WO2022082660A1 - 电站巡视系统及电站巡视方法 - Google Patents

电站巡视系统及电站巡视方法 Download PDF

Info

Publication number
WO2022082660A1
WO2022082660A1 PCT/CN2020/122986 CN2020122986W WO2022082660A1 WO 2022082660 A1 WO2022082660 A1 WO 2022082660A1 CN 2020122986 W CN2020122986 W CN 2020122986W WO 2022082660 A1 WO2022082660 A1 WO 2022082660A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
maintenance
power station
maintained
operated
Prior art date
Application number
PCT/CN2020/122986
Other languages
English (en)
French (fr)
Inventor
汪建强
舒震寰
万松
张彦忠
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to EP20958242.8A priority Critical patent/EP4220325A4/en
Priority to PCT/CN2020/122986 priority patent/WO2022082660A1/zh
Priority to CN202080011904.8A priority patent/CN114667493A/zh
Publication of WO2022082660A1 publication Critical patent/WO2022082660A1/zh
Priority to US18/305,171 priority patent/US20230260097A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0859Sighting arrangements, e.g. cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9515Objects of complex shape, e.g. examined with use of a surface follower device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/17Terrestrial scenes taken from planes or by drones
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • H02S50/15Testing of PV devices, e.g. of PV modules or single PV cells using optical means, e.g. using electroluminescence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/25UAVs specially adapted for particular uses or applications for manufacturing or servicing
    • B64U2101/26UAVs specially adapted for particular uses or applications for manufacturing or servicing for manufacturing, inspections or repairs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • B64U2101/31UAVs specially adapted for particular uses or applications for imaging, photography or videography for surveillance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1793Remote sensing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8845Multiple wavelengths of illumination or detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9515Objects of complex shape, e.g. examined with use of a surface follower device
    • G01N2021/9518Objects of complex shape, e.g. examined with use of a surface follower device using a surface follower, e.g. robot
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • G06T2207/10036Multispectral image; Hyperspectral image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30181Earth observation
    • G06T2207/30184Infrastructure

Definitions

  • the present application relates to the field of electronic power technology, and in particular, to a power station inspection system and a power station inspection method.
  • UAV unmanned aerial vehicle
  • the current UAV architecture needs to transmit the data of a large number of photovoltaic modules to the ground control station, and determine the photovoltaic modules that need to be operated and maintained through the station control management system of the ground control station. The operation is cumbersome, the efficiency is low, and the applicability is poor.
  • the application provides a power station inspection system and a power station inspection method, which can perform image data collaborative analysis on at least two types of component image data, and combine component operation and maintenance parameters to quickly determine whether a power station component is a target operation and maintenance component, which is easy to operate and efficient. High and strong applicability.
  • the present application provides a power station inspection system.
  • the power station inspection system includes a UAV, a UAV flight controller, a central controller, and at least two types of data acquisition terminals arranged on the UAV.
  • the central controller is used to control the UAV flight controller so that the UAV flight controller controls the flight of the UAV.
  • the central controller is also used to cooperatively control at least two kinds of data acquisition terminals to collect at least two kinds of component image data of the power station components during the flight of the drone.
  • the central controller is further configured to determine whether the power station component is a target operation and maintenance component according to the at least two types of component image data collected by the at least two types of data acquisition terminals and the component operation and maintenance parameters of the power station component.
  • the target operation and maintenance components here can be understood as components that need to be operated and maintained.
  • the central controller installed on the UAV can directly perform image data collaborative analysis on at least two component image data, and according to the image data collaborative analysis results and component operation and maintenance parameters (such as safety risk parameters or power generation loss) value) to determine whether the power station component is the target operation and maintenance component, without the need to transmit at least two component image data to the functional modules outside the system such as the ground control station for processing, easy operation, high synergy efficiency, and stronger applicability.
  • the central controller includes a data processing module.
  • the above-mentioned data processing module is configured to determine whether the power station component is a target operation and maintenance component according to at least two kinds of component image data collected by at least two kinds of data acquisition terminals and component operation and maintenance parameters of the power station component.
  • the data processing module here can include a pluggable chip with the function of providing edge computing power for the central controller and/or third-party software and/or hardware with data processing function, and the data processing module can be installed according to installation requirements (such as Communication interface requirements) access to the central controller, flexible operation, easy to update or upgrade the data processing module, low cost.
  • the data processing module directly performs image data collaborative analysis on at least two types of component image data, and determines whether a power station component is a target operation and maintenance component according to the image data analysis result and component operation and maintenance parameters, without the need for at least two types of component images.
  • the data is transmitted to the functional modules outside the system such as the ground control station for processing, which is easy to operate, and the collaborative processing efficiency of image data is high and the applicability is stronger.
  • At least two types of data collection terminals include visible light data collection terminals and thermal infrared data collection terminals
  • at least two types of component image data include visible light image data. and thermal infrared image data.
  • the data processing module is used to determine that the power station component is a faulty component based on the visible light image data, and the test temperature of the power station component is determined to be greater than the preset temperature threshold or the component thermal infrared area is greater than the preset area threshold based on the thermal infrared image data.
  • the component to be operated and maintained, and the component operation and maintenance parameters of the component to be operated and maintained are determined, and when the component operation and maintenance parameters of the component to be operated and maintained meet the operation and maintenance conditions, the component to be operated and maintained is determined as the target operation and maintenance component.
  • the component to be operated and maintained here can be understood as a power station component that may need to be operated and maintained.
  • the component operation and maintenance parameters of the component to be operated and maintained are the component operation and maintenance parameters of the power station component.
  • the data processing module performs image data collaborative analysis on the visible light image data and the thermal infrared image data to determine whether the power station components have surface faults and thermal infrared faults.
  • the component to be operated and maintained is the target operation and maintenance component according to the component operation and maintenance parameters of the component to be operated and maintained.
  • the operation is simple, the collaborative processing efficiency of image data is high, and the applicability is stronger.
  • At least two types of data collection terminals include visible light data collection terminals and short-wave infrared data collection terminals
  • at least two types of component image data include visible light image data and SWIR image data.
  • the data processing module is used to determine that the power station component is a component to be operated and maintained when it is determined based on the visible light image data that the power station component is a faulty component and that the shape of the power station component is included in the defect shape sample database based on the short-wave infrared image data, and to determine the component to be operated and maintained.
  • the component operation and maintenance parameters of the component to be operated and maintained are determined as the target operation and maintenance component when the component operation and maintenance parameters of the component to be operated and maintained meet the operation and maintenance conditions.
  • the data processing module performs image data collaborative analysis on the visible light image data and the short-wave infrared image data to determine whether the power station components have surface faults and short-wave infrared faults. For the operation and maintenance component, at this time, you can determine whether the component to be operated and maintained is the target operation and maintenance component according to the component operation and maintenance parameters of the component to be operated and maintained.
  • the operation is simple, the collaborative processing efficiency of image data is high, and the applicability is stronger.
  • At least two types of data acquisition terminals include thermal infrared data acquisition terminals and short-wave infrared data acquisition terminals, and at least two types of component image data include thermal infrared data acquisition terminals. Image data and SWIR image data.
  • the data processing module is used to determine, based on the thermal infrared image data, that the test temperature of the power station component is greater than a preset temperature threshold or that the thermal infrared area of the component is greater than a preset area threshold, and based on the short-wave infrared image data, the shape of the power station component is determined to be included in the defect shape sample database
  • the power station component is determined as the component to be operated and maintained, and the component operation and maintenance parameters of the component to be operated and maintained, and when the component operation and maintenance parameters of the component to be operated and maintained meet the operation and maintenance conditions, the component to be operated and maintained is determined as the target operation and maintenance component.
  • the data processing module performs image data collaborative analysis on thermal infrared image data and short-wave infrared image data to determine whether the components of the power station have thermal infrared faults and short-wave infrared faults, and then the power stations with thermal infrared faults and short-wave infrared faults can be analyzed.
  • the component is the component to be operated and maintained. At this time, it can be determined whether the component to be operated and maintained is the target operation and maintenance component according to the component operation and maintenance parameters of the component to be operated and maintained.
  • the operation is simple, the collaborative processing efficiency of image data is high, and the applicability is stronger.
  • At least two types of data acquisition terminals include visible light data acquisition terminals, thermal infrared data acquisition terminals, and short-wave infrared data acquisition terminals, and at least two components
  • the image data includes visible light component image data, thermal infrared image data, and short-wave infrared image data.
  • the data processing module is used to determine that the power station component is a faulty component based on the visible light image data, determine that the test temperature of the power station component is greater than a preset temperature threshold based on the thermal infrared image data, or that the thermal infrared area of the component is greater than the preset area threshold, and based on the short-wave infrared image data
  • the power station component is determined to be the component to be operated and maintained, and the component operation and maintenance parameters of the component to be operated and maintained are determined, and when the component operation and maintenance parameters of the component to be operated and maintained meet the operation and maintenance conditions Determine the component to be operated and maintained as the target operation and maintenance component.
  • the data processing module performs image data collaborative analysis on the visible light component image data, thermal infrared image data and short-wave infrared image data to determine whether the power station components have surface faults, thermal infrared faults and short-wave infrared faults.
  • Power station components with faults, thermal infrared faults, and short-wave infrared faults are used as components to be operated and maintained.
  • it can be determined whether the component to be operated and maintained is the target operation and maintenance component according to the component operation and maintenance parameters of the component to be operated and maintained.
  • the operation is simple and the image data is coordinated. High processing efficiency and stronger applicability.
  • the component operation and maintenance parameters of the components to be operated and maintained include the components to be operated and maintained. At least one of a power generation loss value and a safety risk parameter of the component.
  • the power generation loss value and the safety risk parameter of the component to be operated and maintained are used to determine whether the component to be operated and maintained is the target operation and maintenance component, which is easy to operate and has high efficiency.
  • the component operation and maintenance parameter of the component to be operated and maintained includes a power generation loss value of the component to be operated and maintained.
  • the data processing module is also used to determine that the component operation and maintenance parameters of the component to be operated and maintained meet the operation and maintenance conditions when the power generation loss value of the component to be operated and maintained is greater than or equal to the power generation loss threshold, and determine the component to be operated and maintained as the target operation and maintenance component. dimension components.
  • the power generation loss threshold here can be an artificially set value or a default value of a component.
  • the data processing module can determine the component to be operated and maintained whose power generation loss value is greater than or equal to the power generation loss threshold value as the target operation and maintenance component, so that the power station operation and maintenance personnel can operate and maintain the target operation and maintenance component as soon as possible .
  • the component operation and maintenance parameters of the components to be operated and maintained include security risk parameters of the components to be operated and maintained.
  • the data processing module is further configured to determine that the component operation and maintenance parameters of the component to be operated and maintained meet the operation and maintenance conditions when the security risk parameter of the component to be operated and maintained is greater than or equal to the security risk threshold, and determine the component to be operated and maintained as the target operation and maintenance component .
  • the security risk threshold here can be an artificially set value or a built-in default value.
  • the data processing module may determine the component to be operated and maintained whose security risk parameter is greater than or equal to the security risk threshold as the target operation and maintenance component, so that the power station operation and maintenance personnel can perform the operation and maintenance process on the target operation and maintenance component as soon as possible.
  • the data processing module is further configured to determine the abnormality type of the target operation and maintenance component, and based on the target operation and maintenance The exception type of the component and the component operation and maintenance parameters generate the operation and maintenance report of the target operation and maintenance component.
  • the data processing module can quickly generate the operation and maintenance report of the target operation and maintenance component, which is convenient for the power station operation and maintenance personnel to view the operation and maintenance report and update or replace the target operation and maintenance component, with high efficiency and applicability stronger.
  • the central controller includes a wireless network communication module or a fifth-generation mobile communication technology 5G communication module.
  • the wireless network communication module or the 5G communication module can quickly transmit the image data and geographic location data of the target operation and maintenance components to the ground control station, so that the power station operation and maintenance personnel can timely check the target operation and maintenance components. Repair or replacement improves the inspection efficiency of the power station and the reliability of the power supply of the power station, and the applicability is stronger.
  • the central controller is used for collecting data from each data collection terminal in the at least two data collection terminals through a parallel communication interface.
  • the terminals carry out independent parallel communication.
  • the central controller can perform independent parallel communication with each data acquisition terminal, and can realize synchronous data transmission with fast transmission speed and high efficiency.
  • the present application provides a power station inspection method, which is applicable to the central controller in the power station inspection system provided by any one of the above-mentioned first aspect to the eleventh possible implementation manner of the first aspect.
  • the central controller acquires at least two kinds of component image data of the power plant components collected by the at least two kinds of data acquisition terminals during the flight of the UAV from at least two kinds of data acquisition terminals; At least two kinds of component image data collected by the terminal and component operation and maintenance parameters of the power station components are used to determine whether the power station components are the target operation and maintenance components.
  • the at least two types of data collection terminals include visible light data collection terminals and thermal infrared data collection terminals
  • the at least two types of component image data include visible light image data and thermal infrared image data.
  • the at least two data collection terminals include visible light data collection terminals and shortwave infrared data collection terminals
  • the at least two component image data include visible light image data and shortwave infrared image data.
  • the central controller determines that the power station component is a faulty component based on the visible light image data and determines that the shape of the power station component is included in the defect shape sample database based on the short-wave infrared image data, it determines that the power station component is a component to be operated and maintained; the central controller determines that the component to be operated and maintained
  • the component operation and maintenance parameters of the component to be operated and maintained, and the component to be operated and maintained is determined as the target operation and maintenance component when the component operation and maintenance parameters of the component to be operated and maintained meet the operation and maintenance conditions.
