WO2022082696A1 - 防护台车及非接触式隧道施工岩爆预警防护系统搭建方法 - Google Patents

防护台车及非接触式隧道施工岩爆预警防护系统搭建方法 Download PDF

Info

Publication number
WO2022082696A1
WO2022082696A1 PCT/CN2020/123080 CN2020123080W WO2022082696A1 WO 2022082696 A1 WO2022082696 A1 WO 2022082696A1 CN 2020123080 W CN2020123080 W CN 2020123080W WO 2022082696 A1 WO2022082696 A1 WO 2022082696A1
Authority
WO
WIPO (PCT)
Prior art keywords
rockburst
rock
protective
early warning
rock burst
Prior art date
Application number
PCT/CN2020/123080
Other languages
English (en)
French (fr)
Inventor
马栋
王武现
孙毅
吴庆红
武彬华
徐华轩
Original Assignee
中铁十六局集团有限公司
中铁十六局集团北京建功机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铁十六局集团有限公司, 中铁十六局集团北京建功机械有限公司 filed Critical 中铁十六局集团有限公司
Priority to PCT/CN2020/123080 priority Critical patent/WO2022082696A1/zh
Priority to US17/577,032 priority patent/US11920474B2/en
Publication of WO2022082696A1 publication Critical patent/WO2022082696A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/14Lining predominantly with metal
    • E21D11/18Arch members ; Network made of arch members ; Ring elements; Polygon elements; Polygon elements inside arches
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F11/00Rescue devices or other safety devices, e.g. safety chambers or escape ways

