WO2022083163A1 - 动力电池和驾驶设备 - Google Patents

动力电池和驾驶设备 Download PDF

Info

Publication number
WO2022083163A1
WO2022083163A1 PCT/CN2021/102942 CN2021102942W WO2022083163A1 WO 2022083163 A1 WO2022083163 A1 WO 2022083163A1 CN 2021102942 W CN2021102942 W CN 2021102942W WO 2022083163 A1 WO2022083163 A1 WO 2022083163A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
copper bar
module assembly
voltage
copper bars
Prior art date
Application number
PCT/CN2021/102942
Other languages
English (en)
French (fr)
Inventor
王明
谷文博
王君君
姜辉
宋博涵
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2022083163A1 publication Critical patent/WO2022083163A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the technical field of power batteries, for example, to a power battery and driving equipment.
  • the high and low voltage connection system of the power battery carries the functions of the high voltage and low voltage systems of the power battery, circuit protection, communication, sampling and other functions, and is an important part of the safety design of the power battery.
  • the power battery in the related art usually uses long copper bars to form a high-pressure circuit, and the electromagnetic interference is large, which is easy to affect the battery module, and the fuse in the power battery is arranged inside the power battery, causing maintenance inconvenience.
  • the present application provides a power battery and a driving device, which solve the problems of large electromagnetic interference caused by the use of long copper bars to form a high-voltage circuit in the power battery in the related art, and maintenance difficulties caused by the fuse of the power battery being arranged inside the power battery. question.
  • An embodiment provides a power battery, the power battery includes a high-voltage system, a low-voltage system, and a module assembly; wherein the high-voltage system includes a plurality of soft copper bars, a plurality of hard copper bars, and at least one fuse; The lengths of the soft copper bars and the hard copper bars are less than a preset length; the high-voltage system is electrically connected to the module assembly through the soft copper bars and the hard copper bars; the fuse is externally located on the module assembly and electrically connected to the module assembly through the hard copper bar; the low-voltage system includes a connecting wire harness and a distributed battery management system controller, the distributed battery management system controls The device is arranged on the module assembly, and is electrically connected to the module assembly through the connecting wire harness;
  • the module assembly includes a plurality of battery modules, the plurality of battery modules are sequentially connected in a serpentine shape, and the first battery module and the last battery module in the plurality of battery modules are in phase with each other. Neighbor settings.
  • the distributed battery management system controller includes a master controller, a first slave controller and a second slave controller; the first slave controller and the second slave controller pass through the The connecting harness is electrically connected with the main controller;
  • the first slave controller and the second slave controller respectively include a plurality of sampling chips; each of the sampling chips correspondingly collects a preset number of power information of the battery modules.
  • the fuse is disposed between the two sampling chips.
  • the high-voltage system includes at least one first hard copper bar and at least one second hard copper bar;
  • the first hard copper bar and the second hard copper bar are arranged to electrically connect the fuse and the module assembly.
  • the preset number of the battery modules collected corresponding to each of the sampling chips are disposed adjacent to each other.
  • the high-voltage system further includes a high-voltage power distribution box
  • the plurality of soft copper bars include a first soft copper bar, a second soft copper bar, a third soft copper bar, a fourth soft copper bar, a Five soft copper bars and a sixth soft copper bar
  • the high-voltage power distribution box is electrically connected to the module assembly through the first soft copper bar and the second soft copper bar
  • the high-voltage power distribution box passes through The third soft copper bar, the fourth soft copper bar, the fifth soft copper bar, and the sixth soft copper bar are electrically connected to the high-voltage interface of the whole package of the power battery.
  • the plurality of hard copper bars include a plurality of third hard copper bars, a plurality of fourth hard copper bars, a plurality of fifth hard copper bars and a plurality of sixth hard copper bars;
  • the third hard copper bar, the fourth hard copper bar, the fifth hard copper bar, and the sixth hard copper bar are arranged to electrically connect the battery modules.
  • the module assembly includes n battery modules, the first slave controller and the second slave controller each include m sampling chips; each sampling chip It is set to collect the power information of the p battery modules, where p*2m ⁇ n, and n, m, and p are integers greater than or equal to 1.
  • the module assembly includes 24 battery modules; the first slave controller and the second slave controller respectively include four sampling chips; each sampling chip Collect power information of the three battery modules.
  • An embodiment of the present application further provides a driving device, where the driving device includes the above-mentioned power battery.
  • FIG. 1 is a structural diagram of a power battery provided by an embodiment of the present application.
  • FIG. 2 is a structural diagram of a high-voltage system provided by an embodiment of the present application.
  • FIG. 3 is a structural diagram of a low-voltage system provided by an embodiment of the present application.
  • FIG. 4 is a structural diagram of a module assembly provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a fuse provided between sampling chips according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of abnormal disconnection of a fuse provided by an embodiment of the present application.
  • FIG. 7 is a topology structure of a sampling chip provided by an embodiment of the present application.
  • FIG. 1 is a structural diagram of a power battery provided by an embodiment of the present application.
  • FIG. 2 is a structural diagram of a high-voltage system provided by an embodiment of the present application.
  • the power battery includes a high-voltage system 10, a low-voltage system 20 and a module assembly 30;
  • the high-voltage system 10 includes a plurality of soft copper bars, a plurality of hard copper bars and at least one fuse 100; the soft copper bars and the hard copper bars The lengths of the copper bars are respectively smaller than the preset length; the high-voltage system 10 is electrically connected to the module assembly 30 through the soft copper bars and the hard copper bars;
  • the group assembly 30 is electrically connected.
  • the power battery includes a high-voltage system, a low-voltage system and a module assembly; the high-voltage system includes a plurality of soft copper bars, a plurality of hard copper bars and at least one fuse.
  • the technical problem of large electromagnetic interference caused by using long copper bars to form a high-voltage circuit is solved.
  • the technical problem of inconvenient maintenance caused by placing the fuse outside the power battery is solved.
