signs between parentheses should not be constructed as limitations on the claims.
  • the word “comprising” does not exclude the presence of elements or steps not listed in a claim.
  • the word “a” or “one” before an element does not exclude the presence of multiple such elements.
  • the application can be realized by means of hardware including several different elements and by means of a suitably programmed computer. In the unit claims enumerating several devices, several of these devices may be embodied by the same hardware item.
  • the use of the words first, second, and third does not indicate any order. These words can be interpreted as names.

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

一种电涌保护装置及系统,包括:第一开关型电涌保护器(PG)、第二开关型电涌保护器(SG)和阻抗器件(SI);所述第二开关型电涌保护器(SG)与所述第一开关型电涌保护器(PG)串联以形成雷电冲击电流的泄放通道,所述阻抗器件(SI)与所述第一开关型电涌保护器(PG)并联以限制所述第一开关型电涌保护器(PG)的续流电流的幅值,并与所述第二开关型电涌保护器(SG)形成所述续流电流的泄放通道。采用该电涌保护装置及系统,能够有效避免灭弧失效,且能提高电压保护的稳定性。

Description

一种电涌保护装置及系统
本申请要求在2018年11月28日提交中国专利局、申请号为“201811433176.0”、发明名称为“一种电涌保护装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及过压保护技术领域,尤其涉及一种电涌保护装置及系统。
背景技术
电涌保护装置是一种连接在电子设备或低压配电系统中的过电压保护装置,其主要用于泄放雷电流、雷电感应和开关操作引起的浪涌电流,并限制过电压的幅值,从而避免浪涌电流对回路中其他设备的损害。
为了提高电涌保护装置泄放浪涌电流的能力,通常需要按照IEC 61643-11标准或GB/T 18802.1标准,采用模拟雷电冲击电流(冲击电流波形为10/350us)对用于安装在LPZ0区(Lightning Protection Zone,雷电防护区,简称LPZ)与LPZ1区之间的浪涌保护器进行测试,其中,该雷电冲击电流具有波形时间长和能量大的特点,这就要求电涌保护装置需要具备极强的电荷转移能力,才能对回路的设备进行有效保护。
为了达到上述测试要求,现有的电涌保护装置包括以下两种:
(1)单间隙+灭弧装置型电涌保护装置:该电涌保护装置采用单间隙对雷电冲击电流进泄放,当引起工频续流后,通过灭弧装置限制电弧,切断续流。该电涌保护装置具有较强的泄放雷电冲击电流的能力,但是由于其存在续流遮断的盲区,当被保护的系统产生的续流足够大时(通常在千安培级),电弧容易被电磁力或电流热蚀绝缘材料产生的气体送到灭弧装置内,然而,当该续流为数百安培或数十安培时,电弧不易被送入灭弧装置,这会导致灭弧失败。