  • At least two types of data acquisition terminals include thermal infrared data acquisition terminals and shortwave infrared data acquisition terminals, and at least two types of component image data include thermal infrared image data and shortwave infrared image data .
  • the central controller determines based on the thermal infrared image data that the test temperature of the power station component is greater than the preset temperature threshold or the thermal infrared area of the component is greater than the preset area threshold, and determines that the shape of the power station component is included in the defect shape sample database based on the short-wave infrared image data,
  • the power station component is determined as the component to be operated and maintained;
  • the central controller determines the component operation and maintenance parameters of the component to be operated and maintained, and determines the component to be operated and maintained as the target operation and maintenance component when the component operation and maintenance parameters of the component to be operated and maintained meet the operation and maintenance conditions.
  • At least two types of data acquisition terminals include visible light data acquisition terminals, thermal infrared data acquisition terminals, and short-wave infrared data acquisition terminals
  • at least two types of component image data include visible light component image data , thermal infrared image data and shortwave infrared image data.
  • the central controller determines that the power station component is a faulty component based on the visible light image data, determines that the test temperature of the power station component is greater than the preset temperature threshold based on the thermal infrared image data, or that the thermal infrared area of the component is greater than the preset area threshold, and determines the power station based on the short-wave infrared image data.
  • the power station component is determined as the component to be operated and maintained; the central controller determines the component operation and maintenance parameters of the component to be operated and maintained, and when the component operation and maintenance parameters of the component to be operated and maintained meet the operation and maintenance conditions Determine the component to be operated and maintained as the target operation and maintenance component.
  • the component operation and maintenance parameters of the component to be operated and maintained include the component to be operated and maintained. At least one of a power generation loss value and a safety risk parameter of the component.
  • the component operation and maintenance parameter of the component to be operated and maintained includes a power generation loss value of the component to be operated and maintained.
  • the central controller determines that the component operation and maintenance parameters of the component to be operated and maintained meet the operation and maintenance conditions, and determines the component to be operated and maintained as the target operation and maintenance component.
  • the component operation and maintenance parameters of the components to be operated and maintained include security risk parameters of the components to be operated and maintained.
  • security risk parameter of the component to be operated and maintained is greater than or equal to the security risk threshold
  • the central controller determines that the component operation and maintenance parameter of the component to be operated and maintained meets the operation and maintenance condition, and determines the component to be operated and maintained as the target operation and maintenance component.
  • the central controller determines the abnormality type of the target operation and maintenance component, and Generate an operation and maintenance report of the target operation and maintenance component according to the abnormal type of the target operation and maintenance component and the component operation and maintenance parameters.
  • a power station component is a target operation and maintenance component (ie, a power station component that needs to be operated and maintained), and the operation is simple, the efficiency is high, and the applicability is strong.
  • a target operation and maintenance component ie, a power station component that needs to be operated and maintained
  • FIG. 1 is a schematic diagram of an application scenario of a power station inspection system provided by the present application
  • FIG. 2 is a schematic diagram of a structure of a power station inspection system provided by the present application.
  • FIG 3 is another schematic diagram of the structure of the power station inspection system provided by the present application.
  • FIG. 4 is a schematic diagram of an application scenario of short-wave infrared image data provided by the present application.
  • FIG 5 is another schematic diagram of the structure of the power station inspection system provided by the present application.
  • FIG. 6 is a schematic flowchart of a power station inspection method provided by the present application.
  • the power station inspection system provided by this application may also be called a UAV inspection system or an UAV system.
  • the power station inspection system is suitable for the field of electric power inspection (such as inspection and operation and maintenance of power stations with weak communication or insufficient bandwidth), Or monitoring fields (such as intelligent security), or environmental protection fields (such as environmental monitoring, environmental law enforcement, environmental governance), or various application fields such as reconnaissance fields, which can be determined according to actual application scenarios, and are not limited here.
  • the power station inspection system includes an unmanned aerial vehicle, an unmanned aerial vehicle flight controller, a central controller and at least two kinds of data acquisition terminals arranged on the unmanned aerial vehicle.
  • the central controller is used to control the UAV flight controller so that the UAV flight controller controls the flight of the UAV.
  • the central controller is further configured to control at least two kinds of data acquisition terminals to collect at least two kinds of component image data of the power station components during the flight of the drone.
  • the central controller is further configured to determine whether the power station component is a target operation and maintenance component according to the at least two types of component image data collected by the at least two types of data acquisition terminals and the component operation and maintenance parameters of the power station component.
  • the central controller can quickly determine whether the power station components are the target operation and maintenance components. , there is no need to transmit the image data of the power station components to the ground control station to determine whether the power station components need to be operated and maintained, the operation is simple, the efficiency of component operation and maintenance is improved, and the applicability is strong.
  • the power station inspection system provided in this application can be adapted to different application scenarios, such as a power station inspection scene or an intelligent security protection scene. This application takes the power station inspection scene as an example for description.
  • FIG. 1 is a schematic diagram of an application scenario of the power station inspection system provided by the present application.
  • the power station inspection system 1 may include an unmanned aerial vehicle (such as an unmanned aerial vehicle 100 ) and an unmanned aerial vehicle flight controller (which may be referred to as a drone flight control or a flight control system for short) provided on the unmanned aerial vehicle. ), a central controller, and at least two kinds of data collection terminals (eg, data collection terminal 200 and data collection terminal 201 ).
  • the UAV flight controller and the central controller here can be hardware devices integrated inside the UAV 100, so they are not shown in FIG. 1 .
  • the data collection terminal 200 or the data collection terminal 201 may be a terminal device with a data collection function, for example, the data collection terminal 200 or the data collection terminal 201 may be a camera device (such as a PTZ and/or a camera), a sensor or other terminal equipment.
  • the data collection terminal 200 and the data collection terminal 201 here may include a visible light data collection terminal and a thermal infrared data collection terminal, or a visible light data collection terminal and a short-wave infrared data collection terminal, or a thermal infrared data collection terminal and a short-wave infrared data collection terminal.
  • a variety of third-party software and/or hardware interfaces can be adapted in the central controller, and a variety of third-party software and/or hardware can be integrated through the third-party software and/or hardware interfaces, so that various functions can be realized, such as power station components.
  • the image data of the at least two types of components is subjected to collaborative analysis of the image data to determine whether the power station components are components to be operated and maintained.
  • the central controller can also be an integrated module, for example, the central controller can be called the central control module (center control module), and the specific functions and specific forms realized by the central controller can be determined according to the actual application scenario. make restrictions.
  • the central controller can replace the existing UAV flight controller to become a new control center of the UAV to control the UAV flight controller, the data acquisition terminal 200 and the data acquisition terminal 201 .
  • the central controller can control the UAV flight controller, so that the UAV flight controller can accurately sense and calculate the flight attitude data of the UAV 100, so as to control the flight of the UAV 100 (such as realizing the UAV 100). Precise positioning hover and autonomous smooth flight).
  • the central controller can cooperatively control the data acquisition terminal 200 and the data acquisition terminal 201 to collect at least two component image data of the power station components respectively during the flight process of the drone 100 (such as the flight process of the drone 100 patrolling the photovoltaic power station 2 ), for example , the at least two types of component image data may include any two or three of visible light image data, thermal infrared image data, and short-wave infrared image data, which can be determined according to actual application scenarios, which are not limited here.
  • the power station components here can be power transmission towers, booster towers, photovoltaic components (also called solar panels or photovoltaic panels), and other components, and so on.
  • the central controller can determine whether the power station components are the target operation and maintenance parameters according to the two types of component image data of the power station components in the photovoltaic power station 2 collected by the data acquisition terminal 200 and the data acquisition terminal 201 and the component operation and maintenance parameters of the power station components.
  • Maintenance components that is, determine the components that need to be operated and maintained in the photovoltaic power station 2 .
  • the power station inspection system (such as the power station inspection system 1) provided by the present application determines whether the power station components (such as the photovoltaic modules in the photovoltaic power station 2) are the target operation and maintenance components based on the central controller, and there is no need to transmit the image data of at least two components of the power station components. Go to the ground control station to determine whether the power station components need to be operated and maintained. The operation is simple, the operation and maintenance efficiency is high, and the applicability is stronger.
  • FIG. 2 is a schematic structural diagram of a power station inspection system provided by the present application.
  • the power station inspection system may include an unmanned aerial vehicle (such as an unmanned aerial vehicle 10 , which is the same as the unmanned aerial vehicle 100 in the above-mentioned FIG.
  • a drone flight controller eg, drone flight controller 20
  • a central controller eg, central controller 30
  • at least two types of data acquisition terminals eg, data acquisition terminal 40a to data acquisition terminal 40n ) on the man-machine.
  • the data collection terminal 40a to the data collection terminal 40n may specifically include a data collection terminal 40a (such as the above-mentioned data collection terminal 200), a data collection terminal 40b (such as the above-mentioned data collection terminal 201), . . . , and a data collection terminal 40n.
  • a data collection terminal 40a such as the above-mentioned data collection terminal 200
  • a data collection terminal 40b such as the above-mentioned data collection terminal 201
  • . . . a data collection terminal 40n.
  • the data collection terminal 40a to the data collection terminal 40n will be described below, and details will not be repeated below.
  • the central controller 30 is connected to the UAV flight controller 20, and the central controller 30 can also be connected to the data acquisition terminal 40a to the data acquisition terminal 40n, respectively.
  • the central controller 30 can realize direct communication with the UAV flight controller 20 and the data acquisition terminal 40a to the data acquisition terminal 40n through the communication interface (such as sending control commands), and the transmission speed is fast.
  • the communication interface here can be a parallel communication interface or a serial communication interface, for example, a serial bus (universal serial bus, USB) communication interface, a gigabit ethernet (GE) communication interface, an asynchronous transmission standard interface (recommended standard interface) 232, which can be referred to as RS232 communication interface) or other communication interface.
  • the RS232 communication interface can also be called EIA-RS232 (electronic industries association-recommended standard 232) communication interface or 232 communication interface.
  • wireless communication can also be performed between the UAV flight controller 20, the central controller 30, and the data acquisition terminal 40a to the data acquisition terminal 40n, which can reduce communication wiring, reduce installation requirements, and have stronger applicability. It should be noted that the connection relationship between the UAV flight controller 20, the central controller 30, and the data acquisition terminal 40a to the data acquisition terminal 40n can be specifically determined according to the actual application scenario, which is not limited here.
  • the UAV flight controller 20 may include a main control unit, an inertial measurement unit (IMU), a global positioning system (global positioning system, GPS) compass unit (here, the GPS compass unit may include GPS unit and compass unit), light emitting diode (LED) indicator unit and other components.
  • the main control unit is the core of the UAV flight controller 20, and equipment such as the inertial measurement unit, GPS compass, steering gear and remote control receiver can be connected to the UAV flight controller 20 through the main control unit, so as to achieve no The autonomous flight function of the man-machine 10 .
  • the main control unit can also record the flight data of the UAV 10, and the main control unit can also adjust the flight parameters through a communication interface (such as a USB interface).
  • the inertial measurement unit can generally include a 3-axis accelerometer, a 3-axis angular velocity meter and a barometric altimeter, and can sense the flight attitude, flight angle, flight speed and flight altitude.
  • the GPS compass unit can be used to accurately determine the direction, longitude and latitude of the UAV 10, so as to realize functions such as automatic return of the UAV out of control protection and accurate positioning and hovering of the UAV.
  • the LED indicator unit can be used to display the flight status of the UAV 10 in real time. Therefore, the central controller 30 can issue flight control instructions to the UAV flight controller 20, so that the UAV flight controller 20 can be controlled by the main control unit, inertial measurement unit, GPS compass unit and LED indicator unit therein.
  • the flight of the UAV 10 enables the UAV 10 to inspect the power station (such as the photovoltaic power station 2 above) in all directions.
  • the data collection terminal 40a to the data collection terminal 40n may be camera devices, sensors or other terminal devices.
  • the imaging device here may be a visible light camera, a thermal infrared dual-light camera, an electro luminescent (EL) camera, or other imaging devices, and an EL camera may also be referred to as a short-wave infrared camera.
  • the central controller 30 can issue data acquisition control instructions to the UAV flight controller 20, and control the data acquisition terminal 40a to the data acquisition terminal 40n to collect (eg, photograph) n kinds of components of the power station components in real time during the flight of the UAV 10.
  • Image data where n is a positive integer greater than or equal to 2.
  • the power plant component as a photovoltaic component (such as the photovoltaic component in the photovoltaic power plant 2 above) as an example.
  • the data collection terminal 40a is a visible light camera
  • the visible light camera can capture visible light image data of the photovoltaic module.
  • the data collection terminal 40b is a thermal infrared dual-light camera
  • the thermal infrared dual-light camera can capture thermal infrared image data of the photovoltaic module.
  • the data acquisition terminal 40n is an EL camera
  • the EL camera can capture short-wave infrared image data of the photovoltaic module.