  • the present application achieves the technical effect of reducing the low-frequency magnetic field emission of the power battery, reducing the electromagnetic interference to the battery module of the power battery, and realizing the technical effect of facilitating the maintenance of the fuse.
  • the high-voltage system 10 includes at least one first hard copper bar 11 and at least one second hard copper bar 12 ; the first hard copper bar 11 and the second hard copper bar 12 are arranged to realize Electrical connection between fuse 100 and module assembly 30 .
  • the high-voltage system 10 further includes a high-voltage power distribution box 110 , a first soft copper bar 111 , a second soft copper bar 112 , a third soft copper bar 113 , and a fourth soft copper bar 114 .
  • the high-voltage power distribution box 110 is electrically connected to the module assembly 30 through the first soft copper bar 111 and the second soft copper bar 112;
  • the three soft copper bars 113 , the fourth soft copper bar 114 , the fifth soft copper bar 115 , and the sixth soft copper bar 116 are electrically connected to the high-voltage interface of the whole package of the power battery.
  • the high-voltage system 10 further includes a plurality of third hard copper bars 13 , a plurality of fourth hard copper bars 14 , a plurality of fifth hard copper bars 15 and a plurality of sixth hard copper bars 15 .
  • the row 16; the third hard copper row 13, the fourth hard copper row 14, the fifth hard copper row 15, and the sixth hard copper row 16 are arranged to electrically connect the battery modules.
  • the high voltage system 10 includes a plurality of soft copper bars and a plurality of hard copper bars.
  • the lengths of the soft copper bars and the hard copper bars are smaller than the lengths of the long copper bars in the related art, so as to realize the connection between the high-voltage system 10 and the module assembly 30 , and realize the connection between each battery module in the module assembly 30 . Connection.
  • the arrangement of the mixed use of soft copper bars and hard copper bars in the high-voltage system 10 makes the electrical connection form of the power battery more convenient; and the soft copper bars belong to the laminated busbar, which can greatly reduce the inductance value of the high-voltage loop, Reduce electromagnetic interference caused by high-voltage current; among the soft copper bars and hard copper bars of the high-voltage system 10, the longest soft copper bar is the third soft copper bar 113 shown in FIG. 2, and the longest hard copper bar is The sixth hard copper bar 16 shown in FIG. 2, but the lengths of the two are short.
  • the soft copper bar and the hard copper bar with short lengths to form a high-voltage circuit, the low-frequency magnetic field emission is reduced, and the “suppression source” In this way, the electromagnetic interference of sensitive components such as BMS (battery management system) in the power battery is reduced.
  • BMS battery management system
  • FIG. 3 is a structural diagram of a low-voltage system provided by an embodiment of the present application.
  • the low-voltage system 20 includes a connecting wire harness 21 and a distributed battery management system controller 22 .
  • the distributed battery management system controller 22 is arranged on the module assembly 30 and is connected to the module assembly through the connecting wire harness 21 . into 30 electrical connections.
  • the distributed battery management system controller 22 includes a master controller 221 , a first slave controller 222 and a second slave controller 223 ; the first slave controller 222 and the second slave controller 222
  • the controller 334 is electrically connected to the main controller 221 through the connection harness 21 respectively; the first slave controller 222 and the second slave controller 223 include a plurality of sampling chips; one sampling chip corresponds to collecting the power information of a preset number of battery modules .
  • a sampling chip usually has 12-16 sampling channels, and each sampling channel can correspondingly collect corresponding data of the battery cells in the battery module.
  • the multiple sampling chips in the first slave controller 222 and the second slave controller 223 collect each item of data of the battery module in real time, and transmit the collected data to the master controller 221 through the connection harness 21 for analysis.
  • the device 221 can communicate with the vehicle system through the connection harness 21, and transmit the corresponding analysis data to the vehicle system.
  • FIG. 4 is a structural diagram of a module assembly provided by an embodiment of the present application.
  • the module assembly 30 includes a plurality of battery modules, and the plurality of battery modules are sequentially connected in a serpentine shape, and the first battery module and the last battery module of the plurality of battery modules are Group adjacent settings.
  • the battery module can be a standard VDA355 module.
  • VDA355 modules there are 24 VDA355 modules as an example.
  • Each battery module is marked with a circular frame. It can be seen that the 24 battery modules are serpentine in the order of numbering. connection, among which, the first battery module is the main negative of the high-voltage electrical connection of the battery system, the 24th battery module is the main positive of the high-voltage electrical connection of the battery system, the first battery module 1 and the 24th battery Modules are set adjacent to each other.
  • the battery modules are arranged in such an arrangement, so that the length of the hard copper bars used for high voltage connection is shortened, thereby avoiding the problem of large electromagnetic interference caused by the use of long copper bars in the related art for high voltage connection with polarity.
  • the module assembly 30 includes n battery modules, and the first slave controller 222 and the second slave controller 223 both include m sampling chips; Power information, where p*2m ⁇ n, and n, m, and p are integers greater than or equal to 1.
  • the number n of battery modules in the module assembly 30 can be arbitrarily set as required, and the number of sampling channels in the sampling chip can be reserved, and not necessarily all sampling channels correspond to the sampling in one battery module. Therefore, p*2m can be greater than the number of battery modules n.
  • the number of slave controllers can also be set as required.
  • two slave controllers are exemplarily set, namely, a first slave controller 222 and a second slave controller 223 .
  • FIG. 5 is a schematic diagram of a fuse provided between sampling chips according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of abnormal disconnection of a fuse according to an embodiment of the present application.
  • the fuse 100 is disposed between two sampling chips.
  • a battery module includes a plurality of battery cells
  • a sampling chip includes a plurality of sampling channels
  • each sampling channel collects corresponding data of a battery cell.
  • 5 and 6 only exemplarily draw a schematic diagram of three sampling channels corresponding to each sampling chip. In fact, each sampling chip has more than three sampling channels, which will not be repeated here.
  • the arrangement position of the fuse 100 is selected between two battery modules connected in series. When the abnormal state of the battery module causes the fuse 100 to be disconnected, the total voltage of the battery modules on both sides of the fuse 100 is the total voltage of the power battery. Half of the voltage can reduce the danger of high voltage.
