WO2022083706A1 - FXIa抑制剂化合物的盐及其制备方法和医药用途 - Google Patents

FXIa抑制剂化合物的盐及其制备方法和医药用途 Download PDF

Info

Publication number
WO2022083706A1
WO2022083706A1 PCT/CN2021/125449 CN2021125449W WO2022083706A1 WO 2022083706 A1 WO2022083706 A1 WO 2022083706A1 CN 2021125449 W CN2021125449 W CN 2021125449W WO 2022083706 A1 WO2022083706 A1 WO 2022083706A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
inhibitor compound
compound according
fxia inhibitor
fxia
Prior art date
Application number
PCT/CN2021/125449
Other languages
English (en)
French (fr)
Inventor
吴俊军
陆银锁
洪泽新
连小磊
Original Assignee
深圳信立泰药业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳信立泰药业股份有限公司 filed Critical 深圳信立泰药业股份有限公司
Priority to CN202180030803.XA priority Critical patent/CN115515938B/zh
Publication of WO2022083706A1 publication Critical patent/WO2022083706A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D237/00Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings
    • C07D237/02Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings
    • C07D237/06Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D237/10Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D237/14Oxygen atoms
    • C07D237/16Two oxygen atoms

Definitions

  • the invention belongs to the technical field of chemical medicine, and provides a series of salts of FXIa inhibitor compounds.
  • the present invention also relates to pharmaceutical compositions comprising the salts of these compounds and the use of the compounds in medicines for treating diseases such as thromboembolism.
  • cardiovascular and cerebrovascular diseases such as cerebrovascular disease, cerebral infarction, myocardial infarction, coronary heart disease and arteriosclerosis kill nearly 12 million people in the world, which is close to 1/4 of the total number of deaths in the world, and has become the number one enemy of human health. More than 2.6 million people die of cardiovascular disease in China every year, and 75% of the surviving patients are disabled, of which more than 40% are severely disabled. The thrombosis caused by cardiovascular and cerebrovascular diseases and diabetes and its complications has become an urgent problem to be solved today.
  • the human blood coagulation process consists of intrinsic pathway, extrinsic pathway and common pathway (Annu.Rev.Med.2011.62:41–57), which is activated by the sequential activation of various zymogens. A chain reaction in which the process is continuously strengthened and amplified.
  • the coagulation cascade is initiated by the endogenous pathway (also known as the contact activation pathway) and the exogenous pathway (also known as the tissue factor pathway) to generate FXa, and then through the common pathway to generate thrombin (FIIa), and finally form fibrin.
  • the intrinsic pathway refers to the process in which factor XII is activated to form XIa-VIIIa-Ca 2+ -PL complex and activate factor X, while the extrinsic coagulation pathway is released from tissue factor (TF) to TF-VIIa-
  • the process by which Ca 2+ complexes form and activate factor X refers to the process of combining the two pathways into one after the formation of factor Xa, activating prothrombin and finally generating fibrin, in which FXI is necessary to maintain the endogenous pathway, and it is also involved in the amplification of the coagulation cascade. play a key role.
  • thrombin In the coagulation cascade reaction, thrombin can activate FXI feedback, and the activated FXI (FXIa) promotes the production of thrombin in a large amount, thereby amplifying the coagulation cascade reaction. Therefore, antagonists of FXI have been widely developed for the treatment of various thrombi.
  • FXIa is currently an emerging target for inhibiting thrombosis
  • patent applications for compounds with FXIa inhibitory activity are disclosed in WO9630396, WO9941276, WO2013093484, WO2004002405, WO2013056060, WO2017005725, WO2017/023992, WO2018041122, etc.
  • Bayer's antisense oligonucleotide BAY-2306001 has entered the Phase II clinical study.
  • the present invention provides a series of salts of oxopyridazinamide derivatives, their preparation methods and their medical applications.
  • the present invention provides salts of FXIa inhibitor compounds represented by formula (I),
  • n 0.5-3;
  • M forms a salt with a carboxyl group, and the salt is selected from at least one of lithium salt, sodium salt, potassium salt, calcium salt, magnesium salt, aluminum salt, iron salt, zinc salt or ammonium salt; or the salt is selected from methyl Amine salt, dimethylamine salt, trimethylamine salt, ethylamine salt, diethylamine salt, triethylamine salt, isopropylamine salt, 2-ethylaminoethanol salt, pyridine salt, picoline salt, ethanolamine salt, diethanolamine salt, ammonium salt, tetramethylammonium salt, tetraethylammonium salt, triethanolamine salt, piperidine salt, piperazine salt, morpholine salt, lysine salt, arginine salt, L-arginine salt, Histidine, L-histidine, meglumine, dimethylglucamine, ethylglucamine, dicyclohexylamine, 1,6-hexanediamine, glucos
  • the salt is selected from sodium salt, potassium salt, meglumine salt, calcium salt, magnesium salt and choline salt.
  • the salt is in crystalline form, or amorphous form, or a mixture thereof.
  • the DSC spectrum of the crystal form has a maximum absorption peak at 70.01°C ⁇ 2°C; the preferred DSC spectrum is shown in Figure 7; the TG spectrum of the crystal form is preferably as shown in Figure 8 Show.
  • the DSC spectrum of the crystal form has a maximum absorption peak at 122.7°C ⁇ 2°C; a preferred DSC spectrum is shown in FIG. 11 .
  • the amorphous DSC spectrum has a maximum absorption peak at 80.1°C ⁇ 2°C; the preferred DSC spectrum is shown in Figure 14; the amorphous TG spectrum is preferably shown in Figure 15 .
  • more than one hydrogen atom of the compound is substituted with the isotope deuterium.
  • the present invention further provides a pharmaceutical composition comprising the aforementioned salt, and one or more pharmaceutically acceptable carriers.
  • the present invention further provides the use of the salt in the preparation of a medicament for the treatment of FXIa-related diseases, preferably a thrombus-related disease.
  • Salts of the compounds of the present invention are referred to as "pharmaceutically acceptable salts", which are prepared from compounds with specific substituents discovered in the present invention and a pharmaceutically acceptable acid or base.
  • Salts of certain compounds of the present invention may exist in unsolvated as well as solvated forms, including hydrated forms. In general, solvated and unsolvated forms are equivalent and are intended to be included within the scope of the present invention.
  • the compounds of the present invention may exist in specific geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including cis and trans isomers, (-)- and (+)-enantiomers, (R)- and (S)-enantiomers, diastereomers isomers, (D)-isomers, (L)-isomers, and racemic and other mixtures thereof, such as enantiomerically or diastereomerically enriched mixtures, all of which belong to within the scope of the present invention.
  • Additional asymmetric carbon atoms may be present in substituents such as alkyl. All such isomers, as well as mixtures thereof, are included within the scope of the present invention.
  • Optically active (R)- and (S)-isomers can be prepared by chiral synthesis or chiral reagents or other conventional techniques. If one enantiomer of a compound of the present invention is desired, it can be prepared by asymmetric synthesis or derivatization with a chiral auxiliary, wherein the resulting mixture of diastereomers is separated and the auxiliary group is cleaved to provide pure desired enantiomer.
  • a diastereomeric salt is formed with an appropriate optically active acid or base, followed by conventional methods known in the art
  • the diastereoisomers were resolved and the pure enantiomers recovered.
  • separation of enantiomers and diastereomers is usually accomplished by the use of chromatography employing a chiral stationary phase, optionally in combination with chemical derivatization (eg, from amines to amino groups) formate).
  • the atoms of the molecules of the compounds of the present invention are isotopes, and the isotope derivatization can usually prolong the half-life, reduce the clearance rate, stabilize the metabolism and improve the activity in vivo. Also, an embodiment is included in which at least one atom is replaced by an atom having the same atomic number (number of protons) and a different mass number (sum of protons and neutrons).
  • isotopes included in the compounds of the present invention include hydrogen atom, carbon atom, nitrogen atom, oxygen atom, phosphorus atom, sulfur atom, fluorine atom, chlorine atom, which respectively include 2 H, 3 H, 13 C, 14 C, 15 N, 17 O, 18 O, 31 P, 32 P, 35 S, 18 F, 36 Cl.
  • radioisotopes that emit radiation as they decay such as 3 H or 14 C, are useful in the topological examination of pharmaceutical formulations or compounds in vivo. Stable isotopes neither decay or change with their amount nor are they radioactive, so they are safe to use.
  • the isotopes can be converted according to general methods by substituting the reagents used in the synthesis with reagents containing the corresponding isotopes.
  • the compounds of the present invention may contain unnatural proportions of atomic isotopes at one or more of the atoms that constitute the compound.
  • compounds can be labeled with radioisotopes, such as deuterium ( 2 H), iodine-125 ( 125 I) or C-14 ( 14 C). All transformations of the isotopic composition of the compounds of the present invention, whether radioactive or not, are included within the scope of the present invention.
  • one or more hydrogen atoms of the compounds of the present invention are substituted by the isotope deuterium ( 2 H).
  • the compounds of the present invention After deuteration, the compounds of the present invention have the effects of prolonging half-life, reducing clearance rate, stabilizing metabolism and improving in vivo activity.
  • the preparation methods of the isotopic derivatives generally include: a phase transfer catalysis method.
  • a preferred deuteration method employs a phase transfer catalyst (eg, tetraalkylammonium salts, NBu4HSO4 ) .
  • the methylene protons of diphenylmethane compounds are exchanged using a phase transfer catalyst, resulting in higher ratios than with deuterated silanes (eg, triethyldeuterated silane) or with Lewis acids such as trichloro in the presence of an acid (eg, methanesulfonic acid) Aluminium is reduced with sodium deuteroborate to introduce higher deuterium.
  • pharmaceutically acceptable carrier refers to any formulation carrier or medium capable of delivering an effective amount of the active substance of the present invention, without interfering with the biological activity of the active substance, and without toxic side effects to the host or patient
  • representative carriers include water, oil , vegetables and minerals, cream base, lotion base, ointment base, etc. These bases include suspending agents, tackifiers, penetration enhancers, and the like.
  • Their formulations are well known to those skilled in the cosmetic or topical pharmaceutical field. For additional information on carriers, reference can be made to Remington: The Science and Practice of Pharmacy, 21st Ed., Lippincott, Williams & Wilkins (2005), the contents of which are incorporated herein by reference.
  • excipient generally refers to the carrier, diluent and/or medium required to formulate an effective pharmaceutical composition.
  • an "effective amount” or “therapeutically effective amount” with respect to a drug or pharmacologically active agent refers to a nontoxic but sufficient amount of the drug or agent to achieve the desired effect.
  • an "effective amount” of one active substance in a composition refers to the amount required to achieve the desired effect when used in combination with another active substance in the composition.
  • the determination of the effective amount varies from person to person, depends on the age and general condition of the recipient, and also depends on the specific active substance, and the appropriate effective amount in individual cases can be determined by those skilled in the art based on routine experiments.
  • treatment refers to a chemical entity that is effective in treating the target disorder, disease or condition.
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments enumerated below, embodiments formed in combination with other chemical synthesis methods, and those well known to those skilled in the art Equivalent to alternatives, preferred embodiments include, but are not limited to, the embodiments of the present invention.
  • NMR nuclear magnetic resonance
  • MS mass spectrometry
  • the MS was measured using an ISQ EC mass spectrometer (manufacturer: Thermo, model: ISQ EC).
  • HPLC High performance liquid chromatography
