WO2022083628A1 - 调制和编码方案mcs指示信息传输方法、装置及通信设备 - Google Patents

调制和编码方案mcs指示信息传输方法、装置及通信设备 Download PDF

Info

Publication number
WO2022083628A1
WO2022083628A1 PCT/CN2021/124930 CN2021124930W WO2022083628A1 WO 2022083628 A1 WO2022083628 A1 WO 2022083628A1 CN 2021124930 W CN2021124930 W CN 2021124930W WO 2022083628 A1 WO2022083628 A1 WO 2022083628A1
Authority
WO
WIPO (PCT)
Prior art keywords
mcs
cqi
level
code rate
indication information
Prior art date
Application number
PCT/CN2021/124930
Other languages
English (en)
French (fr)
Inventor
姚健
孙晓东
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to KR1020237015658A priority Critical patent/KR20230079449A/ko
Priority to JP2023523120A priority patent/JP2023545823A/ja
Priority to EP21882043.9A priority patent/EP4216465A4/en
Publication of WO2022083628A1 publication Critical patent/WO2022083628A1/zh
Priority to US18/304,280 priority patent/US20230344549A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0016Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy involving special memory structures, e.g. look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0031Multiple signaling transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present application belongs to the field of communication technologies, and in particular relates to a method, an apparatus, and a communication device for transmitting MCS indication information.
  • both the downlink channel service and the uplink channel service use the Adaptive Modulation and Coding (AMC) technology, which is used to The modulation method and code rate are determined according to the conditions to improve the spectral efficiency of the system.
  • AMC Adaptive Modulation and Coding
  • the purpose of the embodiments of the present application is to provide an MCS indication information transmission method, apparatus, and communication device, which can improve the data throughput of a communication system in a high signal-to-noise ratio communication scenario.
  • a method for transmitting MCS indication information executed by a first communication device, including:
  • the second communication device has the capability of supporting 1024 quadrature amplitude modulation QAM, sending the first indication information, the second indication information and the third indication information to the second communication device;
  • the first indication information is used to indicate a modulation and coding strategy MCS table used by the second communication device for data transmission, and the MCS table includes an MCS level corresponding to a modulation scheme with a modulation order of 10;
  • the second indication information is used to instruct the second communication device to perform a CQI table used for channel state information CQI feedback, and the CQI table includes a CQI level corresponding to a 1024QAM modulation scheme;
  • the third indication information is used to determine, according to the MCS table, the MCS level corresponding to the channel received or sent by the second communication device.
  • a method for transmitting MCS indication information is provided, executed by a second communication device, including:
  • the second communication device has the capability of supporting 1024 quadrature amplitude modulation QAM, receiving the first indication information, the second indication information and the third indication information sent by the first communication device;
  • the first indication information is used to indicate a modulation and coding strategy MCS table used by the second communication device for data transmission, and the MCS table includes an MCS level corresponding to a modulation scheme with a modulation order of 10;
  • the second indication information is used to instruct the second communication device to perform a CQI table used for channel quality indication CQI feedback, where the CQI table includes a CQI level corresponding to the 1024QAM modulation scheme;
  • the third indication information is used to determine, according to the MCS table, the MCS level corresponding to the channel received or sent by the second communication device.
  • a device for transmitting MCS indication information including:
  • a sending module configured to send the first indication information, the second indication information and the third indication information to the second communication device when the second communication device has the capability of supporting 1024 quadrature amplitude modulation QAM;
  • the first indication information is used to indicate a modulation and coding strategy MCS table used by the second communication device for data transmission, and the MCS table includes an MCS level corresponding to a modulation scheme with a modulation order of 10;
  • the second indication information is used to instruct the second communication device to perform a CQI table used for channel quality indication CQI feedback, where the CQI table includes a CQI level corresponding to the 1024QAM modulation scheme;
  • the third indication information is used to determine, according to the MCS table, the MCS level corresponding to the channel received or sent by the second communication device.
  • a device for transmitting MCS indication information including:
  • a receiving module configured to receive the first indication information, the second indication information and the third indication information sent by the first communication device when the MCS indication information transmission device has the capability of supporting 1024 quadrature amplitude modulation QAM;
  • the first indication information is used to instruct the MCS to indicate a modulation and coding strategy MCS table used by the information transmission apparatus for data transmission, and the MCS table includes an MCS level corresponding to a modulation scheme with a modulation order of 10;
  • the second indication information is used to instruct the MCS indication information transmission apparatus to perform a CQI table used for channel quality indication CQI feedback, and the CQI table includes a CQI level corresponding to the 1024QAM modulation mode;
  • the third indication information is used to determine, according to the MCS table, the MCS level corresponding to the channel received or sent by the MCS indication information transmission apparatus.
  • a communication device in a fifth aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the processor
  • the terminal includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the processor
  • a sixth aspect provides a readable storage medium, on which a program or an instruction is stored, and when the program or instruction is executed by a processor, the steps of the MCS indication information transmission method described in the first aspect are implemented , or implement the steps of the MCS indication information transmission method described in the second aspect.
  • a chip in a seventh aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a network-side device program or instruction, implementing the method as described in the first aspect.
  • the MCS indication information transmission method described above, or the MCS indication information transmission method described in the second aspect is implemented.
  • a computer program product is provided, the computer program product is stored in a non-volatile storage medium, the computer program product is executed by at least one processor to implement the MCS according to the first aspect
  • the indication information transmission method, or the MCS indication information transmission method described in the second aspect is implemented.
  • the MCS table indicated by the first indication information includes at least the MCS level corresponding to the modulation mode with the modulation order of 10, then the MCS level determined by the third indication information may also be the modulation order of 10.
  • the second communication device has the capability of supporting 1024QAM, and the second communication device can use the modulation mode and code rate corresponding to the modulation order of 10 for its scheduled channel, so that the communication system can support higher order Modulation ensures that the communication system can have high data throughput in high signal-to-noise ratio communication scenarios, and improves the transmission efficiency of the communication system.
  • FIG. 1 is a block diagram of a wireless communication system to which an embodiment of the present application can be applied;
  • FIG. 2 is a flowchart of a method for transmitting MCS indication information provided by an embodiment of the present application
  • FIG. 3 is a structural diagram of a device for transmitting MCS indication information provided by an embodiment of the present application.
  • FIG. 5 is a structural diagram of another MCS indication information transmission device provided by an embodiment of the present application.
  • FIG. 6 is a structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a structural diagram of a terminal provided by an embodiment of the present application.
  • FIG. 8 is a structural diagram of a network side device provided by an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and NR terminology is used in most of the description below, although these techniques are also applicable to applications other than NR system applications, such as 6th generation ( 6th Generation , 6G) communication system.
  • 6th generation 6th Generation
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • PDA Personal Digital Assistant
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Send Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms.
  • the base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • the communication system applicable to the embodiments of the present application may also be a sidelink communication system, and the specific implementation form of the sidelink communication system may be referred to the related art, which will not be repeated.
  • modulation and coding scheme Modulation and Coding Scheme, MCS
  • MCS Modulation and Coding Scheme
  • FIG. 2 is a flowchart of a method for transmitting MCS indication information provided by an embodiment of the present application.
  • the method provided by the embodiment of the present application is applied to a first communication device, and the first communication device may be a network side A device, or it can also be a terminal in a sidelink communication system.
  • the MCS indication information transmission method includes the following steps:
  • Step 201 In the case that the second communication device has the capability of supporting 1024 Quadrature Amplitude Modulation (QAM), send first indication information, second indication information and third indication information to the second communication device.
  • QAM Quadrature Amplitude Modulation
  • the first indication information is used to instruct the second communication device to use the MCS table for data transmission, and the MCS table includes the MCS level corresponding to the modulation scheme with a modulation order of 10; the second indication information is used for A CQI table used for instructing the second communication device to perform Channel Quality Indicator (CQI) feedback, the CQI table includes the CQI level corresponding to the 1024QAM modulation scheme; the third indication information is used according to the MCS The table determines the MCS level corresponding to the channel received or transmitted by the second communication device.
  • CQI Channel Quality Indicator
  • the first indication information and the second indication information are sent by high-layer signaling; the third indication information is sent by the indication information in downlink control information (Downlink Control Information, DCI).
  • DCI Downlink Control Information
  • the first communication device is a network-side device
  • the second communication device is a terminal
  • the network-side device may send the first indication information to the terminal through high-level signaling to instruct the terminal to perform data transmission using the MCS table
  • the first indication information may be at least one of the following: parameters in higher layer signaling PUSCH-Config, parameters in higher layer signaling ConfiguredGrantConfig, parameters in higher layer signaling PDSCH-Config, and parameters in higher layer signaling SPS-Config.
  • the network side device may also send second indication information to the terminal through high-layer signaling to instruct the terminal to perform CQI feedback using the CQI table, and the second indication information may be at least one of the following: in the high-layer signaling CSI-ReportConfig parameter.
  • the MCS table includes an MCS index (MCS Index), a modulation order (Modulation Order), a target code rate (Target code Rate) and a spectral efficiency (Spectral efficiency), as shown in Table 1, each The MCS index uniquely corresponds to each MCS level, wherein the MCS index of 0 represents the first MCS level, the MCS index of 1 represents the second MCS level, and so on.
  • the first communication device may notify the second communication device of the determined MCS level through the third indication information of 5 bits in the downlink control information (Downlink Control Information, DCI).
  • Channel, PDCCH received the MCS level indicated by the third indication information, so as to know the MCS level used by the first communication device for transmission on the Physical Downlink Shared Channel (PDSCH), and based on the first indication information
  • the corresponding relationship in the indicated MCS table determines the modulation order and code rate corresponding to the indicated MCS level, and demodulates and decodes the corresponding data in the PDSCH.
  • the MCS table further includes the MCS table 2 shown in Table 2 and the MCS table 3 shown in Table 3.
  • the second communication device needs to measure the downlink channel and feed back the CQI to the first communication device, and the CQI feedback may be through a physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) or a physical uplink control channel (Physical Uplink Control channel).
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control channel
  • the first communication device determines the MCS corresponding to the uplink or downlink channel according to the CQI and the prediction algorithm fed back by the second communication device.
  • the modulation method and code rate are quantized into 15 CQI levels, which are defined in the form of a 4-bit table, that is, the CQI table.
  • the CQI tables 1 to 3 shown below correspond to the above MCS tables 1 to 3 respectively.
  • the modulation modes (modulation), code rate (code rate) and spectral efficiency (efficiency) corresponding to different CQI levels are defined in Tables 1 to 3.
  • the CQI index of 0 represents the first CQI level
  • the CQI index of 1 represents the second CQI level, and so on.
  • the first communication device when the second communication device has the capability of supporting 1024QAM, the first communication device sends first indication information to the second communication device, and the first indication information is used to instruct the second communication device to perform data transmission and use
  • the first communication device After determining the MCS level according to the MCS table, the first communication device notifies the second communication device of the MCS level corresponding to the channel received or sent by the second communication device through the third indication information, so as to instruct the second communication device according to the MCS table.
  • the MCS level determines the modulation method and code rate used by the channel it receives or transmits.
  • the MCS table provided in the embodiment of the present application includes at least the MCS level corresponding to the modulation scheme with the modulation order of 10, then the MCS level determined by the third indication information may also be the MCS level corresponding to the modulation scheme with the modulation order of 10.
  • the second communication device has the ability to support 1024QAM, and the second communication device can also use the modulation method and code rate corresponding to the modulation order of 10 for the channel scheduled by the second communication device, so that the communication system can support higher-order modulation and ensure that the communication system is at a high level. In the signal-to-noise ratio communication scenario, it can have higher data throughput and improve the transmission efficiency of the communication system.
  • the MCS table including the MCS level corresponding to the modulation mode with the modulation order of 10 may be designed based on the CQI table.
  • the CQI table includes a CQI level corresponding to 1024QAM, and the CQI table satisfies at least one of the following conditions:
  • the first CQI table is a CQI table including the CQI level corresponding to 256QAM (ie, Table 5 shown above);
  • the signal-to-noise ratio corresponding to each CQI level is equally spaced;
  • the spectral efficiency is rounded to four decimal places
  • the code rate is determined by rounding up;
  • the code rate is determined by rounding down
  • the code rate is determined by rounding off
  • the code rate has a decimal
  • the code rate is reserved to one decimal place.
  • the CQI table including the CQI level corresponding to 1024QAM is referred to as the first target CQI table.
  • the CQI form also meets at least one of the above conditions.
  • the first target CQI table includes the CQI level corresponding to 256QAM in the first CQI table (that is, Table 5, CQI table 2), that is, the first target CQI table may be in the above CQI table 2. Design on the basis.
  • the CQI table includes at least two CQI levels corresponding to the 1024QAM modulation mode. That is to say, the first target CQI table includes at least two CQI levels corresponding to the 1024QAM modulation mode.
  • the first CQI level and the second CQI level may be included, or the third CQI level and Fourth CQI level.
  • the first target CQI table includes a first CQI level and a second CQI level corresponding to the 1024QAM modulation mode, and the code rate corresponding to the first CQI level is the same as the second CQI level.
  • the code rates corresponding to the levels are different, and the spectral efficiency corresponding to the first CQI level is different from the spectral efficiency corresponding to the second CQI level.
  • the first target CQI table includes the first CQI level and the second CQI level corresponding to the 1024QAM modulation scheme.
  • the first target CQI table is designed on the basis of the above-mentioned CQI table 2.
  • the first target CQI table retains the CQI level corresponding to 256QAM in CQI table 2, and needs to add a new one corresponding to the 1024QAM modulation method.
  • the first CQI level and the second CQI level may be the corresponding deletion of the two CQI levels in the CQI table 2; alternatively, may be deleted according to the preset deletion order of QPSK, 16QAM, and 64QAM, for example, priority
  • the CQI level corresponding to QPSK is pruned, and then the CQI level corresponding to 16QAM and 64QAM is pruned.
  • other rules may be followed to selectively prune the CQI levels in CQI Table 2.
  • the CQI level corresponding to the CQI index of 5 and the CQI level corresponding to the CQI index of 7 in the CQI table 2 are deleted, and the first corresponding to the 1024QAM modulation mode is added. CQI level and second CQI level.
  • the code rate and spectral efficiency corresponding to the first CQI level and the second CQI level may be determined based on at least one of the above conditions. For example, if the spectral efficiencies corresponding to the CQI levels in the first target CQI table are equally spaced, then based on the spectral efficiencies between the CQI levels determined in the CQI table 2, it is also possible to determine the first CQI level and the second CQI level respectively. Corresponding spectral efficiency; the spectral efficiency corresponding to the first CQI level and the second CQI is rounded to four decimal places.
  • the code rates corresponding to the CQI levels in the first target CQI table are equally spaced, then based on the determined code rates between the CQI levels in the CQI table 2, the first CQI level and the second CQI level can also be determined. corresponding bit rates.
  • the code rate in the first target CQI table can also be satisfied: in the case of a decimal number in the code rate, the code rate can be determined by rounding up, rounding down, or rounding off, or The above code rate is reserved to one decimal place.
  • the code rate corresponding to the first CQI level may be an integer, or a decimal number may be reserved, or the code rate corresponding to the first CQI level may also have multiple values, and so on.
  • the code rate and spectral efficiency corresponding to the first CQI level may be determined based on the above conditions, for example, the code rate corresponding to the first CQI level is 853, and the corresponding spectral efficiency is 8.3321.
  • the code rate and spectral efficiency corresponding to the second CQI level may also be determined based on the above conditions, for example, the code rate corresponding to the second CQI level is 948, and the corresponding spectral efficiency is 9.2578.
  • the first target CQI table is the CQI table 4 shown in Table 7 below:
  • the first CQI level and the second CQI level corresponding to the 1024QAM modulation scheme are corresponding to CQI index 14 and CQI index 15, respectively.
  • the second indication information sent by the first communication device to the second communication device can not only indicate the CQI tables 1 to 3 above, but also indicate the CQI table 4, and then the CQI used by the second communication device for channel quality feedback.
  • the table can also include the CQI level corresponding to the 1024QAM modulation mode, thereby facilitating higher-order modulation in the communication system.
  • the CQI table includes at least two CQI levels corresponding to the 1024QAM modulation mode.
  • the CQI table On the basis that the above CQI table 4 includes the first CQI level and the second CQI level, the CQI table also includes The third CQI level and the fourth CQI level corresponding to the 1024QAM modulation scheme, the third CQI level and the fourth CQI level are obtained based on the first CQI level and the second CQI level.
  • a CQI table including the first CQI level, the second CQI level, the third CQI level, and the fourth CQI level is defined as the second target CQI table, and the second target CQI table also satisfies the following: At least one condition:
  • the first CQI table is a CQI table including the CQI level corresponding to 256QAM (ie, Table 5 shown above);
  • the signal-to-noise ratio corresponding to each CQI level is equally spaced;
  • the spectral efficiency is rounded to four decimal places
  • the code rate is determined by rounding up;
  • the code rate is determined by rounding down
  • the code rate is determined by rounding off
  • the code rate appears to be a decimal
  • the code rate is reserved to one decimal place.
  • the second target CQI table is designed on the basis of the above-mentioned CQI table 4, and the third CQI level and the fourth CQI level corresponding to the 1024QAM modulation mode are newly added, and the two in the CQI table 4 can be deleted accordingly.
  • a CQI level is required, but the CQI level corresponding to the 1024QAM and 256QAM modulation modes needs to be reserved at the same time.
  • the code rate and spectral efficiency corresponding to the third CQI level and the fourth CQI level may be determined based on at least one of the above conditions.
  • the spectral efficiencies corresponding to each CQI level in the second target CQI table are equally spaced, then based on the determined spectral efficiencies of each CQI level in the above CQI table 4, it is also possible to determine the spectral efficiencies corresponding to the third CQI level and the fourth CQI level spectral efficiency; and, the spectral efficiencies corresponding to the third CQI level and the fourth CQI level are rounded to four decimal places.
  • the code rates between the third CQI level, the fourth CQI level and other CQI levels are equally spaced, and when the code rate appears to be a decimal, the code rate may be rounded up or down or rounded off. is determined in an integer manner, or the code rate is reserved to one decimal place.
  • the code rate corresponding to the third CQI level may correspond to multiple values
  • the code rate corresponding to the fourth CQI level may also correspond to multiple values.
  • the third CQI level may be obtained by interpolating the first CQI level and the second CQI level, for example, the spectral efficiencies corresponding to the first CQI level, the second CQI level and the third CQI level are equally spaced, the first CQI level and The spectral efficiency of the second CQI level is known, so that the spectral efficiency corresponding to the third CQI level can be determined.
  • the fourth CQI level may also be obtained by interpolating the first CQI level and the second CQI level.
  • the code rate corresponding to the third CQI level is any one of the following: 805, 806, and 805.5, and the spectral efficiency corresponding to the third CQI level is any one of the following: 7.8613, 7.8711, and 7.8662.
  • the code rate corresponding to the fourth CQI level is any one of the following: 900, 901, and 900.5, and the spectral efficiency corresponding to the fourth CQI level is any one of the following: 8.7891, 8.7988, and 8.7939.