  • the disconnection time of the fuse 100 is usually in the millisecond level, and the disconnection process is a process of increasing the internal resistance, and the internal resistance will change from the milliohm level to the megohm level.
  • the disconnection process of the fuse 100 because the current does not have abrupt change, the voltage across the fuse 100 will increase instantaneously, and the increased voltage will be applied between the two sampling chips, and will not act on the sampling chip.
  • the generated reverse voltage will not cause damage to the sampling chip, thereby solving the problem of damage to the sampling chip caused by abnormal disconnection of the fuse 100 .
  • the number of channels of the mainstream sampling chip of the battery controller is 12 to 16, and the number of channels increases year by year, and the number of channels of the battery cell in the battery module takes into account the requirements of platformization and standardization.
  • the number of channels generally does not exceed 10.
  • the 24 battery modules are sequentially numbered 1-24. Since each slave controller in this application includes 4 sampling chips, each sampling chip has 48 Each sampling chip collects the corresponding data of three battery modules. Therefore, in order to ensure that the fuse 100 is arranged between the two sampling chips, it is necessary to separate three battery modules into a group, and the fuse 100 needs to be separated into a group. It is arranged between any two groups of battery modules, so that the fuse 100 can be guaranteed to be arranged between two sampling chips. 1 and 2, in this application, the fuse 100 is arranged between the battery module 12 and the battery module 13, that is, the battery module 1, the battery module 2 and the battery module 3 are a group, and the battery module 4.
  • Battery module 5 and battery module 6 are a group, battery module 7, battery module 8 and battery module 9 are a group, battery module 10, battery module 11 and battery module 12 are a group , battery module 13, battery module 14 and battery module 15 are a group, battery module 16, battery module 17 and battery module 18 are a group, battery module 19, battery module 20 and battery module 21 is a group, the battery module 22, the battery module 23 and the battery module 24 are a group, each group of battery modules is collected data correspondingly by a sampling chip, and the fuse 100 is arranged on the battery module 12 and the battery module 13. It can be ensured that the fuse 100 is arranged between the two sampling chips. Correspondingly, the fuse 100 can also be arranged between the battery module 9 and the battery module 10, which will not be repeated here.
  • the fuse 100 is arranged between the two sampling chips, and the reverse voltage generated when the fuse 100 is disconnected will not act on the channel of the sampling chip from the controller in the BMS, which solves the problem of abnormal disconnection of the fuse 100 from the source.
  • each sampling chip collects corresponding data of three battery modules.
  • the fuse 100 is arranged between the two groups of battery modules; correspondingly, if each sampling chip collects the corresponding data of five battery modules, it is necessary to separate every five battery modules into a group, and the fuse If the fuse 100 is arranged between any two groups of battery modules, it can be ensured that the fuse 100 is arranged between the two sampling chips. That is, when each sampling chip can collect the corresponding data of a preset number of battery modules, each preset number of battery modules needs to be divided into one group, and the fuse 100 is arranged between any two groups of battery modules. Can.
  • FIG. 7 is a topology structure of a sampling chip provided by an embodiment of the present application.
  • a preset number of battery modules collected corresponding to one sampling chip are arranged adjacent to each other.
  • the topology of the sampling chip is from low to high, which is consistent with the battery high-voltage topology.
  • the sampling chip in each slave controller is set on the battery sub-board.
  • Figure 7 exemplarily shows that one battery sub-board is provided with two sampling chips. In the actual setting, other numbers of sampling chips can be set as required. .
  • the setting sequence of the sampling chips in the related art is that the sampling chip 1 on the battery sub-board 1 collects the data of the battery module 3, the sampling chip 2 collects the data of the battery module 4, and the sampling chip 3 on the battery sub-board 2 collects the data of the battery module.
  • the copper bar in the middle of the battery module is connected last to avoid the danger of high voltage. After assembling the high-voltage copper bar in the middle of the battery, the battery module is equivalent to charging the isolation capacitor in the battery sub-board.
  • the battery sub-boards with sampling chips are arranged in sequence, and the sampling chips on each battery sub-board are also arranged in sequence, from the first battery module to the last battery module. That is, the sampling chip 1 on the battery sub-board 1 collects the data of the battery module 1, the sampling chip 2 collects the data of the battery module 2, the sampling chip 3 on the battery sub-board 2 collects the data of the battery module 3, and the sampling chip 4 The data of the battery module 4 is collected, the sampling chip 5 on the battery sub-board 3 collects the data of the battery module 5 , and the sampling chip 6 collects the data of the battery module 6 .
  • the mixed arrangement of soft and hard copper bars in the high-voltage system makes the electrical connection form of the power battery more convenient; and the soft copper bars belong to the laminated busbars, which can greatly reduce the inductance value of the high-voltage circuit and reduce the high-voltage current.
  • the fuse is externally placed on the module assembly and is arranged between the sampling chips to solve the problem of damage to the sampling chip caused by the fuse and facilitate maintenance.
  • the topology of the sampling chip on the same battery sub-board is consistent with the high-voltage topology of the power battery. It solves the problem that the modules corresponding to different sampling chips of the same battery sub-board may not be connected when they are arranged according to the battery modules, and a transient high voltage is generated during the connection, causing damage to the sampling chips.
  • An embodiment of the present application further provides a driving device, where the driving device includes the power battery described in any of the foregoing embodiments.
  • the driving device provided by an embodiment of the present application includes the power battery in the above embodiment, so the driving device provided by the embodiment of the present application also has the beneficial effects described in the above embodiment, which will not be repeated here.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection, or It can be connected in one piece; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be internal communication between two components.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection, or It can be connected in one piece; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be internal communication between two components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种动力电池和驾驶设备,动力电池包括高压系统、低压系统以及模组总成;高压系统包括多个软铜排、多个硬铜排以及至少一个熔断器;所述软铜排和所述硬铜排的长度小于预设长度;所述高压系统通过所述软铜排、所述硬铜排与所述模组总成电连接;所述熔断器外置于所述模组总成上,并通过所述硬铜排与所述模组总成电连接;所述低压系统包括连接线束和分布式电池管理系统控制器,所述分布式电池管理系统控制器设置于所述模组总成上,并通过所述连接线束与所述模组总成电连接;所述模组总成包括多个电池模组,多个所述电池模组呈蛇形顺次连接,且多个所述电池模组中的第一个电池模组和最后一个电池模组相邻设置。

