WO2022083031A1 - 一种智能滚筒控制方法及控制系统 - Google Patents

一种智能滚筒控制方法及控制系统 Download PDF

Info

Publication number
WO2022083031A1
WO2022083031A1 PCT/CN2021/075067 CN2021075067W WO2022083031A1 WO 2022083031 A1 WO2022083031 A1 WO 2022083031A1 CN 2021075067 W CN2021075067 W CN 2021075067W WO 2022083031 A1 WO2022083031 A1 WO 2022083031A1
Authority
WO
WIPO (PCT)
Prior art keywords
drum
state
load
operating
running
Prior art date
Application number
PCT/CN2021/075067
Other languages
English (en)
French (fr)
Inventor
张春晖
余晓林
Original Assignee
江苏嘉轩智能工业科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏嘉轩智能工业科技股份有限公司 filed Critical 江苏嘉轩智能工业科技股份有限公司
Publication of WO2022083031A1 publication Critical patent/WO2022083031A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G23/00Driving gear for endless conveyors; Belt- or chain-tensioning arrangements
    • B65G23/02Belt- or chain-engaging elements
    • B65G23/04Drums, rollers, or wheels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/0833Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors for electric motors with control arrangements
    • H02H7/0844Fail safe control, e.g. by comparing control signal and controlled current, isolating motor on commutation error