(2)多间隙型电涌保护装置:如图1所示,该电涌保护装置通过在续流通道中设置多个放电间隙来实现灭弧,其包括N+1个放电间隙、N个电容值相同的电容,各放电间隙串联连接,第1个放电间隙SG 1与火线连接,最末一个放电间隙SG N+1接地,各电容的一端与两放电间隙之间的导电件连接,另一端接地。在雷电冲击电流的冲击下,其触发电路中的电容器在触发过程中会被充入电荷且无法及时泄放,故存在残余电荷影响电涌保护器的下一次触发,造成电涌保护器的触发电压升高,电压保护水平不稳定。
综上所述,现有的电涌保护装置存在灭弧可靠性低和电压保护水平不稳定的问题。
发明内容
针对上述问题,本申请的一种电涌保护装置及系统能够有效避免灭弧失效,且能提高电压保护的稳定性。
为解决上述技术问题,本申请的一种电涌保护装置,包括:第一开关型电涌保护器、第二开关型电涌保护器和阻抗器件;所述第二开关型电涌保护器与所述第一开关型电涌保护器串联以形成雷电冲击电流的泄放通道,所述阻抗器件与所述第一开关型电涌保护器并联以限制所述第一开关型电涌保护器的续流电流的幅值,并与所述第二开关型电涌保护器形成所述续流电流的泄放通道。
优选地,所述的电涌保护装置,还包括:连接于所述第二开关型电涌保护器所在串联支路上的热保护器;所述热保护器在温度达到预设温度阈值时动作,切断与所述第二开关型电涌保护器所在串联支路的连接。
优选地,所述热保护器包括温度保险丝、可复位温控器、热脱离器、双金属热断路器、机械式热脱离机构或低熔点合金断开器。
优选地,所述低熔点合金断开器包括弹性金属片,所述弹性金属片的一端通过低熔点合金焊接在第二开关型电涌保护器上。
优选地,所述阻抗器件包括电阻或所述电阻与电感构成的串联支路。
优选地,所述第一开关型电涌保护器和所述第二开关型电涌保护器均包括气体放电管、半导体放电管或放电间隙。
优选地,所述放电间隙包括石墨放电间隙、绝缘管和两个铜电极;其中,
所述石墨放电间隙包括两个石墨电极、设置于所述两个石墨电极之间的聚四氟乙烯环状薄膜、以及套设于每个石墨电极上的绝缘环;
所述绝缘管的两端设置有内螺纹;
所述两个铜电极的外壁设置有外螺纹;
所述石墨放电间隙套设于所述绝缘管内,且所述两个铜电极外螺纹部分旋入所述绝缘管的两端,实现组装。
优选地,所述第二开关型电涌保护器包括n个放电间隙和n-1个电容,所述n个放电间隙与所述第一开关型电涌保护器顺次连接;所述n-1个电容的第一端分别与所述第一开关型电涌保护器的第二端连接,所述n-1个电容的第二端分别与所述n个放电间隙中的第1个放电间隙至第n-1个放电间隙的第二端进行一对一连接;其中,n≥2,且n为整数。
为解决上述技术问题,本申请还提供一种电涌保护系统,包括:m个上述任一种电涌保护装置和m-1电容;所述m个电涌保护装置顺次串联连接,所述m-1个电容分别与所述m个电涌保护装置中的第1个至第m-1个电涌保护装置中的第二开关型电涌保护器并联;其中,m≥2,且m为整数。
本申请提供的一种电涌保护装置及系统,具有以下有益效果:第一开关型电涌保护器和第二开关型电涌保护器串联形成雷电冲击电流(或浪涌电流)的泄放通道,并在雷电冲击电流可能引起工频续流的第一半波内作为续流通路;第一开关型电涌保护器与阻抗器件并联以限制第一开关型电涌保护器的电位差,其中,当第一开关型电涌保护器在流过工频续流后,由于阻抗器件的阻抗低,则阻抗器件在续流电流的第一个电流过零点后将第一开关型电涌保护器两个电极的电位差限制在极低的范围内,保证第一开关型电涌保 护器的气体电介质能够及时恢复,进而有效熄灭续流电弧,避免灭弧失败;此外,当工频续流在第一个电流过零点后仍然具有续流电流,该阻抗器件能够限制续流电流的幅值,并与第二开关型电涌保护器形成续流电流的泄放通道,使得续流电流能够经该泄放通道进行稳定泄放,进而当工频续流的下一次触发产生续流电流的第二个电流过零点后,由于阻抗器件与第二开关型电涌保护器已将续流电流限制在一个较低的水平,则第二开关型电涌保护器可安全遮断续流,使得该电涌保护装置具有较高的电压保护水平。