WO2022083709A1 - 放电电路、浪涌保护电路、点火电路及电子设备 - Google Patents

放电电路、浪涌保护电路、点火电路及电子设备 Download PDF

Info

Publication number
WO2022083709A1
WO2022083709A1 PCT/CN2021/125461 CN2021125461W WO2022083709A1 WO 2022083709 A1 WO2022083709 A1 WO 2022083709A1 CN 2021125461 W CN2021125461 W CN 2021125461W WO 2022083709 A1 WO2022083709 A1 WO 2022083709A1
Authority
WO
WIPO (PCT)
Prior art keywords
impedance
branch
frequency
discharge circuit
mode
Prior art date
Application number
PCT/CN2021/125461
Other languages
English (en)
French (fr)
Inventor
沈能文
周垠群
Original Assignee
深圳市槟城电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市槟城电子股份有限公司 filed Critical 深圳市槟城电子股份有限公司
Publication of WO2022083709A1 publication Critical patent/WO2022083709A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/06Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using spark-gap arresters

Definitions

  • the present application relates to the technical field of overvoltage protection, such as a discharge circuit, a surge protection circuit, an ignition circuit and an electronic device.
  • Electromagnetic pulse electromagnetic pulse
  • LEMP lightning electromagnetic pulse
  • GDT Gas discharge Tube
  • the Penning effect is used to fill the packaging space with a certain pressure of gas, and the cathode material is coated on the metal electrode, so that the device exhibits certain DC withstand voltage characteristics and pulse breakdown voltage characteristics.
  • the impact breakdown voltage of the GDT is about 3600V.
  • the environment where the GDT is used is mostly an environment with a withstand voltage of 1500VAC, and the peak voltage of the AC environment is 2121VDC, even if the environment The design increases the withstand voltage by 20%.
  • Embodiments of the present application provide a discharge circuit, a surge protection circuit, an ignition circuit, and an electronic device. By replacing a single switch-type device with a large DC breakdown voltage with the discharge circuit, the impact breakdown voltage of the entire circuit can be reduced, reducing the Protect blind spots.
  • an embodiment of the present application provides a discharge circuit, including:
  • At least two switch-type devices the two ends of the at least two switch-type devices being connected in series are respectively electrically connected to the first end and the second end of the discharge circuit;
  • the impedance branches are in one-to-one correspondence with the switching devices, and the impedance branches are connected in parallel with their corresponding switching devices;
  • the high frequency impedance modes of the impedance branch are not equal, and the high frequency is greater than the power frequency.
  • the DC breakdown voltage of the switching device corresponding to the impedance branch with the large high-frequency impedance mode is less than or equal to The DC breakdown voltage of the switching device corresponding to the impedance branch with a small high-frequency impedance mode.
  • the power frequency impedance modes of all impedance branches are equal; the DC breakdown voltages of all switching devices are equal.
  • any impedance branch in the other impedance branches includes a first sub-branch and a first capacitive element connected in series, and the two ends of the series are respectively connected to the corresponding Both ends of the switching device are electrically connected;
  • the first sub-branch includes at least one of a first resistive element and a first inductive element;
  • the power frequency impedance mode of the first capacitive element is greater than the power frequency of the first sub-branch 5 times the impedance mode;
  • the high-frequency impedance mode of the first sub-branch is greater than 5 times the high-frequency impedance mode of the first capacitive element;
  • the impedance branch with the smallest high-frequency impedance mode includes a second capacitive element, two ends of the second capacitive element are respectively electrically connected to two ends of the corresponding switching device; the capacitance value of the first capacitive element is equal to the second capacitive element component capacitance.
  • the impedance branch with the smallest high-frequency impedance mode also includes a second sub-branch, the second sub-branch is connected in series with the second capacitive element, and the two ends of the series are respectively electrically connected to the two ends of the corresponding switching device. ;
  • the second sub-branch includes at least one of a second resistive element and a second inductive element, and the high-frequency impedance mode of the first sub-branch is greater than the high-frequency impedance mode of the second sub-branch.
  • first sub-branch includes a first resistive element
  • second sub-branch includes a second resistive element
  • the impedance branches Sort the impedance branches according to the size of the high-frequency impedance mode of the impedance branch.
  • the resistance value of the resistance in the impedance branch with a large high-frequency impedance mode is greater than that of the impedance branch with a small high-frequency impedance mode. 5 times the resistance value of the resistor in ;
  • R 1max is the resistance value of the first resistive element in the impedance branch with the largest high-frequency impedance mode
  • C 1 is the capacitance value of the first capacitive element
  • f H is the high frequency
  • f L is the power frequency
  • first sub-branch includes a first inductive element
  • second sub-branch includes a second inductive element
  • the order is based on the size of the high-frequency impedance mode of the impedance branch.
  • the inductance value of the inductance in the impedance branch with a large high-frequency impedance mode is greater than that of the impedance branch with a small high-frequency impedance mode. 5 times the inductance value of the inductance;
  • L 1max is the inductance value of the first inductive element in the impedance branch with the largest high-frequency impedance mode
  • C 1 is the capacitance value of the first capacitive element
  • f H is the high frequency
  • f L is the power frequency
  • the switching device includes: gas discharge tube, semiconductor discharge tube, air gap, graphite gap or spark gap.
  • the number of switch-type devices is three, and the impedance branch corresponding to the switch-type device whose serial connection sequence is located in the middle has the smallest high-frequency impedance mode.
  • the switching device includes a gas discharge tube
  • the discharge circuit also includes K second gas discharge tubes and K third capacitors, wherein K is an integer greater than or equal to 2, and the K second gas discharge tubes are connected in series to form a first series branch;
  • K second gas discharge tubes are connected in series to form K+1 first nodes. Except for the first node connected to the first end of the first series branch, the remaining K first nodes and K third capacitors are one by one. Correspondingly, any first node is electrically connected to the first end of the first series branch via the corresponding third capacitor;
  • Two ends of the at least two switching devices connected in series with the first series branch are respectively electrically connected to the first end and the second end of the discharge circuit;
  • the DC breakdown voltage of the second gas discharge tube is smaller than the DC breakdown voltage of the switching device.
  • the high frequency is greater than or equal to 25000 Hz, and the power frequency is less than or equal to 68 Hz.
  • an embodiment of the present application further provides a surge protection circuit, including the discharge circuit provided by any embodiment of the present application.
  • the embodiments of the present application further provide an ignition circuit, including the discharge circuit provided by any embodiment of the present application.
  • an embodiment of the present application further provides an electronic device, including the discharge circuit provided by any embodiment of the present application.
  • the discharge circuit in the technical solutions of the embodiments of the present application includes at least two switch-type devices and at least two impedance branches, wherein the two ends of the at least two switch-type devices connected in series are respectively connected with the first end and the second end of the discharge circuit.
  • the two terminals are electrically connected; the impedance branch corresponds to the switching device one-to-one, and the impedance branch is connected in parallel with its corresponding switching device; wherein, for the same high frequency, the high frequency impedance modes of the impedance branch are not equal, and the high frequency is greater than the industrial so that in the event of a surge such as a lightning strike, all switching devices do not reach their respective impulse breakdown voltages at the same time, the voltage between the switching devices that break down first decreases rapidly, and the surge voltage will be almost completely applied to The remaining non-breakdown switching devices, as the voltages of the remaining non-breaking switching devices gradually reach their DC breakdown voltage, breakdown occurs, and the actual impulse breakdown voltage V BR0 ' of the discharge circuit is less than all
  • the sum of the impulse breakdown voltages of the switching devices namely V BR0 ' ⁇ V BR1 '+V BR2 '+...+V BRn ', solves the problem that the surge impulse voltage increases to DC when lightning strikes and other surge impulses occur.
  • FIG. 1 is a schematic structural diagram of a discharge circuit provided by an embodiment of the present application.
  • FIG. 2 is an application scenario of a discharge circuit provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of another discharge circuit provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another discharge circuit provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another discharge circuit provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another discharge circuit provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another discharge circuit provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another discharge circuit provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another discharge circuit provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another discharge circuit provided by an embodiment of the application.
  • FIG. 11 is a schematic structural diagram of another discharge circuit provided by an embodiment of the application.
  • FIG. 12 is a schematic structural diagram of another discharge circuit provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another discharge circuit provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another discharge circuit provided by an embodiment of the application.
  • 15 is a schematic structural diagram of another discharge circuit provided by an embodiment of the application.
  • 16 is a schematic structural diagram of another discharge circuit provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a discharge circuit according to an embodiment of the present application.
  • FIG. 2 is an application scenario of a discharge circuit provided by an embodiment of the present application.
  • the discharge circuit includes: at least two switching devices 10 and at least two impedance branches 20 .
  • the two ends of the at least two switching devices 10 connected in series are respectively electrically connected to the first terminal V1 and the second terminal V2 of the discharge circuit; the impedance branch 20 corresponds to the switching device 10 one-to-one, and the impedance branch 20 corresponds to the first terminal V1 and the second terminal V2 of the discharge circuit.
  • the corresponding switching devices 10 are connected in parallel; wherein, for the same high frequency, the high frequency impedance modes of the impedance branches 20 are not equal, and the high frequency is greater than the power frequency.
  • any impedance branch 20 may include at least one of the following elements: a resistive element, an inductive element and a capacitive element, and the elements may be connected in series and/or parallel, etc., which is not the case in the embodiment of the present application. Do limit. Resistive elements may include resistors.
  • the inductive element may include an inductor.
  • the inductor can be a magnetic bead inductor, which is smaller in size and lower in cost than ordinary inductors.
  • Capacitive elements may include at least one of the following: capacitors and elements with inter-electrode capacitance. Elements with inter-electrode capacitance may include varistors or TVS diodes.
  • the impedance mode of the impedance branch 20 with the largest high frequency impedance mode may increase with increasing frequency.
  • the impedance mode of the impedance branch 20 with the smallest high frequency impedance mode may decrease as the frequency increases.
  • At least one impedance branch 20 includes a capacitive element to avoid the situation where the isolation would be degraded by using only inductance and resistance.
  • the first terminal V1 of the discharge circuit 1 may be electrically connected to the first AC power supply line, and the second terminal V2 of the discharge circuit 1 may be electrically connected to the second AC power supply line.
  • the first AC power supply line may be the live wire L
  • the second AC power supply line may be the neutral line N.
  • the discharge circuit 1 can be turned on when an overvoltage such as surge interference occurs on the first AC power supply line and the second AC power supply line, so as to discharge the surge current, so as to realize the overvoltage protection of the protection circuit 2 .
  • the switching device includes: a gas discharge tube, a semiconductor discharge tube, an air gap, a graphite gap or a spark gap.
  • the high frequency f H is greater than or equal to 25000 Hz.
  • the magnitude of the high frequency can be equal to the frequency of surge shocks such as lightning strikes.
  • the power frequency f L is less than or equal to 68 Hz.
  • the power frequency can be the frequency of the power supply voltage during normal operation.
  • the power frequency f L may be 50 Hz, 60 Hz or 0 Hz.
  • the supply voltage can be AC or DC.
  • the DC breakdown voltage may be the average voltage value at which the switching device starts to break down under the action of a voltage with a rising steepness lower than 100V/s.
  • the impulse breakdown voltage (or pulse voltage) can be the voltage value at which the switching device begins to break down under the action of a transient voltage pulse with a specified rising steepness, and the specified rising steepness can be 100V/us or 1KV/us.
  • the response time or action delay of the switching device is related to the rising steepness of the voltage pulse. For different rising steepness, the impulse breakdown voltage of the switching device is different. The smaller the DC breakdown voltage of the switching device, the smaller the impulse breakdown voltage.
  • the frequency of the surge voltage is very high, and the voltage of some switching devices 10 first reaches its DC breakdown voltage. breakdown, at which time the voltages of the remaining switching devices 10 do not reach their DC breakdown voltages. Since the voltage across the switching device 10 that breaks down first drops rapidly, the surge voltage will be applied almost completely to the remaining switching devices 10 that are not broken down, as the voltage of the remaining switching devices 10 that are not broken down increases , when it gradually reaches its DC breakdown voltage, breakdown occurs, the entire discharge circuit is turned on, and the current is discharged.
  • the actual impulse breakdown voltage V BR0 ' of the discharge circuit is greater than the DC breakdown voltage of the switching device that breaks down first, and the actual impulse breakdown voltage V BR0 ' of the discharging circuit is smaller than the impulse breakdown voltage of all the switching devices.
  • the DC breakdown voltage of the first switching device 10-1 is V BR1
  • the DC breakdown voltage of the second switching device 10-2 is V BR2
  • the first impedance branch 20 The high-frequency impedance mode of -1 is
  • the high-frequency impedance mode of the second impedance branch 20-2 is
  • the impedance branch 20 is connected to each switching device 10, so that when a surge such as a lightning strike occurs, all switching devices 10 do not reach their respective impulse breakdown voltages at the same time, and the voltage of some switching devices 10 first reaches The breakdown occurs at the DC breakdown voltage, and at this time, the voltages of the remaining switching devices 10 do not reach the DC breakdown voltage. Since the voltage between the switching devices 10 that break down first decreases rapidly, the surge voltage will be almost completely applied to the remaining switching devices 10 that are not broken down, as the voltage of the remaining switching devices 10 that are not broken down increases When it reaches its DC breakdown voltage gradually, breakdown occurs, the entire discharge circuit is turned on, and the current is discharged.
  • the actual impact breakdown voltage V BR0 ' of the discharge circuit is greater than the DC breakdown voltage of the switching device that breaks down first, and the actual impact breakdown voltage V BR0 ' of the discharge circuit is greater than the DC breakdown of the switching device that breaks down later.