  • CombiFlash rapid preparation instrument uses CombiFlash Rf+LUMEN (TELEDYNE ISCO).
  • the thin layer chromatography silica gel plate uses Yantai Yinlong HSGF254 or GF254 silica gel plate, the size of the silica gel plate used for thin layer chromatography (TLC) is 0.17mm ⁇ 0.23mm, and the size of the TLC separation and purification products is 0.4mm ⁇ 0.5mm.
  • Silica gel column chromatography generally uses Rushan Shangbang silica gel 100-200 mesh silica gel as the carrier.
  • the crystal form and amorphous form of the present invention are detected by the following equipment and conditions: X-ray powder diffraction (XRPD), the XRPD pattern is collected on the X-ray powder diffraction analyzer produced by PANalytacal, and the scanning parameters are as follows:
  • TGA Thermogravimetric analysis
  • DSC differential scanning calorimetry
  • Dynamic moisture sorption (DVS) curves were collected on DVS Intrinsic of SMS (Surface Measurement Systems). The relative humidity at 25°C was corrected for the deliquescence points of LiCl, Mg( NO3 ) 2 and KCl. The list of DVS test parameters is as follows:
  • Ion chromatography (IC) instrument and analysis conditions are as follows:
  • Step B Synthesis of 5-bromo-6-methoxy-2-(4-methoxybenzyl)pyridazin-3(2H)-one
  • 2-bromo-4-chloroacetophenone (5.00 g, 21.41 mmol), pinacol biboronate (8.16 g, 32.12 mmol) and potassium acetate (4.20 g, 42.82 mmol) were added to three In the neck flask, nitrogen was replaced, 1,4-dioxane (60.0 mL) was added, nitrogen was replaced, and 1,1'-bisdiphenylphosphinoferrocene palladium dichloride (1.75 g, 2.14 mmol) was added. , replaced nitrogen, and heated to 80 °C for 3 hours.
  • Step D Synthesis of 5-(2-Acetyl-5-chlorophenyl)-6-methoxy-2-(4-methoxybenzyl)pyridazin-3(2H)-one
  • Step F Synthesis of (S)-4-(2-(4-(2-Acetyl-5-chlorophenyl)-3-methoxy-6-oxopyridazin-1(6H)-yl)- 3-Phenylpropionamido) tert-butyl benzoate
  • Step G Synthesis of (S)-4-(2-(4-(2-Acetyl-5-chlorophenyl)-3-methoxy-6-oxopyridazin-1(6H)-yl)- 3-Phenylpropionamido)benzoic acid
  • dichloromethane was evaporated to dryness and trifluoroacetic acid was dried with an oil pump.
  • the obtained residue was dissolved in dichloromethane (1.0 mL) and added dropwise to n-hexane (10.0 mL) to separate out a white solid, which was filtered off with suction.
  • the X-Ray data of the crystal form A is shown in Table 1, and the X-Ray is shown in FIG. 1 .
  • the X-Ray data of Type A is shown in the following table; more preferably, the XRPD map, TGA map, and DSC map are shown in Figures 6, 7 and 8, respectively.
  • a 200 mg sample of Form A was taken, added to 1 ml of acetone and 0.02 ml of water, heated to 50 degrees Celsius, suspended at room temperature for 4 days, and centrifuged to obtain crystalline solid Type A.
  • the X-Ray data of Type A is shown in the following table; more preferably, the XRPD diagram is shown in Figure 9.
  • the 2 ⁇ angle of sodium salt Type A indicates that there are strong characteristic peaks at 9.32, 15.34, 16.24, 18.41, 19.48, 24.05°, and the error is ⁇ 0.2°; There are characteristic peaks at 5.59, 7.81, 9.83, 10.50, 11.24, 13.52, 14.60, 14.87, 16.93, 20.39, 21.02, 21.77, 23.53, 24.99, 25.90, 26.62, 27.22°, and the error is ⁇ 0.2°; more preferably X-ray diffraction Figures are shown in Figure 6 or Figure 9.
  • the X-Ray data of meglumine salt crystal form A is preferably shown in the following table; more preferably, the XRPD pattern of meglumine salt crystal form A is shown in FIG. 10 , and the TGA/DSC diagram is shown in FIG. 11 .
  • the X-Ray data of the obtained meglumine salt crystal form A is preferably as shown in the following table; more preferably the XRPD pattern of the meglumine salt crystal form A is as shown in Figure 12:
  • the 2 ⁇ angle of meglumine salt crystal form A indicates that there are strong characteristic peaks at 9.33 and 18.79°, and the error is ⁇ 0.2°; There are characteristic peaks at 24.74°, and the error is ⁇ 0.2°; more preferably, the X-ray diffraction pattern is shown in Figure 10 or Figure 12.
  • the XRPD pattern of the amorphous meglumine salt is shown in FIG. 13
  • the DSC and TGA patterns of the amorphous meglumine salt are shown in FIGS. 14 and 15 .
  • X-ray powder diffraction (XRD) spectrum was detected by a PANalytical Empyrean X-ray diffractometer. Detection conditions: Cu-K ⁇ radiation, wavelength Divergence slit 1/4°, anti-scatter slit 1°, X-ray tube voltage 45kV, X-ray tube current 40mA, scanning range 3-40° (2 ⁇ ), step size 0.026°, scanning time per step 30.09° /s.
  • the amorphous meglumine salt has no obvious characteristic peaks in the X-ray diffraction pattern; further preferably, the X-ray diffraction pattern is shown in Figure 13 or 16.
  • the X-ray data of choline salt crystal form A has strong characteristic peaks at 9.01, 15.90, 16.42 and 22.42°, and the error is ⁇ 0.2°; further preferred X-Ray data is shown in the table below; more preferred XRPD is shown in Figure 17 shown in Figure 18 for TGA/DSC.
  • the sodium and potassium salts provided by the present invention have greatly improved solubility compared with calcium salts, magnesium salts, and compound free acids, which is beneficial to improve the druggability of medicines.
  • the dynamic solubility of each sample in water, SGF, FaSSIF and FeSSIF four solvent systems (1, 4) was determined by rotary mixing (25 rpm) at a concentration of 5 mg/mL (15 mg of material was put into 3 mL of solvent) at 37 °C. and 24 hours).
  • the samples at each time point were filtered (0.45 ⁇ m PTFE filter head) by centrifugation (8000rpm, 2min), the HPLC concentration and pH value of the filtrate were determined, and the solid samples after centrifugation were tested for XRPD.
  • the solubility test results are summarized in the table below and the solubility curve is shown in Figure 19 below.
  • the sodium salt and meglumine salt of the present invention have a good dynamic dissolution effect, which is better than that of the free acid.
  • the sodium salt and meglumine salt of the present invention are very stable under various humidity conditions.
  • 2-Bromo-4-chloroaniline (3.1 g, 14.5 mmol) was added to 2-bromo-4-chloroaniline (3.0 g, 15.0 mmol), 4,4,5,5-tetramethyl-2-( Tetramethyl-1,3,2-dioxaborol-2-yl)-1,3,2-dioxaborolane (38 g, 150.0 mmol), potassium acetate ( 2.9 g, 30.0 mmol), [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium dichloromethane complex (1.1 g, 1.5 mmol) was dissolved in dimethyl sulfoxide (75 ml).
  • Step C Synthesis of 4- ⁇ 5-Chloro-2-[4-(trimethylsilyl)-1H-1,2,3-triazol-1-yl]-phenyl ⁇ -6-methoxy -Pyrimidine
  • Step D Synthesis of 4-[5-Chloro-2-(4-chloro-1H-1,2,3-triazol-1-yl)phenyl]-6-methoxypyrimidine
  • Step E Synthesis of 6-[5-Chloro-2-(4-chloro-1H-1,2,3-triazol-1-yl)phenyl]pyrimidin-4-ol
  • Step F Synthesis of (S)-4-(2-(4-(5-chloro-2-(4-chloro-1H-1,2,3-triazol-1-yl)phenyl)-6-oxo tert-Butyl pyrimidin-1(6H)-yl)-3-phenylpropionamido)benzoate
  • Step F Synthesis of (S)-4-(2-(4-(5-chloro-2-(4-chloro-1H-1,2,3-triazol-1-yl)phenyl)-6-oxo Pyrimidine-1(6H)-yl)-3-phenylpropionamido)benzoic acid
  • Step B Synthesis of 1-(4-Chloro-2-(2,5-dimethoxypyridin-4-yl)phenyl)ethan-1-one
  • Step D Synthesis of (S)-4-(2-(4-(2-Acetyl-5-chlorophenyl)-5-methoxy-2-oxopyridinium-1(2H)-yl)-3 -Phenylpropionamido) tert-butyl benzoate
  • Step E Synthesis of (S)-4-(2-(4-(2-Acetyl-5-chlorophenyl)-5-methoxy-2-oxopyridinium-1(2H)-yl)-3 -Phenylpropionamido)benzoic acid
  • Example 10 Detection of the biological activity of the compounds of the present invention on the inhibition of human coagulation factor XIa by absorptiometry
  • Enzyme Human Factor XIa (ENZYME RESEARCH, Cat. No. HFXIa 1111a)
  • Buffer 145mM NaCl, 5mM KCl, 1mg/mL PEG 8000, 30mM HEPES, pH7.4
  • 10 mM test compound in 100% DMSO was diluted with 100% DMSO to 1000, 200, 40, 8, 1.6, 0.32, 0.064, 0.0128, 0.00256, 0.00128 ⁇ M; /mL) of FXIa enzyme solution, the blank wells were replaced by 98 ⁇ L of buffer, then 2 ⁇ L of compounds of different concentrations were added, the blank and control wells were replaced by DMSO, mixed with a shaker, and incubated at 37°C for 20 min.
  • Example 11 Determination of the anticoagulant effect of the compounds of the present invention on human plasma in vitro
  • Plasma Human blood was collected in a vacuum blood collection tube containing 3.2% sodium citrate (volume ratio 1:9), centrifuged at 3000 rpm for 10 min at room temperature, plasma was collected, packaged in EP tubes, and stored at -80°C.
  • APTT assay kit activated partial thromboplastin time assay kit, mindray
  • calcium chloride solution calcium chloride solution
  • Example 12 Investigation of the selectivity of the compounds of the present invention to coagulation factors
  • hFXa Human Factor Xa: 71nkat.
  • hFIIa HT5146L.
  • hFVIIa Human Factor VIIa: hFVIIa 4591L.
  • kallikrein LOT180223.
  • Substrate S-2222 TM : CHROMOGENIX, NO864682.
  • S-2238 TM CHROMOGENIX, NO770996.
  • S-2288 TM CHROMOGENIX, NO378902. ADG302.
  • hFXa buffer 100 mM NaCl, 5 mM CaCl2, 33% ethylene glycol, 50 mM Tris (pH 7.5).
  • hFIIa buffer 0.145M NaCl, 0.005M KCl, 1 mg/ml PEG-8000, 0.030M HEPES (pH 7.4).
  • hFVIIa buffer 0.145M NaCl, 0.005M KCl, 1 mg/ml PEG-8000, 0.030M HEPES (pH 7.4).
  • kallikrein buffer 50 mM Tris, 50 mM imidazole and 150 mM NaCl (pH 8.2).
  • 10mM test compound dissolved in 100% DMSO was diluted with 100% DMSO to 1000, 200, 40, 8, 1.6 ⁇ M; 98 ⁇ L of enzyme solution was added to each well in a 96-well plate, and 98 ⁇ L of buffer was added to blank wells, and then Add 2 ⁇ L of compounds of different concentrations, replace the blank and control wells with DMSO, mix with a shaker, and incubate at 37°C for 20 min.
  • the concentrations of hFXa and S-2222 TM were FXa (1:28) and 800 ⁇ mol/L, respectively.
  • the concentrations of hFIIa and S-2238 TM were hFIIa (0.06 U/ml) and 500 ⁇ mol/L, respectively.
  • the concentrations of hFVIIa and S-2288 TM were hFVIIa (80 nM) and 1600 ⁇ mol/L, respectively.
  • the concentrations of kallikrein and substrate were kallikrein (20 nM) and 1600 ⁇ mol/L, respectively.
  • the compounds of the present invention have good selectivity to other coagulation factors.
  • SD rats male, 180-250 g, purchased from Guangdong Medical Laboratory Animal Center.
  • Cynomolgus monkey male, 4-6kg, purchased from Guangzhou Chunsheng Biological Research Institute Co., Ltd.
  • Beagle male, 8-12kg, developed in Kanglong Chemical (Ningbo) New Drug Technology Co., Ltd.
  • DMSO dimethyl sulfoxide
  • PEG-400 polyethylene glycol 400
  • physiological saline physiological saline
  • heparin acetonitrile
  • formic acid formic acid
  • propranolol internal standard
  • the compound was weighed and dissolved in DMSO-PEG-400-physiological saline (5:60:35, v/v/v) system, after intravenous or intragastric administration in rats/monkeys, 5min (gastrically not collected), After 15min, 30min, 1h, 2h, 4h, 6h, 8h, and 24h, 200 ⁇ L of venous blood was collected in heparinized EP tubes, centrifuged at 12000 rpm for 2 min, and the plasma was frozen at -80°C for testing. Precisely weigh a certain amount of the test sample and dissolve it in DMSO to 1 mg/mL as a stock solution.
  • Chromatographic column Thermo Scientific HYPERSIL GOLD C-18 UPLC column, 100*2.1mm, 1.9 ⁇ m.
  • WinNonlin 6.1 software was used to calculate pharmacokinetic parameters by non-compartmental model method. The results are shown in Tables 4, 5 and 6.
  • the compounds of the present invention have certain absorption in rats and monkeys orally.
  • the oral absorption in dogs is good, and the clearance rate in vivo is moderately slow.
  • Most of the compounds have a long oral half-life and have good pharmacokinetic characteristics.
  • DMEM (Corning), FBS (Corning), double antibody (Solarbio), 96-well HTS transwell plate (Corning), Caco-2 cells.
  • the compounds of the present invention have no inhibition on major CYP enzymes, and the risk of DDI is small.
  • HEK293-hERG stably transfected cell line invitrogen.
  • DMEM medium Gabco
  • HEPES invitrogen
  • Blasticidin invitrogen
  • HEK293-hERG stably transfected cells were cultured to a degree of polymerization of 40%-80% for experiments.
  • Peak current inhibition (1-Peak tail current compound/Peak tail current vehicle)*100
  • the compounds of the present invention have higher IC50 for hERG current and better cardiac safety.
  • Example 17 Pharmacokinetic study of the compound capsules of the present invention in rats
  • SD rats male, 180-250 g, purchased from Beijing Weitong Lihua Laboratory Animal Technology Co., Ltd.
  • Reagents physiological saline, heparin, acetonitrile, formic acid, and propranolol (internal standard) are commercially available.
  • Chromatographic column Thermo Scientific HYPERSIL GOLD C-18 UPLC column, 100*2.1mm, 1.7 ⁇ m.
  • WinNonlin 6.1 software was used to calculate pharmacokinetic parameters by non-compartmental model method. The results are shown in Table 10 below.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Epidemiology (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