  • the second target CQI table is the CQI table 5-8 shown in the following Tables 8-11:
  • the first CQI level corresponding to the 1024QAM modulation scheme corresponds to CQI index 13
  • the second CQI level corresponds to CQI index 15
  • the third CQI level corresponds to CQI index 12
  • the fourth CQI level corresponds to at CQI index 14.
  • the CQI table used by the first communication device to instruct the second communication device to perform channel quality feedback also includes CQI tables 1 to 8, and can also include more CQI levels corresponding to the 1024QAM modulation mode, which further improves the second
  • the flexibility and selectivity of the communication equipment for channel quality feedback is more conducive to higher-order modulation in the communication system, so as to improve the data throughput of the communication system in high signal-to-noise ratio scenarios.
  • the CQI table is suitable for configuration through radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • the MCS table includes at least the MCS level corresponding to the modulation mode with the modulation order of 10, and the MCS table may be designed based on the above-mentioned CQI table.
  • the MCS table satisfies at least one of the following:
  • the first MCS table is an MCS table including the MCS level corresponding to 256QAM
  • the spectral efficiency corresponding to each MCS level is equally spaced
  • the target bit rate corresponding to each MCS level is equally spaced
  • the signal-to-noise ratio corresponding to each MCS level is equally spaced
  • the spectral efficiency is rounded to four decimal places
  • the MCS table also satisfies any one of the following:
  • the target code rate is determined by rounding up;
  • the target code rate is determined by rounding down
  • the target code rate is determined by rounding off
  • the target code rate has a decimal point
  • the target code rate is reserved to one decimal place.
  • the MCS table including the MCS level corresponding to the modulation mode with a modulation order of 10 is referred to as the first target MCS form, the first target MCS form also satisfies at least one of the above conditions.
  • the first target MCS table includes a first MCS level, a second MCS level, a third MCS level, a fourth MCS level and a fifth MCS level for retransmission corresponding to a modulation scheme with a modulation order of 10 grade.
  • the first target MCS table includes the corresponding target code rate and spectral efficiency in the CQI table, and the CQI table refers to the above-mentioned CQI table including the 1024QAM modulation mode, that is, the above-mentioned CQI tables 4-8.
  • the first target MCS table includes the target code rate and spectral efficiency corresponding to each CQI level in the above CQI tables 4-8, then the first target MCS table also includes the target code rate and spectral efficiency corresponding to the 1024QAM modulation mode.
  • the first target MCS table may be designed on the basis of the above-mentioned CQI table 4, so as to increase the MCS level corresponding to the modulation mode with the modulation order of 10.
  • the first target MCS table includes the MCS level corresponding to 256QAM in the first MCS table
  • the first MCS table is an MCS table including the MCS level corresponding to 256QAM
  • the first MCS table is also the above-mentioned MCS table 2
  • the first The target MCS table is designed on the basis of the MCS table 2 to increase the MCS level corresponding to the modulation mode with the modulation order of 10.
  • the first target MCS table may be designed on the basis of MCS table 2, and the first MCS level, the second MCS level, the third MCS level, and the fourth MCS level are correspondingly increased. and the fifth MCS level, and then also delete 5 MCS levels correspondingly in the original MCS table; alternatively, it can be the MCS level corresponding to 2 according to the preferential deletion modulation order, and then the deletion modulation order is 4 Corresponding MCS levels, and then prune the order of the MCS levels corresponding to the modulation order 6, or selectively prune the MCS levels in the MCS table 2 by following other rules.
  • the MCS levels corresponding to the MCS Index in the MCS table 2 are respectively 6, 8, 10, 12 and 14 are deleted, and the MCS corresponding to the adjustment mode with the modulation order of 10 is added. levels, ie, the first MCS level, the second MCS level, the third MCS level, the fourth MCS level, and the fifth MCS level for retransmission, to obtain the first target MCS table.
  • the target code rate and spectral efficiency corresponding to the first MCS level, the second MCS level, the third MCS level, and the fourth MCS level may be based on at least one of the conditions satisfied by the MCS table item OK.
  • the spectral efficiencies corresponding to each MCS level in the first target MCS table are equally spaced, then based on the spectral efficiencies between the MCS levels that have been determined in the MCS table 2, the spectrum corresponding to the four newly added MCS levels can also be determined efficiency.
  • the spectral efficiencies corresponding to the first MCS level, the second MCS level, the third MCS level, and the fourth MCS level can also be rounded to four decimal places.
  • the target code rates corresponding to each MCS level in the first target MCS table are equally spaced, then based on the determined target code rates between the MCS levels in the MCS table 2, it is also possible to determine the four newly added MCS levels.
  • the target code rates corresponding to the first MCS level, the second MCS level, the third MCS level, and the fourth MCS level can also be satisfied: in the case that the target code rate has a decimal point, the target code rate can be passed through. It is determined in the manner of rounding up, rounding down, or rounding off, or the target code rate is reserved to one decimal place.
  • the target code rate corresponding to the first MCS level may be an integer, or a decimal may be reserved, or the target code rate corresponding to the first MCS level may also have multiple corresponding values, and so on.
  • the target code rate and spectral efficiency corresponding to the first MCS level may be determined based on the above conditions, for example, the target code rate corresponding to the first MCS level is any one of the following: 805, 806, 805.5, The spectral efficiency corresponding to the first MCS level is any one of the following: 7.8613, 7.8711, and 7.8662.
  • the target code rate corresponding to the second MCS level is 853, and the spectral efficiency corresponding to the second MCS level is 8.3301.
  • the code rate corresponding to the third MCS level is any one of the following: 900, 901, and 900.5
  • the spectral efficiency corresponding to the third MCS level is any one of the following: 8.7891, 8.7988, and 8.7939.
  • the target code rate corresponding to the fourth MCS level is 948, and the spectral efficiency corresponding to the fourth MCS level is 9.2578.
  • the first target MCS table as the MCS tables 4 to 7 shown in the following Tables 12 to 15:
  • the first MCS level corresponding to the MCS level corresponding to the modulation scheme whose modulation order is 10 corresponds to MCS Index 23
  • the second MCS level corresponds to MCS Index 24
  • the third MCS level corresponds to MCS Index 25
  • the fourth MCS level corresponds to MCS Index 26
  • the fifth MCS level corresponds to MCS Index 31.
  • the MCS table used by the first communication device to instruct the second communication device to perform data transmission also includes MCS tables 1 to 7, and the channel received or sent by the second communication device can also include a modulation order equal to
  • the MCS level corresponding to the modulation mode of 10 further improves the modulation mode of the communication device for channel reception or transmission, so as to improve the data throughput of the communication system in the high signal-to-noise ratio scenario.
  • the MCS table may be designed based on the CQI table. Further, in another implementation manner of the embodiment of the present application, based on the above-mentioned CQI tables 5-8, the second target MCS table can also be correspondingly designed. It should be noted that, the second target MCS table may be updated on the basis of the first target MCS table, that is, updated on the basis of the MCS tables 4-7.
  • the MCS table further includes a sixth MCS level, a seventh MCS level, an eighth MCS level, and a ninth MCS level corresponding to the modulation mode with a modulation order of 10. That is to say, the second target MCS table may be based on the first target MCS table, and then a sixth MCS level, a seventh MCS level, an eighth MCS level, and a ninth MCS level are added, and then the second target MCS table is added. It also includes 9 MCS levels corresponding to the modulation method whose modulation order is 10, namely the first MCS level, the second MCS level, the third MCS level, the fourth MCS level, the fifth MCS level, and the sixth MCS level. level, seventh MCS level, eighth MCS level and ninth MCS level.
  • the second target MCS table may also satisfy at least one of the following conditions:
  • the first MCS table is an MCS table including the MCS level corresponding to 256QAM
  • the spectral efficiency corresponding to each MCS level is equally spaced
  • the target bit rate corresponding to each MCS level is equally spaced
  • the signal-to-noise ratio corresponding to each MCS level is equally spaced
  • the spectral efficiency is rounded to four decimal places
  • the MCS table also satisfies any one of the following:
  • the target code rate is determined by rounding up;
  • the target code rate is determined by rounding down
  • the target code rate is determined by rounding off
  • the target code rate has a decimal point
  • the target code rate is reserved to one decimal place.
  • the second target MCS table is designed on the basis of the above-mentioned first target MCS table and corresponds to the above-mentioned CQI tables 5 to 8, and a sixth MCS level can be added on the basis of the first target MCS table.
  • the seventh MCS level, the eighth MCS level and the ninth MCS level, and correspondingly delete four MCS levels in the first target MCS table, its mode of deletion can refer to the description in the above-mentioned first target MCS table, here No longer.
  • the target code rate and spectral efficiency corresponding to the newly added sixth MCS level, seventh MCS level, eighth MCS level, and ninth MCS level may be determined based on at least one of the above conditions.
  • the spectral efficiency of the sixth MCS level is equally spaced from the spectral efficiencies of other MCS levels in the second target MCS table; and, the spectral efficiency of the sixth MCS level is rounded to four digits Decimal; there is an equal interval between the target code rate of the sixth MCS level and the target code rates of other MCS levels.
  • the target code rate of the sixth MCS level has a decimal, it can be rounded up or down or The target code rate of the sixth MCS level is determined by rounding off, or the target code rate is reserved to one decimal place.
  • the target code rate corresponding to the sixth MCS level is any one of the following: 781, 783, 781.5, 782, and the spectral efficiency corresponding to the sixth MCS level is any one of the following: 7.627, 7.6465, 7.6318 , 7.6367.
  • the target code rate corresponding to the seventh MCS level is any one of the following: 828, 830, and 829.5
  • the spectral efficiency corresponding to the seventh MCS level is any one of the following: 8.0859, 8.1055, and 8.1006.
  • the target code rate corresponding to the eighth MCS level is any one of the following: 876, 877, and 876.5
  • the spectral efficiency corresponding to the eighth MCS level is any one of the following: 8.5547, 8.5645, and 8.5596.
  • the target code rate corresponding to the ninth MCS level is any one of the following: 924, 925, and 924.5
  • the spectral efficiency corresponding to the ninth MCS level is any one of the following: 9.0234, 9.0332, and 9.0283.
  • the second target MCS tables can be obtained as MCS tables 8 to 11 as shown in Tables 16 to 19:
  • the MCS levels corresponding to the modulation scheme whose modulation order is 10 are MCS Index 19 to 26 and MCS Index 31, respectively.
  • the MCS table used by the first communication device to instruct the second communication device to perform data transmission also includes MCS tables 1 to 11, which further increases the number of MCS tables and improves the ability of the second communication device to receive and transmit channels.
  • the selectivity and flexibility of the used MCS level also effectively improves the modulation method of the communication device for channel reception or transmission, so as to improve the data throughput of the communication system in a high signal-to-noise ratio scenario.
  • the MCS form is applicable to at least one of the following:
  • CRC Cyclic Redundancy Check
  • C-RNTI Cell Radio Network Temporary Identifier
  • CS-RNTI Configured Scheduling RNTI
  • the above-mentioned MCS table including the MCS level corresponding to the modulation scheme whose modulation order is 10, that is, the above-mentioned MCS tables 4 to 11 may be DCI format 1_1 suitable for CRC scrambling by C-RNTI or CS-RNTI PDSCH scheduled by PDCCH; and/or PDSCH scheduled by PDCCH of DCI format 1-2 suitable for CRC scrambled by C-RNTI or CS-RNTI; and/or suitable for CRC scrambled by C-RNTI or CS-RNTI PUSCH scheduled by DCI format 0_1 or DCI format 0_2, or a license-free PUSCH suitable for RRC signaling configuration.
  • step 201 it may further include:
  • Fourth indication information reported by the second communication device is received, where the fourth indication information is used to indicate whether the second communication device is capable of supporting 1024 QAM.
  • the first communication device first receives the fourth indication information reported by the second communication device, and if the fourth indication information indicates that the second communication device has the ability to support 1024 QAM, the first communication device then communicates with the second communication device.
  • the device sends the first indication information, the second indication information and the third indication information, that is, the MCS table used for instructing the second communication device to perform data transmission and the CQI table used for CQI feedback, and will be received and sent by the second communication device.
  • the MCS level corresponding to the channel is notified to the second communication device.
  • the second communication device has the ability to support 1024QAM, and the second communication device can also use the modulation method and code rate corresponding to the modulation order of 10 for the channel scheduled by the second communication device, so that the communication system can support higher-order modulation and ensure that the communication system is at a high level. In the signal-to-noise ratio communication scenario, it can have higher data throughput and improve the transmission efficiency of the communication system.
  • the fourth indication information is reported by any one of the following granularities:
  • Carrier Feature Set (Feature Set Per Component-carrier, FSPC).
  • the second communication device may report the fourth indication information through each frequency band (per band) and/or a combination of several frequency bands (band combination), or may also report the fourth indication information through FSPC, so as to Whether the second communication device is capable of supporting 1024 QAM is notified to the first communication device, so that the first communication device can determine the MCS level corresponding to the channel scheduled for the second communication device, which is beneficial to the communication between the first communication device and the second communication device. communication is smooth.
  • the execution subject may be an apparatus for transmitting MCS indication information, or a control module in the apparatus for transmitting MCS indication information for executing the method for transmitting MCS indication information.
  • the MCS indication information transmission apparatus provided by the embodiment of the present application is described by taking the MCS indication information transmission method performed by the MCS indication information transmission apparatus as an example.
  • FIG. 3 is a structural diagram of an MCS indication information transmission apparatus provided by an embodiment of the present application.
  • the MCS indication information transmission apparatus 300 includes:
  • a sending module 301 configured to send the first indication information, the second indication information and the third indication information to the second communication device when the second communication device has the capability of supporting 1024 quadrature amplitude modulation QAM;
  • the first indication information is used to indicate a modulation and coding strategy MCS table used by the second communication device for data transmission, and the MCS table includes an MCS level corresponding to a modulation scheme with a modulation order of 10;
  • the second indication information is used to instruct the second communication device to perform a CQI table used for channel quality indication CQI feedback, where the CQI table includes a CQI level corresponding to the 1024QAM modulation scheme;
  • the third indication information is used to determine, according to the MCS table, the MCS level corresponding to the channel received or sent by the second communication device.
  • the CQI table satisfies at least one of the following:
  • the first CQI table is a CQI table including the CQI level corresponding to 256QAM
  • the signal-to-noise ratio corresponding to each CQI level is equally spaced;
  • the spectral efficiency is rounded to four decimal places
  • the code rate is determined by rounding up;
  • the code rate is determined by rounding down
  • the code rate is determined by rounding off
  • the code rate has a decimal
  • the code rate is reserved to one decimal place.
  • the CQI table includes at least two CQI levels corresponding to the 1024QAM modulation mode.
  • the CQI table includes a first CQI level and a second CQI level corresponding to the 1024QAM modulation mode, and the code rate corresponding to the first CQI level is different from the code rate corresponding to the second CQI level, so The spectral efficiency corresponding to the first CQI level is different from the spectral efficiency corresponding to the second CQI level.
  • the code rate corresponding to the first CQI level is 853, and the corresponding spectral efficiency is 8.3321.
  • the code rate corresponding to the second CQI level is 948, and the corresponding spectral efficiency is 9.2578.
  • the CQI table further includes a third CQI level and a fourth CQI level corresponding to the 1024QAM modulation scheme, and the third CQI level and the fourth CQI level are based on the first CQI level and the The second CQI level is obtained.
  • the code rate corresponding to the third CQI level is any one of the following: 805, 806, and 805.5
  • the spectral efficiency corresponding to the third CQI level is any one of the following: 7.8613, 7.8711, and 7.8662.
  • the code rate corresponding to the fourth CQI level is any one of the following: 900, 901, and 900.5
  • the spectral efficiency corresponding to the fourth CQI level is any one of the following: 8.7891, 8.7988, and 8.7939.
  • the MCS table satisfies at least one of the following:
  • the first MCS table is an MCS table including the MCS level corresponding to 256QAM
  • the spectral efficiency corresponding to each MCS level is equally spaced
  • the target bit rate corresponding to each MCS level is equally spaced
  • the signal-to-noise ratio corresponding to each MCS level is equally spaced
  • the spectral efficiency is rounded to four decimal places
  • the MCS table also satisfies any one of the following:
  • the target code rate is determined by rounding up;
  • the target code rate is determined by rounding down
  • the target code rate is determined by rounding off
  • the target code rate has a decimal point
  • the target code rate is reserved to one decimal place.
  • the MCS table includes a first MCS level, a second MCS level, a third MCS level, a fourth MCS level, and a fifth MCS level for retransmission corresponding to a modulation scheme with a modulation order of 10. .
  • the target code rate corresponding to the first MCS level is any one of the following: 805, 806, and 805.5
  • the spectral efficiency corresponding to the first MCS level is any one of the following: 7.8613, 7.8711, and 7.8662.
  • the target code rate corresponding to the second MCS level is 853, and the spectral efficiency corresponding to the second MCS level is 8.3301.
  • the code rate corresponding to the third MCS level is any one of the following: 900, 901, and 900.5
  • the spectral efficiency corresponding to the third MCS level is any one of the following: 8.7891, 8.7988, and 8.7939.
  • the target code rate corresponding to the fourth MCS level is 948, and the spectral efficiency corresponding to the fourth MCS level is 9.2578.
  • the MCS table further includes a sixth MCS level, a seventh MCS level, an eighth MCS level, and a ninth MCS level corresponding to the modulation mode with a modulation order of 10.
  • the target code rate corresponding to the sixth MCS level is any one of the following: 781, 783, 781.5, and 782
  • the spectral efficiency corresponding to the sixth MCS level is any one of the following: 7.627, 7.6465, 7.6318 , 7.6367.
  • the target code rate corresponding to the seventh MCS level is any one of the following: 828, 830, and 829.5
  • the spectral efficiency corresponding to the seventh MCS level is any one of the following: 8.0859, 8.1055, and 8.1006.
  • the target code rate corresponding to the eighth MCS level is any one of the following: 876, 877, and 876.5
  • the spectral efficiency corresponding to the eighth MCS level is any one of the following: 8.5547, 8.5645, and 8.5596.
  • the target code rate corresponding to the ninth MCS level is any one of the following: 924, 925, and 924.5
  • the spectral efficiency corresponding to the ninth MCS level is any one of the following: 9.0234, 9.0332, and 9.0283.
  • the MCS form is applicable to at least one of the following:
  • the first indication information and the second indication information are sent by high-layer signaling; the third indication information is sent by the indication information in the downlink control information DCI.
  • the MCS indication information transmission apparatus 300 further includes:
  • the first receiving module is configured to receive fourth indication information reported by the second communication device, where the fourth indication information is used to indicate whether the second communication device has the capability of supporting 1024 QAM.
  • the fourth indication information is reported by any one of the following granularities:
  • the MCS indication information transmission apparatus 300 provided in this embodiment of the present application can implement each process implemented by the method embodiment shown in FIG. 2 and achieve the same technical effect. To avoid repetition, details are not described here.
  • the MCS table indicated by the first indication information includes at least the MCS level corresponding to the modulation mode with the modulation order of 10, then the MCS level determined by the third indication information may also be the modulation with the modulation order of 10.
  • the second communication device has the ability to support 1024QAM, and the second communication device can use the modulation mode and code rate corresponding to the modulation order of 10 for its scheduled channel, so that the communication system can support higher-order modulation. , to ensure that the communication system can have a high data throughput in a high signal-to-noise ratio communication scenario, and improve the transmission efficiency of the communication system.
  • FIG. 4 is a flowchart of another MCS indication information transmission method provided by an embodiment of the present application.
  • the method provided by the embodiment of the present application is applied to a second communication device, and the second communication device may be a terminal .
  • the MCS indication information transmission method includes the following steps:
  • Step 401 In the case that the second communication device has the capability of supporting 1024 QAM, receive the first indication information, the second indication information and the third indication information sent by the first communication device.
  • the first indication information is used to indicate a modulation and coding strategy MCS table used by the second communication device for data transmission, and the MCS table includes an MCS level corresponding to a modulation scheme with a modulation order of 10;
  • the second indication information is used to instruct the second communication device to perform a CQI table used for channel quality indication CQI feedback, where the CQI table includes a CQI level corresponding to the 1024QAM modulation scheme;
  • the third indication information is used to determine, according to the MCS table, the MCS level corresponding to the channel received or sent by the second communication device.
  • the CQI table satisfies at least one of the following:
  • the first CQI table is a CQI table including the CQI level corresponding to 256QAM
  • the signal-to-noise ratio corresponding to each CQI level is equally spaced;