Definitions

  • the invention relates to the field of tunnel excavation protection, in particular to a construction method of a protection trolley and a non-contact tunnel construction rock burst early warning protection system.
  • Rockburst is a phenomenon in which the rock mass is affected by excavation and unloading, which makes the surrounding rock stress redistribute, and generates stress concentration and strain energy accumulation near the cave wall, which causes the surrounding rock to randomly rupture, eject and throw in space. Especially in the face of the deep buried tunnel, tunnel vault, tunnel spandrel, this phenomenon is very prominent. As a kind of geological disaster, rockburst can not only cause equipment loss, engineering failure, and construction period delay, but also threaten the life safety of construction technicians to a great extent, because of its sudden, random and violent characteristics. Therefore, in order to reduce the threat to construction personnel and construction equipment when a rock burst occurs, it is particularly important to design a protection system.
  • the present invention provides a protection trolley and a non-contact tunnel construction rock burst early warning protection system.
  • the present application provides a protective trolley.
  • a kind of protection trolley provided by the application adopts the following technical scheme:
  • a protective trolley includes a frame, a walking component, a rockfall buffer component, a spray component and a rock burst warning system;
  • the walking component is fixed on the bottom of the frame as a power source for the movement of the frame;
  • the rockfall buffer component includes a frame fixed to the frame The connected arch and the protective net fixed on the arch;
  • the rock burst warning system includes a thermal infrared sensor for detecting the temperature of the surrounding rock and a
  • a highly sensitive laser sensor for detecting surrounding rock deformation.
  • the rockfall buffer assembly cooperates with the frame to receive the rockfall falling from the top of the tunnel during the tunnel excavation process.
  • the spray component can spray the excavated surrounding rock, and the water sprayed by the spray component on the surrounding rock can soften the hard surrounding rock with the tendency of rock burst.
  • the traveling assembly enables the protective trolley to travel with the tunnel excavation, providing continuous and effective protection as the excavation depth increases.
  • the setting of thermal infrared sensor and high-sensitivity laser sensor can also monitor the surrounding rock, which is convenient for monitoring personnel to timely remind construction personnel to be vigilant or dodge.
  • Fig. 1 is the axonometric view of embodiment one
  • FIG. 2 is a schematic diagram showing a rack structure in the first embodiment
  • Figure 3 is an enlarged view of part A showing the bottom vertical pole structure in Figure 2;
  • FIG. 4 is an enlarged view of the B part showing the top pole structure in FIG. 2;
  • FIG. 5 is a schematic diagram showing the structure of a protective net in the first embodiment
  • FIG. 6 is a schematic diagram showing an arch structure in the first embodiment
  • FIG. 7 is an enlarged view of part C showing the structure of the support plate in FIG. 5;
  • FIG. 8 is an enlarged view of part D showing the impact-resistant mesh structure in FIG. 6;
  • FIG. 9 is an enlarged view of part E showing the structure of the emergency evacuation assembly in FIG. 1;
  • FIG. 10 is a schematic diagram showing the structure of the spray assembly according to the first embodiment
  • Top connecting frame 11. Top long rod; 12. Top short rod; 13. Top connecting block; 14. Top vertical rod; 141. Top reinforcing rod; 142. Top reinforcing block; Frame; 151, middle long pole; 1522, middle short pole; 153, middle connecting block; 16, top safety ladder; 161, bottom safety ladder; 17, bottom pole; 171, bottom reinforcement rod; 172, bottom reinforcement block; 18. Middle reinforcement rod; 2. Protective net; 21. Impact-resistant net; 22. Pocket net; 23. Arch frame; 231. Top frame; 231. Bottom frame; 24.
  • Fixer 241, Support plate; Bolt; 243, Wear-resistant sleeve; 244, Nut; 3, Frame; 31, Bottom plate; 4, Rockfall buffer assembly; 5, Auxiliary support device; 51, Hydraulic cylinder; 52, Abutment plate; 53, Baffle plate; 6 7, walking assembly; 7, spray assembly; 71, spray hose; 72, rail car; 721, motor; 722, limit plate; 7221, flank; 7222, main body; plate; 74, slide rail; 741, chute; 8, emergency shelter assembly; 81, protective plate; 82, oxygen supply device; 83, fixed rod; 84, hydraulic hinge; 85, cushion; 9, rotating platform; 91 , thermal infrared sensor; 92, highly sensitive laser sensor.
  • a protective trolley referring to FIG. 1, includes a frame 3, the bottom end of the frame 3 is fixedly connected with a horizontally arranged bottom plate 31, and the bottom surface of the bottom plate 31 is fixedly connected with a walking assembly 6 that drives the movement of the frame 3.
  • the walking assembly 6 in the embodiment adopts a solid rubber wheel driven by a stepper motor, and the walking assembly 6 has four rectangular and four sharp corners distributed uniformly.
  • a vertically arranged auxiliary support device 5 is fixedly connected to the bottom plate 31 on one side of the traveling assembly 6 , and each traveling assembly 6 has only one auxiliary support device 5 on one side.
  • Emergency shelter assemblies 8 are fixedly connected to both sides of the rack 3 .
  • An arched rockfall buffer assembly 4 is fixedly connected to the top of the frame 3 , and both ends of the rockfall buffer assembly 4 are located at two emergency shelter assemblies 8 respectively.
  • the rockfall buffer assembly 4 is fixedly connected with a slide rail 74 that is adapted to its contour.
  • the slide rail 74 is slidably connected with the spray assembly 7 along its contour.
  • the spray assembly 7 includes a rail trolley 72 slidably connected to the slide rail 74 and a spray hose 71 fixed on the rail trolley 72.
  • the spray hose 71 is arranged away from the protective net 2 and sprays toward the surrounding rock. .
  • the frame 3 includes six bottom vertical bars 17 arranged vertically, and the six bottom vertical bars 17 are symmetrically arranged in groups of three, the bottom vertical bars 17 are vertically arranged I-beams, and the six bottom vertical bars 17 The two opposite sides of the rectangle are distributed.
  • the bottom vertical rods 17 on both sides are fixed with inclined bottom reinforcing rods 171, and the bottom end of the bottom reinforcing rod 171 is flush with the bottom end of the bottom vertical rod 17, and the same bottom vertical rod
  • the two bottom reinforcing rods 171 on the rod 17 are arranged in a V shape with an opening downward, and the bottom vertical rod 17 of the I-beam shape is connected to the groove at the bottom reinforcing rod 171.
  • the bottom reinforcing block 172 is fixedly connected inside, and the bottom is reinforced.
  • the block 172 is fixedly connected with one end of the bottom reinforcing rod 171 .
  • the side wall of the bottom vertical rod 17 is fixedly connected with an inclined middle reinforcing rod 18 .
  • the bottom end of the middle reinforcing rod 18 is located between the top end of the bottom reinforcing rod 171 and the bottom vertical rod 17 , and the top end is fixedly connected with a horizontally arranged middle connecting frame 15 .
  • the middle connecting frame 15 includes a middle long rod 151 connected to the top end of the bottom vertical rod 17 and a middle short rod 152 fixed between two adjacent middle long rods 151 .
  • the middle connecting frame 15 and the top connecting frame 1 are fixed with safety ladders, and the extension directions of the two safety ladders are arranged at an angle.
  • the top safety ladder 16 is connected to the top connecting frame 1, which is connected to the middle connecting frame 15. It is the bottom safety ladder 161, the top safety ladder 16 and the bottom safety ladder 161 are connected with the frame 3 by bolts. Since the safety ladder and the protective trolley are connected by detachable bolts, of course, the number and installation position of the safety ladder can also be changed according to the working conditions, for example, the safety ladder can be installed on the side.
  • middle long rods 151 there are three middle long rods 151 , and both ends of the three middle long rods 151 are fixedly connected to the top ends of the six bottom vertical rods 17 respectively, and there are ten middle short rods 1522 , and the ten middle short rods 1522 are uniform are distributed between the two gaps formed by the three middle long rods 151, and form a mesh frame-like structure.
  • the middle long rod 151 is in the shape of an I-beam, and the middle long rod 151 is connected with the middle short rod 1522 and the middle connecting block 153 is fixedly connected in the groove, and the middle connecting block 153 is fixedly connected with the middle short rod 1522.
  • the top surface of the middle connecting frame 15 is fixedly connected with the top vertical rod 14 arranged vertically, the bottom end of the top vertical rod 14 is fixedly connected to the top surface of the middle long rod 151, and the bottom end of the top vertical rod 14 is connected to the middle connecting frame.
  • the connection nodes of 15 are staggered, that is, the position where the middle long rod 151 is connected with the middle short rod 1522 and the position where the middle long rod 151 is connected with the top vertical rod 14 are staggered.
  • the top is fixedly connected with a horizontally arranged top connecting frame 1 .
  • the top connecting frame 1 includes a top long rod 11 fixedly connected with the top vertical rod 14 and a top short rod 12 fixedly connected with the top vertical rod 14 .
  • the top vertical rods 14 are uniformly and symmetrically distributed on the three middle long rods 151 in groups of six and three. There are three top long rods 11 , two ends of the three top long rods 11 are fixedly connected to the top ends of the six top vertical rods 14 respectively, and the top long rods 11 are parallel to the middle long rod 151 . There are six short top rods 12 uniformly and symmetrically distributed between the two gaps formed by the three top long rods 11 , and the top short rods 12 are parallel to the middle short rods 1522 .
  • the top connecting rod is perpendicular to the top short rod 12 and forms a mesh frame-like structure. Both ends of the top connecting frame 1 are located between the two ends of the middle connecting frame 15 in the vertical direction.
  • the top vertical rod 14 and the top short rod 12 are both in the shape of I-beam, and the top connecting block 13 is fixedly connected to the groove at the connection between the top vertical rod 14 and the top short rod 12, and the top connecting block 13 is fixed with the top short rod 12. connect.
  • An inclined top reinforcement rod 141 is fixedly connected to a top rod 14 in the middle of a group of three top rods 14 , and the bottom end of the top rod 141 is fixedly connected to a top of a group of three top rods 14 .
  • the top end is fixedly connected to another top vertical rod 14 on one side of the top vertical rod 14, and the two top reinforcing rods 141 connected to the same top vertical rod 14 are arranged in a V shape with an upward opening. .
  • the rockfall buffer assembly 4 includes a pair of arched arches 23 and a protective net 2 on the arches 23.
  • the arch 23 is fixedly connected with a fixture for connecting the protective net of the rockburst protection trolley 24.
  • the fixture 24 includes a support plate 241 fixed on the arch 23 and a high-strength bolt 242 bolted on the support plate 241.
  • the high-strength bolts 242 are arranged obliquely, the heads of the high-strength bolts 242 are higher than their thread tail ends, the thread ends of the high-strength bolts 242 on the two arches 23 are arranged opposite to each other, and the threads of the high-strength bolts 242
