WO2022083274A1 - 连接状态检测电路、方法及显示面板 - Google Patents

连接状态检测电路、方法及显示面板 Download PDF

Info

Publication number
WO2022083274A1
WO2022083274A1 PCT/CN2021/114472 CN2021114472W WO2022083274A1 WO 2022083274 A1 WO2022083274 A1 WO 2022083274A1 CN 2021114472 W CN2021114472 W CN 2021114472W WO 2022083274 A1 WO2022083274 A1 WO 2022083274A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
light
detection
emitting
voltage value
Prior art date
Application number
PCT/CN2021/114472
Other languages
English (en)
French (fr)
Inventor
张健民
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022083274A1 publication Critical patent/WO2022083274A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/66Testing of connections, e.g. of plugs or non-disconnectable joints

Definitions

  • the present application relates to the technical field of displays, and more particularly, to a connection state detection circuit, method and display panel.
  • connection state of the light-emitting unit in the light-emitting chip adopts the photoluminescence technology, which uses ultraviolet light to illuminate the light-emitting chip.
  • the contrast and wavelength difference of the light-emitting chip can be collected and analyzed by the device, so that in the subsequent data analysis , the connection state of the light-emitting unit of the chip can be determined.
  • the photoluminescence technology requires that the chip size cannot be too small, otherwise, the connection state cannot be identified.
  • the present application proposes a connection state detection circuit, method and display panel to improve the above-mentioned defects.
  • an embodiment of the present application provides a connection state detection circuit, which is applied to a light-emitting circuit, the light-emitting circuit includes a first node and a second node, and the first node and the second node are used to communicate with the light-emitting the second node is connected to the first power supply signal;
  • the detection circuit includes: a detection power supply, which is connected to the first node; a measurement unit, which is connected to the first node and is used for detecting the power supply in the first node.
  • an embodiment of the present application further provides a display panel, including a light-emitting circuit and the above-mentioned connection state detection circuit, the light-emitting circuit including a first node and a second node, the first node and the second node For connecting with the light-emitting unit, the second node is connected to the first power supply signal.
  • an embodiment of the present application further provides a connection state detection method, which is applied to detection of a light-emitting circuit of a display panel, where the light-emitting circuit includes a first node and a second node, the first node and the first node Two nodes are used to connect with the light-emitting unit, the second node is connected to a first power supply signal, and the method includes: when a detection power supply inputs a detection voltage signal to the first node, acquiring the first node's measuring a voltage value; determining a connection state of the light-emitting unit between the first node and the second node according to the measured voltage value.
  • FIG. 1 shows a schematic diagram of a light-emitting circuit provided by an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a light-emitting circuit provided by another embodiment of the present application
  • FIG. 3 shows a schematic diagram of a light-emitting array provided by an embodiment of the present application
  • FIG. 4 shows a schematic diagram of a connection state detection circuit provided by an embodiment of the present application
  • FIG. 5 shows a schematic diagram of a connection state detection circuit provided by another embodiment of the present application.
  • FIG. 6 shows a schematic diagram of a connection state detection circuit provided by another embodiment of the present application.
  • FIG. 7 shows a schematic diagram of a light-emitting array provided by another embodiment of the present application.
  • FIG. 8 shows a timing diagram of a detection signal provided by an embodiment of the present application.
  • FIG. 9 shows a schematic diagram of a connection state detection circuit provided by still another embodiment of the present application.
  • FIG. 10 shows a method flowchart of a connection state detection method provided by an embodiment of the present application
  • FIG. 11 shows a block diagram of a module of an apparatus for detecting a connection state provided by an embodiment of the present application
  • FIG. 12 shows a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • FIG. 13 shows a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 14 shows a storage unit provided by an embodiment of the present application for storing or carrying a program code for implementing the method according to the embodiment of the present application.
  • Micro-LED a new generation of display technology, not only has the characteristics of high luminous efficiency, high brightness and lower power consumption, but also is not easily affected by water vapor, oxygen or high temperature. It has obvious advantages in stability, service life, working temperature and so on. Compared with the image response speed of TFT-LCD in milliseconds and the microseconds of OLED, the image response speed of Micro-LED is only nanoseconds. Secondly, the display screen as a wearable electronic device accounts for 80% of the power consumption; Micro-LED The features of low power consumption and fast response speed are most suitable for VR/AR devices, car displays and smart phones, etc., and have obvious advantages for improving user experience. Therefore, from the current point of view, the Micro-LED market may initially focus on ultra-small size displays, such as in-vehicle displays, smartphones, smart watches, and VR/AR.
  • Micro-LED display panel when making a Micro-LED display panel, it is necessary to set the Micro-LED on a substrate first, then transfer the Micro-LED to the display substrate (ie, mass transfer), and finally solder the Micro-LED to the display substrate superior. Mass transfer and soldering can easily lead to loss of Micro-LEDs or poor soldering, which in turn leads to low display yields. Quick and low-cost discovery of poor Micro-LED transfer (loss, poor soldering, cracks, etc.) is a prerequisite for massive repairs, which is of great significance for improving the yield of Micro-LED displays.
  • Micro-LED chips can be identified through Photo Luminescence (PL) technology. Specifically, by irradiating the Micro-LED chip with ultraviolet light (Ultraviolet, UV), the contrast and wavelength difference of the Micro-LED chip can be collected and analyzed by the device, so that in the subsequent data analysis, the connection state of the light-emitting unit of the chip can be determined. .
  • UV ultraviolet light
  • the photoluminescence method can identify the scratches, missing corners and cracks of the larger Micro-LED chips, but when the size of the Micro-LED chips drops below 50 ⁇ m, the PL method is difficult to find the Micro-LED chips. Defects.
  • connection state detection circuit Detection of the connection state of the light-emitting units of Micro-LED chips of various sizes.
  • the light-emitting circuit may include a first node, a second node and a light-emitting unit, the light-emitting unit is connected between the first node and the second node, the first node is used to connect to the second power supply signal, and the second node is used to connect to the second power supply signal.
  • the first power supply signal is input, and the electric field between the first power supply signal and the second power supply signal drives the light-emitting unit to emit light.
  • the light-emitting circuit includes: a switching transistor T1, the driving transistor T2 and the storage capacitor C.
  • the gate of the switching transistor T1 receives the scan signal SCAN
  • the source of the switching transistor T1 receives the data signal Vdata
  • the drain of the switching transistor T1 is connected to the gate of the driving transistor T2 and the capacitor C, respectively.
  • the switch transistor T1 is used to output the data signal Vdata to the storage capacitor C under the control of the scan signal SCAN.
  • the gate of the driving transistor T2 is connected to the storage capacitor C, the source of the driving transistor T2 receives the first voltage ELVDD, the drain of the driving transistor T2 is connected to the anode of the light-emitting unit D1 through node a, and the cathode of the light-emitting unit D1 receives the first voltage through node b
  • the second voltage ELVSS, the first voltage ELVDD and the second voltage ELVSS apply an electric field between the cathode and the anode of the light emitting unit D1, and the light emitting unit D1 emits light under the action of the electric field.
  • the value range of the second voltage ELVSS is -6.6V to -1.0V, for example, it may be -4.6V, and the value range of the first voltage ELVDD is 6.9V to 7.9V.
  • the higher the difference between the first voltage ELVDD and the second voltage ELVSS the greater the light-emitting brightness of the light-emitting unit D1
  • the lower the difference between the first voltage ELVDD and the second voltage ELVSS the light-emitting unit D1 emits light.
  • the smaller the luminance that is, the higher the difference between the first voltage ELVDD and the second voltage ELVSS, is positively correlated with the light-emitting luminance of the light-emitting unit D1.
  • the light-emitting circuit shown in FIG. 1 is also referred to as a 2T1C circuit.
  • FIG. 2 shows another light-emitting circuit applied in the embodiment of the present application.
  • the light-emitting circuit includes: a first transistor T1, a second transistor T2, a third transistor T3, The fourth transistor T4, the fifth transistor T5, the sixth transistor T6, the seventh transistor T7, the capacitor C1, the light-emitting unit D1, the node a and the node b.
  • the source of the first transistor T1 receives the first voltage ELVDD
  • the gate of the first transistor T1 and the gate of the sixth transistor T6 are both used for receiving the control signal EMIT
  • the drain of the first transistor T1 and the source of the third transistor T3 The gate of the third transistor T3 is connected to the first end of the capacitor C1
  • the drain of the third transistor T3 is connected to the source of the sixth transistor T6, and the second end of the capacitor C1 is used to receive the first voltage ELVDD
  • the gate of the fifth transistor T5 is used to receive the first scan signal SCAN1
  • the source of the fifth transistor T5 is connected to the first end of the capacitor C1
  • the drain of the fifth transistor T5 is used to receive the reset voltage V1
  • the fourth transistor T4 The source of the fourth transistor T4 is connected to the first end of the capacitor C1, the gate of the fourth transistor T4 is used to receive the second scan signal SCAN2, the drain of the fourth transistor T4 is connected to the drain of the third transistor T3, and the drain of the sixth
  • the control signal EMIT turns on the first transistor T1 and the sixth transistor T6, the second scan signal SCAN2 turns on the second transistor T2 and the fourth transistor T4, and the first scan signal SCAN1 turns on
  • the fifth transistor T5 and the seventh transistor T7 are turned off, Vdata is input to the capacitor C1 through the third transistor T3, and the electric field between the voltage of the electric charge stored in the capacitor C1 and the second voltage ELVSS drives the light-emitting unit D1 to emit light.
  • the above-mentioned light emitting unit may be an OLED device.
  • connection detection method in the embodiment of the present application is not limited to the circuits shown in the above-mentioned FIG. 1 and FIG. 2 , but can also be other light-emitting circuits, for example, a circuit composed of three triodes and a capacitor or other structures drive circuit.
  • Each light-emitting unit and a light-emitting circuit corresponding to each light-emitting unit constitute a pixel unit, and the light-emitting circuit may be a pixel driving circuit.
  • a plurality of pixel units constitute a pixel array, that is, a light-emitting array.
  • the light emitting array may be arranged on the display substrate by mass transfer.
  • the light-emitting array is an array formed by transferring the light-emitting initial array on the first substrate to the second substrate in advance.
  • the light-emitting initial array is formed on the first substrate, and the light-emitting initial array includes A plurality of light-emitting units, and then transfer the initial light-emitting array on the first substrate to the second substrate, then use the initial light-emitting array transferred to the second substrate as the light-emitting array.
  • the initial light-emitting circuit If the light-emitting unit inside may be lost or soldered poorly, the light-emitting initial circuit transferred to the second substrate is recorded as a light-emitting circuit.
  • the light-emitting circuit is used for driving the light-emitting unit to emit light.
  • FIG. 3 which shows a schematic diagram of a light-emitting array of a display panel of a display
  • the electronic device may be provided with a gate driving circuit 14 and a source driving circuit 15 , and the gate driving circuit and 14 It can include a plurality of cascaded shift registers, each shift register usually includes a plurality of transistors and capacitors, and the plurality of transistors and capacitors can form a pixel driving circuit similar to the above-mentioned Fig. 1, Fig. 2, etc., each shift register.
  • the output terminal is connected to one or more gate lines 12 of the display panel 101 for outputting scanning signals to one or more gate lines 12; the source driving circuit is used for sending one or more data lines 13 output data signal. It can be seen that the light emitting cells in the same row share a common gate line, and the light emitting cells in the same column share a common data line.
  • the display includes a main chip, and both the gate driving circuit 14 and the source driving circuit 15 are located in the chip, that is, the above-mentioned scan signals and data signals can be output by the main chip.
  • connection state detection circuit 40 is used to detect the connection state of the light-emitting unit between the first node 403 and the second node 404 in the above-mentioned light-emitting circuit.
  • the detection circuit 40 includes: a detection power supply 401 and a measurement unit 402 . Both the detection power source 401 and the measurement unit 402 are connected to the first node 403 .
  • the detection power supply 401 is used to input a detection voltage signal to the first node 403, wherein there is a voltage difference between the detection voltage signal and the first power supply signal, so that when the second node 404 is connected to the first power supply signal , the potential difference between the first node 403 and the second node 404 can form an electric field to drive the light-emitting unit between the first node 403 and the second node 404 to emit light.
  • the light-emitting unit is represented by a dotted frame, which means that a light-emitting unit is not necessarily connected between the first node 403 and the second node 404, and whether a light-emitting unit is connected needs to be determined according to the measurement The voltage value is determined.
  • the dashed box shown in FIG. 4 is used to represent the connection relationship between the first node 403 and the second node 404 and the light-emitting unit if the light-emitting unit is connected between the first node 403 and the second node 404 .
  • the first node 403 may be the above-mentioned node a