  • the spectral efficiency is rounded to four decimal places
  • the code rate is determined by rounding up;
  • the code rate is determined by rounding down
  • the code rate is determined by rounding off
  • the code rate has a decimal
  • the code rate is reserved to one decimal place.
  • the CQI table includes at least two CQI levels corresponding to the 1024QAM modulation mode.
  • the CQI table includes a first CQI level and a second CQI level corresponding to the 1024QAM modulation mode, and the code rate corresponding to the first CQI level is different from the code rate corresponding to the second CQI level, so The spectral efficiency corresponding to the first CQI level is different from the spectral efficiency corresponding to the second CQI level.
  • the code rate corresponding to the first CQI level is 853, and the corresponding spectral efficiency is 8.3321.
  • the code rate corresponding to the second CQI level is 948, and the corresponding spectral efficiency is 9.2578.
  • the CQI table further includes a third CQI level and a fourth CQI level corresponding to the 1024QAM modulation scheme, and the third CQI level and the fourth CQI level are based on the first CQI level and the The second CQI level is obtained.
  • the code rate corresponding to the third CQI level is any one of the following: 805, 806, and 805.5
  • the spectral efficiency corresponding to the third CQI level is any one of the following: 7.8613, 7.8711, and 7.8662.
  • the code rate corresponding to the fourth CQI level is any one of the following: 900, 901, and 900.5
  • the spectral efficiency corresponding to the fourth CQI level is any one of the following: 8.7891, 8.7988, and 8.7939.
  • the MCS table satisfies at least one of the following:
  • the first MCS table is the MCS table that includes the MCS level corresponding to 256QAM;
  • the spectral efficiency corresponding to each MCS level is equally spaced
  • the target bit rate corresponding to each MCS level is equally spaced
  • the signal-to-noise ratio corresponding to each MCS level is equally spaced
  • the spectral efficiency is rounded to four decimal places
  • the MCS table also satisfies any one of the following:
  • the target code rate is determined by rounding up;
  • the target code rate is determined by rounding down
  • the target code rate is determined by rounding off
  • the target code rate has a decimal point
  • the target code rate is reserved to one decimal place.
  • the MCS table includes a first MCS level, a second MCS level, a third MCS level, a fourth MCS level, and a fifth MCS level for retransmission corresponding to a modulation scheme with a modulation order of 10. .
  • the target code rate corresponding to the first MCS level is any one of the following: 805, 806, and 805.5
  • the spectral efficiency corresponding to the first MCS level is any one of the following: 7.8613, 7.8711, and 7.8662.
  • the target code rate corresponding to the second MCS level is 853, and the spectral efficiency corresponding to the second MCS level is 8.3301.
  • the code rate corresponding to the third MCS level is any one of the following: 900, 901, and 900.5
  • the spectral efficiency corresponding to the third MCS level is any one of the following: 8.7891, 8.7988, and 8.7939.
  • the target code rate corresponding to the fourth MCS level is 948, and the spectral efficiency corresponding to the fourth MCS level is 9.2578.
  • the MCS table further includes a sixth MCS level, a seventh MCS level, an eighth MCS level, and a ninth MCS level corresponding to the modulation mode with a modulation order of 10.
  • the target code rate corresponding to the sixth MCS level is any one of the following: 781, 783, 781.5, 782, and the spectral efficiency corresponding to the sixth MCS level is any one of the following: 7.627, 7.6465, 7.6318 , 7.6367.
  • the target code rate corresponding to the seventh MCS level is any one of the following: 828, 830, and 829.5
  • the spectral efficiency corresponding to the seventh MCS level is any one of the following: 8.0859, 8.1055, and 8.1006.
  • the target code rate corresponding to the eighth MCS level is any one of the following: 876, 877, and 876.5
  • the spectral efficiency corresponding to the eighth MCS level is any one of the following: 8.5547, 8.5645, and 8.5596.
  • the target code rate corresponding to the ninth MCS level is any one of the following: 924, 925, and 924.5
  • the spectral efficiency corresponding to the ninth MCS level is any one of the following: 9.0234, 9.0332, and 9.0283.
  • the MCS form is applicable to at least one of the following:
  • the first indication information and the second indication information are sent by high-layer signaling; the third indication information is sent by the indication information in the downlink control information DCI.
  • the method further includes:
  • the fourth indication information is reported by any one of the following granularities:
  • the MCS table indicated by the first indication information includes at least the MCS level corresponding to the modulation mode with the modulation order of 10, then the MCS level determined by the third indication information may also be the modulation with the modulation order of 10.
  • the second communication device has the ability to support 1024QAM, and the second communication device can use the modulation mode and code rate corresponding to the modulation order of 10 for its scheduled channel, so that the communication system can support higher-order modulation. , to ensure that the communication system can have a high data throughput in a high signal-to-noise ratio communication scenario, and improve the transmission efficiency of the communication system.
  • the execution subject may be an MCS indication information transmission apparatus, or a control module in the MCS indication information transmission apparatus for executing the MCS indication information transmission method.
  • the MCS indication information transmission apparatus provided by the embodiment of the present application is described by taking the MCS indication information transmission method performed by the MCS indication information transmission apparatus as an example.
  • FIG. 5 is a structural diagram of another MCS indication information transmission apparatus provided by an embodiment of the present application.
  • the MCS indication information transmission apparatus 500 includes:
  • a receiving module 501 configured to receive the first indication information, the second indication information and the third indication information sent by the first communication device when the MCS indication information transmission apparatus has the capability of supporting 1024 quadrature amplitude modulation QAM;
  • the first indication information is used to instruct the MCS to indicate a modulation and coding strategy MCS table used by the information transmission apparatus for data transmission, and the MCS table includes an MCS level corresponding to a modulation scheme with a modulation order of 10;
  • the second indication information is used to instruct the MCS indication information transmission apparatus to perform a CQI table used for channel quality indication CQI feedback, and the CQI table includes a CQI level corresponding to a 1024QAM modulation scheme;
  • the third indication information is used to determine, according to the MCS table, the MCS level corresponding to the channel received or sent by the MCS indication information transmission apparatus.
  • the CQI table satisfies at least one of the following:
  • the first CQI table is a CQI table including the CQI level corresponding to 256QAM
  • the signal-to-noise ratio corresponding to each CQI level is equally spaced;
  • the spectral efficiency is rounded to four decimal places
  • the code rate is determined by rounding up;
  • the code rate is determined by rounding down
  • the code rate is determined by rounding off
  • the code rate has a decimal
  • the code rate is reserved to one decimal place.
  • the CQI table includes at least two CQI levels corresponding to the 1024QAM modulation mode.
  • the CQI table includes a first CQI level and a second CQI level corresponding to the 1024QAM modulation mode, and the code rate corresponding to the first CQI level is different from the code rate corresponding to the second CQI level, so The spectral efficiency corresponding to the first CQI level is different from the spectral efficiency corresponding to the second CQI level.
  • the code rate corresponding to the first CQI level is 853, and the corresponding spectral efficiency is 8.3321.
  • the code rate corresponding to the second CQI level is 948, and the corresponding spectral efficiency is 9.2578.
  • the CQI table further includes a third CQI level and a fourth CQI level corresponding to the 1024QAM modulation scheme, and the third CQI level and the fourth CQI level are based on the first CQI level and the The second CQI level is obtained.
  • the code rate corresponding to the third CQI level is any one of the following: 805, 806, and 805.5
  • the spectral efficiency corresponding to the third CQI level is any one of the following: 7.8613, 7.8711, and 7.8662.
  • the code rate corresponding to the fourth CQI level is any one of the following: 900, 901, and 900.5
  • the spectral efficiency corresponding to the fourth CQI level is any one of the following: 8.7891, 8.7988, and 8.7939.
  • the MCS table satisfies at least one of the following:
  • the first MCS table is an MCS table including the MCS level corresponding to 256QAM
  • the spectral efficiency corresponding to each MCS level is equally spaced
  • the target bit rate corresponding to each MCS level is equally spaced
  • the signal-to-noise ratio corresponding to each MCS level is equally spaced
  • the spectral efficiency is rounded to four decimal places
  • the MCS table also satisfies any one of the following:
  • the target code rate is determined by rounding up;
  • the target code rate is determined by rounding down
  • the target code rate is determined by rounding off
  • the target code rate has a decimal point
  • the target code rate is reserved to one decimal place.
  • the MCS table includes a first MCS level, a second MCS level, a third MCS level, a fourth MCS level, and a fifth MCS level for retransmission corresponding to a modulation scheme with a modulation order of 10. .
  • the target code rate corresponding to the first MCS level is any one of the following: 805, 806, and 805.5
  • the spectral efficiency corresponding to the first MCS level is any one of the following: 7.8613, 7.8711, and 7.8662.
  • the target code rate corresponding to the second MCS level is 853, and the spectral efficiency corresponding to the second MCS level is 8.3301.
  • the code rate corresponding to the third MCS level is any one of the following: 900, 901, and 900.5
  • the spectral efficiency corresponding to the third MCS level is any one of the following: 8.7891, 8.7988, and 8.7939.
  • the target code rate corresponding to the fourth MCS level is 948, and the spectral efficiency corresponding to the fourth MCS level is 9.2578.
  • the MCS table further includes a sixth MCS level, a seventh MCS level, an eighth MCS level, and a ninth MCS level corresponding to the modulation mode with a modulation order of 10.
  • the target code rate corresponding to the sixth MCS level is any one of the following: 781, 783, 781.5, 782, and the spectral efficiency corresponding to the sixth MCS level is any one of the following: 7.627, 7.6465, 7.6318 , 7.6367.
  • the target code rate corresponding to the seventh MCS level is any one of the following: 828, 830, and 829.5
  • the spectral efficiency corresponding to the seventh MCS level is any one of the following: 8.0859, 8.1055, and 8.1006.
  • the target code rate corresponding to the eighth MCS level is any one of the following: 876, 877, and 876.5
  • the spectral efficiency corresponding to the eighth MCS level is any one of the following: 8.5547, 8.5645, and 8.5596.
  • the target code rate corresponding to the ninth MCS level is any one of the following: 924, 925, and 924.5
  • the spectral efficiency corresponding to the ninth MCS level is any one of the following: 9.0234, 9.0332, and 9.0283.
  • the MCS form is applicable to at least one of the following:
  • the first indication information and the second indication information are sent by high-layer signaling; the third indication information is sent by the indication information in the downlink control information DCI.
  • the MCS indication information transmission apparatus 500 further includes:
  • the first sending module is configured to send fourth indication information to the first communication device, where the fourth indication information is used to indicate whether the MCS indication information transmission apparatus has the capability of supporting 1024 QAM.
  • the fourth indication information is reported by any one of the following granularities:
  • the MCS indication information transmission apparatus 500 has the capability of supporting 1024QAM, and the MCS indication information transmission apparatus 500 can also use the modulation method and code rate corresponding to the modulation order of 10 for the channel scheduled for the MCS indication information transmission apparatus, so that the communication system can support Higher-order modulation ensures that the communication system can have higher data throughput in high signal-to-noise ratio communication scenarios and improves the transmission efficiency of the communication system.
  • the MCS indication information transmission apparatus 500 in this embodiment of the present application may be an apparatus, or may be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the MCS indication information transmission apparatus 500 in this embodiment of the present application may be an apparatus having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the MCS indication information transmission apparatus 500 provided in this embodiment of the present application can implement each process implemented by the method embodiment shown in FIG. 4 , and achieve the same technical effect. To avoid repetition, details are not described here.
  • an embodiment of the present application further provides a communication device 600, including a processor 601, a memory 602, a program or instruction stored in the memory 602 and executable on the processor 601,
  • a communication device 600 including a processor 601, a memory 602, a program or instruction stored in the memory 602 and executable on the processor 601
  • the communication device 600 is the first communication device
  • the program or instruction is executed by the processor 601
  • each process of the method embodiment described in FIG. 1 is implemented, and the same technical effect can be achieved.
  • the communication device 600 is the second communication device
  • the program or instruction is executed by the processor 601
  • each process of the method embodiment shown in FIG. 2 is implemented, and the same technical effect can be achieved. To avoid repetition, details are not repeated here. .
  • FIG. 7 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, and a processor 710, etc. at least part of the components.
  • the terminal 700 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 710 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power source such as a battery
  • the terminal structure shown in FIG. 7 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 704 may include a graphics processor (Graphics Processing Unit, GPU) 7041 and a microphone 7042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 706 may include a display panel 7061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 707 includes a touch panel 7071 and other input devices 7072 .
  • the touch panel 7071 is also called a touch screen.
  • the touch panel 7071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 7072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which are not described herein again.
  • the radio frequency unit 701 receives the downlink data from the network side device, and then processes it to the processor 710; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 709 may be used to store software programs or instructions as well as various data.
  • the memory 709 may mainly include a storage program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.), and the like.
  • the memory 709 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 710 may include one or more processing units; optionally, the processor 710 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 710.
  • the terminal 700 may be used as the second communication device.
  • the radio frequency unit 701 is configured to receive the first indication information, the second indication information and the third indication information sent by the first communication device;
  • the first indication information is used to indicate a modulation and coding strategy MCS table used by the terminal 700 for data transmission, and the MCS table includes an MCS level corresponding to a modulation scheme with a modulation order of 10;
  • the second indication information is used to instruct the terminal 700 to perform a CQI table used for channel quality indication CQI feedback, and the CQI table includes a CQI level corresponding to the 1024QAM modulation scheme;
  • the third indication information is used to determine the MCS level corresponding to the channel received or sent by the terminal 700 according to the MCS table.
  • the CQI table satisfies at least one of the following:
  • the first CQI table is a CQI table including the CQI level corresponding to 256QAM
  • the signal-to-noise ratio corresponding to each CQI level is equally spaced;
  • the spectral efficiency is rounded to four decimal places
  • the code rate is determined by rounding up;
  • the code rate is determined by rounding down
  • the code rate is determined by rounding off
  • the code rate has a decimal
  • the code rate is reserved to one decimal place.
  • the CQI table includes at least two CQI levels corresponding to the 1024QAM modulation mode.
  • the CQI table includes a first CQI level and a second CQI level corresponding to the 1024QAM modulation mode, and the code rate corresponding to the first CQI level is different from the code rate corresponding to the second CQI level, so The spectral efficiency corresponding to the first CQI level is different from the spectral efficiency corresponding to the second CQI level.
  • the code rate corresponding to the first CQI level is 853, and the corresponding spectral efficiency is 8.3321.
  • the code rate corresponding to the second CQI level is 948, and the corresponding spectral efficiency is 9.2578.
  • the CQI table further includes a third CQI level and a fourth CQI level corresponding to the 1024QAM modulation scheme, and the third CQI level and the fourth CQI level are based on the first CQI level and the The second CQI level is obtained.
  • the code rate corresponding to the third CQI level is any one of the following: 805, 806, and 805.5
  • the spectral efficiency corresponding to the third CQI level is any one of the following: 7.8613, 7.8711, and 7.8662.
  • the code rate corresponding to the fourth CQI level is any one of the following: 900, 901, and 900.5
  • the spectral efficiency corresponding to the fourth CQI level is any one of the following: 8.7891, 8.7988, and 8.7939.
  • the MCS table satisfies at least one of the following:
  • the first MCS table is an MCS table including the MCS level corresponding to 256QAM
  • the spectral efficiency corresponding to each MCS level is equally spaced
  • the target bit rate corresponding to each MCS level is equally spaced
  • the signal-to-noise ratio corresponding to each MCS level is equally spaced
  • the spectral efficiency is rounded to four decimal places
  • the MCS table also satisfies any one of the following:
  • the target code rate is determined by rounding up;
  • the target code rate is determined by rounding down
  • the target code rate is determined by rounding off
  • the target code rate has a decimal point
  • the target code rate is reserved to one decimal place.
  • the MCS table includes a first MCS level, a second MCS level, a third MCS level, a fourth MCS level, and a fifth MCS level for retransmission corresponding to a modulation scheme with a modulation order of 10. .
  • the target code rate corresponding to the first MCS level is any one of the following: 805, 806, and 805.5
  • the spectral efficiency corresponding to the first MCS level is any one of the following: 7.8613, 7.8711, and 7.8662.
  • the target code rate corresponding to the second MCS level is 853, and the spectral efficiency corresponding to the second MCS level is 8.3301.
  • the code rate corresponding to the third MCS level is any one of the following: 900, 901, and 900.5
  • the spectral efficiency corresponding to the third MCS level is any one of the following: 8.7891, 8.7988, and 8.7939.
  • the target code rate corresponding to the fourth MCS level is 948, and the spectral efficiency corresponding to the fourth MCS level is 9.2578.
  • the MCS table further includes a sixth MCS level, a seventh MCS level, an eighth MCS level, and a ninth MCS level corresponding to the modulation mode with a modulation order of 10.
  • the target code rate corresponding to the sixth MCS level is any one of the following: 781, 783, 781.5, 782, and the spectral efficiency corresponding to the sixth MCS level is any one of the following: 7.627, 7.6465, 7.6318 , 7.6367.
  • the target code rate corresponding to the seventh MCS level is any one of the following: 828, 830, and 829.5
  • the spectral efficiency corresponding to the seventh MCS level is any one of the following: 8.0859, 8.1055, and 8.1006.
  • the target code rate corresponding to the eighth MCS level is any one of the following: 876, 877, and 876.5
  • the spectral efficiency corresponding to the eighth MCS level is any one of the following: 8.5547, 8.5645, and 8.5596.
  • the target code rate corresponding to the ninth MCS level is any one of the following: 924, 925, and 924.5
  • the spectral efficiency corresponding to the ninth MCS level is any one of the following: 9.0234, 9.0332, and 9.0283.
  • the MCS form is applicable to at least one of the following:
  • the first indication information and the second indication information are sent by high-layer signaling; the third indication information is sent by the indication information in the downlink control information DCI.
  • the radio frequency unit 701 is further configured to send fourth indication information to the first communication device, where the fourth indication information is used to indicate whether the MCS indication information transmission apparatus is capable of supporting 1024 QAM.
  • the fourth indication information is reported by any one of the following granularities:
  • the terminal 700 when the terminal 700 is capable of supporting 1024QAM, it can also use a modulation method and a code rate corresponding to a modulation order of 10 for its scheduled channel, so that the communication system can support higher-order modulation and ensure communication
  • the system can have higher data throughput in high signal-to-noise ratio communication scenarios, and improve the transmission efficiency of the communication system.
  • the network device 800 includes: an antenna 81 , a radio frequency device 82 , and a baseband device 83 .
  • the antenna 81 is connected to the radio frequency device 82 .
  • the radio frequency device 82 receives information through the antenna 81, and sends the received information to the baseband device 83 for processing.
  • the baseband device 83 processes the information to be sent and sends it to the radio frequency device 82
  • the radio frequency device 82 processes the received information and sends it out through the antenna 81 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 83 , and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 83 .
  • the baseband apparatus 83 includes a processor 84 and a memory 85 .
  • the baseband device 83 may include, for example, at least one baseband board on which a plurality of chips are arranged. As shown in FIG. 8 , one of the chips is, for example, the processor 84 and is connected to the memory 85 to call the program in the memory 85 to execute The network devices shown in the above method embodiments operate.
  • the baseband device 83 may further include a network interface 86 for exchanging information with the radio frequency device 82, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in the embodiment of the present invention further includes: instructions or programs stored in the memory 85 and executable on the processor 84, and the processor 84 invokes the instructions or programs in the memory 85 to execute each module shown in FIG. 3
  • An embodiment of the present application further provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the method embodiment described in FIG.
  • the various processes of the method embodiment shown in FIG. 4 above can achieve the same technical effect, and are not repeated here to avoid repetition.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network-side device program or instruction to implement the above-mentioned FIG. 2
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run a network-side device program or instruction to implement the above-mentioned FIG. 2
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请公开了一种MCS指示信息传输方法、装置及通信设备,属于通信技术领域。所述MCS指示信息传输方法由第一通信设备执行时,包括:当第二通信设备具备支持1024QAM能力的情况下,向所述第二通信设备发送第一指示信息、第二指示信息和第三指示信息;其中,所述第一指示信息用于指示所述第二通信设备进行数据传输使用的MCS表格,所述MCS表格包括调制阶数为10的调制方式对应的MCS等级;所述第二指示信息用于指示所述第二通信设备进行CQI反馈使用的CQI表格,所述CQI表格包括1024QAM调制方式对应的CQI等级;所述第三指示信息用于根据所述MCS表格确定所述第二通信设备接收或发送的信道对应的MCS等级。