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的之一、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示意性地示出了现有技术中多间隙型电涌保护装置的结构示意图;
图2示意性地示出了本申请一种电涌保护装置一实施例的结构示意图;
图3示意性地示出了本申请一种电涌保护装置另一实施例的结构示意图;
图4示意性地示出了本申请一种电涌保护装置中热保护器一种连接方式的结构示意图;
图5示意性地示出了本申请一种电涌保护装置中热保护器另一种连接方式的结构示意图;
图6示意性地示出了本申请一种电涌保护装置再一实施例的结构示意图;
图7示意性地示出了本申请的电涌保护装置中具有2个放电间隙和1个电容C1的结构示意图;
图8示意性地示出了本申请的电涌保护装置中具有n个放电间隙和n-1 个电容C1的结构示意图;
图9示意性地示出了本申请的一种电涌保护系统一实施例的结构示意图;
图10示意性地示出了本申请的电涌保护装置中放电间隙一实施例的结构示意图。
具体实施例
为使本申请实施例的目的之一、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参见附图2,是本申请一种电涌保护装置一实施例的结构示意图。
该电涌保护装置,包括:第一开关型电涌保护器PG、第二开关型电涌保护器SG和阻抗器件SI;所述第二开关型电涌保护器SG与所述第一开关型电涌保护器PG串联以形成雷电冲击电流的泄放通道,所述阻抗器件SI与所述第一开关型电涌保护器PG并联以限制所述第一开关型电涌保护器PG的续流电流的幅值,并与所述第二开关型电涌保护器SG形成所述续流电流的泄放通道。
在本申请中,该电涌保护装置具有T1端和T2端,该T1端和T2端均由铜片制成,当采用雷电浪涌波形对该电涌保护装置进行测试时,该雷电浪涌波形从T1端流入该电涌保护装置,该电涌保护装置从T2端向外泄放雷电冲击电流和续流电流。
在具体实施过程中,该电涌保护装置适用于单相系统、单相分线系统、多相系统和任何需要雷电浪涌防护的回路中。例如,该电涌保护装置可连接于单相系统的L-PE与N-PE之间,或者L-PE、N-PE与L-N之间,或者连接于三相系统的L1-L2,L2-L3,L1-L3,L1-PE,L2-PE,L3-PE与N-PE之间,或者连接于多相系统的L1-PE,L2-PE,L3-PE与N-PE之间,其中,L为相 线/火线,N为中性线/零线,PE为保护线/地线。
与现有技术相比,本申请的电涌保护装置中第一开关型电涌保护器PG和第二开关型电涌保护器SG串联形成雷电冲击电流(或浪涌电流)的泄放通道,并在雷电冲击电流可能引起工频续流的第一半波内作为续流通路;第一开关型电涌保护器PG与阻抗器件SI并联以限制第一开关型电涌保护器PG的电位差,其中,当第一开关型电涌保护器PG在流过工频续流后,由于阻抗器件SI的阻抗低,则阻抗器件SI在续流电流的第一个电流过零点后将第一开关型电涌保护器PG两个电极的电位差限制在极低的范围内,保证第一开关型电涌保护器PG的气体电介质能够及时恢复,进而有效熄灭续流电弧,避免灭弧失败;此外,当工频续流在第一个电流过零点后仍然具有续流电流,该阻抗器件SI能够限制续流电流的幅值,并与第二开关型电涌保护器SG形成续流电流的泄放通道,使得续流电流能够经该泄放通道进行稳定泄放,进而当工频续流的下一次触发产生续流电流的第二个电流过零点后,由于阻抗器件SI与第二开关型电涌保护器SG已将续流电流限制在一个较低的水平,则第二开关型电涌保护器SG可安全遮断续流,使得该电涌保护装置具有可靠的续流遮断能力。另外,该电涌保护装置采用两个开关型电涌保护器就能够实现现有电涌保护装置中多个放电间隙才能实现的保护性能和安全性能,极大的减小了电涌保护装置的体积,节省了电涌保护装置的制作成本,稳定的电压保护水平。