  • the second node 404 may be the above-mentioned node b
  • the first power supply signal is the above-mentioned ELVSS
  • the first power supply signal may also be is the ground signal, that is, the second node 404 is grounded
  • the detection voltage signal may be the above-mentioned ELVDD, or may be other signals with a voltage value higher than ELVSS.
  • the first node 403 can be the above-mentioned node b, and correspondingly, the second node 404 can be the above-mentioned node a, then the first power supply signal is the above-mentioned ELVDD, and the detection voltage signal can be Ground or ELVSS.
  • the first power supply signal and the detection voltage signal may not be limited to the selection of ELVSS, ELVDD and the ground terminal, as long as a certain voltage difference can be ensured between the detection voltage signal and the first power supply signal.
  • the first power supply signal is ELVSS
  • the first node 403 may be the above-mentioned node a
  • the second node 404 may be the above-mentioned node b, that is, the first node 403 is used to connect the light-emitting unit.
  • the anode of the second node 404 is used to connect the cathode of the light-emitting unit, so that the cathode of the light-emitting unit is connected to the ELVSS.
  • the detection voltage signal output by the detection power supply 401 is higher than the ELVSS, which is used as the anode voltage of the light-emitting unit, so that the light-emitting unit emits light.
  • the measuring unit 402 is configured to obtain the measured voltage value of the first node 403 when the detection power supply 401 inputs a detection voltage signal to the first node 403, and determine the first node 403 according to the measured voltage value The connection state of the light-emitting unit between the node 403 and the second node 404 .
  • the measurement unit 402 may be an analog-to-digital converter, specifically, may be an analog-to-digital converter in the main chip in the above-mentioned display, or may be an analog-to-digital converter in the main board of the terminal on which the display is installed converter.
  • the resistance value between the first node 403 and the second node 404 is different, Therefore, the voltage values of the first node 403 detected by the measuring unit 402 are also different.
  • the connection state of the light emitting unit may include an unconnected state and a connected state.
  • the unconnected state is used to represent that the light-emitting unit is not connected between the first node 403 and the second node 404 .
  • the state in which the light-emitting unit is not connected may also be that at least one of the first node 403 and the second node 404 is disconnected from the light-emitting unit.
  • the light-emitting unit is a light-emitting diode
  • the first node 403 and the second node 404 are normally connected to the light-emitting unit
  • the first node 403 can be connected to the anode of the light-emitting diode
  • the second node 404 can be connected to the cathode of the light-emitting diode
  • the first node 403 and the second node 404 are also in an open circuit state, then at In this case, the light-emitting unit connection state between the first node 403 and the second node 404 also belongs to the state where the light-emitting unit is not connected.
  • connection state is used to represent that a light-emitting unit is connected between the first node 403 and the second node 404, that is, the connection between the first node 403 and the second node 404 is not in an open state, that is, if the first node 403 may be connected to the anode of the light emitting diode, and the second node 404 may be connected to the cathode of the light emitting diode.
  • connection state further includes stable connection and unstable connection, wherein the stable connection is used to indicate that the light-emitting units connected between the first node 403 and the second node 404 are in good contact, and the unstable connection is used to indicate that the light-emitting unit is in good contact.
  • the contact of the light emitting unit connected between the first node 403 and the second node 404 is poor.
  • the light-emitting unit is the above-mentioned light-emitting diode
  • the light-emitting diode includes an anode and a cathode
  • the first node 403 and the second node 404 can be two solder joints on the display substrate
  • the anode and cathode of the light-emitting diode are two pins respectively.
  • the good contact of the light-emitting unit connected between the first node 403 and the second node 404 is the opposite state to the poor contact, that is, the welding between the first node 403 and the second node 404 and the light-emitting unit is firm and the welding area is sufficient. Larger, the resistance between the solder joint and the pin is smaller than that in the state of poor contact.
  • the measurement unit 402 determines the connection state of the light-emitting unit between the first node 403 and the second node 404 according to the measurement voltage value. Whether the measurement voltage value is equal to the detection voltage value, the detection voltage value is the voltage value of the detection voltage signal, if the measurement voltage value is equal to the detection voltage value, it is determined that the connection state of the light-emitting unit is not The connection state, if the measured voltage value is not equal to the detection voltage value, it is determined that the connection state of the light-emitting unit is the connection state.
  • the detection power supply 401 inputs the detection voltage signal to the first node 403.
  • the current flowing into the first node 403 will not flow into the second node 404 through the first node 403, and the measurement unit 402 is equivalent to being directly connected to the detection power supply 401 through the first node 403. Therefore, the measured voltage of the first node 403
  • the value should be equal to the voltage value of the detection voltage signal, that is, the output voltage of the detection power supply 401 .
  • the internal resistance of the light-emitting unit is used as the resistance between the first node 403 and the second node 404 to detect the detection voltage signal output by the power supply 401. It will flow through the first node 403, the light-emitting unit and the second node 404 in sequence into the first power supply terminal, the first power supply terminal is the port for outputting the first power supply signal, which will cause the measured voltage value of the first node 403 to be compared to the detection voltage value is smaller.
  • the light-emitting unit connection state may include unstable connection and stable connection.
  • unstable connection the first node 403 and the second node 404 are in poor contact with the light-emitting unit, resulting in a relatively large resistance value between the first node 403 and the second node 404, while in the case of stable connection Below, the first node 403 and the second node 404 are in good contact with the light emitting unit, and the resistance value between the first node 403 and the second node 404 is relatively small.
  • the resistance value between the first node 403 and the second node 404 is denoted as the first resistance value
  • the resistance value between the first node 403 and the second node 404 The resistance value is recorded as the second resistance value, then the second resistance value is smaller than the first resistance value, and the second resistance value is approximately the internal resistance of the light-emitting unit.
  • the second resistance value may be equal to the internal resistance of the light-emitting unit. resistance.
  • the two values have different limiting effects on the current between the first node 403 and the second node 404, so that the measured voltage from the first node 403
  • the values are also different.
  • the measured voltage value is not equal to the detection voltage value, determine whether the measured voltage value is greater than the specified voltage value and smaller than the detection voltage value, if it is greater than the specified voltage value and smaller than the detection voltage value , it is determined that the connection state of the light-emitting unit is an unstable connection. If the measured voltage value is not equal to the detection voltage value, it is determined whether the measured voltage value is less than or equal to the specified voltage value; if it is less than the specified voltage value, it is determined that the connection state of the light-emitting unit is stable connection.
  • the specified voltage value may be a pre-measured value.
  • the measurement voltage value of the first node is detected in the above-mentioned manner on the light-emitting unit with good contact in advance, and the specified voltage value may be obtained by measuring multiple light-emitting units or measuring multiple light-emitting units.
  • the maximum value of multiple measurements may be used as the specified voltage value.
  • the specified voltage value may be pre-detected on the first nodes corresponding to the light-emitting units with good contact and poor contact, and respectively obtain the first voltage value corresponding to good contact and the second voltage corresponding to poor contact The value between the first voltage value and the second voltage value is used as the specified voltage value.
  • a switch may be provided between the first node 403 and the detection power source 401, so that the detection of the connection state of the light-emitting unit can be controlled by turning on or off the switch.
  • the detection circuit 40 further includes a detection switch 405 , and the detection power supply 401 is connected to the first node 403 through the detection switch 405 , and the detection switch 405 is used for When a signal of a specified level is received, the detection power supply 401 and the first node 403 are turned on; the detection power supply 401 is used for sending the power to the The first node 403 inputs a detection voltage signal.
  • the detection switch 405 may be an electronic device such as a triode, a transistor, a thyristor, etc., which has a control terminal and two connection terminals.
  • the detection switch 405 includes a first connection terminal, a second connection terminal, and a first connection terminal.
  • the control terminal, the first connection terminal is connected to the detection power supply 401
  • the second connection terminal is connected to the first node 403
  • the first control terminal is used to receive the specified level signal
  • the first control terminal is used to receive the specified level signal.
  • the detection switch 405 is a first transistor device
  • the first control terminal of the detection switch 405 is the gate of the first transistor device
  • the first connection terminal of the detection switch 405 is the source of the first transistor device
  • the first connection terminal of the detection switch 405 is the drain of the first transistor device.
  • the first control terminal of the detection switch 405 is the gate of the first transistor device
  • the first connection terminal of the detection switch 405 is the drain of the first transistor device
  • the first connection terminal of the detection switch 405 is the source of the first transistor device.
  • the specified level signal may be a high level signal or a low level signal. Specifically, the specified level signal may be different according to different channels of the first transistor device. For example, if the first transistor device is a P-type, the specified level signal is a low level, and if the first transistor device is an N-type, the specified level signal is a high level. As an embodiment, the first transistor device may be a thin film transistor (Thin Film Transistor, TFT).
  • TFT Thin Film Transistor
  • the specified level signal can be output by the main chip of the display, that is, the detection switch 405 is connected to the main chip, specifically, the first control terminal of the detection switch 405 is connected to the main chip.
  • a switch can also be set between the first node 403 and the measuring unit 402, so that when the connection state of the light-emitting unit between the first node 403 and the second node 404 needs to be determined, the first node 403 can be read out.
  • a voltage value of node 403 compared with FIG. 5 , the detection circuit 40 further includes a measurement switch 406 , the first node 403 is connected to the measurement unit 402 through the measurement switch 406 , and the measurement switch 406 uses The measuring unit 402 and the first node 403 are turned on when the designated level signal is received.
  • the measurement switch 406 may be an electronic device such as a triode, a transistor, a thyristor, etc., which has a control terminal and two connection terminals.
  • the measurement switch 406 includes a third connection terminal, a fourth connection terminal, and a second connection terminal.
  • the control terminal, the third connection terminal is connected to the first node 403, the fourth connection terminal is connected to the measurement unit 402, the second control terminal is used to receive the specified level signal, and the second control terminal is used to receive the specified level signal.
  • the measurement unit 402 can detect the voltage value of the first node 403, and when the specified level signal is not received, the third connection terminal and the fourth connection terminal are connected.
  • the measurement switch 406 is a second transistor device, the second control terminal of the measurement switch 406 is the gate of the second transistor device, and the third connection terminal of the measurement switch 406 is the source of the second transistor device , the third connection terminal of the measurement switch 406 is the drain of the second transistor device.
  • the second control terminal of the measurement switch 406 is the gate of the second transistor device, the third connection terminal of the measurement switch 406 is the drain of the second transistor device, and the third connection terminal of the measurement switch 406 is The source of the second transistor device.
  • the specified level signal may be a high level signal or a low level signal.
  • the specified level signal may be different according to different channels of the second transistor device. For example, if the second transistor device is a P-type, the specified level signal is a low level, and if the second transistor device is an N-type, the specified level signal is a high level. As an embodiment, the second transistor device is also a TFT.
  • the designated level signals used for the conduction detection switch 405 and the measurement switch 406 are the same level signal, for example, both may be low level signals.
  • the specified level signal can be a signal for detecting a certain moment in the scanning signal.
  • the detection is performed.
  • the circuit may further include a control unit, the detection switches are multiple, and the first node of each of the light-emitting circuits is connected to the detection power source through one of the detection switches.
  • the user of the control unit inputs a specified level signal to each detection switch, which is used to sequentially control each of the detection switches to be turned on, so that the measurement unit sequentially determines the light emission of each of the light-emitting circuits.
  • Unit connection status As an embodiment, the user of the control unit inputs a specified level signal to each detection switch, which is used to sequentially control each of the detection switches to be turned on, so that the measurement unit sequentially determines the light emission of each of the light-emitting circuits.