Definitions

  • the invention relates to the field of motor control, in particular to an intelligent drum control method and system
  • the rotational speed frequency control of the traditional drum is usually set to two gears, that is, the running state frequency and the shutdown, and the rotational speed of the drum is usually controlled according to a constant frequency.
  • the drum can operate normally without a higher rotational speed. If the same operating frequency is used, it will cause a certain degree of energy waste.
  • the real-time detection control of traditional drum control and detection is poor, especially due to the difference in operation with or without load, so that the existing control process cannot effectively judge whether its operating state is abnormal or faulty, nor can it determine the state of the drum. Real-time effective feedback adjustment.
  • an intelligent drum control method including:
  • S3 If S1 and S2 pass the detection, start the drum, collect the operating power of the inverter, the running time, and the drum temperature;
  • the control mode corresponding to the output of the inverter is: the normal running state outputs the running frequency with load or the no-load running frequency, and the fault state outputs the shutdown protection.
  • the S4 includes:
  • S4.4 Collect the time when the drum is running at low speed. If the time when the drum is running at low speed is lower than the preset time, return to S4.1; if the time when the drum is running at low speed is higher than the preset time, read The load state of the drum; if the load state is no load, the drum operation state is judged to be a low-speed normal operation state; if the load state is loaded, the drum operation state is determined to be a low-speed abnormal operation state, and go to S5.
  • the S5 includes:
  • the inverter will be controlled to output the no-load running frequency
  • the inverter will be controlled to stop.
  • the S4 also includes:
  • the intelligent drum control method further includes S6: detecting the operating frequency of the drum;
  • the controller is a PLC
  • the PLC is used to collect the operating power of the inverter, and control the inverter to output the operating frequency with load, the operating frequency without load, or stop.
  • An intelligent drum control system adopting the above-mentioned intelligent drum control method, comprising:
  • a pre-detection module is used for electric leakage blocking detection, incoming line defect detection and fault detection of the frequency converter;
  • a collection module which is used to collect the operating power, operating time, and drum temperature of the frequency converter
  • control module is configured to judge, according to the collected operating power of the frequency converter, the operating time, and the temperature of the drum, whether the operating state of the drum is: a normal operating state, or a fault state; and, according to the According to the running state of the drum, the corresponding control mode of controlling the output of the inverter is: output the running frequency with load or no-load running frequency in the normal running state, and output the shutdown protection in the fault state.
  • the intelligent drum control system further includes a display module, the display module is used to display the drum operation state, and the drum operation state includes: low speed normal operation state, high speed normal operation state, low speed abnormal operation state, high speed abnormal operation state Status, running fault status, drum normal running status, drum abnormal running status.
  • the collecting module further includes collecting the operating frequency of the drum.
  • the intelligent drum control system further includes an alarm module, and the alarm module is used to alarm the abnormal operation state of the drum, and the abnormal operation state of the drum includes: low-speed abnormal operation state, high-speed abnormal operation state, operation failure state, The drum is abnormally operating.
  • the present invention controls the running frequency of the drum in real time according to the current load state of the drum, the drum runs under no load state, the frequency converter works under low speed conditions, the drum runs under load conditions, and the frequency converter works under high speed conditions. If the working state of the conveyor exceeds the corresponding load state, it can realize automatic speed reduction or speed increase adjustment, which saves electric energy, reduces the noise of the entire belt conveyor, reduces belt wear, and prolongs the service life of the belt.
  • the present embodiment provides an intelligent drum control method, including:
  • S3 If S1 and S2 pass the detection, set the frequency of the inverter to start according to the load state of the drum, and collect the operating power, running time, and drum temperature of the inverter;