  • the central controller 30 can determine whether the power station component is the target operation and maintenance component according to at least two component image data of the power station component collected by the data collection terminal 40a to the data collection terminal 40n and the component operation and maintenance parameters of the power station component. It can be understood that the central controller 30 can directly call the n types of component image data of the power station components collected by the data acquisition terminal 40a to the data acquisition terminal 40n, and according to the n types of component image data of the power station components and the component operation and maintenance parameters of the power station components Determine whether the power station components are the target operation and maintenance components, or the central controller 30 may first store the n types of component image data of the power station components, and determine the power station components according to the n types of component image data of the power station components and the component operation and maintenance parameters of the power station components Whether it is the target operation and maintenance component.
  • the UAV flight controller 20, the central controller 30, and the data acquisition terminal 40a to the data acquisition terminal 40n may be independent of each other.
  • the UAV flight controller 20 may also be integrated in the central controller 30.
  • the central controller 30 can also control the UAV flight controller 20 by integrating third-party software (such as UAV flight control software), which is more adaptable.
  • the central controller (eg, the central controller 30 ) performs independent parallel communication with each of the data acquisition terminals 40a to 40n through a parallel communication interface.
  • a pan/tilt and a camera mounted on the pan/tilt may be collectively referred to as a data acquisition terminal, and the pan/tilt or the camera may be referred to as a data acquisition terminal respectively in this application.
  • the central controller 30 can directly perform independent parallel communication with each of the data acquisition terminals 40a to 40n, thereby realizing synchronous data transmission with fast transmission speed and high efficiency.
  • the central controller 30 can also perform serial communication with each data acquisition terminal in the data acquisition terminal 40a to the data acquisition terminal 40n through a serial communication interface (such as an RS232 communication interface), which can realize direct communication with each data acquisition terminal. Communication is efficient. It should be noted that the communication mode between the central controller and the data collection terminal 40a to the data collection terminal 40n can be specifically determined according to the actual application scenario, which is not limited here.
  • FIG. 3 is another schematic structural diagram of the power station inspection method provided by the present application.
  • the central controller 30 shown in FIG. 2 may include a data processing module (eg, a data processing module 301 ), and the data processing module 301 is used for the power station collected according to the data collection terminal 40a to the data collection terminal 40n
  • the n types of component image data of the component and the component operation and maintenance parameters of the power station component determine whether the power station component is the target operation and maintenance component.
  • the data processing module 301 may be a chip with the function of providing edge computing power for the central controller 30 (may be referred to as an edge computing chip, such as the Ascend 310 chip), and/or a third-party software with data processing function and/or Or hardware (such as image processing software, fault identification software, edge computing software).
  • the data processing module 301 can directly perform edge computing processing on the n types of component image data of the power station components collected by the data acquisition terminal 40a to the data acquisition terminal 40n through the above-mentioned edge computing chip and/or software and/or hardware with data processing functions, and Determine whether the power station component is the target operation and maintenance component based on the edge computing processing result and the component operation and maintenance parameters of the power station component. It can be seen that edge computing can speed up the processing of data streams, so the data processing module 301 can cooperatively process data without delay, thereby improving the efficiency of cooperative processing of image data.
  • the data is transmitted to the ground control station for data processing, which is suitable for application scenarios with weak communication and insufficient bandwidth in the power station. The data collaborative processing efficiency is high and the applicability is stronger.
  • the central controller 30 can be upgraded or iteratively developed.
  • new edge computing chips can be iteratively developed or the original edge computing chips can be upgraded, or third-party software in the central controller can be upgraded.
  • And/or hardware interfaces are upgraded and replaced, so that there is no need to replace the entire drone when the operation and maintenance requirements increase, the cost is low, and the applicability is stronger.
  • the data acquisition terminal 40a to the data acquisition terminal 40n may include two kinds of data acquisition terminals, such as a visible light data acquisition terminal (such as the data acquisition terminal 40a) and a thermal infrared data acquisition terminal (the data acquisition terminal 40b),
  • the n types of component image data may include two types of component image data, such as visible light image data and thermal infrared image data.
  • the visible light image data here can directly display some surface faults of the power station components, which is convenient for subsequent quick determination of whether the power station components are faulty components.
  • the thermal infrared image data can display the temperature and distribution of each part of the power station components, and the different temperatures or thermal infrared areas (such as the area) of each part of the power station components can be determined according to the areas of different colors in the thermal infrared image data, which is convenient for subsequent direct determination.
  • the test temperature of the power station component or the component thermal infrared area is further used to determine whether the power station component has a thermal infrared fault according to the test temperature or the component thermal infrared area.
  • the data processing module 301 is configured to determine whether the power station component has a surface fault according to the visible light image data, and determine that the power station component is a faulty component when the power station component has a surface fault.
  • the data processing module 301 can also be used to determine the test temperature or thermal infrared area of the power station component according to the thermal infrared image data. If the test temperature is greater than the preset temperature threshold or the thermal infrared area is greater than the threshold area threshold, it is determined that the power station component has thermal infrared faults (such as hot spots).
  • the preset temperature threshold or the threshold area threshold here can be the default value (that is, the default value set by the power station components when they leave the factory).
  • the preset temperature threshold is taken as an example for illustration. For example, the preset temperature threshold can be 30 degrees Celsius or other temperature values. .
  • the test temperature of the faulty power station components will be greater than the preset temperature threshold by about 10 degrees Celsius or other temperature values.
  • the data processing module 301 determines that the power station component is the component to be operated and maintained, and determines the component operation and maintenance parameters of the component to be operated and maintained. When the operation and maintenance parameters meet the operation and maintenance conditions, the component to be operated and maintained is determined as the target operation and maintenance component.
  • the components to be operated and maintained in this application can be understood as power station components that may need to be operated and maintained.
  • the component operation and maintenance parameters of the components to be operated and maintained are the component operation and maintenance parameters of the power station components.
  • This application may collectively refer to the conditions for determining that the components to be operated and maintained need to be operated and maintained as operation and maintenance conditions.
  • the data processing module 301 can perform image data analysis on the visible light image data of the photovoltaic component, so as to quickly and conveniently check the surface fault of the photovoltaic component (such as whether the surface of the photovoltaic component is damaged or stained).
  • the surface fault of the photovoltaic component such as whether the surface of the photovoltaic component is damaged or stained.
  • an abnormal alarm of the photovoltaic module can be output in time, which improves the power supply reliability of the photovoltaic module.
  • the data processing module 301 can perform image data analysis on the visible light image data of the transmission tower, so as to quickly and conveniently check the surface fault of the transmission tower (such as the integrity of the pins at the insulator connection of the transmission tower).
  • the surface fault of the transmission tower such as the integrity of the pins at the insulator connection of the transmission tower.
  • the data processing module 301 can perform image data analysis on the visible light image data of the booster tower, so as to check the surface fault of the booster tower (such as the oil leakage phenomenon of the transformer in the booster tower).
  • the pressure tower When the pressure tower has surface faults, it is determined that the pressure riser tower is a faulty component; at the same time, an abnormal alarm of the pressure riser tower can be output in time, thereby eliminating the hidden danger of accidents.
  • the power station components are photovoltaic modules
  • the temperature or thermal infrared area of the shielded part of the photovoltaic module will be much larger than the temperature or thermal infrared area of the unshielded part (such as 0), thus forming a photovoltaic Module hot spot
  • the data processing module 301 can determine the test temperature of the photovoltaic module (such as the temperature of the shaded part of the photovoltaic module) or the thermal infrared area from the thermal infrared image data of the photovoltaic module.
  • the photovoltaic module is determined to be a photovoltaic module with hot spots.
  • the data processing module 301 can determine the test temperature of the power transmission tower and/or the booster tower from the thermal infrared image data of the power transmission tower and/or the booster tower (for example, it may be a power transmission tower and/or a booster tower).
  • the temperature of the transmission equipment in the tower and/or the temperature of each connection point in the booster tower) or thermal infrared area determine the transmission tower and/or the thermal infrared area.
  • the boost tower has a thermal IR fault.
  • the data processing module 301 determines that the photovoltaic modules and/or the power transmission towers and/or the booster towers are faulty components when the photovoltaic modules and/or the power transmission towers and/or the booster towers have thermal infrared faults.
  • the transmission tower and/or the booster tower are components to be operated and maintained, and when the component operation and maintenance parameters of the components to be operated and maintained meet the operation and maintenance conditions, the component to be operated and maintained is determined as the target operation and maintenance component.
  • the data processing module 301 is further configured to determine whether the power station component has a surface fault according to the visible light image data, and determine that the power station component is a normal component when the power station component does not have a surface fault. Meanwhile, the data processing module 301 is further configured to determine that the power station component does not have a thermal infrared fault when it is detected that the test temperature of the power station component is less than or equal to the preset temperature threshold, or the component thermal infrared area is less than or equal to the preset area threshold.
  • the data processing module 301 determines that the power station component does not need to be operated and maintained, that is, the power station component is a normal component.
  • the data collection terminal 40a to the data collection terminal 40n may include two kinds of data collection terminals, such as a visible light data collection terminal (such as the data collection terminal 40a) and a short-wave infrared data collection terminal (the data collection terminal 40n),
  • the n types of component image data may include two types of component image data, such as visible light image data and short-wave infrared image data. It can be understood that the short-wave infrared image data can display the defect form of the power station component, which is convenient for subsequent determination that the power station component has the target defect.
  • the data processing module 301 is configured to determine whether the power station component has a surface fault according to the visible light image data, and determine that the power station component is a faulty component when the power station component has a surface fault. Meanwhile, the data processing module 301 can also be used to determine the shape of the power station component according to the infrared image data. If the shape of the power station component is included in the defect shape sample database, it is determined that the power station component has the target defect.
  • the defect sample database here may be a sample database pre-stored in the data processing module 301 containing the defect forms of the power station components, or the data processing module 301 may directly call the defect form sample database of the power station components in the third-party software.
  • the defect sample database may contain sample data of various defect forms of power plant components (such as photovoltaic modules and/or transmission towers and/or booster towers).
  • the data processing module 301 is used to determine the shape of the power station component (the shape here may be a defect shape or a normal component shape) according to the short-wave infrared image data, and the shape of the power station component and the various defect shapes in the defect shape sample database Matching is performed. If a target defect shape matching the shape of the power station component is matched among multiple defect shapes, it is determined that the shape of the power station component is included in the defect shape sample database, and it is determined that the power station component has the target defect shape corresponding to the shape.
  • the target defect that is, the power plant component is a power plant component with the target defect.
  • the data processing module 301 is also configured to determine that the defect form is related to the power station component when the matching degree (ie, similarity, such as 80% or other values) between the form of the power station component and the defect form is greater than the matching degree threshold.
  • the morphology matches the target defect morphology.
  • the matching degree threshold here can be a manually set value or a default value.
  • the data processing module 301 is configured to determine that the power station component is the component to be operated and maintained when the power station component is a faulty component and the power station component has a target defect, and determines the component operation and maintenance parameters of the component to be operated and maintained, and the When the component operation and maintenance parameters meet the operation and maintenance conditions, the component to be operated and maintained is determined as the target operation and maintenance component.
  • the data processing module 301 can perform image data analysis on the visible light image data of the photovoltaic component, so as to quickly and conveniently check the surface fault of the photovoltaic component (such as whether the surface of the photovoltaic component is damaged or stained).
  • the PV module is determined to be a faulty module.
  • various defect forms in the defect form sample database will be described by taking the defect form of photovoltaic modules as an example.
  • FIG. 4 is a schematic diagram of an application scenario of the short-wave infrared image data provided by the present application.
  • the defect shape sample database eg, the defect shape sample database 2
  • may contain multiple defect shapes eg, the defect shape 20 a to the defect shape 20 n ).
  • the defect form 20a may be a crack defect form
  • the defect form 20b may be a hot spot defect form
  • the defect form 20n may be a bypass diode defect form.
  • the data processing module 301 determines the form of the photovoltaic module (such as the form 10 of the photovoltaic module) according to the short-wave infrared image data, it can match the form 10 of the photovoltaic module and the above-mentioned defect form 20a to the defect form 20n respectively, and can obtain the photovoltaic module.
  • the form 10 matches the target defect form (such as the above-mentioned defect form 20a), that is, the photovoltaic module has the target defect (such as crack defect) corresponding to the defect form 20a, in other words, the photovoltaic module is a component with crack defects .
  • the data processing module 301 determines that the photovoltaic component is a component to be operated and maintained when the photovoltaic component is a faulty component and the photovoltaic component has a crack defect, and determines when the component operation and maintenance parameters of the component to be operated and maintained meet the operation and maintenance conditions.
  • the component to be operated and maintained is the target operation and maintenance component.
  • the data processing module 301 is further configured to determine whether the power station component has a surface fault according to the visible light image data, and determine that the power station component is a normal component when the power station component does not have a surface fault. At the same time, the data processing module 301 is further configured to determine that the form of the power station component is not included in the defect form sample database if the target defect form matching the form of the power station component is not matched among the various defect forms, and then it can be determined that the form of the power station component is not included in the defect form sample database The power station components are free of defects. Further, when the power station component is a normal component and the power station component does not have defects, the data processing module 301 determines that the power station component does not need to be operated and maintained, that is, the power station component is a normal component.
  • the data acquisition terminal 40a to the data acquisition terminal 40n may include two types of data acquisition terminals, such as a thermal infrared data acquisition terminal (data acquisition terminal 40b) and a short-wave infrared data acquisition terminal (data acquisition terminal 40n),
  • the n types of component image data may contain two types of component image data, such as thermal infrared image data and short-wave infrared image data.
  • the data processing module 301 can also be used to determine the test temperature or the thermal infrared area of the power station component according to the thermal infrared image data.