Description

动力电池和驾驶设备
本申请要求申请日为2020年10月20日、申请号为202011127708.5的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及动力电池技术领域,例如涉及一种动力电池和驾驶设备。
背景技术
随着新能源汽车产业的不断发展壮大,社会上的新能源汽车保有量快速增长,新能源汽车安全也随着保有量的增加引起广大消费者、生产厂商的加倍重视。动力电池作为新能源汽车的核心高压、高能量部件,需要同时具备高安全性的特点,才可以确保广大消费者的人身财产安全。动力电池的高低压连接系统,承载着动力电池高压、低压系统的连接、断路保护、通讯、采样等功能,是动力电池安全设计的重要环节。
但是,相关技术中的动力电池通常使用长铜排构成高圧回路,电磁干扰较大,容易对电池模组产生影响,且动力电池中的熔断器设置于动力电池内部,造成维护不便。
发明内容
本申请提供了一种动力电池和驾驶设备,解决了相关技术中的动力电池中使用长铜排构成高压回路导致的电磁干扰大、以及动力电池的熔断器设置于动力电池内部造成的维护困难的问题。
一实施例提供了一种动力电池,所述动力电池包括高压系统、低压系统以及模组总成;其中,所述高压系统包括多个软铜排、多个硬铜排以及至少一个熔断器;所述软铜排和所述硬铜排的长度小于预设长度;所述高压系统通过所述软铜排、所述硬铜排与所述模组总成电连接;所述熔断器外置于所述模组总成上,并通过所述硬铜排与所述模组总成电连接;所述低压系统包括连接线束和分布式电池管理系统控制器,所述分布式电池管理系统控制器设置于所述模组总成上,并通过所述连接线束与所述模组总成电连接;
所述模组总成包括多个电池模组,多个所述电池模组呈蛇形顺次连接,且 多个所述电池模组中的第一个电池模组和最后一个电池模组相邻设置。
在一实施例中,所述分布式电池管理系统控制器包括主控制器、第一从控制器和第二从控制器;所述第一从控制器和所述第二从控制器通过所述连接线束与所述主控制器电连接;
所述第一从控制器和所述第二从控制器分别包括多个采样芯片;每一所述采样芯片对应采集预设数量的所述电池模组的电量信息。
在一实施例中,所述熔断器设置于两个所述采样芯片之间。
在一实施例中,所述高压系统包括至少一个第一硬铜排和至少一个第二硬铜排;
所述第一硬铜排、所述第二硬铜排设置为使所述熔断器与所述模组总成之间电连接。
在一实施例中,每一所述采样芯片所对应采集的所述预设数量的所述电池模组相邻设置。
在一实施例中,所述高压系统还包括高压配电盒,所述多个软铜排包括第一软铜排、第二软铜排、第三软铜排、第四软铜排、第五软铜排和第六软铜排;所述高压配电盒通过所述第一软铜排、所述第二软铜排与所述模组总成电连接;所述高压配电盒通过所述第三软铜排、所述第四软铜排、所述第五软铜排、所述第六软铜排与动力电池整包高压接口电连接。
在一实施例中,所述多个硬铜排包括多个第三硬铜排、多个第四硬铜排、多个第五硬铜排和多个第六硬铜排;
所述第三硬铜排、所述第四硬铜排、所述第五硬铜排、所述第六硬铜排设置为使所述电池模组间电连接。
在一实施例中,所述模组总成包括n个电池模组,所述第一从控制器和所述第二从控制器中均包含m个所述采样芯片;每个所述采样芯片设置为采集p个所述电池模组的电量信息,其中,p*2m≥n,n、m、p为大于等于1的整数。
在一实施例中,所述模组总成包括24个电池模组;所述第一从控制器和所述第二从控制器中分别包含四个所述采样芯片;每个所述采样芯片采集三个所述电池模组的电量信息。
本申请一实施例还提供了一种驾驶设备,所述驾驶设备包括上述的动力电池。
附图说明
图1是本申请一实施例提供的一种动力电池的结构图;
图2是本申请一实施例提供的高压系统的结构图;
图3是本申请一实施例提供的低压系统的结构图;
图4是本申请一实施例提供的模组总成的结构图;
图5是本申请一实施例提供的熔断器设置于采样芯片之间的示意图;
图6是本申请一实施例提供的熔断器异常断开的示意图;
图7是本申请一实施例提供的采样芯片的拓扑结构。
具体实施方式
本申请的说明书和权利要求书及附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于限定特定顺序。本申请下述每个实施例可以单独执行,每个实施例之间也可以相互结合执行,本申请实施例对此不作具体限制。
图1是本申请一实施例提供的一种动力电池的结构图。图2是本申请一实施例提供的高压系统的结构图。
如图1所示,动力电池包括高压系统10、低压系统20以及模组总成30;高压系统10包括多个软铜排、多个硬铜排以及至少一个熔断器100;软铜排和硬铜排的长度分别小于预设长度;高压系统10通过软铜排、硬铜排与模组总成30电连接;熔断器100外置于模组总成30上,并通过硬铜排与模组总成30电连接。
动力电池包括高压系统、低压系统以及模组总成;高压系统包括多个软铜排、多个硬铜排以及至少一个熔断器。通过使用长度小于预设长度的软铜排和硬铜排相结合的方式进行高压连接,解决了使用长铜排构成高压回路造成的电磁干扰较大的技术问题,通过将熔断器外置于模组总成上,解决了将熔断器外置于动力电池内部导致的维护不便的技术问题。本申请实现了减小动力电池的低频磁场发射、降低了对动力电池的电池模组的电磁干扰的技术效果,以及实现了熔断器便于维护的技术效果。
在一实施例中,如图2所示,高压系统10包括至少一个第一硬铜排11和至少一个第二硬铜排12;第一硬铜排11和第二硬铜排12设置为实现熔断器100和模组总成30之间的电连接。