  • the actual impulse breakdown voltage V BR0 ' of the discharge circuit is less than the sum of the impulse breakdown voltages of all switching devices, that is, V BR0 ' ⁇ V BR1 '+V BR2 '+...+V BRn ', so the discharge circuit has a relatively Low impulse breakdown voltage, the discharge circuit is replaced by a single switching device whose DC breakdown voltage is equal to V BR1 +V BR2 +...+V BRn , which solves the problem that the surge impulse voltage increases when lightning strikes and other surges occur.
  • the single switching device By the time the DC breakdown voltage is equal to the impulse breakdown voltage of a single switching device with V BR1 +V BR2 +...+V BRn (equal to V BR1 '+V BR2 '+...+V BRn '), the single switching device will be The breakdown is turned on, resulting in an excessively high impulse breakdown voltage, and there is a problem of protecting the dead zone.
  • the discharge circuit in the technical solution of this embodiment includes at least two switch-type devices and at least two impedance branches, wherein the two ends of the at least two switch-type devices connected in series are respectively connected to the first end and the second end of the discharge circuit.
  • the terminals are electrically connected;
  • the impedance branch corresponds to the switching device one-to-one, and the impedance branch is connected in parallel with its corresponding switching device; wherein, for the same high frequency, the high-frequency impedance modes of the impedance branch are not equal, and the high frequency is greater than the power frequency , so that in the event of a surge such as a lightning strike, all switching devices do not reach their respective impulse breakdown voltages at the same time, the voltage between the switching devices that break down first decreases rapidly, and the surge voltage will be almost completely applied to the rest of the
  • the non-breakdown switching device with the increase of the voltage of the remaining non-breaking switching devices, gradually reaches its DC breakdown voltage and breaks down, and the actual impulse breakdown voltage V BR0 ' of
  • sorting is performed according to the magnitude of the high-frequency impedance modes of the impedance branches 20.
  • is the high-frequency impedance mode of the impedance branch with a large high-frequency impedance mode
  • is the high-frequency impedance mode of the impedance branch with a small high-frequency impedance mode
  • V BRX is the impedance branch with a large high-frequency impedance mode is the DC breakdown voltage of the switching device corresponding to the circuit
  • V BRY is the DC breakdown voltage of the switching device corresponding to the impedance branch with a small high-frequency impedance mode.
  • the switch-type device 10 with a small DC breakdown voltage breaks down first, and the switch with a large DC breakdown voltage breaks down first.
  • the breakdown occurs after the switch-type device 10 with a large DC breakdown voltage is prevented from breaking down first, so that after the switch-type device 10 with a large DC breakdown voltage breaks down, the switch-type device 10 with a small DC breakdown voltage is broken down. The voltage is too large to cause failure.
  • sorting is performed according to the size of the high-frequency impedance mode of the impedance branches 20.
  • the breakdown voltage is less than or equal to the DC breakdown voltage of the switching device 10 corresponding to the impedance branch 20 with a small high-frequency impedance mode, ie
  • the larger the high-frequency impedance mode of the impedance branch 20 corresponding to the switching device 10 is, the higher the switching type is. The earlier the device 10 is turned on.
  • the voltage on the switching device 10 with a small DC breakdown voltage is higher, and the breakdown occurs first, and the DC breakdown voltage
  • the voltage on the large switching device 10 is low and then breakdown occurs, so as to prevent the switching device 10 with a large DC breakdown voltage from breaking down first, resulting in a DC breakdown after the switching device 10 with a large DC breakdown voltage breaks down.
  • the voltage of the switching device 10 with a small breakdown voltage is too large, the failure occurs.
  • sorting is performed according to the magnitude of the high-frequency impedance mode of the impedance branches 20.
  • is the high-frequency impedance mode of the impedance branch 20 with a small high-frequency impedance mode.
  • is, the smaller
  • the voltage of the switching device 10 corresponding to the impedance branch 20 with the largest high-frequency impedance mode is much larger than the voltage of the remaining switching devices 10, so that the surge voltage is almost completely applied to the high-frequency impedance.
  • the switch-type device 10 corresponding to the impedance branch 20 with the largest high-frequency impedance mode breaks down first, and the impedance branch 20 corresponding to the high-frequency impedance mode
  • the turn-on voltage of the switching device 10 decreases rapidly, so that the surge voltage is almost completely applied to the switching device 10 corresponding to the impedance branch 20 with the second largest high-frequency impedance mode, so that the high-frequency impedance mode has the second largest impedance.
  • the switch-type device 10 corresponding to the branch 20 breaks down, and so on, so that the switch-type devices break down one by one in the order of the magnitude of the high-frequency impedance mode of the corresponding impedance branch.
  • the DC breakdown voltages of all switch-type devices 10 are equal, and the impulse breakdown voltages of all switch-type devices 10 are equal, so as to minimize the impulse breakdown voltage of the discharge circuit.
  • the DC breakdown voltage of the first switching device 10-1 is V BR1
  • V BRX : V BRY
  • V BRX is the DC breakdown voltage of the switching device corresponding to the impedance branch with a large high-frequency impedance modulus
  • V BRY is the high-frequency
  • is the power frequency impedance mode of the impedance branch with a large high-frequency impedance mode
  • the power frequency impedance mode of the branch circuit so that when the power frequency voltage is in the state, the voltage divider of the switch-type device with a large DC breakdown voltage is larger, and the voltage divider of the switch-type device with a small DC breakdown voltage is small, so as to ensure the whole The circuit does not break down, and the AC withstand voltage level is guaranteed.
  • the voltage divider of the switching device 10 with a large DC breakdown voltage is relatively large, and the voltage division of the switching device 10 with a small DC breakdown voltage is relatively small, so as to ensure that the entire circuit does not work properly. Breakdown occurs to ensure the AC withstand voltage level.
  • all switching devices 10 are not turned on, the discharge circuit is not turned on, and the voltage of any switching device 10 is lower than its turn-on voltage.
  • the equivalent impedance of all impedance branches in series is greater than the 4 megohm requirement of standards such as IEC60950 and IEC61347.
  • the power frequency impedance modes of all impedance branches 20 are equal, so that the DC breakdown voltages of all switch-type devices 10 are equal, and the voltage divisions of the switch-type devices are equal to ensure the AC withstand voltage level.
  • the impedance mode of the first impedance branch 20-1 may increase as the frequency increases; the impedance mode of the second impedance branch 20-2 may decrease as the frequency increases, so as to satisfy the The relationship between the magnitude of the impedance mode at high frequency and power frequency.
  • FIG. 3 is a schematic structural diagram of a discharge circuit provided by an embodiment of the present application. Except for the impedance branch 20 with the smallest high-frequency impedance mode, any one of the remaining impedance branches is
  • the impedance branch 20 includes a first sub-branch 21 and a first capacitive element C1 connected in series, and the two ends of the series are electrically connected to the two ends of the corresponding switching device 10 respectively;
  • the first sub-branch 21 includes a first resistance at least one of the inductive element R1 and the first inductive element L1;
  • the power frequency impedance mode of the first capacitive element C1 is greater than 5 times the power frequency impedance mode of the first sub-branch 21;
  • the high frequency of the first sub-branch 21 The frequency impedance mode is greater than 5 times the high frequency impedance mode of the first capacitive element C1.
  • the first switch-type device 10-1 includes a gas discharge tube
  • the second switch-type device 10-2 includes a gas discharge tube
  • the impedance branch with the smallest high-frequency impedance mode is the second impedance branch 20-2
  • R 1 is the resistance value of the first resistive element R1
  • C 1 is the capacitance value of the first capacitive element C1 .
  • the larger the R 1 the larger the
  • the larger the C 1 the smaller the
  • FIG. 4 is a schematic structural diagram of another discharge circuit provided by an embodiment of the present application.
  • FIG. 4 exemplarily depicts the case where the first sub-branch 21 in the first impedance branch 20-1 includes the first inductive element L1, The high frequency impedance mode of the first impedance branch 20-1 The power frequency impedance mode of the first impedance branch 20-1
  • L1 is the inductance value of the first inductive element L1. The larger the L 1 , the larger the f H and the larger the
  • the impedance branch 20 with the smallest high-frequency impedance mode includes a second capacitive element C2, and the two ends of the second capacitive element C2 are respectively connected to the corresponding Both ends of the switching device 10 are electrically connected; the capacitance of the first capacitive element C1 is equal to the capacitance of the second capacitive element C2.
  • the first capacitive element C1 and the second capacitive element C2 play the main role of voltage dividing, and the power frequency capacitance of the first capacitive element C1 and the second capacitive element C2
  • the anti-mode can be much larger than the power-frequency impedance mode of the first sub-branch 21 .
  • the first sub-branch 21 plays a major role, and the high-frequency impedance mode of the first sub-branch 21 can be much larger than the high-frequency capacitive reactance of the second capacitive element C2 and the first capacitive element C1 mold.
  • the high-frequency impedance mode of the second impedance branch 20-2 The power frequency impedance mode of the second impedance branch 20-2
  • C 2 is the capacitance of the second capacitive element C2. The smaller the C 2 , the larger the
  • FIG. 5 is a schematic structural diagram of another discharge circuit provided by the embodiment of the present application.
  • the impedance branch 20 with the smallest high-frequency impedance mode further includes a second sub-branch 22.
  • the two sub-branches 22 are connected in series with the second capacitive element C2 , and the two ends of the series are electrically connected to the two ends of the corresponding switching device 10 respectively.
  • the second sub-branch 22 includes at least one of a second resistive element R2 and a second inductive element L2 , and the high-frequency impedance mode of the first sub-branch 21 is greater than the high-frequency impedance of the second sub-branch 22 . Impedance mode.
  • the first capacitive element C1 and the second capacitive element C2 play the main role of voltage dividing, and the power frequency capacitance of the first capacitive element C1 and the second capacitive element C2
  • the anti-mode can be much larger than the power-frequency impedance modes of the first sub-branch 21 and the second sub-branch 22 .
  • the first sub-branch 21 and the second sub-branch 22 play a major role in dividing the voltage, and the high-frequency impedance modes of the first sub-branch 21 and the second sub-branch 22 can be much larger than High-frequency capacitive reactance modes of the second capacitive element C2 and the first capacitive element C1.
  • the first switch-type device 10-1 includes a semiconductor discharge tube
  • the second switch-type device 10-2 includes a semiconductor discharge tube
  • the impedance branch with the smallest high-frequency impedance mode is the second impedance branch 20-2
  • the first sub-branch 21 in the first impedance branch 20-1 includes a first resistive element R1
  • the second sub-branch 22 in the second impedance branch 20-2 includes a second resistive element
  • R2 the high-frequency impedance mode of the second impedance branch 20-2
  • R 2 is the resistance value of the second resistive element R2.
  • the smaller the C 2 the larger the
  • the smaller the R 2 the smaller the
  • FIG. 6 is a schematic structural diagram of another discharge circuit provided by the embodiment of the present application, the first sub-branch 21 includes a first resistive element R1, and the second sub-branch 22 A second resistive element R2 is included.
  • the first capacitive element C1 and the second capacitive element C2 play a main role of voltage dividing.
  • the first resistive element R1 and the second resistive element R2 play a major role in dividing the voltage.
  • the impedance branches 20 sort the impedance branches 20 according to the magnitude of the high-frequency impedance mode.
  • the resistance value of the resistor in the impedance branch 20 is greater than 5 times the resistance value of the resistor in the impedance branch 20 with a small high-frequency impedance mode.
  • R 1max is the resistance value of the first resistive element R1 in the impedance branch 20 with the largest high-frequency impedance mode
  • C 1 is the capacitance value of the first capacitive element C1
  • f H is the high frequency
  • f L is the industrial frequency.
  • FIG. 6 exemplarily depicts three switch-type devices 10, which are a first switch-type device 10-1, a second switch-type device 10-2 and a third switch-type device 10-3, and three impedance branches circuit 20, respectively a first impedance branch 20-1, a second impedance branch 20-2 and a third impedance branch 20-3, the first switching device 10-1 and the first impedance branch 20-1
  • the second switching device 10-2 corresponds to the second impedance branch 20-2
  • the third switching device 10-3 corresponds to the third impedance branch 20-3
  • the impedance branch with the smallest high-frequency impedance mode is In the second impedance branch 20-2, the impedance branch with the largest high-frequency impedance mode is the case of the first impedance branch 20-1.
  • the resistance value of the first resistive element R1 of the first sub-branch 21 of the first impedance branch 20-1 is R 1max
  • the first resistive element of the first sub-branch 21 of the third impedance branch 20-3 The resistance value of R1 is R 1mid
  • the resistance value of the second resistive element R2 of the second sub-branch 21 of the second impedance branch 20 - 2 is R 2 , wherein R 1max >5R 1mid , R 1mid >5R 2 .
  • FIG. 7 is a schematic structural diagram of another discharge circuit provided by the embodiment of the present application
  • the first sub-branch 21 includes a first inductive element L1
  • the second sub-branch 22 includes The second inductive element L2.
  • the first capacitive element C1 and the second capacitive element C2 play a main role of voltage dividing.
  • the first inductive element L1 and the second inductive element L2 play the main role of dividing the voltage.
  • the order is based on the magnitude of the high-frequency impedance mode of the impedance branches 20.
  • the inductance value of the inductance in the impedance branch 20 with the larger high-frequency impedance mode is greater than that of the small high-frequency impedance mode. 5 times the inductance of the inductance in the impedance branch 20 .
  • L 1max is the inductance value of the first inductive element in the impedance branch with the largest high-frequency impedance mode
  • C 1 is the capacitance value of the first capacitive element
  • f H is the high frequency
  • f L is the power frequency
  • FIG. 7 exemplarily depicts three switch-type devices 10, which are a first switch-type device 10-1, a second switch-type device 10-2, and a third switch-type device 10-3, and three impedance branches circuit 20, respectively a first impedance branch 20-1, a second impedance branch 20-2 and a third impedance branch 20-3, the first switching device 10-1 and the first impedance branch 20-1
  • the second switching device 10-2 corresponds to the second impedance branch 20-2
  • the third switching device 10-3 corresponds to the third impedance branch 20-3
  • the impedance branch with the smallest high-frequency impedance mode is In the second impedance branch 20-2, the impedance branch with the largest high-frequency impedance mode is the case of the first impedance branch 20-1.
  • the resistance value of the first inductive element L1 of the first sub-branch 21 of the first impedance branch 20-1 is L 1max
  • the resistance of the first inductive element L1 of the first sub-branch 21 of the third impedance branch 20-3 is The resistance value is L 1mid