  • the data processing module 301 can also be used to determine the shape of the power station component according to the infrared image data. If the shape of the power station component is included in the defect shape sample database, it is determined that the power station component has the target defect. Further, the data processing module 301 is configured to determine that the power station component is the component to be operated and maintained when the power station component has a thermal infrared fault and the power station component has a target defect, and to determine the component operation and maintenance parameters of the component to be operated and maintained, and then the component to be operated and maintained. When the component operation and maintenance parameters of the component satisfy the operation and maintenance conditions, the component to be operated and maintained is determined as the target operation and maintenance component.
  • the data processing module 301 is further configured to determine whether the power station component has a surface fault according to the visible light image data, and determine that the power station component is a normal component when the power station component does not have a surface fault. At the same time, the data processing module 301 is further configured to determine that the form of the power station component is not included in the defect form sample database if the target defect form matching the form of the power station component is not matched among the various defect forms, and then it can be determined that the form of the power station component is not included in the defect form sample database The power station components are free of defects. Further, when the power station component does not have thermal infrared faults and the power station component does not have defects, the data processing module 301 determines that the power station component does not need to be operated and maintained, that is, the power station component is a normal component.
  • the data acquisition terminal 40a to the data acquisition terminal 40n may include three types of data acquisition terminals, such as a visible light data acquisition terminal (such as the data acquisition terminal 40a), a thermal infrared data acquisition terminal (the data acquisition terminal 40b) and In the short-wave infrared data acquisition terminal (data acquisition terminal 40n), the n types of component image data may include three types of component image data, such as visible light image data, thermal infrared image data, and short-wave infrared image data.
  • the data processing module 301 is configured to determine whether the power station component has a surface fault according to the visible light image data, and determine that the power station component is a faulty component when the power station component has a surface fault.
  • the data processing module 301 can also be used to determine the test temperature or thermal infrared area of the power station component according to the thermal infrared image data. If the test temperature is greater than the preset temperature threshold or the thermal infrared area is greater than the threshold area threshold, it is determined that the power station component has thermal infrared faults (such as hot spots). At this time, the data processing module 301 can also be used to determine the shape of the power station component according to the infrared image data. If the shape of the power station component is included in the defect shape sample database, it is determined that the power station component has the target defect.
  • the data processing module 301 is configured to determine that the power station component is a component to be operated and maintained, and determine the component operation and maintenance of the component to be operated and maintained when the power station component is a faulty component, the power station component has a thermal infrared fault, and the power station component has a target defect. parameter, when the component operation and maintenance parameters of the component to be operated and maintained meet the operation and maintenance conditions, the component to be operated and maintained is determined as the target operation and maintenance component.
  • the data processing module 301 is further configured to determine whether the power station component has a surface fault according to the visible light image data, and determine that the power station component is a normal component when the power station component does not have a surface fault. Meanwhile, the data processing module 301 can also be used to determine that the power station component does not have a thermal infrared fault when it is detected that the test temperature of the power station component is less than or equal to a preset temperature threshold, or the component thermal infrared area is less than or equal to a preset area threshold.
  • the data processing module 301 is further configured to determine that the form of the power station component is not included in the defect form sample database if the target defect form matching the form of the power station component is not matched among the various defect forms, and further It can be determined that the power plant components are not defective. Further, the data processing module 301 determines that the power station component does not need to be operated and maintained when the power station component is a normal component, the power station component does not have thermal infrared faults, and the power station component has no defect, that is, the power station component is a normal component.
  • the component operation and maintenance parameters of the components to be operated and maintained may include, but are not limited to, at least one of a power generation loss value and a safety risk parameter of the components to be operated and maintained.
  • the data processing module 301 is configured to determine the power generation loss value and safety risk parameter of the component to be operated and maintained based on the power generation loss calculation model and/or other models and algorithms, which can be specifically determined according to the actual application scenario, which is not limited here.
  • the models having the function of calculating the power generation loss value of the components to be operated and maintained may be collectively referred to as the power generation loss calculation model.
  • the data processing module 301 is used to input parameters such as the power loss value of the component to be operated and maintained, the local annual utilization hours and the on-grid electricity price into the power generation loss calculation model, and the power loss calculation model will output the power loss of the component to be operated and maintained.
  • Loss of power generation value eg annual power generation loss value
  • the data processing module 301 is further configured to determine the power generation loss value (such as the annual power generation loss value) of the component to be operated and maintained based on the power generation of the component to be operated and maintained recorded by the inverter, which is specifically determined according to the actual application scenario. , which is not limited here.
  • the data processing module 301 is further configured to determine that the component operation and maintenance parameters of the component to be operated and maintained meet the operation and maintenance conditions when the power generation loss value of the component to be operated and maintained is greater than or equal to the power generation loss threshold value, and to classify the component to be operated and maintained. Determined as the target operation and maintenance component.
  • the power generation loss threshold here can be an artificially set value or a factory default value of a power station component (such as a component to be operated and maintained).
  • the data processing module 301 is further configured to determine the spare parts replacement cost and the labor replacement cost of the components to be operated and maintained (such as diodes and/or terminals), which are determined according to the above-mentioned annual power generation loss value, the spare part replacement cost, and the labor replacement cost.
  • the payback period of the failure operation and maintenance of the component to be operated and maintained and determine the target operation and maintenance investment payback period (such as the operation and maintenance investment payback period expected by the customer).
  • the target operation and maintenance investment payback period such as the operation and maintenance investment payback period expected by the customer.
  • the component operation and maintenance parameters of the component to be operated and maintained include the security risk parameter of the component to be operated and maintained
  • the data processing module 301 is further configured to be used when the security risk parameter of the component to be operated and maintained is greater than or equal to the security risk threshold , determine that the component operation and maintenance parameters of the component to be operated and maintained meet the operation and maintenance conditions, and determine the component to be operated and maintained as the target operation and maintenance component.
  • the security risk threshold here can be a manually set value or a factory default value of a power station component (such as a component to be operated and maintained).
  • the specific parameters in the component operation and maintenance parameters of the components to be operated and maintained in this application may be determined by actual application scenarios, which are not limited herein.
  • the component operation and maintenance parameters of the component to be operated and maintained include the power generation loss value and the safety risk parameter of the component to be operated and maintained. Or equal to the power generation loss threshold, and/or when the security risk parameter of the component to be operated and maintained is greater than or equal to the security risk threshold, determine that the component operation and maintenance parameter of the component to be operated and maintained meets the operation and maintenance conditions, and determine the component to be operated and maintained as the target Operational components.
  • the central controller 30 is further configured to output a component abnormality alarm when it is determined that the power station component is the target operation and maintenance component.
  • the manner in which the central controller 30 outputs component abnormality alarms may include, but is not limited to, alarms through buzzers (such as piezoelectric buzzers or electromagnetic buzzers), alarms through abnormal prompt information (such as short messages), and the like.
  • alarms through buzzers such as piezoelectric buzzers or electromagnetic buzzers
  • alarms through abnormal prompt information such as short messages
  • the central controller 30 can send abnormality prompting information alarms to the ground control station.
  • the abnormality prompting information here may include relevant information about the target operation and maintenance components information (such as image data, exception type, and geographic location data of the target operation and maintenance component), then the power station operation and maintenance personnel can further operate and maintain the target operation and maintenance component according to the abnormal prompt information, thereby improving the operation and maintenance efficiency and power supply reliability. Sex is stronger.
  • the data processing module (eg, the data processing module 301 ) is further configured to determine the exception type of the target operation and maintenance component, and generate an exception type of the target operation and maintenance component based on the exception type of the target operation and maintenance component and the component operation and maintenance parameters. Operations report.
  • the abnormal types of the target operation and maintenance components can include three types, which can specifically include surface fault types, thermal infrared fault types, and defect types.
  • the present application may refer to the above-mentioned abnormal types of faulty components with surface faults as surface fault types.
  • the present application may also refer to the above abnormal types of power plant components with thermal infrared faults as thermal infrared fault types.
  • the present application may also refer to the above types of defective power plant components as defective types.
  • the operation and maintenance report of the target operation and maintenance component may include, but is not limited to, the geographic location data, quantity, and exception type of the target operation and maintenance component, and so on.
  • the data processing module 301 can inform the power station operation and maintenance personnel to check the operation and maintenance report of the target operation and maintenance component in time, so that the power station operation and maintenance personnel can perform the operation and maintenance of the target operation and maintenance component through the operation and maintenance report. It can be repaired or replaced, thereby improving the operation and maintenance efficiency and power supply reliability, and the applicability is stronger.
  • the central controller 30 shown in FIG. 2 may further include a wireless fidelity (WIFI) communication module (such as the WIFI communication module 302 ) or the 5th generation mobile networks /5th generation wireless systems/5th-generation, may be referred to as 5G or 5G technology) communication module (such as 5G communication module 303).
  • WIFI wireless fidelity
  • the WIFI communication module 302 or the 5G communication module 303 can be used to transmit relevant information of the target operation and maintenance component (such as image data of the target operation and maintenance component, abnormal type and geographic location data) to the ground control station.
  • the communication module 302 transmits the relevant information of the target operation and maintenance component
  • the information transmission distance can be increased
  • the 5G communication module 303 wirelessly transmits the relevant information of the target operation and maintenance component
  • the security of information transmission is improved.
  • the WIFI communication module 302 or the 5G communication module 303 transmits the relevant information of the target operation and maintenance component to the ground control station
  • the power station operation and maintenance personnel can repair or replace the target operation and maintenance component according to the relevant information of the target operation and maintenance component, which improves the efficiency of the operation and maintenance. Operation and maintenance efficiency and power supply reliability are more applicable.
  • the WIFI communication module 302 or the 5G communication module 303 can also transmit the image data of n kinds of components of the power station components to the ground control station to identify the target operation and maintenance components. powerful.
  • FIG. 5 is another schematic structural diagram of the power station inspection system provided by the present application.
  • the power station inspection system 1 shown in FIG. 2 may further include a wireless charging module (eg, a wireless charging module 50 ).
  • the wireless charging module 50 can be used to wirelessly charge the onboard battery of the drone 10 , which is not limited by wired charging, improves the endurance of the drone, and has stronger applicability.
  • the power station inspection system provided in this application can quickly determine whether a power station component is a target operation and maintenance component, with simple operation, high efficiency and strong applicability.
  • FIG. 6 is a schematic flowchart of a power station inspection method provided by the present application.
  • the power station inspection method provided by the present application is applicable to the central controller of the power station inspection system provided by the above-mentioned FIGS. 2 to 5 , and the method includes the steps:
  • the central controller acquires from at least two kinds of data collection terminals at least two kinds of component image data of power plant components collected by at least two kinds of data collection terminals during the flight of the drone.
  • the central controller determines whether the power station component is the target operation and maintenance component according to the at least two types of component image data collected by the at least two types of data acquisition terminals and the component operation and maintenance parameters of the power station component.
  • the at least two types of data acquisition terminals include visible light data acquisition terminals and thermal infrared data acquisition terminals
  • the at least two types of component image data include visible light image data and thermal infrared image data.
  • the central controller determines whether the power station component has a surface fault according to the visible light image data, and determines that the power station component is a faulty component when the power station component has a surface fault. At the same time, the central controller can also determine the test temperature or thermal infrared area of the power station component according to the thermal infrared image data.
  • the central controller determines that the power station component is a component to be operated and maintained. At this time, the central controller may determine the component operation and maintenance parameters of the component to be operated and maintained, and determine the component to be operated and maintained as the target operation and maintenance component when the component operation and maintenance parameters of the component to be operated and maintained meet the operation and maintenance conditions.
  • the central controller may determine whether the power station component has a surface fault according to the visible light image data, and determine that the power station component is a normal component when the power station component does not have a surface fault. At the same time, the central controller can determine that the power station component does not have a thermal infrared fault when it detects that the test temperature of the power station component is less than or equal to the preset temperature threshold, or the component thermal infrared area is less than or equal to the preset area threshold. Further, when the power station components are normal components and the power station components do not have thermal infrared faults, the central controller determines that the power station components do not need to be operated and maintained, that is, the power station components are normal components.
  • the at least two types of data collection terminals include visible light data collection terminals and short-wave infrared data collection terminals
  • the at least two types of component image data include visible light image data and short-wave infrared image data.
  • the central controller determines whether the power station component has a surface fault according to the visible light image data, and determines that the power station component is a faulty component when the power station component has a surface fault.
  • the central controller can also determine the shape of the power station component according to the infrared image data. If the shape of the power station component is included in the defect shape sample database, it is determined that the power station component has the target defect.
  • the central controller determines that the power station component is a component to be operated and maintained. At this time, the central controller may determine the component operation and maintenance parameters of the component to be operated and maintained, and determine the component to be operated and maintained as the target operation and maintenance component when the component operation and maintenance parameters of the component to be operated and maintained meet the operation and maintenance conditions.
  • the central controller may determine whether the power station component has a surface fault according to the visible light image data, and determine that the power station component is a normal component when the power station component does not have a surface fault. At the same time, if there is no target defect form matching the form of the power station component among the various defect forms, the central controller can determine that the form of the power station component is not included in the defect form sample database, and further can determine that the power station component is not has defects. Further, when the power station component is a normal component and the power station component does not have defects, the central controller may determine that the power station component does not need to be operated and maintained, that is, the power station component is a normal component.
  • the at least two types of data acquisition terminals include thermal infrared data acquisition terminals and short-wave infrared data acquisition terminals
  • the at least two types of component image data include thermal infrared image data and short-wave infrared image data.