  • S4.4 Collect the time when the drum is in the low-speed running state, if the drum is in the low-speed running state for less than 1 minute, return to S4.1; if the drum is in the low-speed running state for more than 1 minute, read the load of the drum If the load state is no load, judge that the running state of the drum is a low-speed normal running state; if the load state is a load, judge that the running state of the drum is a low-speed abnormal running state, and go to S5.
  • the operating power of the above-mentioned embodiment and the continuous operating time when it is judged to be a fault are the optimal parameters.
  • the confidence interval of the first preset power, the second preset power and the continuous running time of the fault judgment can also be determined through the following functional relationship. The most reasonable threshold for judging the duration of the failure.
  • t is the continuous running time for judging the fault
  • the unit is minutes
  • the confidence interval of the continuous running time for judging the fault is (0.7t, 1.3t)
  • n 1 is the ratio of the first preset power to the rated running power
  • n 2 is the The ratio of the second preset power to the rated operating power.
  • the fault threshold power and the duration of time for which a fault is judged to be a fault after running at the fault threshold power are usually based on empirical judgment.
  • the above method realizes the combination of quantitative analysis and empirical judgment, and does not completely rely on experience to set the fault threshold and The failure threshold time is also not completely dependent on quantitative analysis, so it cannot be reasonably adjusted according to the usage of the drum.
  • This method first limits the warning time exceeding the specified rated power within a reasonable range, and then adjusts it according to the load conditions and the working conditions of the drum within this range, avoiding errors caused by empirical estimation, and performing test adjustments within a small range to improve The accuracy of threshold determination is improved, and the determination efficiency is improved.
  • the control mode corresponding to the output of the inverter is: the normal running state outputs the running frequency with load or the no-load running frequency, and the fault state outputs the shutdown protection.
  • the inverter will be controlled to output the no-load running frequency
  • the inverter will be controlled to stop.
  • drum operating frequency range is within the second drum frequency range from 3Hz to the no-load rated frequency, and the load state of the drum is no load, it is determined that the drum is in a normal operating state, and the process returns to S4;
  • the controller is a PLC, and the PLC is used to collect the operating power of the inverter, and control the inverter to output the operating frequency with load, the operating frequency without load, or stop.
  • An intelligent drum control system comprising:
  • a pre-detection module is used for electric leakage blocking detection, incoming line defect detection and fault detection of the frequency converter;
  • the acquisition module is used to collect the operating power of the frequency converter, the operating time, the temperature of the drum, and the operating frequency of the drum;
  • control module is configured to judge, according to the collected operating power of the frequency converter, the operating time, and the temperature of the drum, whether the operating state of the drum is: a normal operating state, or a fault state; and, according to the According to the running state of the drum, the corresponding control mode of controlling the output of the inverter is: output the running frequency with load or no-load running frequency in the normal running state, and output the shutdown protection in the fault state.
  • a display module the display module is used to display the running state of the drum, and the running state of the drum includes: normal running state of low speed, normal running state of high speed, abnormal running state of low speed, abnormal running state of high speed, running fault state, normal running state of the drum, The drum is abnormally operating.
  • the alarm module is used for alarming the abnormal running state of the drum, and the abnormal running state of the drum includes: abnormal running state at low speed, abnormal running state at high speed, running fault state, and abnormal running state of the drum.
  • the running frequency of the drum is controlled in real time according to the current load state of the drum.
  • the drum runs in a no-load state, the frequency converter works under a low speed condition, the drum runs under a load state, and the frequency converter works under a high speed condition.
  • the working state of the inverter exceeds the corresponding load state, it can realize automatic speed reduction or speed increase adjustment, which saves electric energy, reduces the noise of the entire belt conveyor, reduces belt wear, and prolongs the service life of the belt.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