  • a nut 244 is threadedly connected to the rear end, and there are two support plates 241 between the high-strength bolt 242 and the nut 244 threadedly connected thereto.
  • a tubular wear-resistant sleeve 243 is sleeved on the high-strength bolt 242 between the two support plates 241 , and both ends of the wear-resistant sleeve 243 abut on the two support plates 241 respectively.
  • the arched protective net 2 is sleeved on the wear-resistant sleeve 243 , and the two sides of the protective net 2 are respectively connected with the wear-resistant sleeves 243 on the two arches 23 .
  • the top surface and the bottom surface of the protective net 2 are both curved surfaces, and the arched protective net 2 protrudes to the interior of the enclosed area to form a concave portion; Between the two sides of the net 2, the center line of the pocket net 22 along its length direction is located at the maximum curvature of the inner concave portion, and the pocket net 22 is located on the side of the protective net 2 in the enclosed area; both sides of the protective net 2 are tied.
  • the two sides of the pocket net 22 are respectively located between the two sides of the two impact-resistant nets 21, the two sides of the impact-resistant net 21 are located between the two sides of the protective net 2, and the two sides of the pocket net 22 are respectively Binding with two impact-resistant nets 21, the opposite sides of the two impact-resistant nets 21 are bound to the pocket nets 22, and the pocket nets 22 and the impact-resistant nets 21 are located on both sides of the protective net 2;
  • the pocket nets 22 are all attached to the protective net 2 .
  • the auxiliary support device 5 includes a hydraulic cylinder 51 fixed on the bottom plate 31 and an abutment plate 52 fixed on the end of the piston rod of the hydraulic cylinder 51 , the hydraulic cylinder 51 is vertically downwardly arranged, and the abutment plate 52 Horizontally arranged, the end of the piston rod of the hydraulic cylinder 51 is fixed at the middle position of the abutting plate 52 .
  • a vertically arranged baffle plate 53 is fixedly connected to the cylinder body of the hydraulic cylinder 51 , and the baffle plate 53 shields the auxiliary support device 5 and the traveling assembly 6 in the traveling direction of the frame 3 .
  • a rockburst early warning system is provided on the bottom plate, and the rockburst early warning system includes a thermal infrared sensor 91 for detecting surrounding rocks and a highly sensitive laser sensor 92 for detecting surrounding rocks (see Fig. 1),
  • a plurality of rotating platforms 9 are fixedly connected to the bottom plate 31 .
  • the sensitive laser sensors 92 are respectively fixed on the two rotating platforms 9 .
  • the rotating platform 9 can also be installed on the frame 1 or on the arch 23 .
  • the emergency shelter assembly 8 includes a protective plate 81 fixedly connected to the frame 3, an oxygen supply device 82 fixed on the protective plate 81, and a fixing member hinged with the protective plate 81.
  • the fixing member in this embodiment is hinged on the protective plate.
  • the fixed rod 83 on the 81, the fixed rod 83 is bent into a rod shape with two parts arranged at an obtuse angle.
  • the protective plate 81 is in an inverted L shape
  • the oxygen supply device 82 is located at the top end of the bending area of the protective plate 81
  • a soft pad 85 is fixedly connected to the inner side wall of the bending area of the protective plate 81
  • the fixing rod 83 is located above the soft pad 85 . Inside the bent area of the plate 81 .
  • the fixing rod 83 is located below the oxygen supply device 82, and a buffering device is arranged between the fixing rod 83 and the protective plate 81.
  • the buffering device in this embodiment adopts a hydraulic hinge 84, and the fixing rod 83 is connected with the protective plate 81 through the hydraulic hinge 84. And there is a space for the head of the refugee to pass through between the two adjacent fixing rods 83 .
  • the evacuee leans on the back of the soft pad 85 and pulls the fixing rod 83 toward his body, so that his head passes through the area between the two fixing rods 83 and makes the fixing rod 83 abut against himself.
  • the body is fixed by the hindering effect exerted by the hydraulic hinge 84 on the rotation of the fixed rod 83.
  • the track trolley 72 includes a limit plate 722, a motor 721 fixed on the limit plate 722, and a toothed moving wheel 723 coaxially fixed on the output shaft of the motor 721.
  • the limit plate 722 is bent to form a C-shape That is, the limiting plate 722 includes a main body 7222 adapted to the slide rail 74 and two side wings 7221 abutting on the two side walls of the slide rail 74 respectively, and the main body abuts on the top surface of the slide rail.
  • the casing of the motor 721 is fixedly connected with a side wing 7221 , the output shaft of the motor 721 penetrates one side wing 7221 and extends into the chute 741 , and the toothed moving wheel 723 is also located in the chute 741 .
  • the inner bottom surface of the chute 741 is provided with a slot that is adapted to the gear teeth on the toothed moving wheel 723, and the toothed moving wheel 723 is engaged with this slot for positioning the gear teeth on the toothed moving wheel 723.
  • the tooth moving wheel 723 is in contact with the top surface of the chute 741 at the same time.
  • the motor in this embodiment adopts the motor 721 with a self-locking function, and cooperates with the limit plate 722 abutting against the slide rail 74, it can pass
  • the above technical solution can make the rail car 72 stay in one position stably.
  • Embodiment 2 a method for building a non-contact tunnel construction rock burst early warning protection system, comprising the following steps:
  • the traditional microseismic monitoring and geological survey data in the process of tunnel excavation were collected by consulting the network data and the paper data archived by the construction party to determine the locations with high rockburst frequency in different types of surrounding rocks in different regions, and establish a reference database.
  • the physical and chemical indexes and mechanical parameters of different surrounding rocks are used as the classification standards of surrounding rocks and recorded in the reference database.
  • Artificial intelligence learning compares the acceleration of temperature change and the acceleration of deformation change of surrounding rocks with similar physical and chemical indicators and mechanical parameters under the same or similar environmental parameters in the stage of rockburst, and summarizes different surrounding rocks with the same or similar physical and chemical indicators.
  • the law of temperature change and deformation change of rock when rock burst occurs summarizes the law of temperature change and deformation change of different surrounding rocks with the same or close mechanical parameters when rock burst occurs, and uses neural network-like algorithm to analyze the data collected in previous steps.
  • the neural network in this embodiment includes 1 input layer, 2 convolution layers, 2 pooling layers, 2 fully connected layers, 1 Softmax layer, and a decision layer; the input layer Input the multi-parameter sequence, and the decision layer outputs the rockburst grade and its probability; after introducing the cost matrix to eliminate or reduce the adverse effects caused by the imbalance of sample categories, construct a neural network model, and obtain the results based on the reference database and neural network model in step 1.
  • the tunnel rock burst early warning model is a rock burst early warning model established by inputting the multi-parameter information in the early warning area or the early warning unit in the existing data. Through the calculation of the early warning model, the level and probability of the potential rock burst in the early warning area are output, which can be used for work.
  • the human reference judges the completeness of the model.
  • the physical and chemical indexes of the surrounding rock in this step include hardness, density, ductility, elasticity, etc. of the surrounding rock, and the mechanical parameters of the surrounding rock include porosity, acoustic velocity, permeability, bulk density, and the like.
  • the core can also be divided into multiple samples after acquisition, and given different ambient temperatures to the core.
  • a triaxial test was carried out at the base temperature to obtain the correlation between the temperature change rate and the deformation rate of the same type of core on the eve of the rockburst at different base temperatures, that is, it was found that under which temperature change acceleration the core would produce a higher temperature change acceleration.
  • the deformation acceleration then forms a rock burst.
  • the relationship between the temperature change rate before the rock burst and the deformation change rate obtained by the test is compared and analyzed through the artificial intelligence learning in step 2, and the neural network algorithm in step 2 is used to input the database and rock burst.
  • the explosion early warning model obtains other untested core temperature changes and deformation changes on the eve of the rock burst at the basic temperature of the core, and continuously approaches the actual value with the growth of artificial intelligence learning samples, as the rock burst early warning model. Determination basis for explosion.
  • the signals received by the thermal infrared sensor and the high-sensitivity laser sensor are tested several times under different temperature and humidity conditions, and the experimental data is stored in the database as a signal.
  • multiple highly sensitive laser sensors for monitoring the deformation of surrounding rock and thermal infrared sensors for monitoring the temperature change of surrounding rock are installed on the protective trolley, and a light alarm system for alarming is installed , the monitoring area of all thermal infrared sensors will fully cover the surrounding rock inside the excavation tunnel, and the high-sensitivity laser sensor can monitor every point in the area where rock bursts may occur.
  • the protection trolley is used.
  • the protective trolley moves with the excavation, and the thermal infrared sensor monitors it.
  • the signals collected by the high-sensitivity laser sensor and the thermal infrared sensor during the movement of the protective trolley are filtered and eliminated by mathematical functions.
  • the peak value and variation in the deformation curve obviously exceed the reference values in the database of "Mechanical Parameters of Surrounding Rock - Critical Deformation of Rock Burst - Critical Temperature of Rock Burst";
  • the highly sensitive laser sensor turns to this area and monitors the surrounding rock deformation in this area.
  • the reference quantities in the "critical rockburst temperature” database are compared, and the built-in "mechanical parameters of surrounding rock-critical deformation of rockburst-critical temperature of rockburst are compared with the built-in "mechanical parameters of surrounding rock-critical deformation of rockburst-critical temperature of rockburst” by using the simple computer built-in thermal infrared sensor and high-sensitivity laser sensor to quickly process the comparison.
  • the rockburst deformation or rockburst heating threshold information in the database will be fed back, and the rockburst early warning model will also receive these real-time information and send feedback. When the data matches the reference data in the database, or the rockburst early warning model gives feedback of danger signals after receiving the above two signals, the sound and light alarm system will alarm to warn the staff.

