WO2022083153A1 - 一种光模块温度控制方法、装置及光模块 - Google Patents

一种光模块温度控制方法、装置及光模块 Download PDF

Info

Publication number
WO2022083153A1
WO2022083153A1 PCT/CN2021/101605 CN2021101605W WO2022083153A1 WO 2022083153 A1 WO2022083153 A1 WO 2022083153A1 CN 2021101605 W CN2021101605 W CN 2021101605W WO 2022083153 A1 WO2022083153 A1 WO 2022083153A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
information
humidity
optical module
working environment
Prior art date
Application number
PCT/CN2021/101605
Other languages
English (en)
French (fr)
Inventor
吴涛
金爽
慕建伟
濮宏图
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011141727.3A external-priority patent/CN114389695A/zh
Priority claimed from CN202011164206.XA external-priority patent/CN114488422A/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Priority to US17/704,373 priority Critical patent/US20220216670A1/en
Publication of WO2022083153A1 publication Critical patent/WO2022083153A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • G02B6/426Details of housings mounting, engaging or coupling of the package to a board, a frame or a panel
    • G02B6/4261Packages with mounting structures to be pluggable or detachable, e.g. having latches or rails
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D27/00Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00
    • G05D27/02Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00 characterised by the use of electric means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0261Non-optical elements, e.g. laser driver components, heaters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • G02B6/4293Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements hybrid electrical and optical connections for transmitting electrical and optical signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06804Stabilisation of laser output parameters by monitoring an external parameter, e.g. temperature