  • the central controller can also determine the test temperature or thermal infrared area of the power station component according to the thermal infrared image data. If the test temperature is greater than the preset temperature threshold or the thermal infrared area is greater than the threshold area threshold, it is determined that the power station component has a thermal infrared fault (such as a hot spot). ). At the same time, the central controller can also determine the shape of the power station component according to the infrared image data.
  • the central controller determines that the power station component has the target defect. Further, when the power station component has a thermal infrared fault and the power station component has a target defect, the central controller determines that the power station component is a component to be operated and maintained. At this time, the central controller determines the component operation and maintenance parameters of the component to be operated and maintained, and determines the component to be operated and maintained as the target operation and maintenance component when the component operation and maintenance parameters of the component to be operated and maintained meet the operation and maintenance conditions.
  • the central controller may determine whether the power station component has a surface fault according to the visible light image data, and determine that the power station component is a normal component when the power station component does not have a surface fault. At the same time, if the central controller does not match the target defect form that matches the form of the power station component among the various defect forms, it is determined that the form of the power station component is not included in the defect form sample database, and then it can be determined that the power station component does not have defect. Further, when the power station component does not have thermal infrared faults and the power station component does not have defects, the central controller determines that the power station component does not need to be operated and maintained, that is, the power station component is a normal component.
  • the at least two types of data acquisition terminals include visible light data acquisition terminals, thermal infrared data acquisition terminals, and short-wave infrared data acquisition terminals
  • the at least two types of component image data include visible light component image data, thermal infrared image data, and short-wave infrared data.
  • the central controller determines whether the power station component has a surface fault according to the visible light image data, and determines that the power station component is a faulty component when the power station component has a surface fault. At the same time, the central controller can also determine the test temperature or thermal infrared area of the power station component according to the thermal infrared image data.
  • the central controller can also determine the shape of the power station component according to the infrared image data. If the shape of the power station component is included in the defect shape sample database, it is determined that the power station component has the target defect. Further, when the power station component is a faulty component, the power station component has a thermal infrared fault, and the power station component has a target defect, the central controller determines that the power station component is a component to be operated and maintained. At this time, the central controller may determine the component operation and maintenance parameters of the component to be operated and maintained, and determine the component to be operated and maintained as the target operation and maintenance component when the component operation and maintenance parameters of the component to be operated and maintained meet the operation and maintenance conditions.
  • the central controller may determine whether the power station component has a surface fault according to the visible light image data, and determine that the power station component is a normal component when the power station component does not have a surface fault. At the same time, when the central controller detects that the test temperature of the power station component is less than or equal to the preset temperature threshold, or the component thermal infrared area is less than or equal to the preset area threshold, it determines that the power station component does not have a thermal infrared fault. At the same time, if the central controller does not match the target defect form matching the form of the power station component among the various defect forms, it is determined that the form of the power station component is not included in the defect form sample database, and then the power station component can be determined. Does not have defects.
  • the central controller determines that the power station components do not need to be operated and maintained, that is, the power station components are normal components.
  • the component operation and maintenance parameters of the component to be operated and maintained include at least one of a power generation loss value and a safety risk parameter of the component to be operated and maintained.
  • the central controller may determine the power generation loss value and/or the safety risk parameter of the component to be operated and maintained based on the power generation loss calculation model and/or other methods.
  • the central controller may determine the component to be operated and maintained when the power loss value of the component to be operated and maintained is greater than or equal to the power generation loss threshold
  • the operation and maintenance parameters of the components meet the operation and maintenance conditions, and the component to be operated and maintained is determined as the target operation and maintenance component.
  • the central controller may determine the component operation and maintenance parameters of the component to be operated and maintained when the security risk parameter of the component to be operated and maintained is greater than or equal to the security risk threshold
  • the maintenance parameters meet the operation and maintenance conditions, and the component to be operated and maintained is determined as the target operation and maintenance component.
  • the central controller determines the abnormality type of the target operation and maintenance component, and generates an operation and maintenance report of the target operation and maintenance component according to the abnormality type of the target operation and maintenance component and the component operation and maintenance parameters.
  • the abnormal types of the target operation and maintenance components can include three types, which can specifically include surface fault types, thermal infrared fault types, and defect types.
  • the present application may refer to the above-mentioned abnormal types of faulty components with surface faults as surface fault types.
  • the present application may also refer to the above abnormal types of power plant components with thermal infrared faults as thermal infrared fault types.