  • the light-emitting array is composed of a plurality of light-emitting circuits 50 , and the plurality of light-emitting circuits 50 are distributed in rows and columns.
  • the detection circuit includes a measurement unit 402 and a control unit 407. As an embodiment, the measurement unit 402 and the control unit 407 are both electronic components in the main chip of the display.
  • the detection circuit includes a plurality of detection signal lines 408 and a plurality of measurement signal lines 409, each of the detection signal lines 408 is connected to the control unit 407, and each of the measurement signal lines 409 is connected to the measurement unit 402 connection, the detection switches in the same row are connected with the same detection signal line, and the first nodes of the light-emitting circuits in the same column are connected with the same measurement signal line;
  • the detection signal line inputs the specified level signal.
  • the control unit may simultaneously input different detection scan signals to each detection signal line.
  • the difference between the detection scan signals of the signal lines is that the phases of the detection scan signals are different, that is, the timings of the specified level signals in the detection scan signals are different, so that the detection switches can be controlled to be turned on in sequence.
  • Scan1(n-1), Scan1(n) and Scan1(n+1) are detection scan signals corresponding to detection signal lines of different rows, respectively.
  • Scan1(n-1) is the detection scan signal of the detection signal line in the n-1th row
  • Scan1(n) is the detection scan signal of the detection signal line in the nth row
  • Scan1(n+1) is the nth detection scan signal
  • the light-emitting circuits of each column share one measurement signal line 408 , so the connection state of the light-emitting unit can be detected for each light-emitting circuit by combining the detection signal line 409 of each row and the measurement signal line 408 of each column.
  • the light-emitting circuit further includes a power supply terminal, and the power supply terminal is used for inputting a second power supply signal to the first node, and the first power supply signal and the second power supply signal serve as the power supply of the light-emitting unit.
  • Glowing power
  • the first power supply signal is the above-mentioned ELVSS
  • the second power supply signal ELVDD ELVDD
  • the detection circuit further includes: a function switch, the power supply terminal is connected to the first node through the function switch, and the function switch is used for, when the detection power supply inputs a detection voltage signal to the first node, Disconnecting the connection between the power supply terminal and the first node.
  • the functional switch may be a first transistor T1 and a sixth transistor T6, and the measured voltage value of the first node is measured, so as to determine the first node and the second node according to the measured voltage value
  • EMIT is at a high level, thereby turning off the first transistor T1 and the sixth transistor T6, thereby cutting off the connection between the first node a and the second power supply signal ELVDD, avoiding the first and second power supply signals ELVDD. 2.
  • the detection switch is the seventh transistor T7
  • the measurement switch is the eighth transistor T8, that is, the first transistor device is the seventh transistor T7
  • the second transistor device is the eighth transistor T8.
  • the electrical signal input from the detection power supply is the detection voltage signal Vref
  • the voltage of the detection voltage signal Vref is higher than ELVSS, which is used as the anode voltage of the OLED device to realize the light-emitting of the OLED device (ie, the light-emitting unit D1).
  • ELVSS which is used as the anode voltage of the OLED device to realize the light-emitting of the OLED device (ie, the light-emitting unit D1).
  • the detection scan signal Scan1 is at a low level, both the seventh transistor T7 and the eighth transistor T8 are turned on.
  • EMIT is at low level
  • the first transistor T1 and the sixth transistor T6 are turned on
  • the electrical signal input by the detection power supply is the reset voltage V1, as shown in FIG.
  • the detection switch of the detection circuit can directly use the seventh transistor T7 in FIG. 2
  • the function switch of the detection circuit can directly use the sixth transistor T6 in FIG. 2
  • the function switch of the detection circuit can directly use The first transistor T1 and the sixth transistor T6 in FIG. 2 .
  • the detection scan signal Scan1 is used as one of the row turn-on signals of the light-emitting array, which can be generated by the Gate Drive circuit (GOA) in the main chip of the display. It is generated by the EMISSION Driver circuit of the main chip of the display and controls the light-emitting time of the OLED device.
  • GOA Gate Drive circuit
  • each voltage value is stored in the main chip, and on this basis, each voltage value is acquired and displayed, specifically , which can be displayed in the form of the following table.
  • the measured voltage value of the light-emitting unit in the Nth row and the third column is 4.01, which is the same as the input voltage of the detection power supply. It can be considered that the connection state of the light-emitting unit in the Nth row and the third column is not connected.
  • the same meaning of two numerical values is that the absolute value of the difference between the two is small, for example, the difference is not greater than the specified difference, and the specified difference can be determined according to the actual ratio.
  • the measured voltage value is the same as the detection voltage value, which means that the absolute difference between the two is not greater than 0.5, that is, the specified difference is 0.5. Of course, it can also be other values. Do limit.
  • the measured voltage value of the light-emitting unit in the third row and third column is 3.54. Assuming that the specified voltage value is 3.4 and the detection voltage value is 4.0, then 3.54 is greater than 3.4 and less than 4.0. The connection status is unstable. The connection state of the remaining light-emitting units less than the specified voltage value is stable connection.
  • unconnected, stable connection, and unstable connection may be respectively corresponding to different identifiers in the above Table 1, so as to play a role of clear representation of the result.
  • the identification may be a text label corresponding to each measurement result to mark the connection state corresponding to the measurement result.
  • the identification may also be a color identification or a font identification. For example, the font formats of the measurement results of different connection states are different, or the background colors of the display areas corresponding to the measurement results of different connection states are different.
  • the connection state of the light-emitting unit between the first node and the second node can be determined, thereby avoiding the limitation of the size of the light-emitting unit when measuring the connection state of the light-emitting unit using the photoluminescence technology.
  • the detection of micro-LED dead pixels at the pixel level is realized, which greatly improves the efficiency of large-scale detection and reduces the cost of detection.
  • FIG. 10 shows a connection state detection method, which is applied to the above-mentioned detection circuit and used to determine the connection state of the light-emitting unit between the first node and the second node of the above-mentioned light-emitting circuit .
  • the method includes: S1001 to S1002.
  • S1001 Obtain a measured voltage value of the first node when a detection power supply inputs a detection voltage signal to the first node.
  • S1002 Determine the connection state of the light-emitting unit between the first node and the second node according to the measured voltage value.
  • the embodiment of determining the connection state of the light-emitting unit between the first node and the second node according to the measurement voltage value may be: judging whether the measurement voltage value is equal to the detection voltage value, the detection voltage value is the voltage value of the detection voltage signal; if the measurement voltage value is equal to the detection voltage value, it is determined that the connection state of the light-emitting unit is an unconnected state, and the unconnected state is used to represent A light-emitting unit is not connected between the first node and the second node; if the measured voltage value is not equal to the detection voltage value, it is determined that the connection state of the light-emitting unit is a connected state, and the connection state is used to represent A light-emitting unit is connected between the first node and the second node.
  • the method further includes: if the measured voltage value is not equal to the detection voltage value, judging whether the measured voltage value is greater than a specified voltage value and less than the detection voltage value; if it is greater than the specified voltage value If the value is smaller than the detection voltage value, it is determined that the connection state of the light-emitting unit is unstable connection.
  • the method further includes: if the measured voltage value is not equal to the detection voltage value, judging whether the measured voltage value is less than a specified voltage value; if it is less than the specified voltage value, determining the light-emitting unit The connection status is stable connection.
  • FIG. 11 shows a structural block diagram of a connection state detection apparatus 1100 provided by an embodiment of the present application.
  • the apparatus may include: an acquisition module 1101 and a determination module 1102 .
  • the acquiring module 1101 is configured to acquire the measured voltage value of the first node when the detection power supply inputs a detection voltage signal to the first node.
  • the determining module 1102 is configured to determine the connection state of the light-emitting unit between the first node and the second node according to the measured voltage value.
  • the coupling between the modules may be electrical, mechanical or other forms of coupling.
  • each functional module in each embodiment of the present application may be integrated into one processing module, or each module may exist physically alone, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • FIG. 12 shows a structural block diagram of a display panel provided by an embodiment of the present application.
  • the display panel 131 includes a light-emitting circuit 1311 and a connection state detection circuit 1312 .
  • the connection state detection circuit 1312 is used to detect the connection state of the light-emitting unit between the first node of the light-emitting circuit 1311 and the second node.
  • the implementation of the light-emitting circuit 1311 and the connection state detection circuit 1312 may refer to the foregoing embodiments
  • the implementation of the connection state detection circuit 1312 may refer to the foregoing implementation of the connection state detection circuit 40 .
  • the display panel 131 includes a processing chip, which may be the above-mentioned main chip, and is used for acquiring the measured voltage value of the first node, and determining the first node and the first node according to the measured voltage value.
  • a processing chip which may be the above-mentioned main chip, and is used for acquiring the measured voltage value of the first node, and determining the first node and the first node according to the measured voltage value.
  • the display panel may include the above-mentioned second substrate. Specifically, after the light-emitting array is successfully arranged on the second substrate, the display panel is obtained after processing such as packaging.
  • the electronic device 100 may be an electronic device capable of running an application program, such as a smart phone, a tablet computer, an electronic book, or the like.
  • the electronic device may be a device including the above-mentioned detection circuit.
  • the electronic device may include a screen 130, and the screen 130 includes a casing and a display panel 131 disposed on the casing.
  • the main processor of the screen may be the above-mentioned main chip.
  • the electronic device 100 in the present application may include one or more of the following components: a processor 110, a memory 120, and one or more application programs, wherein the one or more application programs may be stored in the memory 120 and configured to be executed by One or more processors 110 execute, and one or more programs are configured to execute the methods described in the foregoing method embodiments.
  • the processor 110 may be the above-mentioned main chip.
  • the processor 110 may include one or more processing cores.
  • the processor 110 uses various interfaces and lines to connect various parts of the entire electronic device 100, and executes by running or executing the instructions, programs, code sets or instruction sets stored in the memory 120, and calling the data stored in the memory 120.
  • the processor 110 may adopt at least one of a digital signal processing (Digital Signal Processing, DSP), a Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), and a Programmable Logic Array (Programmable Logic Array, PLA).
  • DSP Digital Signal Processing
  • FPGA Field-Programmable Gate Array
  • PLA Programmable Logic Array
  • the processor 110 may integrate one or a combination of a central processing unit (Central Processing Unit, CPU), a graphics processing unit (Graphics Processing Unit, GPU), a modem, and the like.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the CPU mainly handles the operating system, user interface and application programs, etc.
  • the GPU is used for rendering and drawing of the display content
  • the modem is used to handle wireless communication. It can be understood that, the above-mentioned modem may also not be integrated into the processor 110, and is implemented by a communication chip alone.
  • the memory 120 may include random access memory (Random Access Memory, RAM), or may include read-only memory (Read-Only Memory). Memory 120 may be used to store instructions, programs, codes, sets of codes, or sets of instructions.
  • the memory 120 may include a stored program area and a stored data area, wherein the stored program area may store instructions for implementing an operating system, instructions for implementing at least one function (such as a touch function, a sound playback function, an image playback function, etc.) , instructions for implementing the following method embodiments, and the like.
  • the storage data area may also store data (such as phone book, audio and video data, chat record data) created by the electronic device 100 during use.
  • FIG. 14 shows a structural block diagram of a computer-readable storage medium provided by an embodiment of the present application.
  • the computer-readable storage medium 1400 stores program codes, and the program codes can be invoked by the processor to execute the methods described in the above method embodiments.
  • the computer-readable storage medium 1400 may be an electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the computer-readable storage medium 1400 includes a non-transitory computer-readable storage medium.
  • Computer readable storage medium 1400 has storage space for program code 1410 to perform any of the method steps in the above-described methods. These program codes can be read from or written to one or more computer program products.
  • Program code 1410 may be compressed, for example, in a suitable form.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)