提供了一系列的FXIa抑制剂化合物的盐,包含这些化合物的盐的药物组合物,以及使用该化合物治疗血栓栓塞等疾病的药物中的用途。

Description

FXIa抑制剂化合物的盐及其制备方法和医药用途 技术领域
本发明属于化学药物技术领域,提供了一系列的FXIa抑制剂化合物的盐。本发明还涉及包含这些化合物的盐的药物组合物以及使用该化合物治疗血栓栓塞等疾病的药物中的用途。
背景技术
全球每年脑血管、脑梗塞、心肌梗塞、冠心病、动脉硬化等心脑血管疾病夺走近1200万人的生命,接近世界总死亡人数的1/4,成为人类健康的头号大敌。中国每年死于心血管疾病的人数达到260万人以上,存活的患者75%致残,其中40%以上重残。由心脑血管疾病和糖尿病及其并发症引起的血栓问题,成为当今要解决的刻不容缓的问题。
人体血液凝固过程由内源性途径(intrinsic pathway)、外源性途径(extrinsic pathway)和共同通路组成(Annu.Rev.Med.2011.62:41–57),是通过多种酶原被顺序激活而过程不断得到加强和放大的一种连锁反应。凝血级联反应由内源性途径(又称接触激活途径)及外源性途径(又称组织因子途径)启动生成FXa,再经共同途径生成凝血酶(FIIa),最终形成纤维蛋白。
内源性途径是指由XII因子被激活形XIa-VIIIa-Ca 2+-P L复合物、并激活X因子的过程,外源性凝血途径则是从组织因子(TF)释放到TF-VIIa-Ca 2+复合物形成并激活因子Ⅹ的过程。共同通路是指因子Xa形成后,两条途径合二为一,激活凝血酶原并最终生成纤维蛋白的过程,其中FXI是维持内源性途径所必需的,而且在凝血级联反应放大过程中发挥关键作用。在凝血级联反应中,凝血酶可反馈激活FXI,活化的FXI(FXIa)又促使凝血酶的大量产生,从而使凝血级联反应放大。因此,FXI的拮抗剂被广泛开发,用于各种血栓的治疗。
传统的抗凝药物,如华法林、肝素、低分子量肝素(LMWH),以及近年上市的新药,如FXa抑制剂(利伐沙班、阿哌沙班等)和凝血酶抑制剂(达比加群酯、水蛭素等),对减少血栓形成均具有较好效果,以其显著有效性占据广大心脑血管市场,然而其副作用也越来越显著,其中“出血风险(bleeding risk)”是首当其冲最为严峻的问题之一(N Engl J Med 1991;325:153-8、Blood.2003;101:4783-4788)。
研究发现,在血栓模型中,抑制FXIa因子可以有效抑制血栓的形成,但在更为严重的血栓情况下,FXIa的作用微乎其微(Blood.2010;116(19):3981-3989)。临床统计显示,提高FXIa的量会增加VTE的患病率(Blood 2009;114:2878-2883),而FXIa严重不足者其患有DVT的风险性减少(Thromb Haemost 2011;105:269–273)。
FXIa作为目前抑制血栓的新兴靶点,公开具有FXIa抑制活性的化合物的专利申请有WO9630396、WO9941276、WO2013093484、WO2004002405、WO2013056060、WO2017005725、WO2017/023992、WO2018041122等。其中,目前仅拜耳公司的反义寡核苷酸BAY-2306001进入了临床二期研究。
申请人在前期申请PCT/CN2020/117257中申请了包括下式所示的化合物A的一系列FXIa抑制剂化合物:
Figure PCTCN2021125449-appb-000001
发明内容
本发明提供了一系列的氧代哒嗪酰胺类衍生物的盐、其制备方法及其在医药上的应用。
具体而言,本发明提供式(I)所示FXIa抑制剂化合物的盐,
Figure PCTCN2021125449-appb-000002
如图20所示,其中:
n为0.5-3;
M与羧基成盐,所述盐选自锂盐、钠盐、钾盐、钙盐、镁盐、铝盐、铁盐、锌盐或铵盐中的至少一种;或所述盐选自甲胺盐、二甲胺盐、三甲胺盐、乙胺盐、二乙胺盐、三乙胺盐、异丙胺盐、2-乙氨基乙醇盐、吡啶盐、甲基吡啶盐、乙醇胺盐、二乙醇胺盐、铵盐、四甲基铵盐、四乙基铵盐、三乙醇胺盐、哌啶盐、哌嗪盐、吗啉盐、赖氨酸盐、精氨酸盐、L-精氨酸盐、组氨酸盐、L-组氨酸盐、葡甲胺盐、二甲基葡糖胺盐、乙基葡糖胺盐、二环己基胺盐、1,6-己二胺盐、葡糖胺盐、肌氨酸盐、丝氨醇盐、三羟基甲基氨基甲烷盐、氨基丙二醇盐、1-氨基-2,3,4-丁三醇盐、L-赖氨酸盐、鸟氨酸盐或胆碱盐中的至少一种。
作为本发明的一种优选技术方案,n为0.5、1、1.5、2、2.5或3,特别优选n=1或者0.5。
作为本发明的一种优选技术方案,所述的盐选自钠盐、钾盐、葡甲胺盐、钙盐、镁盐、胆碱盐。
作为本发明的一种优选技术方案,所述的盐选自钠盐、n=1;钾盐、n=1;葡甲胺盐、n=1;胆碱盐、n=1;钙盐、n=0.5;镁盐、n=0.5。
作为本发明的一种优选技术方案,所述的盐为晶型、或者无定型,或其混合物。
作为本发明的一种优选技术方案,所述的盐为钠盐,n=1,所述的盐为晶型,所述晶型的在X射线衍射图中以2θ角表示在9.32、15.34、16.24、18.41、19.48、24.05°处有特征峰,误差为±0.2°;进一步优选还在5.59、7.81、9.83、10.50、11.24、13.52、14.60、14.87、16.93、20.39、21.02、21.77、23.53、24.99、25.90、26.62、27.22°处有特征峰,误差为±0.2°;更优选X射线衍射图如图6或图9所示。
作为本发明的一种优选技术方案,所述晶型的DSC图谱在70.01℃±2℃处有最大吸收峰;优选DSC图谱如图7所示;优选所述晶型的TG图谱如图8所示。
作为本发明的一种优选技术方案,所述的盐为钠盐,n=1,所述的盐为无定型,所述无定型的X射线衍射图中,无明显特征峰;优选X射线衍射图如图5所示。
作为本发明的一种优选技术方案,所述的盐为葡甲胺盐,n=1,所述的盐为晶型,所述晶型的在X射线衍射图中以2θ角表示在9.33和18.79°处有特征峰,误差为±0.2°;进一步优选还在10.32、13.74、16.18、24.74°处有特征峰,误差为±0.2°;更优选X射线衍射图如图10或图12所示。
作为本发明的一种优选技术方案,所述晶型的DSC图谱所述晶型的DSC在122.7℃±2℃处有最大吸收峰;优选DSC图谱如图11所示。
作为本发明的一种优选技术方案,所述的盐为葡甲胺盐,n=1,所述的盐为无定型,所述无定型的X射线衍射图中,无明显特征峰;优选X射线衍射图如图13或16所示。
作为本发明的一种优选技术方案,所述无定型的DSC图谱在80.1℃±2℃处有最大吸收峰;优选DSC图谱如图14所示;优选所述无定型的TG如图15所示。
作为本发明的一种优选技术方案,所述化合物的一个以上的氢原子上被同位素氘取代。
本发明进一步提供了一种药物组合物,包括前述盐,和一种以上药学上可接受的载体。
本发明进一步提供了所述盐在制备用于制备治疗FXIa相关疾病的药物用途,优选血栓相关疾病的药物用途。
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
本发明化合物的盐是指“药学上可接受的盐”,由本发明发现的具有特定取代基的化合物与药学上可接受的酸或碱制备。
本发明的某些化合物的盐可以以非溶剂化形式或者溶剂化形式存在,包括水合物形式。一般而言,溶剂化形式与非溶剂化的形式相当,都包含在本发明的范围之内。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体,以及D和L异构体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。
本发明化合物分子的原子是同位素,通过同位素衍生化通常可以延长半衰期、降低清除率、代谢稳定和提高体内活性等效果。并且,包括一个实施方案,其中至少一个原子被具有相同原子数(质子数)和不同质量数(质子和中子和)的原子取代。本发明化合物中包括的同位素的实例包括氢原子、碳原子、氮原子、氧原子、磷原子、硫原子、氟原子、氯原子,其分别包括 2H、 3H、 13C、 14C、 15N、 17O、 18O、 31P、 32P、 35S、 18F、 36Cl。特别的是,随其衰退而发射辐射的放射性同位素例如 3H或 14C可用于药物制剂或者体内化合物的局部解剖学检验。稳定的同位素既不随其量衰减或变化,也不具有放射性,因此其可以安全使用。当构成本发明化合物分子的原子是同位素时,通过用包含相应同位素的试剂替代合成中所用的试剂,可以根据通用方法转化同位素。
本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氘( 2H),碘-125( 125I)或C-14( 14C)。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。
进一步地,本发明的化合物一个或多个氢原子上被同位素氘( 2H)取代,本发明化合物氘代后,具有延长半衰期、降低清除率、代谢稳定和提高体内活性等效果。
所述同位素衍生物的制备方法通常包括:相转移催化方法。例如,优选的氘化方法采用相转移催化剂(例如,四烷基铵盐,NBu 4HSO 4)。使用相转移催化剂交换二苯基甲烷化合物的亚甲基质子,导致比在酸(例如,甲磺酸)存在下用氘化硅烷(例如三乙基氘化甲硅烷)或用路易斯酸如三氯化铝采用氘化硼酸钠还原而引入较高的氘。
术语“药学上可接受的载体”是指能够递送本发明有效量活性物质、不干扰活性物质的生物活性并且对宿主或者患者无毒副作用的任何制剂载体或介质,代表性的载体包括水、油、蔬菜和矿物质、膏基、洗剂基质、软膏基质等。这些基质包括悬浮剂、增粘剂、透皮促进剂等。它们的制剂为化妆品领域或局部药物领域的技术人员所周知。关于载体的其他信息,可以参考Remington:The Science and Practice of Pharmacy,21st Ed.,Lippincott,Williams&Wilkins(2005),该文献的内容通过引用的方式并入本文。
术语“赋形剂”通常是指配制有效的药物组合物所需要载体、稀释剂和/或介质。
针对药物或药理学活性剂而言,术语“有效量”或“治疗有效量”是指无毒的但能达到预期效果的药物或药剂的足够用量。对于本发明中的口服剂型,组合物中一种活性物质的“有效量”是指与该组合物中另一种活性物质联用时为了达到预期效果所需要的用量。有效量的确定因人而异,取决于受体的年龄和一般情况,也取决于具体的活性物质,个案中合适的有效量可以由本领域技术人员根据常规试验确定。
术语“治疗”是指一种化学实体,它可以有效地治疗目标紊乱、疾病或病症。
“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
附图说明
图1,(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸(化合物A)晶型XRPD图;
图2,(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸钠盐(化合物A钠盐)Form A的XRPD图;
图3,(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸钠盐(化合物A钠盐)Form A的TGA图;
图4,(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸钠盐(化合物A钠盐)Form A的DSC图;
图5,(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸钠盐(化合物A钠盐)无定型的XRPD图;
图6,(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸钠盐(化合物A钠盐)Type A的XRPD图;
图7,(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸钠盐(化合物A钠盐)Type A的TGA图;
图8,(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸钠盐(化合物A钠盐)Type A的DSC图;
图9,(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸钠盐(化合物A钠盐-另一实施例)Type A的XRPD图;
图10,(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸葡甲胺盐(化合物A葡甲胺盐)晶型A的XRPD图;
图11,(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸葡甲胺盐(化合物A葡甲胺盐)晶型A的TGA/DSC图;
图12,(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸葡甲胺盐(化合物A葡甲胺盐-另一实施例)晶型A的XRPD图;
图13,(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸葡甲胺盐(化合物A葡甲胺盐)无定型的XRPD图;
图14,(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸葡甲胺盐(化合物A葡甲胺盐)无定型的DSC图;
图15,(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸葡甲胺盐(化合物A葡甲胺盐)无定型的TGA图;
图16,(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸葡甲胺盐(化合物A葡甲胺盐-另一实施例)无定型的XRPD图;
图17,(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸胆碱盐(化合物A胆碱盐)晶型A的XRPD图;
图18,(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸胆碱盐(化合物A胆碱盐)晶型A的TGA/DSC图。
图19,(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸及其盐多种晶型的动态溶解示意图。
图20,(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸的盐的结构式的示意图。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但发明的实施方式不限于此。
化合物的结构是通过核磁共振(NMR)或质谱(MS)来确定的。NMR位移(δ)以10-6(ppm)的单位给出。NMR的测定是用Bruker AVANCE-III核磁仪,测定溶剂为氘代二甲基亚砜(DMSO-d 6),氘代氯仿(CDCl3),内标为四甲基硅烷(TMS)。
MS的测定用ISQ EC质谱仪(生产商:Thermo,型号:ISQ EC)。
高效液相色谱法(HPLC)分析使用Thermo U3000 HPLC DAD高效液相色谱仪。
CombiFlash快速制备仪使用CombiFlash Rf+LUMEN(TELEDYNE ISCO)。
薄层层析硅胶板使用烟台银龙HSGF254或GF254硅胶板,薄层色谱法(TLC)使用的硅胶板采用的规格是0.17mm~0.23mm,薄层层析分离纯化产品采用的规格是0.4mm~0.5mm。
硅胶柱色谱法一般使用乳山上邦硅胶100~200目硅胶为载体。
除另有说明外,本发明晶型及无定型采用以下设备及条件检测:X射线粉末衍射(XRPD),XRPD图在PANalytacal生产的X射线粉末衍射分析仪上采集,扫描参数如下表:
Figure PCTCN2021125449-appb-000003
热重分析(TGA)和差示扫描量热(DSC),TGA和DSC图分别在TA Q5000/5500热重分析仪和TA2500差示扫描量热仪上采集,测试参数如下表:
Figure PCTCN2021125449-appb-000004
动态水份吸附(DVS)曲线在SMS(Surface Measurement Systems)的DVS Intrinsic上采集。在25℃时的相对湿度用LiCl,Mg(NO 3) 2和KCl的潮解点校正。DVS测试参数列表如下:
Figure PCTCN2021125449-appb-000005
离子色谱(IC),仪器及分析条件如下表:
Figure PCTCN2021125449-appb-000006
Figure PCTCN2021125449-appb-000007
实施例1
合成(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸
Figure PCTCN2021125449-appb-000008
具体合成路线如下:
步骤A:合成5-溴-6-羟基-2-(4-甲氧基苄基)哒嗪-3(2H)-酮
Figure PCTCN2021125449-appb-000009