可选的,该电涌保护装置中,第一开关型电涌保护器PG包括气体放电管、半导体放电管或放电间隙;第二开关型电涌保护器SG包括气体放电管、半导体放电管或放电间隙;阻抗器件SI包括电阻或电阻与电感构成的串联支路,该阻抗器件SI还可以是具有一定电阻值的结构器件,例如,采用机械加工方式形成的螺旋状的具有电感量和电阻值的导体;采用较高电阻率的金属丝绕制的一定形状的电阻等。
接下来,以第一开关型电涌保护器PG为气体放电管PG1,第二开关型 电涌保护器SG为石墨放电间隙SG1,阻抗器件SI为电阻R与电感L构成的串联支路为例来说明该电涌保护装置的结构。
如图3所示,是本申请一种电涌保护装置另一实施例的结构示意图。
在该实施例中,气体放电管PG1的直径为20mm、高度为4mm、直流击穿电压600V、浪涌耐受能力为60kA(8/20us);石墨放电间隙SG1为由两片石墨电极组成0.4mm的空气间隙。电阻R和电感L采用6J20型电阻丝绕制而成,其中,该电阻丝的电阻率为1.4Ω·m,该电阻R的电阻值约为1Ω,该电感L的电感值约为1.1μH。
在该实施例中,气体放电管PG1与石墨放电间隙SG1串联,形成雷电冲击电流的泄放通道,并在雷电冲击电流可能引起工频续流的第一半波内作为续流通路;电阻R和电感L形成的串联支路与气体放电管PG1并联,该电阻R和电感L形成的串联支路用于限制气体放电管PG1的续流电流的幅值,并与石墨放电间隙SG1形成续流电流的泄放通道。
请参见图4,是本申请一种电涌保护装置中热保护器的一种连接方式的结构示意图。
为了提高该电涌保护装置的安全性,该电涌保护装置还包括:连接于所述第二开关型电涌保护器SG所在串联支路上的热保护器TP;所述热保护器TP在温度达到预设温度阈值时动作,切断与所述第二开关型电涌保护器SG所在串联支路的连接。
如图4和图5所示,该实施例中,热保护器TP可以连接在第二开关型电涌保护器SG与T2端之间,也可以连接在阻抗器件SI和第一开关型电涌保护器PG形成的并联支路与第二开关型电涌保护器SG之间。当该热保护器的温度达到预设的温度阈值时,该热保护器TP动作,切断与该第二开关型电涌保护器SG的连接,使得该电涌保护装置处于安全的失效状态,避免因电涌保护装置温度过高损坏或烧毁引起次生的火灾灾害。
可选的,该热保护器TP包括温度保险丝、可复位温控器、热脱离器、 双金属热断路器、机械式热脱离机构或低熔点合金断开器。下面以热保护器为温度保险丝为例,对该电涌保护装置的结构进行说明。
如图6所示,是本申请一种电涌保护装置再一实施例的结构示意图。
该电涌保护装置中,热保护器选用温度保险丝TP1,该温度保险丝TP1的额定动作温度为125℃,实际的熔断温度为121℃±3℃,额定电流为30A,浪涌耐受能力为40kA(8/20us);阻抗器件为电阻R。当温度保险丝TP1的温度达到其熔断温度时,该温度保险丝TP1动作,切断与石墨放电间隙SG1的连接,使得该电涌保护装置处于安全的失效状态。
可选的,该热保护器中的低熔点合金断开器包括弹性金属片,该弹性金属片采用0.5厚的磷青铜冲压而成,其宽度为10mm。该弹性金属片通过低温合金焊接到第二开关型电涌保护器上,其中,该低温合金的熔点为145℃±3℃。当该低温合熔化时,弹性金属片弹离第二开关型电涌保护器。
为了提高第二开关型电涌保护器的续流分断能力,该第二开关型电涌保护器可以采用两个或两个以上的开关型电涌保护器组成。
接下来,以第一开关型电涌保护器为气体放电管、第二开关型电涌保护器为放电间隙为例,结合附图7和附图8对该结构进行详细说明。