Abstract

一种连接状态检测电路、方法及显示面板,涉及显示器技术领域,检测电路(40)包括:检测电源(401),与第一节点(403)连接;测量单元(402),与第一节点(403)连接,用于在检测电源(401)向第一节点(403)输入检测电压信号的情况下,获取第一节点(403)的测量电压值,根据测量电压值确定第一节点(403)和第二节点(404)之间的发光单元连接状态。在第一节点(403)和第二节点(404)之间连接或未连接发光单元以及接触是否良好的情况下,测量单元(402)检测到的第一节点(403)的测量电压值不同,因此,通过分析该测量电压值,能够确定第一节点(403)和第二节点(404)之间的发光单元连接状态,从而能够避免使用光致发光技术测量该发光单元连接状态时对发光单元的尺寸限定。

Description

连接状态检测电路、方法及显示面板
相关申请的交叉引用
本申请要求于2020年10月19日提交中国专利局的申请号为202011119534.8、名称为“连接状态检测电路、方法及显示面板”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示器技术领域,更具体地,涉及一种连接状态检测电路、方法及显示面板。
背景技术
目前,对发光芯片中发光单元的连接状态的检测,大多采用光致发光技术,使用紫外光对发光芯片照射,发光芯片的对比度和波长差异可以通过设备收集并分析,从而在后续的数据分析中,可以确定芯片的发光单元的连接状态。但是,该光致发光技术要求芯片尺寸不能过小,否则,无法识别该连接状态。
发明内容
本申请提出了一种连接状态检测电路、方法及显示面板,以改善上述缺陷。
第一方面,本申请实施例提供了一种连接状态检测电路,应用于发光电路,所述发光电路包括第一节点和第二节点,所述第一节点和所述第二节点用于与发光单元连接,所述第二节点接入第一供电信号;所述检测电路包括:检测电源,与所述第一节点连接;测量单元,与所述第一节点连接,用于在所述检测电源向所述第一节点输入检测电压信号的情况下,获取所述第一节点的测量电压值,根据所述测量电压值确定所述第一节点和所述第二节点之间的发光单元连接状态。
第二方面,本申请实施例还提供了一种显示面板,包括发光电路和上述连接状态检测电路,所述发光电路包括第一节点和第二节点,所述第一节点和所述第二节点用于与发光单元连接,所述第二节点接入第一供电信号。
第三方面,本申请实施例还提供了一种连接状态检测方法,应用于显示面板的发 光电路的检测,所述发光电路包括第一节点和第二节点,所述第一节点和所述第二节点用于与发光单元连接,所述第二节点接入第一供电信号,所述方法包括:在检测电源向所述第一节点输入检测电压信号的情况下,获取所述第一节点的测量电压值;根据所述测量电压值确定所述第一节点和所述第二节点之间的发光单元连接状态。
本申请实施例的其他特征和优点将在随后的说明书阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请实施例而了解。本申请实施例的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请一实施例提供的发光电路的示意图;
图2示出了本申请另一实施例提供的发光电路的示意图;
图3示出了本申请一实施例提供的发光阵列的示意图;
图4示出了本申请一实施例提供的连接状态检测电路的示意图;
图5示出了本申请另一实施例提供的连接状态检测电路的示意图;
图6示出了本申请又一实施例提供的连接状态检测电路的示意图;
图7示出了本申请另一实施例提供的发光阵列的示意图;
图8示出了本申请实施例提供的检测信号的时序图;
图9示出了本申请再一实施例提供的连接状态检测电路的示意图;
图10示出了本申请实施例提供的连接状态检测方法的方法流程图;
图11示出了本申请实施例提供的连接状态检测装置的模块框图;
图12示出了本申请实施例提供的显示面板的结构示意图;
图13示出了本申请实施例提供的电子设备的结构示意图;
图14出了本申请实施例提供的用于保存或者携带实现根据本申请实施例的方法的程序代码的存储单元。
具体实施方式
下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。 因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本申请的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
新一代显示技术微型发光二极管(Micro-LED)与现有的OLED技术相比不仅具有发光效率高、亮度高、功耗更低的特点,而且不易受水蒸汽、氧气或高温的影响,因而其在稳定性、使用寿命、工作温度等方面具有明显的优势。与TFT-LCD的图像反应速度毫秒、OLED的微秒相比,Micro-LED的图像反应速度只有纳秒,其次,作为穿戴式电子设备的显示屏占比80%的耗电量;Micro-LED的低耗电量和快速响应速度等特点最适合于VR/AR设备、车载显示和智能手机等,对于提升用户使用体验有着明显的优势。因此,从目前来看,Micro-LED市场最先可能集中在超小尺寸显示上,例如,车载显示器、智能手机、智能手表和VR/AR等。
但是,在制作Micro-LED显示面板时,需要先在一个基板上设置Micro-LED,然后再将Micro-LED转印到显示基板上(即巨量转移),最后将Micro-LED焊接到显示基板上。大批量的转印和焊接,很容易造成Micro-LED丢失或焊接不良,进而导致显示器良率较低。快速且低成本的发现Micro-LED转移不良(丢失、焊接不良、破裂等问题)是巨量修复的前提,对于提升Micro-LED显示的良率具有重大的量产意义。
目前,可以通过光致发光(Photo Luminescence,PL)技术识别有缺陷的Micro-LED芯片。具体地,通过紫外光(Ultraviolet,UV)照射Micro-LED芯片,Micro-LED芯片的对比度和波长差异可以通过设备收集并分析,从而在后续的数据分析中,可以确定芯片的发光单元的连接状态。
发明人在研究中发现,目前的通过光致发光识别有缺陷的Micro-LED芯片的技术中,需要将该芯片去绑定、然后清理干净绑定区域、重新选取合格芯片再重新绑定。光致发光方式可以对尺寸较大的Micro-LED芯片的划痕、缺角和裂缝的缺陷进行识别,但是当Micro-LED芯片尺寸下降到50μm以下时,PL方式则很难发现Micro-LED芯片的缺陷。
因此,为了克服上述缺陷,本申请实施例提供了一种连接状态检测电路、方法及显示面板,具体地,通过对发光电路的改进,能够检测发光电路中发光单元的连接状态,能够适用于各种尺寸大小的Micro-LED芯片的发光单元的连接状态的检测。
在介绍本申请实施例提供的连接检测电路之前,先介绍下显示面板的发光单元的阵列以及发光电路。具体地,发光电路可以包括第一节点、第二节点和发光单元,发光单 元连接在第一节点和第二节点之间,第一节点用于接入第二供电信号,第二节点用于接入第一供电信号,第一供电信号和第二供电信号之间的电场驱动发光单元发光。
作为一种实施方式,请参阅图1,图1示出了本申请实施例所应用的一种发光电路,具体地,用于检测该发光电路的发光单元连接状态,该发光电路包括:开关晶体管T1、驱动晶体管T2以及存储电容C。开关晶体管T1的栅极接收扫描信号SCAN,开关晶体管T1的源极接收数据信号Vdata,开关晶体管T1的漏极分别与驱动晶体管T2的栅极和电容C连接。开关晶体管T1用于在扫描信号SCAN的控制下,将数据信号Vdata输出至存储电容C。驱动晶体管T2的栅极与存储电容C连接,驱动晶体管T2的源极接收第一电压ELVDD,驱动晶体管T2的漏极通过节点a与发光单元D1的阳极连接,发光单元D1的阴极通过节点b接收第二电压ELVSS,第一电压ELVDD和第二电压ELVSS在发光单元D1的阴极和阳极之间施加电场,发光单元D1在电场作用下发光。其中,第二电压ELVSS的取值范围为-6.6V至-1.0V,例如,可以是-4.6V,第一电压ELVDD的取值范围为6.9V至7.9V。其中,第一电压ELVDD和第二电压ELVSS之间的差值越高,发光单元D1的发光亮度越大,第一电压ELVDD和第二电压ELVSS之间的差值越低,发光单元D1的发光亮度越小,即第一电压ELVDD和第二电压ELVSS之间的差值越高与发光单元D1的发光亮度正相关。作为一种方式,该图1所示的发光电路也称为2T1C电路。
作为另一种实施方式,请参阅图2,图2示出了本申请实施例所应用的另一种发光电路,该发光电路包括:第一晶体管T1、第二晶体管T2、第三晶体管T3、第四晶体管T4、第五晶体管T5、第六晶体管T6、第七晶体管T7、电容C1、发光单元D1、节点a和节点b。
第一晶体管T1的源极接收第一电压ELVDD,第一晶体管T1的栅极和第六晶体管T6的栅极均用于接收控制信号EMIT,第一晶体管T1的漏极与第三晶体管T3的源极连接,第三晶体管T3的栅极与电容C1的第一端连接,第三晶体管T3的漏极与第六晶体管T6的源极连接,电容C1的第二端用于接收第一电压ELVDD,第五晶体管T5的栅极用于接收第一扫描信号SCAN1,第五晶体管T5的源极与电容C1的第一端连接,第五晶体管T5的漏极用于接收复位电压V1,第四晶体管T4的源极与电容C1的第一端连接,第四晶体管T4的栅极用于接收第二扫描信号SCAN2,第四晶体管T4的漏极与第三晶体管T3的漏极连接,第六晶体管T6的漏极通过节点a与发光单元D1的阳极连接,发光单元D1的阴极通过节点b接收第二电压ELVSS。第七晶体管T7的栅极用于接收第一扫描信号SCAN1,第七晶体管T7的漏极与节点a连接,第七晶体管T7的源极用于接收复位电压V1。
当需要控制发光单元D1发光的时候,控制信号EMIT将第一晶体管T1和第六晶体管T6导通,第二扫描信号SCAN2将第二晶体管T2和第四晶体管T4导通,第一扫描信号SCAN1将第五晶体管T5和第七晶体管T7截止,Vdata通过第三晶体管T3输入至电容 C1,电容C1存储的电荷的电压与第二电压ELVSS之间的电场驱动发光单元D1发光。
在第一扫描信号SCAN1将第五晶体管T5和第七晶体管T7导通的情况下,由于V1的电压低于第二电压ELVSS,电容C1存储的电荷被释放,实现发光单元的复位功能。
另外,上述的发光单元可以是OLED器件。
作为一种实施方式,本申请实施例的连接检测方法并非仅限于上述图1和图2所示的电路,还可以是其他的发光电路,例如,3个三极管和一个电容构成的电路或者其他结构的驱动电路。
每个发光单元和每个发光单元对应的发光电路构成一个像素单元,该发光电路可以是像素驱动电路。多个像素单元构成像素阵列,即发光阵列。该发光阵列可以是通过巨量转移的方式布置到显示基板上的。作为一种实施方式,发光阵列为预先由第一基板上的发光初始阵列转移至所述第二基板上形成的阵列,具体地,在第一基板上形成发光初始阵列,该发光初始阵列内包括多个发光单元,然后将第一基板上的发光初始阵列转印到第二基板上,则将转印到第二基板上的发光初始阵列作为发光阵列,在转印的过程中,发光初始电路内的发光单元可能会丢失或焊接不良,则将转印到第二基板上的发光初始电路记为发光电路。
其中,发光电路用于驱动发光单元发光。如图3所示,图3示出了显示器的显示面板的发光阵列的示意图,从图3可以看出电子设备可以设置有栅极驱动电路14和源极驱动电路15,栅极驱动电路与14可以包括多个级联的移位寄存器,每个移位寄存器通常包括多个晶体管和电容,该多个晶体管和电容可以构成上述图1、图2等类似的像素驱动电路,每个移位寄存器的输出端与显示面板101的一根或多根栅线12连接,用于向一根或多根栅线12输出扫描信号;所述源极驱动电路用于向一根或多根数据线13输出数据信号。可以看出,同一行的发光单元通用一根栅线,同一列的发光单元共同一根数据线。作为一种实施方式,该显示器包括主芯片,该栅极驱动电路14和源极驱动电路15均位于该芯片内,即上述的扫描信号和数据信号均可以由主芯片输出。
请参阅图4,本申请实施例提供了一种连接状态检测电路,该连接状态检测电路40用于检测上述发光电路中,第一节点403和第二节点404之间的发光单元连接状态。具体地,该检测电路40包括:检测电源401和测量单元402。检测电源401和测量单元402均与所述第一节点403连接。