Abstract

一种防护台车及非接触式隧道施工岩爆预警防护系统的搭建方法,包括机架(3)、行走组件(6)、落石缓冲组件(4)、喷淋组件(7)以及岩爆预警系统;落石缓冲组件(4)包括与机架(3)固定连接的拱架(23)以及固设于拱架(23)上的防护网(2),拱架(23)有至少两个且均横跨于机架(3)上,拱架(23)的两端分别位于机架(3)两侧,防护网(2)的两侧分别与两拱架(23)连接,且防护网(2)受自重向机架(3)方向自然塌陷或靠拢;喷淋组件(7)包括与落石缓冲组件(4)连接的轨道小车(72)以及固设于轨道小车(72)上的喷淋软管(71),喷淋软管(71)朝向围岩方向喷吹;岩爆预警系统包括用于检测围岩温度的热敏红外传感器(91)以及用于检测围岩形变的高灵敏激光传感器(92)。具有能够更加精准、快速的预报岩爆且在岩爆发生时对工作人员进行保护的效果。

Description

防护台车及非接触式隧道施工岩爆预警防护系统搭建方法 技术领域
本发明涉及隧道开挖防护领域,更具体的说,它涉及一种防护台车及非接触式隧道施工岩爆预警防护系统搭建方法。
背景技术
岩爆是岩体受开挖卸荷的影响,使得围岩应力重新分布,在洞壁附近产生应力集中和应变能的聚集进而引起围岩在空间上随机性破裂、弹射、抛出的现象,尤其是在深埋隧道的掌子面、隧道拱顶、隧道拱肩,这种现象显得十分突出。岩爆作为一种地质灾害,不仅能够造成设备损失、工程失效、工期延误,而且更会极大程度的威胁施工技术人员的生命安全,由于具有突发性、随机性和猛烈性等特点。因此,为了减轻岩爆突发时对施工人员及施工设备的威胁,设计一种防护系统尤为重要。
发明内容
为了能够对施工过程和人员安全进行有效保障,本发明提供一种防护台车及非接触式隧道施工岩爆预警防护系统。
为了对工作人员提供有效保护,本申请提供一种防护台车。
本申请提供的一种防护台车,采用如下的技术方案:
一种防护台车,包括机架、行走组件、落石缓冲组件、喷淋组件以及岩爆预警系统;行走组件作为机架移动的动力来源固设于机架底部;落石缓冲组件包括与机架固定连接的拱架以及固设于拱架上的防护网;岩爆预警系统包括用于检测围岩温度的热敏红外传感器以及用
于检测围岩形变的高灵敏激光传感器。
通过采用上述技术方案,落石缓冲组件配合机架能够在隧道开挖过程中承接隧道顶部掉落的落石。喷淋组件能够对开挖的围岩进行喷淋,喷淋组件喷射在围岩上的水能够软化有岩爆趋势的硬质围岩。行走组件能够使防护台 车随着隧道的开挖行进,随掘进深度的增加持续提供有效的防护。热敏红外传感器与高灵敏激光传感器的设置还能够对围岩进行监测,便于监控人员及时提醒施工人员警惕或闪避。
附图说明
图1为实施例一的轴测图;
图2是实施例一中为表示机架结构的示意图;
图3是图2中为表示底部立杆结构的A部放大图;
图4是图2中为表示顶部立杆结构的B部放大图;
图5是实施例一中为表示防护网结构的示意图;
图6是实施例一中为表示拱架结构的示意图;
图7是图5中为表示支撑板结构的C部放大图;
图8是图6中为表示耐冲网结构的D部放大图;
图9是图1中为表示紧急避难组件结构的E部放大图;
图10是实施例一种为表示喷淋组件结构的示意图;
附图标记:1、顶部连接框;11、顶部长杆;12、顶部短杆;13、顶部连接块;14、顶部立杆;141、顶部加强杆;142、顶部加强块;15、中部连接框;151、中部长杆;1522、中部短杆;153、中部连接块;16、顶部安全梯;161、底部安全梯;17、底部立杆;171、底部加强杆;172、底部加强块;18、中部加强杆;2、防护网;21、耐冲网;22、兜网;23、拱架;231、顶架;231、底架;24、固定器;241、支撑板;242、高强螺栓;243、耐磨套;244、螺母;3、机架;31、底板;4、落石缓冲组件;5、辅助支撑装置;51、液压缸;52、抵接板;53、挡板;6、行走组件;7、喷淋组件;71、喷淋软管;72、轨道小车;721、电机;722、限位板;7221、侧翼;7222、主体;723、带齿移动轮;73、连接板;74、滑轨;741、滑槽;8、紧急避难组件;81、防护板;82、氧气供应装置;83、固定杆;84、液压铰链;85、软垫;9、旋转平台;91、热敏红外传感器;92、高灵敏激光传感器。
具体实施方式
实施例:一种防护台车,参见图1,包括机架3,机架3底端固定连接有水平设置的底板31,底板31底面上固定连接有驱动机架3移动的行走组件6,本实施例中的行走组件6采用步进电机驱动的实心橡胶轮,行走组件6有四个且呈矩形的四个尖角的分布状态均匀分布。行走组件6一侧的底板31上固定连接有竖直设置的辅助支撑装置5,每一个行走组件6一侧均有且仅有一个辅助支撑装置5。机架3的两侧均固定连接有紧急避难组件8。机架3的顶端固定连接有拱形的落石缓冲组件4,落石缓冲组件4的两端分别位于两个紧急避难组件8处。落石缓冲组件4上固定连接有与其轮廓适配的滑轨74,滑轨74有两个且分设于落石缓冲组件4的两侧,滑轨74上沿其轮廓滑移连接有喷淋组件7,喷淋组件7包括与滑轨74滑移连接的轨道小车72以及固设于轨道小车72上的喷淋软管71,喷淋软管71背向防护网2设置,并朝向围岩方向喷吹。
参见图2和图3,机架3包括竖直设置的六根底部立杆17,六根底部立杆17三根一组对称设置,底部立杆17为竖直设置的工字钢,六根底部立杆17呈矩形的两条相对的侧边状分布。一组三根底部立杆17中位于两侧的底部立杆17上均固设有倾斜设置的底部加强杆171,底部加强杆171的底端与底部立杆17的底端平齐,同一底部立杆17上的两个底部加强杆171呈开口向下的V字状设置,工字钢状的底部立杆17连接有底部加强杆171处的凹槽内部固定连接有底部加强块172,底部加强块172与底部加强杆171的一端固定连接。底部立杆17的侧壁上固定连接有倾斜设置的中部加强杆18,底部立杆17连接有中部加强杆18的侧壁垂直于其连接有底部加强杆171的侧壁。中部加强杆18的底端位于底部加强杆171的顶端与底部立杆17之间,顶端固定连接有水平设置的中部连接框15。中部连接框15包括连接在底部立杆17顶端的中部长杆151以及固设于相邻两根中部长杆151之间的中部短杆152。中部连接框15以及顶部连接框1上均固设有安全梯,两个安全梯的延伸方向呈夹角设置,连接于顶部连接框1上的是顶部安全梯16, 连接于中部连接框15上的是底部安全梯161,顶部安全梯16与底部安全梯161均与机架3通过螺栓连接。由于安全梯与防护台车之间是可拆卸的螺栓连接,当然也可以根据工况改变安全梯的数量和安装位置,例如将安全梯靠边安装等。