Definitions

  • the present disclosure relates to the technical field of optical communication, and in particular, to a temperature control method and device for an optical module, and an optical module.
  • an embodiment of the present disclosure discloses an optical module, comprising: a circuit board; a non-airtight light emitting sub-module electrically connected to the circuit board, including a casing and a thermoelectric cooling control disposed in the casing It is used to emit signal light; the humidity sensing component is arranged on the circuit board and is used to detect the ambient humidity inside the optical module in real time; the MCU is arranged on the circuit board, which is respectively connected with the humidity sensor The component is connected to the thermoelectric cooling controller; it is used for receiving the ambient humidity detected by the humidity sensing component, and controlling the temperature of the heat exchange surface of the thermoelectric cooling controller according to the ambient humidity.
  • an embodiment of the present disclosure provides a temperature control method for an optical module, including acquiring humidity information and temperature information of a current working environment; calculating water vapor dew point temperature information according to the humidity information and temperature information of the current working environment ; compare the water vapor dew point temperature information with the current temperature control information; modify the temperature control information according to the comparison result; use the modified temperature control information to adjust the temperature of the working environment.
  • an embodiment of the present disclosure further provides a temperature control module for an optical module, including an information collection module configured to collect humidity information and temperature information; and a processing module configured to collect the humidity information and the temperature information according to the humidity information and the temperature information. Calculate dew point temperature information, calculate a temperature change trend according to the temperature information, compare the dew point temperature information with the current temperature control information, and modify the temperature control information; the configuration module is configured to configure the temperature control information to temperature regulating device.
  • an embodiment of the present disclosure further provides an optical module, including a temperature sensor configured to acquire temperature information; a humidity sensor configured to acquire humidity information; and a microprocessor configured to obtain information from the temperature sensor and the Obtain temperature information and humidity information respectively from the humidity sensor; calculate dew point temperature information; compare the dew point temperature information with the current temperature control information, and modify the temperature control information; the temperature adjustment device is configured to heat according to the temperature control information , to change the ambient temperature.
  • Fig. 1 is a schematic diagram of the connection relationship of optical communication terminals
  • FIG. 2 is a schematic structural diagram of an optical network terminal
  • FIG. 3 is a schematic structural diagram of an optical module according to an embodiment of the present disclosure.
  • FIG. 4 is an exploded schematic diagram of an optical module according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of an optical module provided by an embodiment of the present disclosure with an upper casing, a lower casing and an unlocking component removed;
  • FIG. 6 is a schematic structural diagram of a humidity sensing component in an optical module according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of the connection between a humidity sensing component and an MCU in an optical module according to an embodiment of the present disclosure
  • FIG. 8 is a relationship diagram of temperature, relative humidity and dew point temperature in an optical module provided by an embodiment of the present disclosure
  • FIG. 9 is a flowchart of a method for controlling temperature of an optical module according to an embodiment of the present disclosure.
  • connection and its derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “connected” may also mean that two or more components are not in direct contact with each other, but yet still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the content herein.
  • One of the core links of optical fiber communication is the mutual conversion of optical and electrical signals.
  • Optical fiber communication uses information-carrying optical signals to transmit in information transmission equipment such as optical fibers/optical waveguides.
  • the passive transmission characteristics of light in optical fibers/optical waveguides can realize low-cost, low-loss information transmission; while computers and other information processing equipment Electrical signals are used.
  • the optical module realizes the mutual conversion function of the above-mentioned optical and electrical signals in the technical field of optical fiber communication, and the mutual conversion of the optical signal and the electrical signal is the core function of the optical module.
  • the optical module realizes the electrical connection with the external host computer through the gold finger on its internal circuit board.
  • the main electrical connections include power supply, I2C signal, data information and grounding, etc.
  • the electrical connection realized by the gold finger has become the optical module.
  • the mainstream connection method of the industry based on this, the definition of pins on the gold finger has formed a variety of industry protocols/norms.
  • FIG. 1 is a schematic diagram of a connection relationship of an optical communication terminal.
  • the connection of the optical communication terminal mainly includes the interconnection between the optical network terminal 100 , the optical module 200 , the optical fiber 101 and the network cable 103 .
  • One end of the optical fiber 101 is connected to the remote server, and one end of the network cable 103 is connected to the local information processing device.
  • the connection between the local information processing device and the remote server is completed by the connection between the optical fiber 101 and the network cable 103; and the connection between the optical fiber 101 and the network cable 103 is completed by The optical network terminal 100 with the optical module 200 is completed.
  • the optical port of the optical module 200 is externally connected to the optical fiber 101, and a two-way optical signal connection is established with the optical fiber 101;
  • the electrical port of the optical module 200 is externally connected to the optical network terminal 100, and a two-way electrical signal connection is established with the optical network terminal 100;
  • the optical module internally realizes the mutual conversion of optical signals and electrical signals, so as to establish an information connection between the optical fiber and the optical network terminal. Specifically, the optical signal from the optical fiber is converted into an electrical signal by the optical module and then input into the optical network terminal 100, and the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module and input into the optical fiber.
  • the optical network terminal has an optical module interface 102, which is used to access the optical module 200 and establish a two-way electrical signal connection with the optical module 200; Signal connection; the connection between the optical module 200 and the network cable 103 is established through the optical network terminal 100 .
  • the optical network terminal transmits the signal from the optical module to the network cable, and transmits the signal from the network cable to the optical module, and the optical network terminal acts as the upper computer of the optical module to detect the operation of the optical module.
  • the remote server has established a two-way signal transmission channel with the local information processing equipment through optical fibers, optical modules, optical network terminals and network cables.
  • Common information processing equipment includes routers, switches, electronic computers, etc.; the optical network terminal is the host computer of the optical module, providing data signals to the optical module and receiving data signals from the optical module.
  • FIG. 2 is a schematic structural diagram of an optical network terminal.
  • the optical network terminal 100 has a circuit board 105, and a cage 106 is provided on the surface of the circuit board 105; an electrical connector is provided inside the cage 106 for connecting to an optical module electrical port such as a golden finger;
  • the cage 106 is provided with a heat sink 107, and the heat sink 107 has a first boss portion such as a fin for increasing the heat dissipation area.
  • the optical module 200 is inserted into the optical network terminal 100 , specifically, the electrical port of the optical module is inserted into the electrical connector inside the cage 106 , and the optical port of the optical module is connected to the optical fiber 101 .
  • the cage 106 is located on the circuit board, and the electrical connectors on the circuit board are wrapped in the cage, so that the interior of the cage is provided with electrical connectors; the optical module is inserted into the cage, the optical module is fixed by the cage, and the heat generated by the optical module is conducted to the cage. 106 and then diffuse through a heat sink 107 on the cage.
  • FIG. 3 is a schematic structural diagram of an optical module according to an embodiment of the present disclosure
  • FIG. 4 is an exploded schematic diagram of an optical module according to an embodiment of the present disclosure.
  • the optical module 200 provided by the embodiment of the present disclosure includes an upper casing 201 , a lower casing 202 , an unlocking part 203 , a circuit board 300 , a light emitting sub-module 400 and a light receiving sub-module 500 .
  • the upper casing 201 is covered with the lower casing 202 to form a wrapping cavity with two openings; the outer contour of the wrapping cavity generally presents a square body.
  • the lower shell 202 includes a main board and two side plates located on both sides of the main board and perpendicular to the main board; the upper shell includes a cover plate, and the cover plate is covered with the two side plates of the upper shell to form a package Cavity; the upper casing may also include two side walls located on both sides of the cover plate and vertically arranged with the cover plate, and the two side walls are combined with the two side plates to realize that the upper casing 201 is covered with the lower casing 202 superior.
  • One of the two openings is an electrical port 204, and the gold fingers of the circuit board protrude from the electrical port 204 and are inserted into a host computer such as an optical network terminal; the other opening is an optical port 205, which is used for external optical fiber access to connect optical fibers.
  • the light-emitting sub-module 400 and the light-receiving sub-module 500 inside the module; the circuit board 300, the light-emitting sub-module 400, the light-receiving sub-module 500 and other optoelectronic devices are located in the package cavity.
  • the combination of the upper casing and the lower casing is adopted, which facilitates the installation of the circuit board 300, the light emitting sub-module 400, and the optical receiving sub-module 500 into the casing.
  • the upper casing and the lower casing form the outermost part of the module.
  • the upper and lower casings are generally made of metal materials, which are used to achieve electromagnetic shielding and heat dissipation.
  • the casing of the optical module is not made into an integral part, so that when assembling circuit boards and other devices, positioning Components, heat dissipation and electromagnetic shielding components cannot be installed and are not conducive to production automation.
  • the unlocking part 203 is located on the outer wall of the enclosing cavity/lower casing 202, and is used to realize the fixed connection between the optical module and the upper computer, or to release the fixed connection between the optical module and the upper computer.
  • the unlocking part 203 has an engaging part matched with the cage of the upper computer; pulling the end of the unlocking part 203 can make the unlocking part 203 move relatively on the surface of the outer wall; Fix the optical module in the cage of the host computer; by pulling the unlocking part 203, the engaging part of the unlocking part 203 moves with it, thereby changing the connection relationship between the engaging part and the host computer to release the optical module and the host computer. relationship, so that the optical module can be pulled out from the cage of the host computer.
  • the circuit board 300 is provided with circuit traces, electronic components (such as capacitors, resistors, triodes, MOS tubes) and chips (such as MCU, laser driver chip, amplitude limiting amplifier chip, clock data recovery CDR, power management chip, data processing chip) DSP), etc.
  • electronic components such as capacitors, resistors, triodes, MOS tubes
  • chips such as MCU, laser driver chip, amplitude limiting amplifier chip, clock data recovery CDR, power management chip, data processing chip) DSP, etc.
  • the circuit board 300 is used to provide a signal circuit for electrical connection of the signal, and the signal circuit can provide the signal.
  • the circuit board 300 connects the electrical components in the optical module together according to the circuit design through circuit wiring, so as to realize electrical functions such as power supply, electrical signal transmission, and grounding.
  • the circuit board is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the bearing function. For example, the rigid circuit board can carry the chip smoothly; when the optical transceiver components are located on the circuit board, the rigid circuit board can also provide Stable bearing; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage, specifically, metal pins/gold fingers are formed on one end surface of the rigid circuit board for connecting with the electrical connector; these are all It is inconvenient to realize the flexible circuit board.
  • Flexible circuit boards are also used in some optical modules as a supplement to rigid circuit boards; flexible circuit boards are generally used in conjunction with rigid circuit boards.
  • flexible circuit boards can be used to connect the rigid circuit boards and optical transceiver components.
  • the traditional light emitting sub-module 400 usually uses a hermetically sealed casing to ensure the air-tightness of the light emitting sub-module 400 .
  • the light emitting sub-module 400 includes a emitting housing and a light emitting device such as a laser, the emitting housing is an airtight housing, and the light emitting device such as a laser is encapsulated in the emitting housing to ensure that no water vapor penetrates inside the package, Therefore, the entire light emitting device can work normally in a high temperature and high humidity environment.
  • non-hermetic packaging has become an important way to replace hermetic packaging because of its lower cost and more flexible design.
  • a flexible circuit board can be inserted into the emitting housing, one end of the flexible circuit board is electrically connected with the light emitting device such as a laser, and the other end is electrically connected with the circuit board 300, through the flexible circuit board.
  • the non-hermetic packaging of the light emitting sub-module 400 is realized; the circuit board 300 can also be directly inserted into the emitting housing, and the optical emitting devices such as lasers are arranged on the circuit board 300 to realize the non-hermetic packaging of the optical emitting sub-module 400 .
  • a light emitting device such as a laser is disposed on the heat exchange surface of the TEC, and the TEC can face the light emitting device such as a laser through heat exchange. Cooling or heating is used to lower or raise the temperature of light-emitting devices such as lasers to ensure the normal operation of light-emitting devices such as lasers.
  • the heat exchange surface of the TEC is usually set at a lower fixed temperature. In the body, there is a slight air leak in the casing.
  • an embodiment of the present disclosure provides an optical module, a humidity sensor is added on the circuit board of the optical module, the humidity data inside the optical module is monitored in real time, and the TEC cooling or heating temperature is adjusted accordingly according to the humidity data , so that the key optical components of the light emitting sub-module 400 work at a temperature higher than the dew point in the housing to prevent condensation on the surface of the key optical components, so that the entire optical module can work normally.
  • FIG. 5 is a schematic structural diagram of an optical module provided by an embodiment of the present disclosure after removing the upper casing 201 , the lower casing 202 , and the unlocking part 203 .
  • the optical module provided by the embodiment of the present disclosure further includes an MCU 310 , a power management chip 320 and a humidity sensing component 330 .
  • the humidity sensing component 330 is electrically connected to the power management chip 320, and the power management chip 320 can be connected to the host computer to adjust the voltage provided by the host computer, so as to supply power to the humidity sensing component 330, so that the humidity sensing component 330
  • the ambient humidity inside the optical module can be detected in real time; the MCU310 is electrically connected to the humidity sensing component 330, which can receive the ambient humidity detected by the humidity sensing component 330, and can control the cooling or heating temperature of the TEC according to the ambient humidity, so that the TEC
  • the cooling or heating temperature can make the key optical components on it work at a temperature higher than the dew point in the housing.
  • the MCU 310 itself is integrated with a drive unit to drive the MCU 310 to work with power supply, so as to receive the ambient humidity detected by the humidity sensing component 330 and control the cooling or heating temperature of the TEC; the MCU 310 can also be connected to a power supply
  • the management chip 320 is electrically connected, and the power management chip 320 supplies power to the MCU 310, so that the MCU 310 can receive the ambient humidity detected by the humidity sensing component 330 and control the cooling or heating temperature of the TEC.
  • the circuit board 300 is provided with a TEC driver chip, the MCU 310 is electrically connected to the TEC driver chip, and the TEC driver chip is electrically connected to the TEC of the light emission sub-module 400, so that the MCU 310 can transmit control to the TEC driver chip.
  • the TEC driver chip drives the TEC to adjust the cooling or heating temperature according to the control signal, so as to adjust the working temperature of the light-emitting device on the TEC;
  • the integrated TEC driver chip is used to drive the TEC to adjust the cooling or heating temperature, thereby adjusting the operating temperature of the light-emitting device on the TEC.
  • the MCU310 itself can obtain some environmental parameters in the optical module, such as temperature data, etc.
  • the environmental humidity data measured by the humidity sensing component 330 is added to the environmental parameters of the MCU310,
  • the increased environmental parameters are used to control the TEC to reduce or increase the temperature of the TEC heat exchange surface, so as to adjust the temperature of the laser and other light emitting devices on the TEC heat exchange surface to avoid condensation on the laser and other light emitting devices.
  • the MCU310 controls the TEC cooling or heating temperature according to the environmental parameters in the optical module
  • the MCU310 can directly control the TEC according to the environmental parameters measured by the humidity sensing component 330, that is, after the MCU310 receives the environmental humidity data obtained by the humidity sensing component 330, After calculating the ambient humidity, the temperature of the heat exchange surface of the TEC is controlled to decrease or increase through the TEC driver chip.
  • the light-emitting devices such as the TEC and the laser are placed in the housing of the light-emitting sub-module 400, the temperature of the light-emitting devices such as the laser may deviate from the temperature in the optical module.
  • the compensation value of the temperature of the laser and other light emitting devices in the transmission sub-module 400 after the MCU310 obtains the environmental parameter measured by the humidity sensing component, adds the compensation value to the measured environmental parameter to obtain a new environmental parameter value, and the MCU310 obtains the new environmental parameter value according to the new environmental parameter value.
  • Environmental parameter values to control the temperature of the TEC heat exchange surface after the MCU310 obtains the environmental parameter measured by the humidity sensing component, adds the compensation value to the measured environmental parameter to obtain a new environmental parameter value, and the MCU310 obtains the new environmental parameter value according to the new environmental parameter value.
  • the humidity sensing assembly 330 provided by the embodiment of the present disclosure includes a humidity sensor and a temperature sensor, the humidity sensor and the temperature sensor are respectively disposed on the circuit board 300, and the communication signal output ends of the humidity sensor and the temperature sensor are respectively connected with the communication signal interface of the MCU310, In order to transmit the real-time detected temperature data and humidity data inside the optical module to the MCU 310 , the MCU 310 performs subsequent processing on it.
  • the humidity sensor assembly 330 may also only include a humidity sensor without a temperature measurement function.
  • the humidity sensor is arranged on the circuit board 300, and the communication signal output end of the humidity sensor is connected with the communication signal interface of the MCU 310, so as to transmit the light detected in real time.
  • the humidity data inside the module is sent to MCU310.
  • the MCU 310 can carry a temperature measurement function, that is, a temperature sensor is integrated in the MCU 310, and the MCU 310 itself can measure the temperature data in the optical module.
  • a temperature sensor can also be set independently on the circuit board 300, the temperature sensor is set on the circuit board 300, and is electrically connected to the power management chip 320 on the circuit board 300, and the power management chip 320 supplies power to the temperature sensor independently set, so that The temperature sensor detects the temperature data in the optical module; the communication signal output end of the temperature sensor set independently is connected with the communication signal interface of the MCU310 to transmit the real-time detected temperature data inside the optical module to the MCU310.
  • the humidity sensing component 330 When the humidity sensing component 330 includes a humidity sensor and a temperature sensor, the humidity sensing component 330 can transmit the humidity data measured by the humidity sensor and the humidity data measured by the temperature sensor to the MCU 310 through the I2C line, and the MCU 310 can communicate with the received temperature data. , After the temperature data is processed, the cooling or heating temperature of the TEC heat exchange surface is controlled.
  • FIG. 6 is a schematic structural diagram of an embodiment of a humidity sensing component 330 in an optical module according to an embodiment of the present disclosure.
  • the humidity sensing component 330 may further include an analog-to-digital converter, a data processor and an I2C interface, and the output end of the humidity sensor and the output end of the temperature sensor are respectively connected to the input end of the analog-to-digital converter;
  • the output end of the converter is connected to the input end of the data processor, the output end of the data processor is connected to the I2C interface, and the I2C interface is connected to the communication signal interface of the MCU310.
  • the data processor converts the digital signal to the interface. Converted to a protocol signal conforming to the I2C transmission protocol, the protocol signal can be transmitted to the MCU310 through the I2C line (SCL line, SDA line).
  • the humidity sensing assembly 330 provided by the embodiment of the present disclosure may further include a calibration memory, the input end of the calibration memory is connected with the output end of the data processor, and is used for storing the processed temperature data and humidity data, so as to facilitate subsequent processing Check.
  • FIG. 7 is a schematic diagram of electrical connection between the humidity sensing component 330 and the MCU 310 in an optical module according to an embodiment of the present disclosure.
  • the humidity sensing component 330 is provided with a first solder joint, a second solder joint, a third solder joint and a fourth solder joint , the first solder joint is electrically connected to the power management chip 320 through wire bonding, the second solder joint is connected to the ground wire through wire bonding, and the third solder joint is connected to the I2C interface in the humidity sensing component 330 through the SCL wire.