  • the present application may also refer to the above types of defective power plant components as defective types.
  • the operation and maintenance report of the target operation and maintenance component may include, but is not limited to, the geographic location data, quantity, and exception type of the target operation and maintenance component, and so on.
  • the central controller After the central controller generates the operation and maintenance report of the target operation and maintenance component, it can inform the power station operation and maintenance personnel to check the operation and maintenance report of the target operation and maintenance component in time, so that the power station operation and maintenance personnel can repair the target operation and maintenance component through the operation and maintenance report. Or replace, thereby improving the operation and maintenance efficiency and power supply reliability, and the applicability is stronger.
  • the central controller outputs a component abnormality alarm when determining that the power station component is the target operation and maintenance component.
  • the manner in which the central controller outputs component abnormality alarms may include, but is not limited to: alarms through buzzers (such as piezoelectric buzzers or electromagnetic buzzers), alarms through abnormal prompt information (such as short messages), and the like.
  • alarms through buzzers such as piezoelectric buzzers or electromagnetic buzzers
  • abnormal prompt information such as short messages
  • the central controller can send abnormality prompt information alarms to the ground control station.
  • the abnormal prompt information here can include the relevant information of the target operation and maintenance component.
  • the power station operation and maintenance personnel can further operate and maintain the target operation and maintenance component according to the abnormal prompt information, thereby improving the operation and maintenance efficiency and power supply reliability. Sex is stronger.
  • the image data of at least two types of component image data of the power station component can be collaboratively analyzed, and then the component operation and maintenance parameters of the power station component can be combined to quickly determine whether the power station component is the target operation and maintenance component, thereby improving the flexibility of the system. performance, easy operation, high operation and maintenance efficiency, and stronger applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Remote Sensing (AREA)
  • Quality & Reliability (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

一种电站巡视系统及电站巡视方法,该电站巡视系统(1)包括无人机(10)以及设置于无人机(10)上的无人机飞行控制器(20)、中央控制器(30)和至少两种数据采集终端(40a,40b……40n)。中央控制器(30)用于控制无人机飞行控制器(20),以使无人机飞行控制器(20)控制无人机(10)的飞行。中央控制器(30)还用于控制至少两种数据采集终端(40a,40b……40n)在无人机(10)飞行过程中采集电站组件的至少两种组件图像数据。中央控制器(30)还用于根据至少两种数据采集终端(40a,40b……40n)所采集的至少两种组件图像数据以及电站组件的组件运维参数,确定电站组件是否为目标运维组件。可对至少两种组件图像数据进行图像数据协同分析,并结合组件运维参数以快速确定电站组件是否为目标运维组件,操作简便,效率高,适用性强。

Description

电站巡视系统及电站巡视方法 技术领域
本申请涉及电子电力技术领域,尤其涉及一种电站巡视系统及电站巡视方法。
背景技术
目前,由于多数光伏电站地域偏远且站点分散,对这些光伏电站进行人工运维的效率低下,因此,智能运维已经成为光伏电站发展的必然趋势。现有技术中,一般会通过无人机(unmanned aerial vehicle,UAV)巡检代替人工巡检对光伏电站进行智能运维,从而快速且准确地定位组件(如光伏组件)的缺陷以及故障。当前的无人机架构需要将大量光伏组件的数据传输到地面控制站,并通过地面控制站的站控管理系统确定出需要运维的光伏组件,操作繁琐,效率低下,适用性差。
发明内容
本申请提供了一种电站巡视系统及电站巡视方法,可对至少两种组件图像数据进行图像数据协同分析,并结合组件运维参数以快速确定电站组件是否为目标运维组件,操作简便,效率高,适用性强。
第一方面,本申请提供了一种电站巡视系统,电站巡视系统包括无人机以及设置于无人机上的无人机飞行控制器、中央控制器以及至少两种数据采集终端。中央控制器用于控制无人机飞行控制器,以使无人机飞行控制器控制无人机的飞行。中央控制器还用于协同控制至少两种数据采集终端在无人机飞行过程中采集电站组件的至少两种组件图像数据。中央控制器还用于根据至少两种数据采集终端所采集的至少两种组件图像数据以及电站组件的组件运维参数,确定电站组件是否为目标运维组件。这里的目标运维组件可以理解为需要运维的组件。在本申请中,设置于无人机上的中央控制器可直接对至少两种组件图像数据进行图像数据协同分析,并根据图像数据协同分析结果以及组件运维参数(如安全风险参数或者发电量损失值)确定电站组件是否为目标运维组件,无需将至少两种组件图像数据传送至地面控制站等系统外的功能模块处理,操作简便,协同效率高,适用性更强。
结合第一方面,在第一种可能的实施方式中,中央控制器中包括数据处理模块。上述数据处理模块用于根据至少两种数据采集终端所采集的至少两种组件图像数据、电站组件的组件运维参数确定电站组件是否为目标运维组件。这里的数据处理模块可以包含具有为中央控制器提供边缘计算算力的功能的可拔插芯片和/或具有数据处理功能的第三方软件和/或硬件,且数据处理模块可根据安装需求(如通讯接口需求)接入中央控制器,操作灵活,且便于更新或者升级该数据处理模块,成本低。在本申请中,数据处理模块直接对至少两种组件图像数据进行图像数据协同分析,并根据图像数据分析结果以及组件运维参数确定电站组件是否为目标运维组件,无需将至少两种组件图像数据传送至地面控制站等系统外的功能模块处理,操作简便,图像数据的协同处理效率高,适用性更强。
结合第一方面第一种可能的实现方式,在第二种可能的实施方式中,至少两种数据采集终端包括可见光数据采集终端和热红外数据采集终端,至少两种组件图像数据包括可见光图像数据和热红外图像数据。数据处理模块用于在基于可见光图像数据确定电站组件为故障组件,且基于热红外图像数据确定电站组件的测试温度大于预置温度阈值或者组件热红外面积大于预置面积阈值时,确定电站组件为待运维组件,并确定待运维组件的组件运维参数,在待运维组件的组件运维参数满足运维条件时确定待运维组件为目标运维组件。这里的待运维组件可以理解为可能需要运维的电站组件,在电站组件为待运维组件时,待运维组件的组件运维参数为电站组件的组件运维参数。在本申请中,数据处理模块对可见光图像数据和热红外图像数据进行图像数据协同分析,确定电站组件是否具有表面故障以及热红外故障,进而可以将具有表面故障以及热红外故障的电站组件作为待运维组件,这时可以根据待运维组件的组件运维参数确定待运维组件是否为目标运维组件,操作简便,图像数据的协同处理效率高,适用性更强。
结合第一方面第一种可能的实现方式,在第三种可能的实施方式中,至少两种数据采集终端包括可见光数据采集终端和短波红外数据采集终端,至少两种组件图像数据包括可见光图像数据和短波红外图像数据。数据处理模块用于在基于可见光图像数据确定电站组件为故障组件且基于短波红外图像数据确定电站组件的形态包含于缺陷形态样本数据库时,确定电站组件为待运维组件,并确定待运维组件的组件运维参数,在待运维组件的组件运维参数满足运维条件时确定待运维组件为目标运维组件。在本申请中,数据处理模块对可见光图像数据和短波红外图像数据进行图像数据协同分析,确定电站组件是否具有表面故障以及短波红外故障,进而可以将具有表面故障以及短波红外故障的电站组件作为待运维组件,这时可以根据待运维组件的组件运维参数确定待运维组件是否为目标运维组件,操作简便,图像数据的协同处理效率高,适用性更强。
结合第一方面第一种可能的实现方式,在第四种可能的实施方式中,至少两种数据采集终端包括热红外数据采集终端和短波红外数据采集终端,至少两种组件图像数据包括热红外图像数据和短波红外图像数据。数据处理模块用于在基于热红外图像数据确定电站组件的测试温度大于预置温度阈值或者组件热红外面积大于预置面积阈值,且基于短波红外图像数据确定电站组件的形态包含于缺陷形态样本数据库时,确定电站组件为待运维组件,并确定待运维组件的组件运维参数,并在待运维组件的组件运维参数满足运维条件时确定待运维组件为目标运维组件。在本申请中,数据处理模块对热红外图像数据和短波红外图像数据进行图像数据协同分析,确定电站组件是否具有热红外故障以及短波红外故障,进而可以将具有热红外故障以及短波红外故障的电站组件作为待运维组件,这时可以根据待运维组件的组件运维参数确定待运维组件是否为目标运维组件,操作简便,图像数据的协同处理效率高,适用性更强。
结合第一方面第一种可能的实现方式,在第五种可能的实施方式中,至少两种数据采集终端包括可见光数据采集终端、热红外数据采集终端以及短波红外数据采集终端,至少两种组件图像数据包括可见光组件图像数据、热红外图像数据和短波红外图像数据。数据处理模块用于在基于可见光图像数据确定电站组件为故障组件、基于热红外图像数据确定电站组件的测试温度大于预置温度阈值或者组件热红外面积大于预置面积阈值、且基于短 波红外图像数据确定电站组件的形态包含于缺陷形态样本数据库时,确定电站组件为待运维组件,并确定待运维组件的组件运维参数,并在待运维组件的组件运维参数满足运维条件时确定待运维组件为目标运维组件。在本申请中,数据处理模块对可见光组件图像数据、热红外图像数据和短波红外图像数据进行图像数据协同分析,确定电站组件是否具有表面故障、热红外故障以及短波红外故障,进而可以将具有表面故障、热红外故障以及短波红外故障的电站组件作为待运维组件,这时可以根据待运维组件的组件运维参数确定待运维组件是否为目标运维组件,操作简便,图像数据的协同处理效率高,适用性更强。
结合第一方面第二种可能的实施方式至第一方面第五种可能的实施方式中任一种,在第六种可能的实施方式中,待运维组件的组件运维参数包括待运维组件的发电量损失值和安全风险参数中的至少一种。在本申请中,这里的待运维组件的发电量损失值和安全风险参数用于确定待运维组件是否为目标运维组件,操作简便,效率高。
结合第一方面第六种可能的实施方式,在第七种可能的实施方式中,待运维组件的组件运维参数包括待运维组件的发电量损失值。数据处理模块还用于在待运维组件的发电量损失值大于或者等于发电量损失阈值时,确定待运维组件的组件运维参数满足运维条件,并将待运维组件确定为目标运维组件。这里的发电量损失阈值可以为人为设置的值或者组件的默认值。在本申请中,数据处理模块可以将发电量损失值大于或者等于发电量损失阈值的待运维组件确定为目标运维组件,以使电站运维人员尽快对该目标运维组件进行运维处理。
结合第一方面第六种可能的实施方式,在第八种可能的实施方式中,待运维组件的组件运维参数包括待运维组件的安全风险参数。数据处理模块还用于在待运维组件的安全风险参数大于或者等于安全风险阈值时,确定待运维组件的组件运维参数满足运维条件,并将待运维组件确定为目标运维组件。这里的安全风险阈值可以为人为设置的值或者组建的默认值。在本申请中,数据处理模块可以将安全风险参数大于或者等于安全风险阈值的待运维组件确定为目标运维组件,以使电站运维人员尽快对该目标运维组件进行运维处理。
结合第一方面至第一方面第八种可能的实施方式中任一种,在第九种可能的实施方式中,数据处理模块还用于确定目标运维组件的异常类型,并基于目标运维组件的异常类型以及组件运维参数生成目标运维组件的运维报告。在本申请提供的电站巡视系统中,数据处理模块可快速生成目标运维组件的运维报告,便于电站运维人员查看运维报告并对目标运维组件进行更新或者替换,效率高,适用性更强。
结合第一方面至第一方面第九种可能的实施方式中任一种,在第十种可能的实施方式中,中央控制器包括无线网络通讯模块或者第五代移动通信技术5G通讯模块。在本申请提供的电站巡视系统中,无线网络通讯模块或者5G通讯模块可以快速将目标运维组件的图像数据以及地理位置数据传输到地面控制站,以使电站运维人员及时对目标运维组件进行修整或者替换,提高了电站巡视效率和电站供电可靠性,适用性更强。
结合第一方面至第一方面第十种可能的实施方式中任一种,在第十一种可能的实施方式中,中央控制器用于通过并行通讯接口与至少两个数据采集终端中各数据采集终端进行独立并行通讯。在本申请提供的电站巡视系统中,中央控制器可与各数据采集终端进行独立并行通讯,可以实现数据同步传输,且传输速度快,效率高。
第二方面,本申请提供了一种电站巡视方法,该方法适用于上述第一方面至第一方面第十一种可能的实现方式中任一种提供的电站巡视系统中的中央控制器。在该方法中,中央控制器从至少两种数据采集终端获取至少两种数据采集终端在无人机飞行过程中采集的电站组件的至少两种组件图像数据;中央控制器根据至少两种数据采集终端所采集的至少两种组件图像数据以及电站组件的组件运维参数,确定电站组件是否为目标运维组件。
