WO2022082730A1 - 光源模组及其制备方法和显示模组 - Google Patents

光源模组及其制备方法和显示模组 Download PDF

Info

Publication number
WO2022082730A1
WO2022082730A1 PCT/CN2020/123249 CN2020123249W WO2022082730A1 WO 2022082730 A1 WO2022082730 A1 WO 2022082730A1 CN 2020123249 W CN2020123249 W CN 2020123249W WO 2022082730 A1 WO2022082730 A1 WO 2022082730A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
control layer
light source
distribution area
light
Prior art date
Application number
PCT/CN2020/123249
Other languages
English (en)
French (fr)
Inventor
赵超越
钟鹏
侯婷琇
赵健
肖永康
孙凌宇
梁菲
杜景军
陈秀云
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/310,397 priority Critical patent/US20220317359A1/en
Priority to CN202080002448.0A priority patent/CN114945862B/zh
Priority to PCT/CN2020/123249 priority patent/WO2022082730A1/zh
Publication of WO2022082730A1 publication Critical patent/WO2022082730A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0093Means for protecting the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • G02B6/0061Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to provide homogeneous light output intensity

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a light source module, a preparation method thereof, and a display module.
  • reflective display devices Compared with transmissive display devices, reflective display devices have softer images and lower power consumption, and can achieve better display effects outdoors, for example, so they are increasingly used in fields such as e-readers and public displays. much favor.
  • the reflective display device is greatly affected by external ambient light, and when the external ambient light is insufficient, its display effect is reduced.
  • a light source module comprising:
  • the light guide structure includes a light incident surface and a first surface, and the light emitted by the light source enters the light guide structure through the light incident surface;
  • the optical control layer is disposed on the first surface of the light guide structure, the optical control layer includes an optical control layer body, the optical control layer includes a first surface away from the light guide structure and a second surface facing the light guide structure;
  • optical structures disposed in the optical control layer for light incident on the optical structures
  • the plurality of optical structures are arranged at intervals along at least a first direction, and the first direction is perpendicular to the light incident surface;
  • Each of the optical structures includes a trench in the optical control layer, the trench forming an opening in the first surface of the optical control layer;
  • Each optical structure includes a first optical surface and a second optical surface, the first optical surface and the second optical surface are spaced apart from the second surface of the optical control layer, and the first optical surface is larger than the second surface of the optical control layer.
  • the second optical surface is closer to the light incident surface, the first optical surface is inclined relative to the first surface of the optical control layer, and the second optical surface is inclined relative to the first surface of the optical control layer , the first optical surface and the second optical surface are gradually approached in the direction of the light guide structure;
  • the groove is filled with a low refractive index material portion, and the refractive index of the low refractive index material portion is smaller than the refractive index of the optical control layer body; or the groove is air, and the optical control layer The refractive index of the bulk is greater than that of air.
  • each of the optical structures includes a first included angle and a second included angle
  • the first included angle is a surface where the first optical surface and the first surface of the optical control layer are located the included angle between the first and second optical surfaces
  • the second included angle is the included angle between the first optical surface and the second optical surface
  • the first included angle and the second included angle are designed so that the At least a portion of the light emitted by the light source propagates toward the light guide structure.
  • the refractive index of the light guide structure is substantially equal to the refractive index of the optical control layer body.
  • the orthographic projection of each of the optical structures on a plane defined by the first and second directions is a triangle, the second direction being perpendicular to the first surface of the optical control layer .
  • the light source module includes at least a first distribution area and a second distribution area, the first distribution area is closer to the light incident surface than the second distribution area; each of the optical The structure has a depth, the depth being the dimension of the optical structure along the second direction; and the depth of the optical structure located in the first distribution area is less than the depth of the optical structure located in the second distribution area.
  • the light source module includes at least a first distribution area and a second distribution area, the first distribution area is closer to the light incident surface than the second distribution area; the optical structure has a first pitch, where the first pitch is the distance between two adjacent optical structures along the first direction; and the first pitch of the optical structures located in the first distribution area is greater than that of the optical structures located in the first distribution area The first pitch of the optical structures in the two distribution regions.
  • the first included angle is in the range of 40° ⁇ 50°, and/or the second included angle is in the range of 48° ⁇ 58°.
  • the plurality of optical structures are spaced apart along at least a third direction, the second direction is perpendicular to the first surface of the optical control layer, and the third direction is perpendicular to the first direction and both the second direction.
  • the optical structures have a second pitch, and the second pitch is a distance between two adjacent optical structures along the third direction; and the optical structures located in the first distribution area The second pitch of the optical structures is greater than the second pitch of the optical structures located in the second distribution area.
  • the light source module further includes:
  • the orthographic projection of the adhesive on the light guide structure covers the orthographic projection of the plurality of optical structures on the light guide structure.
  • the refractive index of the protective structure, the refractive index of the adhesive, and the refractive index of the optical control layer body are substantially equal to each other.
  • the light source module further includes a third distribution area, the third distribution area is located between the first distribution area and the second distribution area; located in the first distribution area the depth of the optical structure is less than the depth of the optical structure located in the third distribution area, the depth of the optical structure located in the third distribution area is less than the depth of the optical structure located in the second distribution area; and/ Or, the first pitch of the optical structures located in the first distribution area is greater than the first pitch of the optical structures located in the third distribution area, and the first pitch of the optical structures located in the third distribution area The pitch is greater than the first pitch of the optical structures located in the second distribution area.
  • the refractive index of the optical control layer body is between 1.55 and 1.65.
  • the shape of each of the optical structures includes one selected from prisms, pyramids, frustums, and frustums.
  • a display module in another aspect, includes the above-mentioned light source module.
  • the display module further includes a display panel, the display panel is disposed on a side of the light guide structure away from the optical control layer, and the display panel is a reflective display panel.
  • a preparation method of a light source module is provided, the preparation method at least comprising the following steps:
  • the shape of the raised structure of the roller is the same as the shape of the optical structure to be formed;
  • the grooves have the same shape as the shape of the optical structure to be formed
  • a layer of glue is attached on the optical control layer formed with the grooves to form an optical structure including,
  • the optical structure includes a groove located in the optical control layer and a low refractive index material portion filled in the groove, the optical control layer includes an optical control layer body, and the low refractive index material portion The refractive index of is less than the refractive index of the optical control layer body;
  • the optical control layer includes a first surface and a second surface, the groove is formed in the first surface
  • the optical structure includes a first optical surface and a second optical surface, the first optical surface is inclined relative to the first surface, the second optical surface is inclined relative to the first surface, the first optical surface The surface and the second optical surface gradually converge toward the second surface.
  • FIG. 1 is a cross-sectional view of a light source module according to some exemplary embodiments of the present disclosure
  • FIG. 2 is a schematic plan view of an optical control layer and an optical structure included in a light source module according to some exemplary embodiments of the present disclosure
  • FIG. 3 is a light path diagram of a light source module according to some exemplary embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram of an optical structure included in a light source module according to some exemplary embodiments of the present disclosure, wherein some optical paths are schematically shown;
  • FIG. 5 is a schematic diagram of a display module according to some exemplary embodiments of the present disclosure.
  • FIG. 6 is a light path diagram of a display module according to some exemplary embodiments of the present disclosure.
  • FIG. 7 is a schematic diagram of a light source module according to some exemplary embodiments of the present disclosure, wherein the depth distribution of the optical structure is schematically shown;
  • Figure 8 is an enlarged view of the depth profile of the optical structure shown in Figure 7;
  • FIG. 9 is a schematic diagram of a light source module according to some exemplary embodiments of the present disclosure, wherein the pitch distribution of the optical structure is schematically shown;
  • FIG. 10 is an enlarged view of the pitch distribution of the optical structure shown in FIG. 9;
  • FIG. 11 is a schematic diagram of a light source module according to some exemplary embodiments of the present disclosure, wherein the depth and pitch distributions of optical structures are schematically shown;
  • FIG. 12 is a schematic diagram of a two-dimensional distribution of an optical structure of a light source module according to some exemplary embodiments of the present disclosure
  • FIG. 13A to 13D are schematic topographical diagrams of the optical structure in the case of the two-dimensional distribution shown in FIG. 12 , respectively;
  • FIG. 14 is a flowchart of a method for fabricating a light source module according to an embodiment of the present disclosure.
  • first direction the directional expressions "first direction”, “second direction”, “third direction” are used to describe different directions along the light source module or the display module. It should be understood that such representations are exemplary descriptions only, and not limitations of the present disclosure.