室温下,将溴马来酸酐(2.00克,11.3毫摩尔)和4-甲氧基苄基肼盐酸盐(2..13克,11.3毫摩尔)加入冰醋酸(50.0毫升)中,100℃反应3小时。
反应结束,冷却至室温,将反应液倒入水中,析出大量固体,搅拌一段时间后抽滤,滤饼用水洗,滤饼烘干得1.50克淡黄色固体5-溴-6-羟基-2-(4-甲氧基苄基)哒嗪-3(2H)-酮,无需纯化,直接用于下步反应。LCMS:RT=3.44min,[M+H] +=311.03。
步骤B:合成5-溴-6-甲氧基-2-(4-甲氧基苄基)哒嗪-3(2H)-酮
Figure PCTCN2021125449-appb-000010
室温下,将5-溴-6-羟基-2-(4-甲氧基苄基)哒嗪-3(2H)-酮(1.50克,4.82毫摩尔)和碳酸钾(2.66克,19.29毫摩尔)加入N,N-二甲基甲酰胺(15.0毫升)中,80℃搅拌15分钟,在该温度下,加入碘甲烷(1.2毫升),继续反应30分钟。
反应结束,加水淬灭,混合液用乙酸乙酯(50毫升×3次)萃取,合并有机相,有机相先用饱和食盐水(50毫升×2次),然后用无水硫酸钠干燥,最后减压浓缩。所得残余物用硅胶柱层析纯化(洗脱剂:乙酸乙酯/正己烷=1/3)。得到1.10克白色固体5-溴-6-甲氧基-2-(4-甲氧基苄基)哒嗪-3(2H)-酮(收率:70.3%)。LCMS:RT=3.87min,[M+H] +=325.01。
步骤C:合成6-乙酰基-3-氯苯硼酸频哪醇酯
Figure PCTCN2021125449-appb-000011
室温下,将2-溴-4-氯苯乙酮(5.00克,21.41毫摩尔)、联硼酸频哪醇酯(8.16克,32.12毫摩尔)和醋酸钾(4.20克,42.82毫摩尔)加入三颈瓶中,置换氮气,加入1,4-二氧六环(60.0毫升),置换氮气,加入1,1'-双二苯基膦二茂铁二氯化钯(1.75克,2.14毫摩尔),置换氮气,升温至80℃反应3小时。
反应结束,加水淬灭,垫硅藻土抽滤,乙酸乙酯洗涤滤饼,滤液用乙酸乙酯(80毫升×3次)萃取,合并有机相, 有机相先用饱和食盐水(50毫升×2次),然后用无水硫酸钠干燥,最后减压浓缩。所得残余物用硅胶柱层析纯化(洗脱剂:乙酸乙酯/正己烷=1/50)。得到2.1克黄色固体6-乙酰基-3-氯苯硼酸频哪醇酯(收率:35.0%)。LCMS:RT=4.26min,[M-H] -=279.08。
步骤D:合成5-(2-乙酰基-5-氯苯基)-6-甲氧基-2-(4-甲氧基苄基)哒嗪-3(2H)-酮
Figure PCTCN2021125449-appb-000012
室温下,将5-溴-6-甲氧基-2-(4-甲氧基苄基)哒嗪-3(2H)-酮(1.10克,3.39毫摩尔)、6-乙酰基-3-氯苯硼酸频哪醇酯(949毫克,3.39毫摩尔)和碳酸钠(718毫克,6.78毫摩尔)加入三颈瓶中,置换氮气,加入混合溶剂(10毫升,1,2-二甲氧基乙烷:乙醇:水=8:1:1),置换氮气,加入1,1'-双二苯基膦二茂铁二氯化钯(249毫克,0.34毫摩尔),置换氮气,升温至90℃反应1小时。
反应结束,加水淬灭,混合液用乙酸乙酯(50毫升×3次)萃取,合并有机相,有机相先用饱和食盐水(50毫升×2次),然后用无水硫酸钠干燥,最后减压浓缩。所得残余物用硅胶柱层析纯化(洗脱剂:乙酸乙酯/正己烷=1/2)。得到676毫克黄色固体5-(2-乙酰基-5-氯苯基)-6-甲氧基-2-(4-甲氧基苄基)哒嗪-3(2H)-酮(收率:50.2%)。LCMS:RT=3.99min,[M+H] +=399.07。
步骤E:合成5-(2-乙酰基-5-氯苯基)-6-甲氧基哒嗪-3(2H)-酮
Figure PCTCN2021125449-appb-000013
0℃下,将5-(2-乙酰基-5-氯苯基)-6-甲氧基-2-(4-甲氧基苄基)哒嗪-3(2H)-酮(676毫克,1.70毫摩尔)加入混合溶剂(4毫升,乙腈:水=3:1)中,再缓慢加入硝酸铈铵(7.46克,13.60毫摩尔),加毕,室温下反应30分钟。
反应结束,加水淬灭,混合液用乙酸乙酯(30毫升×3次)萃取,合并有机相,有机相先用饱和食盐水(30毫升×2次),然后用无水硫酸钠干燥,最后减压浓缩。所得残余物用硅胶柱层析纯化(洗脱剂:乙酸乙酯/正己烷=1/1)。得到238毫克黄色固体5-(2-乙酰基-5-氯苯基)-6-甲氧基哒嗪-3(2H)-酮(收率:50.0%)。LCMS:RT=3.23min,[M+H] +=279.08。
步骤F:合成(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸叔丁酯
Figure PCTCN2021125449-appb-000014
室温下,将5-(2-乙酰基-5-氯苯基)-6-甲氧基哒嗪-3(2H)-酮(50毫克,0.18毫摩尔)、(R)-4-(2-(((4-硝基苯基)磺酰基)氧基)-3-苯基丙酰胺基)苯甲酸叔丁酯(113毫克,0.22毫摩尔)和碳酸钾(50毫克,0.36毫摩尔)加入N,N-二甲基甲酰胺(2.0毫升)中,室温反应过夜。
反应结束,加水淬灭,混合液用乙酸乙酯(10毫升×3次)萃取,合并有机相,有机相先用饱和食盐水(10毫升×2次),然后用无水硫酸钠干燥,最后减压浓缩。所得残余物用硅胶柱层析纯化(洗脱剂:乙酸乙酯/正己烷=1/2)。得到75毫克淡黄色固体(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸叔丁酯(收率:66.7%)。LCMS:RT=4.53min,[M+H] +=602.13。
步骤G:合成(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸
Figure PCTCN2021125449-appb-000015
室温下,将(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸叔丁酯(75毫克,0.12毫摩尔)加入二氯甲烷(2.0毫升)中,滴加三氟乙酸(0.25毫升),室温反应3小时。
反应结束,蒸干二氯甲烷并用油泵抽干三氟乙酸,所得残余物用溶于二氯甲烷(1.0毫升)中,将其滴加入正己烷(10.0毫升)中,析出白色固体,抽滤,滤饼用正己烷洗涤,干燥得到50毫克白色固体(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸(收率:76.5%),经检测所得(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸化合物为晶形A。LCMS:RT=3.98min,[M-H] -=544.10。 1H NMR(500MHz,DMSO)δ12.79(s,1H),10.52(s,1H),7.99(d,J=8.4Hz,1H),7.91(d,J=8.7Hz,2H),7.72(d,J=8.7Hz,2H),7.69(dd,J=8.3,2.1Hz,1H),7.50(d,J=2.1Hz,1H),7.37–7.23(m,4H),7.19(t,J=7.1Hz,1H),6.91(s,1H),5.74(dd,J=10.2,4.9Hz,1H),3.67(s,3H),3.52(dd,J=14.1,10.3Hz,1H),3.41(dd,J=14.1,4.7Hz,1H),2.53(s,3H)。
所述晶型A的X-Ray数据如表1所示,X-Ray如图1所示。
Figure PCTCN2021125449-appb-000016
Figure PCTCN2021125449-appb-000017
实施列2
(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸钠盐
Figure PCTCN2021125449-appb-000018
实施例2.1
零摄氏度下,向含有(S)-4-(2-(4-(2-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧并哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸(150.0毫克,0.28毫摩尔)的甲醇(10.0毫升)中,滴加氢氧化钠水溶液(氢氧化钠;6.72毫克,0.28毫摩尔;水:2.0毫升),保持该温度反应5小时。
反应结束,蒸除甲醇,所得水溶液低温冻干得到155.0毫克Form A白色固体(S)-4-(2-(4-(2-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧并哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸钠Form A(收率:97.5%)。LCMS:RT=2.00min,[M+H]+=546.31。 1H NMR(400MHz,DMSO)δ10.37(s,1H),7.99(d,J=8.4Hz,1H),7.86(d,J=8.6Hz,2H),7.68(dd,J=8.3,2.2Hz,1H),7.59(d,J=8.6Hz,2H),7.50(d,J=2.1Hz,1H),7.36–7.24(m,4H),7.18(t,J=7.1Hz,1H),6.90(s,1H),5.75(dd,J=10.2,4.8Hz,1H),3.68(s,3H),3.47–3.37(m,2H),2.53(s,3H)。
其中,Form A的XRPD图、TGA图、DSC图分别如图2、3和4所示。
实施例2.2
将(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸(7.5克,13.7毫摩尔)加入到纯化水(75.0毫升)中,开启搅拌。零摄氏度下,缓慢滴加预先配制的5%氢氧化钠溶液(氢氧化钠,0.55克,13.7毫摩尔;纯化水,10.0毫升),约30分钟滴加完毕。
滴加结束后,继续补加5%氢氧化钠溶液调节水溶液pH 8~9。升温至室温,搅拌30~60分钟,保证(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸溶解完全。过滤,水溶液低温冻干得7.5克(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸钠无定型样品(收率:96%;纯度:99.46%)。
所述(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸钠无定型的XRPD谱图如图5所示。
实施例2.3
取40毫克Form A样品加入到1毫升丙酮中,加热至50摄氏度,加入20微升水,再加入320毫克Form A样品,固体完全溶解,50摄氏度搅拌24小时后有固体析出,离心得结晶性固体Type A。
其中,Type A的X-Ray数据如下表所示;更优选XRPD图、TGA图、DSC图分别如图6、7和8所示。
Figure PCTCN2021125449-appb-000019
Figure PCTCN2021125449-appb-000020
实施例2.4
取200毫克Form A样品,加入到1毫升丙酮和0.02ml水中,加热至50摄氏度,室温悬浮4天后离心得结晶性固体Type A。
其中,Type A的X-Ray数据如下表所示;更优选XRPD图如图9所示。
Figure PCTCN2021125449-appb-000021
Figure PCTCN2021125449-appb-000022
综合实施例2.3和2.4,按平均值计,钠盐Type A的2θ角表示在9.32、15.34、16.24、18.41、19.48、24.05°处有很强特征峰,误差为±0.2°;进一步优选还在5.59、7.81、9.83、10.50、11.24、13.52、14.60、14.87、16.93、20.39、21.02、21.77、23.53、24.99、25.90、26.62、27.22°处有特征峰,误差为±0.2°;更优选X射线衍射图如图6或图9所示。
实施例3
(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸钾盐
Figure PCTCN2021125449-appb-000023
零摄氏度下,向含有(S)-4-(2-(4-(2-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧并哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸(100.0毫克,0.18毫摩尔)的甲醇(10.0毫升)中,滴加氢氧化钾水溶液(氢氧化钾;10.3毫克,0.18毫摩尔;水:2.0毫升),保持该温度反应5小时。
反应结束,蒸除甲醇,所得水溶液低温冻干得到98.0毫克白色固体(S)-4-(2-(4-(2-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧并哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸钾(收率:93.4%)。LCMS:RT=2.00min,[M+H] +=546.22。
1H NMR(400MHz,DMSO)δ10.23(s,1H),7.98(d,J=8.4Hz,1H),7.77(d,J=8.6Hz,2H),7.68(dd,J=8.3,2.2Hz,1H),7.50(d,J=2.1Hz,1H),7.46(d,J=8.5Hz,2H),7.38–7.24(m,4H),7.18(t,J=7.1Hz,1H),6.89(s,1H),5.75(dd,J=10.3,4.7Hz,1H),3.68(s,3H),3.56–3.41(m,2H),2.52(s,3H)。
实施列4
(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸葡甲胺盐
Figure PCTCN2021125449-appb-000024
实施例4.1
将(S)-4-(2-(4-(2-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧并哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸(1.0克)和葡甲胺(358毫克)以1:1当量在乙醇中室温搅拌3天,得到(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸葡甲胺盐晶型A。 1H NMR(400MHz,DMSO)δ10.42(s,1H),8.00(d,J=8.4Hz,1H),7.88(d,J=8.7Hz,2H),7.69(dd,J=8.3,2.2Hz,1H),7.66(d,J=8.7Hz,2H),7.51(d,J=2.1Hz,1H),7.34–7.25(m,4H),7.22-7.18(m,1H),6.91(s,1H),5.75(dd,J=10.2,4.9Hz,1H),3.79-3.74(m,1H),3.68(s,3H),3.67–3.65(m,1H),3.60(dd,J=10.8,3.5Hz,1H),3.56–3.46(m,2H),3.43-3.33(m,3H),2.80–2.66(m,1H),2.55(s,1H),2.53(s,3H),2.39(s,3H)。
其中,葡甲胺盐晶型A的X-Ray数据优选如下表所示;更优选葡甲胺盐晶型A的XRPD图如图10所示,TGA/DSC 图如图11所示。
Figure PCTCN2021125449-appb-000025
实施例4.2
将(S)-4-(2-(4-(2-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧并哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸(5.0克)和葡甲胺(1786.8毫克)以1:1当量比加入90毫升丙酮中制成混悬液,加入20毫升葡甲胺盐晶型A混悬液作为晶种,在室温下混悬搅拌(300rpm)约23小时,室温下真空抽滤,固体在室温真空干燥3天,得到7.17克葡甲胺盐晶型A样品(收率:89%)。
所得葡甲胺盐晶型A的X-Ray数据优选如下表所示;更优选葡甲胺盐晶型A的XRPD图如图12所示:
Figure PCTCN2021125449-appb-000026
综合实施例4.1和4.2,按平均值计,葡甲胺盐晶型A的2θ角表示在9.33和18.79°处有较强特征峰,误差为±0.2°;进一步优选还在10.32、13.74、16.18、24.74°处有特征峰,误差为±0.2°;更优选X射线衍射图如图10或图12所示。
实施例4.3
室温下,将(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸(60克,109.89毫摩尔)和葡甲胺(21.5g,109.89毫摩尔)加入到丙酮和纯化水的混合溶液中(丙酮,1000毫升;纯化水,100.0毫升)中,搅拌溶清。室温搅拌24小时以上。
反应结束后,减压浓缩除掉丙酮,所得水溶液低温冻干得80.0克(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸葡甲胺盐无定型样品(收率:98%;纯度,99.9%)。