  • the SCL line is connected to the MCU310, and the fourth solder joint is connected to the I2C interface in the humidity sensing component 330 through the SDA line, and can also be connected to the MCU310 through the SDA line.
  • one end of a bonding wire is welded to the first solder joint, and the other end of the bonding wire is connected to the power management chip 320 to realize humidity sensing
  • the MCU310 is provided with an I2C peripheral device, and the I2C interface is connected with the I2C peripheral device through the SCL line and the SDA line.
  • the MCU310 is provided with a fifth solder joint and a sixth solder joint, the fifth solder joint is connected to the I2C peripheral device through the SCL line, and the sixth solder joint is connected to the I2C peripheral device through the SDA line.
  • the SCL line and the SDA line can only output a low level, and cannot actively output a high level. Comply with the logic level of MCU310.
  • the I2C bus is further provided with a first pull-up resistor and a second pull-up resistor, and the first pull-up resistor is connected to the SDA line. connected, the second pull-up resistor is connected to the SCL line, and the first pull-up resistor is connected in parallel with the second pull-up resistor.
  • one end of the first pull-up resistor is connected to the power management chip 320 and the other end is connected to the SDA line
  • one end of the second pull-up resistor is connected to the power management chip 320 and the other end is connected to the SCL line.
  • the humidity sensing component 330 is installed at the position of the circuit board 300 away from the heat source, and is electrically connected to the MCU 310, the power management chip 320 and the ground GND respectively.
  • the sensing component 330 detects the humidity and temperature inside the optical module in real time, and transmits the humidity and temperature data to the MCU310 through the I2C interface.
  • the MCU310 controls and adjusts the cooling or heating temperature of the TEC in the optical emission sub-module 400 according to the humidity data and temperature data. , to avoid condensation on the surface of key optical components on the TEC.
  • the optical module works in a relatively good environment, such as an air-conditioned data center.
  • the composition of water vapor in the air is low, that is, the relative humidity is low.
  • the TEC heat exchange surface is all Condensation will not occur.
  • the ambient temperature is as high as 70°C and the relative humidity of the air is 85%.
  • water vapor will enter the interior of the non-hermetically sealed casing, and after a period of accumulation, the relative humidity in the casing will increase significantly or even approach the relative humidity outside the casing.
  • the setting temperature of the TEC heat exchange surface is not appropriate, such as 50°C, condensation will form on the TEC surface and the optical components installed on this surface, which will block the optical path and affect the normal operation of the optical module.
  • the influence of humidity on the temperature of the TEC heat exchange surface may or may not be considered.
  • the temperature of the TEC heat exchange surface may only be controlled and adjusted according to the operating temperature of the laser and other light-emitting devices set on the TEC heat exchange surface. , to cool or heat light-emitting devices such as lasers; however, when only considering the operating temperature of light-emitting devices such as lasers, the operating temperature may be lower than the dew point temperature in the housing of the light-emitting sub-module 400, which may easily cause light emission such as lasers. Condensation on the device.
  • the temperature of the TEC heat exchange surface can be jointly controlled and adjusted according to the operating temperature and relative humidity of the lasers and other light-emitting devices set on the TEC heat exchange surface, so that the lasers, etc.
  • the temperature of the light emitting device is higher than the dew condensation temperature under the current temperature and humidity, so as to avoid condensation on the light emitting device such as the laser. That is, the temperature of the TEC heat exchange surface when the humidity data in the optical module is considered is higher than the temperature of the TEC heat exchange surface when the humidity data in the optical module is not considered.
  • FIG. 8 is a relationship diagram between relative humidity and dew point temperature at various temperatures in an optical module according to an embodiment of the present disclosure.
  • the dew point temperature is 67°C
  • the dew point temperature is 63°C. If the temperature of the TEC heat exchange surface is lower than the corresponding dew point temperature under a certain temperature and a certain relative humidity, the light emitting devices on the TEC heat exchange surface and its surface will condense. In order to ensure the normal operation of the light emitting device, it is necessary to adjust the temperature of the heat exchange surface of the TEC to an appropriate temperature according to the ambient temperature and humidity. It is adjusted to be higher than 63°C, so that the temperature of the TEC heat exchange surface and the light emitting device on its surface is higher than the dew point temperature, and there will be no condensation.
  • the optical module since it does not have the relative humidity measurement function, when the light emitting device is packaged in a non-airtight casing, if the temperature of the TEC heat exchange surface is set too low, although it can be guaranteed in the normal working environment. The performance of the optical module, but the performance of the optical module will deteriorate or even fail in extreme environments; if the temperature of the TEC heat exchange surface is set too high, although the working performance of the optical module in extreme environments is improved, it will make the optical module in a normal environment.
  • Optical modules work in non-optimal performance areas, which also greatly increases the workload of key optical components and shortens the life of key optical components.
  • the humidity sensing component 330 since the humidity sensing component 330 is added on the optical module circuit board 300, the temperature and humidity inside the optical module are detected in real time through the humidity sensing component 330, and the detected temperature data, humidity The data is transmitted to the MCU310 through the I2C bus. After the MCU310 processes the temperature data and humidity data, it controls and adjusts the temperature of the TEC heat exchange surface accordingly, which not only takes into account the optimal performance of the optical module in a typical working environment, but also ensures that in extreme environments. The time module can work normally without failure, thus achieving the perfect balance of performance and reliability.
  • the optical module includes a circuit board, a light emitting sub-module electrically connected to the circuit board, a power management unit, a humidity sensing component, and an MCU disposed on the circuit board, and the humidity sensing component is electrically connected to the power management unit , used to detect the ambient temperature and humidity inside the optical module in real time;
  • the MCU is electrically connected to the humidity sensing component, and is used to receive the ambient humidity and temperature data detected by the humidity sensing component, and process the ambient humidity and temperature data;
  • the TEC driver chip on the circuit board is electrically connected, and the TEC driver chip is connected to the TEC in the light emission sub-module.
  • the MCU can control the TEC driver chip according to the received ambient humidity and temperature data to drive and control the temperature of the TEC heat exchange surface, so that the The temperature of the TEC heat exchange surface is higher than the dew point temperature corresponding to the temperature and humidity in the optical module, which avoids condensation on the heat exchange surface of the TEC and the light emitting devices on the surface, thus ensuring the technical performance of the optical module and greatly improving the optical module. Long-term reliability and stability, and enable optical modules to work normally in the harshest environments.
  • the core components of the optical module such as the laser chip, the light receiving chip and the related optical lens
  • a non-airtight package is formed.
  • water vapor in the air, so that the core components of the optical module are exposed to the air with water vapor.
  • water vapor will condense into water droplets, that is, from gaseous water to liquid water.
  • Liquid water will have a great impact on the core components of the optical module, especially the liquid water condensed on the surface of the chip and the optical lens, which will affect the normal operation of the chip and change the preset optical path.
  • the main solution is to prevent the formation of liquid water.
  • the optical module has a temperature adjustment device, which can adjust the air temperature, so that the air temperature can be adjusted to prevent liquid water. form.
  • the temperature adjustment is based on the premise of known humidity.
  • the newly added humidity sensor inside the optical module is the detection element to obtain the air humidity. Through the humidity sensor, the air humidity is obtained, combined with the existing temperature control mechanism of the optical module, the existing temperature control mechanism is improved and optimized, and the humidity factor is included in the consideration factor of the control mechanism, so as to meet the original temperature control requirements. On the basis, the formation of liquid water is prevented.
  • the semiconductor cooler TEC is the main temperature regulating device in the optical module to regulate the temperature.
  • an optical module is provided with a method and device for adjusting the operating temperature by using a temperature adjusting device according to the needs of the operating temperature.
  • the temperature and humidity conditions for judging the condensation of liquid water (water vapor) are added, and the temperature adjustment device is used to change the working temperature to prevent the formation of temperature conditions for water vapor condensation.
  • the humidity of the working environment changes very little within a certain time range, and the temperature of the working environment can be adjusted relatively quickly by the temperature adjustment device, and the optical module does not have a humidity adjustment device, so it is mainly prevented by adjusting the temperature adjustment device. Water vapor condenses.
  • the embodiment of the present disclosure uses the optical module hardware to obtain temperature and humidity information, and realizes the control of the temperature adjustment device through the software method set in the microprocessor chip.
  • FIG. 9 is a flowchart of an optical module temperature control method provided by an embodiment of the present disclosure.
  • the temperature control method provided by the embodiment of the present disclosure is implemented by a code run by a microprocessor MCU, and is executed by a MCU startup control program Run the step.
  • Embodiments of the present disclosure provide a temperature control method, comprising:
  • S05 Use the modified temperature control information to drive the temperature regulation device to work.
  • the working environment refers to the environment inside the optical module.
  • the internal environment of the optical module is in a state of communication with the external environment.
  • the external environment of the optical module can be regarded as the internal environment.
  • the acquisition of the humidity information and the temperature information is also real-time. Specifically, it may be acquired periodically at a fixed interval.
  • the humidity sensor is a detection element for the optical module to obtain the air humidity of the working environment, and the detection information obtained by the humidity sensor is transmitted to the microprocessor chip MCU of the optical module.
  • the humidity information of the internal working environment of the optical module obtained by the microprocessor chip can be the direct measurement information from the humidity sensor, or the humidity compensation information is added on the basis of the direct measurement information of the humidity sensor, and the humidity compensation information is added by the microprocessor. chip implementation.
  • the humidity sensor is generally directly set on the circuit board of the optical module.
  • the temperature information is the information presented by the temperature in the sensor and the information performed in the microprocessor.
  • the temperature information can be a numerical value (such as a binary value) that can be compared in size, or it can be data information that cannot be compared in size;
  • the temperature is a numerical value that can be compared, usually expressed in decimal. Temperature information and temperature are different concepts, and there is a corresponding relationship with each other.
  • the temperature sensor is the detection element for the optical module to obtain the temperature of the working environment.
  • the detection information obtained by the temperature sensor is transmitted to the microprocessor chip MCU of the optical module.
  • the temperature information of the internal working environment of the optical module obtained by the microprocessor chip can be from the temperature sensor.
  • the direct measurement information can also be based on the temperature sensor, and the compensation information is added on the basis of the direct measurement information, and the addition of the temperature compensation information is realized by the microprocessor chip.
  • the temperature sensor is generally set directly on the circuit board of the optical module, and can also be integrated with the humidity sensor or in the microprocessor chip.
  • the temperature of the components affected by water vapor is calculated. Set at a temperature higher than the dew point temperature, and maintain a certain temperature difference with the dew point temperature, thereby ensuring that in various environments, key components can work normally without condensation.
  • T is the temperature (K) of the working environment
  • RH is the humidity of the working environment
  • the specific formula for calculating the water vapor dew point temperature information may have various forms, which are not specifically limited in the embodiment of the present disclosure. Any calculation formula for calculating the dew point temperature using the working environment temperature and the working environment humidity belongs to the protection category of the present disclosure.
  • a function calculation method or a look-up table method can be used.
  • the microprocessor chip calculates the dew point temperature information in real time according to the above calculation formula and the collected temperature and humidity information; in the lookup table method, the preset temperature and humidity information is compared with the dew point temperature information.
  • the look-up table uses the real-time collected working environment temperature information and humidity information as an index, and finds the corresponding dew point temperature information from the look-up table.
  • the temperature of the parts affected by water vapor is set higher than the dew point temperature, so that the water vapor will not condense; specifically, a certain temperature difference can be maintained between the temperature information of the working environment and the water vapor dew point temperature information, and the temperature difference is the temperature preset value. ; It can also maintain a certain difference between the temperature control information and the dew point temperature information, and the difference is the temperature modification information; because there is a certain time delay between the temperature control information and the actual temperature, this makes the corresponding temperature control information. There may be an inconsistency between the temperature and the actual temperature, so the dew point temperature can be compared to the operating ambient temperature, or the dew point temperature information can be compared to the temperature control information.
  • the temperature control information is used to control the temperature control device; the temperature control information is provided to the temperature control device, so that the temperature control device works under the control of the temperature control information; the temperature control information indicates the target temperature that the current temperature control device needs to reach. , that is, the temperature adjustment device realizes the temperature indicated by the temperature control information.
  • the temperature control information By adjusting the temperature control information, the working environment temperature of the optical module can be changed.
  • the dew point temperature information adjusts the temperature control information of the temperature regulating device.
  • the current temperature control information refers to the control information for driving the temperature adjustment device to work when the water vapor condensation factor is not considered.
  • the temperature control information at this time is the current temperature control information. According to the dew point The temperature information adjusts the temperature control information of the temperature adjustment device; after the adjustment is completed, the temperature control information is adjusted again according to other considerations with higher priority.
  • the temperature will affect the optical module's emitted optical power, extinction ratio, wavelength tuning, chip life and overall power consumption and other related factors. Then it is reflected in the setting of temperature control information or software algorithm.
  • the semiconductor cooler TEC is the main temperature adjustment device for adjusting the temperature in the optical module.
  • the temperature control information is the main parameter to adjust the semiconductor refrigerator.
  • the semiconductor refrigerator is generally matched with a driver chip, and the microprocessor chip processes and generates temperature control information, which transmits the temperature control information to the driver chip, and the driver chip generates and provides the semiconductor refrigerator according to the temperature control information.
  • the working current of the semiconductor refrigerator is driven by the working current to realize cooling or heating.
  • the difference between the current working environment temperature and the water vapor dew point temperature can be judged; by comparing the water vapor dew point temperature information with the current temperature control information, the current working environment temperature and the water vapor dew point can also be judged.
  • the water vapor in the working environment will condense into liquid water; when the expected working environment temperature is equal to the water vapor dew point temperature, the water vapor may condense into liquid water;
  • the embodiment of the present disclosure makes the temperature of the working environment different from the dew point temperature of the water vapor by modifying the temperature control information.
  • the modification of the temperature control information can be based on the difference between the current temperature control information and the dew point temperature information; the current temperature control information indicates the expected working ambient temperature using the temperature regulating device, and when the temperature change is relatively stable, the current temperature control information indicates Current working environment temperature; if the current working environment temperature is the same as the dew point temperature, condensation will occur; if the expected working environment temperature is the same as the dew point temperature, it means that condensation will occur; at this time, increase the working environment temperature to avoid Condensation.
  • the temperature of the working environment is always kept higher than a certain temperature preset value of the dew point temperature, and the value range of the preset temperature value can make the temperature change between 1° and 8°;
  • the temperature corresponding to the temperature control information is designed to be always higher than a certain temperature preset value than the temperature corresponding to the dew point temperature information, and the difference between the temperature control information and the dew point temperature information is the temperature modification information , the difference here can be the subtraction between the values, which can represent the change and gap between the information.
  • a buffer temperature can be set based on the dew point temperature, such as 1 From ° to 8°, when the difference between the temperature of the working environment and the dew point temperature is within the temperature buffer range, the temperature control information will be adjusted. For example, if the difference between the current working environment temperature and the dew point temperature is 3°, the temperature control information will be changed; The difference between the current working environment temperature and the dew point temperature is 9°, so the temperature control information can not be changed because of the dew condensation prevention factor. Of course, in this case, the temperature control information can be changed because of other factors.
  • S05 Use the modified temperature control information to drive the temperature regulation device to work.
  • the temperature change trend can be combined.
  • the temperature data collected by the temperature sensor can be used to determine the trend of temperature change. Combined with the temperature change trend, it is possible to determine the extent to which the temperature of the working environment needs to be adjusted.
  • the temperature control information can be modified to a smaller value, that is, the temperature modification information is set to a lower value to save heating power consumption on the premise of ensuring no condensation;
  • the temperature control information can be modified to a larger value, that is, the temperature modification information is set to a higher value to prevent the hysteresis of temperature change and the combined effect of the cooling trend, resulting in the working environment temperature equal to the dew point and condensation.
  • the temperature modification information is the difference between the modified temperature control information and the water vapor dew point temperature information.
  • the temperature preset value can be set to different values; when the working environment temperature is rising, the temperature preset value can be set to a smaller value, such as 3°; when the working environment temperature is decreasing trend, you can set the temperature preset value to a larger value, such as 5°.
  • the temperature preset value By setting the temperature preset value, the temperature of the working environment can always be maintained at a certain value higher than the dew point temperature.
  • the setting of buffer temperature may not be set alone.
  • the buffer temperature can be set to a smaller value, such as 3°; when the working environment temperature is decreasing, the buffer temperature can be set to a larger value, such as 5°; according to the buffer temperature
  • the temperature is correspondingly set with buffer temperature information.
  • Embodiments of the present disclosure also provide an optical module temperature control module, comprising:
  • an information collection module configured to collect humidity information and temperature information
  • the processing module is configured to calculate the dew point temperature information according to the humidity information and the temperature information, calculate the temperature change trend according to the temperature information, compare the dew point temperature information with the current temperature control information, and compare the dew point temperature information with the current working environment temperature information, Modify temperature control information;
  • the configuration module is configured to configure the temperature control information to the temperature regulation device.
  • Embodiments of the present disclosure also provide an optical module, comprising:
  • a temperature sensor configured to obtain temperature information
  • a humidity sensor configured to obtain humidity information
  • the microprocessor is configured to obtain temperature information and humidity information from the temperature sensor and the humidity sensor respectively; calculate the dew point temperature information; compare the dew point temperature information with the current temperature control information, and compare the dew point temperature information with the current working environment temperature information. Compare and modify temperature control information;
  • the temperature regulating device is configured to heat according to the temperature control information to change the ambient temperature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Automation & Control Theory (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本公开提供了一种光模块温度控制方法、装置及光模块,包括电路板、非气密光发射次模块及设置于电路板上的湿度传感组件与MCU,非气密光发射次模块与电路板电连接,用于发射信号光;湿度传感组件用于实时检测光模块内部的环境湿度;MCU分别与湿度传感组件、光发射次模块内的热电冷却控制器电连接,以接收湿度传感组件检测的环境湿度,并根据环境湿度控制热电冷却控制器的热交换面的温度。