Description

调制和编码方案MCS指示信息传输方法、装置及通信设备
相关申请的交叉引用
本申请主张在2020年10月22日在中国提交的中国专利申请No.202011140865.X的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种MCS指示信息传输方法、装置及通信设备。
背景技术
目前,在通信系统(例如:新空口(New Radio,NR)系统)中,下行信道业务和上行信道业务均采用了自适应编码调制(Adaptive Modulation and Coding,AMC)技术,该技术用于根据信道状况确定调制方式和码率,以提升系统的频谱效率。但是,由于当前NR系统最高支持256QAM调制方式,导致在高信噪比通信场景下数据吞吐量较低,影响了通信系统的通信效率。
发明内容
本申请实施例的目的是提供一种MCS指示信息传输方法、装置及通信设备,能够提升通信系统在高信噪比通信场景下的数据吞吐量。
第一方面,提供了一种MCS指示信息传输方法,由第一通信设备执行,包括:
当第二通信设备具备支持1024正交幅度调制QAM能力的情况下,向所述第二通信设备发送第一指示信息、第二指示信息和第三指示信息;
其中,所述第一指示信息用于指示所述第二通信设备进行数据传输使用的调制编码策略MCS表格,所述MCS表格包括调制阶数为10的调制方式对应的MCS等级;
所述第二指示信息用于指示所述第二通信设备进行信道状态信息CQI反 馈使用的CQI表格,所述CQI表格包括1024QAM调制方式对应的CQI等级;
所述第三指示信息用于根据所述MCS表格确定所述第二通信设备接收或发送的信道对应的MCS等级。
第二方面,提供了一种MCS指示信息传输方法,由第二通信设备执行,包括:
在所述第二通信设备具备支持1024正交幅度调制QAM能力的情况下,接收第一通信设备发送的第一指示信息、第二指示信息和第三指示信息;
其中,所述第一指示信息用于指示所述第二通信设备进行数据传输使用的调制编码策略MCS表格,所述MCS表格包括调制阶数为10的调制方式对应的MCS等级;
所述第二指示信息用于指示所述第二通信设备进行信道质量指示CQI反馈使用的CQI表格,所述CQI表格包括1024QAM调制方式对应的CQI等级;
所述第三指示信息用于根据所述MCS表格确定所述第二通信设备接收或发送的信道对应的MCS等级。
第三方面,提供了一种MCS指示信息传输装置,包括:
发送模块,用于当第二通信设备具备支持1024正交幅度调制QAM能力的情况下,向所述第二通信设备发送第一指示信息、第二指示信息和第三指示信息;
其中,所述第一指示信息用于指示所述第二通信设备进行数据传输使用的调制编码策略MCS表格,所述MCS表格包括调制阶数为10的调制方式对应的MCS等级;
所述第二指示信息用于指示所述第二通信设备进行信道质量指示CQI反馈使用的CQI表格,所述CQI表格包括1024QAM调制方式对应的CQI等级;
所述第三指示信息用于根据所述MCS表格确定所述第二通信设备接收或发送的信道对应的MCS等级。
第三方面,提供了一种MCS指示信息传输装置,包括:
接收模块,用于在所述MCS指示信息传输装置具备支持1024正交幅度 调制QAM能力的情况下,接收第一通信设备发送的第一指示信息、第二指示信息和第三指示信息;
其中,所述第一指示信息用于指示所述MCS指示信息传输装置进行数据传输使用的调制编码策略MCS表格,所述MCS表格包括调制阶数为10的调制方式对应的MCS等级;
所述第二指示信息用于指示所述MCS指示信息传输装置进行信道质量指示CQI反馈使用的CQI表格,所述CQI表格包括1024QAM调制方式对应的CQI等级;
所述第三指示信息用于根据所述MCS表格确定所述MCS指示信息传输装置接收或发送的信道对应的MCS等级。
第五方面,提供了一种通信设备,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的MCS指示信息传输方法的步骤,或实现如第二方面所述的MCS指示信息传输方法的步骤。
第六方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的MCS指示信息传输方法的步骤,或者实现如第二方面所述MCS指示信息传输方法的步骤。
第七方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现如第一方面所述的MCS指示信息传输方法,或实现如第二方面所述的MCS指示信息传输方法。
第八方面,提供了一种算机程序产品,所述计算机程序产品被存储在非易失的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如第一方面所述的MCS指示信息传输方法,或实现如第二方面所述的MCS指示信息传输方法。
在本申请实施例中,第一指示信息指示的MCS表格至少包括调制阶数为10的调制方式对应的MCS等级,那么第三指示信息确定的MCS等级也就有 可能是调制阶数为10的调制方式对应的MCS等级,第二通信设备具备支持1024QAM能力,第二通信设备也就能够为其调度的信道使用调制阶数为10对应的调制方式和码率,使得通信系统能够支持更高阶调制,确保通信系统在高信噪比通信场景下能够具有较高的数据吞吐量,提升通信系统的传输效率。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2是本申请实施例提供的一种MCS指示信息传输方法的流程图;
图3是本申请实施例提供的一种MCS指示信息传输装置的结构图;
图4是本申请实施例提供的另一种MCS指示信息传输方法的流程图;
图5是本申请实施例提供的另一种MCS指示信息传输装置的结构图;
图6是本申请实施例提供的一种通信设备的结构图;
图7是本申请实施例提供的一种终端的结构图;
图8是本申请实施例提供的一种网络侧设备的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于 特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
另外,本申请实施例可应用的通信系统还可以是副链路(sidelink)通信系统,关于sidelink通信系统的具体实现形式可以是参照相关技术,对此不做赘述。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的调制和编码方案(Modulation and Coding Scheme,MCS)指示信息传输方法、装置及通信设备进行详细地说明。
请参照图2,图2是本申请实施例提供的一种MCS指示信息传输方法的流程图,本申请实施例所提供的方法应用于第一通信设备,所述第一通信设备可以是网络侧设备,或者也可以是副链路(sidelink)通信系统中的终端等。
如图2所示,所述MCS指示信息传输方法包括以下步骤:
步骤201、在第二通信设备具备支持1024正交幅度调制(Quadrature Amplitude Modulation,QAM)能力的情况下,向所述第二通信设备发送第一指示信息、第二指示信息和第三指示信息。
其中,所述第一指示信息用于指示所述第二通信设备进行数据传输使用的MCS表格,所述MCS表格包括调制阶数为10的调制方式对应的MCS等级;所述第二指示信息用于指示所述第二通信设备进行信道质量指示(Channel Quality Indicator,CQI)反馈使用的CQI表格,所述CQI表格包括1024QAM调制方式对应的CQI等级;所述第三指示信息用于根据所述MCS表格确定所述第二通信设备接收或发送的信道对应的MCS等级。
可选地,所述第一指示信息和所述第二指示信息通过高层信令发送;所述第三指示信息通过下行控制信息(Downlink Control Information,DCI)中的指示信息发送。
例如,第一通信设备为网络侧设备,所述第二通信设备为终端,网络侧设备可以是通过高层信令向终端发送第一指示信息,以指示终端进行数据传输所使用的MCS表格;所述第一指示信息可以是以下至少一项:高层信令 PUSCH-Config中的参数、高层信令ConfiguredGrantConfig中的参数、高层信令PDSCH-Config中的参数、高层信令SPS-Config中的参数。网络侧设备也可以是通过高层信令向终端发送第二指示信息,以指示终端进行CQI反馈所使用的CQI表格,所述第二指示信息可以是以下至少一项:高层信令CSI-ReportConfig中的参数。
需要说明的是,所述MCS表格中包括MCS索引(MCS Index)、调制阶数(Modulation Order)、目标码率(Target code Rate)和频谱效率(Spectral efficiency),如表1所示,每一个MCS索引与每一个MCS等级唯一对应,其中MCS索引为0表示第一种MCS等级,MCS索引为1表示第二种MCS等级,依次类推。
表1.MCS表格1
Figure PCTCN2021124930-appb-000001
第一通信设备可以是通过下行控制信息(Downlink Control Information,DCI)中5bits的第三指示信息将确定的MCS等级通知给第二通信设备,第二通信设备根据通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)接收到的第三指示信息所指示的MCS等级,以获知第一通信设备在物理下行共享信道(Physical Downlink Shared Channel,PDSCH)传输所使用的MCS等级,并能够基于第一指示信息所指示的MCS表格中的对应关系,确定指示的所述MCS等级对应的调制阶数和码率,对PDSCH中对应的数据进行解调和解码。
本申请实施例中,所述MCS表格还包括如表2所示的MCS表格2和如 表3所示的MCS表格3。
表2.MCS表格2
Figure PCTCN2021124930-appb-000002
表3.MCS表格3
Figure PCTCN2021124930-appb-000003
需要说明地是,第二通信设备需要对下行信道进行测量,向第一通信设备反馈CQI,CQI反馈可以是通过物理上行共享信道(Physical Uplink Shared Channel,PUSCH)或物理上行控制信道(Physical Uplink Control Channel,PUCCH)发送推荐的调制方式和码率,第一通信设备根据第二通信设备反馈的CQI和预测算法,确定上行或下行信道对应的MCS。在NR系统中,将调制方式和码率量化为15中CQI等级,通过4bits的表格形式定义,也即CQI表格,如下所示的CQI表格1~3分别与上述MCS表格1~3对应,CQI表格1~3中定义了不同CQI等级对应的调制方式(modulation)、码率(code rate)及频谱效率(efficiency)。其中,CQI索引为0表示第一种CQI等级,CQI 索引为1表示第二种CQI等级,依次类推。
表4.CQI表格1
Figure PCTCN2021124930-appb-000004
表5.CQI表格2
Figure PCTCN2021124930-appb-000005
表6.CQI表格3
Figure PCTCN2021124930-appb-000006
本申请实施例中,在第二通信设备具备支持1024QAM能力的情况下,第一通信设备向第二通信设备发送第一指示信息,而第一指示信息用于指示第二通信设备进行数据传输使用的MCS表格,第一通信设备根据MCS表格确定MCS等级后,通过第三指示信息将第二通信设备接收或发送的信道对应的MCS等级通知给第二通信设备,以指示第二通信设备根据该MCS等级确定其接收或发送的信道使用的调制方式和码率。
本申请实施例所提供MCS表格至少包括调制阶数为10的调制方式对应的MCS等级,那么第三指示信息确定的MCS等级也就有可能是调制阶数为10的调制方式对应的MCS等级,第二通信设备具备支持1024QAM能力,第二通信设备也就能够为其调度的信道使用调制阶数为10对应的调制方式和码率,使得通信系统能够支持更高阶调制,确保通信系统在高信噪比通信场景下能够具有较高的数据吞吐量,提升通信系统的传输效率。
本申请实施例中,包括调制阶数为10的调制方式对应的MCS等级的MCS表格可以是基于CQI表格来设计。可选地,所述CQI表格包括1024QAM对应的CQI等级,且所述CQI表格满足如下至少一项条件:
包括第一CQI表格中256QAM对应的CQI等级,所述第一CQI表格为包括256QAM对应的CQI等级的CQI表格(即如上所示表格5);
各CQI等级对应的频谱效率等间隔;
各CQI等级对应的码率等间隔;
各CQI等级对应的信噪比等间隔;
所述频谱效率通过四舍五入的方式保留至四位小数;
以及所述CQI表格还满足如下任意一项:
在所述码率出现小数的情况下,所述码率通过向上取整的方式确定;
在所述码率出现小数的情况下,所述码率通过向下取整的方式确定;
在所述码率出现小数的情况下,所述码率通过四舍五入取整的方式确定;
在所述码率出现小数的情况下,所述码率保留至一位小数。
需要说明的是,为更好地与上述CQI表格1~3区分,本申请实施例的以下描述中将包括1024QAM对应的CQI等级的CQI表格称之为第一目标CQI表格,所述第一目标CQI表格也就满足上述至少一项条件。
其中,所述第一目标CQI表格包括第一CQI表格(也即表5,CQI表格2)中256QAM对应的CQI等级,也就是说,所述第一目标CQI表格可以是在上述CQI表格2的基础上来进行设计。
本申请实施例中,所述CQI表格中包括与1024QAM调制方式对应的至少两种CQI等级。也就是说,第一目标CQI表格中包括与1024QAM调制方式对应的至少两种CQI等级,例如可以是包括第一CQI等级和第二CQI等级,或者在此基础上还可以包括第三CQI等级和第四CQI等级。
可选地,在一种实施方式中,第一目标CQI表格中包括与1024QAM调制方式对应的第一CQI等级和第二CQI等级,所述第一CQI等级对应的码率与所述第二CQI等级对应的码率不同,所述第一CQI等级对应的频谱效率与所述第二CQI等级对应的频谱效率不同。
也就是说,第一目标CQI表格中包括与1024QAM调制方式对应的第一CQI等级和第二CQI等级。另外需要说明的是,第一目标CQI表格是在上述CQI表格2的基础上来进行设计,第一目标CQI表格中保留CQI表格2中256QAM对应的CQI等级,而需要新增与1024QAM调制方式对应的第一CQI等级和第二CQI等级,则可以是相应删减CQI表格2中的两个CQI等级;可 选地,可以是按照QPSK、16QAM、64QAM的预设删减顺序进行删减,例如优先删减QPSK对应的CQI等级,而后删减16QAM及64QAM对应的CQI等级。当然,可以是遵循其他的规则来对CQI表格2中的CQI等级进行选择性删减。在本申请实施例一种可选的实施方式中,将CQI表格2中CQI index为5对应的CQI等级和CQI index为7对应的CQI等级删减,并新增与1024QAM调制方式对应的第一CQI等级和第二CQI等级。
其中,第一目标CQI表格中,所述第一CQI等级与第二CQI等级对应的码率和频谱效率可以是基于上述条件中的至少一项来确定。例如,第一目标CQI表格中各CQI等级对应的频谱效率等间隔,则基于CQI表格2中已确定的各CQI等级之间的频谱效率,也就能够确定第一CQI等级和第二CQI等级分别对应的频谱效率;第一CQI等级和第二CQI对应的频谱效率通过四舍五入的方式保留至四位小数。又如,第一目标CQI表格中各CQI等级对应的码率等间隔,则基于CQI表格2中已确定的各CQI等级之间的码率,也就能够确定第一CQI等级和第二CQI等级分别对应的码率。或者,第一目标CQI表格中的码率还可以满足于:在码率出现小数的情况下,所述码率可以是通过向上取整或向下取整或四舍五入取整的方式确定,或者所述码率保留至一位小数。例如,所述第一CQI等级对应的码率可能是整数,也可能是保留有一位小数,或者所述第一CQI等级对应的码率也可以是对应有多个取值,等。
可选地,所述第一CQI等级对应的码率和频谱效率可以是基于上述条件来确定,例如所述第一CQI等级对应的码率为853,对应的频谱效率为8.3321。
可选地,所述第二CQI等级对应的码率和频谱效率也可以是基于上述条件来确定,例如所述第二CQI等级对应的码率为948,对应的频谱效率为9.2578。
这样,也就能够得到第一目标CQI表格为如下表7所示的CQI表格4:
表7.CQI表格4
Figure PCTCN2021124930-appb-000007
在上述CQI表格4中,与1024QAM调制方式对应的第一CQI等级和第二CQI等级分别是对应于CQI index 14和CQI index 15。这样,第一通信设备发送给第二通信设备的第二指示信息,除了能够指示上述CQI表格1~3之外,还可以是指示CQI表格4,进而第二通信设备进行信道质量反馈使用的CQI表格也就可以包括1024QAM调制方式对应的CQI等级,进而以方便通信系统更高阶的调制。
本申请实施例中,CQI表格中包括与1024QAM调制方式对应的至少两种CQI等级,在上述CQI表格4中包括第一CQI等级和第二CQI等级的基础上,所述CQI表格中还包括与1024QAM调制方式对应的第三CQI等级和第四CQI等级,所述第三CQI等级和所述第四CQI等级基于所述第一CQI等级和所述第二CQI等级获得。
也就是说,在上述CQI表格4的基础上,还可以进一步增加与1024QAM调制方式对应的第三CQI等级和第四CQI等级,同时CQI表格4中的第一CQI等级和第二CQI等级保留。为更好地说明本实施方式,将包括第一CQI等级、第二CQI等级、第三CQI等级和第四CQI等级的CQI表格定义为第二目标CQI表格,该第二目标CQI表格同样满足如下至少一项条件:
包括第一CQI表格中256QAM对应的CQI等级,所述第一CQI表格为包括256QAM对应的CQI等级的CQI表格(即如上所示表格5);
各CQI等级对应的频谱效率等间隔;
各CQI等级对应的码率等间隔;
各CQI等级对应的信噪比等间隔;
所述频谱效率通过四舍五入的方式保留至四位小数;
以及所述CQI表格还满足如下任意一项:
在所述码率出现小数的情况下,所述码率通过向上取整的方式确定;
在所述码率出现小数的情况下,所述码率通过向下取整的方式确定;
在所述码率出现小数的情况下,所述码率通过四舍五入取整的方式确定;
在所述码率出现小数的情况下,所述码率保留至一位小数。
可以理解地,第二目标CQI表格为在上述CQI表格4基础上进行设计,新增与1024QAM调制方式对应的第三CQI等级和第四CQI等级,则可以是相应删减CQI表格4中的两个CQI等级,但需要同时保留1024QAM和256QAM调制方式对应的CQI等级。其中,第三CQI等级和第四CQI等级对应的码率和频谱效率可以是基于上述条件中的至少一项来确定。例如,第二目标CQI表格中各CQI等级对应的频谱效率等间隔,则基于上述CQI表格4中已确定的各CQI等级的频谱效率,也就能够确定第三CQI等级和第四CQI等级对应的频谱效率;以及,第三CQI等级和第四CQI等级对应的频谱效率通过四舍五入的方式保留至四位小数。另外,第三CQI等级和第四CQI等级与其他CQI等级之间的码率等间隔,当码率出现小数的情况下,所述码率可以是通过向上取整或向下取整或四舍五入取整的方式确定,或者所述码率保留至一位小数。例如,第三CQI等级对应的码率可以是对应有多个取值,第四CQI等级对应的码率也可以是对应有多个取值。
可选地,第三CQI等级可以是通过第一CQI等级和第二CQI等级插值获得,例如第一CQI等级、第二CQI等级和第三CQI等级对应的频谱效率等间隔,第一CQI等级和第二CQI等级的频谱效率已知,这样也就能够确定出第三CQI等级对应的频谱效率。第四CQI等级也可以是通过第一CQI等级和第二CQI等级插值获得。
其中,所述第三CQI等级对应的码率为如下任意一者:805、806、805.5,所述第三CQI等级对应的频谱效率为如下任意一者:7.8613、7.8711、7.8662。
所述第四CQI等级对应的码率为如下任意一者:900、901、900.5,所述第四CQI等级对应的频谱效率为如下任意一者:8.7891、8.7988、8.7939。
具体地,也就能够得到第二目标CQI表格为如下表8~11中所示的CQI表格5~8:
表8.CQI表格5
Figure PCTCN2021124930-appb-000008
表9.CQI表格6
Figure PCTCN2021124930-appb-000009
Figure PCTCN2021124930-appb-000010
表10.CQI表格7
Figure PCTCN2021124930-appb-000011
表11.CQI表格8
Figure PCTCN2021124930-appb-000012
在上述CQI表格5~8中,与1024QAM调制方式对应的第一CQI等级对应于CQI index 13,第二CQI等级对应于CQI index 15,第三CQI等级对应 于CQI index 12,第四CQI等级对应于CQI index 14。这样,第一通信设备指示第二通信设备进行信道质量反馈所使用的CQI表格也就包括CQI表格1~8,也就可以包括与1024QAM调制方式对应的更多的CQI等级,进一步提高了第二通信设备对于信道质量反馈的灵活性和选择性,更有利于通信系统进行更高阶的调制,以提升通信系统在高信噪比场景下的数据吞吐量。
可选地,所述CQI表格适用于通过无线资源控制(Radio Resource Control,RRC)信令配置。
本申请实施例中,MCS表格至少包括调制阶数为10的调制方式对应的MCS等级,而MCS表格可以是基于上述CQI表格来设计。可选地,所述MCS表格满足如下至少一项:
包括所述CQI表格中码率和频谱效率;
包括第一MCS表格中256QAM对应的MCS等级,所述第一MCS表格为包括256QAM对应的MCS等级的MCS表格;
各MCS等级对应的频谱效率等间隔;
各MCS等级对应的目标码率等间隔;
各MCS等级对应的信噪比等间隔;
所述频谱效率通过四舍五入的方式保留至四位小数;
所述MCS表格还满足如下任意一项:
在所述目标码率出现小数的情况下,所述目标码率通过向上取整的方式确定;
在所述目标码率出现小数的情况下,所述目标码率通过向下取整的方式确定;
在所述目标码率出现小数的情况下,所述目标码率通过四舍五入取整的方式确定;
在所述目标码率出现小数的情况下,所述目标码率保留至一位小数。