其中,葡甲胺盐无定型的XRPD图如图13所示,葡甲胺盐无定型的DSC、TGA图如图14、15所示。
仪器及具体测定条件如下:
Figure PCTCN2021125449-appb-000027
实施例4.4
室温下,将(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸(4.30千克,7.87摩尔)和葡甲胺(1.62千克,8.30摩尔)加入到丙酮和纯化水的混合溶液中(丙酮,65.6千克;纯化水,8.2千克)中,搅拌溶清。室温搅拌48小时以上。
反应结束后,减压浓缩除掉丙酮,所得水溶液低温冻干得5.80千克(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸葡甲胺盐无定型样品(收率:98%;纯度,99.78%)。其中,葡甲胺盐无定型的XRPD图如图16所示。
仪器及具体测定条件:
X-射线粉末衍射(XRD)谱图采用帕纳科锐影(Empyrean)X-射线衍射仪检测得到,检测条件:Cu-Kα辐射,波长
Figure PCTCN2021125449-appb-000028
发散狭缝1/4°,防散射狭缝1°,X射线光管电压45kV,X射线光管电流40mA,扫描范围3-40°(2θ),步长0.026°,每步扫描时间30.09°/s。
综合实施例4.3和4.4,所述葡甲胺盐无定型的在X射线衍射图中,无明显特征峰;进一步优选X射线衍射图如图13或16所示。
实施例5
(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸镁盐
Figure PCTCN2021125449-appb-000029
零摄氏度下,向含有(S)-4-(2-(4-(2-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧并哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲钠(100.0毫克,0.18毫摩尔)的甲醇(10.0毫升)中,滴加氯化镁水溶液(氯化镁;16.8毫克,0.18毫摩尔;水:2.0毫升),保持该温度反应5小时。
反应结束,蒸除甲醇,析出白色固体,抽滤,干燥得到62.0毫克白色固体(S)-4-(2-(4-(2-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧并哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸镁盐(收率:30.9%)。LCMS:RT=2.00min,[M+H] +=546.20。 1H NMR(500MHz,DMSO)δ10.33(s,1H),7.98(d,J=8.4Hz,1H),7.93(s,2H),7.67(dd,J=8.3,2.1Hz,1H),7.59(d,J=8.2Hz,2H),7.49(d,J=1.9Hz,1H),7.36–7.22(m,4H),7.17(t,J=7.2Hz,1H),6.88(s,1H),5.73(dd,J=10.2,4.8Hz,1H),3.66(s,3H),3.41(dd,J=14.3,4.7Hz,2H),2.51(s,3H)。
实施例6
(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸钙盐
Figure PCTCN2021125449-appb-000030
零摄氏度下,向含有(S)-4-(2-(4-(2-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧并哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲钠(100.0毫克,0.18毫摩尔)的甲醇(10.0毫升)中,滴加氯化钙水溶液(氯化钙;20.0毫克,0.18毫摩尔;水:2.0毫升),保持该温度反应5小时。
反应结束,蒸除甲醇,析出白色固体,抽滤,水洗,干燥得到58.0毫克白色固体(S)-4-(2-(4-(2-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧并哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸钙盐(收率:28.5%)。LCMS:RT=2.00min,[M+H] +=546.17。
实施例7
(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸胆碱盐
Figure PCTCN2021125449-appb-000031
将(S)-4-(2-(4-(2-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧并哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸和胆碱以1:1当量比加入丙酮中,在温度循环下(50℃~5℃,0.1℃/min,2循环)搅拌3天得到胶状样品,胶状样品在室温下真空干燥8小时得固体粉末(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-甲氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸胆碱盐晶型A。
其中,胆碱盐晶型A的Xray数据在9.01、15.90、16.42和22.42°处有较强特征峰,误差为±0.2°;进一步优选X-Ray数据如下表所示;更优选XRPD如图17所示,TGA/DSC图18所示。
Figure PCTCN2021125449-appb-000032
实施例8:本发明化合物的溶解度考察
8.1静态溶解度考察
称取待测样品约0.5mg于离心管中,先加适量DMSO使样品完全溶解后再加甲醇定容至1ml;分别称取两份待测样品各约1.0mg于两个离心管中,两份分别加入1ml的PBS=2.0、7.4的缓冲溶液;将配制好的对照溶液和供试品溶液同时放入到37℃水浴中加热1h,1h后取出冷却至室温,用0.22um滤膜过滤后进样;根据C=(A*(m s/v s))/A S计算供试品溶液中样品的浓度。其中m s、v s、A S分别为对照溶液中样品的称重、体积和峰面积,A为供试品溶液的峰面积。
表一:本发明化合物的溶解度考察
实施例 介质 浓度(μg/mL) 摩尔浓度(μM)
1 pH=7.4 144.0 218.2
2.2 pH=7.4 799.1 1407.0
3 pH=7.4 773.6 1324.5
5 pH=7.4 40.8 73.2
6 pH=7.4 50.2 88.8
从上述结果可见,本发明提供了的钠盐和钾盐相对于钙盐、镁盐、以及化合物游离酸,溶解性有大幅的提高,有利于提高药物的成药性。
8. 2动态溶解度考察
葡甲胺盐和钠盐及游离酸动态溶解度对比试验方法和结果如下:
以5mg/mL的投料浓度(15mg物料投入3mL溶媒中)在37℃条件下利用旋转混合的方式(25rpm)测定各样品在水、SGF、FaSSIF和FeSSIF四种溶剂体系的动态溶解度(1、4和24小时)。每个时间点的样品经离心(8000rpm,2min)过滤(0.45μm PTFE滤头),测定滤液的HPLC浓度和pH值,离心后的固体样品测试XRPD。溶解度试验结果总结于下表,溶解度曲线见下图19。
Figure PCTCN2021125449-appb-000033
从上述结果可见,本发明钠盐和葡甲胺盐有良好的动态溶解效果,优于游离酸。
实施例9:本发明化合物的稳定性考察
实验条件及实验结果如下:
Figure PCTCN2021125449-appb-000034
Figure PCTCN2021125449-appb-000035
从上述结果可见,本发明的钠盐和葡甲胺盐在多种湿度条件非常稳定。
对比实施例1化合物A1
合成(S)-4-(2-(4-(5-氯-2-(4-氯-1H-1,2,3-三唑-1-基)苯基)-6-氧嘧啶-1(6H)-基)-3-苯基丙酰胺基)苯甲酸
Figure PCTCN2021125449-appb-000036
具体合成路线如下:
步骤A:合成4-氯-2-(四甲基-1,3,2-二氧杂硼杂环戊烷-2-基)苯胺
Figure PCTCN2021125449-appb-000037
将2-溴-4-氯苯胺(3.1克,14.5毫摩尔)加入2-溴-4-氯苯胺(3.0克,15.0毫摩尔),4,4,5,5-四甲基-2-(四甲基-1,3,2-二氧杂硼杂环戊烷-2-基)-1,3,2-二氧杂硼杂环戊烷(38克,150.0毫摩尔),醋酸钾(2.9克,30.0毫摩尔),[1,1'-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(1.1克,1.5毫摩尔)溶解于二甲基亚砜(75毫升)。氮气保护后,在80℃加热5小时。将反应冷却至室温。加入水溶解盐,然后过滤反应。将剩余的固体悬浮于二氯甲烷中并过滤不溶固体。浓缩滤液,然后通过硅胶柱层析纯化,得到5.2克白色固体4-氯-2-(四甲基-1,3,2-二氧杂硼杂环戊烷-2-基)苯胺(收率:100%)。LCMS:RT=4.40min,[M+H] +=254.10。
步骤B:合成4-氯-2-(6-甲氧基嘧啶-4-基)苯胺
Figure PCTCN2021125449-appb-000038
将4-氯-6-甲氧基嘧啶(3.9克,15.4毫摩尔)碳酸钠(3.2克,30.8毫摩尔),乙二醇二甲醚(16毫升),乙醇(2毫升)和水(2毫升)置于三口瓶中。氮气保护后,加入[1,1'-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(1.3克,1.5毫摩尔)。将4-氯-2-(四甲基-1,3,2-二氧杂硼杂环戊烷-2-基)苯胺(3.31克,23.1毫摩尔)的乙二醇二甲醚(8毫升),将反应在90℃加热2小时。LCMS监测,反应完全后,冷却至室温,垫硅藻土过滤,滤饼用乙酸乙酯(30毫升)洗涤3次,合并滤液及洗涤液,水洗一次,饱和氯化铵洗涤两次,有机相经无水硫酸钠干燥,过滤,旋干,残渣经硅胶柱层析纯化得到1.0克黄色固体4-氯-2-(6-甲氧基嘧啶-4-基)苯胺(收率:28%)。LCMS:RT=3.95min,[M+H] +=236.04。
步骤C:合成4-{5-氯-2-[4-(三甲基甲硅烷基)-1H-1,2,3-三唑-1-基]-苯基}-6-甲氧基-嘧啶
Figure PCTCN2021125449-appb-000039
将4-氯-2-(6-甲氧基嘧啶-4-基)苯胺(0.9克,3.8毫摩尔)溶于乙腈(60毫升)中,在0℃下加入3-甲基丁基亚硝酸酯(0.6毫升,5.8毫摩尔),然后滴加叠氮基三甲基硅烷(0.6毫升,5.8毫摩尔)。观察到气体产生。10分钟后,除去冰浴,让反应温热至室温。1小时后,加入乙炔基三甲基甲硅烷(1.8毫升,11.4毫摩尔)和氧化亚铜(0.06g,0.36毫摩尔),将反应再搅拌1小时。向反应液中加乙酸乙酯和饱和氯化铵水溶液分层。有机相用盐水洗涤,经无水硫酸钠干燥,过滤并浓缩。经硅胶柱层析进一步纯化得到730毫克黄色固体4-{5-氯-2-[4-(三甲基-甲硅烷基)-1H-1,2,3-三唑-1-基]苯基}-6-甲氧基嘧啶(收率:45%)。LCMS:RT=2.04min,[M+H] +=360.10。
步骤D:合成4-[5-氯-2-(4-氯-1H-1,2,3-三唑-1-基)苯基]-6-甲氧基嘧啶
Figure PCTCN2021125449-appb-000040
将4-{5-氯-2-[4-(三甲基甲硅烷基)-1H-1,2,3-三唑-1-基]苯基}-6-甲氧基嘧啶(700毫克,1.94毫摩尔)溶于乙腈(20毫升),溶液中加入N-氯代丁二酰亚胺(0.9克,7.2毫摩尔)和硅胶(2.9克,50.44毫摩尔)。反应在80℃搅拌1小时。然后将反应过滤以除去硅胶,将收集的硅胶用乙酸乙酯洗涤。滤液用水洗,盐水洗涤,浓缩。残渣经硅胶柱层析进一步纯化得到450毫克黄色固体4-[5-氯-2-(4-氯-1H-1,2,3-三唑-1-基)苯基]-6-甲氧基嘧啶(收率:72%)。LCMS:RT=2.00min,[M+H] +=322.05。
步骤E:合成6-[5-氯-2-(4-氯-1H-1,2,3-三唑-1-基)苯基]嘧啶-4-醇
Figure PCTCN2021125449-appb-000041
向4-[5-氯-2-(4-氯-1H-1,2,3-三唑-1-基)苯基]-6-甲氧基嘧啶(450毫克,1.4毫摩尔)在醋酸(3毫升)中的溶液中加入48%氢溴酸水溶液(1.5毫升,13.3毫摩尔)。混合物在95℃搅拌1小时。将反应浓缩至干,然后用乙酸乙酯和饱和碳酸氢钠溶液分液。有机相浓缩,残渣经硅胶柱层析纯化得到190豪克黄色固体6-[5-氯-2-(4-氯-1H-1,2,3-三唑-1-基)苯基]嘧啶-4-醇(收率:44%)。LCMS:RT=1.74min,[M-H] -=305.97。
步骤F:合成(S)-4-(2-(4-(5-氯-2-(4-氯-1H-1,2,3-三唑-1-基)苯基)-6-氧嘧啶-1(6H)-基)-3-苯基丙酰胺基)苯甲酸叔丁酯
Figure PCTCN2021125449-appb-000042
室温下,将6-[5-氯-2-(4-氯-1H-1,2,3-三唑-1-基)苯基]嘧啶-4-醇(45毫克,0.15毫摩尔)和(R)-4-(2-(((4-硝基苯基)磺酰基)氧基)-3-苯基丙酰胺基)苯甲酸叔丁酯(93毫克,0.18毫摩尔)以及碳酸钾(40毫克,0.3毫摩尔)加入N,N-二甲基甲酰胺(3.0毫升)中,室温反应过夜。向反应液中加水淬灭,混合液用乙酸乙酯(40毫升×3次)萃取,合并有机相,有机相先用饱和食盐水 (30毫升×2次),然后用无水硫酸钠干燥,最后减压浓缩。所得残余物用硅胶柱层析纯化得到150毫克黄色液体(S)-4-(2-(4-(5-氯-2-(4-氯-1H-1,2,3-三唑-1-基)苯基)-6-氧嘧啶-1(6H)-基)-3-苯基丙酰胺基)苯甲酸叔丁酯(收率:59%)。LCMS:RT=2.00min,[M+H] +=631.18。
步骤F:合成(S)-4-(2-(4-(5-氯-2-(4-氯-1H-1,2,3-三唑-1-基)苯基)-6-氧嘧啶-1(6H)-基)-3-苯基丙酰胺基)苯甲酸
Figure PCTCN2021125449-appb-000043
将(S)-4-(2-(4-(5-氯-2-(4-氯-1H-1,2,3-三唑-1-基)苯基)-6-氧嘧啶-1(6H)-基)-3-苯基丙酰胺基)苯甲酸叔丁酯(150毫克,0.25毫摩尔)溶于二氯甲烷(2.0毫升)中。随后,向上述溶液中加入三氟乙酸(0.5毫升),在室温下搅拌1小时。将反应液空气浴中减压浓缩。将所得残余物经制备纯化得到70毫克白色固体(S)-4-(2-(4-(5-氯-2-(4-氯-1H-1,2,3-三唑-1-基)苯基)-6-氧嘧啶-1(6H)-基)-3-苯基丙酰胺基)苯甲酸(收率:59%)。LCMS:RT=2.00min,[M+H] +=573.16。 1H NMR(400MHz,CD 3OD)δ10.36(s,1H),8.36(s,1H),8.18(s,1H),7.87(dd,J=12.0,5.1Hz,2H),7.72(d,J=2.3Hz,1H),7.66–7.47(m,4H),7.28–7.07(m,5H),6.22(d,J=0.8Hz,1H),5.74(dd,J=10.5,6.2Hz,1H),3.49(dd,J=14.1,6.3Hz,1H),3.34–3.24(m,1H)。
对比实施例2化合物B
合成(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-5-甲氧基-2-氧吡啶鎓-1(2H)-基)-3-苯基丙酰胺基)苯甲酸
Figure PCTCN2021125449-appb-000044
具体合成路线如下:
步骤A:合成(2,5-二甲氧基吡啶-4-基)硼酸
Figure PCTCN2021125449-appb-000045
将2,5-二甲氧基吡啶(10.0克,71.9豪摩尔)溶于干燥四氢呋喃(40毫升)中,置于干燥三口烧瓶中,氮气保护后,于干冰/乙醇浴中搅拌15分钟后,将二异丙基氨基锂(20毫升,2.0M in THF)缓慢滴加到反应液中,30分钟后滴加完毕,干冰/乙醇浴中搅拌3h后,将硼酸三异丙酯(33.0毫升,143.8豪摩尔)加入混合液中,然后自然升温到室温并恒温搅拌18小时.LCMS监测,反应完全后,向反应液中加稀盐酸调节pH至3~4,搅拌15分钟后,旋蒸除去溶剂,残渣加乙腈打浆得到10.6克白色固体(2,5-二甲氧基吡啶-4-基)硼酸(收率:80%)。LCMS:RT=1.73min,[M+H] +=184.08。
步骤B:合成1-(4-氯-2-(2,5-二甲氧基吡啶-4-基)苯基)乙-1-酮
Figure PCTCN2021125449-appb-000046