  • the resistance value of the second inductive element L2 of the second sub-branch 21 of the second impedance branch 20 - 2 is L 2 , where L 1max >5L 1mid and L 1mid >5L 2 .
  • FIG. 8 is a schematic structural diagram of another discharge circuit provided by an embodiment of the present application.
  • FIG. 8 exemplarily shows that the impedance branch with the smallest high-frequency impedance mode is the second impedance branch 20-2, and the first sub-branch 11 in the first impedance branch 20-1 includes a first resistive element R1,
  • the second sub-branch 22 in the second impedance branch 20-2 includes the second inductive element L2, the high-frequency impedance mode of the second impedance branch 20-2
  • L 2 is the inductance value of the second inductive element L2.
  • the smaller the C 2 the larger the
  • the smaller the L 2 the smaller the
  • the first capacitive element C1 and the second capacitive element C2 play a main role of voltage dividing.
  • the first resistive element R1 and the second inductive element L2 play a major role in dividing the voltage.
  • the impedance branches 20 sort the impedance branches 20 according to the magnitude of the high-frequency impedance mode.
  • the sub-branches in the impedance branch 20 include resistors, the sub-branches in the impedance branch 20 with a small high-frequency impedance mode include inductors, and the resistance values of the resistors in the impedance branch 20 with a large high-frequency impedance mode are greater than the high-frequency impedance 5 times the high frequency inductance of the inductance in the small impedance branch 20 .
  • FIG. 9 is a schematic structural diagram of yet another discharge circuit provided by an embodiment of the present application.
  • FIG. 9 exemplarily shows that the impedance branch with the smallest high-frequency impedance mode is the second impedance branch 20-2.
  • the first sub-branch 11 in the first impedance branch 20-1 includes the first inductive element L1
  • the first The case where the second sub-branch 21 in the two impedance branches 20-2 includes the second resistive element R2.
  • the first capacitive element C1 and the second capacitive element C2 play a main role of voltage dividing.
  • the first inductive element L1 and the second resistive element R2 play a major role in dividing the voltage.
  • the sub-branch in the impedance branch 20 includes an inductance
  • the sub-branch in the impedance branch 20 with a small high-frequency impedance mode includes a resistance
  • the high-frequency inductance of the inductance in the impedance branch 20 with a large high-frequency impedance mode is greater than the high-frequency inductance.
  • the resistance value of the resistance in the impedance branch 20 with the small frequency impedance mode is 5 times. Exemplarily, as shown in FIG. 9 ,
  • FIG. 10 is a schematic structural diagram of another discharge circuit provided by the embodiment of the present application.
  • the impedance branch 20 corresponding to 10 has the smallest high-frequency impedance mode.
  • the switching device corresponding to the impedance branch with the smallest high-frequency impedance mode starts last, and the switching devices on both sides start first, so that the middle switching device can have enough charge when it starts.
  • This setting can make the capacitance in the impedance branch with the smallest high-frequency impedance mode smaller, make the power frequency impedance of the entire circuit higher, and make the discharge tube of the circuit more reliable.
  • FIG. 12 is a schematic structural diagram of another discharge circuit provided by the embodiment of the present application.
  • the switching device 10 includes a gas discharge tube, and the discharge circuit further includes K second gas discharge tubes.
  • GDT2 and K third capacitors C3 where K is an integer greater than or equal to 2, and K second gas discharge tubes GDT2 are connected in series to form a first series branch 40 .
  • K second gas discharge tubes GDT2 are connected in series to form K+1 first nodes N1. Except for the first node N1 connected to the first end X1 of the first series branch 40, the remaining K first nodes N1 In a one-to-one correspondence with the K third capacitors C3, any first node N11 is electrically connected to the first end X1 of the first series branch 40 via the corresponding third capacitor C3. Two ends of the at least two switching devices 10 connected in series with the first series branch 40 are respectively electrically connected to the first terminal V1 and the second terminal V2 of the discharge circuit. The DC breakdown voltage of the second gas discharge tube GDT2 is lower than the DC breakdown voltage of the switching device 10 .
  • the high frequency impedance mode of the impedance branch 20 with the smallest high frequency impedance mode is greater than the high frequency impedance mode of the third capacitor C3
  • C 3 is the capacitance value of the third capacitor C3, so that when a surge such as a lightning strike occurs, the partial pressure of the switching device 10 is large, and it is turned on first; the partial pressure of a plurality of series-connected gas discharge tubes GDT2 is small, and then on.
  • the capacitance of the second capacitive element C2 is smaller than the capacitance of the third capacitor C3.
  • the K gas discharge tubes GDT2 can be integrated into a multi-gap gas discharge tube.
  • Multiple series-connected gas discharge tubes GDT2 can increase the arc voltage, so that after the overvoltage such as lightning strike disappears, when the power frequency current (frequency can be 50Hz or 60Hz) continues to flow through the series-connected gas discharge tube GDT2, when the power frequency freewheeling current passes During the zero point process, the gas discharge tube GDT2 can be turned off by itself, breaking the power frequency freewheeling current.
  • the high freewheeling interrupting capability of multiple series-connected gas discharge tubes GDT2 enables the freewheeling current under the working voltage of abnormal voltage to automatically cut off the freewheeling current to achieve the purpose of breaking freewheeling.
  • the first ends of the at least two switching devices 10 connected in series are electrically connected to the first end V1 of the discharge circuit through the first series branch 40 ; the at least two switching devices 10 are connected in series.
  • the connected second terminal is electrically connected to the second terminal V2 of the discharge circuit.
  • FIG. 12 exemplarily shows that the first end of the at least two switching devices 10 connected in series is electrically connected to the second end X2 of the first series branch 40; the first end X1 of the first series branch 40 is connected to the discharge circuit
  • the first terminal V1 is electrically connected; the second terminal after at least two switching devices 10 are connected in series is electrically connected to the second terminal V2 of the discharge circuit.
  • FIG. 13 is a schematic structural diagram of yet another discharge circuit provided by an embodiment of the present application.
  • FIG. 12 exemplarily shows that the first end of the at least two switching devices 10 connected in series is electrically connected to the first end X1 of the first series branch 40; the second end X2 of the first series branch 40 is electrically connected to the first end X1 of the first series branch 40.
  • the series branch 40 is electrically connected to the second terminal V2 of the discharge circuit; the second terminal of at least two switching devices 10 connected in series is electrically connected to the first terminal V1 of the discharge circuit.
  • FIG. 14 is a schematic structural diagram of another discharge circuit provided by the embodiment of the present application, the discharge circuit further includes a first varistor MOV1, at least two switching devices 10 and Two ends of the first varistor MOV1 connected in series are respectively electrically connected to the first end V1 and the second end V2 of the discharge circuit.
  • a first varistor MOV1 at least two switching devices 10
  • Two ends of the first varistor MOV1 connected in series are respectively electrically connected to the first end V1 and the second end V2 of the discharge circuit.
  • the high frequency impedance mode of the impedance branch 20 with the smallest high frequency impedance mode is greater than the high frequency impedance mode of the inter-electrode capacitance of the first varistor MOV1
  • C 4 is the capacitance value of the inter-electrode capacitance of the first varistor MOV1, so that when a surge such as a lightning strike occurs, the voltage divider of the switching device is large, and it is turned on first; the voltage divider of the first varistor MOV1 small, after turn-on.
  • the high-frequency impedance mode of the impedance branch 20 with the smallest high-frequency impedance mode is greater than
  • the capacitance of the second capacitive element C2 is smaller than the capacitance of the inter-electrode capacitance of the first varistor MOV1.
  • the inter-electrode capacitance of the first varistor MOV1 may be the parasitic capacitance of the first varistor MOV1.
  • the gas discharge tube is used with a varistor, and the low leakage current characteristic of the gas discharge tube when it is not turned on is used to overcome the problem that the leakage current is too large when a single varistor is used and it is easy to catch fire.
  • the high voltage combined by the clamping high voltage characteristic of the varistor and the gas discharge tube is far greater than the working voltage of the power supply, so that the current of the power supply cannot be poured into the circuit, which is equivalent to a barrage.
  • FIG. 15 is a schematic structural diagram of another discharge circuit provided by the embodiment of the present application.
  • the discharge circuit further includes a second varistor MOV2, and at least two switching devices 10 are connected in series.
  • the connected first end is electrically connected to the second end V2 of the discharge circuit; the second end after at least two switching devices 10 are connected in series is electrically connected to the third end V3 of the discharge circuit through the second varistor MOV2; at least The second end of the two switching devices 10 connected in series is electrically connected to the first end V1 of the discharge circuit via the first varistor MOV1.
  • the high frequency impedance mode of the impedance branch 20 with the smallest high frequency impedance mode is greater than the high frequency impedance mode of the inter-electrode capacitance of the second varistor MOV2.
  • C 5 is the capacitance value of the inter-electrode capacitance of the second varistor MOV2, so that when a surge such as a lightning strike occurs on the second terminal V2 and the third terminal V3 of the discharge circuit, the voltage divider of the switching device 10 If the voltage is large, it will be turned on first; if the partial pressure of the second varistor MOV2 is small, it will be turned on later.
  • the capacitance of the second capacitive element C2 is smaller than the capacitance of the inter-electrode capacitance of the second varistor MOV2.
  • the inter-electrode capacitance of the second varistor MOV2 may be the parasitic capacitance of the second varistor MOV2.
  • the first terminal V1 of the discharge circuit may be electrically connected to the live wire
  • the third terminal V3 of the discharge circuit may be electrically connected to the neutral wire
  • the second terminal V2 of the discharge circuit may be grounded.
  • FIG. 16 is a schematic structural diagram of another discharge circuit provided by an embodiment of the present application.
  • FIG. 16 exemplarily shows that the impedance branch with the smallest high-frequency impedance mode is the second impedance branch 20-2, and the first sub-branch 11 in the first impedance branch 20-1 includes a first resistive element R1, The case where the second sub-branch 21 in the second impedance branch 20-2 includes the second resistive element R2.
  • the frequency is greater than or equal to 25000Hz
  • the capacitive reactance of the first capacitive element C1 and the second capacitive element C2 is much smaller than the impedance of the first resistive element R1 of R1, which is similar to the surge voltage caused by the first resistive element.
  • R1 and the second resistive element R2 are divided according to their resistance values.
  • R 1 : R 2 is greater than 5: 1.
  • the surge voltage is mainly distributed on the first resistive element R1, which means that the voltage is mainly distributed on the first switching type.
  • the first switching device 10-1 breaks down (if the first switching device 10-1 is a gas discharge tube, the gas discharge tube enter the glow state), after the first switch-type device 10-1 breaks down, the voltage across the first switch-type device 10-1 drops rapidly, and the surge voltage is mainly distributed across the second switch-type device 10-2 at this time. , the second switching device 10-2 is broken down.
  • the first switching device 10-1 is not connected in parallel with the first parallel impedance branch 20-1, and the second switching device 10-2 is not connected in parallel with the second parallel impedance branch 20-2, then the first switching device 10-1
  • the pulse voltage after being connected in series with the second switching device 10-2 is 3500V
  • the first parallel impedance branch 20-1 is connected in parallel with the first switching device 10-1
  • the second switching device 10-2 is connected in parallel with the first parallel impedance branch 20-1.
  • the first switching device 10 - 1 and the second switching device 10 - 2 are both semiconductor discharge tubes.
  • the DC breakdown voltage of each semiconductor discharge tube is 800V, and the pulse voltage is 900V.
  • the discharge circuit replaces the semiconductor discharge tube with a DC breakdown voltage of 1600V, and the DC breakdown voltage is
  • the first switching device 10-1 is a semiconductor discharge tube
  • the second switching device 10-2 is a gas discharge tube.
  • the DC breakdown voltage of the semiconductor discharge tube is 800V
  • the DC breakdown voltage of the gas discharge tube is 800V.
  • the power frequency voltage is mainly distributed on the first capacitive element and the second capacitive element C2, and the semiconductor discharge tube and the gas discharge tube are approximately divided into half.
  • the high-frequency impedance mode of the first sub-branch 21 is much larger than the high-frequency impedance mode of the second sub-branch 22, and the voltage is mainly Distributed on the first switching device 10-1, the semiconductor discharge tube breaks down first, then the gas discharge tube breaks down, and the entire discharge circuit breaks down.
  • Embodiments of the present application provide a surge protection circuit.
  • the surge protection circuit includes the discharge circuit provided by any embodiment of the present application.
  • the surge protection circuit provided by the embodiment of the present application includes the discharge circuit in the above embodiment, so the surge protection circuit provided by the embodiment of the present application also has the beneficial effects described in the above embodiment, which will not be repeated here.
  • Embodiments of the present application provide an ignition circuit.
  • the ignition circuit includes the discharge circuit provided in any embodiment of the present application.
  • the ignition circuit may further include a step-up transformer, a rectifier circuit, an energy storage capacitor and a nozzle.
  • the AC power is boosted and rectified by a step-up transformer and a rectifier circuit, and then charges the energy storage capacitor.
  • the charging voltage of the energy storage capacitor reaches the impulse breakdown voltage of the discharge circuit, it is turned on, and the energy storage capacitor releases the voltage to the nozzle, causing the nozzle to break down and generate electric sparks, thereby igniting the gas in the combustion chamber of the engine, gas equipment, etc. mixture.
  • the discharge circuit can be substituted for the gas discharge tube in the ignition circuit.
  • the ignition circuit provided by the embodiment of the present application includes the discharge circuit in the above embodiment, so the ignition circuit provided by the embodiment of the present application also has the beneficial effects described in the above embodiment, which will not be repeated here.
  • Embodiments of the present application provide an electronic device.
  • FIG. 17 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device 100 includes the discharge circuit provided in any embodiment of the present application.
  • the electronic device 100 may include the surge protection circuit or the ignition circuit provided in any embodiment of the present application.
  • the electronic device 100 may be a television, a notebook computer, an air conditioner, a communication power supply, a video camera, a network switch, and the like.
  • the electronic device provided by the embodiment of the present application includes the discharge circuit in the above-mentioned embodiment. Therefore, the electronic device provided by the embodiment of the present application also has the beneficial effects described in the above-mentioned embodiment, which will not be repeated here.