检测电源401用于向所述第一节点403输入检测电压信号,其中,所述检测电压信号与第一供电信号之间存在电压差,从而在第二节点404接入第一供电信号的情况下,第一节点403和第二节点404之间的电势差能够形成电场,驱动第一节点403和第二节点404之间的发光单元发光。
需要说明的是,图4中,发光单元用虚线框表示,是指第一节点403和第二节点404之间并非一定会连接一个发光单元,而具体是否连接有发光单元,需要根据所述测量电 压值确定。图4中所示的虚线框,用于表示如果第一节点403和第二节点404之间连接有发光单元,第一节点403和第二节点404与发光单元的连接关系。
作为一种实施方式,该第一节点403可以是上述的节点a,相对应地,第二节点404可以是上述的节点b,则第一供电信号为上述的ELVSS,该第一供电信号也可以是接地信号,即第二节点404接地,则检测电压信号可以是上述的ELVDD,也可以是其他的电压值高于ELVSS的信号。
作为另一种实施方式,该第一节点403可以是上述的节点b,相对应地,第二节点404可以是上述的节点a,则第一供电信号为上述的ELVDD,该检测电压信号可以是接地端或ELVSS。
另外,需要说明的是,第一供电信号和检测电压信号可以不限于上述ELVSS、ELVDD以及接地端的选择,只要能够保证检测电压信号与第一供电信号之间存在一定电压差即可。于本申请实施例中,第一供电信号为ELVSS,第一节点403可以是上述的节点a,相对应地,第二节点404可以是上述的节点b,即第一节点403用于连接发光单元的阳极,第二节点404用于连接发光单元的阴极,使得发光单元的阴极接入ELVSS。作为一种实施方式,检测电源401输出的检测电压信号高于ELVSS,作为发光单元的阳极电压,实现发光单元发光。
测量单元402,用于在所述检测电源401向所述第一节点403输入检测电压信号的情况下,获取所述第一节点403的测量电压值,根据所述测量电压值确定所述第一节点403和所述第二节点404之间的发光单元连接状态。作为一种实施方式,该测量单元402可以是模数转换器,具体地,可以是上述显示器内的主芯片内的模数转换器,也可以是,安装有显示器的终端的主板内的模数转换器。
由于在第一节点403和第二节点404之间,连接有发光单元和未连接有发光单元以及接触良好或者不良好的情况下,第一节点403和第二节点404之间的电阻值不同,由此,测量单元402检测到的第一节点403的电压值也是不同的。
作为一种实施方式,发光单元连接状态可以包括未连接状态和连接状态。所述未连接状态用于表征所述第一节点403和第二节点404之间未连接发光单元。例如,在进行上述的巨量转移工艺的时候,第一节点403和第二节点404之间的发光单元丢失。另外,未连接发光单元的状态还可以是,第一节点403和第二节点404中至少一个与发光单元的连接断开。例如,发光单元为发光二极管,假如第一节点403和第二节点404与发光单元正常连接,那么第一节点403可以与发光二极管的阳极连接,第二节点404可以与发光二极管的阴极连接,则如果第一节点403可以与发光二极管的阳极连接断开,或者,第二节点404可以与发光二极管的阴极连接断开,则第一节点403和第二节点404之间也处于断路状态,则在此情况下,第一节点403和第二节点404之间的发光单元连接状态也属于未连接发光单元的状态。
所述连接状态用于表征所述第一节点403和第二节点404之间连接有发光单元,即第一节点403和第二节点404之间未处于断路状态,也就是说,如果第一节点403可以与发光二极管的阳极连接,第二节点404可以与发光二极管的阴极连接。
作为一种实施方式,该连接状态又包括稳定连接和不稳定连接,其中,稳定连接用于表征第一节点403和第二节点404之间连接的发光单元的接触良好,不稳定连接用于表征第一节点403和第二节点404之间连接的发光单元的接触不良。例如,发光单元是上述发光二极管,发光二极管包括阳极和阴极,第一节点403和第二节点404可以是显示基板上的两个焊点,发光二极管的阳极和阴极分别是两个管脚,在将发光二极管的阳极与第一节点403焊接的时候,如果焊接不牢固,或者焊接的面积过小,会导致发光二极管的阳极与第一节点403之间接触不良,使得二者之间的电流无大无小,时有时无,而且焊接接触的面积过小,会导致二者之间的电阻值过大,但是,二者之间并非处于断路的状态,同理,在将发光二极管的阴极与第二节点404焊接的时候,如果焊接不牢固,或者焊接的面积过小,也会导致发光二极管的阴极与第二节点404之间接触不良。
其中,第一节点403和第二节点404之间连接的发光单元的接触良好是与接触不良相反的状态,即第一节点403和第二节点404与发光单元之间,焊接牢固并且焊接面积足够大,相比接触不良的状态下,焊点与管脚之间的电阻更小。
作为一种实施方式,测量单元402根据所述测量电压值确定第一节点403和第二节点404之间的发光单元连接状态的实施方式是:获取所述第一节点403的测量电压值,判断所述测量电压值是否等于所述检测电压值,所述检测电压值为所述检测电压信号的电压值,如果所述测量电压值等于所述检测电压值,确定所述发光单元连接状态为未连接状态,如果所述测量电压值不等于所述检测电压值,确定所述发光单元连接状态为连接状态。
具体地,在第一节点403和第二节点404之间未连接发光单元的情况下,二者之间处于断路状态,则在所述检测电源401向所述第一节点403输入检测电压信号的情况下,流入第一节点403的电流不会通过第一节点403流入第二节点404,测量单元402相当于直接通过第一节点403与检测电源401连接,因此,测量的第一节点403的电压值应当等于检测电压信号的电压值,即检测电源401的输出电压。
而如果第一节点403和第二节点404之间有连接发光单元的情况下,则发光单元的内阻作为第一节点403和第二节点404之间的电阻,检测电源401输出的检测电压信号会依次经过该第一节点403、发光单元和第二节点404流入第一供电端,该第一供电端为输出第一供电信号的端口,从而会导致第一节点403的测量电压值相比检测电压值更小。
另外,根据上述分析,在第一节点403和第二节点404之间有连接发光单元的情况下,该发光单元连接状态可以包括不稳定连接和稳定连接。由于,在不稳定连接的情况 下,第一节点403和第二节点404与发光单元的接触不良,导致第一节点403和第二节点404之间的电阻值比较大,而在稳定连接的情况下,第一节点403和第二节点404与发光单元的接触良好,第一节点403和第二节点404之间的电阻值比较小。具体地,假设不稳定连接的情况下,第一节点403和第二节点404之间的电阻值记为第一电阻值,稳定连接的情况下,第一节点403和第二节点404之间的电阻值记为第二电阻值,则第二电阻值小于第一电阻值,且第二电阻值近似为发光单元的内阻,在一些实施例中,可以将第二电阻值等于发光单元的内阻。
因此,由于第一电阻值和第二电阻值的阻值不同,因此,二值对第一节点403至第二节点404之间的电流的限制作用也不同,从而第一节点403出的测量电压值也不同。
具体地,如果所述测量电压值不等于所述检测电压值,判断所述测量电压值是否大于指定电压值且小于所述检测电压值,如果大于所述指定电压值且小于所述检测电压值,确定所述发光单元连接状态为不稳定连接。如果所述测量电压值不等于所述检测电压值,判断所述测量电压值是否小于或等于指定电压值;如果小于所述指定电压值,确定所述发光单元连接状态为稳定连接。
其中,指定电压值可以是预先测量的一个数值,例如,预先对接触良好的发光单元采用上述方式检测第一节点的测量电压值,可以多次测量或者测量多个发光单元得到指定电压值,在一些实施例中,可以将多次测量的最大值作为指定电压值。作为另一种实施方式,该指定电压值可以是预先对接触良好和接触不良的发光单元对应的第一节点检测,分别得到与接触良好对应的第一电压值和与接触不良对应的第二电压值,将第一电压值和第二电压值之间的数值作为指定电压值。
作为一种实施方式,可以在第一节点403和检测电源401之间设置一个开关,以便通过该开关的导通或截止控制对发光单元连接状态的检测。具体地,如图5所示,与图4相比,检测电路40还包括检测开关405,检测电源401通过所述检测开关405与所述第一节点403连接,所述检测开关405用于在接收到指定电平信号时将所述检测电源401与所述第一节点403导通;所述检测电源401用于在所述检测电源401与所述第一节点403导通时,向所述第一节点403输入检测电压信号。
作为一种实施方式,该检测开关405可以是三极管、晶体管、可控硅等具有控制端和两个连接端的电子器件,具体地,检测开关405包括第一连接端、第二连接端和第一控制端,所述第一连接端与检测电源401连接,第二连接端与第一节点403连接,第一控制端用于接收指定电平信号,第一控制端在接收到指定电平信号的时候,将第一连接端和第二连接端导通,从而检测电源401输出的检测电压信号通过第一连接端和第二连接端输入第一节点403,在未接收到指定电平信号的时候,将第一连接端和第二连接端截止,从而将检测电源401与第一节点403断开。作为一种实施方式,该检测开关405为第一晶体管器件,则检测开关405的第一控制端为第一晶体管器件的栅极,检测开关 405的第一连接端为第一晶体管器件的源极,检测开关405的第一连接端为第一晶体管器件的漏极。作为另一种实施方式,检测开关405的第一控制端为第一晶体管器件的栅极,检测开关405的第一连接端为第一晶体管器件的漏极,检测开关405的第一连接端为第一晶体管器件的源极。该指定电平信号可以是高电平信号,也可以是低电平信号,具体地,根据该第一晶体管器件的沟道不同,指定电平信号也可以不同。例如,第一晶体管器件为P型,则指定电平信号为低电平,第一晶体管器件为N型,则指定电平信号为高电平。作为一种实施方式,该第一晶体管器件可以是薄膜晶体管(Thin Film Transistor,TFT)。
作为一种实施方式,该指定电平信号可以由显示器的主芯片输出,即检测开关405与主芯片连接,具体地,检测开关405的第一控制端与主芯片连接。
另外,还可以在第一节点403与测量单元402之间设置一个开关,以便在需要确定所述第一节点403和所述第二节点404之间的发光单元连接状态的时候,再读取第一节点403的电压值。具体地,如图6所示,与图5相比,检测电路40还包括测量开关406,所述第一节点403通过所述测量开关406与所述测量单元402连接,所述测量开关406用于在接收到所述指定电平信号时将所述测量单元402与所述第一节点403导通。
作为一种实施方式,该测量开关406可以是三极管、晶体管、可控硅等具有控制端和两个连接端的电子器件,具体地,测量开关406包括第三连接端、第四连接端和第二控制端,所述第三连接端与第一节点403连接,第四连接端与测量单元402连接,第二控制端用于接收指定电平信号,第二控制端在接收到指定电平信号的时候,将第三连接端和第四连接端导通,从而测量单元402能够检测第一节点403的电压值,在未接收到指定电平信号的时候,将第三连接端和第四连接端截止,从而测量单元402与第一节点403断开。作为一种实施方式,该测量开关406为第二晶体管器件,则测量开关406的第二控制端为第二晶体管器件的栅极,测量开关406的第三连接端为第二晶体管器件的源极,测量开关406的第三连接端为第二晶体管器件的漏极。作为另一种实施方式,测量开关406的第二控制端为第二晶体管器件的栅极,测量开关406的第三连接端为第二晶体管器件的漏极,测量开关406的第三连接端为第二晶体管器件的源极。该指定电平信号可以是高电平信号,也可以是低电平信号,具体地,根据该第二晶体管器件的沟道不同,指定电平信号也可以不同。例如,第二晶体管器件为P型,则指定电平信号为低电平,第二晶体管器件为N型,则指定电平信号为高电平。作为一种实施方式,该第二晶体管器件也为TFT。
作为一种实施方式,用于导通检测开关405和测量开关406的指定电平信号为同一个电平信号,例如,可以均为低电平信号。则该指定电平信号可以是检测扫描信号中的某个时刻的信号,则当发光电路为多个的时候,且发光单元有多个的时候,多个所述发光电路构成发光阵列,则检测电路还可以包括控制单元,所述检测开关为多个,每个所 述发光电路的第一节点通过一个所述检测开关与所述检测电源连接。作为一种实施方式,该控制单元用户输入指定电平信号至每个检测开关,用于依次控制每个所述检测开关导通,以使所述测量单元依次确定每个所述发光电路的发光单元连接状态。