请参见附图7和附图8,所述第二开关型电涌保护器包括n个放电间隙SG2和n-1个电容C1,所述n个放电间隙SG2与气体放电管PG1顺次连接;所述n-1个电容C1的第一端分别与所述气体放电管PG1的第二端连接,所述n-1个电容C2的第二端分别与所述n个放电间隙SG2中的第1个放电间隙至第n-1个放电间隙的第二端进行一对一连接;其中,n≥2,且n为整数。
在该实施例中,第二开关型电涌保护器中的n个放电间隙SG2与气体放电管PG1顺次连接形成雷电冲击电流泄放通道,并在雷电冲击电流可能引起工频续流的第一半波内作为续流通路;n个放电间隙SG2与电阻R形成续流电流的泄放通道;其中,n-1个电容C1的第一端分别与气体放电管PG1的第二端连接,n-1个电容C1的第二端分别与第1个放电间隙至第n-1个放电 间隙的第二端进行一对一连接,可对雷电浪涌波形形成的浪涌脉冲电压进行耦合,同时可触发n个放电间隙SG2中的每个放电间隙SG2,提高第二开关型电涌保护器中的n个放电间隙SG2的续流分断触发能力。
在该实施例中,气体放电管PG1的直径为12mm、高度为6mm,直流击穿电压为600V,浪涌耐受能力20kA(8/20us),续流遮断能力为255V下50A;电容C1选用普通的瓷片电容器,其电容值为1000pf,额定耐压2000V。
请参见附图9,本申请还提供一种电涌保护系统,该电涌保护系统包括:m个上述任一种电涌保护装置和m-1电容C2;所述m个电涌保护装置顺次串联连接,所述m-1个电容C2分别与所述m个电涌保护装置中的第1个至第m-1个电涌保护装置中的第二开关型电涌保护器并联;其中,m≥2,且m为整数。其中,以每个电涌保护装置中的第一开关型电涌保护器为气体放电管PG1、第二开关型电涌保护器为石墨放电间隙SG1、阻抗器件为电阻R和电感L的串联支路为例,对该实施例进行说明。
在该实施例中,m个电涌保护装置顺次串联实现对雷电冲击电流和续流电流的分段泄放,使得该电涌保护系统具有更强的稳定性,在实现可靠灭弧的同时还能提升电压保护水平的稳定性;并且,该m-1个电容C2用于对雷电浪涌波形形成的浪涌脉冲电压进行耦合,可触发m个电涌保护装置中的第二开关型电涌保护器,提高第二开关型电涌保护器的续流分断触发能力。
本申请的上述实施例中,如图10所示,所述放电间隙包括石墨放电间隙、绝缘管21和两个铜电极31;其中,所述石墨放电间隙包括两个石墨电极11、设置于所述两个石墨电极11之间的聚四氟乙烯环状薄膜12、以及套设于每个石墨电极11上的绝缘环(图中未示出);所述绝缘管21的两端设置有内螺纹;所述两个铜电极31的外壁设置有外螺纹;所述石墨放电间隙套设于所述绝缘管21内,且所述两个铜电极11外螺纹部分旋入所述绝缘管21的两端,实现组装。在该实施方式中,每个石墨电极11的直径为18mm、厚度为2mm;聚四氟乙烯环状薄膜12的厚度为0.4mm、外径为20mm、内 径为15mm;绝缘环的外径为20.5mm、内径为18.2mm、厚度为1.8mm,该绝缘环的作用是便于组装;绝缘管21的内径为20.6mm、长度为10mm;每个铜电极31的直径为20mm、厚度为3mm,铜电极旋入绝缘管后外露0.2mm左右。
尽管结合优选实施方案具体展示和介绍了本申请,但所属领域的技术人员应该明白,在不脱离所附权利要求书所限定的本申请的精神和范围内,在形式上和细节上可以对本申请做出各种变化,均为本申请的保护范围。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的之一。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或 者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (9)