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

本申请实施例公开了一种放电电路、浪涌保护电路、点火电路及电子设备。其中,该放电电路包括至少两个开关型器件和至少两个阻抗支路,其中,至少两个开关型器件串联连接后的两端分别与放电电路的第一端和第二端电连接;阻抗支路与开关型器件一一对应,阻抗支路与其对应的开关型器件并联连接;其中,对于同一高频,阻抗支路的高频阻抗模不相等,高频大于工频。

Description

放电电路、浪涌保护电路、点火电路及电子设备
本申请要求在2020年10月22日提交中国专利局、申请号为202011140519.1的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及过电压保护技术领域,例如涉及一种放电电路、浪涌保护电路、点火电路及电子设备。
背景技术
电磁脉冲(electromagnetic pulse,EMP)和雷击电磁脉冲(Lightning electromagnetic pulse,LEMP)的防护,主要是利用EMP和LEMP的高压特性做针对性的进行防护,气体放电管(Gas Discharge Tube,GDT)正是针对高压或者过压特性设计,利用潘宁效应,在封装空间里充一定气压的气体,在金属电极上涂上阴极材料,使该器件呈现一定的直流耐压特性和脉冲击穿电压特性。有玻璃气体放电管和陶瓷气体放电管。
以直流击穿电压为3000V的GDT为例,该GDT的冲击击穿电压约为3600V,该GDT的所使用的环境多为耐压1500VAC的环境中,该交流环境峰值电压为2121VDC,就算该环境设计把耐压提高20%,设备的耐压是1500*1.2*1.414=2545VDC,从数据上看2545~3600V之间EMP或LEMP是没办法防护的,这个就是该型3000VGDT的盲区,在实际应用中没有很好的办法解决;在实际应用和测试中,设备被EMP和LEMP损坏概率非常高,其它电压等级的GDT都存在同样的问题,冲击击穿电压过高,存在保护盲区。
发明内容
本申请实施例提供一种放电电路、浪涌保护电路、点火电路及电子设备,通过将放电电路代替单个直流击穿电压较大的开关型器件,可以降低整体电路的冲击击穿电压,减小保护盲区。
第一方面,本申请实施例提供了一种放电电路,包括:
至少两个开关型器件,至少两个开关型器件串联连接后的两端分别与放电电路的第一端和第二端电连接;
至少两个阻抗支路,阻抗支路与开关型器件一一对应,阻抗支路与其对应的开关型器件并联连接;
其中,对于同一高频,阻抗支路的高频阻抗模不相等,高频大于工频。
进一步地,按照阻抗支路的高频阻抗模的大小进行排序,序号相邻的两个阻抗支路中,高频阻抗模大的阻抗支路对应的开关型器件的直流击穿电压小于或等于高频阻抗模小的阻抗支路对应的开关型器件的直流击穿电压。
进一步地,在放电电路的第一端和第二端之间的电压发生高频浪涌冲击干扰时,开关型器件对应的阻抗支路的高频阻抗模越大,开关型器件越早导通。
进一步地,所有阻抗支路的工频阻抗模相等;所有开关型器件的直流击穿电压相等。
进一步地,按照阻抗支路的高频阻抗模的大小进行排序,序号相邻的两个阻抗支路中,|Z H1|>5|Z H2|,其中,|Z H1|为高频阻抗模大的阻抗支路的高频阻抗模,|Z H2|为高频阻抗模小的阻抗支路的高频阻抗模;V BRX:V BRY=|Z L1|:|Z L2|,其中,V BRX为高频阻抗模大的阻抗支路对应的开关型器件的直流击穿电压,V BRY为高频阻抗模小的阻抗支路对应的开关型器件的直流击穿电压,|Z L1|为高频阻抗模大的阻抗支路的工频阻抗模,|Z L2|为高频阻抗模小的阻抗支路的工频阻抗模。
进一步地,除高频阻抗模最小的阻抗支路外,其余阻抗支路中,任一阻抗支路包括串联的第一子支路和第一容性元件,串联后的两端分别与对应的开关型器件的两端电连接;第一子支路包括第一阻性元件和第一感性元件中的至少一种;第一容性元件的工频阻抗模大于第一子支路的工频阻抗模的5倍;第一子支路的高频阻抗模大于第一容性元件的高频阻抗模的5倍;
高频阻抗模最小的阻抗支路包括第二容性元件,第二容性元件的两端分别与对应的开关型器件的两端电连接;第一容性元件的容值等于第二容性元件的容值。
进一步地,高频阻抗模最小的阻抗支路还包括第二子支路,第二子支路与第二容性元件串联,串联后的两端分别与对应的开关型器件的两端电连接;
第二子支路包括第二阻性元件和第二感性元件中的至少一种,第一子支路的高频阻抗模大于第二子支路的高频阻抗模。
进一步地,第一子支路包括第一阻性元件,第二子支路包括第二阻性元件;
按照阻抗支路的高频阻抗模的大小进行排序,序号相邻的两个阻抗支路中,高频阻抗模大的阻抗支路中的电阻的阻值大于高频阻抗模小的阻抗支路中的电阻的阻值的5倍;
Figure PCTCN2021125461-appb-000001
其中,R 1max为高频阻抗模最大的阻抗支路中的第一阻性元件的阻值,C 1为第一容性元件的容值,f H为高频,f L为工频。
进一步地,第一子支路包括第一感性元件,第二子支路包括第二感性元件;
按照阻抗支路的高频阻抗模的大小进行排序,序号相邻的两个阻抗支路中,高频阻抗模大的阻抗支路中的电感的感值大于高频阻抗模小的阻抗支路中的电感的感值的5倍;
Figure PCTCN2021125461-appb-000002
其中,L 1max为高频阻抗模最大的阻抗支路中的第一感性元件的感值,C 1为第一容性元件的容值,f H为高频,f L为工频。
进一步地,开关型器件包括:气体放电管、半导体放电管、空气间隙、石墨间隙或火花隙。
进一步地,开关型器件的个数为三个,串联连接顺序位于中间的开关型器件对应的阻抗支路的高频阻抗模最小。
进一步地,开关型器件包括气体放电管;
放电电路还包括K个第二气体放电管和K个第三电容,其中,K为大于或等于2的整数,K个第二气体放电管串联连接,形成第一串联支路;
K个第二气体放电管串联连接形成K+1个第一节点,除与第一串联支路的第一端连接的第一节点外,其余K个第一节点与K个第三电容一一对应,任一第一节点经对应的第三电容与第一串联支路的第一端电连接;
至少两个开关型器件与第一串联支路串联连接后的两端分别与放电电路的第一端和第二端电连接;
第二气体放电管的直流击穿电压小于开关型器件的直流击穿电压。
进一步地,高频大于或等于25000Hz,工频为小于或等于68Hz。
第二方面,本申请实施例还提供了一种浪涌保护电路,包括本申请任意实施例提供的放电电路。
第三方面,本申请实施例还提供了一种点火电路,包括本申请任意实施例提供的放电电路。
第四方面,本申请实施例还提供了一种电子设备,包括本申请任意实施例提供的放电电路。
本申请实施例的技术方案中的放电电路包括至少两个开关型器件和至少两个阻抗支路,其中,至少两个开关型器件串联连接后的两端分别与放电电路的第一端和第二端电连接;阻抗支路与开关型器件一一对应,阻抗支路与其对应的开关型器件并联连接;其中,对于同一高频,阻抗支路的高频阻抗模不相等,高频大于工频,以使得在发生雷击等浪涌冲击时,所有开关型器件不同时达到各自的冲击击穿电压,先发生击穿的开关型器件之间的电压迅速降低,浪涌电压将几乎完全施加在其余未击穿的开关型器件,随着其余未击穿的开关型器件的电压的升高,逐渐达到其直流击穿电压时发生击穿,放电电路的实际冲击击穿电压V BR0'小于全部开关型器件的冲击击穿电压的和,即V BR0'<V BR1'+V BR2'+…+V BRn',解决了在发生雷击等浪涌冲击时,在浪涌冲击电压增大到直流击穿电压等于V BR1+V BR2+…+V BRn的单个开关型器件的冲击击穿电压(等于V BR1'+V BR2'+…+V BRn')时,单个开关型器件将被击穿导通,导致冲击击穿电压过高,存在保护盲区的问题。
附图说明
图1为本申请实施例提供的一种放电电路的结构示意图;
图2为本申请实施例提供的一种放电电路的应用场景;
图3为本申请实施例提供的又一种放电电路的结构示意图;
图4为本申请实施例提供的又一种放电电路的结构示意图;
图5为本申请实施例提供的又一种放电电路的结构示意图;
图6为本申请实施例提供的又一种放电电路的结构示意图;
图7为本申请实施例提供的又一种放电电路的结构示意图;
图8为本申请实施例提供的又一种放电电路的结构示意图;
图9为本申请实施例提供的又一种放电电路的结构示意图;
图10为本申请实施例提供的又一种放电电路的结构示意图;
图11为本申请实施例提供的又一种放电电路的结构示意图;
图12为本申请实施例提供的又一种放电电路的结构示意图;
图13为本申请实施例提供的又一种放电电路的结构示意图;
图14为本申请实施例提供的又一种放电电路的结构示意图;
图15为本申请实施例提供的又一种放电电路的结构示意图;
图16为本申请实施例提供的又一种放电电路的结构示意图;
图17为本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
本申请实施例提供一种放电电路。图1为本申请实施例提供的一种放电电路的结构示意图。图2为本申请实施例提供的一种放电电路的应用场景。该放电电路包括:至少两个开关型器件10和至少两个阻抗支路20。
其中,至少两个开关型器件10串联连接后的两端分别与放电电路的第一端V1和第二端V2电连接;阻抗支路20与开关型器件10一一对应,阻抗支路20与其对应的开关型器件10并联连接;其中,对于同一高频,阻抗支路20的高频阻抗模不相等,高频大于工频。
其中,图1示例性的画出两个开关型器件10,分别为第一开关型器件10-1和第二开关型器件10-2,以及两个阻抗支路20,分别为第一阻抗支路20-1和第二阻抗支路20-2,第一开关型器件10-1与第一阻抗支路20-1对应,第二开关型器件10-2与第二阻抗支路20-2对应的情况。其中,任一阻抗支路20可包括下述至少一种元件:阻性元件、感性元件和容性元件,该元件之间可以是串联和/或并联等方式连接,本申请实施例对此不做限定。阻性元件可以包括电阻。感性元件可包括电感。电感可以是磁珠电感,相比于普通电感,体积较小,成本较低。容性元件可包括下述至少一种:电容和带极间电容的元件。带极间电容的元件可包括压敏电阻或瞬态抑制二极管。高频阻抗模最大的阻抗支路20的阻抗模可随频率的增大而增大。高频阻抗模最小的阻抗支路20的阻抗模可随频率的增大而减小。至少一个阻抗支路20包括容性元件,以避免只用电感和电阻会引起绝缘下降的情况发生。图2示例性的画出放电电路应用在浪涌保护电路中的情况。放电电路1的第一端V1可与第一交流供电线电连接,放电电路1的第二端V2可与第二交流供电线电连接,示例性的,第一交流供电线可以是火线L,第二交流供电线可以是零线N。放电电路1可在第一交流供电线与第二交流供电线上发生浪涌干扰等过电压时导通,以泄放浪涌电流,以实现对待保护电路2的过电压保护。可选的,开关型器件包括:气体放电管、半导体放电管、空气间隙、石墨间隙或火花隙。可选的,高频f H大于或等于25000Hz。高频的大小可与雷击等浪涌冲击的频率相等。可选的,工频f L为小于或等于68Hz。工频可为正常工作时,供电电压的频率。可选的,工频f L可以是50Hz、60Hz或0Hz。 正常工作时,供电电压可以是交流或直流。