Description

一种光模块温度控制方法、装置及光模块
本公开要求在2020年10月22日提交中国专利局、申请号为202011141727.3、专利名称为“一种光模块”、2020年10月27日提交中国专利局、申请号为202011164206.X、专利名称为“一种光模块温度控制方法、装置及光模块”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块温度控制方法、装置及光模块。
背景技术
在高速光通信产品发展过程中,伴随着传输速率的提升,对降低成本的要求也越来越高。传统的光发射器通常使用气密封装壳体,并将各种光电器件封装在壳体,以保证封装内部没有水汽渗透,从而使整个光器件在高温高湿环境下可以正常工作。但是气密封装壳体价格昂贵,无法满足越来越强烈的降低成本的要求,因此非气密封装方式因为其较低的成本和更为灵活的设计方式,成为取代气密封装的重要途径。
发明内容
第一方面,本公开实施例公开了一种光模块,包括:电路板;非气密光发射次模块,与所述电路板电连接,包括壳体及设置于所述壳体内的热电冷却控制器;用于发射信号光;湿度传感组件,设置于所述电路板上,用于实时检测光模块内部的环境湿度;MCU,设置于所述电路板上,其分别与所述湿度传感组件、所述热电冷却控制器连接;用于接收所述湿度传感组件检测的环境湿度,并根据所述环境湿度控制所述热电冷却控制器的热交换面的温度。
第二方面,本公开实施例提供一种光模块的温度控制方法,包括获取当前的工作环境的湿度信息及温度信息;根据所述当前的工作环境的湿度信息及温度信息,计算水汽露点温度信息;将所述水汽露点温度信息与当前的温度控制信息进行比较;根据比较结果修改所述温度控制信息;使用修改后的所述温度控制信息调节所述工作环境的温度。
第三方面,本公开实施例还提供一种光模块的温度控制模块,包括信息收集模块,被配置为收集湿度信息及温度信息;处理模块,被配置为根据所述湿度信息及所述温度信息计算露点温度信息,根据所述温度信息计算温度变化趋势,将所述露点温度信息与当前温度控制信息进行比较,修改所述温度控制信息;配置模块,被配置为将所述温度控制信息配置给温度调节器件。
第四方面,本公开实施例还提供一种光模块,包括温度传感器,配置为获取温度信息;湿度传感器,被配置为获取湿度信息;微处理器,被配置为从所述温度传感器及所述湿度传感器中分别获取温度信息及湿度信息;计算露点温度信息;将所述露点温度信息与当前温度控制信息进行比较,修改温度控制信息;温度调节器件,被配置为根据所述温度控制 信息制热,以改变环境温度。
附图说明
为了更清楚地说明本公开的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为光通信终端连接关系示意图;
图2为光网络终端结构示意图;
图3为本公开实施例提供的一种光模块的结构示意图;
图4为本公开实施例提供的一种光模块的分解示意图;
图5为本公开实施例提供的一种光模块去掉上壳体、下壳体与解锁部件的结构示意图;
图6为本公开实施例提供的一种光模块中湿度传感组件的结构示意图;
图7为本公开实施例提供的一种光模块中湿度传感组件与MCU的连接示意图;
图8为本公开实施例提供的一种光模块中温度、相对湿度与露点温度的关系图;
图9为本公开实施例提供的一种光模块温度控制方法流程图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在说明书的描述中,术语“一个实施例”、“一些实施例”、“示例性实施例(”、“示例”、“特定示例”或“一些示例”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”“”第三“第四”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”“第三”“第四”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。然而,术语“连接”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
本文中“被配置为”的使用意味着开放和包容性的语言,其不排除被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值 的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
光纤通信的核心环节之一是光、电信号的相互转换。光纤通信使用携带信息的光信号在光纤/光波导等信息传输设备中传输,利用光在光纤/光波导中的无源传输特性可以实现低成本、低损耗的信息传输;而计算机等信息处理设备使用的是电信号,为了在光纤/光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,就需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光、电信号的相互转换功能,光信号与电信号的相互转换是光模块的核心功能。光模块通过其内部电路板上的金手指实现与外部上位机之间的电连接,主要的电连接包括供电、I2C信号、数据信息以及接地等;采用金手指实现的电连接方式已经成为光模块行业的主流连接方式,以此为基础,金手指上引脚的定义形成了多种行业协议/规范。
图1为光通信终端连接关系示意图。如图1所示,光通信终端的连接主要包括光网络终端100、光模块200、光纤101及网线103之间的相互连接。
光纤101的一端连接远端服务器,网线103的一端连接本地信息处理设备,本地信息处理设备与远端服务器的连接由光纤101与网线103的连接完成;而光纤101与网线103之间的连接由具有光模块200的光网络终端100完成。
光模块200的光口对外接入光纤101,与光纤101建立双向的光信号连接;光模块200的电口对外接入光网络终端100中,与光网络终端100建立双向的电信号连接;在光模块内部实现光信号与电信号的相互转换,从而实现在光纤与光网络终端之间建立信息连接。具体地,来自光纤的光信号由光模块转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块转换为光信号输入至光纤中。
光网络终端具有光模块接口102,用于接入光模块200,与光模块200建立双向的电信号连接;光网络终端具有网线接口104,用于接入网线103,与网线103建立双向的电信号连接;光模块200与网线103之间通过光网络终端100建立连接。具体地,光网络终端将来自光模块的信号传递给网线,将来自网线的信号传递给光模块,光网络终端作为光模块的上位机检测光模块的工作。
至此,远端服务器通过光纤、光模块、光网络终端及网线,与本地信息处理设备之间建立双向的信号传递通道。
常见的信息处理设备包括路由器、交换机、电子计算机等;光网络终端是光模块的上位机,向光模块提供数据信号,并接收来自光模块的数据信号,常见的光模块上位机还有光线路终端等。
图2为光网络终端结构示意图。如图2所示,在光网络终端100中具有电路板105,在电路板105的表面设置笼子106;在笼子106内部设置有电连接器,用于接入金手指等光模块电口;在笼子106上设置有散热器107,散热器107具有增大散热面积的翅片等第一凸台部。
光模块200插入光网络终端100中,具体为光模块的电口插入笼子106内部的电连接器,光模块的光口与光纤101连接。
笼子106位于电路板上,将电路板上的电连接器包裹在笼子中,从而使笼子内部设置有电连接器;光模块插入笼子中,由笼子固定光模块,光模块产生的热量传导给笼子106,然后通过笼子上的散热器107进行扩散。
图3为本公开实施例提供的一种光模块结构示意图,图4为本公开实施例提供的光模块的分解示意图。如图3、图4所示,本公开实施例提供的光模块200包括上壳体201、下壳体202、解锁部件203、电路板300、光发射次模块400与光接收次模块500。
上壳体201盖合在下壳体202上,以形成具有两个开口的包裹腔体;包裹腔体的外轮廓一般呈现方形体。具体地,下壳体202包括主板以及位于主板两侧、与主板垂直设置的两个侧板;上壳体包括盖板,盖板盖合在上壳体的两个侧板上,以形成包裹腔体;上壳体还可以包括位于盖板两侧、与盖板垂直设置的两个侧壁,由两个侧壁与两个侧板结合,以实现上壳体201盖合在下壳体202上。
两个开口中其中一个开口为电口204,电路板的金手指从电口204伸出,插入光网络终端等上位机中;另一个开口为光口205,用于外部光纤接入以连接光模块内部的光发射次模块400与光接收次模块500;电路板300、光发射次模块400、光接收次模块500等光电器件位于包裹腔体中。
采用上壳体、下壳体结合的装配方式,便于将电路板300、光发射次模块400、光接收次模块500等器件安装到壳体中,由上壳体、下壳体形成模块最外层的封装保护壳体;上壳体及下壳体一般采用金属材料,利用实现电磁屏蔽以及散热,一般不会将光模块的壳体做成一体部件,这样在装配电路板等器件时,定位部件、散热以及电磁屏蔽部件无法安装,也不利于生产自动化。
解锁部件203位于包裹腔体/下壳体202的外壁,用于实现光模块与上位机之间的固定连接,或解除光模块与上位机之间的固定连接。
解锁部件203具有与上位机笼子匹配的卡合部件;拉动解锁部件203的末端可以在使解锁部件203在外壁的表面相对移动;光模块插入上位机的笼子里,由解锁部件203的卡合部件将光模块固定在上位机的笼子里;通过拉动解锁部件203,解锁部件203的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块与上位机的卡合关系,从而可以将光模块从上位机的笼子里抽出。
电路板300上设置有电路走线、电子元件(如电容、电阻、三极管、MOS管)及芯片(如MCU、激光驱动芯片、限幅放大芯片、时钟数据恢复CDR、电源管理芯片、数据处理芯片DSP)等。
电路板300用于提供信号电连接的信号电路,信号电路可以提供信号。电路板300通过电路走线将光模块中的用电器件按照电路设计连接在一起,以实现供电、电信号传输及接地等电功能。
电路板一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;当光收发组件位于电路板上时,硬性电路板也可以提供平稳的承载;硬性电路板还可以插入上位机笼子中的电连接器中,具体地,在硬性电路板的一侧末端表面形成金属引脚/金手指,用于与电连接器连接;这些都是柔性电路板不便 于实现的。
部分光模块中也会使用柔性电路板,作为硬性电路板的补充;柔性电路板一般与硬性电路板配合使用,如硬性电路板与光收发组件之间可以采用柔性电路板连接。
在高速光通信模块中,如400G FR4,400G LR4,400G DR4,以及其他光通信模块等,伴随着传输速率的提升,对降低成本的要求也越来越高。传统的光发射次模块400通常使用气密封装壳体,以保证光发射次模块400的气密性。具体地,光发射次模块400包括发射壳体与激光器等光发射器件,发射壳体为气密性壳体,并将激光器等光发射器件封装在发射壳体内,以保证封装内部没有水汽渗透,从而使整个光发射器件在高温高湿环境下可以正常工作。
但气密封装壳体价格昂贵,无法满足越来越强烈的降低成本的要求。因此非气密封装方式因为其较低的成本和更为灵活的设计方式,成为取代气密封装的重要途径。对于光发射次模块400的非气密封装结构,可将柔性电路板插入发射壳体内,柔性电路板的一端与激光器等光发射器件电连接、另一端与电路板300电连接,通过柔性电路板实现光发射次模块400的非气密封装;也可将电路板300直接插入发射壳体内,激光器等光发射器件设置在电路板300上,从而实现光发射次模块400的非气密封装。
然而在光发射次模块400的非气密封装结构中,尤其是存在TEC的情况下,激光器等光发射器件设置在TEC的热交换面上,TEC可通过热交换面对激光器等光发射器件进行制冷或制热,以降低或升高激光器等光发射器件的温度,保证激光器等光发射器件的正常工作。当TEC的热交换面对激光器等光发射器件进行制冷时,TEC的热交换面通常设置在一个较低的固定温度,在高温高湿环境中,由于可通过柔性电路板或电路板插入发射壳体内,壳体内存在细微的漏气,经过一段时间的积累,当TEC的热交换面温度低于壳体内部潮气的凝露点时,会造成TEC上关键器件表面被露水覆盖,引起光发射器件输出功率下降,甚至不能正常工作。