一种智能滚筒控制方法,涉及电机控制领域,包括:S1:进行漏电闭锁检测及进线缺陷检测;S2:对变频器进行故障检测;S3:若S1,S2通过检测,根据滚筒的负载状态设置启动的变频器频率,采集变频器运行功率,运行时间,滚筒温度;S4:根据所述S3采集的所述变频器运行功率,所述运行时间,所述滚筒温度判断滚筒运行状态为:正常运行状态,或,故障状态;S5:根据所述S4的滚筒运行状态,变频器输出对应的控制模式为:正常运行状态输出有负载运行频率或无负载运行频率,故障状态输出停机保护。该方法解决了现有技术中存在的无法实现在有/无负载情况下对滚筒运行频率精确控制的技术问题,实现自动降速或升速调解,延长皮带使用寿命。

Description

一种智能滚筒控制方法及控制系统 技术领域
本发明涉及电机控制领域,具体涉及一种智能滚筒控制方法和系统
背景技术
传统的滚筒的转速频率控制通常设置为两档,即,运行状态频率及停机,且通常情况下按照恒定的频率对滚筒的转速进行控制。在滚筒的实际运行过程中,现场存在皮带无负载的运行状态,在该状态下,无需较高的转速也可以实现滚筒的正常运行,若采用同样的运行频率,则造成一定程度的能源浪费。此外,传统的滚筒的控制和检测的实时性检测控制较差,尤其由于有无负载的运行差异,使得现有的控制流程不能有效判断其运行状态是否为异常或故障状态,也不能对滚筒状态进行实时有效的反馈调节。
发明内容
为解决现有技术中存在的无法在有/无负载情况下实现对滚筒运行频率的精确控制,本发明提出一种智能滚筒控制方法,包括:
S1:进行漏电闭锁检测及进线缺陷检测;
S2:对变频器进行故障检测;
S3:若S1,S2通过检测,则启动滚筒,采集变频器运行功率,运行时间,滚筒温度;
S4:根据所述S3采集的所述变频器运行功率,所述运行时间,所述滚筒温度判断滚筒运行状态为:正常运行状态,或,故障状态;
S5:根据所述S4的滚筒运行状态,变频器输出对应的控制模式为:正常运行状态输出有负载运行频率或无负载运行频率,故障状态输出停机保护。
优选的,所述S4包括:
S4.1:采集变频器运行功率;
S4.2:根据变频器运行功率计算滚筒运行功率;
S4.3:若滚筒运行功率大于第一预设功率,低于第二预设功率,且滚筒的负载状态为有负载,则判断滚筒运行状态为高速正常运行状态;
若滚筒运行功率大于第一预设功率,低于第二预设功率,且滚筒的负载状态为无负载,则判断滚筒运行状态为高速异常运行状态,进行S5;
若滚筒运行功率低于第一预设功率,判断滚筒运行状态为低速运行状态,进行S4.4;
若滚筒运行功率大于第二预设功率,则判断为故障状态,进行S4.5;
S4.4:采集滚筒处于低速运行状态的时间,若滚筒处于低速运行状态的时间低于预设时间,则返回S4.1;若滚筒处于低速运行状态的时间高于预设时间,则读取滚筒的负载状态;若负载状态为无负载,则判断滚筒的运行状态为低速正常运行状态;若负载状态为有负载, 则判断滚筒的运行状态为低速异常运行状态,进行S5。
优选的,所述S5包括:
若滚筒运行状态为低速异常运行状态,则控制变频器输出有负载运行频率;
若滚筒运行状态为高速异常运行状态,则控制变频器输出无负载运行频率;
若滚筒运行状态为故障状态,则控制变频器停机。
优选的,所述S4还包括:
若所述滚筒温度高于第一预设温度,则判断为故障状态。
优选的,所述智能滚筒控制方法还包括S6:检测滚筒运行频率;
若滚筒运行频率范围位于第一滚筒频率范围内,且滚筒的负载状态为有负载,则判断为滚筒正常运行状态,返回S4;
若滚筒运行频率范围位于第二滚筒频率范围内,且滚筒的负载状态为无负载,则判断为滚筒正常运行状态,返回S4;
否则,判断为滚筒异常运行状态。
优选的,控制器为PLC,采用所述PLC采集所述变频器运行功率,控制变频器输出有负载运行频率、无负载运行频率、或停机。