需要说明的是,为更好地与前述MCS表格1~3区分,本申请实施例的以下描述中将包括调制阶数为10的调制方式对应的MCS等级的MCS表格称 之为第一目标MCS表格,所述第一目标MCS表格也就满足上述至少一项条件。
其中,所述第一目标MCS表格中包括与调制阶数为10的调制方式对应的第一MCS等级、第二MCS等级、第三MCS等级、第四MCS等级和用于重传的第五MCS等级。
需要说明的是,第一目标MCS表格包括所述CQI表格中对应的目标码率和频谱效率,所述CQI表格是指上述包括1024QAM调制方式的CQI表格,也就是上述CQI表格4~8。这样,第一目标MCS表格包括上述CQI表格4~8中各CQI等级对应的目标码率和频谱效率,那么第一目标MCS表格也就包括与1024QAM调制方式对应的目标码率和频谱效率。例如第一目标MCS表格可以是在上述CQI表格4的基础上进行设计,以增加与调制阶数为10的调制方式对应的MCS等级。或者,第一目标MCS表格包括第一MCS表格中256QAM对应的MCS等级,所述第一MCS表格为包括256QAM对应的MCS等级的MCS表格,第一MCS表格也即上述MCS表格2,那么第一目标MCS表格也就是在MCS表格2的基础上进行设计,以增加与调制阶数为10的调制方式对应的MCS等级。
在本申请实施例的一种实施方式中,第一目标MCS表格可以是在MCS表格2的基础上进行设计,相应增加第一MCS等级、第二MCS等级、第三MCS等级、第四MCS等级和第五MCS等级,进而也就要在原MCS表格中相应删减5个MCS等级;可选地,可以是按照优先删减调制阶数为2对应的MCS等级,而后删减调制阶数为4对应的MCS等级,然后删减调制阶数为6对应的MCS等级的顺序进行删减,或者也可以是遵循其他的规则来对MCS表格2中的MCS等级进行选择性删减。可选地,本申请实施例中,将MCS表格2中MCS Index分别为6、8、10、12和14对应的MCS等级删减,并新增与调制阶数为10的调整方式对应的MCS等级,也即第一MCS等级、第二MCS等级、第三MCS等级、第四MCS等级和用于重传的第五MCS等级,以得到第一目标MCS表格。
其中,第一目标MCS表格中,所述第一MCS等级、第二MCS等级、第三MCS等级、第四MCS等级对应的目标码率和频谱效率可以是基于MCS表格满足的条件中的至少一项确定。例如,第一目标MCS表格中各MCS等级对应的频谱效率等间隔,则基于MCS表格2中已确定的各MCS等级之间的频谱效率,也就能够确定新增的四个MCS等级对应的频谱效率。进一步地,第一MCS等级、第二MCS等级、第三MCS等级、第四MCS等级对应的频谱效率还可以通过四舍五入的方式保留至四位小数。又如,第一目标MCS表格中各MCS等级对应的目标码率等间隔,则基于MCS表格2中已确定的各MCS等级之间的目标码率,也就能够确定新增的四个MCS等级对应的目标码率。进一步地,第一MCS等级、第二MCS等级、第三MCS等级、第四MCS等级对应的目标码率还可以满足于:在目标码率出现小数的情况下,所述目标码率可以是通过向上取整或向下取整或四舍五入取整的方式确定,或者所述目标码率保留至一位小数。例如,第一MCS等级对应的目标码率可能是整数,也可能是保留有一位小数,或者所述第一MCS等级对应的目标码率也可以是对应有多个取值,等。
可选地,所述第一MCS等级对应的目标码率和频谱效率可以是基于上述条件来确定,例如所述第一MCS等级对应的目标码率为如下任意一者:805、806、805.5,所述第一MCS等级对应的频谱效率为如下任意一者:7.8613、7.8711、7.8662。
可选地,所述第二MCS等级对应的目标码率为853,所述第二MCS等级对应的频谱效率为8.3301。
可选地,所述第三MCS等级对应的码率为如下任意一者:900、901、900.5,所述第三MCS等级对应的频谱效率为如下任意一者:8.7891、8.7988、8.7939。
可选地,所述第四MCS等级对应的目标码率为948,所述第四MCS等级对应的频谱效率为9.2578。
具体地,基于上述可选的实施方式,也就能够得到第一目标MCS表格为如下表12~15所示的MCS表格4~7:
表12.MCS表格4
Figure PCTCN2021124930-appb-000013
表13.MCS表格5
Figure PCTCN2021124930-appb-000014
Figure PCTCN2021124930-appb-000015
表14.MCS表格6
Figure PCTCN2021124930-appb-000016
Figure PCTCN2021124930-appb-000017
表15.MCS表格7
Figure PCTCN2021124930-appb-000018
Figure PCTCN2021124930-appb-000019
在上述MCS表格4~7中,与调制阶数为10的调制方式对应的MCS等级对应的第一MCS等级对应于MCS Index 23,第二MCS等级对应于MCS Index 24,第三MCS等级对应于MCS Index 25,第四MCS等级对应于MCS Index 26,第五MCS等级对应于MCS Index 31。这样,第一通信设备也就能够指示第二通信设备进行数据传输所使用的MCS表格也就包括MCS表格1~7,进而第二通信设备接收或发送的信道也就能够包括与调制阶数为10的调制方式对应的MCS等级,进一步提高了通信设备对于信道接收或发送的调制方式,以提升通信系统在高信噪比场景下的数据吞吐量。
可以理解地,MCS表格可以是基于CQI表格来进行设计。进一步地,本申请实施例的另一种实施方式中,基于上述CQI表格5~8,进而也就能够相应设计第二目标MCS表格。需要说明的是,第二目标MCS表格可以是在第一目标MCS表格的基础上进行更新,也即在MCS表格4~7的基础上进行更新。
可选地,所述MCS表格中还包括与调制阶数为10的调制方式对应的第六MCS等级、第七MCS等级、第八MCS等级和第九MCS等级。也就是说,第二目标MCS表格可以是在第一目标MCS表格的基础上,再新增第六MCS等级、第七MCS等级、第八MCS等级和第九MCS等级,进而第二目标MCS表格中也就包括与调制阶数为10的调制方式对应的9个MCS等级,分别为第一MCS等级、第二MCS等级、第三MCS等级、第四MCS等级、第五MCS等级、第六MCS等级、第七MCS等级、第八MCS等级和第九MCS等级。
其中,第二目标MCS表格也可以是满足如下至少一项条件:
包括所述CQI表格中的码率和频谱效率;
包括第一MCS表格中256QAM对应的MCS等级,所述第一MCS表格为包括256QAM对应的MCS等级的MCS表格;
各MCS等级对应的频谱效率等间隔;
各MCS等级对应的目标码率等间隔;
各MCS等级对应的信噪比等间隔;
所述频谱效率通过四舍五入的方式保留至四位小数;
所述MCS表格还满足如下任意一项:
在所述目标码率出现小数的情况下,所述目标码率通过向上取整的方式确定;
在所述目标码率出现小数的情况下,所述目标码率通过向下取整的方式确定;
在所述目标码率出现小数的情况下,所述目标码率通过四舍五入取整的方式确定;
在所述目标码率出现小数的情况下,所述目标码率保留至一位小数。
可以理解地,第二目标MCS表格为在上述第一目标MCS表格基础上进行设计,并与上述CQI表格5~8对应,则可以是在第一目标MCS表格的基础上新增第六MCS等级、第七MCS等级、第八MCS等级和第九MCS等级,并相应删减第一目标MCS表格中的四个MCS等级,其删减方式可以参照上述第一目标MCS表格中的描述,此处不再赘述。其中,新增的第六MCS等级、第七MCS等级、第八MCS等级和第九MCS等级对应的目标码率和频谱效率可以是基于上述条件中的至少一项来确定。例如,以第六MCS等级为例,第六MCS等级的频谱效率与第二目标MCS表格中其他MCS等级的频谱效率等间隔;以及,第六MCS等级的频谱效率通过四舍五入的方式保留至四位小数;第六MCS等级的目标码率与其他MCS等级的目标码率之间等间隔,当第六MCS等级的目标码率出现小数的情况下,可以是通过向上取整或向下取整或四舍五入取整的方式确定第六MCS等级的目标码率,或者所述目标码率保留至一位小数。
可选地,所述第六MCS等级对应的目标码率为如下任意一者:781、783、781.5、782,所述第六MCS等级对应的频谱效率为如下任意一者:7.627、7.6465、7.6318、7.6367。
可选地,所述第七MCS等级对应的目标码率为如下任意一者:828、830、829.5,所述第七MCS等级对应的频谱效率为如下任意一者:8.0859、8.1055、8.1006。
可选地,所述第八MCS等级对应的目标码率为如下任意一者:876、877、876.5,所述第八MCS等级对应的频谱效率为如下任意一者:8.5547、8.5645、8.5596。
可选地,所述第九MCS等级对应的目标码率为如下任意一者:924、925、924.5,所述第九MCS等级对应的频谱效率为如下任意一者:9.0234、9.0332、9.0283。
具体的,基于上述可选的实施方式,也就能够得到第二目标MCS表格为如表16~19所示的MCS表格8~11:
表16.MCS表格8
Figure PCTCN2021124930-appb-000020
Figure PCTCN2021124930-appb-000021
表17.MCS表格9
Figure PCTCN2021124930-appb-000022
Figure PCTCN2021124930-appb-000023
表18.MCS表格10
Figure PCTCN2021124930-appb-000024
表19.MCS表格11
Figure PCTCN2021124930-appb-000025
Figure PCTCN2021124930-appb-000026
在上述MCS表格8~11中,与调制阶数为10的调制方式对应的MCS等级分别为MCS Index 19~26以及MCS Index 31。这样,第一通信设备也就能够指示第二通信设备进行数据传输所使用的MCS表格也就包括MCS表格1~11,进一步提高了MCS表格的数量,提高了第二通信设备对于信道接收和发送所使用的MCS等级的选择性和灵活性,也有效提高了通信设备对于信道接收或发送的调制方式,以提升通信系统在高信噪比场景下的数据吞吐量。
本申请实施例中,所述MCS表格适用于如下至少一项:
由小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI)或配置调度RNTI(Configured Scheduling RNTI,CS-RNTI)进行循 环冗余校验(Cyclic Redundancy Check,CRC)加扰的第一下行控制信息格式的PDCCH调度的PDSCH;
由C-RNTI或CS-RNTI进行CRC加扰的第二DCI格式的PDCCH调度的PDSCH;
由C-RNTI或CS-RNTI进行CRC加扰的第三DCI格式调度的物理上行共享信道PUSCH或由RRC信令配置的免授权PUSCH。
也就是说,上述包括调制阶数为10的调制方式对应的MCS等级的MCS表格,也即上述MCS表格4~11可以是适用于由C-RNTI或CS-RNTI进行CRC加扰的DCI格式1_1的PDCCH调度的PDSCH;和/或适用于由C-RNTI或CS-RNTI进行CRC加扰的DCI格式1_2的PDCCH调度的PDSCH;和/或适用于由C-RNTI或CS-RNTI进行CRC加扰的DCI格式0_1或DCI格式0_2所调度的PUSCH,或者适用于RRC信令配置的免授权PUSCH。
本申请实施例中,在所述步骤201之前,还可以包括:
接收所述第二通信设备上报的第四指示信息,所述第四指示信息用于指示所述第二通信设备是否具备支持1024 QAM能力。
也就是说,第一通信设备先接收第二通信设备上报的第四指示信息,若第四指示信息指示所述第二通信设备具备支持1024 QAM的能力,则第一通信设备再向第二通信设备发送第一指示信息、第二指示信息和第三指示信息,也就是指示第二通信设备进行数据传输使用的MCS表格和进行CQI反馈使用的CQI表格,以及将为第二通信设备接收和发送的信道对应的MCS等级通知给第二通信设备。第二通信设备具备支持1024QAM能力,第二通信设备也就能够为其调度的信道使用调制阶数为10对应的调制方式和码率,使得通信系统能够支持更高阶调制,确保通信系统在高信噪比通信场景下能够具有较高的数据吞吐量,提升通信系统的传输效率。
可选地,所述第四指示信息通过如下粒度任意一项进行上报:
每个频段;
频段组合;
载波特征集合(Feature Set Per Component-carrier,FSPC)。
例如,第二通信设备可以是通过每个频段(per band)和/或几个频段组合(band combination)来上报第四指示信息,或者也可以是通过FSPC来上报第四指示信息,进而以将第二通信设备是否具备支持1024 QAM能力通知给第一通信设备,使得第一通信设备能够确定为第二通信设备调度的信道对应的MCS等级,有利于第一通信设备和第二通信设备之间的通信顺畅。
需要说明的是,本申请实施例提供的MCS指示信息传输方法方法,执行主体可以为MCS指示信息传输装置,或者,该MCS指示信息传输装置中的用于执行MCS指示信息传输方法的控制模块。本申请实施例中以MCS指示信息传输装置执行MCS指示信息传输方法为例,说明本申请实施例提供的MCS指示信息传输装置。
请参照图3,图3是本申请实施例提供的一种MCS指示信息传输装置的结构图。如图3所示,MCS指示信息传输装置300包括:
发送模块301,用于当第二通信设备具备支持1024正交幅度调制QAM能力的情况下,向所述第二通信设备发送第一指示信息、第二指示信息和第三指示信息;
其中,所述第一指示信息用于指示所述第二通信设备进行数据传输使用的调制编码策略MCS表格,所述MCS表格包括调制阶数为10的调制方式对应的MCS等级;
所述第二指示信息用于指示所述第二通信设备进行信道质量指示CQI反馈使用的CQI表格,所述CQI表格包括1024QAM调制方式对应的CQI等级;
所述第三指示信息用于根据所述MCS表格确定所述第二通信设备接收或发送的信道对应的MCS等级。
可选地,所述CQI表格满足如下至少一项:
包括第一CQI表格中256QAM对应的CQI等级,所述第一CQI表格为包括256QAM对应的CQI等级的CQI表格;
各CQI等级对应的频谱效率等间隔;
各CQI等级对应的码率等间隔;
各CQI等级对应的信噪比等间隔;
所述频谱效率通过四舍五入的方式保留至四位小数;
以及所述CQI表格还满足如下任意一项:
在所述码率出现小数的情况下,所述码率通过向上取整的方式确定;
在所述码率出现小数的情况下,所述码率通过向下取整的方式确定;
在所述码率出现小数的情况下,所述码率通过四舍五入取整的方式确定;
在所述码率出现小数的情况下,所述码率保留至一位小数。
可选地,所述CQI表格中包括与1024QAM调制方式对应的至少两种CQI等级。
可选地,所述CQI表格中包括与1024QAM调制方式对应的第一CQI等级和第二CQI等级,所述第一CQI等级对应的码率与所述第二CQI等级对应的码率不同,所述第一CQI等级对应的频谱效率与所述第二CQI等级对应的频谱效率不同。
可选地,所述第一CQI等级对应的码率为853,对应的频谱效率为8.3321。
可选地,所述第二CQI等级对应的码率为948,对应的频谱效率为9.2578。
可选地,所述CQI表格中还包括与1024QAM调制方式对应的第三CQI等级和第四CQI等级,所述第三CQI等级和所述第四CQI等级基于所述第一CQI等级和所述第二CQI等级获得。
可选地,所述第三CQI等级对应的码率为如下任意一者:805、806、805.5,所述第三CQI等级对应的频谱效率为如下任意一者:7.8613、7.8711、7.8662。
可选地,所述第四CQI等级对应的码率为如下任意一者:900、901、900.5,所述第四CQI等级对应的频谱效率为如下任意一者:8.7891、8.7988、8.7939。
可选地,所述MCS表格满足如下至少一项:
包括所述CQI表格中的码率和频谱效率;
包括第一MCS表格中256QAM对应的MCS等级,所述第一MCS表格为包括256QAM对应的MCS等级的MCS表格;
各MCS等级对应的频谱效率等间隔;
各MCS等级对应的目标码率等间隔;
各MCS等级对应的信噪比等间隔;
所述频谱效率通过四舍五入的方式保留至四位小数;
所述MCS表格还满足如下任意一项:
在所述目标码率出现小数的情况下,所述目标码率通过向上取整的方式确定;
在所述目标码率出现小数的情况下,所述目标码率通过向下取整的方式确定;
在所述目标码率出现小数的情况下,所述目标码率通过四舍五入取整的方式确定;
在所述目标码率出现小数的情况下,所述目标码率保留至一位小数。
可选地,所述MCS表格中包括与调制阶数为10的调制方式对应的第一MCS等级、第二MCS等级、第三MCS等级、第四MCS等级和用于重传的第五MCS等级。
可选地,所述第一MCS等级对应的目标码率为如下任意一者:805、806、805.5,所述第一MCS等级对应的频谱效率为如下任意一者:7.8613、7.8711、7.8662。
可选地,所述第二MCS等级对应的目标码率为853,所述第二MCS等级对应的频谱效率为8.3301。
可选地,所述第三MCS等级对应的码率为如下任意一者:900、901、900.5,所述第三MCS等级对应的频谱效率为如下任意一者:8.7891、8.7988、8.7939。
可选地,所述第四MCS等级对应的目标码率为948,所述第四MCS等级对应的频谱效率为9.2578。
可选地,所述MCS表格中还包括与调制阶数为10的调制方式对应的第六MCS等级、第七MCS等级、第八MCS等级和第九MCS等级。
可选地,所述第六MCS等级对应的目标码率为如下任意一者:781、783、 781.5、782,所述第六MCS等级对应的频谱效率为如下任意一者:7.627、7.6465、7.6318、7.6367。
可选地,所述第七MCS等级对应的目标码率为如下任意一者:828、830、829.5,所述第七MCS等级对应的频谱效率为如下任意一者:8.0859、8.1055、8.1006。
可选地,所述第八MCS等级对应的目标码率为如下任意一者:876、877、876.5,所述第八MCS等级对应的频谱效率为如下任意一者:8.5547、8.5645、8.5596。
可选地,所述第九MCS等级对应的目标码率为如下任意一者:924、925、924.5,所述第九MCS等级对应的频谱效率为如下任意一者:9.0234、9.0332、9.0283。
可选地,所述MCS表格适用于如下至少一项:
由小区无线网络临时标识C-RNTI或配置调度CS-RNTI进行循环冗余校验CRC加扰的第一下行控制信息格式的物理下行控制信道PDCCH调度的物理下行共享信道PDSCH;
由C-RNTI或CS-RNTI进行CRC加扰的第二DCI格式的PDCCH调度的PDSCH;
由C-RNTI或CS-RNTI进行CRC加扰的第三DCI格式调度的物理上行共享信道PUSCH或由无线资源控制RRC信令配置的免授权PUSCH。
可选地,所述第一指示信息和所述第二指示信息通过高层信令发送;所述第三指示信息通过下行控制信息DCI中的指示信息发送。
可选地,所述MCS指示信息传输装置300还包括:
第一接收模块,用于接收所述第二通信设备上报的第四指示信息,所述第四指示信息用于指示所述第二通信设备是否具备支持1024 QAM能力。
可选地,所述第四指示信息通过如下粒度任意一项进行上报:
每个频段;
频段组合;
载波特征集合FSPC。
需要说明的是,本申请实施例提供的MCS指示信息传输装置300能够实现图2所述方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例中,第一指示信息指示的MCS表格至少包括调制阶数为10的调制方式对应的MCS等级,那么第三指示信息确定的MCS等级也就有可能是调制阶数为10的调制方式对应的MCS等级,第二通信设备具备支持1024QAM能力,第二通信设备也就能够为其调度的信道使用调制阶数为10对应的调制方式和码率,使得通信系统能够支持更高阶调制,确保通信系统在高信噪比通信场景下能够具有较高的数据吞吐量,提升通信系统的传输效率。
请参照图4,图4是本申请实施例提供的另一种MCS指示信息传输方法的流程图,本申请实施例所提供的方法应用于第二通信设备,所述第二通信设备可以是终端。
如图4所示,所述MCS指示信息传输方法包括以下步骤:
步骤401、在所述第二通信设备具备支持1024 QAM能力的情况下,接收第一通信设备发送的第一指示信息、第二指示信息和第三指示信息。
其中,所述第一指示信息用于指示所述第二通信设备进行数据传输使用的调制编码策略MCS表格,所述MCS表格包括调制阶数为10的调制方式对应的MCS等级;
所述第二指示信息用于指示所述第二通信设备进行信道质量指示CQI反馈使用的CQI表格,所述CQI表格包括1024QAM调制方式对应的CQI等级;
所述第三指示信息用于根据所述MCS表格确定所述第二通信设备接收或发送的信道对应的MCS等级。
可选地,所述CQI表格满足如下至少一项:
包括第一CQI表格中256QAM对应的CQI等级,所述第一CQI表格为包括256QAM对应的CQI等级的CQI表格;
各CQI等级对应的频谱效率等间隔;
各CQI等级对应的码率等间隔;
各CQI等级对应的信噪比等间隔;
所述频谱效率通过四舍五入的方式保留至四位小数;
以及所述CQI表格还满足如下任意一项:
在所述码率出现小数的情况下,所述码率通过向上取整的方式确定;
在所述码率出现小数的情况下,所述码率通过向下取整的方式确定;
在所述码率出现小数的情况下,所述码率通过四舍五入取整的方式确定;
在所述码率出现小数的情况下,所述码率保留至一位小数。
可选地,所述CQI表格中包括与1024QAM调制方式对应的至少两种CQI等级。
可选地,所述CQI表格中包括与1024QAM调制方式对应的第一CQI等级和第二CQI等级,所述第一CQI等级对应的码率与所述第二CQI等级对应的码率不同,所述第一CQI等级对应的频谱效率与所述第二CQI等级对应的频谱效率不同。
可选地,所述第一CQI等级对应的码率为853,对应的频谱效率为8.3321。
可选地,所述第二CQI等级对应的码率为948,对应的频谱效率为9.2578。
可选地,所述CQI表格中还包括与1024QAM调制方式对应的第三CQI等级和第四CQI等级,所述第三CQI等级和所述第四CQI等级基于所述第一CQI等级和所述第二CQI等级获得。