参见3和图4,中部长杆151有三根,且三根中部长杆151的两端分别于六根底部立杆17的顶端固定连接,中部短杆1522有十根,且十根中部短杆1522均匀的分布在三根中部长杆151形成的两个空隙之间,并形成网框状结构。中部长杆151呈工字钢状,且中部长杆151连接有中部短杆1522处的凹槽内固定连接有中部连接块153,中部连接块153与中部短杆1522固定连接。中部连接框15的顶面固定连接有竖直设置的顶部立杆14,顶部立杆14的底端固定连接在中部长杆151的顶面上,且顶部立杆14的底端与中部连接框15的连接节点交错分布,即中部长杆151连接有中部短杆1522的位置与中部长杆151连接有顶部立杆14的位置交错分布。顶端固定连接有水平设置的顶部连接框1。顶部连接框1包括与顶部立杆14固定连接的顶部长杆11以及与顶部立杆14固定连接的顶部短杆12。顶部立杆14有六根且三根一组地均匀对称的分布在三根中部长杆151上。顶部长杆11有三根,且三根顶部长杆11的两端分别固定连接在六根顶部立杆14的顶端上,顶部长杆11平行于中部长杆151。顶部短杆12有六根且均匀对称的分布在三根顶部长杆11形成的两个空隙之间,顶部短杆12平行于中部短杆1522。顶部连接杆垂直于顶部短杆12且形成网框状结构。顶部连接框1的两端在竖直方向上位于中部连接框15的两端之间。顶部立杆14以及顶部短杆12均呈工字钢状,且顶部立杆14与顶部短杆12连接处的凹槽内部固定连接有顶部连接块13,顶部连接块13与顶部短杆12固定连接。一组三根的顶部立杆14中间的一根顶部立杆14上固定连接有倾斜设置的顶部加强杆141,顶部加强杆141的底端固定连接在一组三根顶部立杆14中间的一根顶部立杆14上,顶端固定连接在这根顶部立杆14一侧的另一顶部立杆14上,且连接在同一顶部立杆14上的两根顶部加强杆141呈开口向上的V字状设 置。
参见图5和图6,落石缓冲组件4包括一对拱形的拱架23以及位于拱架23上的防护网2,拱架23上固定连接有用于连接岩爆防护台车防护网的固定器24,固定器24包括固设于拱架23上的支撑板241以及螺栓连接在支撑板241上的高强螺栓242。
参见图7和图8,高强螺栓242倾斜设置,高强螺栓242的头部高于其螺纹尾端,两个拱架23上的高强螺栓242的螺纹尾端相背设置,且高强螺栓242的螺纹尾端螺纹连接有螺母244,高强螺栓242以及与其螺纹连接的螺母244之间有两个支撑板241。两个支撑板241之间的高强螺栓242上套设有管状的耐磨套243,耐磨套243的两端分别抵接在两个支撑板241上。拱形的防护网2套设在耐磨套243上,防护网2的两侧分别与两个拱架23上的耐磨套243连接。防护网2的顶面以及底面均呈曲面状,拱形的防护网2向其围成区域内部凸出形成内凹部;防护网2上绑设有兜网22,兜网22的两侧位于防护网2两侧之间,兜网22沿其长度方向设置的中线位于内凹部的曲率最大处,兜网22位于防护网2上其围成区域内的一侧;防护网2的两侧均绑设有耐冲网21,兜网22的两侧分别位于两个耐冲网21的两侧之间,耐冲网21的两侧位于防护网2两侧之间,兜网22的两侧分别与两个耐冲网21绑接,两个耐冲网21相对的侧边均与兜网22绑接,兜网22与耐冲网21分别位于防护网2的两侧;耐冲网21与兜网22均与防护网2贴合。
参见图9,辅助支撑装置5包括固设于底板31上的液压缸51以及固设于液压缸51的活塞杆端部的抵接板52,液压缸51竖直向下设置,抵接板52水平设置,液压缸51的活塞杆端部固设于抵接板52的中间位置处。液压缸51的缸体上固定连接有竖直设置的挡板53,挡板53将辅助支撑装置5以及行走组件6在机架3行进方向遮挡。
参见图9和图10,底板上设有岩爆预警系统,岩爆预警系统包括用于检测围岩的热敏红外传感器91以及用于检测围岩的高灵敏激光传感器92(参见图1), 底板31上固定连接有多个旋转平台9,本实施例中的旋转平台9有两个,且两个旋转平台9分设于位于机架1两侧的底板31上,热敏红外传感器91与高灵敏激光传感器92分别固设于两个旋转平台9上。在其他实施例中,旋转平台9也可以安装在机架1上或拱架23上。紧急避难组件8包括与机架3固定连接的防护板81、固设于防护板81上的氧气供应装置82以及与防护板81铰接的固定件,本实施例中的固定件为铰接在防护板81上的固定杆83,固定杆83为被弯折成为两部分呈钝角设置的杆材状。防护板81呈倒置的L状,氧气供应装置82位于防护板81弯折区域内顶端,防护板81的弯折区域内侧壁上固定连接有软垫85,固定杆83位于软垫85上方的防护板81弯折区域内部。固定杆83位于氧气供应装置82下方,且固定杆83与防护板81之间设有缓冲装置,本实施例中的缓冲装置采用液压铰链84,固定杆83通过液压铰链84与防护板81连接,且相邻两根固定杆83之间留有供避难人员头部通过的空间。使用时,避难人员腰背靠在软垫85上,并将固定杆83向自己身体方向扳动,是头部穿过两个固定杆83之间的区域,并使固定杆83抵接在自己的两肩处,通过液压铰链84对固定杆83转动施加的阻碍效果,实现身体的固定。
参见图10,轨道小车72有两个且分别位于两个滑轨74上,滑轨74的一处侧壁上开设有与其轮廓适配的滑槽741。轨道小车72包括限位板722、固设于限位板722上的电机721以及同轴线固设于电机721的输出轴上的带齿移动轮723,限位板722被弯折呈c字状,即限位板722包括一块与滑轨74适配的主体7222以及两块分别抵接在滑轨74两个侧壁上的侧翼7221,主体抵接在滑轨的顶面上。电机721的外壳与一个侧翼7221固定连接,电机721的输出轴贯穿一个侧翼7221伸入滑槽741内,带齿移动轮723也位于滑槽741内。滑槽741内部底面上开设有与带齿移动轮723上的轮齿适配的卡槽,带齿移动轮723与这一卡槽啮合,用于定位带齿移动轮723上的轮齿,带齿移动轮723同时与滑槽741的顶面抵接,同时由于本实施例中的电机采用的是带有自锁功能 的电机721,配合与滑轨74抵接的限位板722,所以通过上述技术方案能够使得轨道小车72稳定的停留在一个位置。