  • a light source module including: a light source; a light guide structure, the light guide structure includes a light incident surface and a first surface, and light emitted by the light source enters through the light incident surface The light guide structure; an optical control layer, the optical control layer is disposed on the first surface of the light guide structure, the optical control layer includes an optical control layer body, and the optical control layer includes a distance away from the light guide a first surface of a structure and a second surface facing the light directing structure; and at least two optical structures disposed in the optical control layer for modulating incident on the optical structures light, wherein the plurality of optical structures are spaced at least along a first direction, and the first direction is perpendicular to the light incident surface; each of the optical structures includes a groove in the optical control layer and a low-refractive-index material portion filled in the trench, the trench forms an opening in the first surface of the optical control layer, the low-refractive-index material has a refractive index smaller than that
  • One surface is inclined, and the first optical surface and the second optical surface gradually approach the light guide structure.
  • the light emitted from the light source is modulated by the optical structure, increasing the light emitted from the light source and incident on the underlying components (eg, display panel).
  • a light source module 100 may include a light source 3 , a light guide structure 2 , an optical control layer 1 , an adhesive 4 and a protection structure 5 .
  • the light source 3 may be disposed on one side of the light guide structure 2 , for example, the left side in FIGS. 1 and 2 .
  • the light guide structure 2 may be formed in the form of a light guide layer or a light guide plate.
  • the light guide structure 2 may include a first surface 21 , a second surface 22 and a light incident surface 24 .
  • the second surface 22 is disposed opposite to the first surface 21
  • the light incident surface 24 is connected to the first surface 21 and the second surface 22 .
  • the light source 3 is disposed opposite to the light incident surface 24 , and the light emitted by the light source 3 enters the light guide structure 2 through the light incident surface 24 and exits from the first surface 21 and the second surface 22 .
  • the first surface 21 may be the surface of the light guide structure 2 on the side close to the optical control layer 1, that is, the upper surface in FIG. 2;
  • the second surface 22 may be the surface of the light guide structure 2 close to the display panel (described below). ) on one side of the surface, that is, the lower surface in Figure 2.
  • the first surface 21 and the second surface 22 may be substantially parallel.
  • the line perpendicular to a surface is called the normal of the surface.
  • the first direction D1 is parallel to the normal line of the light incident surface 24
  • the second direction D2 is parallel to the normal line of the first surface 21 or the second surface 22 .
  • the third direction D3 is perpendicular to both the first direction D1 and the second direction D2.
  • the light guide structure 2 , the optical control layer 1 , the adhesive 4 and the protection structure 5 may be stacked along the second direction D2 .
  • the light source 3 may include a light emitting diode (LED for short) or a light bar composed of a plurality of light emitting diodes, but the embodiments of the present disclosure are not limited thereto.
  • the light source 3 may also include organic light emitting diodes, quantum dots Light-emitting diodes, micro-light-emitting diodes, sub-millimeter light-emitting diodes and other components suitable for light-emitting.
  • the optical control layer 1 is disposed on the first surface 21 .
  • the optical control layer 1 may include an optical control layer body 1D and a plurality of optical structures 6 .
  • the optical structure 6 is disposed on the side of the optical control layer body 1D away from the light guide structure 2 or the first surface 21 .
  • the optical control layer 1 includes a first surface 11 away from the light guide structure 2 and a second surface 12 facing the light guide structure 2 .
  • the second surface 12 may contact the first surface 21 of the light guide structure 2 .
  • optical structure 6 includes trench 6A.
  • the grooves 6A are recessed from the first surface 11 of the optical control layer toward the second surface 12 of the optical control layer, formed as grooves in the optical control layer 1 and having a predetermined depth. That is, the trenches 6A form openings at the first surface 11 of the optical control layer, or in other words, the trenches 6A are open at the first surface 11 of the optical control layer.
  • each groove 6A may extend along the third direction D3, and its extension length in the third direction D3 may be smaller than the length of the optical control layer 1 along the third direction D3, and in this case, along the direction D3, at least two grooves 6A. Further, each trench 6A may penetrate through the optical control layer 1 along the third direction D3.
  • the optical structure 6 further includes a low refractive index material portion 6B filled in the trench 6A.
  • the refractive index of the low-refractive-index material portion 6B is smaller than the refractive index of the material of the optical control layer body 1D.
  • the grooves 6A may be filled with air. That is, the optical structure 6 includes the trenches 6A and the air 6B existing in the trenches 6A.
  • the refractive index of the material of the optical control layer body 1D may be greater than that of air.
  • FIG. 3 is a light path diagram of a light source module according to some exemplary embodiments of the present disclosure.
  • 4 is a schematic diagram of an optical structure included in a light source module according to some exemplary embodiments of the present disclosure, wherein some optical paths are schematically shown.
  • FIG. 5 is a schematic diagram of a display module according to some exemplary embodiments of the present disclosure.
  • the optical structure 6 includes a first optical surface 61 , a second optical surface 62 and a third optical surface 63 .
  • the first optical surface 61 is located on the side close to the light incident surface 24, and the second optical surface 62 is located on the side away from the light incident surface 24, that is, in one optical structure 6, the first optical surface 61 is larger than the second optical surface 62. closer to the light incident surface 24 .
  • the third optical surface 63 connects the first optical surface 61 and the second optical surface 62 .
  • the third optical surface 63 may be substantially parallel to the first surface 11 of the optical control layer.
  • the third optical surface 63 is a virtual surface coplanar with the first surface 11 of the optical control layer.
  • both the first optical surface 61 and the second optical surface 62 are spaced apart from the second surface 12 of the optical control layer, ie, spaced apart from the second surface 12 of the optical control layer along the second direction D2.
  • the third optical surface 62 is coplanar with the first surface 11 of the optical control layer.
  • the included angle between the first optical surface 61 and the third optical surface 63 is the first included angle ⁇ 1
  • the included angle between the first optical surface 61 and the second optical surface 62 is the second included angle Included angle ⁇ 2.
  • the first optical surface 61 and the second optical surface 62 may be directly connected.
  • Each groove 6A has a triangular cross-section, that is, an orthographic projection of each groove 6A on a plane formed by the first direction D1 and the second direction D2 has a triangular shape.
  • the refractive index of the optical control layer body 1D may be greater than the refractive index of the low refractive index material portion or the air 6B, that is, the optical control layer body 1D may be formed of a high refractive index material, and the low refractive index material portion 6B may be formed of a low refractive index material.
  • the refractive index of the optical control layer body 1D may be between 1.55 and 1.65.
  • the refractive index of the low-refractive index material portion 6B may be between 1 and 1.2, and the refractive index of air may be around 1.
  • the material of the optical control layer body 1D may include UV glue (ie, UV-curable optical glue).
  • the thickness (dimension along the second direction D2 ) of the optical control layer body 1D may be between 15 and 30 ⁇ m.
  • the refractive index of the light guide structure 2 may be close to the refractive index of the optical control layer body 1D, that is, the refractive indices of the two may be approximately equal.
  • the refractive index of the light guide structure 2 may be between 1.55 and 1.65.
  • the material of the light guide structure 2 may include polycarbonate (PC) or other transparent high refractive index light guide materials.
  • the light guide structure 2 can play a role of guiding light, and guide the light emitted by the light source 3 into the light source module. In addition, the light guide structure 2 can also play the role of supporting each film layer.
  • the light guide structure 2 may have certain bendability.
  • the protection structure 5 of the light source module is arranged on the side of the optical control layer 1 away from the light guide structure 2 to protect the optical structure 6 , the optical control layer 1 , the light guide structure 2 and other components below.
  • the bonding glue 4 is arranged between the optical control layer 1 and the protective structure 5 , and is used for bonding the protective structure 5 and the optical control layer 1 .
  • the refractive index of the protective structure 5 may be close to that of the optical control layer body 1D, that is, the refractive indices of the two may be approximately equal.
  • the refractive index of the protective structure 5 may be between 1.55 and 1.65.
  • the material of the protective structure 5 may include polymethyl methacrylate (PMMA) or other transparent high refractive index materials.
  • the thickness (dimension along the second direction D2 ) of the protective structure 5 may be between 0.1 and 0.2 mm.
  • the protective structure 5 includes a first protective surface 51 and a second protective surface 52, the first protective surface 51 is located on the side of the protective structure 5 away from the optical control layer 1, and the second protective surface 52 is located on a side of the protective structure 5 close to the optical control layer 1. side.
  • the refractive index of the adhesive 4 may be close to the refractive index of the optical control layer body 1D, that is, the refractive indices of the two may be approximately equal.
  • the refractive index of the adhesive 4 may be between 1.55 and 1.65.
  • the material of the bonding glue 4 may include UV glue.
  • the thickness of the adhesive 4 (dimension along the second direction D2 ) may be about 2 ⁇ m.
  • the display module 1000 may include the above-mentioned light source module 100 and the display panel 10 .
  • the display panel 10 may be a reflective display panel.
  • the display panel 10 may be bonded to the light source module 100 through the adhesive layer 15 .
  • the adhesive layer 15 may include pressure-sensitive adhesive.
  • the refractive index of the adhesive layer 15 may be smaller than the refractive index of the light guide structure 2 .
  • the adhesive layer 15 may be a transparent adhesive layer.
  • the reflective display panel may be a reflective liquid crystal display panel, an electronic ink display panel, or an electrowetting-based reflective display panel, which is not particularly limited in the embodiments of the present disclosure.
  • the display panel 10 may include a liquid crystal cell and a display substrate with a reflective structure disposed on one side of the liquid crystal cell.
  • Specific examples of liquid crystal cells may include twisted or non-twisted liquid crystal cells, such as TN (twisted nematic) liquid crystal cells, STN (super twisted nematic) liquid crystal cells, VA (vertical alignment) liquid crystal cells, etc., based on the liquid crystal display mode .
  • the display panel 10 is located on the side of the light guide structure 2 away from the optical control layer 1 .
  • the side of the protection structure 5 away from the display panel 10 is called the display side of the display module, and the side of the display panel 10 away from the protection structure 5 is called the back side of the display module.