其中,|Z 11|:|Z 12|:…:|Z 1n|≠V BR1:V BR2:…:V BRn,|Z 1i|为第i个阻抗支路20的高频阻抗模,V BRi为第i个开关型器件10的直流击穿电压,n为阻抗支路20的个数,n为大于或等于2的整数,i等于1、2…n,以使在放电电路的第一端V1和第二端V2之间的电压发生高频浪涌冲击干扰时,所有开关型器件10不同时达到各自的冲击击穿电压。
直流击穿电压可以是在上升陡度低于100V/s的电压作用下,开关型器件的开始击穿的平均电压值。冲击击穿电压(或称脉冲电压)可以是在规定上升陡度的暂态电压脉冲作用下,开关型器件开始击穿的电压值,规定上升陡度可以是100V/us或1KV/us。开关型器件的响应时间或动作时延与电压脉冲的上升陡度有关,对于不同的上升陡度,开关型器件的冲击击穿电压是不同的。直流击穿电压越小的开关型器件,其冲击击穿电压越小。
在放电电路的第一端V1和第二端V2之间的电压发生高频浪涌冲击干扰时,浪涌电压的频率很高,部分开关型器件10的电压先达到其直流击穿电压时发生击穿,此时其余开关型器件10的电压未达到其直流击穿电压。由于先发生击穿的开关型器件10两端的电压迅速降低,浪涌电压将几乎完全施加在其余未击穿的开关型器件10,随着其余未击穿的开关型器件10的电压的升高,逐渐达到其直流击穿电压时发生击穿,整个放电电路导通,泄放电流。此时,放电电路的实际冲击击穿电压V BR0'大于先发生击穿的开关型器件的直流击穿电压,放电电路的实际冲击击穿电压V BR0'小于全部开关型器件的冲击击穿电压的和,即V BR0'<V BR1'+V BR2'+…+V BRn',其中,V BRi'为第i个开关型器件10的冲击击穿电压。
示例性的,如图1所示,第一开关型器件10-1的直流击穿电压为V BR1,第二开关型器件10-2的直流击穿电压为V BR2,第一阻抗支路20-1的高频阻抗模为|Z 11|,第二阻抗支路20-2的高频阻抗模为|Z 12|。若|Z 11|:|Z 12|>V BR1:V BR2,则在发生雷击等浪涌冲击时,第一开关型器件10-1先发生击穿。若|Z 11|:|Z 12|<V BR1:V BR2,则在发生雷击等浪涌冲击时,第二开关型器件10-2先发生击穿。
通过在各开关型器件10上接入阻抗支路20,以使得在发生雷击等浪涌冲击时,所有开关型器件10不同时达到各自的冲击击穿电压,部分开关型器件10的电压先达到其直流击穿电压时发生击穿,此时其余开关型器件10的电压未达到其直流击穿电压。由于先发生击穿的开关型器件10之间的电压迅速降低,浪涌电压将几乎完全施加在其余未击穿的开关型器件10,随着其余未击穿的开关型器件10的电压的升高,逐渐达到其直流击穿电压时发生击穿,整个放电电路导通,泄放电流。放电电路的实际冲击击穿电压V BR0'大于先发生击穿的开关 型器件的直流击穿电压,放电电路的实际冲击击穿电压V BR0'大于后发生击穿的开关型器件的直流击穿电压,放电电路的实际冲击击穿电压V BR0'小于全部开关型器件的冲击击穿电压的和,即V BR0'<V BR1'+V BR2'+…+V BRn',故放电电路具有较低的冲击击穿电压,将放电电路替代直流击穿电压等于V BR1+V BR2+…+V BRn的单个开关型器件,解决了在发生雷击等浪涌冲击时,在浪涌冲击电压增大到直流击穿电压等于V BR1+V BR2+…+V BRn的单个开关型器件的冲击击穿电压(等于V BR1'+V BR2'+…+V BRn')时,单个开关型器件将被击穿导通,导致冲击击穿电压过高,存在保护盲区的问题。
本实施例的技术方案中的放电电路包括至少两个开关型器件和至少两个阻抗支路,其中,至少两个开关型器件串联连接后的两端分别与放电电路的第一端和第二端电连接;阻抗支路与开关型器件一一对应,阻抗支路与其对应的开关型器件并联连接;其中,对于同一高频,阻抗支路的高频阻抗模不相等,高频大于工频,以使得在发生雷击等浪涌冲击时,所有开关型器件不同时达到各自的冲击击穿电压,先发生击穿的开关型器件之间的电压迅速降低,浪涌电压将几乎完全施加在其余未击穿的开关型器件,随着其余未击穿的开关型器件的电压的升高,逐渐达到其直流击穿电压时发生击穿,放电电路的实际冲击击穿电压V BR0'小于全部开关型器件的冲击击穿电压的和,即V BR0'<V BR1'+V BR2'+…+V BRn',解决了在发生雷击等浪涌冲击时,在浪涌冲击电压增大到直流击穿电压等于V BR1+V BR2+…+V BRn的单个开关型器件的冲击击穿电压时,单个开关型器件将被击穿导通,导致冲击击穿电压过高,存在保护盲区的问题。
可选的,按照阻抗支路20的高频阻抗模的大小进行排序,序号相邻的两个阻抗支路20中,|Z H1|:|Z H2|>V BRX:V BRY,其中,|Z H1|为高频阻抗模大的阻抗支路的高频阻抗模,|Z H2|为高频阻抗模小的阻抗支路的高频阻抗模,V BRX为高频阻抗模大的阻抗支路对应的开关型器件的直流击穿电压,V BRY为高频阻抗模小的阻抗支路对应的开关型器件的直流击穿电压。
其中,在放电电路的第一端V1和第二端V2之间的电压发生高频浪涌冲击干扰时,直流击穿电压小的开关型器件10先发生击穿,直流击穿电压大的开关型器件10后发生击穿,避免直流击穿电压大的开关型器件10先发生击穿,导致在直流击穿电压大的开关型器件10击穿后,直流击穿电压小的开关型器件10的电压过大导致失效的情况发生。
可选的,按照阻抗支路20的高频阻抗模的大小进行排序,序号相邻的两个阻抗支路20中,高频阻抗模大的阻抗支路20对应的开关型器件10的直流击穿电压小于或等于高频阻抗模小的阻抗支路20对应的开关型器件10的直流击穿电压,即|Z H1|>|Z H2|,V BRX≤V BRY
其中,阻抗支路20的高频阻抗模越大,阻抗支路20对应的开关型器件10的直流击穿电压越小。可选的,在放电电路的第一端V1和第二端V2之间的电压发生高频浪涌冲击干扰时,开关型器件10对应的阻抗支路20的高频阻抗模越大,开关型器件10越早导通。在放电电路的第一端V1和第二端V2之间的电压发生高频浪涌冲击干扰时,直流击穿电压小的开关型器件10上的电压较高先发生击穿,直流击穿电压大的开关型器件10上的电压较低后发生击穿,避免直流击穿电压大的开关型器件10先发生击穿,导致在直流击穿电压大的开关型器件10击穿后,直流击穿电压小的开关型器件10的电压过大导致失效的情况发生。
可选的,按照阻抗支路20的高频阻抗模的大小进行排序,序号相邻的两个阻抗支路20中,|Z H1|>5|Z H2|,其中,|Z H1|为高频阻抗模大的阻抗支路20的高频阻抗模,|Z H2|为高频阻抗模小的阻抗支路20的高频阻抗模。
其中,|Z H1|越大,|Z H2|越小,放电电路的实际冲击击穿电压V BR0'越接近于直流击穿电压最大的开关型器件的冲击击穿电压。在发生雷击等浪涌冲击时,以使高频阻抗模最大的阻抗支路20对应的开关型器件10的电压远大于其余开关型器件10的电压,使得浪涌电压几乎完全施加在高频阻抗模最大的阻抗支路20对应的开关型器件10上,以使高频阻抗模最大的阻抗支路20对应的开关型器件10先发生击穿,高频阻抗模最大的阻抗支路20对应的开关型器件10的导通电压迅速降低,使得浪涌电压几乎完全施加在高频阻抗模第二大的阻抗支路20对应的开关型器件10上,以使高频阻抗模第二大的阻抗支路20对应的开关型器件10发生击穿,依次类推,从而实现开关型器件按照与其对应的阻抗支路的高频阻抗模的大小的顺序逐个击穿。
可选的,所有开关型器件10的直流击穿电压相等,所有开关型器件10的冲击击穿电压相等,以使放电电路的冲击击穿电压达到最小。
示例性的,如图1所示,第一开关型器件10-1的直流击穿电压为V BR1,第二开关型器件10-2的直流击穿电压为V BR2。若V BR1<V BR2,V BR1<V BR0/2,V BR2>V BR0/2,V BR1+V BR2=V BR0,两个开关型器件10的直流击穿电压不相等,两个开关型器件10的冲击击穿电压不相等,放电电路的实际冲击击穿电压V BR0'接近于直流击穿电压为大于V BR0/2的开关型器件的冲击击穿电压。若V BR1=V BR2,V BR1=V BR0/2,V BR2=V BR0/2,V BR1+V BR2=V BR0,两个开关型器件10的直流击穿电压相等,两个开关型器件10的冲击击穿电压相等,放电电路的实际冲击击穿电压V BR0'接近于直流击穿电压为等于V BR0/2的开关型器件的冲击击穿电压。
可选的,V BRX:V BRY=|Z L1|:|Z L2|,其中,V BRX为高频阻抗模大的阻抗支路对应的开关型器件的直流击穿电压,V BRY为高频阻抗模小的阻抗支路对应的开 关型器件的直流击穿电压,|Z L1|为高频阻抗模大的阻抗支路的工频阻抗模,|Z L2|为高频阻抗模小的阻抗支路的工频阻抗模,以使在工频电压状态时,直流击穿电压大的开关型器件的分压较大,直流击穿电压小的开关型器件的分压较小,以保证整个电路不发生击穿,保证交流耐压水平。
其中,正常供电时,在工频电压状态时,直流击穿电压大的开关型器件10的分压较大,直流击穿电压小的开关型器件10的分压较小,以保证整个电路不发生击穿,保证交流耐压水平。正常供电时,所有开关型器件10不导通,放电电路不导通,任一开关型器件10的电压小于其开启电压。工频状态下,所有阻抗支路串联后的等效阻抗大于IEC60950和IEC61347等标准的4兆欧要求。
可选的,所有阻抗支路20的工频阻抗模相等,以使在所有开关型器件10的直流击穿电压相等,开关型器件的分压相等,保证交流耐压水平。其中,可选的,第一阻抗支路20-1的阻抗模可随频率的增大而增大;第二阻抗支路20-2的阻抗模可随频率的增大而减小,以满足高频和工频下的阻抗模的大小关系。
可选的,在上述实施例的基础上,图3为本申请实施例提供的一种放电电路的结构示意图,除高频阻抗模最小的阻抗支路20外,其余阻抗支路中,任一阻抗支路20包括串联的第一子支路21和第一容性元件C1,串联后的两端分别与对应的开关型器件10的两端电连接;第一子支路21包括第一阻性元件R1和第一感性元件L1中的至少一种;第一容性元件C1的工频阻抗模大于第一子支路21的工频阻抗模的5倍;第一子支路21的高频阻抗模大于第一容性元件C1的高频阻抗模的5倍。