  1. 一种电涌保护装置,其特征在于,包括:第一开关型电涌保护器、第二开关型电涌保护器和阻抗器件;所述第二开关型电涌保护器与所述第一开关型电涌保护器串联以形成雷电冲击电流的泄放通道,所述阻抗器件与所述第一开关型电涌保护器并联以限制所述第一开关型电涌保护器的续流电流的幅值,并与所述第二开关型电涌保护器形成所述续流电流的泄放通道。
  2. 如权利要求1所述的电涌保护装置,其特征在于,还包括:连接于所述第二开关型电涌保护器所在串联支路上的热保护器;所述热保护器在温度达到预设温度阈值时动作,切断与所述第二开关型电涌保护器所在串联支路的连接。
  3. 如权利要求2所述的电涌保护装置,其特征在于,所述热保护器包括温度保险丝、可复位温控器、热脱离器、双金属热断路器、机械式热脱离机构或低熔点合金断开器。
  4. 如权利要求3所述的电涌保护装置,其特征在于,所述低熔点合金断开器包括弹性金属片,所述弹性金属片的一端通过低温合金焊接在第二开关型电涌保护器上。
  5. 如权利要求1所述电涌保护装置,其特征在于,所述阻抗器件包括电阻或所述电阻与电感构成的串联支路。
  6. 如权利要求1所述的电涌保护装置,其特征在于,所述第一开关型电涌保护器和所述第二开关型电涌保护器均包括气体放电管、半导体放电管或放电间隙。
  7. 如权利要求6所述的电涌保护装置,其特征在于,所述放电间隙包括石墨放电间隙、绝缘管和两个铜电极;其中,
    所述石墨放电间隙包括两个石墨电极、设置于所述两个石墨电极之间的聚四氟乙烯环状薄膜、以及套设于每个石墨电极上的绝缘环;
    所述绝缘管的两端设置有内螺纹;
    所述两个铜电极的外壁设置有外螺纹;
    所述石墨放电间隙套设于所述绝缘管内,且所述两个铜电极外螺纹部分旋入所述绝缘管的两端,实现组装。
  8. 如权利要求1所述的电涌保护装置,其特征在于,所述第二开关型电涌保护器包括n个放电间隙和n-1个电容,所述n个放电间隙与所述第一开关型电涌保护器顺次连接;所述n-1个电容的第一端分别与所述第一开关型电涌保护器的第二端连接,所述n-1个电容的第二端分别与所述n个放电间隙中的第1个放电间隙至第n-1个放电间隙的第二端进行一对一连接;其中,n≥2,且n为整数。
  9. 一种电涌保护系统,其特征在于,包括:m个如权利要求1~8中任一项所述的电涌保护装置和m-1电容;所述m个电涌保护装置顺次串联连接,所述m-1个电容分别与所述m个电涌保护装置中的第1个至第m-1个电涌保护装置中的第二开关型电涌保护器并联;其中,m≥2,且m为整数。
PCT/CN2019/106808 2018-11-28 2019-09-19 一种电涌保护装置及系统 WO2020108035A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811433176.0 2018-11-28
CN201811433176.0A CN109510184B (zh) 2018-11-28 2018-11-28 一种电涌保护装置及系统