一种采用上述智能滚筒控制方法的智能滚筒控制系统,包括:
预检测模块,所述预检测模块用于进行漏电闭锁检测及进线缺陷检测及对变频器进行故障检测;
采集模块,所述采集模块用于采集变频器运行功率,运行时间, 滚筒温度;
控制模块,所述控制模块用于根据所述采集的所述变频器运行功率,所述运行时间,所述滚筒温度判断滚筒的运行状态为:正常运行状态,或,故障状态;及,根据所述滚筒的运行状态,控制变频器输出对应的控制模式为:正常运行状态输出有负载运行频率或无负载运行频率,故障状态输出停机保护。
优选的,所述智能滚筒控制系统还包括显示模块,所述显示模块用于显示滚筒运行状态,所述滚筒运行状态包括:低速正常运行状态、高速正常运行状态、低速异常运行状态、高速异常运行状态、运行故障状态、滚筒正常运行状态、滚筒异常运行状态。
优选的,所述采集模块还包括采集滚筒运行频率。
优选的,所述智能滚筒控制系统还包括报警模块,所述报警模块用于报警滚筒非正常运行状态,所述滚筒非正常运行状态包括:低速异常运行状态、高速异常运行状态、运行故障状态、滚筒异常运行状态。
本发明根据当前滚筒负载状态对滚筒的运行频率进行实时控制,滚筒在无负载状态下运行,变频器在低速条件下工作,滚筒在有负载状态下运行,变频器在高速条件下工作,若变频器工作状态超出对应的负载状态,可实现自动降速或升速调解,节省了电能,降低整条皮带机噪音,减少皮带磨损,延长皮带使用寿命。
附图说明 具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护范围。
实施例一
本实施例提供了一种智能滚筒控制方法,包括:
S1:进行漏电闭锁检测及进线缺陷检测;
S2:对变频器进行故障检测;
S3:若S1,S2通过检测,根据滚筒的负载状态设置启动的变频器频率,采集变频器运行功率,运行时间,滚筒温度;
S4:根据所述S3采集的所述变频器运行功率,所述运行时间,所述滚筒温度判断滚筒运行状态为:正常运行状态,或,故障状态;
S4.1:采集变频器运行功率;
S4.2:根据变频器运行功率计算滚筒运行功率;
S4.3:若滚筒运行功率大于0.8倍有负载额定功率,低于1.2倍有负载额定功率,且滚筒的负载状态为有负载,则判断滚筒运行状态为高速正常运行状态;
若滚筒运行功率大于0.8倍有负载额定功率,且滚筒的负载状态为无负载,则判断滚筒运行状态为高速异常运行状态,进行S5;
若滚筒运行功率低于0.8倍有负载额定功率,判断滚筒运行状态为低速运行状态,进行S4.4;
若滚筒运行功率大于1.2倍有负载额定功率运行1分钟,或大于2倍有负载额定功率运行3秒钟,则判断为故障状态,进行S2.5;
S4.4:采集滚筒处于低速运行状态的时间,若滚筒处于低速运行状态的时间低于1分钟,则返回S4.1;若滚筒处于低速运行状态的时间超过1分钟,则读取滚筒的负载状态;若负载状态为无负载,则判断滚筒的运行状态为低速正常运行状态;若负载状态为有负载,则判断滚筒的运行状态为低速异常运行状态,进行S5。
上述实施例的运行功率、判断为故障的持续运行时间为较优参数。此外,也可通过下述函数关系确定第一预设功率、第二预设功率以及判断故障的持续运行时间的置信区间,在置信区间内,针对负载情况及滚筒的实际运行情况进行调整,确定判断故障的持续运行时间的最合理阈值。
Figure PCTCN2021075067-appb-000001
其中t为判断故障的持续运行时间,单位为分钟,判断故障的持续运行时间的置信区间为(0.7t,1.3t),n 1为第一预设功率与额定运行功率的比值,n 2为第二预设功率与额定运行功率的比值。