其中,图3示例性的画出第一开关型器件10-1包括气体放电管,第二开关型器件10-2包括气体放电管,高频阻抗模最小的阻抗支路为第二阻抗支路20-2,第一阻抗支路20-1中的第一子支路21包括第一阻性元件R1的情况。第一阻抗支路20-1的高频阻抗模
Figure PCTCN2021125461-appb-000003
w H=2πgf H,f H为高频频率;第一阻抗支路20-1的工频阻抗模
Figure PCTCN2021125461-appb-000004
w L=2πgf L,f L为工频频率。其中,其中,R 1为第一阻性元件R1的阻值,C 1为第一容性元件C1的容值。R 1越大,|Z 11|越大。C 1越大,|Z 21|越小。
图4为本申请实施例提供的又一种放电电路的结构示意图,图4示例性的画出第一阻抗支路20-1中的第一子支路21包括第一感性元件L1的情况,第一阻抗支路20-1的高频阻抗模
Figure PCTCN2021125461-appb-000005
第一阻抗支路20-1的工频阻 抗模
Figure PCTCN2021125461-appb-000006
其中,L 1为第一感性元件L1的电感值。L 1越大,f H越大,|Z 11|越大。
可选的,在上述实施的基础上,继续参见图3和图4,高频阻抗模最小的阻抗支路20包括第二容性元件C2,第二容性元件C2的两端分别与对应的开关型器件10的两端电连接;第一容性元件C1的容值等于第二容性元件C2的容值。
其中,正常供电时,在工频电压状态时,由第一容性元件C1和第二容性元件C2起主要分压作用,第一容性元件C1和第二容性元件C2的工频容抗模可远大于第一子支路21的工频阻抗模。在发生雷击等浪涌冲击时,由第一子支路21起主要作用,第一子支路21的高频阻抗模可远大于第二容性元件C2和第一容性元件C1的高频容抗模。
其中,第二阻抗支路20-2的高频阻抗模
Figure PCTCN2021125461-appb-000007
第二阻抗支路20-2的工频阻抗模
Figure PCTCN2021125461-appb-000008
其中,C 2为第二容性元件C2的容值。C 2越小,|Z 22|越大。
可选的,在上述实施例的基础上,图5为本申请实施例提供的又一种放电电路的结构示意图,高频阻抗模最小的阻抗支路20还包括第二子支路22,第二子支路22与第二容性元件C2串联,串联后的两端分别与对应的开关型器件10的两端电连接。可选的,第二子支路22包括第二阻性元件R2和第二感性元件L2中的至少一种,第一子支路21的高频阻抗模大于第二子支路22的高频阻抗模。
其中,正常供电时,在工频电压状态时,由第一容性元件C1和第二容性元件C2起主要分压作用,第一容性元件C1和第二容性元件C2的工频容抗模可远大于第一子支路21和第二子支路22的工频阻抗模。在发生雷击等浪涌冲击时,由第一子支路21和第二子支路22起主要分压作用,第一子支路21和第二子支路22的高频阻抗模可远大于第二容性元件C2和第一容性元件C1的高频容抗模。
其中,图5示例性的画出第一开关型器件10-1包括半导体放电管,第二开关型器件10-2包括半导体放电管,高频阻抗模最小的阻抗支路为第二阻抗支路20-2,第一阻抗支路20-1中的第一子支路21包括第一阻性元件R1,第二阻抗支路20-2中的第二子支路22包括第二阻性元件R2的情况,第二阻抗支路20-2 的高频阻抗模
Figure PCTCN2021125461-appb-000009
第二阻抗支路20-2的工频阻抗模
Figure PCTCN2021125461-appb-000010
Figure PCTCN2021125461-appb-000011
其中,R 2为第二阻性元件R2的阻值。C 2越小,|Z 22|越大。R 2越小,|Z 12|越小。
可选的,在上述实施例的基础上,图6为本申请实施例提供的又一种放电电路的结构示意图,第一子支路21包括第一阻性元件R1,第二子支路22包括第二阻性元件R2。其中,正常供电时,在工频电压状态时,由第一容性元件C1和第二容性元件C2起主要分压作用。在发生雷击等浪涌冲击时,由第一阻性元件R1和第二阻性元件R2起主要分压作用。可选的,
Figure PCTCN2021125461-appb-000012
Figure PCTCN2021125461-appb-000013
可选的,在上述实施例的基础上,继续参见图6,按照阻抗支路20的高频阻抗模的大小进行排序,序号相邻的两个阻抗支路20中,高频阻抗模大的阻抗支路20中的电阻的阻值大于高频阻抗模小的阻抗支路20中的电阻的阻值的5倍。
可选的,在上述实施例的基础上,继续参见图6,
Figure PCTCN2021125461-appb-000014
Figure PCTCN2021125461-appb-000015
其中,R 1max为高频阻抗模最大的阻抗支路20中的第一阻性元件R1的阻值,C 1为第一容性元件C1的容值,f H为高频,f L为工频。
其中,图6示例性的画出三个开关型器件10,分别为第一开关型器件10-1、第二开关型器件10-2和第三开关型器件10-3,以及三个阻抗支路20,分别为第一阻抗支路20-1、第二阻抗支路20-2和第三阻抗支路20-3,,第一开关型器件10-1与第一阻抗支路20-1对应,第二开关型器件10-2与第二阻抗支路20-2对应,第三开关型器件10-3与第三阻抗支路20-3对应,高频阻抗模最小的阻抗支路为第二阻抗支路20-2,高频阻抗模最大的阻抗支路为第一阻抗支路20-1的情况。第一阻抗支路20-1的第一子支路21的第一阻性元件R1的阻值为R 1max,第三阻抗支路20-3的第一子支路21的第一阻性元件R1的阻值为R 1mid,第二阻抗 支路20-2的第二子支路21的第二阻性元件R2的阻值为R 2,其中,R 1max>5R 1mid,R 1mid>5R 2。序号相邻的两个阻抗支路20中的电阻相差越大,在发生雷击等浪涌冲击时,高频阻抗模大的阻抗支路20对应的开关型器件10的电压越高,高频阻抗模大的阻抗支路20对应的开关型器件10的电压越低,放电电路的冲击击穿电压越低,越接近直流击穿电压最大的开关型器件的冲击击穿电压。
可选的,在上述实施例的基础上,图7为本申请实施例提供的又一种放电电路的结构示意图,第一子支路21包括第一感性元件L1,第二子支路22包括第二感性元件L2。其中,正常供电时,在工频电压状态时,由第一容性元件C1和第二容性元件C2起主要分压作用。在发生雷击等浪涌冲击时,由第一感性元件L1和第二感性元件L2起主要分压作用。
按照阻抗支路20的高频阻抗模的大小进行排序,序号相邻的两个阻抗支路20中,高频阻抗模大的阻抗支路20中的电感的感值大于高频阻抗模小的阻抗支路20中的电感的感值的5倍。
Figure PCTCN2021125461-appb-000016
其中,L 1max为高频阻抗模最大的阻抗支路中的第一感性元件的感值,C 1为第一容性元件的容值,f H为高频,f L为工频。
其中,图7示例性的画出三个开关型器件10,分别为第一开关型器件10-1、第二开关型器件10-2和第三开关型器件10-3,以及三个阻抗支路20,分别为第一阻抗支路20-1、第二阻抗支路20-2和第三阻抗支路20-3,,第一开关型器件10-1与第一阻抗支路20-1对应,第二开关型器件10-2与第二阻抗支路20-2对应,第三开关型器件10-3与第三阻抗支路20-3对应,高频阻抗模最小的阻抗支路为第二阻抗支路20-2,高频阻抗模最大的阻抗支路为第一阻抗支路20-1的情况。第一阻抗支路20-1的第一子支路21的第一感性元件L1的阻值为L 1max,第三阻抗支路20-3的第一子支路21的第一感性元件L1的阻值为L 1mid,第二阻抗支路20-2的第二子支路21的第二感性元件L2的阻值为L 2,其中,L 1max>5L 1mid,L 1mid>5L 2。序号相邻的两个阻抗支路20中的电感相差越大,在发生雷击等浪涌冲击时,高频阻抗模大的阻抗支路20对应的开关型器件10的电压越高,高频阻抗模大的阻抗支路20对应的开关型器件10的电压越低,放电电路的冲击击穿电压越低,越接近直流击穿电压最大的开关型器件的冲击击穿电压。
图8为本申请实施例提供的又一种放电电路的结构示意图。图8示例性的画出高频阻抗模最小的阻抗支路为第二阻抗支路20-2,第一阻抗支路20-1中的第一子支路11包括第一阻性元件R1,第二阻抗支路20-2中的第二子支路22包括第二感性元件L2的情况,第二阻抗支路20-2的高频阻抗模
Figure PCTCN2021125461-appb-000017
Figure PCTCN2021125461-appb-000018
第二阻抗支路20-2的工频阻抗模
Figure PCTCN2021125461-appb-000019
其中,L 2为第二感性元件L2的电感值。C 2越小,|Z 22|越大。L 2越小,|Z 12|越小。其中,正常供电时,在工频电压状态时,由第一容性元件C1和第二容性元件C2起主要分压作用。在发生雷击等浪涌冲击时,由第一阻性元件R1和第二感性元件L2起主要分压作用。
可选的,在上述实施例的基础上,继续参见图8,按照阻抗支路20的高频阻抗模的大小进行排序,序号相邻的两个阻抗支路20中,高频阻抗模大的阻抗支路20中的子支路包括电阻,高频阻抗模小的阻抗支路20中的子支路包括电感,高频阻抗模大的阻抗支路20中的电阻的阻值大于高频阻抗模小的阻抗支路20中的电感的高频感抗的5倍。示例性的,如图8所示,R 1>5|jw HL 2|。
图9为本申请实施例提供的又一种放电电路的结构示意图。图9示例性的画出高频阻抗模最小的阻抗支路为第二阻抗支路20-2,第一阻抗支路20-1中的第一子支路11包括第一感性元件L1,第二阻抗支路20-2中的第二子支路21包括第二阻性元件R2的情况。其中,正常供电时,在工频电压状态时,由第一容性元件C1和第二容性元件C2起主要分压作用。在发生雷击等浪涌冲击时,由第一感性元件L1和第二阻性元件R2起主要分压作用。
可选的,在上述实施例的基础上,继续参见图9,按照阻抗支路20的高频阻抗模的大小进行排序,序号相邻的两个阻抗支路20中,高频阻抗模大的阻抗支路20中的子支路包括电感,高频阻抗模小的阻抗支路20中的子支路包括电阻,高频阻抗模大的阻抗支路20中的电感的高频感抗大于高频阻抗模小的阻抗支路20中的电阻的阻值的5倍。示例性的,如图9所示,|jw HL 1|>5R 2