为了解决上述问题,本公开实施例提供了一种光模块,在该光模块的电路板上增设湿度传感器,实时监控光模块内部的湿度数据,根据该湿度数据来相应调整TEC制冷或制热温度,使得光发射次模块400的关键光器件工作在高于壳体内露点的温度,防止关键光器件表面凝露,从而使整个光模块得以正常工作。
图5为本公开实施例提供的一种光模块去掉上壳体201、下壳体202与解锁部件203后的结构示意图。如图5所示,本公开实施例提供的光模块还包括MCU310、电源管理芯片320与湿度传感组件330,MCU310、电源管理芯片320与湿度传感组件330均可设置在电路板300上,湿度传感组件330与电源管理芯片320电连接,电源管理芯片320可与上位机连接,以对上位机提供的电压等进行调整,从而对湿度传感组件330进行供电,使得湿度传感组件330能够实时检测光模块内部的环境湿度;MCU310与湿度传感组件330电连接,其可接收湿度传感组件330检测到的环境湿度,并可根据环境湿度控制TEC的制冷或制热温度,如此TEC的制冷或制热温度能够使其上的关键光器件工作在高于壳体内露点的温度。
在本公开一些实施例中,MCU310自身集成有驱动单元,以供电驱动MCU310工作, 从而接收湿度传感组件330检测到的环境湿度,并控制TEC的制冷或制热温度;也可将MCU310与电源管理芯片320电连接,通过电源管理芯片320对MCU310进行供电,使得MCU310可接收湿度传感组件330检测到的环境湿度,并控制TEC的制冷或制热温度。
在一种可能实施方式中,电路板300上设置有TEC驱动芯片,MCU310与该TEC驱动芯片电连接,TEC驱动芯片与光发射次模块400的TEC电连接,如此MCU310可向TEC驱动芯片发射控制信号,TEC驱动芯片根据该控制信号驱动TEC调整制冷或制热温度,从而调整TEC上光发射器件的工作温度;TEC驱动芯片也可集成在MCU310内,MCU310接收到湿度传感组件330传送的环境湿度后,根据一系列计算后,通过集成的TEC驱动芯片来驱动TEC调整制冷或制热温度,从而调整TEC上光发射器件的工作温度。
MCU310自身可获得光模块内的一些环境参数,如温度数据等,在一种可能的示例中,将湿度传感组件330测量到的环境湿度数据等新增至MCU310的环境参数内,MCU310根据新增后的环境参数来控制TEC,以降低或升高TEC热交换面的温度,从而调整TEC热交换面上激光器等光发射器件的温度,避免激光器等光发射器件上结露。
MCU310根据光模块内环境参数控制TEC制冷或制热温度时,MCU310可直接根据湿度传感组件330测量到的环境参数来控制TEC,即MCU310接收到湿度传感组件330获得的环境湿度数据后,对环境湿度进行计算处理后,通过TEC驱动芯片控制降低或升高TEC热交换面的温度。另外,由于TEC、激光器等光发射器件均置于光发射次模块400的壳体内,激光器等光发射器件的温度与光模块内的温度可能存在偏差,因此可经过试验获得光模块内温度与光发射次模块400内激光器等光发射器件温度的补偿值,MCU310获得湿度传感组件测量的环境参数后,对测量到的环境参数加上补偿值后得到新的环境参数值,MCU310根据该新的环境参数值来控制TEC热交换面的温度。
本公开实施例提供的湿度传感组件330包括湿度传感器与温度传感器,湿度传感器与温度传感器分别设置于电路板300上,且湿度传感器与温度传感器的通信信号输出端分别与MCU310通信信号接口连接,以将实时检测到的光模块内部的温度数据与湿度数据传送至MCU310,由MCU310对其进行后续处理。
湿度传感组件330也可只包括湿度传感器,不具备温度测量功能,该湿度传感器设置于电路板300上,且湿度传感器的通信信号输出端与MCU310通信信号接口连接,以将实时检测到的光模块内部的湿度数据传送至MCU310。
当湿度传感组件330不具备温度测量功能时,MCU310可携带温度测量功能,即MCU310内集成有温度传感器,MCU310自身可测量光模块内的温度数据。也可在电路板300上独立设置温度传感器,该温度传感器设置于电路板300上,与电路板300上的电源管理芯片320电连接,通过电源管理芯片320为独立设置的温度传感器进行供电,使得温度传感器检测光模块内的温度数据;独立设置的温度传感器的通信信号输出端与MCU310通信信号接口连接,以将实时检测到的光模块内部的温度数据传送至MCU310。
当湿度传感组件330包括湿度传感器与温度传感器时,湿度传感组件330可将湿度传感器测量到的湿度数据与温度传感器测量到的湿度数据通过I2C线传输至MCU310,MCU310对接收到的温度数据、温度数据进行处理后控制TEC热交换面的制冷或制热温度。
图6为本公开实施例提供的一种光模块中湿度传感组件330的一种实施例结构示意图。如图6所示,湿度传感组件330还可包括模数转换器、数据处理器与I2C接口,湿度传感器的输出端与温度传感器的输出端分别与模数转换器的输入端连接;模数转换器的输出端与数据处理器的输入端连接,数据处理器的输出端与I2C接口连接,I2C接口与MCU310的通信信号接口连接,数字信号传输至数据处理器后,数据处理器将数字信号转换为符合I2C传输协议的协议信号,该协议信号可通过I2C线(SCL线、SDA线)传输至MCU310。
本公开实施例提供的湿度传感组件330还可包括定标存储器,该定标存储器的输入端与数据处理器的输出端连接,用于存储处理后的温度数据与湿度数据,以方便后续进行查看。
图7为本公开实施例提供的一种光模块中湿度传感组件330与MCU310的电连接示意图。如图7所示,为方便湿度传感组件330分别电连接MCU310与电源管理芯片320,湿度传感组件330上设置有第一焊点、第二焊点、第三焊点与第四焊点,第一焊点通过打线与电源管理芯片320电连接,第二焊点通过打线与地线连接,第三焊点通过SCL线与湿度传感组件330内的I2C接口连接,同时可通过SCL线与MCU310连接,第四焊点通过SDA线与湿度传感组件330内的I2C接口连接,同时可通过SDA线与MCU310连接。
具体地,将湿度传感组件330固定于电路板300上后,将一打线的一端与第一焊点焊接在一起,将该打线的另一端连接至电源管理芯片320,实现湿度传感组件330与电源管理芯片320的电连接;将另一打线的一端与第二焊点焊接在一起,将该打线的另一端连接至地线上,实现湿度传感组件330与地线的电连接;将SCL线的一端与第三焊点焊接在一起、另一端与MCU310连接,并将SDA线的一端与第四焊点焊接在一起、另一端与MCU310连接,实现湿度传感组件330与MCU310的电连接。
为方便湿度传感组件330通过I2C接口与MCU310连接,MCU310上设置有I2C外围设备,I2C接口通过SCL线、SDA线与I2C外围设备连接。具体地,MCU310上设置有第五焊点与第六焊点,第五焊点通过SCL线与I2C外围设备连接,第六焊点通过SDA线与I2C外围设备连接。连接湿度传感组件330的I2C接口与MCU310的I2C外围设备时,将SCL的一端与湿度传感组件330上的第三焊点焊接在一起、另一端与MCU310上的第五焊点焊接在一起,将SDA的一端与湿度传感组件330上的第四焊点焊接在一起、另一端与MCU310上的第六焊点焊接在一起,实现湿度传感组件330与MCU310的I2C连接。
在大多数情况下,由于I2C接口采用Open Drain机制,SCL线、SDA线本身只能输出低电平,无法主动输出高电平,只能通过外部上拉电阻将信号线拉至高电平,以符合MCU310的逻辑电平。具体地,湿度传感组件330的I2C接口与MCU310的I2C外围设备通过I2C总线连接时,在I2C总线上还设置有第一上拉电阻与第二上拉电阻,第一上拉电阻与SDA线连接,第二上拉电阻与SCL线连接,且第一上拉电阻与第二上拉电阻并联连接。即第一上拉电阻的一端与电源管理芯片320连接、另一端与SDA线连接,第二上拉电阻的一端与电源管理芯片320连接、另一端与SCL线连接。
在本公开实施例中,在电路板300远离热源的位置安装湿度传感组件330,并分别与MCU310、电源管理芯片320及地GND电连接,辅以相应的固件和软件控制,可实现湿度 传感组件330对光模块内部的湿度、温度的实时检测,并通过I2C接口将湿度、温度数据传输至MCU310,MCU310根据湿度数据、温度数据控制调整光发射次模块400内TEC的制冷或制热温度,以避免TEC上关键光器件表面结露。
通常光模块工作在相对较好的环境之中,比如装有空调的数据中心,空气中所含水汽的成分较低,即相对湿度较低,在较宽的温度范围内,TEC热交换面都不会发生凝露现象。但是在某些极端环境中或在进行高温高湿条件的可靠性试验时,环境温度高达70℃,空气的相对湿度高度85%,非气密封装的光发射次模块400因封装质量的限制,在这种环境中,水汽会进入非气密封装壳体内部,经过一段时间积累之后,壳体内的相对湿度会明显增高甚至接近壳体外部相对湿度。若TEC热交换面设置温度不合适,比如50℃,则在TEC表面以及安装在此表面的光学部件均会形成凝露现象,造成对光路的阻挡,影响光模块的正常工作。
当MCU310控制TEC热交换面的温度时,可能会考虑到湿度对TEC热交换面温度的影响,也可能不会考虑到湿度对TEC热交换面温度的影响。当MCU310未考虑到环境湿度对TEC热交换面温度的影响时,TEC热交换面的温度可能只根据TEC热交换面上设置的激光器等光发射器件的工作温度来控制调整TEC热交换面的温度,以对激光器等光发射器件进行制冷或制热;但只考虑激光器等光发射器件的工作温度时,其工作温度可能低于光发射次模块400壳体内的露点温度,易造成激光器等光发射器件上结露。当MCU310考虑到环境湿度对TEC热交换面温度的影响时,TEC热交换面的温度可根据TEC热交换面上设置的激光器等光发射器件的工作温度与相对湿度来共同控制调整,使得激光器等光发射器件的温度高于当前温度、湿度情况下的结露温度,从而避免激光器等光发射器件上结露。即考虑到光模块内湿度数据时的TEC热交换面温度高于未考虑到光模块内湿度数据时的TEC热交换面温度。
图8为本公开实施例提供的一种光模块中在各种温度时相对湿度与露点温度的关系图。如图8所示,当温度为70℃,相对湿度为85%时,露点温度为67℃,而当温度为70℃,相对湿度为70%时,露点温度为63℃。若在某一温度、某一相对湿度下,TEC热交换面的温度低于对应的露点温度,则TEC热交换面及其表面的光发射器件均会结露。为保证光发射器件正常工作,需要根据环境温度和湿度情况,将TEC热交换面的温度调整到合适的温度,比如若温度为70℃,相对湿度为70%时,将TEC热交换面的温度调整到高于63℃,如此TEC热交换面及其表面的光发射器件的温度高于露点温度,也就不会出现结露现象。
在光模块的传统设计中,由于不具备相对湿度测量功能,当光发射器件封装在非气密壳体中时,如果将TEC热交换面的温度设置过低,虽然可以保证在正常工作环境中光模块的性能,但在极端环境中光模块的性能会恶化甚至失效;如果将TEC热交换面的温度设置过高,虽然改善了极端环境下光模块的工作性能,但是却使得在正常环境下光模块工作在非最佳性能区,也使得关键光器件工作负荷大幅增加,缩短了关键光器件的寿命。在本公开实施例中,由于在光模块电路板300上增设了湿度传感组件330,通过湿度传感组件330对光模块内部的温度、湿度进行实时检测,并将检测到的温度数据、湿度数据通过I2C总线传输至MCU310,MCU310对温度数据、湿度数据进行处理后,控制相应调整TEC热交 换面的温度,既兼顾了典型工作环境下光模块可以获得最佳性能,又保证了在极端环境时光模块可以正常工作,不出故障,从而达到了性能和可靠性的完美平衡。
本公开实施例提供的光模块包括电路板、与电路板电连接的光发射次模块及设置于电路板上的电源管理单元、湿度传感组件、MCU,湿度传感组件与电源管理单元电连接,用于实时检测光模块内部的环境温度与湿度;MCU与湿度传感组件电连接,用于接收湿度传感组件检测的环境湿度与温度数据,并对环境湿度与温度数据进行处理;MCU与电路板上的TEC驱动芯片电连接,TEC驱动芯片与光发射次模块内的TEC连接,MCU可根据接收到环境湿度与温度数据来控制TEC驱动芯片来驱动控制TEC热交换面的温度,以使TEC热交换面的温度高于光模块内温湿度对应的露点温度,避免了TEC的热交换面及其表面的光发射器件结露,从而保证了光模块的技术性能,极大的改善了光模块的长期可靠性和稳定性,并使得光模块在最恶劣环境中可以正常工作。