  • the critical angle at which total reflection occurs at the first protective surface 51 is ⁇ 0, for example, ⁇ 0 may be equal to about 41°. According to the total reflection formula, when the included angle ⁇ 1 between the light ray and the normal direction at the first protective surface 51 is greater than the critical angle ⁇ 0, the light ray L1 will be totally reflected at the first protective surface 51 .
  • the light can continue to propagate in the light source module 100 , some of the light is directly incident on the surface of the display panel 10 through the gap between the optical structures 6 , and the other part of the light is changed by the optical structure 6 and continues to move toward the display panel 10 . side spread.
  • some light rays are incident on the optical structure 6 and are refracted at both the first optical surface 61 and the second optical surface 62, and after being refracted by these two optical surfaces, these light rays are directed toward the display Side propagation, incident on the first protective surface 51 of the protective structure 5 .
  • the included angle ⁇ 1 between the light rays and the normal direction at the first protective surface 51 is greater than the critical angle ⁇ 0, the light rays will be totally reflected at the first protective surface 51 . Subsequently, the propagation of the ray is similar to the above-mentioned ray L1.
  • the critical angle at which total reflection occurs at the first optical surface 61 is ⁇ 10, for example, ⁇ 10 may be equal to about 39.3°.
  • the light reflected by the first optical surface 61 propagates toward the back side and is incident on the display panel 10 .
  • some light rays are incident on the optical structure 6, and are refracted at both the first optical surface 61 and the second optical surface 62, and after being refracted by the two optical surfaces, these light rays are directed toward the back side propagation, incident on the display panel 10 .
  • FIG. 6 is a light path diagram of a display module according to some exemplary embodiments of the present disclosure.
  • the display panel 10 may be a reflective display panel.
  • the above-mentioned light rays are incident on the display panel 10 , they are reflected by the display panel 10 and thus propagate toward the display side.
  • the optical control layer body 1D, the adhesive 4 and the protective structure 5 after a part of the light is reflected by the display panel 10 and propagated through the light guide structure 2 , the optical control layer body 1D, the adhesive 4 and the protective structure 5 , without passing through the optical structure 6 , directly from The protective structure 5 emerges.
  • a part of the light is reflected by the display panel 10 and then passes through the optical structure 6 .
  • the incident angle of these rays can be smaller than the total reflection angle of the first optical surface 61 , so that they can also exit directly from the protective structure 5 .
  • a part of the light passes through the optical structure 6 after being reflected by the display panel 10 .
  • the incident angle of these rays may be greater than or equal to the total reflection angle of the first optical surface 61 , so that they will be reflected by the optical structure 6 . That is, these light rays will be regulated by the optical structure 6 again, and the above process will be repeated until it finally exits.
  • the light emitted from the light source 3 is regulated by the optical structure 6, which increases the light emitted from the light source 3 and incident on the display panel 10 below, thereby improving the brightness of the display panel 10, which is conducive to improving the The display effect of the display module when the external ambient light is insufficient.
  • the luminous flux of the light emitted from the light source 3 and incident on the display panel 10 below is denoted as the first luminous flux, denoted by Q1;
  • the luminous flux of the light directly emitted from the protective structure 5 is denoted as the second luminous flux, which is represented by Q2.
  • the luminous efficiency ratio Q0 Q1/Q2, that is, the luminous efficiency ratio is the ratio of the first luminous flux to the second luminous flux.
  • the larger the light efficiency ratio Q0 is, the more the light emitted by the light source 3 is effectively utilized, and the more beneficial it is to improve the brightness of the display module.
  • MF is an evaluation function
  • Target is the target value of luminous flux optimization
  • f( ⁇ 1, ⁇ 2) represents a function with the first included angle ⁇ 1 and the second included angle ⁇ 2 as variables.
  • the Monte Carlo tracing algorithm can be used to make the evaluation function MF approach 0 to the greatest extent.
  • the target value of the luminous flux optimization Target reaches the maximum value, so as to obtain the optimal solution of the first included angle ⁇ 1 and the second included angle ⁇ 2 .
  • first give the target value Target an initial value, for example, the absolute value of the first luminous flux Q1 can be 2, and the absolute value of the second luminous flux Q2 can be 10, and a set of ⁇ 1 and ⁇ 2 is calculated; then gradually change the target value Target (increase Increase the first luminous flux Q1, reduce the second luminous flux Q2), respectively calculate ⁇ 1, ⁇ 2, until ⁇ 1, ⁇ 2 have no solution.
  • the optimal solution to obtain the first included angle ⁇ 1 and the second included angle ⁇ 2 is:
  • the first included angle ⁇ 1 and the second included angle ⁇ 2 may vary within the range of ⁇ 5° of the above optimal solution, for example, the first included angle ⁇ 1 may be within the range of 40° ⁇ 50° , the second included angle ⁇ 2 can be in the range of 48° ⁇ 58°; or, the first included angle ⁇ 1 and the second included angle ⁇ 2 can be changed within the range of ⁇ 2° of the above optimal solution, for example, the first included angle ⁇ 1 and the second included angle ⁇ 2
  • the included angle ⁇ 1 may be in the range of 43° ⁇ 57°, and the second included angle ⁇ 2 may be in the range of 51° ⁇ 55°. In this way, the values of the first included angle ⁇ 1 and the second included angle ⁇ 2 can ensure that the above-mentioned light efficiency ratio Q is larger, thereby effectively improving the brightness of the display module.
  • FIG. 7 is a schematic diagram of a light source module according to some exemplary embodiments of the present disclosure, wherein the depth distribution of the optical structure is schematically shown.
  • FIG. 8 is an enlarged view of the depth distribution of the optical structure shown in FIG. 7 .
  • FIG. 9 is a schematic diagram of a light source module according to some exemplary embodiments of the present disclosure, in which a pitch distribution of optical structures is schematically shown.
  • FIG. 10 is an enlarged view of the pitch distribution of the optical structure shown in FIG. 9 .
  • 11 is a schematic diagram of a light source module according to some exemplary embodiments of the present disclosure, in which depth and pitch distributions of optical structures are schematically shown.
  • a plurality of optical structures 6 are distributed along the first direction D1 at intervals.
  • Each optical structure 6 has a depth H, which is the dimension of the optical structure 6 along the second direction D2.
  • the distance between two adjacent optical structures 6 is the pitch of the optical structures 6 , which is represented by P.
  • P the pitch of the optical structures 6
  • the first optical surface 61 and the second optical surface 62 intersect on a line 65, and the line 65 can be referred to as the top line.
  • the pitch P may be equal to the distance along the first direction D1 between the top lines 65 of two adjacent optical structures 6 .
  • the light source module 100 includes a plurality of distribution areas, and in FIG. 7 and FIG. 8 , three distribution areas DA1 , DA2 , and DA3 are schematically shown.
  • the first distribution area DA1 is close to the light incident surface 24, the second distribution area DA2 is far away from the light incident surface 24, and the third distribution area DA3 is located between the first distribution area DA1 and the second distribution area DA2.
  • the three distribution areas are for schematic illustration, and do not constitute a special limitation to the embodiment of the present disclosure.
  • the light source module 100 may include a smaller number of (eg two) or more (eg four, five or more) distribution areas.
  • At least one optical structure 6 is located in the first distribution area DA1, at least one optical structure 6 is located in the third distribution area DA3, and at least one optical structure 6 is located in the second distribution area DA2.
  • the optical structure 6 located in the first distribution area DA1 will be referred to as the first optical structure 6GA
  • the optical structure 6 located in the second distribution area DA2 will be referred to as the second optical structure 6GB
  • the optical structure 6 located in the third distribution area will be referred to as the second optical structure 6GB.
  • the optical structure 6 in DA3 is called the third optical structure 6GC.
  • the depth of the first optical structure 6GA can be represented by HA, and the pitch can be represented by PA; the depth of the second optical structure 6GB can be represented by HB, and the pitch can be represented by PB; the depth of the third optical structure 6GC Can be represented by HC and pitch can be represented by PC.
  • a plurality of first optical structures 6GA may be arranged in the first distribution area DA1
  • a plurality of second optical structures 6GB may be arranged in the second distribution area DA2
  • a plurality of third optical structures may be arranged in the third distribution area DA3 Optical structure 6GC.
  • the cross-sections of the optical structures disposed in each distribution area may have the same pattern.
  • the first optical structure 6GA, the second optical structure 6GB and the third optical structure 6GC may each have a triangular cross section as shown in FIG. 4 , and the first optical structure 6GA, the second optical structure 6GB and the third optical structure 6GC
  • the first included angles ⁇ 1 are equal to each other, and the second included angles ⁇ 2 are also equal to each other.
  • the first optical structure 6GA disposed in the first distribution area DA1 may have a triangular cross-section as shown in FIG. 4 , and two vertex angles (the above-mentioned first included angle ⁇ 1 and second included angle ⁇ 2 ) of the triangular cross-section may have The range of values described above.
  • the second optical structure 6GB disposed in the second distribution area DA2 may have a triangular cross-section as shown in FIG. 4 , and the two apex angles (the above-mentioned first included angle ⁇ 1 and second included angle ⁇ 2 ) of the triangular cross-section may have the above the described range of values.
  • the third optical structure 6GC disposed in the third distribution area DA3 may have a triangular cross-section as shown in FIG. 4 , and the two vertex angles (the above-mentioned first included angle ⁇ 1 and second included angle ⁇ 2 ) of the triangular cross-section may have the above the described range of values.
  • the depths HA of the plurality of first optical structures 6GA are equal to each other, and the pitches PA of the plurality of first optical structures 6GA are equal to each other.
  • the depths HB of the plurality of second optical structures 6GB are equal to each other, and the pitches PB of the plurality of second optical structures 6GB are equal to each other.
  • the depths HC of the plurality of third optical structures 6GC are equal to each other, and the pitches PC of the plurality of third optical structures 6GC are equal to each other.
  • the pitch PA of the first optical structure 6GA may be equal to the pitch PC of the third optical structure 6GC
  • the pitch PC of the third optical structure 6GC may be equal to the pitch of the second optical structure 6GB from PB.
  • the depth HA of the first optical structure 6GA is less than the depth HC of the third optical structure 6GC, and the depth HB of the third optical structure 6GC is less than the depth HB of the second optical structure 6GB.