结合第二方面,在第一种可能的实现方式中,至少两种数据采集终端包括可见光数据采集终端和热红外数据采集终端,至少两种组件图像数据包括可见光图像数据和热红外图像数据。中央控制器在基于可见光图像数据确定电站组件为故障组件且基于热红外图像数据确定电站组件的测试温度大于预置温度阈值或者组件热红外面积大于预置面积阈值时,确定电站组件为待运维组件;中央控制器确定待运维组件的组件运维参数,并在待运维组件的组件运维参数满足运维条件时确定待运维组件为目标运维组件。
结合第二方面,在第二种可能的实现方式中,至少两种数据采集终端包括可见光数据采集终端和短波红外数据采集终端,至少两种组件图像数据包括可见光图像数据和短波红外图像数据。中央控制器在基于可见光图像数据确定电站组件为故障组件且基于短波红外图像数据确定电站组件的形态包含于缺陷形态样本数据库时,确定电站组件为待运维组件;中央控制器确定待运维组件的组件运维参数,并在待运维组件的组件运维参数满足运维条件时确定待运维组件为目标运维组件。
结合第二方面,在第三种可能的实现方式中,至少两种数据采集终端包括热红外数据采集终端和短波红外数据采集终端,至少两种组件图像数据包括热红外图像数据和短波红外图像数据。中央控制器在基于热红外图像数据确定电站组件的测试温度大于预置温度阈值或者组件热红外面积大于预置面积阈值,且基于短波红外图像数据确定电站组件的形态包含于缺陷形态样本数据库时,确定电站组件为待运维组件;中央控制器确定待运维组件的组件运维参数,并在待运维组件的组件运维参数满足运维条件时确定待运维组件为目标运维组件。
结合第二方面,在第四种可能的实现方式中,至少两种数据采集终端包括可见光数据采集终端、热红外数据采集终端以及短波红外数据采集终端,至少两种组件图像数据包括可见光组件图像数据、热红外图像数据和短波红外图像数据。中央控制器在基于可见光图像数据确定电站组件为故障组件、基于热红外图像数据确定电站组件的测试温度大于预置温度阈值或者组件热红外面积大于预置面积阈值、且基于短波红外图像数据确定电站组件的形态包含于缺陷形态样本数据库时,确定电站组件为待运维组件;中央控制器确定待运维组件的组件运维参数,并在待运维组件的组件运维参数满足运维条件时确定待运维组件为目标运维组件。
结合第二方面第一种可能的实现方式至第二方面第四种可能的实现方式中任一种,在第五种可能的实施方式中,待运维组件的组件运维参数包括待运维组件的发电量损失值和安全风险参数中的至少一种。
结合第二方面第五种可能的实现方式,在第六种可能的实施方式中,待运维组件的组件运维参数包括待运维组件的发电量损失值。中央控制器在待运维组件的发电量损失值大于或者等于发电量损失阈值时,确定待运维组件的组件运维参数满足运维条件,并将待运 维组件确定为目标运维组件。
结合第二方面第五种可能的实现方式,在第七种可能的实施方式中,待运维组件的组件运维参数包括待运维组件的安全风险参数。中央控制器在待运维组件的安全风险参数大于或者等于安全风险阈值时,确定待运维组件的组件运维参数满足运维条件,并将待运维组件确定为目标运维组件。
结合第二方面第一种可能的实现方式至第二方面第七种可能的实现方式中任一种,在第八种可能的实施方式中,中央控制器确定目标运维组件的异常类型,并根据目标运维组件的异常类型以及组件运维参数生成目标运维组件的运维报告。
在本申请中,可快速确定电站组件是否为目标运维组件(即需要运维的电站组件),操作简便,效率高,适用性强。
附图说明
图1是本申请提供的电站巡视系统的应用场景示意图;
图2是本申请提供的电站巡视系统的一架构示意图;
图3是本申请提供的电站巡视系统的另一架构示意图;
图4是本申请提供的短波红外图像数据的应用场景示意图;
图5是本申请提供的电站巡视系统的又一架构示意图;
图6是本申请提供的电站巡视方法的流程示意图。
具体实施方式
本申请提供的电站巡视系统也可以称为无人机巡视系统或者无人机系统,该电站巡视系统适用于电力巡检领域(如对通讯弱或者带宽不够的电站进行巡检以及运维),或者监控领域(如智能安防),或者环保领域(如环境监测、环境执法、环境治理),或者侦察领域等多种应用领域,具体可根据实际应用场景确定,在此不做限制。
本申请提供的电站巡视系统包括无人机以及设置于无人机上的无人机飞行控制器、中央控制器以及至少两种数据采集终端。中央控制器用于控制无人机飞行控制器,以使无人机飞行控制器控制无人机的飞行。中央控制器还用于控制至少两种数据采集终端在无人机飞行过程中采集电站组件的至少两种组件图像数据。中央控制器还用于根据至少两种数据采集终端所采集的至少两种组件图像数据以及电站组件的组件运维参数,确定电站组件是否为目标运维组件。在本申请提供的电站巡视系统中,中央控制器可快速确定电站组件是否为目标运维组件,换句话说,中央控制器可快速确定电站中需要运维的电站组件以及无需运维的电站组件,无需将电站组件的图像数据传输到地面控制站以确定电站组件是否需要运维,操作简便,并提高了组件运维效率,适用性强。本申请提供的电站巡视系统可适配于不同的应用场景,比如,电站巡检场景或者智能安防场景,本申请以电站巡检场景为例进行说明。
参见图1,图1是本申请提供的电站巡视系统的应用场景示意图。如图1所示,电站巡视系统1中可以包括无人机(如无人机100)以及设置于该无人机上的无人机飞行控制 器(可以简称为无人机飞控或者飞控系统)、中央控制器和至少两种数据采集终端(如数据采集终端200和数据采集终端201)。这里的无人机飞行控制器和中央控制器可以为集成在无人机100内部的硬件设备,因此在图1中未进行显示。数据采集终端200或者数据采集终端201可以为具有数据采集功能的终端设备,比如,数据采集终端200或者数据采集终端201可以为摄像设备(如云台和/或相机),传感器或者其它终端设备。这里的数据采集终端200和数据采集终端201可以包括可见光数据采集终端和热红外数据采集终端,或者可见光数据采集终端和短波红外数据采集终端,或者热红外数据采集终端和短波红外数据采集终端。
中央控制器中可以适配多种第三方软件和/或硬件接口,可以通过第三方软件和/或硬件接口集成多种第三方软件和/或硬件,从而可以实现多种功能,如对电站组件的至少两种组件图像数据进行图像数据协同分析以确定电站组件是否为待运维组件。这里,中央控制器也可以为一个集成模块,如可以将中央控制器称为中央控制模块(center control module),中央控制器所实现的具体功能和具体形态可以根据实际应用场景确定,在此不做限制。中央控制器可以替代现有的无人机飞行控制器成为无人机新的控制中心,以控制无人机飞行控制器、数据采集终端200和数据采集终端201。中央控制器可控制无人机飞行控制器,以使无人机飞行控制器精准地感应并计算无人机100的飞行姿态数据,从而可以控制无人机100的飞行(如实现无人机100精准定位悬停和自主平稳飞行)。中央控制器可协同控制数据采集终端200和数据采集终端201在无人机100飞行过程(如无人机100巡视光伏电站2的飞行过程)中分别采集电站组件的至少两种组件图像数据,例如,至少两种组件图像数据可以包含可见光图像数据、热红外图像数据以及短波红外图像数据中的任意两种或者三种,具体可根据实际应用场景确定,在此不做限定。这里的电站组件可以为输电塔、升压塔、光伏组件(也可以称为太阳能电池板或者光伏板)以及其它组件,等等。在本申请中,中央控制器可以根据数据采集终端200和数据采集终端201采集的光伏电站2中的电站组件的两种组件图像数据以及电站组件的组件运维参数,确定电站组件是否为目标运维组件,即确定光伏电站2中需要运维的组件。本申请提供的电站巡视系统(如电站巡视系统1)基于中央控制器确定电站组件(如光伏电站2中的光伏组件)是否为目标运维组件,无需将电站组件的至少两种组件图像数据传输到地面控制站以确定电站组件是否需要运维,操作简便,运维效率高,适用性更强。
下面将结合图2至图5对本申请提供的电站巡视系统及其工作原理进行示例说明。
参见图2,图2是本申请提供的电站巡视系统的一架构示意图。如图2所示,电站巡视系统(如上述图1中的电站巡视系统1)可以包含无人机(如无人机10,与上述图1中的无人机100相同)以及设置于该无人机上的无人机飞行控制器(如无人机飞行控制器20)、中央控制器(如中央控制器30)和至少两种数据采集终端(如数据采集终端40a至数据采集终端40n)。这里的数据采集终端40a至数据采集终端40n中具体可以包含数据采集终端40a(如上述数据采集终端200)、数据采集终端40b(如上述数据采集终端201)、…、数据采集终端40n。为方便描述,下面将以数据采集终端40a至数据采集终端40n进行说明,以下不再赘述。
在一些可行的实施方式中,中央控制器30与无人机飞行控制器20连接,同时中央控 制器30也可以分别与数据采集终端40a至数据采集终端40n连接。中央控制器30可以通过通讯接口实现与无人机飞行控制器20和数据采集终端40a至数据采集终端40n之间的直接通讯(如下发控制指令),传输速度快。这里的通讯接口可以为并行通讯接口或者串行通讯接口,比如,串行总线(universal serial bus,USB)通讯接口,千兆以太网(gigabit ethernet,GE)通讯接口,异步传输标准接口(recommended standard 232,可以简称为RS232通讯接口)或者其它通讯接口。其中,RS232通讯接口也可以称为EIA-RS232(electronic industries association-recommended standard 232)通讯接口或者232通讯接口。可选的,无人机飞行控制器20、中央控制器30以及数据采集终端40a至数据采集终端40n之间也可以进行无线通讯,可减少通信接线,降低安装要求,适用性更强。需要说明的是,无人机飞行控制器20、中央控制器30以及数据采集终端40a至数据采集终端40n之间的连接关系具体可根据实际应用场景确定,在此不做限定。
通常来说,无人机飞行控制器20中可以包含主控单元、惯性测量单元(iertial measurement unit,IMU)、全球定位系统(global positioning system,GPS)指南针单元(这里的GPS指南针单元可以包含GPS单元和指南针单元)、发光二极管(light emitting diode,LED)指示灯单元等部件。该主控单元是无人机飞行控制器20的核心,可以通过主控单元将惯性测量单元、GPS指南针、舵机和遥控接收机等设备接入无人机飞行控制器20中,从而实现无人机10的自主飞行功能。此外,主控单元也可以记录无人机10的飞行数据,该主控单元还可以通过通讯接口(如USB接口)调节飞行参数。该惯性测量单元一般可以包含3轴加速度计、3轴角速度计和气压高度计,可以通过其3轴加速度计、3轴角速度计和气压高度计来高精度感应无人机10的飞行姿态、飞行角度、飞行速度以及飞行高度。该GPS指南针单元可以用于精确确定无人机10的方向及经纬度,从而可以实现无人机失控保护自动返航以及无人机精准定位悬停等功能。LED指示灯单元可以用于实时显示无人机10的飞行状态。因此,中央控制器30可以向无人机飞行控制器20下发飞行控制指令,以使无人机飞行控制器20通过其中的主控单元、惯性测量单元、GPS指南针单元以及LED指示灯单元控制无人机10的飞行,实现无人机10全方面巡视电站(如上述光伏电站2)。
数据采集终端40a至数据采集终端40n可以为摄像设备、传感器或者其它终端设备。这里的摄像设备可以为可见光相机、热红外双光相机、电致发光(electro luminescent,EL)相机或者其它摄像设备,EL相机也可以称为短波红外相机。中央控制器30可以向无人机飞行控制器20下发数据采集控制指令,控制数据采集终端40a至数据采集终端40n在无人机10飞行过程中实时采集(如拍摄)电站组件的n种组件图像数据,其中n为大于或者等于2的正整数。为方便描述,下面将以电站组件为光伏组件(如上述光伏电站2中的光伏组件)为例进行说明。例如,若该数据采集终端40a为可见光相机,可见光相机可以拍摄光伏组件的可见光图像数据。若该数据采集终端40b为热红外双光相机,热红外双光相机可以拍摄光伏组件的热红外图像数据。若该数据采集终端40n为EL相机,EL相机可以拍摄光伏组件的短波红外图像数据。
中央控制器30可以根据数据采集终端40a至数据采集终端40n采集的电站组件的至少两种组件图像数据以及电站组件的组件运维参数,确定电站组件是否为目标运维组件。可以理解,中央控制器30可以直接调用数据采集终端40a至数据采集终端40n所采集的电站 组件的n种组件图像数据,并根据上述电站组件的n种组件图像数据以及电站组件的组件运维参数确定电站组件是否为目标运维组件,或者中央控制器30可以先存储上述电站组件的n种组件图像数据,并根据上述电站组件的n种组件图像数据以及电站组件的组件运维参数确定电站组件是否为目标运维组件。无人机飞行控制器20、中央控制器30以及数据采集终端40a至数据采集终端40n之间可以是相互独立的,可选的,无人机飞行控制器20也可以集成在中央控制器30中,或者中央控制器30也可以通过集成第三方软件(如无人机飞行控制软件)来控制无人机飞行控制器20,适应性更强。
在一些可行的实施方式中,中央控制器(如中央控制器30)通过并行通讯接口与数据采集终端40a至数据采集终端40n中各数据采集终端进行独立并行通讯。本申请可以将一个云台以及该云台所搭载的相机的整体统称为数据采集终端,本申请还可以将云台或者相机分别称为数据采集终端。可以理解,中央控制器30可以实现与数据采集终端40a至数据采集终端40n中各数据采集终端之间直接进行独立并行通讯,从而实现了数据同步传输,传输速度快,效率高。可选的,中央控制器30也可以通过串行通讯接口(如RS232通讯接口)与数据采集终端40a至数据采集终端40n中各数据采集终端进行串行通讯,可以实现与各数据采集终端直接进行通讯,效率高。需要说明的是,中央控制器与数据采集终端40a至数据采集终端40n之间的通讯方式具体可根据实际应用场景确定,在此不做限定。
参见图3,图3是本申请提供的电站巡视方法的另一架构示意图。
在一些可行的实施方式中,如图2所示的中央控制器30可以包括数据处理模块(如数据处理模块301),数据处理模块301用于根据数据采集终端40a至数据采集终端40n采集的电站组件的n种组件图像数据以及电站组件的组件运维参数确定电站组件是否为目标运维组件。其中,数据处理模块301可以为具有为中央控制器30提供边缘计算算力的功能的芯片(可以简称为边缘计算芯片,如升腾310芯片),和/或具有数据处理功能的第三方软件和/或硬件(如图像处理软件,故障识别软件,边缘计算软件)。数据处理模块301可以通过上述边缘计算芯片和/或具有数据处理功能的软件和/或硬件直接对数据采集终端40a至数据采集终端40n采集的电站组件的n种组件图像数据进行边缘计算处理,并结合边缘计算处理结果以及电站组件的组件运维参数确定电站组件是否为目标运维组件。由此可见,边缘计算可以加速数据流的处理,因此数据处理模块301可以无延迟的协同处理数据,从而提高了图像数据协同处理效率,同时,中央控制器30无需将电站组件的n种组件图像数据传输至地面控制站进行数据处理,适用于电站通讯弱及带宽不够的应用场景,数据协同处理效率高,适用性更强。在电站的运维需求提高时,可以对中央控制器30进行升级或者迭代开发,比如,可以迭代开发新型边缘计算芯片或者对原始边缘计算芯片进行升级,也可以对中央控制器中的第三方软件和/或硬件接口进行升级替换,这样无需在运维需求提高时更换整个无人机,成本低,适用性更强。
在一些可行的实施方式中,数据采集终端40a至数据采集终端40n可以包含两种数据采集终端,如可见光数据采集终端(如数据采集终端40a)和热红外数据采集终端(数据采集终端40b),n种组件图像数据可以包含两种组件图像数据,如可见光图像数据和热红外图像数据。可以理解,这里的可见光图像数据可以直接显示电站组件的一些表面故障,便于后续快速确定该电站组件是否为故障组件。热红外图像数据可以显示电站组件各个部 分的温度及其分布,可以根据热红外图像数据中不同颜色的区域来确定电站组件各个部分不同的温度或者热红外面积(如区域面积),便于后续直接确定该电站组件的测试温度或者组件热红外面积,进一步根据测试温度或者组件热红外面积确定电站组件是否具有热红外故障。数据处理模块301用于根据可见光图像数据确定电站组件是否具有表面故障,在电站组件具有表面故障时确定电站组件为故障组件。同时,数据处理模块301也可以用于根据热红外图像数据确定电站组件的测试温度或者热红外面积,若测试温度大于预置温度阈值或者热红外面积大于阈值面积阈值,则确定电站组件具有热红外故障(如热斑)。这里的预置温度阈值或者阈值面积阈值可以为缺省值(即电站组件出厂时设置的默认值),以预置温度阈值为例进行说明,如预置温度阈值可以为30摄氏度或者其它温度值。通常情况下,故障的电站组件的测试温度会比预置温度阈值大于10摄氏度左右或者其它温度值。进一步地,数据处理模块301在电站组件为故障组件且电站组件具有热红外故障时,确定电站组件为待运维组件,并确定待运维组件的组件运维参数,在待运维组件的组件运维参数满足运维条件时确定待运维组件为目标运维组件。本申请的待运维组件可以理解为可能需要运维的电站组件,在电站组件为待运维组件时,待运维组件的组件运维参数为电站组件的组件运维参数。本申请可以将用于确定待运维组件需要运维时的条件统称为运维条件。