如图7所示,示出了发光阵列的示意图,该发光阵列由多个发光电路50构成,多个发光电路50成行列式分布。检测电路包括测量单元402和控制单元407,作为一种实施方式,该测量单元402和控制单元407均为显示器的主芯片内的电子元件。该检测电路包括多个检测信号线408和多个测量信号线409,每个所述检测信号线408均与所述控制单元407连接,每个所述测量信号线409均与所述测量单元402连接,同一行的所述检测开关与同一个所述检测信号线连接,同一列的所述发光电路的第一节点与同一个所述测量信号线连接;所述控制单元用于依次向不同的检测信号线输入所述指定电平信号。
作为一种实施方式,该控制单元依次向不同的检测信号线输入所述指定电平信号的实施方式,控制单元可以同时输入不同的检测扫描信号至每个检测信号线,具体地,每个检测信号线的检测扫描信号的不同之处在于各个检测扫描信号的相位不同,即各个检测扫描信号中的指定电平信号出现的时刻不同,从而能够控制各个检测开关依次导通。具体地,如图8所示,Scan1(n-1)、Scan1(n)和Scan1(n+1)分别为对应不同的行的检测信号线的检测扫描信号。具体地,Scan1(n-1)为第n-1行的检测信号线的检测扫描信号,Scan1(n)为第n行的检测信号线的检测扫描信号,Scan1(n+1)为第n+1行的检测信号线的检测扫描信号,其中,n为大于1的正整数。由图8所示的时序图可以看出,假设指定电平信号为低电平,各个检测扫描信号的低电平出现的时间点不同,因此,可以依据每个检测扫描信号的低电平出现的时间点将每一行的各个检测开关同时开启。
继续参考图7,每一列的发光电路共用一条测量信号线408,因此,结合每行的检测信号线409和每列的测量信号线408就能够对每个发光电路检测发光单元连接状态。
作为一种实施方式,发光电路还包括供电端,所述供电端用于输入第二供电信号至所述第一节点,所述第一供电信号和所述第二供电信号作为所述发光单元的发光电源。例如,该第一供电信号为上述的ELVSS,第二供电信号ELVDD。检测电路还包括:功能开关,所述供电端通过所述功能开关与所述第一节点连接,所述功能开关用于在所述检测电源向所述第一节点输入检测电压信号的情况下,将所述供电端与所述第一节点之间的连接断开。
如图9所示,该功能开关可以是第一晶体管T1和第六晶体管T6,在测量第一节点的测量电压值,以便根据所述测量电压值确定所述第一节点和所述第二节点之间的发光单元连接状态的时间段内,EMIT为高电平,从而将第一晶体管T1和第六晶体管T6截止,从而切断第一节点a与第二供电信号ELVDD之间的连接,避免第二供电信号ELVDD对测量结果的干扰。
如图9所示,检测开关为第七晶体管T7,测量开关为第八晶体管T8,即上述第一晶体管器件为第七晶体管T7,第二晶体管器件为第八晶体管T8。在检测发光单元连接状态的时候,检测电源输入的电信号为检测电压信号Vref,检测电压信号Vref的电压高于ELVSS,作为OLED器件的阳极电压,实现OLED器件(即发光单元D1)的发光。检测扫描信号Scan1为低电平的时候,第七晶体管T7和第八晶体管T8均导通。
在正常显示阶段,EMIT为低电平,第一晶体管T1和第六晶体管T6导通,检测电源输入的电信号为复位电压V1,如图2所示,此时发光单元正常发光。
作为一种实施方式,该检测电路的检测开关可以直接使用图2中的第七晶体管T7,检测电路的功能开关可以直接使用图2中的第六晶体管T6,或者检测电路的功能开关可以直接使用图2中的第一晶体管T1和第六晶体管T6。
作为另一种实施方式,针对图1那样的不具备第六晶体管T6和第七晶体管T7的发光电路,可以在该发光电路上增加检测电路所需要使用的电子元件。
作为一种实施方式,在检测阶段,检测扫描信号Scan1作为发光阵列的行开启信号之一,可以是由显示器的主芯片内的Gate Drive电路(GOA)产生,打开的方式为逐行开启,EMIT由显示器的主芯片的EMISSION Driver电路产生,控制OLED器件的发光时间。
作为一种实施方式,采用上述方法逐个测量每个发光电路的第一节点的测量电压值之后,将各个电压值存储在主芯片的内部,在此基础上获取并显示该各个电压值,具体地,可以通过下表的形式显示。
表1
  第1列 第2列 第3列 第N列
第1行 3.1 3.05 3.07 3.09
第2行 3.08 3.07 3.08 3.09
第3行 3.11 3.09 3.54 3.1
第N行 3.1 3.06 4.01 3.11
由上述表1可以看出,第N行第三列的发光单元的测量电压值为4.01,其与检测电源的输入电压相同,可以认为第N行第三列的发光单元的连接状态为未连接,需要说明的是,于本申请实施例中,两个数值相同的含义是二者的差值的绝对值较小,例如,该差值不大于指定差值,该指定差值可以根据实际比对的两个数值而确定,例如,测量电压值与检测电压值相同,是指二者的绝对差值不大于0.5,即该指定差值0.5,当然,也可以是其他的数值,在此不做限定。
第三行第三列的发光单元的测量电压值为3.54,则假设指定电压值为3.4,检测电压值为4.0,则3.54大于3.4且小于4.0,可以判定第三行第三列的发光单元的连接状态为不稳定连接。而其余的小于指定电压值的发光单元的连接状态为稳定连接。
作为一种实施方式,可以在上述表1中将未连接、稳定连接和不稳定连接分别对应不同的标识,以便起到对结果的明确表示的作用。其中,该标识可以是每个测量结果对应一个文字标签,以标记该测量结果对应的连接状态。另外,该标识也可以是颜色标识或者字体标识,例如,不同连接状态的测量结果的字体格式不同,或者,不同连接状态的测量结果对应的显示区域的底色不同。
因此,通过分析该测量电压值,能够确定第一节点和所述第二节点之间的发光单元连接状态,从而能够避免使用光致发光技术测量该发光单元连接状态时对发光单元的尺寸限定。在无需光致发光设备的情况下,实现了像素级别的Micro-LED坏点的检测,极大的提高了巨量检测的效率,降低检测的成本。
请参阅图10,图10示出了一种连接状态检测方法,该方法应用于上述检测电路,用于确定上述发光电路的所述第一节点和所述第二节点之间的发光单元连接状态。具体地,该方法包括:S1001至S1002。
S1001:在检测电源向所述第一节点输入检测电压信号的情况下,获取所述第一节点的测量电压值。
S1002:根据所述测量电压值确定所述第一节点和所述第二节点之间的发光单元连接状态。
作为一种实施方式,该根据所述测量电压值确定所述第一节点和所述第二节点之间的发光单元连接状态的实施方式可以是:判断所述测量电压值是否等于所述检测电压值,所述检测电压值为所述检测电压信号的电压值;如果所述测量电压值等于所述检测电压值,确定所述发光单元连接状态为未连接状态,所述未连接状态用于表征所述第一节点和所述第二节点之间未连接发光单元;如果所述测量电压值不等于所述检测电压值,确定所述发光单元连接状态为连接状态,所述连接状态用于表征所述第一节点和所述第二节点之间连接有发光单元。
作为另一种实施方式,方法还包括:如果所述测量电压值不等于所述检测电压值,判断所述测量电压值是否大于指定电压值且小于所述检测电压值;如果大于所述指定电压值且小于所述检测电压值,确定所述发光单元连接状态为不稳定连接。
作为又一种实施方式,方法还包括:如果所述测量电压值不等于所述检测电压值,判断所述测量电压值是否小于指定电压值;如果小于所述指定电压值,确定所述发光单元连接状态为稳定连接。
需要说明的是,上述方法未详细描述的部分,请参考前述实施例,在此不再赘述。
请参阅图11,其示出了本申请实施例提供的一种连接状态检测装置1100的结构框图,该装置可以包括:获取模块1101和确定模块1102。
获取模块1101用于在检测电源向所述第一节点输入检测电压信号的情况下,获取所述第一节点的测量电压值。
确定模块1102用于根据所述测量电压值确定所述第一节点和所述第二节点之间的发光单元连接状态。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,模块相互之间的耦合可以是电性,机械或其它形式的耦合。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
请参考图12,其示出了本申请实施例提供的一种显示面板的结构框图。该显示面板131包括发光电路1311和连接状态检测电路1312,连接状态检测电路1312用于检测发光电路1311的第一节点和所述第二节点之间的发光单元连接状态。具体地,发光电路1311和连接状态检测电路1312的实施方式可以参考前述实施例,其中,连接状态检测电路1312的实施方式可以参考前述的连接状态检测电路40的实施方式。作为一种实施方式,该显示面板131包括处理芯片,该处理芯片可以是上述的主芯片,用于获取所述第一节点的测量电压值,根据所述测量电压值确定所述第一节点和所述第二节点之间的发光单元连接状态,具体的实施方式可以参考前述实施例,在此不再赘述。
作为一种实施方式,该显示面板可以包括上述的第二基板。具体地,在第二基板上成功布置发光阵列之后,再经过封装等处理后得到显示面板。
请参考图13,其示出了本申请实施例提供的一种电子设备的结构框图。该电子设备100可以是智能手机、平板电脑、电子书等能够运行应用程序的电子设备。作为一种实施方式,该电子设备可以是包括上述检测电路的设备,具体地,该电子设备可以包括屏幕130,该屏幕130包括壳体和设置于壳体上的显示面板131。具体地,该屏幕的主处理器可以是上述的主芯片。本申请中的电子设备100可以包括一个或多个如下部件:处理器110、存储器120、以及一个或多个应用程序,其中一个或多个应用程序可以被存储在存储器120中并被配置为由一个或多个处理器110执行,一个或多个程序配置用于执行如前述方法实施例所描述的方法。作为一种实施方式,当电子设备包括屏幕的时候,该处理器110可以是上述的主芯片。
处理器110可以包括一个或者多个处理核。处理器110利用各种接口和线路连接整个电子设备100内的各个部分,通过运行或执行存储在存储器120内的指令、程序、代码集或指令集,以及调用存储在存储器120内的数据,执行电子设备100的各种功能和处理数据。可选地,处理器110可以采用数字信号处理(Digital Signal Processing,DSP)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、可编程逻辑阵列(Programmable Logic Array,PLA)中的至少一种硬件形式来实现。处理器110 可集成中央处理器(Central Processing Unit,CPU)、图像处理器(Graphics Processing Unit,GPU)和调制解调器等中的一种或几种的组合。其中,CPU主要处理操作系统、用户界面和应用程序等;GPU用于负责显示内容的渲染和绘制;调制解调器用于处理无线通信。可以理解的是,上述调制解调器也可以不集成到处理器110中,单独通过一块通信芯片进行实现。
存储器120可以包括随机存储器(Random Access Memory,RAM),也可以包括只读存储器(Read-Only Memory)。存储器120可用于存储指令、程序、代码、代码集或指令集。存储器120可包括存储程序区和存储数据区,其中,存储程序区可存储用于实现操作系统的指令、用于实现至少一个功能的指令(比如触控功能、声音播放功能、图像播放功能等)、用于实现下述各个方法实施例的指令等。存储数据区还可以存储电子设备100在使用中所创建的数据(比如电话本、音视频数据、聊天记录数据)等。
请参考图14,其示出了本申请实施例提供的一种计算机可读存储介质的结构框图。该计算机可读存储介质1400中存储有程序代码,所述程序代码可被处理器调用执行上述方法实施例中所描述的方法。
计算机可读存储介质1400可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。可选地,计算机可读存储介质1400包括非易失性计算机可读介质(non-transitory computer-readable storage medium)。计算机可读存储介质1400具有执行上述方法中的任何方法步骤的程序代码1410的存储空间。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。程序代码1410可以例如以适当形式进行压缩。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不驱使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (20)