  • the depth of the optical structures located in the first distribution area DA1 is set to be small, so that the first optical structure 6GA extracts the proportion of light. Smaller; the total amount of light on the side away from the light incident surface 24 is small, and the depth of the optical structure located in the second distribution area DA2 is set larger, so that the proportion of light extracted by the second optical structure 6GB is larger; the third distribution The case of the area DA3 lies between the two. In this way, the light distribution in each distribution area of the display module can be made more even, so that the uniformity of the display module can be improved.
  • the cross-sections of the optical structures disposed in each distribution area may have the same pattern.
  • the first optical structure 6GA, the second optical structure 6GB, and the third optical structure 6GC may each have a triangular cross-section as shown in FIG.
  • the lengths of each side of the section can be equal.
  • the first included angles ⁇ 1 in the first optical structure 6GA, the second optical structure 6GB and the third optical structure 6GC are equal to each other, and the second included angles ⁇ 2 are also equal to each other.
  • the pitch PA of the first optical structure 6GA may be greater than the pitch PC of the third optical structure 6GC, and the pitch PC of the third optical structure 6GC may be greater than the pitch PB of the second optical structure 6GB. That is, the optical structures 6 are sparsely distributed on the side close to the light incident surface 24 , and densely distributed on the side far from the light incident surface 24 . In other words, the optical structures 6 are arranged in a sparse to dense manner from a side close to the light incident surface 24 to a side away from the light incident surface 24 .
  • the depth HA of the first optical structure 6GA, the depth HB of the third optical structure 6GC, and the depth HC of the second optical structure 6GB may be equal to each other.
  • the total luminous flux is Q and the number of distribution areas is N
  • the total luminous flux A extracted by each distribution area should be equal to Q/N.
  • the multiple optical structures may be sequentially referred to as the first optical structure, the second optical structure, the third optical structure, etc., and so on.
  • the light extraction efficiency of the first optical structure is c
  • the light extraction efficiency of the second optical structure is d. Under the condition that the structure and size of each optical structure are substantially the same, the light extraction efficiency of each optical structure is substantially the same.
  • the luminous flux extracted by the first optical structure is A*c
  • the luminous flux extracted by the second optical structure is [A-(A*c)]*d
  • so on that is, the luminous flux that can be extracted by each optical structure
  • the direction of the light incident surface 24 decreases.
  • the optical structures 6 are arranged in a sparse to dense manner from the side close to the light incident surface 24 to the side far from the light incident surface 24, so that the light distribution in each distribution area of the display module is relatively uniform, Therefore, the uniformity of the display module can be improved.
  • the depths and pitches of the optical structures in each distribution area may be different. 11 , the depth HA of the first optical structure 6GA is smaller than the depth HC of the third optical structure 6GC, and the depth HC of the third optical structure 6GC is smaller than the depth HB of the second optical structure 6GB. Also, the pitch PA of the first optical structure 6GA may be greater than the pitch PC of the third optical structure 6GC, and the pitch PB of the third optical structure 6GC may be greater than the pitch PB of the second optical structure 6GB. In this way, the light distribution in each distribution area of the display module is made more even, so that the uniformity of the display module can be improved.
  • the number of distribution areas can be determined first according to factors such as the size of the display module and the feasibility of the process; then, the luminous flux distribution in each distribution area can be determined according to the total luminous flux and the number of distribution areas; then, according to each The luminous flux distribution in the distribution area determines the dimensions of the optical structures in each sub-area (eg, the above-mentioned dimensions such as depth and pitch).
  • the pitch of the optical structures in each partition area may be greater than or equal to 30 micrometers and less than or equal to 300 micrometers.
  • the inventor found through research that if the pitch of the optical structure is greater than 300 microns, the distribution of the optical structures will be sparse, resulting in uneven brightness and darkness of the display module during display; It aggravates the inhomogeneity and is not conducive to the function of a single optical structure.
  • the light source module 100 includes 3 distribution areas.
  • the pitches of the optical structures in the respective distribution areas are equal to each other, for example, the pitch is 100 microns.
  • the depth of the optical structures in the first distribution area may be about 4 microns, the depth of the optical structures in the second distribution area may be about 9 microns, and the depth of the optical structures in the third distribution area may be about 14 microns.
  • the uniformity of the display module can reach more than 60%.
  • the light source module 100 may include two distribution areas, wherein one distribution area is close to the light incident surface 24 , and the other distribution area is far away from the light incident surface 24 .
  • the depth of the optical structures 6 located in the distribution area close to the light incident surface 24 may be less than the depth of the optical structures 6 located in the distribution area away from the light incident surface 24, and/or, the depth of the optical structures 6 located in the distribution area close to the light incident surface 24.
  • the pitch of the optical structures 6 may be smaller than the pitch of the optical structures 6 located in the distribution area away from the light incident surface 24 .
  • FIG. 12 is a schematic diagram of a two-dimensional distribution of an optical structure of a light source module according to some exemplary embodiments of the present disclosure.
  • 13A to 13D are respectively schematic topographical diagrams of the optical structure in the case of the two-dimensional distribution shown in FIG. 12 .
  • the orthographic projections of the plurality of optical structures 6 on the optical control layer 1 may be distributed in two dimensions, that is, they are arranged at intervals along the first direction D1 and the third direction D3.
  • the optical structure 6 may have a prismatic shape.
  • the optical structure 6 may have a pyramid shape.
  • the optical structure 6 may have a prismatic shape.
  • the optical structure 6 may have a frustum shape.
  • the distance between two adjacent optical structures 6 along the first direction D1 is the first pitch of the optical structures 6, which is represented by P1; the two adjacent optical structures 6 The distance between them along the third direction D3 is the second pitch of the optical structure 6, which is represented by P2.
  • the light source module 100 may include at least two distribution areas, wherein one distribution area is close to the light incident surface 24 , and the other distribution area is far away from the light incident surface 24 .
  • the depth of the optical structures 6 located in the distribution area close to the light incident surface 24 may be smaller than the depth of the optical structures 6 located in the distribution area away from the light incident surface 24, and/or, the depth of the optical structures 6 located in the distribution area close to the light incident surface 24.
  • the first pitch P1 of the optical structures 6 may be greater than the first pitch P1 of the optical structures 6 located in the distribution area away from the light incident surface 24 , and/or, the optical structures 6 located in the distribution area close to the light incident surface 24
  • the second pitch P2 of the optical structures 6 may be larger than the second pitch P2 of the optical structures 6 located in the distribution area away from the light incident surface 24 .
  • the orthographic projection of the optical structures 6 located in the first distribution area DA1 on the light guide structure 2 may be rectangular, and the optical structures 6 located in the second distribution area DA2 on the light guide structure 2 may have a rectangular orthographic projection.
  • the orthographic projection may be rectangular, and the orthographic projection of the optical structure 6 located in the third distribution area DA3 on the light guide structure 2 may be rectangular.
  • the area of the orthographic projection of each optical structure 6 located in the first distribution area DA1 on the light guide structure 2 may be smaller than the area of the orthographic projection of each optical structure 6 located in the third distribution area DA3 on the light guide structure 2
  • the area of the orthographic projection of each optical structure 6 located in the third distribution area DA3 on the light guide structure 2 may be smaller than the area of the orthographic projection of each optical structure 6 located in the second distribution area DA2 on the light guide structure 2 area.
  • the display quality can be improved.
  • the size of the optical structure eg, depth, pitch, etc.
  • the brightness uniformity of the display module can be improved, so that the display quality can be further improved.
  • FIG. 14 is a flowchart of a method for fabricating a light source module according to an embodiment of the present disclosure.
  • the method for preparing the light source module includes the steps of preparing the optical structure.
  • the preparation step of the optical structure can be performed according to the following steps.
  • a tool is prepared.
  • the shape of the tool is the same as the shape of the optical structure to be formed, for example, the cross-section of the tool may be triangular.
  • a roller with a raised structure is prepared.
  • the rollers can be prepared using the tools described above.
  • the shape of the protruding structure of the roller is the same as the shape of the optical structure to be formed, for example, the cross section of the protruding structure of the roller may be a triangle.
  • step S143 an optical control layer material such as UV glue is coated on the substrate, and grooves are machined in the optical control layer by using the above-mentioned roller.
  • the shape of the groove is the same as the shape of the optical structure to be formed, for example, the cross section of the groove may be triangular.
  • step S144 a layer of glue is attached on the optical control layer formed with the groove to form an optical structure including an air gap.
  • the same roller can be used to process each optical structure, which is beneficial to simplify the process and save the manufacturing cost.
  • only one roller is needed, and by adjusting the processing depth, optical structures with different depths can be formed.
  • an embodiment of the present disclosure further provides a display device, and the display device may include the above-mentioned display module.
  • the display device may include but is not limited to: electronic paper, mobile phone, tablet computer, television, monitor, notebook computer, digital photo frame, navigator, and any other product or component with display function. It should be understood that the display device has the same beneficial effects as the display module provided by the foregoing embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种光源模组(100)及其制备方法和显示模组。光源模组包括:光源(3);导光结构(2),导光结构(2)包括入光面(24);光学控制层(1),光学控制层(1)包括远离导光结构(2)的第一表面(11)和面向导光结构(2)的第二表面(12);以及至少两个光学结构(6),至少两个光学结构(6)设置在光学控制层(1)中,用于调节入射到光学结构(6)上的光。每一个光学结构(6)包括位于光学控制层(1)中的沟槽(6A)和填充于沟槽(6A)中的低折射率材料部(6B),低折射率材料部(6B)的折射率小于光学控制层本体(1D)的折射率;以及每一个光学结构(6)包括第一光学表面(61)和第二光学表面(62),第一光学表面(61)比第二光学表面(62)更靠近入光面(24),第一光学表面(61)相对于第一表面(11)倾斜,第二光学表面(62)相对于第一表面(11)倾斜,第一光学表面(61)和第二光学表面(62)在朝着导光结构(2)的方向逐渐靠拢。