实施例二:一种非接触式隧道施工岩爆预警防护系统搭建方法,包括以下步骤:
通过查阅网络资料和施工方存档的纸质资料收集现有隧道开挖过程中传统微震监测和地勘资料,确定不同地域的不同类型围岩发生岩爆频率较高的位置,建立参考数据库。
将不同围岩的理化指标和力学参数作为围岩分类的标准,并记载在参考数据库中;收集现有的岩爆发生时现场围岩温度变化加速度以及岩爆时围岩形变的加速度信息,通过人工智能学习对具有相近理化指标和力学参数的围岩在同样或接近的环境参量下发生岩爆阶段的温度变化加速度和形变变化加速度进行比对学习,总结具有相同或者接近的理化指标的不同围岩发生岩爆时的温度变化以及形变变化的规律,总结具有相同或者接近的力学参数的不同围岩发生岩爆时的温度变化以及形变变化的规律,利用类神经网络算法对此前步骤收集的数据进行分类规整,同时增加环境温度、环境湿度、海拔、隧道开挖掌子面大小等环境参量,并分别根据围岩类型、环境温度、环境湿度、海拔、掌子面大小等参量对围岩温度变化以及形变变化规律进行分类规整,本实施例中的神经网络包括1个输入层、2个卷积层、2个池化层、2个全连接层、1个Softmax层以及决策层;输入层输入多参量序列,决策层输出岩爆等级及其概率;引入代价矩阵来消除或减弱样本类别不平衡带来的不利影响后,构建神经网络模型,获得基于步骤一中参考数据库以及神经网络模型的隧道岩爆预警模型,将待预警区域或已有资料内预警单元内的多参量信息输入建立的岩爆预警模型,通过预警模型的计算输出预警区域潜在岩爆的等级及其概率,可以供工作人员参考判断模型的完整程度。本步骤中所指的围岩理化指标包括围岩硬度、密度、延展性、弹性等,围岩的力学参数包括孔隙率、声波速度、渗透性、容重等。
利用超前地质钻孔获取待掘进区域的岩芯,在实验室中进行等温三轴试验,确定岩爆前兆时围岩局部温度快速上升阶段温度变化加速度;同时检测记录岩 爆前夕围岩局部温度上升时的形变变化加速度,将上述两个变化量输入参考数据库作为参考量;同类型围岩的同阶段的不同温度变化量或形变量数据整合,取最大值和最小值作为最终参考量,以步骤一中建立的参考数据库为基础,同类型围岩中选择的数据根据岩爆强烈程度分类,包括无岩爆、轻微岩爆、中度岩爆和强烈岩爆,完善并形成“围岩力学参数-岩爆临界形变-岩爆临界温度”数据库;同时每次具有新变量加入的岩爆数据都通过步骤二中的人工智能学习进行对比分析,并通过步骤二中类神经网络算法输入“围岩力学参数-岩爆临界形变-岩爆临界温度”数据库和岩爆预警模型;利用“围岩力学参数-岩爆临界形变-岩爆临界温度”数据库对构建的岩爆预警模型进行训练优化,随机选用80%的数据作为训练样本,选用剩余20%的样本作为测试样本进行训练优化,根据测试样本的分类结果,获得达到岩爆等级分类准确率最高的模型参数,即获得了基于“围岩力学参数-岩爆临界形变-岩爆临界温度”数据库和神经网络的岩爆预警模型,此步骤中完善的岩爆预警模型相较于步骤二中的岩爆预警模型,能够使用的参考量更多,准确度更高。
除上述以获取岩芯时的环境温度作为基础温度进行的等温三轴试验外,还可以在获取岩芯后将岩芯等分为多份样本,并分别在不同环境温度下赋予岩芯不同的基础温度进行三轴试验,获取同类型岩芯在不同基础温度下发生岩爆前夕的温度变化速率与形变速率之间的关联关系,即发现岩芯在何种温度变化加速度下会产生较高的形变加速度进而形成岩爆,将试验获得的岩爆前夕温度变化速率与形变变化速率之间的联系通过步骤二中的人工智能学习进行对比分析,并通过步骤二中类神经网络算法输入数据库和岩爆预警模型,获取其他没有试验过的岩芯基础温度下岩爆前夕的岩芯温度变化与形变变化规律,并随人工智能学习样本的增长而不断接近实际数值,作为岩爆预警模型中的岩爆判定依据。
另外,增加台车正常移动情况时,热敏红外传感器和高灵敏激光传感器接收到的信号,多次、并在不同温度、湿度的工况下进行试验后,将实验数据存入数据库内作为信号过滤时的参考量。
在隧道开挖过程中,在防护台车上加装多个用于监测围岩形变的高灵敏激光传感器和用于监测围岩温度变化的热敏红外传感器,并安装有用于报警的光报警系统,所有热敏红外传感器的监测区域将开挖隧道内部的围岩全面覆盖,高灵敏激光传感器能够针对可能发生岩爆的区域的每一点进行监测,本实施例中采用的是在防护台车上加装旋转平台,并将高灵敏激光传感器安装在旋转平台上;随着隧洞的开挖和时间的推移实时更新到步骤三中完善后的岩爆预警模型,从而对预警结果进行实时更新;对现场岩爆进行预警后,通过现场检验预警结果与实际情况是否相符,将该次岩爆及对应的监测信息作为新样本对“围岩力学参数-岩爆临界形变-岩爆临界温度”数据库进行动态补充和更新,不断优化岩爆预警模型。
隧道开挖过程中,防护台车随着开挖一同移动,同时热敏红外传感器进行监测,通过数学函数将防护台车移动过程中高灵敏激光传感器和热敏红外传感器采集到的信号进行过滤,剔除形变曲线中峰值和变化量明显超出“围岩力学参数-岩爆临界形变-岩爆临界温度”数据库中参考数值的数据;当发现某区域温度变化异常并与“围岩力学参数-岩爆临界形变-岩爆临界温度”数据库中的参考量接近时,高灵敏激光传感器转向这一区域并对这一区域的围岩形变进行监测,检测结果实时与“围岩力学参数-岩爆临界形变-岩爆临界温度”数据库中的参照量进行比对,利用热敏红外传感器和高灵敏激光传感器自带的简易微机快速处理比较提前内置的“围岩力学参数-岩爆临界形变-岩爆临界温度”数据库中岩爆变形或岩爆升温阀值信息并作出反馈,同时岩爆预警模型也会接收这些实时信息并发出反馈,当热敏红外传感器与高灵敏激光传感器二者中任一检测到的数据与数据库中的参考数据匹配,或者岩爆预警模型在接收到上述两个信号后给出危险信号的反馈时,声光报警系统会进行报警,警示工作人员。