在一实施例中,如图2所示,高压系统10还包括高压配电盒110、第一软铜排111、第二软铜排112、第三软铜排113、第四软铜排114、第五软铜排115和第 六软铜排116;高压配电盒110通过第一软铜排111、第二软铜排112与模组总成30电连接;高压配电盒110通过第三软铜排113、第四软铜排114、第五软铜排115、第六软铜排116与动力电池整包的高压接口电连接。
在一实施例中,如图2所示,高压系统10还包括多个第三硬铜排13、多个第四硬铜排14、多个第五硬铜排15和多个第六硬铜排16;第三硬铜排13、第四硬铜排14、第五硬铜排15、第六硬铜排16设置为对电池模组之间进行电连接。
在一实施例中,参见图1和图2,高压系统10包括多个软铜排和多个硬铜排。软铜排和硬铜排的长度小于相关技术中的长铜排的长度,实现高压系统10与模组总成30之间的连接,以及实现模组总成30中每个电池模组之间的连接。高压系统10中软铜排及硬铜排混合使用的布置方式,使动力电池的电连接形式更加方便;且软铜排属于叠层母排,叠层母排可以大大降低的高压回路的电感值,减少高压电流所产生的电磁干扰;在高压系统10的软铜排、硬铜排中,最长的软铜排为图2中所示的第三软铜排113,最长的硬铜排为图2中所示的第六硬铜排16,但两者的长度较短,通过使用长度较短的软铜排及硬铜排构成高压回路,减少了低频磁场发射,通过“抑源”的方式,减少了动力电池中BMS(电池管理系统)等敏感元器件所受的电磁干扰。
图3是本申请一实施例提供的低压系统的结构图。
参见图1和图3,低压系统20包括连接线束21和分布式电池管理系统控制器22,分布式电池管理系统控制器22设置于模组总成30上,并通过连接线束21与模组总成30电连接。
在一实施例中,如图3所示,分布式电池管理系统控制器22包括主控制器221、第一从控制器222和第二从控制器223;第一从控制器222、第二从控制器334分别通过连接线束21与主控制器221电连接;第一从控制器222和第二从控制器223包括多个采样芯片;一个采样芯片对应采集预设数量的电池模组的电量信息。
在一实施例中,一个采样芯片中通常具有12-16个采样通道,每个采样通道都能够对应采集电池模组中的电池单体的相应数据。第一从控制器222和第二从控制器223中的多个采样芯片实时采集电池模组的每项数据,并将采集到的数据通过连接线束21传送至主控制器221进行分析,主控制器221能够通过连接线束21同整车系统进行通信,并将相应的分析数据传送至整车系统。
图4是本申请一实施例提供的模组总成的结构图。
参见图1和图4,模组总成30包括多个电池模组,多个电池模组呈蛇形顺次 连接,且多个电池模组中的第一个电池模组和最后一个电池模组相邻设置。
在一实施例中,电池模组可以为标准的VDA355模组。图4中以设有24个VDA355模组为例,分别在每个电池模组上用圆形框进行标号,可以看到,24个电池模组按照编号顺序呈蛇形顺次进行高压电连接,其中,第一个电池模组为电池系统高压电连接的主负,第24个电池模组为电池系统高压电连接的主正,第一个电池模组1和第24个电池模组相邻设置。采用这样的排列方式设置电池模组,使得进行高压连接所使用的硬铜排的长度得到了缩短,从而避免了使用相关技术中的长铜排极性高压连接导致的电磁干扰较大的问题。
在一实施例中,模组总成30包括n个电池模组,第一从控制器222和第二从控制器223中均包含m个采样芯片;每个采样芯片采集p个电池模组的电量信息,其中,p*2m≥n,n、m、p为大于等于1的整数。
在一实施例中,模组总成30中的电池模组数量n可以根据需要任意设置,采样芯片中的采样通道数量可以有预留,并不一定所有的采样通道对应采集一个电池模组中的电池单体的数据,因此,p*2m可以大于电池模组n的数量。
在一实施例中,参见图4,模组总成包括24个电池模组;第一从控制器222和第二从控制器223中分别包含四个采样芯片;每个采样芯片采集三个电池模组的电量信息,此时,8个采样芯片共可以采集24个电池模组的数据,即p*2m=n。
在一实施例中,从控制器的数量也可以根据需要进行设置,本申请中示例性地设置了两个从控制器,即第一从控制器222和第二从控制器223。
图5是本申请一实施例提供的熔断器设置于采样芯片之间的示意图。图6是本申请一实施例提供的熔断器异常断开的示意图。
在一实施例中,如图5所示,熔断器100设置于两个采样芯片之间。
在一实施例中,参见图5和图6,一个电池模组中包含有多个电池单体,一个采样芯片中包含有多个采样通道,每个采样通道对应采集一个电池单体的相应数据,图5和图6中仅示例性地画出了每个采样芯片对应三个采样通道的示意图,实际上每个采样芯片中不止有三个采样通道,在此不再赘述。将熔断器100布置位置选在串联的两个电池模组之间,当电池模组的状态异常导致熔断器100断开时,熔断器100两侧的电池模组的总电压分别为动力电池总电压的一半,可以降低高压危险。
如图6所示,熔断器100断开时间通常为毫秒级,断开过程为内阻变大的过程,且内阻会由毫欧级变为兆欧级。在熔断器100断开的过程中,因为电流不具 备突变性,熔断器100两端的电压会瞬间增大,增大的电压会施加到两个采样芯片之间,而不会作用于采样芯片的通道上,且采样芯片间相互隔离,因此产生的反向电压不会对采样芯片造成损坏,从而解决了熔断器100异常断开导致采样芯片损坏的问题。