由于激光芯片、光接收芯片及相关光学透镜等光模块核心器件与外部空气直接连通,从而形成了非气密性封装。空气中存在水汽,使得光模块的核心部件暴露在具有水汽的空气中。在特定的水汽湿度及环境温度下,水汽会凝结成水珠,即由气态水变成液态水。液态水对光模块的核心器件会造成很大影响,特别是液态水凝结在芯片及光学透镜的表面,会影响芯片的正常工作,以及改变预设的光学路径。为了防止水汽对光模块正常工作的影响,主要的解决方案为防止液态水的形成。
水从气态变为液态,主要受空气湿度以及空气温度两方面的因素影响,而光模块中具有温度调节器件,可以实现对空气温度的调节,从而可以通过对空气温度的调节,防止液态水的形成。对温度的调节是建立在已知湿度的前提下,在光模块内部新增的湿度传感器,是获取空气湿度的检测元件。通过湿度传感器,获取空气湿度,结合光模块已有的温度控制机制,对已有的温度控制机制进行改善优化,将湿度因素纳入控制机制的考量因素,从而实现了在满足原有温度控制要求的基础上,又防止了液态水的形成。
半导体制冷器TEC是光模块中调节温度的主要温度调节器件。现有技术中,光模块根据工作温度需要,设置了使用温度调节器件调节工作温度的方法及装置。本公开实施例中在现有技术的基础上,增加判断液态水(水汽)凝结的温度及湿度条件,利用温度调节器件改变工作温度,防止水汽凝结的温度条件形成。工作环境的湿度,在一定时间范围内变化幅度很小,而工作环境的温度,可以由温度调节器件进行相对快速的调节,而且光模块中不具有湿度调节器件,所以主要通过调节温度调节器件防止水汽凝结。
本公开实施例在新增湿度传感器硬件的基础上,利用光模块硬件获取温度及湿度信息,通过微处理器芯片中设置的软件方法,实现对温度调节器件的控制。
图9为本公开实施例提供的一种光模块温度控制方法流程图,如图9所示,本公开实施例提供的温度控制方法由微处理器MCU运行的代码实现,由MCU启动控制程序执行运行步骤。本公开实施例提供了一种温度控制方法,包括
S01:获取当前的工作环境的湿度信息及温度信息;
S02:根据当前的工作环境的湿度信息及温度信息,计算水汽露点温度信息;
S03:将水汽露点温度信息与当前温度控制信息进行比较;
S04:根据比较结果修改温度控制信息;
S05:使用修改后的温度控制信息驱动温度调节器件工作。
S01:获取当前的工作环境的湿度信息及温度信息;
工作环境指光模块内部的环境。在非气密性封装中,光模块内部的环境与外部的环境处于相通状态,在温度测量时,可以将光模块外部的环境等同为内部的环境。
由于湿度及温度具有实时变化性,所以对湿度信息及温度信息的获取也是实时的,具体可以是间隔固定的时间,周期性获取。
湿度传感器是光模块获取工作环境空气湿度的检测元件,湿度传感器获取的检测信息传输给光模块的微处理器芯片MCU。由微处理器芯片获得光模块内部工作环境湿度信息可以是来自湿度传感器的直接测量信息,也可以是在湿度传感器直接测量信息的基础上加入了湿度补偿信息,湿度补偿信息的加入由微处理器芯片实现。湿度传感器,一般直接设置在光模块的电路板上。温度信息是温度在传感器中呈现的信息,是在微处理器中进行运算的信息,温度信息可以是能够进行大小比较的数值(如二进制数值),也可以是不能够进行大小比较的数据信息;而温度是可以进行大小比较的数值,通常以十进制体现。温度信息与温度是不同的概念,存在相互对应关系。
温度传感器是光模块获取工作环境温度的检测元件,温度传感器获取的检测信息传输给光模块的微处理器芯片MCU,由微处理器芯片获得的光模块内部工作环境温度信息可以是来自温度传感器的直接测量信息,也可以是在温度传感器,直接测量信息的基础上加入补偿信息,温度补偿信息的加入由微处理器芯片实现。温度传感器,一般直接设置在光模块的电路板上,也可以与湿度传感器集成在一起,也可以集成在微处理器芯片中。
S02:根据当前的工作环境的湿度信息及温度信息,计算水汽露点温度信息;
本公开实施例提供的光模块中,通过对光模块内部工作环境湿度和温度的实时监控,通过计算在特定相对湿度和温度条件下水汽液化凝结的露点温度信息,从而将受水汽影响部件的温度设置在高于露点温度的某一温度,并保持与露点温度有一定的温差,进而保证在各种环境中,关键部件均能正常工作,不产生凝露现象。
本公开实施例中,提供了一种具体的计算方式,将露点温度与工作环境温度的关系表示为
Figure PCTCN2021101605-appb-000001
上述公式中,T是工作环境的温度(K),RH是工作环境的湿度,Td是温度为T而且相对湿度为RH时的露点温度(K)。L/Rv=5423K。
根据工作环境的湿度信息及温度信息,计算水汽露点温度信息的具体公式可以有多种形态,本公开实施例不做具体限定。凡是使用工作环境温度及工作环境湿度计算露点温度的计算公式都属于本公开的保护范畴。
关于露点温度信息的计算,可以采用函数计算的方式,也可以采用查找表的方式。采用函数计算的方式中,由微处理器芯片,根据上述计算公式以及采集的温度、湿度信息实 时计算出露点温度信息;采用查找表的方式中,预设温度湿度信息与露点温度信息相关的对照查找表,以实时采集的工作环境温度信息及湿度信息为索引,从查找表中查找到对应的露点温度信息。
S031:将水汽露点温度信息与当前温度控制信息进行比较;
或者
S031:将水汽露点温度信息与当前的工作环境温度信息进行比较;
受水汽影响部件的温度设置在高于露点温度,这样就可以使得水汽不会凝露;具体可以是将工作环境的温度信息与水汽露点温度信息之间保持一定的温差,温差为温度预设值;也可以是将温度控制信息与露点温度信息之间保持一定的差值,差值为温度修改信息;由于温度控制信息与实际温度之间存在一定的时间延迟,这就使得温度控制信息对应的温度与实际温度之间有可能不一致,所以可以将露点温度与工作环境温度进行比较,也可以将露点温度信息与温度控制信息进行比较。
对温度调节器件的控制使用的是温度控制信息;将温度控制信息提供给温度调节器件,使温度调节器件在温度控制信息的控制下工作;温度控制信息表示当前驱动温度调节器件需要达到的目标温度,即温度调节器件实现了温度控制信息指代的温度。通过对温度控制信息的调整,可以改变光模块的工作环境温度。
当水汽是否凝结是光模块优先级最高的考虑因素时,将其他与光模块温度相关的因素转化为对温度调节器件的温度控制信息,此时的温度控制信息即为当前温度控制信息;最后根据露点温度信息对温度调节器件的温度控制信息进行调整。当前温度控制信息是指不考虑水汽凝结因素时,驱动温度调节器件工作的控制信息。
当水汽是否凝结不是光模块优先级最高的考虑因素时,将其他优先级较低的考虑因素转化为对温度调节器件的温度控制信息,此时的温度控制信息即为当前温度控制信息,根据露点温度信息对温度调节器件的温度控制信息进行调整;调整完成后,根据其他优先级较高的考虑因素再次对温度控制信息进行调整。
在光模块中,温度会影响光模块的发射光功率、消光比、波长调谐、芯片寿命及整体功耗等相关因素,研发人员会根据产品实际情况考量这些相关因素,针对性的设计控制方法,进而在温度控制信息的设置或软件算法上体现。
半导体制冷器T E C是光模块中调节温度的主要温度调节器件。温度控制信息是对半导体制冷器进行调节的主要参数。半导体制冷器一般会与一个驱动芯片进行匹配,由微处理器芯片处理生成温度控制信息,由微处理器芯片将温度控制信息传送给驱动芯片,由驱动芯片根据温度控制信息生成提供给半导体制冷器的工作电流,由半导体制冷器在工作电流的驱动下实现制冷或制热。
S04:根据比较结果修改温度控制信息;
水汽露点温度信息与当前的工作环境温度信息进行比较,可以判断当前工作环境温度与水汽露点温度的差距;水汽露点温度信息与当前的温度控制信息进行比较,也可以判断当前工作环境温度与水汽露点温度的差距或预期工作环境温度与水汽露点温度的差距;
当前工作环境温度等于水汽露点温度时,工作环境中的水汽会凝集成液态水;预期工 作环境温度等于水汽露点温度时,也存在水汽凝结成液态水的可能;
为避免液态水的出现,本公开实施例通过修改温度控制信息使工作环境的温度与水汽露点温度不同。对温度控制信息的修改可以基于当前温度控制信息与露点温度信息之间的差值;当前温度控制信息指示使用温度调节器件预期实现的工作环境温度,当温度变化相对稳定时,当前温度控制信息指示当前工作环境温度;若当前工作环境温度与露点温度相同,即会产生凝露,若预期的工作环境温度与露点温度相同,表示凝露会预期产生;此时将工作环境温度调高即可避免凝露。
在一种可能的实施方式中,将工作环境温度始终保持高于露点温度某一温度预设值,该温度预设值的取值范围可以使温度变化发生在1°至8°之间;
在另一种可能的实施方式中,将温度控制信息对应的温度,设计为始终比露点温度信息对应的温度高于某一温度预设值,温度控制信息与露点温度信息之差为温度修改信息,这里的差可以是数值间做减法,可以表示信息之间的变化、差距。
当温度控制信息对应的温度与当前工作环境温度一致时,温度修改信息与温度预设值之间有明确的对应关系;当温度控制信息对应的温度与当前工作环境温度不一致时,温度修改信息与温度预设值之间不具有明确的对应关系。
将水汽露点温度信息与当前温度控制信息进行比较,当判断出水汽露点温度与当前温度控制信息指示的温度之差低于温度预设值时,将温度控制信息调整为露点温度信息加上温度预设值对应的温度控制信息。
虽然温度控制信息可以较为快速的进行修改,但是温度调节器件对环境温度的改变相对迟缓,为了防止迟缓的温度变化过程中导致环境温度等于露点,可以以露点温度为基础设置一个缓冲温度,例如1°至8°,当工作环境的温度与露点温度的差值在温度缓冲范围内时,开始对温度控制信息进行调整,比如当前工作环境温度与露点温度相差3°,则开始改变温度控制信息;当前工作环境温度与露点温度相差9°,则可以不因为防止凝露因素而改变温度控制信息,当然这种情况下可以因为其他因素而改变温度控制信息。
S05:使用修改后的温度控制信息驱动温度调节器件工作。
使用修改后的温度控制信息驱动温度调节器件工作,以改变工作环境的温度,使工作环境的温度与水汽露点温度不同。
针对温度控制信息的修改,可以结合温度变化趋势。
用温度传感器采集的温度数据可以判读出温度变化的趋势,结合温度变化趋势,可以判断出需要对工作环境温度进行调节的幅度。
当工作环境温度呈升温的趋势,可以将温度控制信息进行较小数值的修改,即温度修改信息设置为较低数值,在保证不凝露的前提下节省制热功耗;当工作环境温度呈降温的趋势,可以将温度控制信息进行较大数值的修改,即温度修改信息设置为较高数值,以防止温度改变的滞后性与降温趋势综合作用,导致工作环境温度等于露点而凝露。温度修改信息为修改后的温度控制信息与水汽露点温度信息之间的差值。通过设置温度修改信息,可以使温度控制信息对应的温度,始终保持高于露点温度某一值。
结合温度变化趋势,可以将温度预设值设置为不同的取值;当工作环境温度呈升温的 趋势,可以将温度预设值设置为较小的数值,比如3°;当工作环境温度呈降温的趋势,可以将温度预设值设置为较大的数值,比如5°。通过设置温度预设值,可以使工作环境的温度,始终保持高于露点温度某一值。
结合温度变化趋势,缓冲温度的设置也可以不单一设置。当工作环境温度呈升温的趋势,可以将缓冲温度设置为较小的数值,比如3°;当工作环境温度呈降温的趋势,可以将缓冲温度设置为较大的数值,比如5°;根据缓冲温度对应设置有缓冲温度信息。通过设置缓冲温度,可以使温度控制信息对应的温度,始终保持高于露点温度,并不始终保持高于露点温度某一值;或可以使工作环境的温度,始终保持高于露点温度,并不始终保持高于露点温度某一值。
本公开实施例还提供了一种光模块温度控制模块,包括
信息收集模块,被配置为收集湿度信息及温度信息;
处理模块,被配置为根据湿度信息及温度信息计算露点温度信息,根据温度信息计算温度变化趋势,将露点温度信息与当前温度控制信息进行比较,将露点温度信息与当前工作环境温度信息进行比较,修改温度控制信息;
配置模块,被配置为将温度控制信息配置给温度调节器件。
本公开实施例还提供了一种光模块,包括
温度传感器,被配置为获取温度信息;
湿度传感器,被配置为获取湿度信息;
微处理器,被配置为从温度传感器及湿度传感器中分别获取温度信息及湿度信息;计算露点温度信息;将露点温度信息与当前温度控制信息进行比较,将露点温度信息与当前工作环境温度信息进行比较,修改温度控制信息;
温度调节器件,被配置为根据温度控制信息制热,以改变环境温度。
本公开的设计思想并不仅限于应用于高速光通信模块电路中,也可以应用于其他类型的光模块,以及需要规避结露问题的其他产品和领域。最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (19)