Description

光源模组及其制备方法和显示模组 技术领域
本公开涉及显示技术领域,具体而言,涉及一种光源模组及其制备方法和显示模组。
背景技术
与透射式的显示装置相比,反射式的显示装置的图像更加柔和、功耗更低,在例如户外可以获得更好的显示效果,因此在例如电子阅读器、公共显示等领域受到越来越多的青睐。
反射式显示装置受外部环境光照的影响较大,当外部环境光照不足时,其显示效果降低。
发明内容
在一个方面,提供一种光源模组,所述光源模组包括:
光源;
导光结构,所述导光结构包括入光面和第一表面,所述光源发出的光经所述入光面进入所述导光结构;
光学控制层,所述光学控制层设置于所述导光结构的第一表面上,所述光学控制层包括光学控制层本体,所述光学控制层包括远离所述导光结构的第一表面和面向所述导光结构的第二表面;以及
至少两个光学结构,所述至少两个光学结构设置在所述光学控制层中,用于入射到所述光学结构上的光,
其中,所述多个光学结构至少沿第一方向间隔排列,所述第一方向垂直于所述入光面;
每一个所述光学结构包括位于所述光学控制层中的沟槽,所述沟槽在所述光学控制层的第一表面中形成开口;以及
每一个光学结构包括第一光学表面和第二光学表面,所述第一光学表面和所述第 二光学表面均与所述光学控制层的第二表面间隔设置,所述第一光学表面比所述第二光学表面更靠近所述入光面,所述第一光学表面相对于所述光学控制层的第一表面倾斜,所述第二光学表面相对于所述光学控制层的第一表面倾斜,所述第一光学表面和所述第二光学表面在朝着所述导光结构的方向逐渐靠拢;
其中,所述沟槽中填充有低折射率材料部,所述低折射率材料部的折射率小于所述光学控制层本体的折射率;或者所述沟槽中为空气,所述光学控制层本体的折射率大于空气的折射率。
根据一些示例性实施例,每一个所述光学结构包括第一夹角和第二夹角,所述第一夹角为所述第一光学表面与所述光学控制层的第一表面所在的表面之间的夹角,所述第二夹角为所述第一光学表面与所述第二光学表面之间的夹角,所述第一夹角和所述第二夹角被设计为使得从所述光源出射的光的至少一部分朝着所述导光结构传播。
根据一些示例性实施例,所述导光结构的折射率与所述光学控制层本体的折射率基本相等。
根据一些示例性实施例,每一个所述光学结构在所述第一方向和第二方向所限定的平面上的正投影呈三角形,所述第二方向垂直于所述光学控制层的第一表面。
根据一些示例性实施例,所述光源模组至少包括第一分布区域和第二分布区域,所述第一分布区域比所述第二分布区域更靠近所述入光面;每一个所述光学结构具有深度,所述深度为所述光学结构沿所述第二方向的尺寸;以及位于所述第一分布区域中的光学结构的深度小于位于所述第二分布区域中的光学结构的深度。
根据一些示例性实施例,所述光源模组至少包括第一分布区域和第二分布区域,所述第一分布区域比所述第二分布区域更靠近所述入光面;所述光学结构具有第一节距,所述第一节距为相邻的两个光学结构沿所述第一方向的距离;以及位于所述第一分布区域中的光学结构的第一节距大于位于所述第二分布区域中的光学结构的第一节距。
根据一些示例性实施例,所述第一夹角在40°~50°的范围内,和/或,所述第二夹角在48°~58°的范围内。
根据一些示例性实施例,所述多个光学结构至少沿第三方向间隔排列,所述第二方向垂直于所述光学控制层的第一表面,所述第三方向垂直于所述第一方向和所述第二方向两者。
根据一些示例性实施例,所述光学结构具有第二节距,所述第二节距为相邻的两个光学结构沿所述第三方向的距离;以及位于所述第一分布区域中的光学结构的第二节距大于位于所述第二分布区域中的光学结构的第二节距。
根据一些示例性实施例,所述光源模组还包括:
设置在所述光学控制层远离所述导光结构一侧的保护结构;以及
设置在所述光学控制层与所述保护结构之间的贴合胶,
其中,所述贴合胶在所述导光结构上的正投影覆盖所述多个光学结构在所述导光结构的正投影。
根据一些示例性实施例,所述保护结构的折射率、所述贴合胶的折射率与所述光学控制层本体的折射率彼此基本相等。
根据一些示例性实施例,所述光源模组还包括第三分布区域,所述第三分布区域位于所述第一分布区域和所述第二分布区域之间;位于所述第一分布区域中的光学结构的深度小于位于所述第三分布区域中的光学结构的深度,位于所述第三分布区域中的光学结构的深度小于位于所述第二分布区域中的光学结构的深度;和/或,位于所述第一分布区域中的光学结构的第一节距大于位于所述第三分布区域中的光学结构的第一节距,位于所述第三分布区域中的光学结构的第一节距大于位于所述第二分布区域中的光学结构的第一节距。
根据一些示例性实施例,所述光学控制层本体的折射率在1.55~1.65之间。
根据一些示例性实施例,每一个所述光学结构的形状包括从棱柱、棱锥、棱台和圆台中选择的一种。
在另一方面,提供一种显示模组,所述显示模组包括如上所述的光源模组。
根据一些示例性实施例,所述显示模组还包括显示面板,所述显示面板设置在所述导光结构远离所述光学控制层的一侧,所述显示面板为反射式显示面板。
在又一方面,提供一种光源模组的制备方法,所述制备方法至少包括以下步骤:
制备带有凸起结构的滚轮,该滚轮的凸起结构的形状与待形成的光学结构的形状相同;
在基材上涂布光学控制层材料,并利用上述滚轮在光学控制层中加工出沟槽,所述沟槽的形状与待形成的光学结构的形状相同;以及
在形成有所述沟槽的光学控制层上贴合一层胶,以形成包括光学结构,
其中,所述光学结构包括位于所述光学控制层中的沟槽和填充于所述沟槽中的低折射率材料部,所述光学控制层包括光学控制层本体,所述低折射率材料部的折射率小于所述光学控制层本体的折射率;
所述光学控制层包括第一表面和第二表面,所述沟槽形成于所述第一表面中;以及
所述光学结构包括第一光学表面和第二光学表面,所述第一光学表面相对于所述第一表面倾斜,所述第二光学表面相对于所述第一表面倾斜,所述第一光学表面和所述第二光学表面在朝着所述第二表面的方向逐渐靠拢。
附图说明
通过下文中参照附图对本公开所作的描述,本公开的其它目的和优点将显而易见,并可帮助对本公开有全面的理解。
图1是根据本公开的一些示例性实施例的光源模组的截面图;
图2是根据本公开的一些示例性实施例的光源模组包括的光学控制层和光学结构的平面示意图;
图3是根据本公开的一些示例性实施例的光源模组的光路图;
图4是根据本公开的一些示例性实施例的光源模组包括的一个光学结构的示意图,其中示意性示出了一些光路;
图5是根据本公开的一些示例性实施例的显示模组的示意图;
图6是根据本公开的一些示例性实施例的显示模组的光路图;
图7是根据本公开的一些示例性实施例的光源模组的示意图,其中示意性示出了光学结构的深度分布;
图8是图7中所示的光学结构的深度分布的放大图;
图9是根据本公开的一些示例性实施例的光源模组的示意图,其中示意性示出了光学结构的节距分布;
图10是图9中所示的光学结构的节距分布的放大图;
图11是根据本公开的一些示例性实施例的光源模组的示意图,其中示意性示出了光学结构的深度和节距分布;
图12是根据本公开的一些示例性实施例的光源模组的光学结构的二维分布示意 图;
图13A至图13D分别是图12中所示的二维分布的情况下的光学结构的形貌示意图;以及
图14是根据本公开实施例的光源模组的制备方法的流程图。
需要注意的是,为了清晰起见,在用于描述本公开的实施例的附图中,层、结构或区域的尺寸可能被放大或缩小,即这些附图并非按照实际的比例绘制。
具体实施方式
下面通过实施例,并结合附图,对本公开的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本公开实施方式的说明旨在对本公开的总体发明构思进行解释,而不应当理解为对本公开的一种限制。
另外,在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本披露实施例的全面理解。然而明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。
应该理解的是,尽管在这里可使用术语第一、第二等来描述不同的元件,但是这些元件不应受这些术语的限制。这些术语仅是用来将一个元件与另一个元件区分开来。例如,在不脱离示例实施例的范围的情况下,第一元件可以被命名为第二元件,类似地,第二元件可以被命名为第一元件。如在这里使用的术语“和/或”包括一个或多个相关所列的项目的任意组合和所有组合。
应该理解的是,当元件或层被称作“形成在”另一元件或层“上”时,该元件或层可以直接地或间接地形成在另一元件或层上。也就是,例如,可以存在中间元件或中间层。相反,当元件或层被称作“直接形成在”另一元件或层“上”时,不存在中间元件或中间层。应当以类似的方式来解释其它用于描述元件或层之间的关系的词语(例如,“在...之间”与“直接在…之间”、“相邻的”与“直接相邻的”等)。
在本文中,使用方向性表述“第一方向”、“第二方向”、“第三方向”来描述沿光源模组或显示模组的不同方向。应该理解,这样的表示仅为示例性的描述,而不是对本公开的限制。
本公开的一些示例性实施例提供一种光源模组,包括:光源;导光结构,所述导 光结构包括入光面和第一表面,所述光源发出的光经所述入光面进入所述导光结构;光学控制层,所述光学控制层设置于所述导光结构的第一表面上,所述光学控制层包括光学控制层本体,所述光学控制层包括远离所述导光结构的第一表面和面向所述导光结构的第二表面;以及至少两个光学结构,所述至少两个光学结构设置在所述光学控制层中,用于调节入射到所述光学结构上的光,其中,所述多个光学结构至少沿第一方向间隔排列,所述第一方向垂直于所述入光面;每一个所述光学结构包括位于所述光学控制层中的沟槽和填充于所述沟槽中的低折射率材料部,所述沟槽在所述光学控制层的第一表面中形成开口,所述低折射率材料的折射率小于所述光学控制层本体的折射率;以及每一个光学结构包括第一光学表面和第二光学表面,所述第一光学表面和所述第二光学表面均与所述光学控制层的第二表面间隔设置,所述第一光学表面比所述第二光学表面更靠近所述入光面,所述第一光学表面相对于所述光学控制层的第一表面倾斜,所述第二光学表面相对于所述光学控制层的第一表面倾斜,所述第一光学表面和所述第二光学表面在朝着所述导光结构的方向逐渐靠拢。在本公开的实施例中,从光源出射的光被光学结构调控,增加了从光源出射且入射到下方的部件(例如显示面板)上的光。
图1是根据本公开的一些示例性实施例的光源模组的截面图,图2是根据本公开的一些示例性实施例的光源模组包括的光学控制层和光学结构的平面示意图。参照图1和图2,根据本公开实施例的光源模组100可以包括光源3、导光结构2、光学控制层1、贴合胶4和保护结构5。
如图1和图2所示,光源3可以设置在导光结构2的一侧,例如图1和图2中的左侧。导光结构2可以形成为导光层或导光板的形式。导光结构2可以包括第一表面21、第二表面22和入光面24。第二表面22与第一表面21相对设置,且入光面24连接第一表面21及第二表面22。光源3与入光面24相对设置,,光源3发出的光经入光面24进入导光结构2,从第一表面21和第二表面22射出。
例如,第一表面21可以为导光结构2在靠近光学控制层1的一侧的表面,即图2中的上表面;第二表面22可以为导光结构2在靠近显示面板(下文将描述)的一侧的表面,即图2中的下表面。第一表面21与第二表面22可以基本上平行。