在一实施例中,相关技术中,电池控制器主流的采样芯片的通道数为12~16个,且逐年增加,而电池模组内电池单体的通道数因考虑平台化、标准化的需求,通道数一般不超过10个。这样的发展趋势,使得每个采样芯片需要采集多个电池模组的相应数据,而电池模组间的连接铜排会影响采样精度,一般电池模组间的铜排和熔断器也会占用采样芯片的一个通道,以解决电池单体的电压采集精度问题,并实现电池内部连接阻抗的检测。
在一实施例中,以24个电池模组为例,其中,24个电池模组依次编号为1-24,由于本申请中每个从控制器包括4个采样芯片,每个采样芯片具备48个采样通道,每个采样芯片采集三个电池模组的相应数据,因此为了保证熔断器100设置于两个采样芯片之间,需要将电池模组每三个分隔为一组,将熔断器100设置于任意两组电池模组之间,以使熔断器100能够保证设置于两个采样芯片之间。参见图1和图2,本申请中将熔断器100设置于电池模组12和电池模组13之间,即电池模组1、电池模组2及电池模组3为一组,电池模组4、电池模组5及电池模组6为一组,电池模组7、电池模组8及电池模组9为一组,电池模组10、电池模组11及电池模组12为一组,电池模组13、电池模组14及电池模组15为一组,电池模组16、电池模组17及电池模组18为一组,电池模组19、电池模组20及电池模组21为一组,电池模组22、电池模组23及电池模组24为一组,每组电池模组由一个采样芯片对应采集数据,熔断器100设置于电池模组12和电池模组13之间即可保证设置于两个采样芯片之间,相应的,熔断器100也可设置于电池模组9和电池模组10之间,在此不再赘述。将熔断器100设置于两个采样芯片之间,熔断器100断开瞬间产生的反向电压不会作用在BMS中从控制器采样芯片的通道上,从源头解决了熔断器100异常断开导致采样芯片损坏而引起动力电池安全事故的问题。
在一实施例中,上述实施例中每个采样芯片采集三个电池模组的相应数据,为了保证熔断器100设置于两个采样芯片之间,需要将电池模组每三个分隔为一组,将熔断器100设置于两组电池模组之间;相应的,若每个采样芯片采集五个电池模组的相应数据,则需要将电池模组每五个分隔为一组,将熔断器100设置于任意两组电池模组之间,即可保证熔断器100设置于两个采样芯片之间。即当 每个采样芯片能够采集预设数量的电池模组的相应数据时,则需要将电池模组每预设数量分隔为一组,将熔断器100设置于任意两组电池模组之间即可。
图7是本申请一实施例提供的采样芯片的拓扑结构。
在一实施例中,一个采样芯片所对应采集的预设数量的电池模组相邻设置。
在一实施例中,如图7所示,采样芯片的拓扑由低至高,与电池高压拓扑一致。每个从控制器中的采样芯片设置于电池子板上,图7中示例性地给出了一个电池子板上设置有两个采样芯片,在实际设置中可以根据需要设置其他数量的采样芯片。
相关技术中的采样芯片的设置顺序为电池子板1上的采样芯片1采集电池模组3的数据,采样芯片2采集电池模组4的数据,电池子板2上的采样芯片3采集电池模组2的数据,采样芯片4采集电池模组5的数据,电池子板3上的采样芯片5采集电池模组1的数据,采样芯片6采集电池模组6的数据,在电池总成装配过程中,一般会将电池模组中间的铜排最后连接,避免高压危险,而装配电池中间的高压铜排以后,电池模组等效给电池子板内隔离电容充电,电池子板上不同采样芯片采样的电池模组相对越远,等效的回路电压越大,当回路电压大于采样芯片耐压等级时,回路被击穿,瞬态放电,会导致采样芯片损坏。即当装配电池中间的高压铜排时,6个电池模组的电压和会对电池子板3上隔离电容进行充电,如果模组电压和大于采样芯片的耐压等级,会导致电池子板3上的采样芯片损坏。
参见图7,本申请中将设置采样芯片的电池子板顺序排布,每个电池子板上的采样芯片也顺序排布,分别从第一个电池模组顺次采集至最后一个电池模组,即电池子板1上的采样芯片1采集电池模组1的数据、采样芯片2采集电池模组2的数据,电池子板2上的采样芯片3采集电池模组3的数据、采样芯片4采集电池模组4的数据,电池子板3上的采样芯片5采集电池模组5的数据、采样芯片6采集电池模组6的数据。而当装配电池中间的高压铜排时,同一电池子板内的采样芯片两端不会产生高压回路,不会出现瞬态高压,从而解决了装配电池中间的高压铜排时,采样芯片损坏的问题。
在本申请实施例中,通过使用本申请提供的动力电池,具有下述优点:
(1)具备无长铜排,低电磁干扰的特点。高压系统中软、硬铜排混合使用的布置方式,使动力电池的电连接形式更加方便;且软铜排属于叠层母排,叠层母排可以大大降低的高压回路的电感值,减少高压电流所产生的电磁干扰;通过使用长度较短的软、硬铜排构成高压回路,减少了低频磁场发射,通过“抑 源”的方式,减少了动力电池中BMS等敏感元器件所受的电磁干扰。
(2)熔断器外置于模组总成上,并且设置在采样芯片间,解决熔断器导致采样芯片损坏问题,并方便维护。
(3)同一电池子板上的采样芯片的拓扑与动力电池的高压拓扑一致。解决了按照电池模组排布时,可能存在同一电池子板的不同采样芯片对应的模组不相连,在连接时产生瞬态高压,造成采样芯片损坏的问题。
本申请一实施例还提供了一种驾驶设备,驾驶设备包括上述任意实施例所述的动力电池。
本申请一实施例提供的驾驶设备包括上述实施例中的动力电池,因此本申请实施例提供的驾驶设备也具备上述实施例中所描述的有益效果,此处不再赘述。
在本申请实施例的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。