可选的,在上述实施例的基础上,图10为本申请实施例提供的又一种放电电路的结构示意图,开关型器件10的个数为三个,串联连接顺序位于中间的开关型器件10对应的阻抗支路20的高频阻抗模最小。
其中,在发生雷击等浪涌冲击时高频阻抗模最小的阻抗支路对应的开关型器件最后启动,两边的开关型器件先启动,可以让中间的开关型器件启动时有足够的电荷量。这样设置,可以让高频阻抗模最小的阻抗支路中的电容小一点,让整个回路的工频阻抗高一些,也可以使电路的放电管更可靠一些。
可选的,在上述实施例的基础上,图12为本申请实施例提供的又一种放电电路的结构示意图,开关型器件10包括气体放电管,放电电路还包括K个第二气体放电管GDT2和K个第三电容C3,其中,K为大于或等于2的整数,K个第二气体放电管GDT2串联连接,形成第一串联支路40。
其中,K个第二气体放电管GDT2串联连接形成K+1个第一节点N1,除与 第一串联支路40的第一端X1连接的第一节点N1外,其余K个第一节点N1与K个第三电容C3一一对应,任一第一节点N11经对应的第三电容C3与第一串联支路40的第一端X1电连接。至少两个开关型器件10与第一串联支路40串联连接后的两端分别与放电电路的第一端V1和第二端V2电连接。第二气体放电管GDT2的直流击穿电压小于开关型器件10的直流击穿电压。
其中,对于同一高频,高频阻抗模最小的阻抗支路20的高频阻抗模大于第三电容C3的高频阻抗模
Figure PCTCN2021125461-appb-000020
其中,C 3为第三电容C3的容值,以使在发生雷击等浪涌冲击时,开关型器件10的分压大,先导通;多个串联的气体放电管GDT2的分压小,后导通。可选的,第二容性元件C2的容值小于第三电容C3的容值。K个气体放电管GDT2可集成为多间隙气体放电管。多个串联的气体放电管GDT2可以抬高弧光压,使得雷击等过电压消失后,工频电流(频率可为50Hz或60Hz)继续流过串联的气体放电管GDT2时,在工频续电流过零点过程中,气体放电管GDT2可自行关断,折断工频续电流。多个串联的气体放电管GDT2的高续流遮断能力,使得在异常电压的工作电压下的续流能够自行切断续流达到续流折断的目的。
可选的,如图12所示,至少两个开关型器件10串联连接后的第一端经第一串联支路40与放电电路的第一端V1电连接;至少两个开关型器件10串联连接后的第二端与放电电路的第二端V2电连接。图12示例性的画出至少两个开关型器件10串联连接后的第一端与第一串联支路40的第二端X2电连接;第一串联支路40的第一端X1与放电电路的第一端V1电连接;至少两个开关型器件10串联连接后的第二端与放电电路的第二端V2电连接的情况。
图13为本申请实施例提供的又一种放电电路的结构示意图。图12示例性的画出至少两个开关型器件10串联连接后的第一端与第一串联支路40的第一端X1电连接;第一串联支路40的第二端X2与第一串联支路40与放电电路的第二端V2电连接;至少两个开关型器件10串联连接后的第二端与放电电路的第一端V1电连接的情况。
可选的,在上述实施例的基础上,图14为本申请实施例提供的又一种放电电路的结构示意图,该放电电路还包括第一压敏电阻MOV1,至少两个开关型器件10与第一压敏电阻MOV1串联连接后的两端分别与放电电路的第一端V1和第二端V2电连接。
其中,其中,对于同一高频,高频阻抗模最小的阻抗支路20的高频阻抗模大于第一压敏电阻MOV1的极间电容的高频阻抗模
Figure PCTCN2021125461-appb-000021
其中,C 4为第一压敏电阻MOV1的极间电容的容值,以使在发生雷击等浪涌冲击时,开关型器件 的分压大,先导通;第一压敏电阻MOV1的分压小,后导通。可选的,高频阻抗模最小的阻抗支路20的高频阻抗模大于
Figure PCTCN2021125461-appb-000022
可选的,第二容性元件C2的容值小于第一压敏电阻MOV1的极间电容的容值。第一压敏电阻MOV1的极间电容可为第一压敏电阻MOV1的寄生电容。气体放电管搭配压敏电阻使用,利用气体放电管的在未导通时低漏电流特性克服单独压敏电阻使用时漏电流过大容易起火的问题。利用压敏电阻的钳位高电压特性和气体放电管组合的高电压远远大于电源的工作电压,使得电源的电流灌入不到电路中,相当于拦河坝。
可选的,在上述实施例的基础上,图15为本申请实施例提供的又一种放电电路的结构示意图,该放电电路还包括第二压敏电阻MOV2,至少两个开关型器件10串联连接后的第一端与放电电路的第二端V2电连接;至少两个开关型器件10串联连接后的第二端经第二压敏电阻MOV2与放电电路的第三端V3电连接;至少两个开关型器件10串联连接后的第二端经第一压敏电阻MOV1与放电电路的第一端V1电连接。
其中,对于同一高频,高频阻抗模最小的阻抗支路20的高频阻抗模大于第二压敏电阻MOV2的极间电容的高频阻抗模
Figure PCTCN2021125461-appb-000023
其中,C 5为第二压敏电阻MOV2的极间电容的容值,以使在放电电路的第二端V2和第三端V3上发生雷击等浪涌冲击时,开关型器件10的分压大,先导通;第二压敏电阻MOV2的分压小,后导通。可选的,第二容性元件C2的容值小于第二压敏电阻MOV2的极间电容的容值。第二压敏电阻MOV2的极间电容可为第二压敏电阻MOV2的寄生电容。可选的,放电电路的第一端V1可与火线电连接,放电电路的第三端V3可与零线电连接,放电电路的第二端V2可接地。
图16为本申请实施例提供的又一种放电电路的结构示意图。图16示例性的画出高频阻抗模最小的阻抗支路为第二阻抗支路20-2,第一阻抗支路20-1中的第一子支路11包括第一阻性元件R1,第二阻抗支路20-2中的第二子支路21包括第二阻性元件R2的情况。工频状态下,第一容性元件C1和第二容性元件C2的容抗远大于第一阻性元件R1的阻抗,C 1=C 2,电压近似于第一开关型器件10-1和第二开关型器件10-2平分。浪涌状态下,频率大于或等于25000Hz,第一容性元件C1和第二容性元件C2的容抗远小于R1第一阻性元件R1的阻抗,近似于浪涌电压由第一阻性元件R1与第二阻性元件R2按其阻值来分,R 1:R 2大于5:1,浪涌电压主要分布在第一阻性元件R1上,也就等于电压主要分布在第一开关型器件10-1上,当电压大于第一开关型器件10-1的脉冲电压,第一开关型器件10-1击穿(若第一开关型器件10-1为气体放电管,则气体放电管进入 辉光态),第一开关型器件10-1击穿后,第一开关型器件10-1两端电压速降,此时浪涌电压主要分布于第二开关型器件10-2两端,第二开关型器件10-2被击穿。第一开关型器件10-1和第二开关型器件10-2均为气体放电管,每个气体放电管的直流击穿电压为1500V,脉冲电压为2000V,那么整个放电电路的脉冲电压小于2000+(1500×0.25)=2375V。如果第一开关型器件10-1没有并联第一并联阻抗支路20-1,第二开关型器件10-2没有并联第二并联阻抗支路20-2,则第一开关型器件10-1和第二开关型器件10-2串联后的脉冲电压为3500V,而在第一开关型器件10-1上并联第一并联阻抗支路20-1,第二开关型器件10-2上并联第二并联阻抗支路20-2,整个放电电路的脉冲电压小于2375V,脉冲电压降低3500–2375=1125V。
示例性的,继续参见图5,第一开关型器件10-1和第二开关型器件10-2均为半导体放电管。每个半导体放电管的直流击穿电压为800V,脉冲电压为900V,交流环境,放电电路的耐压即为800*2/1.414=1131V,直流击穿电压为800*2=1600V,脉冲电压的计算为小于900+(800*(1+1)/[(1+1)+(5+1)]=1100V。将放电电路代替直流击穿电压为1600V的半导体放电管,直流击穿电压为1600V的半导体放电管的脉冲电压为1700V,则脉冲电压可以降低1700-1100=600V左右。
示例性的,继续参见图8,第一开关型器件10-1为半导体放电管,第二开关型器件10-2为气体放电管。半导体放电管的直流击穿电压为800V,气体放电管的直流击穿电压为800V。工频状态下,工频电压主要分配在第一容性元件和第二容性元件C2上,半导体放电管与气体放电管近似各分一半。交流环境,放电电路的耐压约为(800+800)/1.414=1131V。浪涌冲击下,电压分配由第一子支路21和第二子支路22决定,第一子支路21的高频阻抗模远大于第二子支路22的高频阻抗模,电压主要分配在第一开关型器件10-1上,半导体放电管先击穿,随后气体放电管跟着击穿,整个放电电路击穿,放电电路的脉冲电压为气体放电管的脉冲电压+4V,4V为半导体放电管击穿后的电压,半导体放电管没有辉光区的说法,直流击穿电压为800V的气体放电管的脉冲电压为1200V,那么整个放电电路的击穿电压为1204V。将放电电路代替直流击穿电压为1600V的半导体放电管,直流击穿电压为1600V的半导体放电管的脉冲电压为1700V,则脉冲电压可以降低1700-1204=496V左右。
本申请实施例提供一种浪涌保护电路。在上述实施例的基础上,继续参见图2,该浪涌保护电路包括本申请任意实施例提供的放电电路。
其中,本申请实施例提供的浪涌保护电路包括上述实施例中的放电电路,因此本申请实施例提供的浪涌保护电路也具备上述实施例中所描述的有益效果, 此处不再赘述。
本申请实施例提供一种点火电路。在上述实施例的基础上,该点火电路包括本申请任意实施例提供的放电电路。
其中,可选的,点火电路还可包括升压变压器、整流电路、储能电容和电嘴。在需要点火时,交流电源经升压变压器、整流电路升压整流后,向储能电容充电。当储能电容的充电电压达到放电电路的冲击击穿电压时导通,储能电容向电嘴释放电压,使电嘴击穿产生电火花,从而点燃发动机的燃烧室、燃气设备等中的燃气混合物。可将放电电路替代点火电路中的气体放电管。
本申请实施例提供的点火电路包括上述实施例中的放电电路,因此本申请实施例提供的点火电路也具备上述实施例中所描述的有益效果,此处不再赘述。
本申请实施例提供一种电子设备。图17为本申请实施例提供的一种电子设备的结构示意图。该电子设备100包括本申请任意实施例提供的放电电路。
其中,该电子设备100可包括本申请任意实施例提供的浪涌保护电路或点火电路。电子设备100可以是电视机、笔记本电脑、空调、通信电源、摄像机、网络交换机等。本申请实施例提供的电子设备包括上述实施例中的放电电路,因此本申请实施例提供的电子设备也具备上述实施例中所描述的有益效果,此处不再赘述。