将2-溴-4-氯苯乙酮(14.8克,63.6豪摩尔)和(2,5-二甲氧基吡啶-4-基)硼酸(9.7克,53.0豪摩尔)溶于1,4-二氧六环(40毫升),碳酸钾(14.6克,106豪摩尔)溶于水(10毫升),置于干燥三口烧瓶中,氮气保护后,将[1,1'-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(3.87克,5.3豪摩尔)加入反应液中,氮气保护后,升温到100℃并恒温搅拌18小时.LCMS监测,反应完全后,冷却至室温,垫硅藻土过滤,滤饼用EA(30毫升)洗涤3次,合并滤液及洗涤液,水洗一次,饱和氯化铵洗涤两次,有机相经无水硫酸钠干燥,过滤,旋干,残渣经硅胶柱层析纯化得到8.2克黄色固体1-(4-氯-2-(2,5-二甲氧基吡啶-4-基)苯基)乙-1-酮(收率:53%)。LCMS:RT=4.03min,[M+H] +=292.03。
步骤C:合成4-(2-乙酰基-5-氯苯基)-5-甲氧基吡啶-2(1H)-酮
Figure PCTCN2021125449-appb-000047
将1-(4-氯-2-(2,5-二甲氧基吡啶-4-基)苯基)乙-1-酮(8.2克,28豪摩尔),吡啶氢溴酸盐(22g,140豪摩尔)溶于N,N-二甲基甲酰胺(20毫升),置于干燥烧瓶中,氮气保护后,升温到110℃并恒温搅拌4h.LCMS监测,反应完全后,冷却至室温,将反应液滴加到100毫升水中,加5%碳酸钠调节pH至10~11,DCM(40毫升×4)萃取四次,合并有机相,有机相经无水硫酸钠干燥,过滤,旋干,残渣用DCM(10毫升)溶解,然后滴加到正己烷(120毫升)中,析出大量固体,过滤,收集滤饼,即产物粗品,经硅胶柱层析进一步纯化得到6.4g黄色固体4-(2-乙酰基-5-氯苯基)-5-甲氧基吡啶-2(1H)-酮(收率:82%)。LCMS:RT=3.81min,[M-H] -=277.04。
步骤D:合成(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-5-甲氧基-2-氧吡啶鎓-1(2H)-基)-3-苯基丙酰胺基)苯甲酸叔丁酯
Figure PCTCN2021125449-appb-000048
室温下,将4-(2-乙酰基-5-氯苯基)-5-甲氧基吡啶-2(1H)-酮(1.5克,5.4毫摩尔)和(R)-4-(2-(((4-硝基苯基)磺酰基)氧基)-3-苯基丙酰胺基)苯甲酸叔丁酯(4.0克,7.6毫摩尔)以及碳酸钾(1.5克,10.8毫摩尔)加入N,N-二甲基甲酰胺(20.0毫升)中,室温反应过夜。向反应液中加水淬灭,混合液用乙酸乙酯(40毫升×3次)萃取,合并有机相,有机相先用饱和食盐水(30毫升×2次),然后用无水硫酸钠干燥,最后减压浓缩。所得残余物用硅胶柱层析纯化(洗脱剂:乙酸乙酯/正己烷=1/2)得到1.9克黄色固体(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-5-甲氧基-2-氧吡啶鎓-1(2H)-基)-3-苯基丙酰胺基)苯甲酸叔丁酯(收率:59%)。LCMS:RT=4.42min,[M+H] +=601.18。
步骤E:合成(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-5-甲氧基-2-氧吡啶鎓-1(2H)-基)-3-苯基丙酰胺基)苯甲酸
Figure PCTCN2021125449-appb-000049
将(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-3-乙氧基-6-氧代哒嗪-1(6H)-基)-3-苯基丙酰胺基)苯甲酸叔丁酯(1.9克,3.2毫摩尔)溶于二氯甲烷(12.0毫升)中。随后,向上述溶液中加入三氟乙酸(3毫升),在室温下搅拌1小时。将反应液空气浴中减压浓缩。将所得残余物用甲醇打浆纯化,得到1.0克黄色固体(S)-4-(2-(4-(2-乙酰基-5-氯苯基)-5-甲氧基-2-氧吡啶鎓-1(2H)-基)-3-苯基丙酰胺基)苯甲酸(收率:59%)。LCMS:RT=3.88min,[M-H] -=543.06。 1H NMR(400MHz,DMSO)δ10.82(s,1H),7.92(d,J=8.8Hz,2H),7.82(d,J=8.3Hz,1H),7.76(d,J=8.8Hz,2H),7.61(dd,J=8.4,2.3Hz,2H),7.42(s,1H),7.38(s,1H),7.33–7.23(m,4H),7.22–7.14(m,1H),6.30(s,1H),6.02(dd,J=9.5,6.6Hz,1H),3.53(s,3H),3.49-3.44(m,2H),2.36(s,3H)。
对比实施例3 CN201680058331实施例143化合物
参照CN201680058331实施例143的制备方法获得相应目标化合物。
实施例10:吸收光法检测本发明化合物对人凝血因子XIa抑制的生物活性
1、实验材料
酶:Human Factor XIa(ENZYME RESEARCH,货号HFXIa 1111a)
底物:S-2366 TM:(CHROMOGENIX,货号82109039)
缓冲液:145mM NaCl,5mM KCl,1mg/mL PEG 8000,,30mM HEPES,pH7.4
2、实验步骤
将溶于100%DMSO的10mM受试化合物用100%DMSO稀释至1000、200、40、8、1.6、0.32、0.064、0.0128、0.00256、0.00128μM;在96孔板中每孔加入98μL(77.7ng/mL)的FXIa酶溶液,空白孔加入98μL缓冲液代替,再加入2μL不同浓度的化合物,空白和对照孔用DMSO代替,用振荡器混匀,37℃孵育20min。
最后每孔加入800μM的底物100μL,在405nm处测其吸光度。
3、数据处理
用GraphPad Prism软件进行曲线拟合,计算IC 50值,见表一。
表一.本发明化合物对人FXIa抑制的IC 50
实施例 hFXIa IC 50(nM)
1 7.61
结论:本发明化合物对人FXIa具有明显的抑制活性。
实施例11:本发明化合物对人血浆体外抗凝血作用的测定
1、实验材料
血浆:人血收集于含3.2%柠檬酸钠(体积比1:9)的真空采血管中,室温3000rpm离心10min,收集血浆,分装在EP管中,-80℃保存。
试剂:APTT测定试剂盒(活化部分凝血活酶时间检测定剂盒,mindray)、氯化钙溶液。
仪器:凝血仪(mindray,C2000-A)
2、实验方法
取分装的冻存人血浆室温融化后,混合均匀。将溶于100%DMSO的10mM受试化合物用100%DMSO稀释至1500、750、375、187.5、93.75、46.88、23.44、11.72μM;在1.5mL EP管中加入98μL人血浆,再加入2μL不同浓度的化合物,空白组加入2μL 100%DMSO,37℃水浴孵育10min,将样品放入凝血仪中对应的位置,进行化合物的APTT测定。
3、数据处理
用GraphPad Prism软件进行曲线拟合,分别计算EC1.5×和EC2×值,即1.5倍和2倍空白对照组的APTT所对应的化合物的浓度,结果见表二。
表二.本发明化合物对人血浆体外抗凝血作用
Figure PCTCN2021125449-appb-000050
结论:从表二中可以看出本发明化合物对人血浆具有明显的抗凝血作用。
实施例12:本发明化合物对凝血因子选择性考察
1、实验材料
酶:hFXa:Human Factor Xa:71nkat。hFIIa:HT5146L。hFVIIa:Human Factor VIIa:hFVIIa 4591L。kallikrein:LOT180223。
底物:S-2222 TM:CHROMOGENIX,NO864682。S-2238 TM:CHROMOGENIX,NO770996。S-2288 TM:CHROMOGENIX,NO378902。ADG302。
缓冲液:
hFXa缓冲液:100mM NaCl,5mM CaCl2,33%ethylene glycol,50mM Tris(pH 7.5)。
hFIIa缓冲液:0.145M NaCl,0.005M KCl,1mg/ml PEG-8000,0.030M HEPES(pH 7.4)。
hFVIIa缓冲液:0.145M NaCl,0.005M KCl,1mg/ml PEG-8000,0.030M HEPES(pH 7.4)。
kallikrein缓冲液:50mM Tris,50mMimidazole and 150mM NaCl(pH 8.2)。
2、实验步骤
将溶于100%DMSO的10mM受试化合物用100%DMSO稀释至1000、200、40、8、1.6μM;在96孔板中每孔加入98μL的酶溶液,空白孔加入98μL缓冲液代替,再加入2μL不同浓度的化合物,空白和对照孔用DMSO代替,用振荡器混匀,37℃孵育20min。
hFXa和S-2222 TM的浓度分别为FXa(1:28)和800μmol/L。hFIIa和S-2238 TM的浓度分别为hFIIa(0.06U/ml)和500μmol/L。hFVIIa和S-2288 TM的浓度分别为hFVIIa(80nM)和1600μmol/L。kallikrein和底物的浓度分别为kallikrein(20nM)和1600μmol/L。
最后每孔加入底物100μL,在405nm处测其吸光度。
3、数据处理
用GraphPad Prism软件进行曲线拟合,计算IC 50值,见表三。
表三.本发明化合物对凝血因子选择性考察
Figure PCTCN2021125449-appb-000051
结论:本发明化合物对其它凝血因子选择性较好。
实施例13:本发明化合物的药代动力学特征考察
1、实验材料
SD大鼠:雄性,180-250g,购于广东省医学实验动物中心。食蟹猴:雄性,4-6kg,购于广州春盛生物研究院有限公司。比格犬:雄性,8-12kg,在康龙化成(宁波)新药技术股份有限公司开展。
试剂:DMSO(二甲亚砜),PEG-400(聚乙二醇400),生理盐水,肝素,乙腈,甲酸,普萘洛尔(内标)均为市售可得。
仪器:赛默飞LC-MS(U300 UPLC,TSQ QUANTUMN ULTRA三重四级杆质谱)。
2、实验方法
称取化合物溶于DMSO-PEG-400-生理盐水(5:60:35,v/v/v)体系中,大鼠/猴静脉或灌胃给药后,于5min(灌胃不采)、15min、30min、1h、2h、4h、6h、8h、24h采集静脉血200μL于肝素化EP管中,12000rpm离心2min,取血浆-80℃冻存待测。精密称取一定量供试品用DMSO溶解至1mg/mL,作为储备液。准确吸取适量的化合物储备液,加入乙腈稀释制成标准系列溶液。准确吸取上述标准系列溶液各20μL,加入空白血浆180μL,涡旋混匀,配制成相当于血浆浓度为1、3、10、30、100、300、1000、3000和5000ng/mL的血浆样品,每一浓度进行双样本分析,建立标准曲线。取20μL血浆,加入内标普萘洛尔(5ng/mL)的乙腈溶液200μL,涡旋混匀后4000rpm离心5min,取上清LC-MS分析。LC-MS检测条件如下:
色谱柱:赛默飞HYPERSIL GOLD C-18 UPLC柱,100*2.1mm,1.9μm。
流动相:水(0.1%甲酸)-乙腈按下表进行梯度洗脱
时间(min) 水(含0.1%甲酸) 乙腈
0 90% 10%
0.6 90% 10%
1 10% 90%
2.6 10% 90%
2.61 90% 10%
4 90% 10%
3、数据处理
LC-MS检测血药浓度后,采用WinNonlin 6.1软件,非房室模型法计算药动学参数。结果见表四、五、六。
表四.本发明化合物的大鼠药代动力学参数
Figure PCTCN2021125449-appb-000052
表五.本发明化合物的食蟹猴药代动力学参数
Figure PCTCN2021125449-appb-000053
表六.本发明化合物的比格犬药代动力学参数
Figure PCTCN2021125449-appb-000054
结论:本发明化合物在大鼠和猴口服均有一定的吸收,犬口服吸收较好,体内清除速率中等偏慢,多数化合物口服半衰期较长,具有良好的药代动力学特征。
实施例14:本发明化合物caco-2数据考察
实验材料:
培养基:DMEM(Corning),FBS(Corning),双抗(Solarbio),96-well HTS transwell plate(Corning),Caco-2细胞。
实验方法:Caco-2细胞在96-well HTS transwell plate培养14-18天后,检测每孔TEER值确保每孔细胞形成完整单层,加药物孵育2h,检测A-B和B-A药物浓度。
数据处理:计算PappA-B和PappB-A值,Papp=(VA×[drug]acceptor)/(Area×Time×[drug]initial,donor),计算Efflux Ratio,Efflux Ratio=Papp(B-A)/Papp(A-B)。
表七.本发明化合物caco-2数据
Figure PCTCN2021125449-appb-000055
结论:本发明化合物膜通透性良好。
实施例15:本发明化合物CYP酶抑制考察
实验材料:
肝微粒体(150-donor,Corning,Cat.452117;Lot.38292),NADPH.
实验方法:
先配制0.2mg/mL微粒体体系,加入各测试物及底物,测试物终浓度为50μM,预孵8min后,加入10mM NADPH启动反应,NADPH最终浓度为1mM,孵育一段时间后加如甲醇内标终止反应。检测各反应孔中底物代谢物生成量。
数据处理:以空白孔代谢物生成量为100%,计算每个测试物孔中代谢物生成减少量,并计算抑制率。
表八.本发明化合物CYP酶抑制数据
Figure PCTCN2021125449-appb-000056
结论:本发明化合物对主要CYP酶无抑制,DDI风险较小。
实施例16:本发明化合物hERG考察
实验材料:
HEK293-hERG稳转细胞系(invitrogen)。DMEM培养基(Gibco),HEPES(invitrogen),Blasticidin(invitrogen)
实验方法:
HEK293-hERG稳转细胞培养至40%-80%聚合度时用于实验,首先用空白溶媒应用到细胞中,建立基线。一旦发现hERG电流稳定5分钟后,开始测试化合物。在测试化合物存在下,记录大约5分钟的hERG电流以达到稳定状态,然后捕获5个扫频。为了保证培养细胞和操作的良好性能,同样使用阳性对照多非利酮对同一批次细胞进行检测。
数据处理:
Peak current inhibition=(1-Peak tail current compound/Peak tail current vehicle)*100
表九.本发明化合物hERG实验数据
实施例 hERG IC50[μM] Comment
1 >10 10μM下抑制率为1.17%
结论:本发明化合物对hERG电流IC50较高,心脏安全性较好。
实施例17:本发明化合物胶囊剂的大鼠药代动力学研究
1、实验材料
SD大鼠:雄性,180-250g,购于北京维通利华实验动物技术有限公司。
试剂:生理盐水,肝素,乙腈,甲酸,普萘洛尔(内标)均为市售可得。
仪器:赛默飞LC-MS(U300 UPLC,TSQ QUANTUMN ULTRA三重四级杆质谱)。
2、实验方法
称取各化合物固体粉末(折算为游离酸重量约3.5mg),填充于9号ToRPAC胶囊内口服给药后,于15min、30min、1h、2h、5h、7h、24h采集静脉血200μL于肝素化EP管中,12000rpm离心2min,取血浆-80℃冻存待测。精密称取一定量供试品用DMSO溶解至2mg/mL,作为储备液。准确吸取适量的化合物储备液,加入乙腈稀释制成标准系列溶液。准确吸取上述标准系列溶液各20μL,加入空白血浆180μL,涡旋混匀,配制成相当于血浆浓度为0.3、1、3、10、30、100、300、1000、3000ng/mL的血浆样品,每一浓度进行双样本分析,建立标准曲线。取30μL血浆,加入内标普萘洛尔(50ng/mL)的乙腈溶液200μL,涡旋混匀后,加入100μL纯化水,再次涡旋混匀,4000rpm离心5min,取上清LC-MS/MS分析。LC-MS/MS检测条件如下:
色谱柱:赛默飞HYPERSIL GOLD C-18 UPLC柱,100*2.1mm,1.7μm。
流动相:水(0.1%甲酸)-乙腈按下表进行梯度洗脱
时间(min) 水(含0.1%甲酸) 乙腈
0 90% 10%
0.6 90% 10%
1 10% 90%
2.6 10% 90%
2.61 90% 10%
4 90% 10%
3、数据处理
LC-MS/MS检测血药浓度后,采用WinNonlin 6.1软件,非房室模型法计算药动学参数,结果见下表十。
表十.本发明化合物盐及游离酸对大鼠药代动力学结果
Figure PCTCN2021125449-appb-000057
从上述结果可见,采用胶囊制剂,在相同的口服崩解条件下化合物A葡甲胺盐、钠盐体内的暴露量明显优于化合物A游离酸,说明相对于化合物A游离酸有更好的吸收。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (17)