Claims (10)

  1. 一种动力电池,包括高压系统、低压系统以及模组总成;
    其中,所述高压系统包括多个软铜排、多个硬铜排以及至少一个熔断器;所述软铜排和所述硬铜排的长度小于预设长度;所述高压系统通过所述软铜排、所述硬铜排与所述模组总成电连接;所述熔断器外置于所述模组总成上,并通过所述硬铜排与所述模组总成电连接;
    所述低压系统包括连接线束和分布式电池管理系统控制器,所述分布式电池管理系统控制器设置于所述模组总成上,并通过所述连接线束与所述模组总成电连接;
    所述模组总成包括多个电池模组,多个所述电池模组呈蛇形顺次连接,且多个所述电池模组中的第一个电池模组和最后一个电池模组相邻设置。
  2. 根据权利要求1所述的动力电池,其中,所述分布式电池管理系统控制器包括主控制器、第一从控制器和第二从控制器;所述第一从控制器和所述第二从控制器通过所述连接线束与所述主控制器电连接;
    所述第一从控制器和所述第二从控制器分别包括多个采样芯片;每一所述采样芯片对应采集预设数量的所述电池模组的电量信息。
  3. 根据权利要求2所述的动力电池,其中,所述熔断器设置于两个所述采样芯片之间。
  4. 根据权利要求2所述的动力电池,其中,所述高压系统包括至少一个第一硬铜排和至少一个第二硬铜排;
    所述第一硬铜排、所述第二硬铜排设置为使所述熔断器与所述模组总成之间电连接。
  5. 根据权利要求2所述的动力电池,其中,每一所述采样芯片对应采集的所述预设数量的所述电池模组相邻设置。
  6. 根据权利要求1所述的动力电池,其中,所述高压系统还包括高压配电盒,所述多个软铜排包括第一软铜排、第二软铜排、第三软铜排、第四软铜排、第五软铜排和第六软铜排;
    所述高压配电盒通过所述第一软铜排、所述第二软铜排与所述模组总成电连接;
    所述高压配电盒通过所述第三软铜排、所述第四软铜排、所述第五软铜排、所述第六软铜排与动力电池整包高压接口电连接。
  7. 根据权利要求1所述的动力电池,其中,所述多个硬铜排包括多个第三 硬铜排、多个第四硬铜排、多个第五硬铜排和多个第六硬铜排;
    所述第三硬铜排、所述第四硬铜排、所述第五硬铜排、所述第六硬铜排设置为使所述电池模组之间电连接。
  8. 根据权利要求2所述的动力电池,其中,所述模组总成包括n个电池模组,所述第一从控制器和所述第二从控制器包含m个所述采样芯片;每个所述采样芯片设置为采集p个所述电池模组的电量信息,其中,p*2m≥n,n、m、p为大于等于1的整数。
  9. 根据权利要求8所述的动力电池,其中,所述模组总成包括24个电池模组;所述第一从控制器和所述第二从控制器分别包括四个所述采样芯片;每个所述采样芯片设置为采集三个所述电池模组的电量信息。
  10. 一种驾驶设备,包括上述权利要求1至9中任一项所述的动力电池。
PCT/CN2021/102942 2020-10-20 2021-06-29 动力电池和驾驶设备 WO2022083163A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011127708.5 2020-10-20
CN202011127708.5A CN112271410A (zh) 2020-10-20 2020-10-20 一种动力电池和驾驶设备

Publications (1)

Publication Number Publication Date
WO2022083163A1 true WO2022083163A1 (zh) 2022-04-28

Family

ID=74342297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102942 WO2022083163A1 (zh) 2020-10-20 2021-06-29 动力电池和驾驶设备

Country Status (2)