  1. 一种连接状态检测电路,其特征在于,应用于显示面板的发光电路的检测,所述发光电路包括第一节点和第二节点,所述第一节点和所述第二节点用于与发光单元连接,所述第二节点接入第一供电信号;所述检测电路包括:
    检测电源,与所述第一节点连接;
    测量单元,与所述第一节点连接,用于在所述检测电源向所述第一节点输入检测电压信号的情况下,获取所述第一节点的测量电压值,根据所述测量电压值确定所述第一节点和所述第二节点之间的发光单元连接状态。
  2. 根据权利要求1所述的电路,其特征在于,所述测量单元还用于:
    判断所述测量电压值是否等于所述检测电压值,所述检测电压值为所述检测电压信号的电压值;
    如果所述测量电压值等于所述检测电压值,确定所述发光单元连接状态为未连接状态,所述未连接状态用于表征所述第一节点和所述第二节点之间未连接发光单元;
    如果所述测量电压值不等于所述检测电压值,确定所述发光单元连接状态为连接状态,所述连接状态用于表征所述第一节点和所述第二节点之间连接有发光单元。
  3. 根据权利要求2所述的电路,其特征在于,所述连接状态包括不稳定连接,所述测量单元还用于:
    如果所述测量电压值不等于所述检测电压值,判断所述测量电压值是否大于指定电压值且小于所述检测电压值;
    如果大于所述指定电压值且小于所述检测电压值,确定所述发光单元连接状态为不稳定连接。
  4. 根据权利要求3所述的电路,其特征在于,所述不稳定连接用于表征所述第一节点和所述第二节点之间连接的发光单元的接触良好,所述接触良好指的是所述第一节点和所述第二节点与所述发光单元之间焊接牢固且焊接面积大。
  5. 根据权利要求2所述的电路,其特征在于,所述连接状态包括稳定连接,所述测量单元还用于:
    如果所述测量电压值不等于所述检测电压值,判断所述测量电压值是否小于指定电压值;
    如果小于所述指定电压值,确定所述发光单元连接状态为稳定连接。
  6. 根据权利要求5所述的电路,其特征在于,所述稳定连接用于表征所述第一节点和所述第二节点之间连接的发光单元的接触不良,所述接触不良指的是所述所述第一节点和所述第二节点与所述发光单元之间焊接不牢固或者焊接面积小。
  7. 根据权利要求2所述的电路,其特征在于,所述未连接发光单元包括所述第一节点和所述第二节点中的至少一个与所述发光单元的连接断开。
  8. 根据权利要求1所述的电路,其特征在于,所述检测电路还包括:
    检测开关,所述检测电源通过所述检测开关与所述第一节点连接,所述检测开关用于在接收到指定电平信号时将所述检测电源与所述第一节点导通;
    所述检测电源用于在所述检测电源与所述第一节点导通时,向所述第一节点输入检测电压信号。
  9. 根据权利要求8所述的电路,其特征在于,所述发光单元为发光二极管,所述检测开关为第一晶体管器件,所述第一晶体管器件的源极与检测电源连接,所述第一晶体管器件的漏极与所述第一节点连接,所述第一晶体管器件的栅极用于接收指定电平信号,所述第一晶体管器件用于在所述第一晶体管器件的栅极接收到所述指定电平信号时将所述第一晶体管器件的源极与漏极导通。
  10. 根据权利要求8所述的电路,其特征在于,所述检测电路还包括:
    测量开关,所述第一节点通过所述测量开关与所述测量单元连接,所述测量开关用于在接收到所述指定电平信号时将所述测量单元与所述第一节点导通。
  11. 根据权利要求10所述的电路,其特征在于,所述发光单元为发光二极管,所述测量开关为第二晶体管器件,所述第二晶体管器件的源极与所述第一节点连接,所述第二晶体管器件的漏极与所述测量单元连接,所述第二晶体管器件的栅极用于接收所述指定电平信号,所述第二晶体管器件用于在所述第二晶体管器件的栅极接收到所述指定电平信号时将所述第二晶体管器件的源极与漏极导通。
  12. 根据权利要求8所述的电路,其特征在于,第一晶体管器件为薄膜晶体管。
  13. 根据权利要求8所述的电路,其特征在于,所述发光电路为多个,多个所述发光电路构成发光阵列,所述检测电路还包括控制单元,所述检测开关为多个,每个所述发光电路的第一节点通过一个所述检测开关与所述检测电源连接;
    所述控制单元用于依次控制每个所述检测开关导通,以使所述测量单元依次确定每个所述发光电路的发光单元连接状态。
  14. 根据权利要求13所述的电路,其特征在于,所述发光阵列为通过转移操作在第二基板上形成的阵列,所述转移操作为将第一基板上的多个发光单元向所述第二基板上转移。
  15. 根据权利要求13所述的电路,其特征在于,所述检测电路还包括:多个检测信号线和多个测量信号线;
    每个所述检测信号线均与所述控制单元连接,每个所述测量信号线均与所述测量单元连接,同一行的所述检测开关与同一个所述检测信号线连接,同一列的所述发光电路的第一节点与同一个所述测量信号线连接;所述控制单元用于依次向不同的检测信号线输入所述指定电平信号。
  16. 根据权利要求1所述的电路,其特征在于,所述发光电路还包括供电端,所述 供电端用于输入第二供电信号至所述第一节点,所述第一供电信号和所述第二供电信号作为所述发光单元的发光电源;所述检测电路还包括:
    功能开关,所述供电端通过所述功能开关与所述第一节点连接,所述功能开关用于在所述检测电源向所述第一节点输入检测电压信号的情况下,将所述供电端与所述第一节点之间的连接断开。
  17. 根据权利要求1-16任一所述的电路,其特征在于,所述发光单元为微型发光二极管。
  18. 一种显示面板,其特征在于,包括发光电路和权利要求1-17任一所述的连接状态检测电路,所述发光电路包括第一节点和第二节点,所述第一节点和所述第二节点用于与发光单元连接,所述第二节点接入第一供电信号。
  19. 根据权利要求18所述的显示面板,其特征在于,所述发光电路为多个,多个所述发光电路构成发光阵列,所述发光阵列位于所述显示面板的第二基板上,所述发光阵列为通过转移操作在所述第二基板上形成的阵列,所述转移操作为将第一基板上的多个发光单元向所述第二基板上转移,所述发光单元为微型发光二极管。
  20. 一种连接状态检测方法,其特征在于,应用于显示面板的发光电路的检测,所述发光电路包括第一节点和第二节点,所述第一节点和所述第二节点用于与发光单元连接,所述第二节点接入第一供电信号,所述方法包括:
    在检测电源向所述第一节点输入检测电压信号的情况下,获取所述第一节点的测量电压值;
    根据所述测量电压值确定所述第一节点和所述第二节点之间的发光单元连接状态。
PCT/CN2021/114472 2020-10-19 2021-08-25 连接状态检测电路、方法及显示面板 WO2022083274A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011119534.8 2020-10-19
CN202011119534.8A CN112327222B (zh) 2020-10-19 2020-10-19 连接状态检测电路、方法及显示面板