在本文中,将垂直于某一表面的线称为该表面的法线。参照图2,第一方向D1平行于入光面24的法线,第二方向D2平行于第一表面21或第二表面22的法线。参 照图1,第三方向D3垂直于第一方向D1和第二方向D2两者。
例如,导光结构2、光学控制层1、贴合胶4和保护结构5可以沿第二方向D2层叠设置。
例如,光源3可以包括发光二极管(简称LED)或由多个发光二极管组成的灯条,但本公开的实施例不限于此,在其他实施例中,光源3还可以包括有机发光二极管、量子点发光二极管、微发光二极管、次毫米发光二极管等其他适于发光的元件。
继续参照图2,光学控制层1设置于第一表面21上。光学控制层1可以包括光学控制层本体1D和多个光学结构6。光学结构6设置在光学控制层本体1D的远离导光结构2或第一表面21的一侧。
光学控制层1包括远离导光结构2的第一表面11和面向导光结构2的第二表面12。例如,第二表面12可以接触导光结构2的第一表面21。
例如,在一些实施例中,光学结构6包括沟槽6A。所述沟槽6A从光学控制层的第一表面11朝向光学控制层的第二表面12凹入,形成为位于光学控制层1中且具有预定深度的凹槽。即,沟槽6A在光学控制层的第一表面11处形成开口,或者说,沟槽6A在光学控制层的第一表面11处敞开。
结合参照图1和图2,多个沟槽6A沿第一方向D1间隔排列。例如,每一个沟槽6A可以沿第三方向D3延伸,其在第三方向D3的延伸长度可以小于光学控制层1沿第三方向D3的长度,此时沿D3方向,可以间隔设置有至少两个沟槽6A。进一步的,每一个沟槽6A可以沿第三方向D3贯穿光学控制层1。
例如,在一些实施例中,光学结构6还包括填充于所述沟槽6A中的低折射率材料部6B。低折射率材料部6B的折射率小于光学控制层本体1D的材料的折射率。
例如,所述沟槽6A中可以为空气。即,光学结构6包括沟槽6A和存在于沟槽6A中的空气6B。光学控制层本体1D的材料的折射率可以大于空气的折射率。
图3是根据本公开的一些示例性实施例的光源模组的光路图。图4是根据本公开的一些示例性实施例的光源模组包括的一个光学结构的示意图,其中示意性示出了一些光路。图5是根据本公开的一些示例性实施例的显示模组的示意图。
结合参照图1至图4,光学结构6包括第一光学表面61、第二光学表面62和第三光学表面63。第一光学表面61位于靠近入光面24的一侧,第二光学表面62位于远离入光面24的一侧,即,在一个光学结构6中,第一光学表面61比第二光学表面62更靠近入光面24。第三光学表面63连接第一光学表面61和第二光学表面62。第 三光学表面63可以基本平行于光学控制层的第一表面11。
需要说明的是,在低折射率材料部6B为空气的情况下,第三光学表面63为与光学控制层的第一表面11共面的虚拟表面。
例如,第一光学表面61和第二光学表面62均与光学控制层的第二表面12间隔设置,即,沿第二方向D2与光学控制层的第二表面12间隔一段距离。第三光学表面62与光学控制层的第一表面11共面。
在本公开的实施例中,第一光学表面61与第三光学表面63之间的夹角为第一夹角α1,第一光学表面61与第二光学表面62之间的夹角为第二夹角α2。如图2所示,第一光学表面61与第二光学表面62可以直接连接。每个沟槽6A具有三角形的横截面,即,每一个沟槽6A在第一方向D1和第二方向D2所构成的平面上的正投影呈三角形形状。
在本公开的实施例中,光学控制层本体1D的折射率可以大于低折射率材料部或空气6B的折射率,即,光学控制层本体1D可以由高折射率材料形成,低折射率材料部6B可以由低折射率材料形成。例如,光学控制层本体1D的折射率可以在1.55~1.65之间。低折射率材料部6B的折射率可以在1~1.2之间,空气的折射率在1左右。例如,光学控制层本体1D的材料可以包括UV胶(即,可紫外光固化的光学胶)。光学控制层本体1D的厚度(沿第二方向D2的尺寸)可以在15~30μm之间。
例如,导光结构2的折射率可以接近于光学控制层本体1D的折射率,即,二者的折射率可以大致相等。例如,导光结构2的折射率可以在1.55~1.65之间。导光结构2的材料可以包括聚碳酸酯(PC)或其他透明的高折射率导光材料。导光结构2可以起到导光的作用,将光源3发出的光导入光源模组中。另外,导光结构2还可以起到承载各个膜层的作用。导光结构2可以具有一定的可弯折性。
如图2所示,所述光源模组的保护结构5设置在光学控制层1远离导光结构2的一侧,用于保护下方的光学结构6、光学控制层1、导光结构2等部件。贴合胶4设置在光学控制层1与保护结构5之间,用于粘合保护结构5和光学控制层1。
保护结构5的折射率可以接近于光学控制层本体1D的折射率,即,二者的折射率可以大致相等。例如,保护结构5的折射率可以在1.55~1.65之间。保护结构5的材料可以包括聚甲基丙烯酸甲酯(PMMA)或其他透明的高折射率材料。例如,保护结构5的厚度(沿第二方向D2的尺寸)可以在0.1~0.2mm之间。
保护结构5包括第一保护表面51和第二保护表面52,第一保护表面51位于保护 结构5远离光学控制层1的一侧,第二保护表面52位于保护结构5靠近光学控制层1的一侧。
贴合胶4的折射率可以接近于光学控制层本体1D的折射率,即,二者的折射率可以大致相等。例如,贴合胶4的折射率可以在1.55~1.65之间。贴合胶4的材料可以包括UV胶。例如,贴合胶4的厚度(沿第二方向D2的尺寸)可以在2μm左右。
参照图5,根据本公开实施例的显示模组1000可以包括上述光源模组100和显示面板10。显示面板10可以是反射型显示面板。显示面板10可以通过胶层15与光源模组100粘合。例如,胶层15可以包括压敏胶。胶层15的折射率可以小于导光结构2的折射率。胶层15可以为透明的胶层。
反射型显示面板可以为反射式液晶显示面板,也可以为电子墨水显示面板,也可以为基于电润湿的反射式显示面板,本公开的实施例不做特别限定。例如,所述显示面板10可以包括液晶盒和设置在液晶盒一侧的,带有反射结构的显示基板。基于液晶显示模式,液晶盒的具体实例可以包括:扭曲式或非扭曲式液晶盒,如TN(扭曲向列)液晶盒、STN(超扭曲向列)液晶盒、VA(纵向排列)液晶盒等。
显示面板10位于导光结构2远离光学控制层1的一侧。为了描述方便,将保护结构5的远离显示面板10的一侧称为显示模组的显示侧,将显示面板10的远离保护结构5的一侧称为显示模组的背侧。
下面,结合图1至图5描述从导光结构2出射的光的光路。
例如,参照图3中的光线L1,一些光线未经过光学结构6而直接入射到保护结构5的第一保护表面51上。第一保护表面51处发生全反射的临界角为β0,例如,β0可以等于约41°。根据全反射公式,当光线与第一保护表面51处的法线方向的夹角β1大于临界角β0时,光线L1会在第一保护表面51处发生全反射。发生全反射后,光线可继续在光源模组100中传播,其中一部分光线经过光学结构6之间的间隙直接入射到显示面板10的表面,另一部分光线被光学结构6改变路径,继续朝着显示侧传播。
例如,参照图3中的光线L2,一些光线入射至光学结构6,并且在第一光学表面61和第二光学表面62处均发生折射,经过这两个光学表面折射后,这些光线朝着显示侧传播,入射到保护结构5的第一保护表面51上。当这些光线与第一保护表面51处的法线方向的夹角β1大于临界角β0时,光线会在第一保护表面51处发生全反射。随后,光线的传播类似于上述光线L1。
例如,参照图3中的光线L3,一些光线入射至光学结构6,并且在第一光学表面 61处发生全反射。例如,第一光学表面61处发生全反射的临界角为β10,例如,β10可以等于约39.3°。经过第一光学表面61反射的光线朝着背侧传播,入射到显示面板10上。
例如,参照图3中的光线L4,一些光线入射至光学结构6,并且在第一光学表面61和第二光学表面62处均发生折射,经过这两个光学表面折射后,这些光线朝着背侧传播,入射到显示面板10上。
图6是根据本公开的一些示例性实施例的显示模组的光路图。结合参照图1至图6,显示面板10可以为反射性显示面板。当上述光线入射到显示面板10之后,它们会被显示面板10反射,从而朝着显示侧传播。
例如,参照图6中的光线L5,一部分光线经显示面板10反射后,经过导光结构2、光学控制层本体1D、贴合胶4和保护结构5传播后,未经过光学结构6,直接从保护结构5出射。
例如,参照图6中的光线L6,一部分光线经显示面板10反射后,经过光学结构6。这些光线的入射角可以小于第一光学表面61的全反射角,这样,它们也可以直接从保护结构5出射。
例如,参照图6中的光线L7,一部分光线经显示面板10反射后,经过光学结构6。这些光线的入射角可以大于等于第一光学表面61的全反射角,这样,它们会被光学结构6反射。即,这些光线会再次被光学结构6调控,重复上述过程直至最终出射。
在本公开的实施例中,从光源3出射的光被光学结构6调控,增加了从光源3出射且入射到下方的显示面板10上的光,从而提升了显示面板10的亮度,有利于改善显示模组在外部环境光照不足时的显示效果。
在本公开的实施例中,从光源3出射且入射到下方的显示面板10上的光的光通量记为第一光通量,用Q1表示;从光源3出射且未入射到下方的显示面板10上而直接从保护结构5出射的光的光通量记为第二光通量,用Q2表示。光效比Q0=Q1/Q2,即光效比为第一光通量与第二光通量的比值。光效比Q0越大,说明光源3出射的光被有效利用的越多,越有利于提升显示模组的亮度。
在本公开的实施例中,基于图1至图6所示的结构,在各个部件或膜层的厚度、折射率保持不变的情况下,上述光效比Q0与第一夹角α1和第二夹角α2存在一定的函数关系。
可以建立如下的评价函数:
MF=Target-f(α1,α2),
其中,MF为评价函数,Target为光通量优化的目标值,f(α1,α2)表示以第一夹角α1和第二夹角α2为变量的函数。
可以采用蒙特卡洛追迹算法,使评价函数MF最大程度趋近于0,此时光通量优化的目标值Target达到最大值,从而求得第一夹角α1和第二夹角α2的最优解。例如,先给目标值Target一个初始值,例如第一光通量Q1的绝对值可以是2,第二光通量Q2的绝对值可以是10,计算出一组α1、α2;然后逐渐改变目标值Target(增大第一光通量Q1,减小第二光通量Q2),分别计算出α1、α2,直至α1、α2没有解。例如,在一个示例性的实施例中,得到第一夹角α1和第二夹角α2的最优解为:
α1=45°且α2=53°,
应该理解,当显示模组的叠层结构、构成叠层结构的各个膜层的折射率等发生变化时,上述第一夹角α1和第二夹角α2的最优解相应地改变。
在本公开的实施例中,第一夹角α1和第二夹角α2可以在上述最优解的±5°的范围内变动,例如,第一夹角α1可以在40°~50°的范围内,第二夹角α2可以在48°~58°的范围内;或者,第一夹角α1和第二夹角α2可以在上述最优解的±2°的范围内变动,例如,第一夹角α1可以在43°~57°的范围内,第二夹角α2可以在51°~55°的范围内。以此方式,第一夹角α1和第二夹角α2的取值可以确保上述光效比Q较大,从而能够有效提高显示模组的亮度。
图7是根据本公开的一些示例性实施例的光源模组的示意图,其中示意性示出了光学结构的深度分布。图8是图7中所示的光学结构的深度分布的放大图。图9是根据本公开的一些示例性实施例的光源模组的示意图,其中示意性示出了光学结构的节距分布。图10是图9中所示的光学结构的节距分布的放大图。图11是根据本公开的一些示例性实施例的光源模组的示意图,其中示意性示出了光学结构的深度和节距分布。