Publications (1)

Publication Number Publication Date
WO2020108035A1 true WO2020108035A1 (zh) 2020-06-04

Family

ID=65751001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106808 WO2020108035A1 (zh) 2018-11-28 2019-09-19 一种电涌保护装置及系统

Country Status (2)

Country Link
CN (1) CN109510184B (zh)
WO (1) WO2020108035A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109510184B (zh) * 2018-11-28 2024-04-02 厦门赛尔特电子有限公司 一种电涌保护装置及系统
CN115296287B (zh) * 2022-10-08 2023-03-24 四川中光防雷科技股份有限公司 一种浪涌保护装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105098748A (zh) * 2014-07-25 2015-11-25 厦门赛尔特电子有限公司 一种浪涌保护器及提升其暂时过电压耐受能力的方法
CN106026064A (zh) * 2016-07-22 2016-10-12 四川中光防雷科技股份有限公司 一种桥式结构多层间隙型电涌保护器
CN206117138U (zh) * 2016-09-18 2017-04-19 四川中光防雷科技股份有限公司 一种高安全性多层间隙型电涌保护器
WO2018107493A1 (zh) * 2016-12-16 2018-06-21 深圳市辰驹电子科技有限公司 串并联自动转换低残压电涌保护电路
CN109510184A (zh) * 2018-11-28 2019-03-22 厦门赛尔特电子有限公司 一种电涌保护装置及系统
CN209298880U (zh) * 2018-11-28 2019-08-23 厦门赛尔特电子有限公司 一种电涌保护装置及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204089187U (zh) * 2014-07-25 2015-01-07 厦门赛尔特电子有限公司 一种浪涌保护器
CN108493913A (zh) * 2018-06-05 2018-09-04 深圳市槟城电子有限公司 一种交流电源浪涌保护装置及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105098748A (zh) * 2014-07-25 2015-11-25 厦门赛尔特电子有限公司 一种浪涌保护器及提升其暂时过电压耐受能力的方法
CN106026064A (zh) * 2016-07-22 2016-10-12 四川中光防雷科技股份有限公司 一种桥式结构多层间隙型电涌保护器
CN206117138U (zh) * 2016-09-18 2017-04-19 四川中光防雷科技股份有限公司 一种高安全性多层间隙型电涌保护器
WO2018107493A1 (zh) * 2016-12-16 2018-06-21 深圳市辰驹电子科技有限公司 串并联自动转换低残压电涌保护电路
CN109510184A (zh) * 2018-11-28 2019-03-22 厦门赛尔特电子有限公司 一种电涌保护装置及系统
CN209298880U (zh) * 2018-11-28 2019-08-23 厦门赛尔特电子有限公司 一种电涌保护装置及系统

Also Published As

Publication number Publication date
CN109510184B (zh) 2024-04-02
CN109510184A (zh) 2019-03-22

Similar Documents

Publication Publication Date Title
WO2020108034A1 (zh) 一种电涌保护装置及系统
US7787230B2 (en) Spark gap protection device
TWI651908B (zh) 快速開關故障電流限制器
US20130120879A1 (en) Triggered arc flash arrester and switchgear system including the same
US5583729A (en) Terminal bushing having integral overvoltage and overcurrent protection
US20130200986A1 (en) Varistor fuse element
WO2020108035A1 (zh) 一种电涌保护装置及系统
EP0711464A1 (en) Arc containing device
US3411038A (en) Vacuum-type circuit interrupter
Gorman et al. The interaction of vaccum arcs with magnetic fields and applications
JP2001190023A (ja) 低電圧回路網用の避雷器装置
WO2022083708A1 (zh) 放电电路、浪涌保护电路、点火电路及电子设备
CN106257786B (zh) 一种高安全性多层间隙型电涌保护器
CN209267172U (zh) 一种电涌保护装置及系统
RU2096882C1 (ru) Линия электропередачи с импульсным грозовым разрядником
CN209298880U (zh) 一种电涌保护装置及系统
CN207910454U (zh) 一种高稳定性多极多层间隙型电涌保护器
CN214479607U (zh) 交流金属封闭开关柜用组合式过电压限制器
CN108063432A (zh) 一种高稳定性多极多层间隙型电涌保护器
JP2011078247A (ja) サージ防護装置
RU2523690C2 (ru) Разрядник для защиты от перенапряжений и электрическое устройство с газовой изоляцией
EP3568867B1 (en) Arc chute with splitter plates interconnected by resistors
RU171056U1 (ru) Петлевой мультиэлектродный разрядник
US20230318282A1 (en) Chargeless interrupter device for surge arrester
RU183736U1 (ru) Линейный разъединитель для разрыва высоковольтной линии

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19891544

Country of ref document: EP

Kind code of ref document: A1