Publications (1)

Publication Number Publication Date
WO2022083274A1 true WO2022083274A1 (zh) 2022-04-28

Family

ID=74313228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114472 WO2022083274A1 (zh) 2020-10-19 2021-08-25 连接状态检测电路、方法及显示面板

Country Status (2)

Country Link
CN (1) CN112327222B (zh)
WO (1) WO2022083274A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112327222B (zh) * 2020-10-19 2022-09-16 Oppo广东移动通信有限公司 连接状态检测电路、方法及显示面板
CN114299861B (zh) 2021-12-30 2023-06-16 上海中航光电子有限公司 一种线路面板及其相关方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101059537A (zh) * 2006-04-18 2007-10-24 聚积科技股份有限公司 静默电流侦测方法及其装置
GB2449949B (en) * 2007-06-08 2009-09-23 Macroblock Inc Driving apparatus for reporting states of light-emitting diode channels in a binary mode
CN102196623A (zh) * 2010-03-16 2011-09-21 登丰微电子股份有限公司 具有电路检测功能的发光二极管驱动电路与电力转换电路
CN102565515A (zh) * 2010-12-21 2012-07-11 三星电机株式会社 发光模块的过电流检测电路
US20180180447A1 (en) * 2015-08-28 2018-06-28 Denso Corporation Disconnection detector
CN110857966A (zh) * 2018-08-20 2020-03-03 三星显示有限公司 布线断开检测电路和有机发光显示装置
CN112327222A (zh) * 2020-10-19 2021-02-05 Oppo广东移动通信有限公司 连接状态检测电路、方法及显示面板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI610459B (zh) * 2015-05-13 2018-01-01 友達光電股份有限公司 微型發光二極體裝置與其製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101059537A (zh) * 2006-04-18 2007-10-24 聚积科技股份有限公司 静默电流侦测方法及其装置
GB2449949B (en) * 2007-06-08 2009-09-23 Macroblock Inc Driving apparatus for reporting states of light-emitting diode channels in a binary mode
CN102196623A (zh) * 2010-03-16 2011-09-21 登丰微电子股份有限公司 具有电路检测功能的发光二极管驱动电路与电力转换电路
CN102565515A (zh) * 2010-12-21 2012-07-11 三星电机株式会社 发光模块的过电流检测电路
US20180180447A1 (en) * 2015-08-28 2018-06-28 Denso Corporation Disconnection detector
CN110857966A (zh) * 2018-08-20 2020-03-03 三星显示有限公司 布线断开检测电路和有机发光显示装置
CN112327222A (zh) * 2020-10-19 2021-02-05 Oppo广东移动通信有限公司 连接状态检测电路、方法及显示面板

Also Published As

Publication number Publication date
CN112327222A (zh) 2021-02-05
CN112327222B (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
WO2022083274A1 (zh) 连接状态检测电路、方法及显示面板
CN110415631B (zh) 显示面板、显示装置及检测方法
CN106531074B (zh) 有机发光像素驱动电路、驱动方法以及有机发光显示面板
CN105895020B (zh) Oled显示装置驱动系统及oled显示装置驱动方法
WO2018218742A1 (zh) 像素驱动电路及其修复方法与显示装置
US10699643B2 (en) Pixel driving compensation circuit, driving compensation method therefor and display device
CN107170400B (zh) 一种电致发光显示面板及其检测方法、显示装置
CN105632383B (zh) 一种测试电路、测试方法、显示面板及显示装置
CN110364119B (zh) 像素电路及其驱动方法、显示面板
CN109817134B (zh) 有机发光二极管显示基板及其驱动方法
CN110211517B (zh) 显示基板及其检测方法、显示装置
TWI460704B (zh) 顯示器及其驅動方法
CN101661696A (zh) 显示装置及其驱动方法
CN106847179A (zh) 一种像素补偿电路及显示装置
CN107731149B (zh) 显示面板的驱动方法、驱动电路、显示面板和显示装置
CN107731143B (zh) Amoled显示器的测试电路和测试方法、amoled显示器
CN103531152A (zh) 一种显示控制方法及装置
CN111243515A (zh) 像素电路、显示面板和像素电路的驱动方法
CN109509431A (zh) 像素电路及其驱动方法、显示装置
CN109616052A (zh) 显示面板、像素电路及其驱动方法
CN211044987U (zh) 显示面板及显示装置
US11594160B2 (en) Pixel detection circuit, display apparatus, and detection method
CN202939946U (zh) 主动式有机发光显示器
WO2020119186A1 (zh) 显示面板、像素电路及其驱动方法
CN114283738A (zh) 像素电路及其驱动方法和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21881693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21881693

Country of ref document: EP

Kind code of ref document: A1