Country Link
CN (1) CN112271410A (zh)
WO (1) WO2022083163A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114217246A (zh) * 2021-12-08 2022-03-22 金华氢途科技有限公司 一种燃料电池发动机断路保护方法
CN115483512A (zh) * 2022-10-14 2022-12-16 厦门海辰储能科技股份有限公司 一种储能装置
CN115542009A (zh) * 2022-11-28 2022-12-30 苏州慧工云信息科技有限公司 一种铜排电性能自动检测系统及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112271410A (zh) * 2020-10-20 2021-01-26 中国第一汽车股份有限公司 一种动力电池和驾驶设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1783629A (zh) * 2004-12-03 2006-06-07 比亚迪股份有限公司 分布式电池管理系统及管理方法
CN203445668U (zh) * 2013-09-23 2014-02-19 安徽江淮汽车股份有限公司 一种分布式电池管理系统
US20180083323A1 (en) * 2016-09-20 2018-03-22 Nio Nextev Limited Bus-bar assembly, power battery over-load protection system and method, and power battery assembly
CN109494330A (zh) * 2018-12-07 2019-03-19 蜂巢能源科技有限公司 动力电池包和具有其的车辆
CN112271410A (zh) * 2020-10-20 2021-01-26 中国第一汽车股份有限公司 一种动力电池和驾驶设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3997730B2 (ja) * 2001-06-20 2007-10-24 株式会社日立製作所 電力変換装置及びそれを備えた移動体
JP4580997B2 (ja) * 2008-03-11 2010-11-17 日立オートモティブシステムズ株式会社 電力変換装置
JP2016092976A (ja) * 2014-11-05 2016-05-23 トヨタ自動車株式会社 モータ制御装置
CN107452993B (zh) * 2017-07-31 2020-03-06 北京新能源汽车股份有限公司 一种动力电池箱及电动汽车
CN108790829B (zh) * 2018-07-23 2024-05-14 四川江淮汽车有限公司 一种电动汽车高压回路检测与控制电路及检测方法
CN109494418B (zh) * 2018-11-12 2021-04-27 上海汽车集团股份有限公司 电池管理系统的电芯采样装置及方法
CN209544495U (zh) * 2019-03-15 2019-10-25 北京新能源汽车股份有限公司蓝谷动力系统分公司 电池包的母排和电池包
CN110380105B (zh) * 2019-08-20 2024-04-09 福建易动力电子科技股份有限公司 一种圆柱电芯模组成型装置
CN110931694A (zh) * 2019-09-04 2020-03-27 江苏塔菲尔新能源科技股份有限公司 一种同侧电极输出的电池模组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1783629A (zh) * 2004-12-03 2006-06-07 比亚迪股份有限公司 分布式电池管理系统及管理方法
CN203445668U (zh) * 2013-09-23 2014-02-19 安徽江淮汽车股份有限公司 一种分布式电池管理系统
US20180083323A1 (en) * 2016-09-20 2018-03-22 Nio Nextev Limited Bus-bar assembly, power battery over-load protection system and method, and power battery assembly
CN109494330A (zh) * 2018-12-07 2019-03-19 蜂巢能源科技有限公司 动力电池包和具有其的车辆
CN112271410A (zh) * 2020-10-20 2021-01-26 中国第一汽车股份有限公司 一种动力电池和驾驶设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114217246A (zh) * 2021-12-08 2022-03-22 金华氢途科技有限公司 一种燃料电池发动机断路保护方法
CN114217246B (zh) * 2021-12-08 2024-03-22 金华氢途科技有限公司 一种燃料电池发动机断路保护方法
CN115483512A (zh) * 2022-10-14 2022-12-16 厦门海辰储能科技股份有限公司 一种储能装置
CN115483512B (zh) * 2022-10-14 2023-09-08 厦门海辰储能科技股份有限公司 一种储能装置
CN115542009A (zh) * 2022-11-28 2022-12-30 苏州慧工云信息科技有限公司 一种铜排电性能自动检测系统及方法

Also Published As

Publication number Publication date
CN112271410A (zh) 2021-01-26

Similar Documents

Publication Publication Date Title
WO2022083163A1 (zh) 动力电池和驾驶设备
KR101062101B1 (ko) 고출력 에너지 축전지들을 포함하는 잠수함 직류 회로망
DE112014003647B4 (de) Steuersysteme und -verfahren für Batteriezellen und Batteriestapel
CN102097646A (zh) 电池模块、电池系统以及具备该系统的电动车辆
CN102064353A (zh) 蓄电池系统及具备该蓄电池系统的电动车辆
CN113595180B (zh) 一种动力电池装置
CN217009386U (zh) 储能电池簇
KR20130053501A (ko) 배터리 관리 시스템과 이를 포함하는 배터리 팩 보호 장치
CN206076425U (zh) 一种电池系统
CN217036766U (zh) 一种动力电池装置
CN104659402A (zh) 电动汽车动力电池成组模块结构
CN114024101A (zh) 一种偏流小易于检测每一节电芯的电池组
CN105977555B (zh) 一种模块化的电池组系统
CN218888434U (zh) 一种电机控制器和车辆
US20220216716A1 (en) Plug-in type energy storage system
CN216526020U (zh) 电芯采样系统及车辆
CN112217275A (zh) 一种车载双电池系统
CN220857678U (zh) 一种储能系统
JP2012234684A5 (zh)
EP3496224A2 (en) Systems and method for electrical power distribution in solar power plants
CN219067174U (zh) 一种电池包及电动车辆
CN220820187U (zh) 一种电池多功能检测装置和电池组件
CN212012203U (zh) 一种锂离子电池储能模块电池箱的控制电路
CN214850040U (zh) 变电站及光伏系统
KR102623337B1 (ko) 파우치형 셀 내장형 배터리 관리 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21881583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21881583

Country of ref document: EP

Kind code of ref document: A1