可选地,所述第三CQI等级对应的码率为如下任意一者:805、806、805.5,所述第三CQI等级对应的频谱效率为如下任意一者:7.8613、7.8711、7.8662。
可选地,所述第四CQI等级对应的码率为如下任意一者:900、901、900.5,所述第四CQI等级对应的频谱效率为如下任意一者:8.7891、8.7988、8.7939。
可选地,所述MCS表格满足如下至少一项:
包括所述CQI表格中的码率和频谱效率;
包括第一MCS表格中256QAM对应的MCS等级,所述第一MCS表格 为包括256QAM对应的MCS等级的MCS表格;
各MCS等级对应的频谱效率等间隔;
各MCS等级对应的目标码率等间隔;
各MCS等级对应的信噪比等间隔;
所述频谱效率通过四舍五入的方式保留至四位小数;
所述MCS表格还满足如下任意一项:
在所述目标码率出现小数的情况下,所述目标码率通过向上取整的方式确定;
在所述目标码率出现小数的情况下,所述目标码率通过向下取整的方式确定;
在所述目标码率出现小数的情况下,所述目标码率通过四舍五入取整的方式确定;
在所述目标码率出现小数的情况下,所述目标码率保留至一位小数。
可选地,所述MCS表格中包括与调制阶数为10的调制方式对应的第一MCS等级、第二MCS等级、第三MCS等级、第四MCS等级和用于重传的第五MCS等级。
可选地,所述第一MCS等级对应的目标码率为如下任意一者:805、806、805.5,所述第一MCS等级对应的频谱效率为如下任意一者:7.8613、7.8711、7.8662。
可选地,所述第二MCS等级对应的目标码率为853,所述第二MCS等级对应的频谱效率为8.3301。
可选地,所述第三MCS等级对应的码率为如下任意一者:900、901、900.5,所述第三MCS等级对应的频谱效率为如下任意一者:8.7891、8.7988、8.7939。
可选地,所述第四MCS等级对应的目标码率为948,所述第四MCS等级对应的频谱效率为9.2578。
可选地,所述MCS表格中还包括与调制阶数为10的调制方式对应的第六MCS等级、第七MCS等级、第八MCS等级和第九MCS等级。
可选地,所述第六MCS等级对应的目标码率为如下任意一者:781、783、781.5、782,所述第六MCS等级对应的频谱效率为如下任意一者:7.627、7.6465、7.6318、7.6367。
可选地,所述第七MCS等级对应的目标码率为如下任意一者:828、830、829.5,所述第七MCS等级对应的频谱效率为如下任意一者:8.0859、8.1055、8.1006。
可选地,所述第八MCS等级对应的目标码率为如下任意一者:876、877、876.5,所述第八MCS等级对应的频谱效率为如下任意一者:8.5547、8.5645、8.5596。
可选地,所述第九MCS等级对应的目标码率为如下任意一者:924、925、924.5,所述第九MCS等级对应的频谱效率为如下任意一者:9.0234、9.0332、9.0283。
可选地,所述MCS表格适用于如下至少一项:
由小区无线网络临时标识C-RNTI或配置调度CS-RNTI进行循环冗余校验CRC加扰的第一下行控制信息格式的物理下行控制信道PDCCH调度的物理下行共享信道PDSCH;
由C-RNTI或CS-RNTI进行CRC加扰的第二DCI格式的PDCCH调度的PDSCH;
由C-RNTI或CS-RNTI进行CRC加扰的第三DCI格式调度的物理上行共享信道PUSCH或由无线资源控制RRC信令配置的免授权PUSCH。
可选地,所述第一指示信息和所述第二指示信息通过高层信令发送;所述第三指示信息通过下行控制信息DCI中的指示信息发送。
可选地,所述方法还包括:
向所述第一通信设备发送第四指示信息,所述第四指示信息用于指示所述第二通信设备是否具备支持1024 QAM能力。
可选地,所述第四指示信息通过如下粒度任意一项进行上报:
每个频段;
频段组合;
载波特征集合FSPC。
需要说明的是,本申请实施例提供的由第二通信设备执行的MCS指示信息传输方法的具体实现过程及相关技术特征的具体说明可以是参照上述图2所述方法实施例中的描述,为避免重复,本申请实施例不再赘述。
本申请实施例中,第一指示信息指示的MCS表格至少包括调制阶数为10的调制方式对应的MCS等级,那么第三指示信息确定的MCS等级也就有可能是调制阶数为10的调制方式对应的MCS等级,第二通信设备具备支持1024QAM能力,第二通信设备也就能够为其调度的信道使用调制阶数为10对应的调制方式和码率,使得通信系统能够支持更高阶调制,确保通信系统在高信噪比通信场景下能够具有较高的数据吞吐量,提升通信系统的传输效率。
需要说明的是,本申请实施例提供的MCS指示信息传输方法,执行主体可以为MCS指示信息传输装置,或者,该MCS指示信息传输装置中的用于执行MCS指示信息传输方法的控制模块。本申请实施例中以MCS指示信息传输装置执行MCS指示信息传输方法为例,说明本申请实施例提供的MCS指示信息传输装置。
请参照图5,图5是本申请实施例提供的另一种MCS指示信息传输装置的结构图。如图5所示,所述MCS指示信息传输装置500包括:
接收模块501,用于在所述MCS指示信息传输装置具备支持1024正交幅度调制QAM能力的情况下,接收第一通信设备发送的第一指示信息、第二指示信息和第三指示信息;
其中,所述第一指示信息用于指示所述MCS指示信息传输装置进行数据传输使用的调制编码策略MCS表格,所述MCS表格包括调制阶数为10的调制方式对应的MCS等级;
所述第二指示信息用于指示所述MCS指示信息传输装置进行信道质量指示CQI反馈使用的CQI表格,所述CQI表格包括1024QAM调制方式对应 的CQI等级;
所述第三指示信息用于根据所述MCS表格确定所述MCS指示信息传输装置接收或发送的信道对应的MCS等级。
可选地,所述CQI表格满足如下至少一项:
包括第一CQI表格中256QAM对应的CQI等级,所述第一CQI表格为包括256QAM对应的CQI等级的CQI表格;
各CQI等级对应的频谱效率等间隔;
各CQI等级对应的码率等间隔;
各CQI等级对应的信噪比等间隔;
所述频谱效率通过四舍五入的方式保留至四位小数;
以及所述CQI表格还满足如下任意一项:
在所述码率出现小数的情况下,所述码率通过向上取整的方式确定;
在所述码率出现小数的情况下,所述码率通过向下取整的方式确定;
在所述码率出现小数的情况下,所述码率通过四舍五入取整的方式确定;
在所述码率出现小数的情况下,所述码率保留至一位小数。
可选地,所述CQI表格中包括与1024QAM调制方式对应的至少两种CQI等级。
可选地,所述CQI表格中包括与1024QAM调制方式对应的第一CQI等级和第二CQI等级,所述第一CQI等级对应的码率与所述第二CQI等级对应的码率不同,所述第一CQI等级对应的频谱效率与所述第二CQI等级对应的频谱效率不同。
可选地,所述第一CQI等级对应的码率为853,对应的频谱效率为8.3321。
可选地,所述第二CQI等级对应的码率为948,对应的频谱效率为9.2578。
可选地,所述CQI表格中还包括与1024QAM调制方式对应的第三CQI等级和第四CQI等级,所述第三CQI等级和所述第四CQI等级基于所述第一CQI等级和所述第二CQI等级获得。
可选地,所述第三CQI等级对应的码率为如下任意一者:805、806、805.5, 所述第三CQI等级对应的频谱效率为如下任意一者:7.8613、7.8711、7.8662。
可选地,所述第四CQI等级对应的码率为如下任意一者:900、901、900.5,所述第四CQI等级对应的频谱效率为如下任意一者:8.7891、8.7988、8.7939。
可选地,所述MCS表格满足如下至少一项:
包括所述CQI表格中的码率和频谱效率;
包括第一MCS表格中256QAM对应的MCS等级,所述第一MCS表格为包括256QAM对应的MCS等级的MCS表格;
各MCS等级对应的频谱效率等间隔;
各MCS等级对应的目标码率等间隔;
各MCS等级对应的信噪比等间隔;
所述频谱效率通过四舍五入的方式保留至四位小数;
所述MCS表格还满足如下任意一项:
在所述目标码率出现小数的情况下,所述目标码率通过向上取整的方式确定;
在所述目标码率出现小数的情况下,所述目标码率通过向下取整的方式确定;
在所述目标码率出现小数的情况下,所述目标码率通过四舍五入取整的方式确定;
在所述目标码率出现小数的情况下,所述目标码率保留至一位小数。
可选地,所述MCS表格中包括与调制阶数为10的调制方式对应的第一MCS等级、第二MCS等级、第三MCS等级、第四MCS等级和用于重传的第五MCS等级。
可选地,所述第一MCS等级对应的目标码率为如下任意一者:805、806、805.5,所述第一MCS等级对应的频谱效率为如下任意一者:7.8613、7.8711、7.8662。
可选地,所述第二MCS等级对应的目标码率为853,所述第二MCS等级对应的频谱效率为8.3301。
可选地,所述第三MCS等级对应的码率为如下任意一者:900、901、900.5,所述第三MCS等级对应的频谱效率为如下任意一者:8.7891、8.7988、8.7939。
可选地,所述第四MCS等级对应的目标码率为948,所述第四MCS等级对应的频谱效率为9.2578。
可选地,所述MCS表格中还包括与调制阶数为10的调制方式对应的第六MCS等级、第七MCS等级、第八MCS等级和第九MCS等级。
可选地,所述第六MCS等级对应的目标码率为如下任意一者:781、783、781.5、782,所述第六MCS等级对应的频谱效率为如下任意一者:7.627、7.6465、7.6318、7.6367。
可选地,所述第七MCS等级对应的目标码率为如下任意一者:828、830、829.5,所述第七MCS等级对应的频谱效率为如下任意一者:8.0859、8.1055、8.1006。
可选地,所述第八MCS等级对应的目标码率为如下任意一者:876、877、876.5,所述第八MCS等级对应的频谱效率为如下任意一者:8.5547、8.5645、8.5596。
可选地,所述第九MCS等级对应的目标码率为如下任意一者:924、925、924.5,所述第九MCS等级对应的频谱效率为如下任意一者:9.0234、9.0332、9.0283。
可选地,所述MCS表格适用于如下至少一项:
由小区无线网络临时标识C-RNTI或配置调度CS-RNTI进行循环冗余校验CRC加扰的第一下行控制信息格式的物理下行控制信道PDCCH调度的物理下行共享信道PDSCH;
由C-RNTI或CS-RNTI进行CRC加扰的第二DCI格式的PDCCH调度的PDSCH;
由C-RNTI或CS-RNTI进行CRC加扰的第三DCI格式调度的物理上行共享信道PUSCH或由无线资源控制RRC信令配置的免授权PUSCH。
可选地,所述第一指示信息和所述第二指示信息通过高层信令发送;所 述第三指示信息通过下行控制信息DCI中的指示信息发送。
可选地,所述MCS指示信息传输装置500还包括:
第一发送模块,用于向所述第一通信设备发送第四指示信息,所述第四指示信息用于指示所述MCS指示信息传输装置是否具备支持1024 QAM能力。
可选地,所述第四指示信息通过如下粒度任意一项进行上报:
每个频段;
频段组合;
载波特征集合FSPC。
本申请实施例中,MCS指示信息传输装置500具备支持1024QAM能力,MCS指示信息传输装置500也就能够为其调度的信道使用调制阶数为10对应的调制方式和码率,使得通信系统能够支持更高阶调制,确保通信系统在高信噪比通信场景下能够具有较高的数据吞吐量,提升通信系统的传输效率。
本申请实施例中的MCS指示信息传输装置500可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的MCS指示信息传输装置500可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的MCS指示信息传输装置500能够实现图4所述方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图6所示,本申请实施例还提供一种通信设备600,包括处理器601,存储器602,存储在存储器602上并可在所述处理器601上运行的程序或指令,例如,该通信设备600为第一通信设备时,该程序或指令被处 理器601执行时实现上述图1所述方法实施例的各个过程,且能达到相同的技术效果。该通信设备600为第二通信设备时,该程序或指令被处理器601执行时实现上述图2所述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图7为实现本申请实施例的一种终端的硬件结构示意图。
该终端700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709、以及处理器710等中的至少部分部件。
本领域技术人员可以理解,终端700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图7中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元704可以包括图形处理器(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元706可包括显示面板7061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板7061。用户输入单元707包括触控面板7071以及其他输入设备7072。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元701将来自网络侧设备的下行数据接收后,给处理器710处理;另外,将上行的数据发送给网络侧设备。通常,射频单元701包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器709可用于存储软件程序或指令以及各种数据。存储器709可主 要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器709可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器710可包括一个或多个处理单元;可选的,处理器710可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
本申请实施例中,终端700可以作为第二通信设备。在终端700具备支持1024 QAM能力的情况下,射频单元701,用于接收第一通信设备发送的第一指示信息、第二指示信息和第三指示信息;
其中,所述第一指示信息用于指示终端700进行数据传输使用的调制编码策略MCS表格,所述MCS表格包括调制阶数为10的调制方式对应的MCS等级;
所述第二指示信息用于指示终端700进行信道质量指示CQI反馈使用的CQI表格,所述CQI表格包括1024QAM调制方式对应的CQI等级;
所述第三指示信息用于根据所述MCS表格确定终端700接收或发送的信道对应的MCS等级。
可选地,所述CQI表格满足如下至少一项:
包括第一CQI表格中256QAM对应的CQI等级,所述第一CQI表格为包括256QAM对应的CQI等级的CQI表格;
各CQI等级对应的频谱效率等间隔;
各CQI等级对应的码率等间隔;
各CQI等级对应的信噪比等间隔;
所述频谱效率通过四舍五入的方式保留至四位小数;
以及所述CQI表格还满足如下任意一项:
在所述码率出现小数的情况下,所述码率通过向上取整的方式确定;
在所述码率出现小数的情况下,所述码率通过向下取整的方式确定;
在所述码率出现小数的情况下,所述码率通过四舍五入取整的方式确定;
在所述码率出现小数的情况下,所述码率保留至一位小数。
可选地,所述CQI表格中包括与1024QAM调制方式对应的至少两种CQI等级。
可选地,所述CQI表格中包括与1024QAM调制方式对应的第一CQI等级和第二CQI等级,所述第一CQI等级对应的码率与所述第二CQI等级对应的码率不同,所述第一CQI等级对应的频谱效率与所述第二CQI等级对应的频谱效率不同。
可选地,所述第一CQI等级对应的码率为853,对应的频谱效率为8.3321。
可选地,所述第二CQI等级对应的码率为948,对应的频谱效率为9.2578。
可选地,所述CQI表格中还包括与1024QAM调制方式对应的第三CQI等级和第四CQI等级,所述第三CQI等级和所述第四CQI等级基于所述第一CQI等级和所述第二CQI等级获得。
可选地,所述第三CQI等级对应的码率为如下任意一者:805、806、805.5,所述第三CQI等级对应的频谱效率为如下任意一者:7.8613、7.8711、7.8662。
可选地,所述第四CQI等级对应的码率为如下任意一者:900、901、900.5,所述第四CQI等级对应的频谱效率为如下任意一者:8.7891、8.7988、8.7939。
可选地,所述MCS表格满足如下至少一项:
包括所述CQI表格中的码率和频谱效率;
包括第一MCS表格中256QAM对应的MCS等级,所述第一MCS表格为包括256QAM对应的MCS等级的MCS表格;
各MCS等级对应的频谱效率等间隔;
各MCS等级对应的目标码率等间隔;
各MCS等级对应的信噪比等间隔;
所述频谱效率通过四舍五入的方式保留至四位小数;
所述MCS表格还满足如下任意一项:
在所述目标码率出现小数的情况下,所述目标码率通过向上取整的方式确定;
在所述目标码率出现小数的情况下,所述目标码率通过向下取整的方式确定;
在所述目标码率出现小数的情况下,所述目标码率通过四舍五入取整的方式确定;
在所述目标码率出现小数的情况下,所述目标码率保留至一位小数。
可选地,所述MCS表格中包括与调制阶数为10的调制方式对应的第一MCS等级、第二MCS等级、第三MCS等级、第四MCS等级和用于重传的第五MCS等级。
可选地,所述第一MCS等级对应的目标码率为如下任意一者:805、806、805.5,所述第一MCS等级对应的频谱效率为如下任意一者:7.8613、7.8711、7.8662。
可选地,所述第二MCS等级对应的目标码率为853,所述第二MCS等级对应的频谱效率为8.3301。
可选地,所述第三MCS等级对应的码率为如下任意一者:900、901、900.5,所述第三MCS等级对应的频谱效率为如下任意一者:8.7891、8.7988、8.7939。
可选地,所述第四MCS等级对应的目标码率为948,所述第四MCS等级对应的频谱效率为9.2578。
可选地,所述MCS表格中还包括与调制阶数为10的调制方式对应的第六MCS等级、第七MCS等级、第八MCS等级和第九MCS等级。
可选地,所述第六MCS等级对应的目标码率为如下任意一者:781、783、781.5、782,所述第六MCS等级对应的频谱效率为如下任意一者:7.627、7.6465、 7.6318、7.6367。
可选地,所述第七MCS等级对应的目标码率为如下任意一者:828、830、829.5,所述第七MCS等级对应的频谱效率为如下任意一者:8.0859、8.1055、8.1006。
可选地,所述第八MCS等级对应的目标码率为如下任意一者:876、877、876.5,所述第八MCS等级对应的频谱效率为如下任意一者:8.5547、8.5645、8.5596。
可选地,所述第九MCS等级对应的目标码率为如下任意一者:924、925、924.5,所述第九MCS等级对应的频谱效率为如下任意一者:9.0234、9.0332、9.0283。
可选地,所述MCS表格适用于如下至少一项:
由小区无线网络临时标识C-RNTI或配置调度CS-RNTI进行循环冗余校验CRC加扰的第一下行控制信息格式的物理下行控制信道PDCCH调度的物理下行共享信道PDSCH;
由C-RNTI或CS-RNTI进行CRC加扰的第二DCI格式的PDCCH调度的PDSCH;
由C-RNTI或CS-RNTI进行CRC加扰的第三DCI格式调度的物理上行共享信道PUSCH或由无线资源控制RRC信令配置的免授权PUSCH。
可选地,所述第一指示信息和所述第二指示信息通过高层信令发送;所述第三指示信息通过下行控制信息DCI中的指示信息发送。
可选地,所述射频单元701,还用于向所述第一通信设备发送第四指示信息,所述第四指示信息用于指示所述MCS指示信息传输装置是否具备支持1024 QAM能力。
可选地,所述第四指示信息通过如下粒度任意一项进行上报:
每个频段;
频段组合;
载波特征集合FSPC。
在本申请实施例中,终端700在具备支持1024QAM能力时,也就能够为其调度的信道使用调制阶数为10对应的调制方式和码率,使得通信系统能够支持更高阶调制,确保通信系统在高信噪比通信场景下能够具有较高的数据吞吐量,提升通信系统的传输效率。
具体地,本申请实施例还提供了一种网络侧设备。如图8所示,该网络设备800包括:天线81、射频装置82、基带装置83。天线81与射频装置82连接。在上行方向上,射频装置82通过天线81接收信息,将接收的信息发送给基带装置83进行处理。在下行方向上,基带装置83对要发送的信息进行处理,并发送给射频装置82,射频装置82对收到的信息进行处理后经过天线81发送出去。
上述频带处理装置可以位于基带装置83中,以上实施例中网络侧设备执行的方法可以在基带装置83中实现,该基带装置83包括处理器84和存储器85。
基带装置83例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图8所示,其中一个芯片例如为处理器84,与存储器85连接,以调用存储器85中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置83还可以包括网络接口86,用于与射频装置82交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器85上并可在处理器84上运行的指令或程序,处理器84调用存储器85中的指令或程序执行图3所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述图2所述方法实施例的各个过程,或实现上述图4所述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存 储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述图2所述方法实施例的各个过程,或实现上述图4所述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (70)