  1. 一种光模块,其特征在于,包括:
    电路板;
    非气密光发射次模块,与所述电路板电连接,包括壳体及设置于所述壳体内的热电冷却控制器;用于发射信号光;
    湿度传感组件,设置于所述电路板上,用于实时检测光模块内部的环境湿度;
    MCU,设置于所述电路板上,其分别与所述湿度传感组件、所述热电冷却控制器电连接;用于接收所述湿度传感组件检测的环境湿度,并根据所述环境湿度控制所述热电冷却控制器热交换面的温度。
  2. 根据权利要求1所述的光模块,其特征在于,所述湿度传感组件包括湿度传感器与温度传感器,所述湿度传感器与所述温度传感器分别设置于电路板上,且所述湿度传感器与所述温度传感器分别与所述MCU电连接;用于实时检测所述光模块内部的环境温度与环境湿度,并将温度数据与湿度数据传送至所述MCU。
  3. 根据权利要求1所述的光模块,其特征在于,所述湿度传感组件只包括湿度传感器,没有温度传感器;
    所述电路板上独立设置有温度传感器,所述温度传感器与所述MCU电连接,用于实时检测所述光模块内部的环境温度,并将检测到的温度数据传送至所述MCU。
  4. 根据权利要求1所述的光模块,其特征在于,所述湿度传感组件上设置有第一焊点、第二焊点、第三焊点与第四焊点,所述第一焊点通过打线接电源,所述第二焊点通过打线与地线连接,所述第三焊点通过SCL线分别与所述I2C接口、所述MCU连接,所述第四焊点通过SDA线分别与所述I2C接口、所述MCU连接。
  5. 根据权利要求4所述的光模块,其特征在于,所述MCU上设置有I2C外围设备,所述I2C接口通过SCL线、SDA线与所述I2C外围设备连接。
  6. 根据权利要求5所述的光模块,其特征在于,还包括第一上拉电阻与第二上拉电阻,所述第一上拉电阻与所述SDA线连接,所述第二上拉电阻与所述SCL线连接,且所述第一上拉电阻与所述第二上拉电阻并联连接。
  7. 根据权利要求1所述的光模块,其特征在于,还包括柔性电路板,所述柔性电路板插入所述非气密光发射次模块的壳体内,且所述柔性电路板的一端与所述热电冷却控制器电连接、另一端与所述电路板电连接。
  8. 根据权利要求1所述的光模块,其特征在于,所述电路板插入所述非气密光发射次模块的壳体内,所述热电冷却控制器与所述电路板电连接。
  9. 根据权利要求1所述的光模块,其特征在于,所述MCU根据环境湿度控制所述热电冷却控制器的热交换面温度高于所述MCU未根据所述环境湿度控制所述热电冷却控制器的热交换面温度。
  10. 一种光模块的温度控制方法,其特征在于,包括
    获取当前的工作环境的湿度信息及温度信息;
    根据所述当前的工作环境的湿度信息及温度信息,计算水汽露点温度信息;
    将所述水汽露点温度信息与当前的温度控制信息进行比较;
    根据比较结果修改所述温度控制信息;
    使用修改后的所述温度控制信息调节所述工作环境的温度。
  11. 根据权利要求10所述的温度控制方法,其特征在于,在根据比较结果修改所述温度控制信息之前,还包括
    根据工作环境的温度信息判断温度变化趋势;
    当所述工作环境的温度呈升温趋势,则将温度修改信息设置为较低数值;
    当所述工作环境的温度呈降温趋势,则将所述温度修改信息设置为较高数值;
    所述温度修改信息为修改后的所述温度控制信息与所述水汽露点温度信息之间的差值。
  12. 根据权利要求10所述的温度控制方法,其特征在于,在根据比较结果修改所述温度控制信息之前,还包括
    根据工作环境的温度信息判断温度变化趋势;
    当所述工作环境的温度呈升温趋势,则将缓冲温度信息设置为较低数值;
    当所述工作环境的温度呈降温趋势,则将所述缓冲温度信息设置为较高数值;
    当所述水汽露点温度信息与当前的温度控制信息之差小于所述缓冲温度信息,则修改所述温度控制信息。
  13. 一种光模块的温度控制模块,其特征在于,包括
    信息收集模块,能够收集湿度信息及温度信息;
    处理模块,能够根据所述湿度信息及所述温度信息计算露点温度信息,能够根据所述温度信息计算温度变化趋势,能够将所述露点温度信息与当前温度控制信息进行比较,能够修改所述温度控制信息;
    配置模块,能够将所述温度控制信息配置给温度调节器件。
  14. 一种光模块,其特征在于,包括
    温度传感器,能够获取温度信息;
    湿度传感器,能够获取湿度信息;
    微处理器,能够从所述温度传感器及所述湿度传感器中分别获取温度信息及湿度信息;能够计算露点温度信息;能够将所述露点温度信息与当前温度控制信息进行比较,能够修改温度控制信息;
    温度调节器件,能够根据所述温度控制信息制热,以改变环境温度。
  15. 一种光模块的温度控制方法,其特征在于,包括
    获取当前的工作环境的湿度信息及温度信息;
    根据所述当前的工作环境的湿度信息及温度信息,计算水汽露点温度信息;
    将所述水汽露点温度信息与当前的工作环境温度信息进行比较;
    根据比较结果修改温度控制信息;
    使用修改后的所述温度控制信息调节所述工作环境的温度。
  16. 根据权利要求15所述的温度控制方法,其特征在于,在根据比较结果修改所述温度控制信息之前,还包括
    根据工作环境的温度信息判断温度变化趋势;
    当所述工作环境的温度呈升温趋势,则将温度预设值设置为较低数值;
    当所述工作环境的温度呈降温趋势,则将所述温度预设值设置为较高数值;
    工作环境的温度信息与水汽露点温度信息之间保持一定的温差,所述温差为所述温度预设值;对所述温度控制信息的修改包括增加所述温度预设值。
  17. 根据权利要求15所述的温度控制方法,其特征在于,在根据比较结果修改所述温度控制信息之前,还包括
    根据工作环境的温度信息判断温度变化趋势;
    当所述工作环境的温度呈升温趋势,则将缓冲温度信息设置为较低数值;
    当所述工作环境的温度呈降温趋势,则将所述缓冲温度信息设置为较高数值;
    当所述水汽露点温度信息与当前的工作环境温度信息之差小于所述缓冲温度信息,则修改所述温度控制信息。
  18. 一种光模块的温度控制模块,其特征在于,包括
    信息收集模块,能够收集湿度信息及温度信息;
    处理模块,能够根据所述湿度信息及所述温度信息计算露点温度信息,能够根据所述温度信息计算温度变化趋势,能够将所述露点温度信息与当前工作环境温度信息进行比较,能够修改所述温度控制信息;
    配置模块,能够将所述温度控制信息配置给温度调节器件。
  19. 一种光模块,其特征在于,包括
    温度传感器,能够获取温度信息;
    湿度传感器,能够获取湿度信息;
    微处理器,能够从所述温度传感器及所述湿度传感器中分别获取温度信息及湿度信息;能够计算露点温度信息;能够将所述露点温度信息与当前工作环境温度信息进行比较,能够修改温度控制信息;
    温度调节器件,能够根据所述温度控制信息制热,以改变环境温度。
PCT/CN2021/101605 2020-10-22 2021-06-22 一种光模块温度控制方法、装置及光模块 WO2022083153A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/704,373 US20220216670A1 (en) 2020-10-22 2022-03-25 Optical module and temperature control method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011141727.3 2020-10-22
CN202011141727.3A CN114389695A (zh) 2020-10-22 2020-10-22 一种光模块
CN202011164206.XA CN114488422A (zh) 2020-10-27 2020-10-27 一种光模块温度控制方法、装置及光模块
CN202011164206.X 2020-10-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/704,373 Continuation US20220216670A1 (en) 2020-10-22 2022-03-25 Optical module and temperature control method thereof