现有技术中,故障阈值功率及持续在故障阈值功率运行多久后判断为故障的持续时间通常基于经验判断,上述方法实现了定量分析与经验判断的结合,不完全依赖于经验设定故障阈值及故障阈值时间,也不完全依赖定量分析导致无法根据滚筒的使用情况进行合理调整。 本方法首先将超出指定额定功率的预警时间限定在合理的范围内,然后在该范围内根据负载情况和滚筒工作情况进行调整,避免了经验估计导致的误差,在小范围内进行试验调整,提高了阈值确定的准确性,同时提高了确定效率。此外,通过连续调整的函数关系,基于故障阈值功率确定持续在故障阈值功率运行时间,可以避免现有技术通过经验判断设置时阈值时,仅针对个别点进行规定,缺乏连续性。本实施例进一步提高了故障诊断的实时性和安全性。
若所述滚筒温度高于95摄氏度,无故障判断时间,一旦超过95摄氏度即判断为故障状态。
通过S4对滚筒运行的两种状态,即,有负载,无负载,匹配变频器的三种功率区间,即,低于无负载时的最低功率、高于有负载时的最大功率、以及位于无负载时的最低功率和有负载时的最大功率之间,实现了变频器与滚筒之间的分状态实时控制,准确且有效的实现自动降速或升速调解。
S5:根据所述S4的滚筒运行状态,变频器输出对应的控制模式为:正常运行状态输出有负载运行频率或无负载运行频率,故障状态输出停机保护。
若滚筒运行状态为低速异常运行状态,则控制变频器输出有负载运行频率;
若滚筒运行状态为高速异常运行状态,则控制变频器输出无负载运行频率;
若滚筒运行状态为故障状态,则控制变频器停机。
S6:检测滚筒运行频率;
若滚筒运行频率范围位于3Hz至有负载额定频率之间,且滚筒的负载状态为有负载,则判断为滚筒正常运行状态,返回S4;
若滚筒运行频率范围位于第二滚筒频率范围内3Hz至无负载额定频率之间,且滚筒的负载状态为无负载,则判断为滚筒正常运行状态,返回S4;
否则,判断为滚筒异常运行状态。
所述控制器为PLC,采用所述PLC采集所述变频器运行功率,控制变频器输出有负载运行频率、无负载运行频率、或停机。
一种智能滚筒控制系统,包括:
预检测模块,所述预检测模块用于进行漏电闭锁检测及进线缺陷检测及对变频器进行故障检测;
采集模块,所述采集模块用于采集变频器运行功率,运行时间,滚筒温度;滚筒运行频率;
控制模块,所述控制模块用于根据所述采集的所述变频器运行功率,所述运行时间,所述滚筒温度判断滚筒的运行状态为:正常运行状态,或,故障状态;及,根据所述滚筒的运行状态,控制变频器输出对应的控制模式为:正常运行状态输出有负载运行频率或无负载运行频率,故障状态输出停机保护。
显示模块,所述显示模块用于显示滚筒运行状态,所述滚筒运行状态包括:低速正常运行状态、高速正常运行状态、低速异常运行状 态、高速异常运行状态、运行故障状态、滚筒正常运行状态、滚筒异常运行状态。
报警模块,所述报警模块用于报警滚筒非正常运行状态,所述滚筒非正常运行状态包括:低速异常运行状态、高速异常运行状态、运行故障状态、滚筒异常运行状态。
本实施例根据当前滚筒负载状态对滚筒的运行频率进行实时控制,滚筒在无负载状态下运行,变频器在低速条件下工作,滚筒在有负载状态下运行,变频器在高速条件下工作,若变频器工作状态超出对应的负载状态,可实现自动降速或升速调解,节省了电能,降低整条皮带机噪音,减少皮带磨损,延长皮带使用寿命。
以上所述的具体实施例,对本发明的目的,技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种智能滚筒控制方法,其特征在于,包括:S1:进行漏电闭锁检测及进线缺陷检测;S2:对变频器进行故障检测;S3:若S1,S2通过检测,根据滚筒的负载状态设置启动的变频器频率,采集变频器运行功率,运行时间,滚筒温度;S4:根据所述S3采集的所述变频器运行功率,所述运行时间,所述滚筒温度判断滚筒运行状态为:正常运行状态,或,故障状态;S5:根据所述S4的滚筒运行状态,变频器输出对应的控制模式为:正常运行状态输出有负载运行频率或无负载运行频率,故障状态输出停机保护;所述S4包括:S4.1:采集变频器运行功率;S4.2:根据变频器运行功率计算滚筒运行功率;S4.3:若滚筒运行功率大于第一预设功率,低于第二预设功率,且滚筒的负载状态为有负载,则判断滚筒运行状态为高速正常运行状态;若滚筒运行功率大于第一预设功率,低于第二预设功率,且滚筒的负载状态为无负载,则判断滚筒运行状态为高速异常运行状态,进行S5;若滚筒运行功率低于第一预设功率,判断滚筒运行状态为低速运行状态,进行S4.4;若滚筒运行功率大于第二预设功率,则判断为故障状态,进行S4.5;S4.4:采集滚筒处于低速运行状态的时间,若滚筒处于低速运行状态的时间低于预设时间,则返回S4.1;若滚筒处于低速运行状态的时间高于预设时间,则读取滚筒的负载状态;若负载状态为无负载,则判断滚筒的运行状态为低速正常运行状态;若负载状态为有负载,则判断滚筒的运行状态为低速异常运行状态,进行S5。
  2. 根据权利要求1所述的智能滚筒控制方法,其特征在于,所述S5包括:若滚筒运行状态为低速异常运行状态,则控制变频器输出有负载运行频率;若滚筒运行状态为高速异常运行状态,则控制变频器输出无负载运行频率;若滚筒运行状态为故障状态,则控制变频器停机。
  3. 根据权利要求1所述的智能滚筒控制方法,其特征在于,所述S4还包括: 若所述滚筒温度高于第一预设温度,则判断为故障状态。
  4. 根据权利要求1所述的智能滚筒控制方法,其特征在于,所述智能滚筒控制方法还包括S6:检测滚筒运行频率;若滚筒运行频率范围位于第一滚筒频率范围内,且滚筒的负载状态为有负载,则判断为滚筒正常运行状态,返回S4;若滚筒运行频率范围位于第二滚筒频率范围内,且滚筒的负载状态为无负载,则判断为滚筒正常运行状态,返回S4;否则,判断为滚筒异常运行状态。
  5. 根据权利要求1所述的智能滚筒控制方法,其特征在于,控制器为PLC,采用所述PLC采集所述变频器运行功率,控制变频器输出有负载运行频率、无负载运行频率、或停机。
  6. 一种采用如权利要求1-5任一所述的智能滚筒控制方法的智能滚筒控制系统,其特征在于,包括:预检测模块,所述预检测模块用于进行漏电闭锁检测及进线缺陷检测及对变频器进行故障检测;采集模块,所述采集模块用于采集变频器运行功率,运行时间,滚筒温度;控制模块,所述控制模块用于根据所述采集的所述变频器运行功率,所述运行时间,所述滚筒温度判断滚筒的运行状态为:正常运行状态,或,故障状态;及,根据所述滚筒的运行状态,控制变频器输出对应的控制模式为:正常运行状态输出有负载运行频率或无负载运行频率,故障状态输出停机保护。
  7. 根据权利要求6所述的智能滚筒控制系统,其特征在于,所述智能滚筒控制系统还包括显示模块,所述显示模块用于显示滚筒运行状态,所述滚筒运行状态包括:低速正常运行状态、高速正常运行状态、低速异常运行状态、高速异常运行状态、运行故障状态、滚筒正常运行状态、滚筒异常运行状态。
  8. 根据权利要求6所述的智能滚筒控制系统,其特征在于,所述采集模块还包括采集滚筒运行频率。
  9. 根据权利要求6所述的智能滚筒控制系统,其特征在于,所述智能滚筒控制系统还包括报警模块,所述报警模块用于报警滚筒非正常运行状态,所述滚筒非正常运行状态包括:低速异常运行状态、高速异常运行状态、运行故障状态、滚筒异常运行状态。
PCT/CN2021/075067 2020-10-21 2021-02-03 一种智能滚筒控制方法及控制系统 WO2022083031A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011128251.X 2020-10-21
CN202011128251.XA CN111969926B (zh) 2020-10-21 2020-10-21 一种智能滚筒控制方法及控制系统

Publications (1)

Publication Number Publication Date
WO2022083031A1 true WO2022083031A1 (zh) 2022-04-28

Family

ID=73387079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075067 WO2022083031A1 (zh) 2020-10-21 2021-02-03 一种智能滚筒控制方法及控制系统

Country Status (2)

Country Link
CN (1) CN111969926B (zh)
WO (1) WO2022083031A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114955374A (zh) * 2022-06-30 2022-08-30 常德市三一机械有限公司 滚筒运行监控方法、系统、滚筒设备及沥青搅拌站
CN115057165A (zh) * 2022-06-16 2022-09-16 中交一航局安装工程有限公司 一种散货码头永磁变频皮带机驱动控制系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969926B (zh) * 2020-10-21 2021-01-08 江苏嘉轩智能工业科技股份有限公司 一种智能滚筒控制方法及控制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202729271U (zh) * 2012-05-25 2013-02-13 杜明芳 一种皮带运输机自适应节能控制装置
JP2013158086A (ja) * 2012-01-27 2013-08-15 Toshiba Schneider Inverter Corp インバータ装置
CN104760817A (zh) * 2015-02-05 2015-07-08 上海云统信息科技有限公司 一种皮带运输机负载控制方法
CN205328089U (zh) * 2016-01-11 2016-06-22 华电重工股份有限公司 一种基于总线通讯与电机负荷的物料输送控制装置
CN105858132A (zh) * 2016-05-12 2016-08-17 天地(常州)自动化股份有限公司 输送机载荷分布检测的煤流运输系统及其节能控制方法
CN111969926A (zh) * 2020-10-21 2020-11-20 江苏嘉轩智能工业科技股份有限公司 一种智能滚筒控制方法及控制系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103112702B (zh) * 2013-03-12 2015-02-18 山东新风光电子科技发展有限公司 多电机拖动皮带输送机的恒压频比控制系统及方法
JP6468401B2 (ja) * 2016-08-23 2019-02-13 日産自動車株式会社 電力変換装置の温度異常検出方法および電力変換装置の温度異常検出装置
CN107086818B (zh) * 2017-05-08 2019-06-04 深圳市海浦蒙特科技有限公司 惯性负载的启动方法及系统
CN107193299A (zh) * 2017-06-30 2017-09-22 福建南方路面机械有限公司 沥青滚筒出料温度自动调节的控制系统及控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013158086A (ja) * 2012-01-27 2013-08-15 Toshiba Schneider Inverter Corp インバータ装置
CN202729271U (zh) * 2012-05-25 2013-02-13 杜明芳 一种皮带运输机自适应节能控制装置
CN104760817A (zh) * 2015-02-05 2015-07-08 上海云统信息科技有限公司 一种皮带运输机负载控制方法
CN205328089U (zh) * 2016-01-11 2016-06-22 华电重工股份有限公司 一种基于总线通讯与电机负荷的物料输送控制装置
CN105858132A (zh) * 2016-05-12 2016-08-17 天地(常州)自动化股份有限公司 输送机载荷分布检测的煤流运输系统及其节能控制方法
CN111969926A (zh) * 2020-10-21 2020-11-20 江苏嘉轩智能工业科技股份有限公司 一种智能滚筒控制方法及控制系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115057165A (zh) * 2022-06-16 2022-09-16 中交一航局安装工程有限公司 一种散货码头永磁变频皮带机驱动控制系统
CN114955374A (zh) * 2022-06-30 2022-08-30 常德市三一机械有限公司 滚筒运行监控方法、系统、滚筒设备及沥青搅拌站
CN114955374B (zh) * 2022-06-30 2023-06-09 常德市三一机械有限公司 滚筒运行监控方法、系统、滚筒设备及沥青搅拌站

Also Published As

Publication number Publication date
CN111969926A (zh) 2020-11-20
CN111969926B (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
WO2022083031A1 (zh) 一种智能滚筒控制方法及控制系统
CN112983798B (zh) 应用于电驱压裂设备的控制方法及其控制装置
CN104698321B (zh) 用电设备故障的检测系统
CN105626277B (zh) 一种内燃机发电机组远程故障诊断和健康诊断的控制器及方法
WO2018014670A1 (zh) 风力发电机组齿形带疲劳状态的检测方法、装置及系统
CN111191881B (zh) 一种基于大数据的火电机组工业设备状态监测方法
CN106246523A (zh) 变频压缩机控制方法、控制器及冰箱
CN113107432A (zh) 一种抽油机井自动控制方法
CN112683521B (zh) 核电厂电动阀状态在线监测及故障诊断系统
CN110925184A (zh) 监测水泵老化的方法
CN201623458U (zh) 在线自动检测异常振动的汽轮机超速保护装置
WO2023159364A1 (zh) 一种固体氧化物燃料电池系统的智能控制方法
CN103213820B (zh) 一种埋刮板散料输送设备智能检测方法及设备
CN109240253B (zh) 一种在线设备诊断及预防性维护方法及系统
CN204495934U (zh) 用电设备故障的检测系统
JP2007060863A (ja) 発電機の並列運転監視方法および装置
CN117074809A (zh) 一种基于知识图谱的计量设备状态追踪与异常监控模型
CA3023995A1 (en) Method for identifying snoring
CN210721070U (zh) 一种医用ct球管散热油泵的控制系统
JPH06233475A (ja) 電源装置
CN105206544A (zh) 终点检测系统及其运行状态监测方法
CN204330986U (zh) 小功率电机在自动流水线中低压启动检测装置
CN117030128B (zh) 一种具备防水监测功能的水泵
CN112347641B (zh) 一种基于实时数据的给水泵故障预测与诊断方法和系统
CN107436585A (zh) 温度联锁保护的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21881457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21881457

Country of ref document: EP

Kind code of ref document: A1