Claims (16)

  1. 一种放电电路,包括:
    至少两个开关型器件,所述至少两个开关型器件串联连接后的两端分别与所述放电电路的第一端和第二端电连接;
    至少两个阻抗支路,所述阻抗支路与所述开关型器件一一对应,所述阻抗支路与其对应的开关型器件并联连接;
    其中,对于同一高频,所述阻抗支路的高频阻抗模不相等,所述高频大于工频。
  2. 根据权利要求1所述的放电电路,其中,按照所述阻抗支路的高频阻抗模的大小进行排序,序号相邻的两个阻抗支路中,高频阻抗模大的阻抗支路对应的开关型器件的直流击穿电压小于或等于高频阻抗模小的阻抗支路对应的开关型器件的直流击穿电压。
  3. 根据权利要求1所述的放电电路,其中,在所述放电电路的第一端和第二端之间的电压发生高频浪涌冲击干扰时,所述开关型器件对应的阻抗支路的高频阻抗模越大,所述开关型器件越早导通。
  4. 根据权利要求2所述的放电电路,其中,所有阻抗支路的工频阻抗模相等;所有开关型器件的直流击穿电压相等。
  5. 根据权利要求2所述的放电电路,其中,按照所述阻抗支路的高频阻抗模的大小进行排序,序号相邻的两个阻抗支路中,|Z H1|>5|Z H2|,其中,|Z H1|为高频阻抗模大的阻抗支路的高频阻抗模,|Z H2|为高频阻抗模小的阻抗支路的高频阻抗模;V BRX:V BRY=|Z L1|:|Z L2|,其中,V BRX为高频阻抗模大的阻抗支路对应的开关型器件的直流击穿电压,V BRY为高频阻抗模小的阻抗支路对应的开关型器件的直流击穿电压,|Z L1|为高频阻抗模大的阻抗支路的工频阻抗模,|Z L2|为高频阻抗模小的阻抗支路的工频阻抗模。
  6. 根据权利要求5所述的放电电路,其中,除高频阻抗模最小的阻抗支路外,其余阻抗支路中,任一阻抗支路包括串联的第一子支路和第一容性元件,串联后的两端分别与对应的开关型器件的两端电连接;所述第一子支路包括第一阻性元件和第一感性元件中的至少一种;所述第一容性元件的工频阻抗模大于所述第一子支路的工频阻抗模的5倍;所述第一子支路的高频阻抗模大于所述第一容性元件的高频阻抗模的5倍;
    高频阻抗模最小的阻抗支路包括第二容性元件,所述第二容性元件的两端分别与对应的开关型器件的两端电连接;所述第一容性元件的容值等于所述第二容性元件的容值。
  7. 根据权利要求6所述的放电电路,其中,高频阻抗模最小的阻抗支路还包括第二子支路,所述第二子支路与所述第二容性元件串联,串联后的两端分别与对应的开关型器件的两端电连接;
    所述第二子支路包括第二阻性元件和第二感性元件中的至少一种,所述第一子支路的高频阻抗模大于所述第二子支路的高频阻抗模。
  8. 根据权利要求7所述的放电电路,其中,所述第一子支路包括第一阻性元件,所述第二子支路包括第二阻性元件;
    按照所述阻抗支路的高频阻抗模的大小进行排序,序号相邻的两个阻抗支路中,高频阻抗模大的阻抗支路中的电阻的阻值大于高频阻抗模小的阻抗支路中的电阻的阻值的5倍;
    Figure PCTCN2021125461-appb-100001
    其中,R 1max为高频阻抗模最大的阻抗支路中的第一阻性元件的阻值,C 1为第一容性元件的容值,f H为高频,f L为工频。
  9. 根据权利要求7所述的放电电路,其中,所述第一子支路包括第一感性元件,所述第二子支路包括第二感性元件;
    按照所述阻抗支路的高频阻抗模的大小进行排序,序号相邻的两个阻抗支路中,高频阻抗模大的阻抗支路中的电感的感值大于高频阻抗模小的阻抗支路中的电感的感值的5倍;
    Figure PCTCN2021125461-appb-100002
    其中,L 1max为高频阻抗模最大的阻抗支路中的第一感性元件的感值,C 1为第一容性元件的容值,f H为高频,f L为工频。
  10. 根据权利要求1所述的放电电路,其中,所述开关型器件包括:气体放电管、半导体放电管、空气间隙、石墨间隙或火花隙。
  11. 根据权利要求1所述的放电电路,其中,所述开关型器件的个数为三个,串联连接顺序位于中间的开关型器件对应的阻抗支路的高频阻抗模最小。
  12. 根据权利要求1所述的放电电路,其中,所述开关型器件包括气体放电管;
    所述放电电路还包括K个第二气体放电管和K个第三电容,其中,K为大于或等于2的整数,所述K个第二气体放电管串联连接,形成第一串联支路;
    所述K个第二气体放电管串联连接形成K+1个第一节点,除与所述第一串联支路的第一端连接的第一节点外,其余K个第一节点与所述K个第三电容一 一对应,任一所述第一节点经对应的第三电容与所述第一串联支路的第一端电连接;
    所述至少两个开关型器件与所述第一串联支路串联连接后的两端分别与所述放电电路的第一端和第二端电连接;
    所述第二气体放电管的直流击穿电压小于所述开关型器件的直流击穿电压。
  13. 根据权利要求1所述的放电电路,其中,所述高频大于或等于25000Hz,所述工频为小于或等于68Hz。
  14. 一种浪涌保护电路,包括如权利要求1-13任一所述的放电电路。
  15. 一种点火电路,包括如权利要求1-13任一所述的放电电路。
  16. 一种电子设备,包括如权利要求1-13任一所述的放电电路。
PCT/CN2021/125461 2020-10-22 2021-10-22 放电电路、浪涌保护电路、点火电路及电子设备 WO2022083709A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011140519.1A CN112332395B (zh) 2020-10-22 2020-10-22 放电电路、浪涌保护电路、点火电路及电子设备
CN202011140519.1 2020-10-22

Publications (1)

Publication Number Publication Date
WO2022083709A1 true WO2022083709A1 (zh) 2022-04-28

Family

ID=74312196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125461 WO2022083709A1 (zh) 2020-10-22 2021-10-22 放电电路、浪涌保护电路、点火电路及电子设备

Country Status (2)

Country Link
CN (1) CN112332395B (zh)
WO (1) WO2022083709A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112332395B (zh) * 2020-10-22 2022-11-29 马鞍山市槟城电子有限公司 放电电路、浪涌保护电路、点火电路及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943887A (en) * 1987-05-22 1990-07-24 Smit Transformation B.V. Frequency-dependent overvoltage protective device for high voltage appliances
CN109217275A (zh) * 2018-08-22 2019-01-15 深圳市瑞隆源电子有限公司 耐高压的防雷电涌抑制电路、器件及电源适配器
CN109546637A (zh) * 2018-11-28 2019-03-29 厦门赛尔特电子有限公司 一种电涌保护装置及系统
CN109904847A (zh) * 2019-01-23 2019-06-18 西安交通大学 一种具有选频特性的多级串联放电间隙及其工作方法
CN111276957A (zh) * 2020-03-20 2020-06-12 深圳市槟城电子有限公司 一种过电压保护装置及电子设备
CN112332396A (zh) * 2020-10-22 2021-02-05 马鞍山市槟城电子有限公司 放电电路、浪涌保护电路、点火电路及电子设备
CN112332394A (zh) * 2020-10-22 2021-02-05 马鞍山市槟城电子有限公司 一种浪涌保护电路及电子设备
CN112332395A (zh) * 2020-10-22 2021-02-05 马鞍山市槟城电子有限公司 放电电路、浪涌保护电路、点火电路及电子设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015108652A1 (de) * 2015-06-01 2016-12-01 Ebm-Papst Mulfingen Gmbh & Co. Kg Überspannungsschutzschaltung
CN111490672A (zh) * 2020-02-28 2020-08-04 深圳市槟城电子有限公司 电源防护电路、电源和电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943887A (en) * 1987-05-22 1990-07-24 Smit Transformation B.V. Frequency-dependent overvoltage protective device for high voltage appliances
CN109217275A (zh) * 2018-08-22 2019-01-15 深圳市瑞隆源电子有限公司 耐高压的防雷电涌抑制电路、器件及电源适配器
CN109546637A (zh) * 2018-11-28 2019-03-29 厦门赛尔特电子有限公司 一种电涌保护装置及系统
CN109904847A (zh) * 2019-01-23 2019-06-18 西安交通大学 一种具有选频特性的多级串联放电间隙及其工作方法
CN111276957A (zh) * 2020-03-20 2020-06-12 深圳市槟城电子有限公司 一种过电压保护装置及电子设备
CN112332396A (zh) * 2020-10-22 2021-02-05 马鞍山市槟城电子有限公司 放电电路、浪涌保护电路、点火电路及电子设备
CN112332394A (zh) * 2020-10-22 2021-02-05 马鞍山市槟城电子有限公司 一种浪涌保护电路及电子设备
CN112332395A (zh) * 2020-10-22 2021-02-05 马鞍山市槟城电子有限公司 放电电路、浪涌保护电路、点火电路及电子设备

Also Published As

Publication number Publication date
CN112332395B (zh) 2022-11-29
CN112332395A (zh) 2021-02-05

Similar Documents

Publication Publication Date Title
US5555150A (en) Surge suppression system
US6195245B1 (en) Low capacitance surge protector for high speed data transmission
EP0550554B1 (en) Circuit protection device
EP1058366A2 (en) Surge suppression network responsive to the rate of change of power disturbances
US7755873B2 (en) Device for protection against voltage surges with parallel simultaneously triggered spark-gaps
WO2022083708A1 (zh) 放电电路、浪涌保护电路、点火电路及电子设备
CN206164495U (zh) 一种带陡化间隙的触发真空开关触发源
CN112332394A (zh) 一种浪涌保护电路及电子设备
WO2022083709A1 (zh) 放电电路、浪涌保护电路、点火电路及电子设备
JP5650914B2 (ja) 直列コンデンサバンクを保護するシステムおよび方法
US20160094018A1 (en) Circuit arrangement for surge protection in dc supply circuits
KR102130660B1 (ko) 전력 반도체를 적용한 전원용 emp 방호장치
CN1467895A (zh) 承载雷电流的火花放电装置
JPH06281683A (ja) インパルス電圧またはインパルス電流発生装置
JP2002354662A (ja) 雷防護回路
CN220400335U (zh) 一种可控放电避雷器
CN110071494A (zh) 一种防护电路和电子设备
Jiao et al. Design of Intelligent Protection Module for Low-voltage Power Distribution System
US11824350B1 (en) Clamping circuit for protecting FACTs
CN108054744B (zh) 一种多极多层间隙型电涌保护器
CN214255710U (zh) 一种放电电路及浪涌保护电路
CN211209575U (zh) 一种固态调制器的负载匹配保护电路
CN209730807U (zh) 一种抑制脉冲电压尖峰的电涌保护器
EP4289230A1 (en) A protection circuit for use in a lighting circuit
CN117996705A (zh) 一种避雷器监测装置前端保护系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882123

Country of ref document: EP

Kind code of ref document: A1