Claims (10)

  1. 一种防护台车,其特征在于:包括机架(3)、行走组件(6)、落石缓冲组件(4)、喷淋组件(7)以及岩爆预警系统;行走组件(6)作为机架(3)移动的动力来源固设于机架(3)底部;落石缓冲组件(4)包括与机架(3)固定连接的拱架(23)以及固设于拱架(23)上的防护网(2);岩爆预警系统包括用于检测围岩温度的热敏红外传感器(91)以及用于检测围岩形变的高灵敏激光传感器(92)。
  2. 根据权利要求1所述的防护台车,其特征在于:防护网(2)上绑设有兜网(22),兜网(22)的两侧固设于防护网(2)的两侧之间,兜网(22)位于防护网(2)向机架(3)方向凹陷或靠拢的一侧;耐冲网(21)有两个且固定连接在防护网(2)的两侧,兜网(22)的两侧分别位于两个耐冲网(21)的两侧之间,兜网(22)与耐冲网(21)分别位于防护网(2)的两侧;耐冲网(21)以及兜网(22)均与防护网(2)贴合。
  3. 根据权利要求2所述的防护台车,其特征在于:所述耐冲网(21)的两侧位于防护网(2)的两侧之间。
  4. 根据权利要求1所述的防护台车,其特征在于:还包括紧急避难组件(8),所述紧急避难组件(8)包括固设于机架(3)上的防护板(81)、固设于防护板(81)上的氧气供应装置(82)以及固定连接在防护板(81)上的固定件。
  5. 根据权利要求1所述的防护台车,其特征在于:还包括辅助支撑装置(5),所述辅助支撑装置(5)包括固设于机架(3)底部的液压缸(51)以及固设于液压缸(51)活塞杆端部的抵接板(52)。
  6. 一种非接触式隧道施工岩爆预警防护系统的搭建方法,其特征在于:包括上述权利要求1-5任一所述的防护台车,还包括以下步骤:
    一、收集现有隧道开挖过程中传统微震监测和地勘资料,确定不同类型围岩发生岩爆频率较高的位置,建立参考数据库;
    二、将不同围岩的理化指标和力学参数作为围岩分类的标准,并记载在参考数据库中,构建神经网络模型,获得基于步骤一中参考数据库的神经网络的隧道岩爆预警模型,通过预警模型的计算输出预警区域潜在岩爆的等级及其概率;
    三、确定岩爆前兆时围岩局部温度快速上升阶段温度变化加速度;同时检测记录岩爆前夕围岩局部温度上升时形变变化加速度,将上述两个变化量输入参考数据库作为参考量,以步骤一中建立的参考数据库为基础,将其完善并形成“围岩力学参数-岩爆临界形变-岩爆临界温度”数据库;
    四、隧道开挖过程,在防护台车上加装多个用于监测围岩形变的高灵敏激光传感器和用于监测围岩温度变化的热敏红外传感器,在岩爆预警模型对现场岩爆进行预警后,通过现场检验预警结果与实际情况是否相符,将该次岩爆及对应的监测信息作为新样本对“围岩力学参数- 岩爆临界形变-岩爆临界温度”数据库进行动态补充和更新;
    五、隧道开挖过程中,当热敏红外传感器与高灵敏激光传感器二者中任一检测到的数据与“围岩力学参数-岩爆临界形变-岩爆临界温度”数据库中的参考数据匹配时,或者岩爆预警模型在接收到上述两个信号后给出危险信号的反馈时,声光报警系统会进行报警,警示工作人员。
  7. 根据权利要求6所述的非接触式隧道施工岩爆预警防护系统搭建方法,其特征在于:所述步骤三中,获取岩芯后将岩芯等分为多份样本,并分别在不同环境温度下赋予岩芯不同的基础温度进行三轴试验。
  8. 根据权利要求6所述的非接触式隧道施工岩爆预警防护系统搭建方法,其特征在于:所述步骤三中,将试验获得的岩爆前夕温度变化速率与形变变化速率之间的联系通过步骤二中的人工智能学习进行对比分析,并通过步骤二中类神经网络算法输入“围岩力学参数-岩爆临界形变-岩爆临界温度”数据库和岩爆预警模型。
  9. 根据权利要求6所述的非接触式隧道施工岩爆预警防护系统搭建方法,其特征在于:在步骤三中增加台车正常移动情况时,热敏红外传感器和高灵敏激光传感器接收到的信号,多次、并在不同工况下进行试验后,将实验数据存入“围岩力学参数-岩爆临界形变-岩爆临界温度”数据库内作为信号过滤时的参考量。
  10. 根据权利要求6所述的非接触式隧道施工岩爆预警防护系统搭建方法,其特征在于:所述步骤三中的神经网络包括个输入层、个卷积层、个池化层、个全连接层和个Softmax层;输入层输入多参量序列,决策层输出岩爆等级及其概率;利用步骤一中的参考数据库对构建的神经网络模型进行训练优化,根据测试样本的分类结果,获得达到岩爆等级分类准确率最高的模型参数,即获得了基于“围岩力学参数-岩爆临界形变-岩爆临界温度”数据库和神经网络的隧道爆预警模型。
PCT/CN2020/123080 2020-10-23 2020-10-23 防护台车及非接触式隧道施工岩爆预警防护系统搭建方法 WO2022082696A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/123080 WO2022082696A1 (zh) 2020-10-23 2020-10-23 防护台车及非接触式隧道施工岩爆预警防护系统搭建方法
US17/577,032 US11920474B2 (en) 2020-10-23 2022-01-17 Protecting trolley and construction method of rock burst prewarning protection system in non-contact tunnel construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/123080 WO2022082696A1 (zh) 2020-10-23 2020-10-23 防护台车及非接触式隧道施工岩爆预警防护系统搭建方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/577,032 Continuation US11920474B2 (en) 2020-10-23 2022-01-17 Protecting trolley and construction method of rock burst prewarning protection system in non-contact tunnel construction

Publications (1)

Publication Number Publication Date
WO2022082696A1 true WO2022082696A1 (zh) 2022-04-28

Family

ID=81291440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123080 WO2022082696A1 (zh) 2020-10-23 2020-10-23 防护台车及非接触式隧道施工岩爆预警防护系统搭建方法

Country Status (2)