Publications (1)

Publication Number Publication Date
WO2022083153A1 true WO2022083153A1 (zh) 2022-04-28

Family

ID=81291488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101605 WO2022083153A1 (zh) 2020-10-22 2021-06-22 一种光模块温度控制方法、装置及光模块

Country Status (2)

Country Link
US (1) US20220216670A1 (zh)
WO (1) WO2022083153A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115994491B (zh) * 2023-03-24 2023-06-30 湖南光华防务科技集团有限公司 一种灭火弹挂飞温度补偿方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6866391B2 (en) * 2001-11-14 2005-03-15 Remote Sights, Ltd. Thermal condensate reducer for optical devices
CN1678482A (zh) * 2002-07-02 2005-10-05 巴特克有限责任公司 用于防止表面凝结的传感器单元、设备及方法
CN104221231A (zh) * 2012-04-16 2014-12-17 株式会社天田 光纤激光振荡器、光纤激光加工装置以及光纤激光振荡器的除湿方法
CN104375543A (zh) * 2014-12-09 2015-02-25 国网上海市电力公司 一种配电柜内温湿度测量方法
CN207397130U (zh) * 2017-11-16 2018-05-22 武汉光迅科技股份有限公司 一种基于tec的光模块温度扩展结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6866391B2 (en) * 2001-11-14 2005-03-15 Remote Sights, Ltd. Thermal condensate reducer for optical devices
CN1678482A (zh) * 2002-07-02 2005-10-05 巴特克有限责任公司 用于防止表面凝结的传感器单元、设备及方法
CN104221231A (zh) * 2012-04-16 2014-12-17 株式会社天田 光纤激光振荡器、光纤激光加工装置以及光纤激光振荡器的除湿方法
CN104375543A (zh) * 2014-12-09 2015-02-25 国网上海市电力公司 一种配电柜内温湿度测量方法
CN207397130U (zh) * 2017-11-16 2018-05-22 武汉光迅科技股份有限公司 一种基于tec的光模块温度扩展结构

Also Published As

Publication number Publication date
US20220216670A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
WO2022083153A1 (zh) 一种光模块温度控制方法、装置及光模块
US7284916B2 (en) Dual stage modular optical devices with insert digital diagnostics component
US8233793B2 (en) Optical transceiver with clock for providing maintenance and lifetime information
US7245794B2 (en) Surface mount module
CN113917622B (zh) 一种光模块
CN113098613A (zh) 光模块及基于双mcu光模块的波长自动对通方法
WO2023134737A1 (zh) 一种光模块
WO2020108294A1 (zh) 光模块
CN111193547A (zh) 一种光模块
US11728895B2 (en) Optical communication module with circuit board compatible with hemetical/non-hemetical packaging and optical transceiver having the same
CN114488422A (zh) 一种光模块温度控制方法、装置及光模块
WO2022052842A1 (zh) 一种光模块
WO2022083149A1 (zh) 一种光模块
WO2022016932A1 (zh) 一种光模块
WO2024016905A1 (zh) 光模块及激光组件
CN112821195A (zh) 一种光模块
CN114389695A (zh) 一种光模块
US7092604B2 (en) Optical transceiver module with improved DDIC and methods of use
WO2022174646A1 (zh) 一种光模块及接收光功率监控方法
CN113009649B (zh) 一种光模块
WO2024124715A1 (zh) 光模块及光模块发射光功率监控方法
CN115016076B (zh) 一种光模块和光模块壳温计算方法
CN113703100A (zh) 一种光模块
CN113541802B (zh) 一种光模块
CN114200599B (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21881573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21881573

Country of ref document: EP

Kind code of ref document: A1