  1. 一种调制和编码方案MCS指示信息传输方法,由第一通信设备执行,包括:
    当第二通信设备具备支持1024正交幅度调制QAM能力的情况下,向所述第二通信设备发送第一指示信息、第二指示信息和第三指示信息;
    其中,所述第一指示信息用于指示所述第二通信设备进行数据传输使用的调制编码策略MCS表格,所述MCS表格包括调制阶数为10的调制方式对应的MCS等级;
    所述第二指示信息用于指示所述第二通信设备进行信道质量指示CQI反馈使用的CQI表格,所述CQI表格包括1024QAM调制方式对应的CQI等级;
    所述第三指示信息用于根据所述MCS表格确定所述第二通信设备接收或发送的信道对应的MCS等级。
  2. 根据权利要求1所述的方法,其中,所述CQI表格满足如下至少一项:
    包括第一CQI表格中256QAM对应的CQI等级,所述第一CQI表格为包括256QAM对应的CQI等级的CQI表格;
    各CQI等级对应的频谱效率等间隔;
    各CQI等级对应的码率等间隔;
    各CQI等级对应的信噪比等间隔;
    所述频谱效率通过四舍五入的方式保留至四位小数;
    以及所述CQI表格还满足如下任意一项:
    在所述码率出现小数的情况下,所述码率通过向上取整的方式确定;
    在所述码率出现小数的情况下,所述码率通过向下取整的方式确定;
    在所述码率出现小数的情况下,所述码率通过四舍五入取整的方式确定;
    在所述码率出现小数的情况下,所述码率保留至一位小数。
  3. 根据权利要求2所述的方法,其中,所述CQI表格中包括与1024QAM调制方式对应的至少两种CQI等级。
  4. 根据权利要求3所述的方法,其中,所述CQI表格中包括与1024QAM调制方式对应的第一CQI等级和第二CQI等级,所述第一CQI等级对应的码率与所述第二CQI等级对应的码率不同,所述第一CQI等级对应的频谱效率与所述第二CQI等级对应的频谱效率不同。
  5. 根据权利要求4所述的方法,其中,所述第一CQI等级对应的码率为853,对应的频谱效率为8.3321。
  6. 根据权利要求4所述的方法,其中,所述第二CQI等级对应的码率为948,对应的频谱效率为9.2578。
  7. 根据权利要求4至6中任一项所述的方法,其中,所述CQI表格中还包括与1024QAM调制方式对应的第三CQI等级和第四CQI等级,所述第三CQI等级和所述第四CQI等级基于所述第一CQI等级和所述第二CQI等级获得。
  8. 根据权利要求7所述的方法,其中,所述第三CQI等级对应的码率为如下任意一者:805、806、805.5,所述第三CQI等级对应的频谱效率为如下任意一者:7.8613、7.8711、7.8662。
  9. 根据权利要求7所述的方法,其中,所述第四CQI等级对应的码率为如下任意一者:900、901、900.5,所述第四CQI等级对应的频谱效率为如下任意一者:8.7891、8.7988、8.7939。
  10. 根据权利要求1所述的方法,其中,所述MCS表格满足如下至少一项:
    包括所述CQI表格中的码率和频谱效率;
    包括第一MCS表格中256QAM对应的MCS等级,所述第一MCS表格为包括256QAM对应的MCS等级的MCS表格;
    各MCS等级对应的频谱效率等间隔;
    各MCS等级对应的目标码率等间隔;
    各MCS等级对应的信噪比等间隔;
    所述频谱效率通过四舍五入的方式保留至四位小数;
    所述MCS表格还满足如下任意一项:
    在所述目标码率出现小数的情况下,所述目标码率通过向上取整的方式确定;
    在所述目标码率出现小数的情况下,所述目标码率通过向下取整的方式确定;
    在所述目标码率出现小数的情况下,所述目标码率通过四舍五入取整的方式确定;
    在所述目标码率出现小数的情况下,所述目标码率保留至一位小数。
  11. 根据权利要求10所述的方法,其中,所述MCS表格中包括与调制阶数为10的调制方式对应的第一MCS等级、第二MCS等级、第三MCS等级、第四MCS等级和用于重传的第五MCS等级。
  12. 根据权利要求11所述的方法,其中,所述第一MCS等级对应的目标码率为如下任意一者:805、806、805.5,所述第一MCS等级对应的频谱效率为如下任意一者:7.8613、7.8711、7.8662。
  13. 根据权利要求11所述的方法,其中,所述第二MCS等级对应的目标码率为853,所述第二MCS等级对应的频谱效率为8.3301。
  14. 根据权利要求11所述的方法,其中,所述第三MCS等级对应的码率为如下任意一者:900、901、900.5,所述第三MCS等级对应的频谱效率为如下任意一者:8.7891、8.7988、8.7939。
  15. 根据权利要求11所述的方法,其中,所述第四MCS等级对应的目标码率为948,所述第四MCS等级对应的频谱效率为9.2578。
  16. 根据权利要求10至15中任一项所述的方法,其中,所述MCS表格中还包括与调制阶数为10的调制方式对应的第六MCS等级、第七MCS等级、第八MCS等级和第九MCS等级。
  17. 根据权利要求16所述的方法,其中,所述第六MCS等级对应的目标码率为如下任意一者:781、783、781.5、782,所述第六MCS等级对应的频谱效率为如下任意一者:7.627、7.6465、7.6318、7.6367。
  18. 根据权利要求16所述的方法,其中,所述第七MCS等级对应的目标码率为如下任意一者:828、830、829.5,所述第七MCS等级对应的频谱效率为如下任意一者:8.0859、8.1055、8.1006。
  19. 根据权利要求16所述的方法,其中,所述第八MCS等级对应的目标码率为如下任意一者:876、877、876.5,所述第八MCS等级对应的频谱效率为如下任意一者:8.5547、8.5645、8.5596。
  20. 根据权利要求16所述的方法,其中,所述第九MCS等级对应的目标码率为如下任意一者:924、925、924.5,所述第九MCS等级对应的频谱效率为如下任意一者:9.0234、9.0332、9.0283。
  21. 根据权利要求1所述的方法,其中,所述MCS表格适用于如下至少一项:
    由小区无线网络临时标识C-RNTI或配置调度CS-RNTI进行循环冗余校验CRC加扰的第一下行控制信息格式的物理下行控制信道PDCCH调度的物理下行共享信道PDSCH;
    由C-RNTI或CS-RNTI进行CRC加扰的第二DCI格式的PDCCH调度的PDSCH;
    由C-RNTI或CS-RNTI进行CRC加扰的第三DCI格式调度的物理上行共享信道PUSCH或由无线资源控制RRC信令配置的免授权PUSCH。
  22. 根据权利要求1所述的方法,其中,所述第一指示信息和所述第二指示信息通过高层信令发送;所述第三指示信息通过下行控制信息DCI中的指示信息发送。
  23. 根据权利要求1所述的方法,其中,所述方法还包括:
    接收所述第二通信设备上报的第四指示信息,所述第四指示信息用于指示所述第二通信设备是否具备支持1024 QAM能力。
  24. 根据权利要求23所述的方法,其中,所述第四指示信息通过如下粒度任意一项进行上报:
    每个频段;
    频段组合;
    载波特征集合FSPC。
  25. 一种调制和编码方案MCS指示信息传输方法,由第二通信设备执行,包括:
    在所述第二通信设备具备支持1024正交幅度调制QAM能力的情况下,接收第一通信设备发送的第一指示信息、第二指示信息和第三指示信息;
    其中,所述第一指示信息用于指示所述第二通信设备进行数据传输使用的调制编码策略MCS表格,所述MCS表格包括调制阶数为10的调制方式对应的MCS等级;
    所述第二指示信息用于指示所述第二通信设备进行信道质量指示CQI反馈使用的CQI表格,所述CQI表格包括1024QAM调制方式对应的CQI等级;
    所述第三指示信息用于根据所述MCS表格确定所述第二通信设备接收或发送的信道对应的MCS等级。
  26. 根据权利要求25所述的方法,其中,所述CQI表格满足如下至少一项:
    包括第一CQI表格中256QAM对应的CQI等级,所述第一CQI表格为包括256QAM对应的CQI等级的CQI表格;
    各CQI等级对应的频谱效率等间隔;
    各CQI等级对应的码率等间隔;
    各CQI等级对应的信噪比等间隔;
    所述频谱效率通过四舍五入的方式保留至四位小数;
    以及所述CQI表格还满足如下任意一项:
    在所述码率出现小数的情况下,所述码率通过向上取整的方式确定;
    在所述码率出现小数的情况下,所述码率通过向下取整的方式确定;
    在所述码率出现小数的情况下,所述码率通过四舍五入取整的方式确定;
    在所述码率出现小数的情况下,所述码率保留至一位小数。
  27. 根据权利要求26所述的方法,其中,所述CQI表格中包括与 1024QAM调制方式对应的至少两种CQI等级。
  28. 根据权利要求27所述的方法,其中,所述CQI表格中包括与1024QAM调制方式对应的第一CQI等级和第二CQI等级,所述第一CQI等级对应的码率与所述第二CQI等级对应的码率不同,所述第一CQI等级对应的频谱效率与所述第二CQI等级对应的频谱效率不同。
  29. 根据权利要求28所述的方法,其中,所述第一CQI等级对应的码率为853,对应的频谱效率为8.3321。
  30. 根据权利要求28所述的方法,其中,所述第二CQI等级对应的码率为948,对应的频谱效率为9.2578。
  31. 根据权利要求28至30中任一项所述的方法,其中,所述CQI表格中还包括与1024QAM调制方式对应的第三CQI等级和第四CQI等级,所述第三CQI等级和所述第四CQI等级基于所述第一CQI等级和所述第二CQI等级获得。
  32. 根据权利要求31所述的方法,其中,所述第三CQI等级对应的码率为如下任意一者:805、806、805.5,所述第三CQI等级对应的频谱效率为如下任意一者:7.8613、7.8711、7.8662。
  33. 根据权利要求31所述的方法,其中,所述第四CQI等级对应的码率为如下任意一者:900、901、900.5,所述第四CQI等级对应的频谱效率为如下任意一者:8.7891、8.7988、8.7939。
  34. 根据权利要求25所述的方法,其中,所述MCS表格满足如下至少一项:
    包括所述CQI表格中的码率和频谱效率;
    包括第一MCS表格中256QAM对应的MCS等级,所述第一MCS表格为包括256QAM对应的MCS等级的MCS表格;
    各MCS等级对应的频谱效率等间隔;
    各MCS等级对应的目标码率等间隔;
    各MCS等级对应的信噪比等间隔;
    所述频谱效率通过四舍五入的方式保留至四位小数;
    所述MCS表格还满足如下任意一项:
    在所述目标码率出现小数的情况下,所述目标码率通过向上取整的方式确定;
    在所述目标码率出现小数的情况下,所述目标码率通过向下取整的方式确定;
    在所述目标码率出现小数的情况下,所述目标码率通过四舍五入取整的方式确定;
    在所述目标码率出现小数的情况下,所述目标码率保留至一位小数。
  35. 根据权利要求34所述的方法,其中,所述MCS表格中包括与调制阶数为10的调制方式对应的第一MCS等级、第二MCS等级、第三MCS等级、第四MCS等级和用于重传的第五MCS等级。
  36. 根据权利要求35所述的方法,其中,所述第一MCS等级对应的目标码率为如下任意一者:805、806、805.5,所述第一MCS等级对应的频谱效率为如下任意一者:7.8613、7.8711、7.8662。
  37. 根据权利要求35所述的方法,其中,所述第二MCS等级对应的目标码率为853,所述第二MCS等级对应的频谱效率为8.3301。
  38. 根据权利要求35所述的方法,其中,所述第三MCS等级对应的码率为如下任意一者:900、901、900.5,所述第三MCS等级对应的频谱效率为如下任意一者:8.7891、8.7988、8.7939。
  39. 根据权利要求35所述的方法,其中,所述第四MCS等级对应的目标码率为948,所述第四MCS等级对应的频谱效率为9.2578。
  40. 根据权利要求35至39中任一项所述的方法,其中,所述MCS表格中还包括与调制阶数为10的调制方式对应的第六MCS等级、第七MCS等级、第八MCS等级和第九MCS等级。
  41. 根据权利要求40所述的方法,其中,所述第六MCS等级对应的目标码率为如下任意一者:781、783、781.5、782,所述第六MCS等级对应的 频谱效率为如下任意一者:7.627、7.6465、7.6318、7.6367。
  42. 根据权利要求40所述的方法,其中,所述第七MCS等级对应的目标码率为如下任意一者:828、830、829.5,所述第七MCS等级对应的频谱效率为如下任意一者:8.0859、8.1055、8.1006。
  43. 根据权利要求40所述的方法,其中,所述第八MCS等级对应的目标码率为如下任意一者:876、877、876.5,所述第八MCS等级对应的频谱效率为如下任意一者:8.5547、8.5645、8.5596。
  44. 根据权利要求40所述的方法,其中,所述第九MCS等级对应的目标码率为如下任意一者:924、925、924.5,所述第九MCS等级对应的频谱效率为如下任意一者:9.0234、9.0332、9.0283。
  45. 根据权利要求25所述的方法,其中,所述MCS表格适用于如下至少一项:
    由小区无线网络临时标识C-RNTI或配置调度CS-RNTI进行循环冗余校验CRC加扰的第一下行控制信息格式的物理下行控制信道PDCCH调度的物理下行共享信道PDSCH;
    由C-RNTI或CS-RNTI进行CRC加扰的第二DCI格式的PDCCH调度的PDSCH;
    由C-RNTI或CS-RNTI进行CRC加扰的第三DCI格式调度的物理上行共享信道PUSCH或由无线资源控制RRC信令配置的免授权PUSCH。
  46. 根据权利要求25所述的方法,其中,所述第一指示信息和所述第二指示信息通过高层信令发送;所述第三指示信息通过下行控制信息DCI中的指示信息发送。
  47. 根据权利要求25所述的方法,其中,所述方法还包括:
    向所述第一通信设备发送第四指示信息,所述第四指示信息用于指示所述第二通信设备是否具备支持1024 QAM能力。
  48. 根据权利要求47所述的方法,其中,所述第四指示信息通过如下粒度任意一项进行上报:
    每个频段;
    频段组合;
    载波特征集合FSPC。
  49. 一种调制和编码方案MCS指示信息传输装置,包括:
    发送模块,用于当第二通信设备具备支持1024正交幅度调制QAM能力的情况下,向所述第二通信设备发送第一指示信息、第二指示信息和第三指示信息;
    其中,所述第一指示信息用于指示所述第二通信设备进行数据传输使用的调制编码策略MCS表格,所述MCS表格包括调制阶数为10的调制方式对应的MCS等级;
    所述第二指示信息用于指示所述第二通信设备进行信道质量指示CQI反馈使用的CQI表格,所述CQI表格包括1024QAM调制方式对应的CQI等级;
    所述第三指示信息用于根据所述MCS表格确定所述第二通信设备接收或发送的信道对应的MCS等级。
  50. 根据权利要求49所述的装置,其中,所述CQI表格满足如下至少一项:
    包括第一CQI表格中256QAM对应的CQI等级,所述第一CQI表格为包括256QAM对应的CQI等级的CQI表格;
    各CQI等级对应的频谱效率等间隔;
    各CQI等级对应的码率等间隔;
    各CQI等级对应的信噪比等间隔;
    所述频谱效率通过四舍五入的方式保留至四位小数;
    以及所述CQI表格还满足如下任意一项:
    在所述码率出现小数的情况下,所述码率通过向上取整的方式确定;
    在所述码率出现小数的情况下,所述码率通过向下取整的方式确定;
    在所述码率出现小数的情况下,所述码率通过四舍五入取整的方式确定;
    在所述码率出现小数的情况下,所述码率保留至一位小数。
  51. 根据权利要求50所述的装置,其中,所述CQI表格中包括与1024QAM调制方式对应的至少两种CQI等级。
  52. 根据权利要求51所述的装置,其中,所述CQI表格中包括与1024QAM调制方式对应的第一CQI等级和第二CQI等级,所述第一CQI等级对应的码率与所述第二CQI等级对应的码率不同,所述第一CQI等级对应的频谱效率与所述第二CQI等级对应的频谱效率不同。
  53. 根据权利要求49所述的装置,其中,所述MCS表格满足如下至少一项:
    包括所述CQI表格中的码率和频谱效率;
    包括第一MCS表格中256QAM对应的MCS等级,所述第一MCS表格为包括256QAM对应的MCS等级的MCS表格;
    各MCS等级对应的频谱效率等间隔;
    各MCS等级对应的目标码率等间隔;
    各MCS等级对应的信噪比等间隔;
    所述频谱效率通过四舍五入的方式保留至四位小数;
    所述MCS表格还满足如下任意一项:
    在所述目标码率出现小数的情况下,所述目标码率通过向上取整的方式确定;
    在所述目标码率出现小数的情况下,所述目标码率通过向下取整的方式确定;
    在所述目标码率出现小数的情况下,所述目标码率通过四舍五入取整的方式确定;
    在所述目标码率出现小数的情况下,所述目标码率保留至一位小数。
  54. 根据权利要求53所述的装置,其中,所述MCS表格中包括与调制阶数为10的调制方式对应的第一MCS等级、第二MCS等级、第三MCS等级、第四MCS等级和用于重传的第五MCS等级。
  55. 根据权利要求49所述的装置,其中,所述MCS表格适用于如下至 少一项:
    由小区无线网络临时标识C-RNTI或配置调度CS-RNTI进行循环冗余校验CRC加扰的第一下行控制信息格式的物理下行控制信道PDCCH调度的物理下行共享信道PDSCH;
    由C-RNTI或CS-RNTI进行CRC加扰的第二DCI格式的PDCCH调度的PDSCH;
    由C-RNTI或CS-RNTI进行CRC加扰的第三DCI格式调度的物理上行共享信道PUSCH或由无线资源控制RRC信令配置的免授权PUSCH。
  56. 根据权利要求49所述的装置,其中,所述第一指示信息和所述第二指示信息通过高层信令发送;所述第三指示信息通过下行控制信息DCI中的指示信息发送。
  57. 根据权利要求49所述的装置,其中,所述装置还包括:
    第一接收模块,用于接收所述第二通信设备上报的第四指示信息,所述第四指示信息用于指示所述第二通信设备是否具备支持1024 QAM能力。
  58. 一种调制和编码方案MCS指示信息传输装置,包括:
    接收模块,用于在所述MCS指示信息传输装置具备支持1024正交幅度调制QAM能力的情况下,接收第一通信设备发送的第一指示信息、第二指示信息和第三指示信息;
    其中,所述第一指示信息用于指示所述MCS指示信息传输装置进行数据传输使用的调制编码策略MCS表格,所述MCS表格包括调制阶数为10的调制方式对应的MCS等级;
    所述第二指示信息用于指示所述MCS指示信息传输装置进行信道质量指示CQI反馈使用的CQI表格,所述CQI表格包括1024QAM调制方式对应的CQI等级;
    所述第三指示信息用于根据所述MCS表格确定所述MCS指示信息传输装置接收或发送的信道对应的MCS等级。
  59. 根据权利要求58所述的装置,其中,所述CQI表格满足如下至少一 项:
    包括第一CQI表格中256QAM对应的CQI等级,所述第一CQI表格为包括256QAM对应的CQI等级的CQI表格;
    各CQI等级对应的频谱效率等间隔;
    各CQI等级对应的码率等间隔;
    各CQI等级对应的信噪比等间隔;
    所述频谱效率通过四舍五入的方式保留至四位小数;
    以及所述CQI表格还满足如下任意一项:
    在所述码率出现小数的情况下,所述码率通过向上取整的方式确定;
    在所述码率出现小数的情况下,所述码率通过向下取整的方式确定;
    在所述码率出现小数的情况下,所述码率通过四舍五入取整的方式确定;
    在所述码率出现小数的情况下,所述码率保留至一位小数。
  60. 根据权利要求59所述的装置,其中,所述CQI表格中包括与1024QAM调制方式对应的至少两种CQI等级。
  61. 根据权利要求60所述的装置,其中,所述CQI表格中包括与1024QAM调制方式对应的第一CQI等级和第二CQI等级,所述第一CQI等级对应的码率与所述第二CQI等级对应的码率不同,所述第一CQI等级对应的频谱效率与所述第二CQI等级对应的频谱效率不同。
  62. 根据权利要求58所述的装置,其中,所述MCS表格满足如下至少一项:
    包括所述CQI表格中的码率和频谱效率;
    包括第一MCS表格中256QAM对应的MCS等级,所述第一MCS表格为包括256QAM对应的MCS等级的MCS表格;
    各MCS等级对应的频谱效率等间隔;
    各MCS等级对应的目标码率等间隔;
    各MCS等级对应的信噪比等间隔;
    所述频谱效率通过四舍五入的方式保留至四位小数;
    所述MCS表格还满足如下任意一项:
    在所述目标码率出现小数的情况下,所述目标码率通过向上取整的方式确定;
    在所述目标码率出现小数的情况下,所述目标码率通过向下取整的方式确定;
    在所述目标码率出现小数的情况下,所述目标码率通过四舍五入取整的方式确定;
    在所述目标码率出现小数的情况下,所述目标码率保留至一位小数。
  63. 根据权利要求62所述的装置,其中,所述MCS表格中包括与调制阶数为10的调制方式对应的第一MCS等级、第二MCS等级、第三MCS等级、第四MCS等级和用于重传的第五MCS等级。
  64. 根据权利要求58所述的装置,其中,所述MCS表格适用于如下至少一项:
    由小区无线网络临时标识C-RNTI或配置调度CS-RNTI进行循环冗余校验CRC加扰的第一下行控制信息格式的物理下行控制信道PDCCH调度的物理下行共享信道PDSCH;
    由C-RNTI或CS-RNTI进行CRC加扰的第二DCI格式的PDCCH调度的PDSCH;
    由C-RNTI或CS-RNTI进行CRC加扰的第三DCI格式调度的物理上行共享信道PUSCH或由无线资源控制RRC信令配置的免授权PUSCH。
  65. 根据权利要求58所述的装置,其中,所述第一指示信息和所述第二指示信息通过高层信令发送;所述第三指示信息通过下行控制信息DCI中的指示信息发送。
  66. 根据权利要求58所述的装置,其中,所述装置还包括:
    第一发送模块,向所述第一通信设备发送第四指示信息,所述第四指示信息用于指示所述第二通信设备是否具备支持1024 QAM能力。
  67. 一种通信设备,包括处理器,存储器及存储在所述存储器上并可在 所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至24任一项所述的MCS指示信息传输方法的步骤,或实现如权利要求25至48任一项所述的MCS指示信息传输方法的步骤。
  68. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至24任一项所述的MCS指示信息传输方法的步骤,或实现如权利要求25至48任一项所述的MCS指示信息传输方法的步骤。
  69. 一种芯片,包括处理器和通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至24任一项所述的MCS指示信息传输方法的步骤,或实现如权利要求25至48任一项所述的MCS指示信息传输方法的步骤。
  70. 一种计算机程序产品,其中,所述计算机程序产品被存储在非易失的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如权利要求1至24任一项所述的MCS指示信息传输方法的步骤,或实现如权利要求25至48任一项所述的MCS指示信息传输方法的步骤。
PCT/CN2021/124930 2020-10-22 2021-10-20 调制和编码方案mcs指示信息传输方法、装置及通信设备 WO2022083628A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237015658A KR20230079449A (ko) 2020-10-22 2021-10-20 변조 및 부호화 기법(mcs) 지시 정보 전송 방법, 장치 및 통신기기
JP2023523120A JP2023545823A (ja) 2020-10-22 2021-10-20 変調及びコーディングスキームmcs指示情報伝送方法、装置及び通信機器
EP21882043.9A EP4216465A4 (en) 2020-10-22 2021-10-20 METHOD AND DEVICE FOR TRANSMITTING INFORMATION FOR DISPLAYING A MODULATION AND CODING SCHEME (MCS) AND COMMUNICATION DEVICE
US18/304,280 US20230344549A1 (en) 2020-10-22 2023-04-20 Method and apparatus for transmitting modulation and coding scheme mcs indication information and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011140865.X 2020-10-22
CN202011140865.XA CN114389748A (zh) 2020-10-22 2020-10-22 调制和编码方案mcs指示信息传输方法、装置及通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/304,280 Continuation US20230344549A1 (en) 2020-10-22 2023-04-20 Method and apparatus for transmitting modulation and coding scheme mcs indication information and communication device