Country Link
US (1) US11920474B2 (zh)
WO (1) WO2022082696A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115339549A (zh) * 2022-10-18 2022-11-15 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) 一种便于获取水文地质参数的智能导航测量装置
CN115615830A (zh) * 2022-12-05 2023-01-17 中国矿业大学(北京) 地下工程动力破坏模拟试验系统与方法
CN116740329A (zh) * 2023-06-20 2023-09-12 武汉工程大学 一种基于红外监测技术下的深部巷道岩爆防控方法
CN117211886A (zh) * 2023-11-07 2023-12-12 南京派光智慧感知信息技术有限公司 一种隧道掌子面多元信息一体化采集系统及其使用方法
CN117554144A (zh) * 2024-01-11 2024-02-13 中国矿业大学(北京) 一种隧道物理模型试验装置
CN117780423A (zh) * 2024-02-26 2024-03-29 山西路桥第六工程有限公司 一种拱架式隧道除尘装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115030761B (zh) * 2022-08-11 2022-10-21 应急管理部国家自然灾害防治研究院 一种防止地震滑坡落石冲击的隧道口支护设备及使用方法
CN117027924B (zh) * 2023-10-10 2023-12-12 山西联盛科技有限公司 一种井下安全避难硐室

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261008A (ja) * 1986-05-07 1987-11-13 Komatsu Ltd トンネル内面性状検出装置
CN111058890A (zh) * 2020-01-16 2020-04-24 中铁十六局集团有限公司 一种隧道安全防护台车用喷淋系统
CN111140265A (zh) * 2020-01-16 2020-05-12 中铁十六局集团有限公司 岩爆防护台车防护网以及防护台车防护架
CN111441809A (zh) * 2020-05-14 2020-07-24 中铁十六局集团有限公司 防护台车
CN111520193A (zh) * 2020-05-15 2020-08-11 中铁十六局集团有限公司 非接触式隧道工程施工岩爆实时预报方法
CN111520192A (zh) * 2020-05-15 2020-08-11 中铁十六局集团有限公司 非接触式隧道工程施工岩爆实时预报优化方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106246217A (zh) * 2016-08-23 2016-12-21 招商局重庆交通科研设计院有限公司 单洞双向交通公路隧道逃生救援结构
CN106224007A (zh) * 2016-08-26 2016-12-14 招商局重庆交通科研设计院有限公司 隧道施工安全监测预警管理系统
CN109162733A (zh) * 2018-09-19 2019-01-08 中铁隧道局集团有限公司 隧洞中发生轻微岩爆后的处理方法
CN110056394A (zh) * 2019-03-12 2019-07-26 中交一公局桥隧工程有限公司 一种隧道施工安全监控装置及其控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261008A (ja) * 1986-05-07 1987-11-13 Komatsu Ltd トンネル内面性状検出装置
CN111058890A (zh) * 2020-01-16 2020-04-24 中铁十六局集团有限公司 一种隧道安全防护台车用喷淋系统
CN111140265A (zh) * 2020-01-16 2020-05-12 中铁十六局集团有限公司 岩爆防护台车防护网以及防护台车防护架
CN111441809A (zh) * 2020-05-14 2020-07-24 中铁十六局集团有限公司 防护台车
CN111520193A (zh) * 2020-05-15 2020-08-11 中铁十六局集团有限公司 非接触式隧道工程施工岩爆实时预报方法
CN111520192A (zh) * 2020-05-15 2020-08-11 中铁十六局集团有限公司 非接触式隧道工程施工岩爆实时预报优化方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115339549A (zh) * 2022-10-18 2022-11-15 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) 一种便于获取水文地质参数的智能导航测量装置
CN115339549B (zh) * 2022-10-18 2023-01-24 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) 一种便于获取水文地质参数的智能导航测量装置
CN115615830A (zh) * 2022-12-05 2023-01-17 中国矿业大学(北京) 地下工程动力破坏模拟试验系统与方法
CN116740329A (zh) * 2023-06-20 2023-09-12 武汉工程大学 一种基于红外监测技术下的深部巷道岩爆防控方法
CN116740329B (zh) * 2023-06-20 2024-03-12 武汉工程大学 一种基于红外监测技术下的深部巷道岩爆防控方法
CN117211886A (zh) * 2023-11-07 2023-12-12 南京派光智慧感知信息技术有限公司 一种隧道掌子面多元信息一体化采集系统及其使用方法
CN117211886B (zh) * 2023-11-07 2024-01-19 南京派光智慧感知信息技术有限公司 一种隧道掌子面多元信息一体化采集系统及其使用方法
CN117554144A (zh) * 2024-01-11 2024-02-13 中国矿业大学(北京) 一种隧道物理模型试验装置
CN117554144B (zh) * 2024-01-11 2024-03-22 中国矿业大学(北京) 一种隧道物理模型试验装置
CN117780423A (zh) * 2024-02-26 2024-03-29 山西路桥第六工程有限公司 一种拱架式隧道除尘装置

Also Published As

Publication number Publication date
US11920474B2 (en) 2024-03-05
US20220136391A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
WO2022082696A1 (zh) 防护台车及非接触式隧道施工岩爆预警防护系统搭建方法
Ono Application of acoustic emission for structure diagnosis
Dai et al. Deformation forecasting and stability analysis of large-scale underground powerhouse caverns from microseismic monitoring
CN106437853A (zh) 一种煤岩冲击地压动力灾害预警方法
CN104159087B (zh) 钻机现场监控平台
CN111963243A (zh) 一种基于动静组合应力分析的冲击地压危险监测预警方法
He et al. Active velocity tomography for assessing rock burst hazards in a kilometer deep mine
Fuławka et al. Monitoring of the stability of underground workings in Polish copper mines conditions
CN115726809A (zh) 高应力复杂条件下三维采场围岩变形综合控制方法
Abedin et al. Fracture detection in steel girder bridges using self-powered wireless sensors
Azim et al. Damage detection of railway bridges using operational vibration data: theory and experimental verifications
CN116591777A (zh) 多场多源信息融合的冲击地压智能化监测预警装置及方法
Casciati Human induced vibration vs. cable-stay footbridge deterioration
Górski et al. Vibration serviceability of all-GFRP cable-stayed footbridge under various service excitations
CN112145201A (zh) 防护台车及非接触式隧道施工岩爆预警防护系统搭建方法
Aggelis et al. Parameters based AE analysis
US20210396691A1 (en) Non-invasive monitoring of atomic reactions to detect structural failure
CN115326601A (zh) 锚网耦合支护岩体动力冲击试验与评价方法
CN108597166A (zh) 一种采石场安全监控系统和方法
Ruffels Model-Free Damage Detection for a Small-Scale Steel Bridge
Nazarchuk et al. Some aspects of applying the acoustic emission method
Barnat et al. Experimental Investigation of IED Interrogation Arm During Normal Operation and Mine Flail Structure Subjected to Blast Loading
Cheon et al. Analysis of microseismic parameters for the safety of underground structures
Almeida Jr et al. Brazilian bridges life cycle assessment using deterioration models
Huang et al. Structural safety monitoring for Nanjing Yangtze river bridge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958278

Country of ref document: EP

Kind code of ref document: A1