  1. FXIa抑制剂化合物的盐,其特征在于,
    Figure PCTCN2021125449-appb-100001
    其中:
    n为0.5-3;
    M与羧基成盐,所述盐选自锂盐、钠盐、钾盐、钙盐、镁盐、铝盐、铁盐、锌盐或铵盐中的至少一种;或所述盐选自甲胺盐、二甲胺盐、三甲胺盐、乙胺盐、二乙胺盐、三乙胺盐、异丙胺盐、2-乙氨基乙醇盐、吡啶盐、甲基吡啶盐、乙醇胺盐、二乙醇胺盐、铵盐、四甲基铵盐、四乙基铵盐、三乙醇胺盐、哌啶盐、哌嗪盐、吗啉盐、赖氨酸盐、精氨酸盐、L-精氨酸盐、组氨酸盐、L-组氨酸盐、葡甲胺盐、二甲基葡糖胺盐、乙基葡糖胺盐、二环己基胺盐、1,6-己二胺盐、葡糖胺盐、肌氨酸盐、丝氨醇盐、三羟基甲基氨基甲烷盐、氨基丙二醇盐、1-氨基-2,3,4-丁三醇盐、L-赖氨酸盐、鸟氨酸盐或胆碱盐中的至少一种。
  2. 根据权利要求1所述FXIa抑制剂化合物的盐,其特征在于,n为0.5、1、1.5、2、2.5或3。
  3. 根据权利要求1所述FXIa抑制剂化合物的盐,其特征在于,所述的盐选自钠盐、钾盐、葡甲胺盐、钙盐、镁盐、胆碱盐。
  4. 根据权利要求1所述FXIa抑制剂化合物的盐,其特征在于,所述的盐选自钠盐、n=1;钾盐、n=1;胆碱盐、n=1;葡甲胺盐、n=1;钙盐、n=0.5;镁盐、n=0.5。
  5. 根据权利要求1-4任一项所述FXIa抑制剂化合物的盐,其特征在于,所述的盐为晶型、或者无定型,或其混合物。
  6. 根据权利要求1所述FXIa抑制剂化合物的盐,其特征在于,所述的盐为钠盐,n=1,所述的盐为晶型,所述晶型的在X射线衍射图中以2θ角表示在9.32、15.34、16.24、18.41、19.48、24.05°处有特征峰,误差为±0.2°;进一步优选还在5.59、7.81、9.83、10.50、11.24、13.52、14.60、14.87、16.93、20.39、21.02、21.77、23.53、24.99、25.90、26.62、27.22°处有特征峰,误差为±0.2°;更优选X射线衍射图如图6或图9所示。
  7. 根据权利要求6所述FXIa抑制剂化合物的盐,其特征在于,所述晶型的DSC图谱所述晶型的DSC在70.01℃±2℃处有最大吸收峰;优选DSC图谱如图7所示;优选所述晶型的TG图谱如图8所示。
  8. 根据权利要求1所述FXIa抑制剂化合物的盐,其特征在于,所述的盐为钠盐,n=1,所述的盐为无定型,所述无定型的X射线衍射图中,无明显特征峰;优选X射线衍射图如图5所示。
  9. 根据权利要求1所述FXIa抑制剂化合物的盐,其特征在于,所述的盐为葡甲胺盐,n=1,所述的盐为晶型,所述晶型的在X射线衍射图中以2θ角表示在9.33和18.79°处有特征峰,误差为±0.2°;进一步优选还在10.32、13.74、16.18、24.74°处有特征峰,误差为±0.2°;更优选X射线衍射图如图10或图12所示。
  10. 根据权利要求9所述FXIa抑制剂化合物的盐,其特征在于,所述晶型的DSC图谱在122.7℃±2℃处有最大吸收峰;优选DSC图谱如图11所示。
  11. 根据权利要求1所述FXIa抑制剂化合物的盐,其特征在于,所述的盐为葡甲胺盐,n=1,所述的盐为无定型,所述无定型的X射线衍射图中,无明显特征峰;优选X射线衍射图如图13或16所示。
  12. 根据权利要求11所述FXIa抑制剂化合物的盐,其特征在于,所述无定型的DSC图谱在80.1℃±2℃处有最大吸收峰;优选DSC图谱如图14所示。
  13. 根据权利要求11所述FXIa抑制剂化合物的盐,其特征在于,所述无定型的DSC图谱如图14所示。
  14. 根据权利要求11所述FXIa抑制剂化合物的盐,其特征在于,所述无定型的TG如图15所示。
  15. 根据权利要求1-14任一项所述FXIa抑制剂化合物的盐,其特征在于:所述化合物的一个以上的氢原子上被同位素氘取代。
  16. 一种药物组合物,其特征在于,包括前述权利要求1-14任一项所述FXIa抑制剂化合物的盐,和一种以上药学上可接受的载体。
  17. 根据权利要求1-14任一项所述FXIa抑制剂化合物的盐在制备用于制备治疗FXIa相关疾病的药物用途,优选血栓相关疾病的药物用途。
PCT/CN2021/125449 2020-10-23 2021-10-22 FXIa抑制剂化合物的盐及其制备方法和医药用途 WO2022083706A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180030803.XA CN115515938B (zh) 2020-10-23 2021-10-22 FXIa抑制剂化合物的盐及其制备方法和医药用途

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011152742 2020-10-23
CN202011152742.8 2020-10-23
CN202110258902 2021-03-09
CN202110258902.5 2021-03-09

Publications (1)

Publication Number Publication Date
WO2022083706A1 true WO2022083706A1 (zh) 2022-04-28

Family

ID=81289695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125449 WO2022083706A1 (zh) 2020-10-23 2021-10-22 FXIa抑制剂化合物的盐及其制备方法和医药用途

Country Status (3)

Country Link
CN (1) CN115515938B (zh)
TW (1) TW202222315A (zh)
WO (1) WO2022083706A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022194225A1 (zh) * 2021-03-18 2022-09-22 深圳信立泰药业股份有限公司 FXIa抑制剂化合物杂质及其制备方法和用途FXIa抑制剂化合物杂质及其制备方法和用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2497806A (en) * 2011-12-21 2013-06-26 Ono Pharmaceutical Co Pyridinone and pyrimidinone derivatives as factor XIa inhibitors
WO2018041122A1 (zh) * 2016-08-31 2018-03-08 江苏恒瑞医药股份有限公司 氧代吡啶酰胺类衍生物、其制备方法及其在医药上的应用
CN107793396A (zh) * 2016-08-31 2018-03-13 江苏恒瑞医药股份有限公司 环氧基取代的氧代吡啶类衍生物、其制备方法及其在医药上的应用
CN108137549A (zh) * 2015-08-05 2018-06-08 百时美施贵宝公司 新颖的取代的甘氨酸衍生的fxia抑制剂
WO2021057818A1 (zh) * 2019-09-27 2021-04-01 深圳信立泰药业股份有限公司 FXIa抑制剂及其制备方法和医药用途
CN112675173A (zh) * 2020-12-25 2021-04-20 华南理工大学 FXIa抑制剂化合物或其盐的医药用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022083707A1 (zh) * 2020-10-23 2022-04-28 深圳信立泰药业股份有限公司 FXIa抑制剂化合物或其盐的医药用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2497806A (en) * 2011-12-21 2013-06-26 Ono Pharmaceutical Co Pyridinone and pyrimidinone derivatives as factor XIa inhibitors
CN108137549A (zh) * 2015-08-05 2018-06-08 百时美施贵宝公司 新颖的取代的甘氨酸衍生的fxia抑制剂
WO2018041122A1 (zh) * 2016-08-31 2018-03-08 江苏恒瑞医药股份有限公司 氧代吡啶酰胺类衍生物、其制备方法及其在医药上的应用
CN107793396A (zh) * 2016-08-31 2018-03-13 江苏恒瑞医药股份有限公司 环氧基取代的氧代吡啶类衍生物、其制备方法及其在医药上的应用
WO2021057818A1 (zh) * 2019-09-27 2021-04-01 深圳信立泰药业股份有限公司 FXIa抑制剂及其制备方法和医药用途
CN112675173A (zh) * 2020-12-25 2021-04-20 华南理工大学 FXIa抑制剂化合物或其盐的医药用途

Also Published As

Publication number Publication date
TW202222315A (zh) 2022-06-16
CN115515938A (zh) 2022-12-23
CN115515938B (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
EP3590924B1 (en) Novel isoindoline derivative, and pharmaceutical composition and application thereof
EP1324981B1 (en) Aminopyridinyl-, aminoguanidinyl- and alkoxyguanidinyl- substituted phenyl acetamides as protease inhibitors
CN104684897A (zh) 脯氨酰羟化酶抑制剂的晶体形态
TWI756848B (zh) FXIa抑制劑及其製備方法和醫藥用途
CN112675173B (zh) FXIa抑制剂化合物或其盐的医药用途
EP3878852A1 (en) Substituted pyrazolo[1,5-a]pyridine compound, composition containing the same and use thereof
WO2023016535A1 (zh) 一种三联吡啶二酮化合物或其盐及其制备方法与应用
WO2022083706A1 (zh) FXIa抑制剂化合物的盐及其制备方法和医药用途
CN115427043B (zh) FXIa抑制剂化合物或其盐的医药用途
WO2017162157A1 (zh) 内磺酰胺化合物及其使用方法
CN110054614B (zh) 三嗪类idh抑制剂的可药用盐及其制备方法
WO2021110076A1 (zh) 草酰胺类衍生物、其制备方法及其在医药上的应用
EP4183785A1 (en) Novel n-heterocyclic bet bromodomain inhibitor, and preparation method therefor and medical use thereof
CN108368094A (zh) 用于局部药物递送的非甾体类糖皮质激素受体调节剂
TWI749881B (zh) 二氧代哌類衍生物、其製備方法及其在醫藥上的應用
WO2022194225A1 (zh) FXIa抑制剂化合物杂质及其制备方法和用途FXIa抑制剂化合物杂质及其制备方法和用途
WO2023169480A1 (zh) 氘代化合物,及其制备方法和应用
RU2802878C9 (ru) Ингибиторы fxia, способ их получения и применение в фармацевтике
RU2802878C1 (ru) Ингибиторы fxia, способ их получения и применение в фармацевтике
WO2023246846A1 (zh) 一种非螯合性非还原性铁死亡抑制剂及其制备方法和用途
WO2024022262A1 (zh) 一种内皮素a(eta)受体拮抗剂化合物的盐及其制备方法和医药用途
TW202321240A (zh) Glp-1r促效劑化合物的鹽、包括其的藥物組合物及其用途
EP3822264A1 (en) Crystal forms of oxypyridine amide derivative and preparation method therefor
CN116217558A (zh) Glp-1受体激动剂及其制备方法和医药用途
EP3677581A1 (en) Deuterated indoleamine 2,3-dioxygenase inhibitor and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21882120

Country of ref document: EP

Kind code of ref document: A1