Publications (1)

Publication Number Publication Date
WO2022083628A1 true WO2022083628A1 (zh) 2022-04-28

Family

ID=81194963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124930 WO2022083628A1 (zh) 2020-10-22 2021-10-20 调制和编码方案mcs指示信息传输方法、装置及通信设备

Country Status (6)

Country Link
US (1) US20230344549A1 (zh)
EP (1) EP4216465A4 (zh)
JP (1) JP2023545823A (zh)
KR (1) KR20230079449A (zh)
CN (1) CN114389748A (zh)
WO (1) WO2022083628A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024055180A1 (zh) * 2022-09-14 2024-03-21 华为技术有限公司 数据传输的方法以及通信装置
WO2024072113A1 (ko) * 2022-09-29 2024-04-04 엘지전자 주식회사 Mcs관련 업링크 전송 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160087752A1 (en) * 2013-06-08 2016-03-24 Huawei Technologies Co., Ltd. Method and apparatus for notifying channel quality indicator and modulation and coding scheme
CN106559171A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 Cqi信息接收方法、发送方法、接收装置及发送装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103580788A (zh) * 2012-07-27 2014-02-12 电信科学技术研究院 一种传输mcs指示信息的方法及装置
JP2019004212A (ja) * 2017-06-12 2019-01-10 シャープ株式会社 基地局装置、端末装置およびその通信方法
WO2018230967A1 (ko) * 2017-06-15 2018-12-20 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 보고 방법 및 이를 위한 장치
JP2019004319A (ja) * 2017-06-15 2019-01-10 シャープ株式会社 基地局装置、端末装置およびその通信方法
WO2019019174A1 (en) * 2017-07-28 2019-01-31 Zte Corporation METHOD AND APPARATUS FOR UPPER-ORDER TABLE CONFIGURATION
EP3462654B8 (en) * 2017-09-28 2021-01-20 Apple Inc. Apparatus for supporting 1024 quadrature amplitude modulation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160087752A1 (en) * 2013-06-08 2016-03-24 Huawei Technologies Co., Ltd. Method and apparatus for notifying channel quality indicator and modulation and coding scheme
CN106559171A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 Cqi信息接收方法、发送方法、接收装置及发送装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "On 1024QAM support", 3GPP DRAFT; R1-1720038 ON SUPPORT OF 1024QAM, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20171127 - 20171201, 18 November 2017 (2017-11-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051369720 *
See also references of EP4216465A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024055180A1 (zh) * 2022-09-14 2024-03-21 华为技术有限公司 数据传输的方法以及通信装置
WO2024072113A1 (ko) * 2022-09-29 2024-04-04 엘지전자 주식회사 Mcs관련 업링크 전송 방법

Also Published As

Publication number Publication date
JP2023545823A (ja) 2023-10-31
KR20230079449A (ko) 2023-06-07
EP4216465A1 (en) 2023-07-26
CN114389748A (zh) 2022-04-22
US20230344549A1 (en) 2023-10-26
EP4216465A4 (en) 2024-03-20

Similar Documents

Publication Publication Date Title
US20190141767A1 (en) Interleaving Radio Access Technologies
US11985688B2 (en) Transmission direction configuration method, device, and system
CN110958089B (zh) 传输块与码字的对应关系、相关设备以及系统
WO2019112648A1 (en) Inter-radio access technology carrier aggregation
EP3425968B1 (en) Method and apparatus for transmitting pucch with a lower a-mpr
WO2022083628A1 (zh) 调制和编码方案mcs指示信息传输方法、装置及通信设备
EP4262307A1 (en) Pusch transmission method and apparatus, and device and storage medium
WO2022127678A1 (zh) 信息传输方法、接收方法、装置、终端及网络侧设备
WO2022028464A1 (zh) 资源调度方法、装置及设备
EP4236530A1 (en) Resource configuration method and apparatus, device, and readable storage medium
WO2022028468A1 (zh) 信息确定方法、信息发送方法、终端及网络侧设备
CN108476062B (zh) 在无线通信系统中的参考信号序列确定
WO2022127702A1 (zh) 信息确定方法、装置及通信设备
WO2022028524A1 (zh) 物理下行控制信道的监听方法、装置和设备
WO2022028521A1 (zh) Sps pdsch的类型指示方法、装置、终端及网络侧设备
CN113965999A (zh) Pdcch的校验方法、发送方法、终端及网络侧设备
CN114765478A (zh) 编码调制符号数的确定方法、装置及通信设备
CN115085861B (zh) 传输上行mcs指示信息的方法、终端及网络侧设备
WO2022253312A1 (zh) 上行数据传输方法、装置、终端及介质
WO2022194275A1 (zh) 物理上行控制信道资源的确定方法、终端及网络侧设备
WO2023020403A1 (zh) 物理下行控制信道的传输方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882043

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023523120

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2021882043

Country of ref document: EP

Effective date: 20230420

ENP Entry into the national phase

Ref document number: 20237015658

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE