WO2023159364A1 - 一种固体氧化物燃料电池系统的智能控制方法 - Google Patents

一种固体氧化物燃料电池系统的智能控制方法 Download PDF

Info

Publication number
WO2023159364A1
WO2023159364A1 PCT/CN2022/077339 CN2022077339W WO2023159364A1 WO 2023159364 A1 WO2023159364 A1 WO 2023159364A1 CN 2022077339 W CN2022077339 W CN 2022077339W WO 2023159364 A1 WO2023159364 A1 WO 2023159364A1
Authority
WO
WIPO (PCT)
Prior art keywords
hardware
hydrogen
fuel cell
control method
solid oxide
Prior art date
Application number
PCT/CN2022/077339
Other languages
English (en)
French (fr)
Inventor
杨涛
Original Assignee
苏州潜寻新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州潜寻新能源科技有限公司 filed Critical 苏州潜寻新能源科技有限公司
Priority to PCT/CN2022/077339 priority Critical patent/WO2023159364A1/zh
Publication of WO2023159364A1 publication Critical patent/WO2023159364A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the technical field of fuel cell control, in particular to an intelligent control method for a solid oxide fuel cell system.
  • a fuel cell is a chemical device that directly converts the chemical energy of fuel into electrical energy, also known as an electrochemical generator.
  • the existing control of fuel cells mainly includes PID control, fuzzy control, model predictive control, and so on.
  • PID control mainly includes PID control, fuzzy control, model predictive control, and so on.
  • the tracking control of reference values such as system fuel utilization rate, temperature, power, etc. can be realized, thereby ensuring safe and stable operation of the system.
  • the above-mentioned various control methods are judged according to the preset values in the system when used.
  • the purpose of the present invention is to provide an intelligent control method for a solid oxide fuel cell system to solve the problem that when the operating power of the hardware proposed in the above-mentioned background technology changes, the system still judges and implements control according to the system preset value, which may easily lead to fuel cell failure.
  • the operation failure of the hardware in the system affects the normal use of the problem.
  • an intelligent control method for a solid oxide fuel cell system comprising the following steps:
  • Step 1 Initialize the hardware and software in the system, and check the operating status of the system.
  • the operating status includes normal operating status and abnormal operating status.
  • the system starts the self-test mode, and in the normal status, the system starts to run and enter the step 2;
  • Step 2 Detect the temperature, hydrogen, pressure, and open circuit voltage of the battery stack in the fuel cell system.
  • the system will directly enter the shutdown procedure.
  • the detection of hydrogen includes the detection of hydrogen pressure and hydrogen content
  • the above-mentioned pressure detection includes the detection of the output voltage of the battery stack. If none of the detection values exceeds the preset value, enter step 3. When the detection value exceeds the preset value, an abnormal value is fed back to the display module and an alarm is issued;
  • Step 3 During the normal operation of the system, the temperature, pressure, and humidity of the battery stack are detected in real time, and at the same time, the status of the cooling fan, water pump, air humidifier, and hydrogen inlet valve is adjusted according to the real-time data;
  • Step 4 Collect and calculate the operating parameters in steps 1-3 to obtain the operating status and working conditions of the battery stack, and make adaptive numerical adjustments for protection according to their values.
  • the system start-up self-test mode in the step 1 includes detecting each hardware state and initial parameters in the system, and at the same time, the system software start-up self-test mode starts running and generates runtime error logs.
  • the hydrogen pressure is detected in the step 2.
  • the system stops running while the LCD and the buzzer display an alarm.
  • the hydrogen concentration of the battery stack is detected by the hydrogen leakage alarm.
  • the system will stop running.
  • the hydrogen gas leakage alarm detects the hydrogen gas concentration according to the hydrogen gas concentration, and at the same time divides the leakage level into a dangerous level and an alarm level according to the detected value.
  • the system controls all hardware to stop running.
  • the level is low, the system will display an alarm through the LCD and the buzzer.
  • step 3 when the system is running normally, when the detection values of each hardware in the system are within the normal value range, open the hydrogen intake valve to 100%, and adjust the duty of the hydrogen intake valve after waiting for 5 seconds The ratio is 30%.
  • step 3 when the detected values of the temperature, pressure, and humidity of the battery stack exceed the preset values, the temperature, pressure, and The humidity value remains within the normal range, and when the detection value still exceeds the preset value 1-5 minutes after the adjustment command is executed, the system stops running.
  • the step 4 by collecting the working parameters of each hardware and calculating the average value collected, the average value of the operating parameters of each hardware is obtained, and the preset value is set according to ⁇ 10 of the average value, When the actual operating parameters of each hardware exceed ⁇ 10 of the average value, the system stops running.
  • a graph and a report are simultaneously generated according to the average value of the operating parameters of each hardware, and displayed on the LCD, and the aging operation status of each hardware is obtained according to the graph and the report.
  • the present invention acquires and calculates the operating state and working conditions of the battery stack by collecting and calculating the operating parameters of each hardware in the system, and can make adaptive numerical adjustments based on the values to realize hardware protection. Collect and calculate the average value collected to obtain the average value of the operating parameters of each hardware, and set the preset value according to ⁇ 10 of the average value, and realize regular parameter collection by setting the time limit, and the preset value can be updated in real time Have a clear understanding of the usage and operation status of each hardware in the system to avoid operation failures.
  • the invention provides a technical solution: an intelligent control method for a solid oxide fuel cell system, comprising the following steps:
  • Step 1 Initialize the hardware and software in the system, and check the operating status of the system.
  • the operating status includes normal operating status and abnormal operating status.
  • the system starts the self-test mode, and in the normal status, the system starts to run and enter the step 2;
  • Step 2 Detect the temperature, hydrogen, pressure, and open circuit voltage of the battery stack in the fuel cell system.
  • the system will directly enter the shutdown procedure.
  • the detection of hydrogen includes the detection of hydrogen pressure and hydrogen content
  • the above-mentioned pressure detection includes the detection of the output voltage of the battery stack. If none of the detection values exceeds the preset value, enter step 3. When the detection value exceeds the preset value, an abnormal value is fed back to the display module and an alarm is issued;
  • Step 3 During the normal operation of the system, the temperature, pressure, and humidity of the battery stack are detected in real time, and at the same time, the status of the cooling fan, water pump, air humidifier, and hydrogen inlet valve is adjusted according to the real-time data;
  • Step 4 Collect and calculate the operating parameters in steps 1-3 to obtain the operating status and working conditions of the battery stack, and make adaptive numerical adjustments for protection according to their values.
  • the system start-up self-check mode in the step 1 includes detecting each hardware state and initial parameters in the system, and at the same time, the system software start-up self-check mode starts running, and generates error logs during operation.
  • the hydrogen pressure is detected.
  • the system stops running and the LCD and the buzzer display an alarm.
  • the hydrogen concentration of the battery stack is detected by the hydrogen leakage alarm.
  • the hydrogen concentration exceeds the preset When the level is set, the system will stop running.
  • the hydrogen gas leakage alarm detects the hydrogen gas concentration according to the hydrogen gas concentration, and at the same time divides the leakage level into a dangerous level and an alarm level according to the detected value.
  • the system controls all hardware to stop running.
  • the system displays alarms through LCD and buzzer.
  • step 3 when the system is running normally and the detection values of each hardware in the system meet the normal value range, open the hydrogen intake valve to 100%, wait for 5 seconds and adjust the duty cycle of the hydrogen intake valve to 30 %.
  • step 3 when the detection values of the temperature, pressure and humidity of the battery stack exceed the preset values, the values of the temperature, pressure and humidity are controlled by adjusting the cooling fan, the water pump, the air humidifier and the hydrogen inlet valve respectively. Keep within the normal range, when the detection value still exceeds the preset value 1-5 minutes after the adjustment command is executed, the system will stop running.
  • step 4 by collecting the parameters of each hardware work, and calculating the average value of its collection, the average value of the operating parameters of each hardware is obtained, and the preset value is set according to ⁇ 10 of the average value, when each hardware When the actual operating parameters exceed ⁇ 10 of the average value, the system will stop running.
  • step 4 graphs and reports are generated simultaneously according to the average value of the operating parameters of each hardware, and are displayed on the LCD, and the aging operation conditions of each hardware are obtained according to the graphs and reports.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开的属于燃料电池控制技术领域,具体为一种固体氧化物燃料电池系统的智能控制方法,包括检测系统运行状态;对电池堆温度、氢气、压力、开路电压进行检测;根据实时数据对硬件进行调节;作出适应性的数值调节进行保护等多个步骤,本发明通过对系统中各硬件的运行参数进行采集计算得到电池堆的运行状态与工作情况,并能够根据其值做出适应性的数值调节用于实现硬件保护,通过对各硬件工作的参数进行采集,并对其采集的平均值进行计算,得到各硬件的运行参数平均值,并根据平均值的±10设定预设值,通过设定期限实现定期参数采集,预设值更新,能够实时对系统中各硬件的使用情况与运行状况清楚的了解,避免出现运行故障的情况。

Description

一种固体氧化物燃料电池系统的智能控制方法 技术领域
本发明涉及燃料电池控制技术领域,具体为一种固体氧化物燃料电池系统的智能控制方法。
背景技术
燃料电池是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器,现有对燃料电池的控制主要包括PID控制、模糊控制、模型预测控制等等。通过上述控制方法,可以实现对系统燃料利用率、温度、功率等参考值的跟踪控制,从而保证系统安全稳定的运行。然而上述的多种控制方法在使用时通过根据系统中的预设值为标准进行判定,由于燃料电池系统中各硬件在使用过程中使用寿命会随着使用时长、温度等各方面影响,当硬件的使用寿命降低时,其硬件的运行功率会受到一定的影响,而系统中预设值仍然不变,因此在硬件运行功率发生改变时,系统仍然按照系统预设值进行判定实现控制,容易导致燃料电池系统中硬件的运行故障,影响正常使用。
发明内容
本发明的目的在于提供一种固体氧化物燃料电池系统的智能控制方法,以解决上述背景技术中提出的硬件运行功率发生改变时,系统仍然按照系统预设值进行判定实现控制,容易导致燃料电池系统中硬件的运行故障,影响正常使用的问题。
为实现上述目的,本发明提供如下技术方案:一种固体氧化物燃料电池系统的智能控制方法,包括以下步骤:
步骤1:对系统中的硬件与软件进行初始化,检测系统的运行状态,其中运行状态包括正常运行状态与非正常运行状态,非正常状态下系统启动自检模式,正常状态下系统开始运行进入步骤2;
步骤2:对燃料电池系统中的电池堆温度、氢气、压力、开路电压进行检测,当电池堆温度超过60℃时,系统直接进入关机程序,同时对氢气检测包括对氢气压力、氢气含量的检测,上述压力检测包括对电池堆输出电压的检测,检测值均未超过预设值时则进入步骤3,检测值超过预设值时反馈异常数值至显示模块中并发出警报;
步骤3:系统正常运行中,对电池堆的温度、压力、湿度进行实时检测,同时根据实时数据实现对散热风机、水泵、空气增湿器、进氢阀的状态进行调节;
步骤4:对步骤1-步骤3中的运行参数进行采集计算得到电池堆的运行状态与工作情况,根据其值做出适应性的数值调节进行保护。
优选的,所述步骤1中系统启动自检模式包括对系统中各个硬件状态及初始参数进行检测,同时系统软件启动自检模式开始运行,并生成运行时的错误日志。
优选的,所述步骤2中对氢气压力进行检测,当氢气压力过低时,系统停止运行同时LCD与蜂鸣器显示报警,同时通过氢气泄露报警器对电池堆的氢气浓度进行检测,当氢气浓度超过预设等级时则系统停止运行。
优选的,所述氢气泄露报警器根据氢气浓度对氢气浓度进行检测,同时根据检测值将泄露等级分为危险等级与报警等级,当为危险等级时,则系统控制所有硬件停止运行,当为报警等级时,系统则通过LCD与蜂鸣器显示报警。
优选的,所述步骤3中当系统正常运行时,系统中各硬件的检测值均符合正常值范围的情况下,打开氢气进气阀100%,等待5秒之后调节氢气进气阀的占空比为30%。
优选的,所述步骤3中当电池堆的温度、压力、湿度的检测值超过预设值时,则分别通过对散热风机、水泵、空气增湿器、进氢阀进行调节控制温 度、压力、湿度的值保持在正常范围内,当调节指令执行后1-5min检测值仍然超过预设值时,系统停止运行。
优选的,所述步骤4中通过对各硬件工作的参数进行采集,并对其采集的平均值进行计算,得到各硬件的运行参数平均值,并根据平均值的±10设定预设值,当各硬件的实际运行参数超过平均值的±10时则系统停止运行。
优选的,所述步骤4中同时根据各硬件工作的运行参数平均值生成曲线图与报表,并通过LCD显示,根据曲线图与报表得到各硬件的老化运行情况。
与现有技术相比,本发明的有益效果是:
本发明通过对系统中各硬件的运行参数进行采集计算得到电池堆的运行状态与工作情况,并能够根据其值做出适应性的数值调节用于实现硬件保护,通过对各硬件工作的参数进行采集,并对其采集的平均值进行计算,得到各硬件的运行参数平均值,并根据平均值的±10设定预设值,通过设定期限实现定期参数采集,预设值更新,能够实时对系统中各硬件的使用情况与运行状况清楚的了解,避免出现运行故障的情况。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“顶”、“底”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
实施例:
本发明提供一种技术方案:一种固体氧化物燃料电池系统的智能控制方法,包括以下步骤:
步骤1:对系统中的硬件与软件进行初始化,检测系统的运行状态,其中运行状态包括正常运行状态与非正常运行状态,非正常状态下系统启动自检模式,正常状态下系统开始运行进入步骤2;
步骤2:对燃料电池系统中的电池堆温度、氢气、压力、开路电压进行检测,当电池堆温度超过60℃时,系统直接进入关机程序,同时对氢气检测包括对氢气压力、氢气含量的检测,上述压力检测包括对电池堆输出电压的检测,检测值均未超过预设值时则进入步骤3,检测值超过预设值时反馈异常数值至显示模块中并发出警报;
步骤3:系统正常运行中,对电池堆的温度、压力、湿度进行实时检测,同时根据实时数据实现对散热风机、水泵、空气增湿器、进氢阀的状态进行调节;
步骤4:对步骤1-步骤3中的运行参数进行采集计算得到电池堆的运行状态与工作情况,根据其值做出适应性的数值调节进行保护。
所述步骤1中系统启动自检模式包括对系统中各个硬件状态及初始参数进行检测,同时系统软件启动自检模式开始运行,并生成运行时的错误日志。
所述步骤2中对氢气压力进行检测,当氢气压力过低时,系统停止运行同时LCD与蜂鸣器显示报警,同时通过氢气泄露报警器对电池堆的氢气浓度进行检测,当氢气浓度超过预设等级时则系统停止运行。
所述氢气泄露报警器根据氢气浓度对氢气浓度进行检测,同时根据检测值将泄露等级分为危险等级与报警等级,当为危险等级时,则系统控制所有硬件停止运行,当为报警等级时,系统则通过LCD与蜂鸣器显示报警。
所述步骤3中当系统正常运行时,系统中各硬件的检测值均符合正常值范围的情况下,打开氢气进气阀100%,等待5秒之后调节氢气进气阀的占空 比为30%。
所述步骤3中当电池堆的温度、压力、湿度的检测值超过预设值时,则分别通过对散热风机、水泵、空气增湿器、进氢阀进行调节控制温度、压力、湿度的值保持在正常范围内,当调节指令执行后1-5min检测值仍然超过预设值时,系统停止运行。
所述步骤4中通过对各硬件工作的参数进行采集,并对其采集的平均值进行计算,得到各硬件的运行参数平均值,并根据平均值的±10设定预设值,当各硬件的实际运行参数超过平均值的±10时则系统停止运行。
所述步骤4中同时根据各硬件工作的运行参数平均值生成曲线图与报表,并通过LCD显示,根据曲线图与报表得到各硬件的老化运行情况。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点,对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明;因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (8)

  1. 一种固体氧化物燃料电池系统的智能控制方法,其特征在于:包括以下步骤:
    步骤1:对系统中的硬件与软件进行初始化,检测系统的运行状态,其中运行状态包括正常运行状态与非正常运行状态,非正常状态下系统启动自检模式,正常状态下系统开始运行进入步骤2;
    步骤2:对燃料电池系统中的电池堆温度、氢气、压力、开路电压进行检测,当电池堆温度超过60℃时,系统直接进入关机程序,同时对氢气检测包括对氢气压力、氢气含量的检测,上述压力检测包括对电池堆输出电压的检测,检测值均未超过预设值时则进入步骤3,检测值超过预设值时反馈异常数值至显示模块中并发出警报;
    步骤3:系统正常运行中,对电池堆的温度、压力、湿度进行实时检测,同时根据实时数据实现对散热风机、水泵、空气增湿器、进氢阀的状态进行调节;
    步骤4:对步骤1-步骤3中的运行参数进行采集计算得到电池堆的运行状态与工作情况,根据其值做出适应性的数值调节进行保护。
  2. 根据权利要求1所述的一种固体氧化物燃料电池系统的智能控制方法,其特征在于:所述步骤1中系统启动自检模式包括对系统中各个硬件状态及初始参数进行检测,同时系统软件启动自检模式开始运行,并生成运行时的错误日志。
  3. 根据权利要求1所述的一种固体氧化物燃料电池系统的智能控制方法,其特征在于:所述步骤2中对氢气压力进行检测,当氢气压力过低时,系统停止运行同时LCD与蜂鸣器显示报警,同时通过氢气泄露报警器对电池堆的氢气浓度进行检测,当氢气浓度超过预设等级时则系统停止运行。
  4. 根据权利要求3所述的一种固体氧化物燃料电池系统的智能控制方法,其特征在于:所述氢气泄露报警器根据氢气浓度对氢气浓度进行检测,同时 根据检测值将泄露等级分为危险等级与报警等级,当为危险等级时,则系统控制所有硬件停止运行,当为报警等级时,系统则通过LCD与蜂鸣器显示报警。
  5. 根据权利要求1所述的一种固体氧化物燃料电池系统的智能控制方法,其特征在于:所述步骤3中当系统正常运行时,系统中各硬件的检测值均符合正常值范围的情况下,打开氢气进气阀100%,等待5秒之后调节氢气进气阀的占空比为30%。
  6. 根据权利要求1所述的一种固体氧化物燃料电池系统的智能控制方法,其特征在于:所述步骤3中当电池堆的温度、压力、湿度的检测值超过预设值时,则分别通过对散热风机、水泵、空气增湿器、进氢阀进行调节控制温度、压力、湿度的值保持在正常范围内,当调节指令执行后1-5min检测值仍然超过预设值时,系统停止运行。
  7. 根据权利要求1所述的一种固体氧化物燃料电池系统的智能控制方法,其特征在于:所述步骤4中通过对各硬件工作的参数进行采集,并对其采集的平均值进行计算,得到各硬件的运行参数平均值,并根据平均值的±10设定预设值,当各硬件的实际运行参数超过平均值的±10时则系统停止运行。
  8. 根据权利要求7所述的一种固体氧化物燃料电池系统的智能控制方法,其特征在于:所述步骤4中同时根据各硬件工作的运行参数平均值生成曲线图与报表,并通过LCD显示,根据曲线图与报表得到各硬件的老化运行情况。
PCT/CN2022/077339 2022-02-22 2022-02-22 一种固体氧化物燃料电池系统的智能控制方法 WO2023159364A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/077339 WO2023159364A1 (zh) 2022-02-22 2022-02-22 一种固体氧化物燃料电池系统的智能控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/077339 WO2023159364A1 (zh) 2022-02-22 2022-02-22 一种固体氧化物燃料电池系统的智能控制方法

Publications (1)

Publication Number Publication Date
WO2023159364A1 true WO2023159364A1 (zh) 2023-08-31

Family

ID=87764325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077339 WO2023159364A1 (zh) 2022-02-22 2022-02-22 一种固体氧化物燃料电池系统的智能控制方法

Country Status (1)

Country Link
WO (1) WO2023159364A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116914196A (zh) * 2023-09-14 2023-10-20 广东技术师范大学 一种燃料电池的远程监控系统和方法
CN117638168A (zh) * 2024-01-25 2024-03-01 合肥工业大学 一种基于多核芯片的燃料电池热管理系统优化控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101165506A (zh) * 2006-10-17 2008-04-23 上海博能同科燃料电池系统有限公司 基于网络学习控制的燃料电池测试系统
CN109004251A (zh) * 2018-06-28 2018-12-14 电子科技大学 一种固体氧化物燃料电池系统的智能控制方法
CN109792063A (zh) * 2016-09-26 2019-05-21 株式会社Lg化学 人工智能燃料电池系统
CN110853466A (zh) * 2019-11-06 2020-02-28 行云新能科技(深圳)有限公司 氢燃料电池管理系统、运行方法及存储介质
CN111710888A (zh) * 2020-05-15 2020-09-25 山东华硕能源科技有限公司 车载燃料电池系统的启动控制方法
CN213634798U (zh) * 2020-09-10 2021-07-06 东莞氢宇新能源科技有限公司 防止氢气泄漏的燃料电池报警系统及燃料电池系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101165506A (zh) * 2006-10-17 2008-04-23 上海博能同科燃料电池系统有限公司 基于网络学习控制的燃料电池测试系统
CN109792063A (zh) * 2016-09-26 2019-05-21 株式会社Lg化学 人工智能燃料电池系统
CN109004251A (zh) * 2018-06-28 2018-12-14 电子科技大学 一种固体氧化物燃料电池系统的智能控制方法
CN110853466A (zh) * 2019-11-06 2020-02-28 行云新能科技(深圳)有限公司 氢燃料电池管理系统、运行方法及存储介质
CN111710888A (zh) * 2020-05-15 2020-09-25 山东华硕能源科技有限公司 车载燃料电池系统的启动控制方法
CN213634798U (zh) * 2020-09-10 2021-07-06 东莞氢宇新能源科技有限公司 防止氢气泄漏的燃料电池报警系统及燃料电池系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116914196A (zh) * 2023-09-14 2023-10-20 广东技术师范大学 一种燃料电池的远程监控系统和方法
CN116914196B (zh) * 2023-09-14 2023-11-24 广东技术师范大学 一种燃料电池的远程监控系统和方法
CN117638168A (zh) * 2024-01-25 2024-03-01 合肥工业大学 一种基于多核芯片的燃料电池热管理系统优化控制方法
CN117638168B (zh) * 2024-01-25 2024-04-26 合肥工业大学 一种基于多核芯片的燃料电池热管理系统优化控制方法

Similar Documents

Publication Publication Date Title
WO2023159364A1 (zh) 一种固体氧化物燃料电池系统的智能控制方法
US8067127B2 (en) Fuel cell system and control method thereof for detecting a chemical short
JP4905182B2 (ja) 燃料電池システム
US8642200B2 (en) Adaptive compressor surge control in a fuel cell system
CN111029624B (zh) 在线监控和恢复燃料电池水状态的系统及方法
WO2022233278A1 (zh) 氢燃料电池电堆的在线监测方法、系统及使用该监测方法的氢燃料电动车
CN101728556B (zh) 用于燃料电池系统中主气流测量装置故障时的补救措施的方法
US8623567B2 (en) Method to detect gross loss in coolant based on current feedback from the high temperature pump
CN111997881B (zh) 一种用于供水的智能变频恒压控制系统
CN113782778B (zh) 基于定频阻抗和气体压降的电堆水管理调控方法及装置
CN104937759A (zh) 检测燃料电池的离子交换聚合物膜的渗透性状态的方法
CN106549176A (zh) Gen2阳极氢气浓度估算的验证和校正
CN114381755B (zh) 待机控制方法、控制方法、控制系统和制氢装置
WO2022083031A1 (zh) 一种智能滚筒控制方法及控制系统
CN116505040B (zh) 一种铁铬液流电池储能管理诊断系统及方法
JP2004172026A (ja) 燃料電池システムの運転制御
JP2006134647A (ja) 燃料電池システム
US20100015474A1 (en) Adaptive Technique and Apparatus to Detect an Unhealthy Condition of a Fuel Cell System
CN117074809A (zh) 一种基于知识图谱的计量设备状态追踪与异常监控模型
CN115188998B (zh) 一种燃料电池空气系统的加湿器漏气诊断方法
JP2004342475A (ja) 燃料電池システムの運転制御
CN115822894A (zh) 一种海上风电设备的运维方法及系统
CN116263484A (zh) 单电池电压控制方法、装置、电子设备和可读存储介质
CN111063923B (zh) 一种通过微分曲率法判断单片电池故障的方法
CN114865020A (zh) 一种燃料电池系统控制方法及健康状态评价方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927659

Country of ref document: EP

Kind code of ref document: A1