结合参照图1至图11,在本公开的实施例中,多个光学结构6沿第一方向D1间隔分布。每一个光学结构6具有深度H,该深度H为光学结构6沿第二方向D2的尺寸。相邻的两个光学结构6之间的距离为光学结构6的节距,用P表示。例如,对于一个光学结构6而言,其第一光学表面61与第二光学表面62相交于一条线65,线65可以称为顶线。节距P可以等于相邻的两个光学结构6的顶线65之间沿第一方向D1的距离。
例如,光源模组100包括多个分布区域,在图7和图8中,示意性示出了三个分布区域DA1、DA2、DA3。其中,第一分布区域DA1靠近入光面24,第二分布区域DA2远离入光面24,第三分布区域DA3位于第一分布区域DA1与第二分布区域DA2之间。
需要说明的是,在图示的实施例中,三个分布区域为示意性说明,不构成对本公开实施例的特别限制,在本公开的其他实施例中,光源模组100可以包括更少数量(例如两个)或更多数量(例如四个、五个或更多个)分布区域。
至少一个光学结构6位于第一分布区域DA1中,至少一个光学结构6位于第三分布区域DA3中,至少一个光学结构6位于第二分布区域DA2中。为了描述方便,将位于第一分布区域DA1中的光学结构6称为第一光学结构6GA,将位于第二分布区域DA2中的光学结构6称为第二光学结构6GB,将位于第三分布区域DA3中的光学结构6称为第三光学结构6GC。相应地,第一光学结构6GA的深度可以用HA表示,节距可以用于PA表示;第二光学结构6GB的深度可以用HB表示,节距可以用于PB表示;第三光学结构6GC的深度可以用HC表示,节距可以用于PC表示。
在一些实施例中,第一分布区域DA1中可以设置多个第一光学结构6GA,第二分布区域DA2中可以设置多个第二光学结构6GB,第三分布区域DA3中可以设置多个第三光学结构6GC。
在一个实施例中,每一个分布区域中设置的光学结构的横截面可以具有相同的图形。例如,第一光学结构6GA、第二光学结构6GB和第三光学结构6GC均可以具有如图4所示的三角形截面,并且第一光学结构6GA、第二光学结构6GB和第三光学结构6GC中的第一夹角α1彼此相等,第二夹角α2也彼此相等。
例如,第一分布区域DA1中设置的第一光学结构6GA可以具有如图4所示的三角形截面,并且三角形截面的两个顶角(上述第一夹角α1和第二夹角α2)可以具有上文所描述的取值范围。第二分布区域DA2中设置的第二光学结构6GB可以具有如图4所示的三角形截面,并且三角形截面的两个顶角(上述第一夹角α1和第二夹角α2)可以具有上文所描述的取值范围。第三分布区域DA3中设置的第三光学结构6GC可以具有如图4所示的三角形截面,并且三角形截面的两个顶角(上述第一夹角α1和第二夹角α2)可以具有上文所描述的取值范围。
例如,多个第一光学结构6GA的深度HA彼此相等,多个第一光学结构6GA的节距PA彼此相等。多个第二光学结构6GB的深度HB彼此相等,多个第二光学结构 6GB的节距PB彼此相等。多个第三光学结构6GC的深度HC彼此相等,多个第三光学结构6GC的节距PC彼此相等。
例如,在本公开的一些实施例中,第一光学结构6GA的节距PA可以等于第三光学结构6GC的节距PC,第三光学结构6GC的节距PC可以等于第二光学结构6GB的节距PB。
在本公开的一些实施例中,第一光学结构6GA的深度HA小于第三光学结构6GC的深度HC,第三光学结构6GC的深度HB小于第二光学结构6GB的深度HB。
在本公开的实施例中,由于靠近入光面24一侧的光线总量较大,位于第一分布区域DA1中的光学结构的深度设置得较小,使得第一光学结构6GA提取光线的比例较小;远离入光面24一侧的光线总量较小,位于第二分布区域DA2中的光学结构的深度设置得较大,使得第二光学结构6GB提取光线的比例较大;第三分布区域DA3的情况位于二者之间。这样,可以使得显示模组各个分布区域中的光线分布较平均,从而能够提高显示模组的均一性。
结合参照图9和图10,在本公开的一些实施例中,每一个分布区域中设置的光学结构的横截面可以具有相同的图形。例如,第一光学结构6GA、第二光学结构6GB和第三光学结构6GC均可以具有如图4所示的三角形截面,第一光学结构6GA、第二光学结构6GB和第三光学结构6GC的三角形截面的各个边长可以分别相等。第一光学结构6GA、第二光学结构6GB和第三光学结构6GC中的第一夹角α1彼此相等,第二夹角α2也彼此相等。第一光学结构6GA的节距PA可以大于第三光学结构6GC的节距PC,第三光学结构6GC的节距PC可以大于第二光学结构6GB的节距PB。即,光学结构6在靠近入光面24的一侧分布得较稀疏,在远离入光面24的一侧分布得较密集。或者说,光学结构6自靠近入光面24的一侧至远离入光面24的一侧以由疏到密的方式排列。
例如,第一光学结构6GA的深度HA、第三光学结构6GC的深度HB和第二光学结构6GB的深度HC可以彼此相等。
例如,设总光通量为Q,分布区域的数量为N,则每个分布区域所提取的总光通量A应等于Q/N。在一个分布区域内,设沿远离光源的方向,多个光学结构可以依次称为第一个光学结构、第二个光学结构、第三个光学结构等,以此类推。第一个光学结构的提光效率为c,第二个光学结构的提光效率为d。在每个光学结构的结构和尺寸基本相同的情况下,每个光学结构的提光效率基本相同。第一个光学结构提取的光通 量为A*c,第二个光学结构提取的光通量为[A-(A*c)]*d,以此类推,即,每一个光学结构可以提取的光通量沿远离入光面24的方向递减。在上述实施例中,光学结构6自靠近入光面24的一侧至远离入光面24的一侧以由疏到密的方式排列,使得显示模组各个分布区域中的光线分布较平均,从而能够提高显示模组的均一性。
例如,各个分布区域中的光学结构的深度和节距可以均不相同。参照图11,第一光学结构6GA的深度HA小于第三光学结构6GC的深度HC,第三光学结构6GC的深度HC小于第二光学结构6GB的深度HB。并且,第一光学结构6GA的节距PA可以大于第三光学结构6GC的节距PC,第三光学结构6GC的节距PB可以大于第二光学结构6GB的节距PB。以此方式,使得显示模组各个分布区域中的光线分布较平均,从而能够提高显示模组的均一性。
在具体设计时,可以根据显示模组的尺寸及工艺可行性等因素,先确定分布区域的数量;然后,根据总光通量和分布区域的数量,确定各个分布区域中的光通量分布;然后,根据各个分布区域中的光通量分布,确定出各个分区区域中的光学结构的尺寸(例如上述深度和节距等尺寸)。
例如,在本公开的实施例中,各个分区区域中的光学结构的节距可以大于等于30微米,小于等于300微米。发明人经研究发现,如果光学结构的节距大于300微米,会导致光学结构的分布稀疏,造成显示模组在显示时明暗不均;如果光学结构的节距小于30微米,导致加工工艺困难,加重不均一性,不利于单一光学结构发挥作用。
例如,在一个示例性实施例中,光源模组100包括3个分布区域。各个分布区域中的光学结构的节距彼此相等,例如,节距为100微米。第一分布区域中的光学结构的深度可以为约4微米,第二分布区域中的光学结构的深度可以为约9微米,第三分布区域中的光学结构的深度可以为约14微米。在该实施例中,显示模组的均一性可以达到60%以上。
例如,在本公开的实施例中,光源模组100可以包括2个分布区域,其中一个分布区域靠近入光面24,另一个分布区域远离入光面24。位于靠近入光面24的分布区域中的光学结构6的深度可以小于位于远离入光面24的分布区域中的光学结构6的深度,和/或,位于靠近入光面24的分布区域中的光学结构6的节距可以小于位于远离入光面24的分布区域中的光学结构6的节距。
图12是根据本公开的一些示例性实施例的光源模组的光学结构的二维分布示意图。图13A至图13D分别是图12中所示的二维分布的情况下的光学结构的形貌示意 图。
例如,在本公开的实施例中,多个光学结构6在光学控制层1上的正投影可以呈二维分布,即沿第一方向D1和第三方向D3均间隔排列。
例如,参照图13A,光学结构6可以呈棱柱形。参照图13B,光学结构6可以呈棱锥形。参照图13C,光学结构6可以呈棱台形。参照图13D,光学结构6可以呈圆台形。
在光学结构呈二维分布的情况下,相邻的两个光学结构6之间沿第一方向D1的距离为光学结构6的第一节距,用P1表示;相邻的两个光学结构6之间沿第三方向D3的距离为光学结构6的第二节距,用P2表示。
结合参照图1至图13D,光源模组100可以包括至少2个分布区域,其中一个分布区域靠近入光面24,另一个分布区域远离入光面24。位于靠近入光面24的分布区域中的光学结构6的深度可以小于位于远离入光面24的分布区域中的光学结构6的深度,和/或,位于靠近入光面24的分布区域中的光学结构6的第一节距P1可以大于位于远离入光面24的分布区域中的光学结构6的第一节距P1,和/或,位于靠近入光面24的分布区域中的光学结构6的第二节距P2可以大于位于远离入光面24的分布区域中的光学结构6的第二节距P2。
例如,如图12所示,位于第一分布区域DA1中的光学结构6在导光结构2上的正投影可以呈矩形,位于第二分布区域DA2中的光学结构6在导光结构2上的正投影可以呈矩形,位于第三分布区域DA3中的光学结构6在导光结构2上的正投影可以呈矩形。
位于第一分布区域DA1中的每一个光学结构6在导光结构2上的正投影的面积可以小于位于第三分布区域DA3中的每一个光学结构6在导光结构2上的正投影的面积,位于第三分布区域DA3中的每一个光学结构6在导光结构2上的正投影的面积可以小于位于第二分布区域DA2中的每一个光学结构6在导光结构2上的正投影的面积。
在本公开的实施例中,通过光源模组的各个膜层之间的折射率匹配,并结合光学结构的调控,使更多来自光源的光经由导光板有效地照射到反射式显示面板上,从而能够提升显示质量。此外,通过设计光学结构的尺寸(例如深度、节距等),可以提高显示模组的亮度均一性,从而能够进一步提升显示质量。
图14是根据本公开实施例的光源模组的制备方法的流程图。结合参照图1至图 14,所述光源模组的制备方法包括光学结构的制备步骤,例如,光学结构的制备步骤可以按照以下步骤执行。
在步骤S141中,制备刀具。该刀具的形状与待形成的光学结构的形状相同,例如,该刀具的截面可以为三角形。
在步骤S142中,制备带有凸起结构的滚轮。例如,可以利用上述刀具制备该滚轮。该滚轮的凸起结构的形状与待形成的光学结构的形状相同,例如,该滚轮的凸起结构的截面可以为三角形。
在步骤S143中,在基材上涂布例如UV胶的光学控制层材料,并利用上述滚轮在光学控制层中加工出沟槽。所述沟槽的形状与待形成的光学结构的形状相同,例如,该沟槽的截面可以为三角形。
在步骤S144中,在形成有所述沟槽的光学控制层上贴合一层胶,以形成包括空气间隙的光学结构。
在本公开的实施例中,可以使用同一滚轮,加工出各个光学结构,有利于简化工艺,并节省制造成本。此外,针对具有不同深度的各个光学结构,仍只需要使用一个滚轮,通过调整加工深度,即可形成不同深度的光学结构。
可选地,本公开的实施例还提供一种显示装置,该显示装置可以包括上述显示模组。所述显示装置可以包括但不限于:电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。应该理解,该显示装置具有与前述实施例提供的显示模组相同的有益效果。
虽然本公开总体构思的一些实施例已被图示和说明,本领域普通技术人员将理解,在不背离本总体发明构思的原则和精神的情况下,可对这些实施例做出改变,本公开的范围以权利要求和它们的等同物限定。

Claims (17)

  1. 一种光源模组,其特征在于,所述光源模组包括:
    光源;
    导光结构,所述导光结构包括入光面和第一表面,所述光源发出的光经所述入光面进入所述导光结构;
    光学控制层,所述光学控制层设置于所述导光结构的第一表面上,所述光学控制层包括光学控制层本体,所述光学控制层包括远离所述导光结构的第一表面和面向所述导光结构的第二表面;以及
    至少两个光学结构,所述至少两个光学结构设置在所述光学控制层中,用于调节入射到所述光学结构上的光,
    其中,所述多个光学结构至少沿第一方向间隔排列,所述第一方向垂直于所述入光面;
    每一个所述光学结构包括位于所述光学控制层中的沟槽,所述沟槽在所述光学控制层的第一表面中形成开口;以及
    每一个光学结构包括第一光学表面和第二光学表面,所述第一光学表面和所述第二光学表面均与所述光学控制层的第二表面间隔设置,所述第一光学表面比所述第二光学表面更靠近所述入光面,所述第一光学表面相对于所述光学控制层的第一表面倾斜,所述第二光学表面相对于所述光学控制层的第一表面倾斜,所述第一光学表面和所述第二光学表面在朝着所述导光结构的方向逐渐靠拢;
    其中,所述沟槽中填充有低折射率材料部,所述低折射率材料部的折射率小于所述光学控制层本体的折射率;或者所述沟槽中为空气,所述光学控制层本体的折射率大于空气的折射率。
  2. 根据权利要求1所述的光源模组,其特征在于,每一个所述光学结构包括第一夹角和第二夹角,所述第一夹角为所述第一光学表面与所述光学控制层的第一表面所在的表面之间的夹角,所述第二夹角为所述第一光学表面与所述第二光学表面之间的夹角,所述第一夹角和所述第二夹角被设计为使得从所述光源出射的光的至少一部分朝着所述导光结构传播。
  3. 根据权利要求1或2所述的光源模组,其特征在于,所述导光结构的折射率与所述光学控制层本体的折射率基本相等。
  4. 根据权利要求1或2所述的光源模组,其特征在于,每一个所述光学结构在所述第一方向和第二方向所限定的平面上的正投影呈三角形,所述第二方向垂直于所述光学控制层的第一表面。
  5. 根据权利要求1至4中任一项所述的光源模组,其特征在于,所述光源模组至少包括第一分布区域和第二分布区域,所述第一分布区域比所述第二分布区域更靠近所述入光面;
    每一个所述光学结构具有深度,所述深度为所述光学结构沿所述第二方向的尺寸;以及
    位于所述第一分布区域中的光学结构的深度小于位于所述第二分布区域中的光学结构的深度。
  6. 根据权利要求1至5中任一项所述的光源模组,其特征在于,所述光源模组至少包括第一分布区域和第二分布区域,所述第一分布区域比所述第二分布区域更靠近所述入光面;
    所述光学结构具有第一节距,所述第一节距为相邻的两个光学结构沿所述第一方向的距离;以及
    位于所述第一分布区域中的光学结构的第一节距大于位于所述第二分布区域中的光学结构的第一节距。
  7. 根据权利要求2所述的光源模组,其特征在于,所述第一夹角在40°~50°的范围内,和/或,所述第二夹角在48°~58°的范围内。
  8. 根据权利要求1或2所述的光源模组,其特征在于,所述多个光学结构至少沿 第三方向间隔排列,所述第二方向垂直于所述光学控制层的第一表面,所述第三方向垂直于所述第一方向和所述第二方向两者。
  9. 根据权利要求8所述的光源模组,其特征在于,所述光学结构具有第二节距,所述第二节距为相邻的两个光学结构沿所述第三方向的距离;以及
    位于所述第一分布区域中的光学结构的第二节距大于位于所述第二分布区域中的光学结构的第二节距。
  10. 根据权利要求1或2所述的光源模组,其特征在于,所述光源模组还包括:
    设置在所述光学控制层远离所述导光结构一侧的保护结构;以及
    设置在所述光学控制层与所述保护结构之间的贴合胶,
    其中,所述贴合胶在所述导光结构上的正投影覆盖所述多个光学结构在所述导光结构的正投影。
  11. 根据权利要求10所述的光源模组,其特征在于,所述保护结构的折射率、所述贴合胶的折射率与所述光学控制层本体的折射率彼此基本相等。
  12. 根据权利要求6所述的光源模组,其特征在于,所述光源模组还包括第三分布区域,所述第三分布区域位于所述第一分布区域和所述第二分布区域之间;
    位于所述第一分布区域中的光学结构的深度小于位于所述第三分布区域中的光学结构的深度,位于所述第三分布区域中的光学结构的深度小于位于所述第二分布区域中的光学结构的深度;和/或,位于所述第一分布区域中的光学结构的第一节距大于位于所述第三分布区域中的光学结构的第一节距,位于所述第三分布区域中的光学结构的第一节距大于位于所述第二分布区域中的光学结构的第一节距。
  13. 根据权利要求11所述的光源模组,其特征在于,所述光学控制层本体的折射率在1.55~1.65之间。
  14. 根据权利要求8所述的光源模组,其特征在于,每一个所述光学结构的形状包括从棱柱、棱锥、棱台和圆台中选择的一种。
  15. 一种显示模组,其特征在于,所述显示模组包括根据权利要求1至14中任一项所述的光源模组。
  16. 根据权利要求15所述的显示模组,其特征在于,所述显示模组还包括显示面板,所述显示面板设置在所述导光结构远离所述光学控制层的一侧,所述显示面板为反射式显示面板。
  17. 一种光源模组的制备方法,其特征在于,所述制备方法至少包括以下步骤:
    制备带有凸起结构的滚轮,该滚轮的凸起结构的形状与待形成的光学结构的形状相同;
    在基材上涂布光学控制层材料,并利用上述滚轮在光学控制层中加工出沟槽,所述沟槽的形状与待形成的光学结构的形状相同;以及
    在形成有所述沟槽的光学控制层上贴合一层胶,以形成包括光学结构,
    其中,所述光学结构包括位于所述光学控制层中的沟槽和填充于所述沟槽中的低折射率材料部,所述光学控制层包括光学控制层本体,所述低折射率材料部的折射率小于所述光学控制层本体的折射率;
    所述光学控制层包括第一表面和第二表面,所述沟槽形成于所述第一表面中;以及
    所述光学结构包括第一光学表面和第二光学表面,所述第一光学表面相对于所述第一表面倾斜,所述第二光学表面相对于所述第一表面倾斜,所述第一光学表面和所述第二光学表面在朝着所述第二表面的方向逐渐靠拢。
PCT/CN2020/123249 2020-10-23 2020-10-23 光源模组及其制备方法和显示模组 WO2022082730A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/310,397 US20220317359A1 (en) 2020-10-23 2020-10-23 Light source module, method of manufacturing light source module, and display module
CN202080002448.0A CN114945862B (zh) 2020-10-23 2020-10-23 光源模组及其制备方法和显示模组
PCT/CN2020/123249 WO2022082730A1 (zh) 2020-10-23 2020-10-23 光源模组及其制备方法和显示模组

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/123249 WO2022082730A1 (zh) 2020-10-23 2020-10-23 光源模组及其制备方法和显示模组

Publications (1)

Publication Number Publication Date
WO2022082730A1 true WO2022082730A1 (zh) 2022-04-28

Family

ID=81291509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123249 WO2022082730A1 (zh) 2020-10-23 2020-10-23 光源模组及其制备方法和显示模组

Country Status (3)

Country Link
US (1) US20220317359A1 (zh)
CN (1) CN114945862B (zh)
WO (1) WO2022082730A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000222923A (ja) * 1999-01-29 2000-08-11 Sanyo Electric Co Ltd 導光板およびバックライト装置
EP1079264A2 (en) * 1999-08-23 2001-02-28 Minebea Co., Ltd. Spread illuminating apparatus having groove portions obliquely arranged
EP1122586A2 (en) * 2000-02-02 2001-08-08 Nitto Denko Corporation Optical film
EP1220014A2 (en) * 2000-12-21 2002-07-03 Nitto Denko Corporation Optical film and liquid-crystal display device
CN1384392A (zh) * 2001-05-07 2002-12-11 日东电工株式会社 反射式液晶显示器
CN100516948C (zh) * 2001-11-12 2009-07-22 日本电产科宝株式会社 导光板及导光板的制造方法
CN101881879A (zh) * 2004-09-27 2010-11-10 高通Mems科技公司 照明干涉式调制器显示器的系统和方法
CN109870847A (zh) * 2017-09-22 2019-06-11 威斯通全球技术公司 用于提供面板显示装置的区域背光照明的背光面板

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005062541A (ja) * 2003-08-14 2005-03-10 Alps Electric Co Ltd 光学部材及びその製造方法並びに面発光装置及び液晶表示装置
US8267542B2 (en) * 2007-11-15 2012-09-18 Cree, Inc. Apparatus and methods for selecting light emitters
CN102449511A (zh) * 2009-05-29 2012-05-09 高通Mems科技公司 照明装置及其制造方法
CN103899989B (zh) * 2014-03-19 2016-12-07 京东方科技集团股份有限公司 一种背光模组及显示装置
WO2015156548A1 (ko) * 2014-04-09 2015-10-15 국민대학교산학협력단 백라이트 유닛, 및 이를 포함하는 디스플레이 장치
TWI518387B (zh) * 2014-05-26 2016-01-21 元太科技工業股份有限公司 前光模組及顯示裝置
KR102364848B1 (ko) * 2015-08-20 2022-02-18 삼성전자주식회사 곡면형 백라이트 유닛 및 이를 포함하는 곡면형 디스플레이 장치
KR102519932B1 (ko) * 2017-10-19 2023-04-11 삼성전자주식회사 디스플레이 장치
US10684407B2 (en) * 2017-10-30 2020-06-16 Facebook Technologies, Llc Reactivity enhancement in ion beam etcher
CN111566544B (zh) * 2017-11-06 2021-11-19 奇跃公司 利用阴影掩模实现可调梯度图案化的方法和系统
US10649141B1 (en) * 2018-04-23 2020-05-12 Facebook Technologies, Llc Gratings with variable etch heights for waveguide displays
US11067726B2 (en) * 2018-04-23 2021-07-20 Facebook Technologies, Llc Gratings with variable depths for waveguide displays
US10732351B2 (en) * 2018-04-23 2020-08-04 Facebook Technologies, Llc Gratings with variable depths formed using planarization for waveguide displays
US10641942B2 (en) * 2018-07-16 2020-05-05 Shenzhen Guangjian Technology Co., Ltd. Light projecting method and device
US11137536B2 (en) * 2018-07-26 2021-10-05 Facebook Technologies, Llc Bragg-like gratings on high refractive index material
US10935799B2 (en) * 2018-10-23 2021-03-02 Applied Materials, Inc. Optical component having depth modulated angled gratings and method of formation
WO2020096754A1 (en) * 2018-11-07 2020-05-14 Applied Materials, Inc. Formation of angled gratings
CN111399279A (zh) * 2019-01-03 2020-07-10 三星显示有限公司 显示设备
US11150394B2 (en) * 2019-01-31 2021-10-19 Facebook Technologies, Llc Duty cycle range increase for waveguide combiners
US20200249568A1 (en) * 2019-02-05 2020-08-06 Facebook Technologies, Llc Curable formulation with high refractive index and its application in surface relief grating using nanoimprinting lithography
US20200247073A1 (en) * 2019-02-05 2020-08-06 Facebook Technologies, Llc Curable formulation with high refractive index and its application in surface relief grating using nanoimprinting lithography
US10976483B2 (en) * 2019-02-26 2021-04-13 Facebook Technologies, Llc Variable-etch-depth gratings

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000222923A (ja) * 1999-01-29 2000-08-11 Sanyo Electric Co Ltd 導光板およびバックライト装置
EP1079264A2 (en) * 1999-08-23 2001-02-28 Minebea Co., Ltd. Spread illuminating apparatus having groove portions obliquely arranged
EP1122586A2 (en) * 2000-02-02 2001-08-08 Nitto Denko Corporation Optical film
EP1220014A2 (en) * 2000-12-21 2002-07-03 Nitto Denko Corporation Optical film and liquid-crystal display device
CN1384392A (zh) * 2001-05-07 2002-12-11 日东电工株式会社 反射式液晶显示器
CN100516948C (zh) * 2001-11-12 2009-07-22 日本电产科宝株式会社 导光板及导光板的制造方法
CN101881879A (zh) * 2004-09-27 2010-11-10 高通Mems科技公司 照明干涉式调制器显示器的系统和方法
CN109870847A (zh) * 2017-09-22 2019-06-11 威斯通全球技术公司 用于提供面板显示装置的区域背光照明的背光面板

Also Published As

Publication number Publication date
US20220317359A1 (en) 2022-10-06
CN114945862B (zh) 2023-11-10
CN114945862A (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
JP7317800B2 (ja) 光学デバイス
JP5055398B2 (ja) 照明装置および液晶表示装置
US10509289B2 (en) Display device
CN206975244U (zh) 导光板、背光模组以及显示装置
CN109212660B (zh) 导光组件、光准直组件、背光模组及显示装置
TWI547736B (zh) 複合光學膜及應用其之背光模組
TW200409961A (en) Light control film
TW201018973A (en) Light guide device
TWI452360B (zh) 準直光學元件、準直光學組件、準直光學陣列及準直光學模組
TWI646511B (zh) 拼接顯示裝置
TWI704401B (zh) 背光模組
US20200150331A1 (en) Light Guide Plate, Method of Fabricating Light Guide Plate, Backlight Module, Display Device
US11860476B2 (en) Diffusion plate and backlight module having the diffusion plate
WO2010010694A1 (ja) 液晶表示装置
CN101957464A (zh) 一种光学片及其应用
TWI439736B (zh) 背光模組及其光學膜
TWI818782B (zh) 多層光學膜結構及其製作方法
WO2022082730A1 (zh) 光源模组及其制备方法和显示模组
WO2022104604A1 (zh) 光源模组及其制备方法和显示模组
JP3215902U (ja) 光学フィルム及び表示装置
US20080013014A1 (en) Optical hybrid film and manufacture thereof
TWM535330U (zh) 導光板、背光模組以及顯示裝置
WO2010026390A1 (en) Light emitting device with improved light extraction
JP2008225228A (ja) 光学シートとそれを用いたバックライト・ユニットおよびディスプレイ
TWM645797U (zh) 背光模組和顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958312

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.01.2024)