假设电站组件为光伏组件,数据处理模块301可以对光伏组件的可见光图像数据进行图像数据分析,从而可以快速便捷的检查光伏组件的表面故障(如光伏组件表面有无破损、污渍),在光伏组件具有表面故障时,确定光伏组件为故障组件;同时还可以及时输出光伏组件异常告警,提高了光伏组件的供电可靠性。假设电站组件为输电塔,数据处理模块301可以对输电塔的可见光图像数据进行图像数据分析,从而可以快速便捷的检查输电塔的表面故障(如输电塔的绝缘子连接处销钉完好情况),在输电塔具有表面故障时,确定输电塔为故障组件;同时还可以及时输出输电塔异常告警,从而排除了连接松动和打火隐患。假设电站组件为升压塔,数据处理模块301可以对升压塔的可见光图像数据进行图像数据分析,从而可以查看升压塔的表面故障(如升压塔中的变压器漏油现象),在升压塔具有表面故障时,确定升压塔为故障组件;同时还可以及时输出升压塔异常告警,从而排除了事故隐患。假设电站组件为光伏组件,在光伏组件被阴影遮挡时,光伏组件被遮挡的部分的温度或者热红外面积会远远大于未被遮挡的部分的温度或者热红外面积(如0),从而形成光伏组件热斑,在这种情况下,数据处理模块301可以从光伏组件的热红外图像数据中确定光伏组件的测试温度(如光伏组件被遮挡的部分的温度)或者热红外面积,若检测到测试温度(如40摄氏度)大于预置温度阈值(如30摄氏度)或者热红外面积大于预置面积阈值,则确定该光伏组件为具有热斑的光伏组件。假设电站组件为输电塔和/或升压塔,数据处理模块301可以从输电塔和/或升压塔的热红外图像数据中确定输电塔和/或升压塔的测试温度(如可以为输电塔中输电设备的温度和/或升压塔中各连接点的温度)或者热红外面积,若检测到测试温度大于预置温度阈值或者热红外面积大于预置面积阈值,则确定输电塔和/或升压塔具有热红外故障。进一步地,数据处理模块301在光伏组件和/或输电塔和/或升压塔为故障组件,且光伏组件和/或输电塔和/或升压塔具有热红外故障时,确定光伏组件和/或输电塔和/或升压塔为待运维组件,并在待运维组件的组件运维参数满足运维条件时确定待运维组件为目标运维组件。
可选的,数据处理模块301还用于根据可见光图像数据确定电站组件是否具有表面故障,在电站组件不具有表面故障时确定电站组件为正常组件。同时,数据处理模块301还用于在检测到电站组件的测试温度小于或者等于预置温度阈值,或者组件热红外面积小于或者等于预置面积阈值时,确定该电站组件不具有热红外故障。进一步地,数据处理模块301在电站组件为正常组件且电站组件不具有热红外故障时,确定无需对电站组件进行运维,即该电站组件为正常组件。
在一些可行的实施方式中,数据采集终端40a至数据采集终端40n可以包含两种数据采集终端,如可见光数据采集终端(如数据采集终端40a)和短波红外数据采集终端(数据采集终端40n),n种组件图像数据可以包含两种组件图像数据,如可见光图像数据和短波红外图像数据。可以理解,短波红外图像数据中可以显示电站组件的缺陷形态,便于后续确定该电站组件具有目标缺陷。数据处理模块301用于根据可见光图像数据确定电站组件是否具有表面故障,在电站组件具有表面故障时确定电站组件为故障组件。同时,数据处理模块301也可以用于根据红外图像数据确定电站组件的形态,若电站组件的形态包含于缺陷形态样本数据库中,则确定电站组件具有目标缺陷。这里的缺陷样本数据库可以为数据处理模块301中预存储的包含电站组件的缺陷形态的样本数据库,或者数据处理模块301可以直接调用第三方软件中电站组件的缺陷形态样本数据库。该缺陷样本数据库中可以包含电站组件(如光伏组件和/或输电塔和/或升压塔)的多种缺陷形态的样本数据。具体地,数据处理模块301用于根据短波红外图像数据确定电站组件的形态(这里的形态可以为缺陷形态或者正常组件形态),对该电站组件的形态和缺陷形态样本数据库中的多种缺陷形态进行匹配,若在多种缺陷形态中匹配到与该电站组件的形态相匹配的目标缺陷形态,则确定电站组件的形态包含于缺陷形态样本数据库中,并确定该电站组件具有目标缺陷形态对应的目标缺陷,即该电站组件为具有目标缺陷的电站组件。可以理解,数据处理模块301还用于在电站组件的形态与缺陷形态之间的匹配度(即相似度,如80%或者其它值)大于匹配度阈值时,确定该缺陷形态为与电站组件的形态相匹配的目标缺陷形态。这里的匹配度阈值可以为人为设置的值或者默认值。进一步地,数据处理模块301用于在电站组件为故障组件且电站组件具有目标缺陷时,确定电站组件为待运维组件,并确定待运维组件的组件运维参数,在待运维组件的组件运维参数满足运维条件时确定待运维组件为目标运维组件。
假设电站组件为光伏组件,数据处理模块301可以对光伏组件的可见光图像数据进行图像数据分析,从而可以快速便捷的检查光伏组件的表面故障(如光伏组件表面有无破损、污渍),在光伏组件具有表面故障时,确定光伏组件为故障组件。为方便描述,缺陷形态样本数据库中的多种缺陷形态将以光伏组件的缺陷形态为例进行说明,上述多种缺陷形态可以包含:隐裂缺陷形态、碎片缺陷形态、虚焊缺陷形态、断栅缺陷形态、旁路二极管缺陷形态(由于光伏组件中的旁路二极管故障所形成的缺陷形态)、热点缺陷形态(即光伏组件内部存在物理损伤)或者其它缺陷形态,等等。请一并参见图4,图4是本申请提供的短波红外图像数据的应用场景示意图。如图4所示,缺陷形态样本数据库(如缺陷形态样本数据库2)中可以包含多种缺陷形态(如缺陷形态20a至缺陷形态20n)。为便于描述,上述多种缺陷形态将以缺陷形态20a至缺陷形态20n为例进行说明。其中,缺陷形态20a 可以为隐裂缺陷形态,缺陷形态20b可以为热点缺陷形态,…,缺陷形态20n可以为旁路二极管缺陷形态。数据处理模块301在根据短波红外图像数据确定光伏组件的形态(如光伏组件的形态10)之后,可以对光伏组件的形态10和上述缺陷形态20a至缺陷形态20n分别进行匹配,可以得到与光伏组件的形态10相匹配的目标缺陷形态(如上述缺陷形态20a),即该光伏组件具有缺陷形态20a对应的目标缺陷(如隐裂缺陷),换句话说,该光伏组件为具有隐裂缺陷的组件。进一步地,数据处理模块301在光伏组件为故障组件,且光伏组件具有隐裂缺陷时,确定该光伏组件为待运维组件,并在待运维组件的组件运维参数满足运维条件时确定待运维组件为目标运维组件。
可选的,数据处理模块301还用于根据可见光图像数据确定电站组件是否具有表面故障,在电站组件不具有表面故障时确定电站组件为正常组件。同时,数据处理模块301还用于若在多种缺陷形态中未匹配到与该电站组件的形态相匹配的目标缺陷形态,则确定电站组件的形态未包含于缺陷形态样本数据库中,进而可以确定电站组件不具有缺陷。进一步地,数据处理模块301在电站组件为正常组件且电站组件不具有缺陷时,确定无需对电站组件进行运维,即该电站组件为正常组件。
在一些可行的实施方式中,数据采集终端40a至数据采集终端40n可以包含两种数据采集终端,如热红外数据采集终端(数据采集终端40b)和短波红外数据采集终端(数据采集终端40n),n种组件图像数据可以包含两种组件图像数据,如热红外图像数据和短波红外图像数据。数据处理模块301也可以用于根据热红外图像数据确定电站组件的测试温度或者热红外面积,若测试温度大于预置温度阈值或者热红外面积大于阈值面积阈值,则确定电站组件具有热红外故障(如热斑)。同时,数据处理模块301也可以用于根据红外图像数据确定电站组件的形态,若电站组件的形态包含于缺陷形态样本数据库中,则确定电站组件具有目标缺陷。进一步地,数据处理模块301用于在电站组件具有热红外故障且电站组件具有目标缺陷时,确定电站组件为待运维组件,并确定待运维组件的组件运维参数,在待运维组件的组件运维参数满足运维条件时确定待运维组件为目标运维组件。
可选的,数据处理模块301还用于根据可见光图像数据确定电站组件是否具有表面故障,在电站组件不具有表面故障时确定电站组件为正常组件。同时,数据处理模块301还用于若在多种缺陷形态中未匹配到与该电站组件的形态相匹配的目标缺陷形态,则确定电站组件的形态未包含于缺陷形态样本数据库中,进而可以确定电站组件不具有缺陷。进一步地,数据处理模块301在电站组件不具有热红外故障且电站组件不具有缺陷时,确定无需对电站组件进行运维,即该电站组件为正常组件。
在一些可行的实施方式中,数据采集终端40a至数据采集终端40n可以包含三种数据采集终端,如可见光数据采集终端(如数据采集终端40a)、热红外数据采集终端(数据采集终端40b)和短波红外数据采集终端(数据采集终端40n),n种组件图像数据可以包含三种组件图像数据,如可见光图像数据、热红外图像数据以及短波红外图像数据。数据处理模块301用于根据可见光图像数据确定电站组件是否具有表面故障,在电站组件具有表面故障时确定电站组件为故障组件。同时,数据处理模块301还可以用于根据热红外图像数据确定电站组件的测试温度或者热红外面积,若测试温度大于预置温度阈值或者热红外面积大于阈值面积阈值,则确定电站组件具有热红外故障(如热斑)。这时,数据处理 模块301也可以用于根据红外图像数据确定电站组件的形态,若电站组件的形态包含于缺陷形态样本数据库中,则确定电站组件具有目标缺陷。进一步地,数据处理模块301用于在电站组件为故障组件、电站组件具有热红外故障且该电站组件具有目标缺陷时,确定电站组件为待运维组件,并确定待运维组件的组件运维参数,在待运维组件的组件运维参数满足运维条件时确定待运维组件为目标运维组件。
可选的,数据处理模块301还用于根据可见光图像数据确定电站组件是否具有表面故障,在电站组件不具有表面故障时确定电站组件为正常组件。同时,数据处理模块301也可以用于在检测到电站组件的测试温度小于或者等于预置温度阈值,或者组件热红外面积小于或者等于预置面积阈值时,确定该电站组件不具有热红外故障。与此同时,数据处理模块301还用于若在多种缺陷形态中未匹配到与该电站组件的形态相匹配的目标缺陷形态,则确定电站组件的形态未包含于缺陷形态样本数据库中,进而可以确定电站组件不具有缺陷。进一步地,数据处理模块301在电站组件为正常组件、电站组件不具有热红外故障且电站组件不具有缺陷时,确定无需对电站组件进行运维,即该电站组件为正常组件。
在一些可行的实施方式中,待运维组件的组件运维参数可以包括但不限于待运维组件的发电量损失值和安全风险参数中的至少一种。数据处理模块301用于基于发电量损失计算模型和/或其它模型以及算法确定待运维组件的发电量损失值和安全风险参数,具体可根据实际应用场景确定,在此不做限定。本申请可以将具有计算待运维组件的发电量损失值的功能的模型统称为发电量损失计算模型。可以理解,数据处理模块301用于将待运维组件的功率损失值、当地年利用小时数以及上网电价等参数输入发电量损失计算模型中,由该发电量损失计算模型输出待运维组件的发电量损失值(如年发电量损失值)。可选的,数据处理模块301还用于基于逆变器记录的待运维组件的发电量,确定待运维组件的发电量损失值(如年发电量损失值),具体根据实际应用场景确定,在此不做限定。进一步地,数据处理模块301还用于在待运维组件的发电量损失值大于或者等于发电量损失阈值时,确定待运维组件的组件运维参数满足运维条件,并将待运维组件确定为目标运维组件。这里的发电量损失阈值可以为人为设置的值或者电站组件(如待运维组件)的出厂默认值。可选的,数据处理模块301还用于确定待运维组件(如二极管和/或接线端子)的备件更换成本和人工更换成本,根据上述年发电量损失值、备件更换成本以及人工更换成本确定对待运维组件进行故障运维的投资回收周期,并确定目标运维投入回收周期(如客户期望的运维投入回收周期),在对待运维组件进行故障运维的投资回收周期小于或者等于目标运维投入回收周期,则确定待运维组件的组件运维参数满足运维条件,并将待运维组件确定为目标运维组件。
在一些可行的实施方式中,待运维组件的组件运维参数包括待运维组件的安全风险参数,数据处理模块301还用于在待运维组件的安全风险参数大于或者等于安全风险阈值时,确定待运维组件的组件运维参数满足运维条件,并将待运维组件确定为目标运维组件。这里的安全风险阈值可以为人为设置的值或者电站组件(如待运维组件)的出厂默认值。本申请中的待运维组件的组件运维参数中的具体参数可以由实际应用场景确定,在此不作限定。
在一些可行的实施方式中,待运维组件的组件运维参数包括待运维组件的发电量损失 值和安全风险参数,数据处理模块301还用于在待运维组件的发电量损失值大于或者等于发电量损失阈值,和/或待运维组件的安全风险参数大于或者等于安全风险阈值时,确定待运维组件的组件运维参数满足运维条件,并将待运维组件确定为目标运维组件。
在一些可行的实施方式中,中央控制器30还用于在确定电站组件为目标运维组件时,输出组件异常告警。中央控制器30输出组件异常告警的方式可以包含但不限于:通过蜂鸣器(如压电式蜂鸣器或者电磁式蜂鸣器)告警,通过异常提示信息(如短信)告警,等等。为方便描述,下面将以输出组件异常告警的方式为异常提示信息为例进行说明,中央控制器30可以向地面控制站发送异常提示信息告警,这里的异常提示信息可以包含目标运维组件的相关信息(如目标运维组件的图像数据、异常类型以及地理位置数据),这时电站运维人员可以根据异常提示信息进一步运维目标运维组件,进而提高了运维效率和供电可靠性,适用性更强。
在一些可行的实施方式中,数据处理模块(如数据处理模块301)还用于确定目标运维组件的异常类型,并基于目标运维组件的异常类型以及组件运维参数生成目标运维组件的运维报告。这里目标运维组件的异常类型可以包含三类,具体可以包含表面故障类型、热红外故障类型以及缺陷类型。本申请可以将上述具有表面故障的故障组件的异常类型称之为表面故障类型。本申请还可以将上述具有热红外故障的电站组件的异常类型称之为热红外故障类型。本申请也可以将上述具有缺陷的电站组件的类型称之为缺陷类型。可以理解,目标运维组件的运维报告中可以包含但不限于目标运维组件的地理位置数据、数量以及异常类型,等等。数据处理模块301在生成目标运维组件的运维报告之后,可以信息提示电站运维人员及时查看目标运维组件的运维报告,以使电站运维人员通过运维报告对目标运维组件进行修整或者更换,从而提高了运维效率和供电可靠性,适用性更强。
在一些可行的实施方式中,如图2所示的中央控制器30还可以包括无线网络(wireless fidelity,WIFI)通讯模块(如WIFI通讯模块302)或者第五代移动通信技术(5th generation mobile networks/5th generation wireless systems/5th-generation,可以简称为5G或者5G技术)通讯模块(如5G通讯模块303)。其中,WIFI通讯模块302或者5G通讯模块303可以用于将目标运维组件的相关信息(如目标运维组件的图像数据、异常类型以及地理位置数据)传输到地面控制站,可以理解,在WIFI通讯模块302传输目标运维组件的相关信息时,可以增加信息传输距离,在5G通讯模块303无线传输目标运维组件的相关信息时,提高了信息传输的安全性。在WIFI通讯模块302或者5G通讯模块303将目标运维组件的相关信息传输到地面控制站之后,电站运维人员可以根据目标运维组件的相关信息对目标运维组件进行修整或者更换,提高了运维效率和供电可靠性,适用性更强。可选的,WIFI通讯模块302或者5G通讯模块303也可以将电站组件的n种组件图像数据传输至地面控制站以识别目标运维组件,该电站巡视系统具备向下兼容的能力,适应性更强。
参见图5,图5是本申请提供的电站巡视系统的又一架构示意图。如图5所示,在一些可行的实施方式中,如图2所示的电站巡视系统1中还可以包括无线充电模块(如无线充电模块50)。该无线充电模块50可以用于为无人机10的机载电池进行无线充电,不受有线充电的限制,提高了无人机的续航能力,适用性更强。
本申请提供的电站巡视系统,可快速确定电站组件是否为目标运维组件,操作简便, 效率高,适用性强。
参见图6,图6是本申请提供的电站巡视方法的流程示意图。本申请提供的电站巡视方法适用于上述图2至图5所提供的电站巡视系统的中央控制器,该方法包括步骤:
S101,中央控制器从至少两种数据采集终端获取至少两种数据采集终端在无人机飞行过程中采集的电站组件的至少两种组件图像数据。
S102,中央控制器根据至少两种数据采集终端所采集的至少两种组件图像数据以及电站组件的组件运维参数,确定电站组件是否为目标运维组件。
在一些可行的实施方式中,至少两种数据采集终端包括可见光数据采集终端和热红外数据采集终端,至少两种组件图像数据包括可见光图像数据和热红外图像数据。中央控制器根据可见光图像数据确定电站组件是否具有表面故障,在电站组件具有表面故障时确定电站组件为故障组件。同时,中央控制器也可以根据热红外图像数据确定电站组件的测试温度或者热红外面积,若测试温度大于预置温度阈值或者热红外面积大于阈值面积阈值,则确定电站组件具有热红外故障(如热斑)。进一步地,中央控制器在电站组件为故障组件且电站组件具有热红外故障时,确定电站组件为待运维组件。这时,中央控制器可以确定待运维组件的组件运维参数,并在待运维组件的组件运维参数满足运维条件时确定待运维组件为目标运维组件。
可选的,中央控制器可以根据可见光图像数据确定电站组件是否具有表面故障,在电站组件不具有表面故障时确定电站组件为正常组件。同时,中央控制器可以在检测到电站组件的测试温度小于或者等于预置温度阈值,或者组件热红外面积小于或者等于预置面积阈值时,确定该电站组件不具有热红外故障。进一步地,中央控制器在电站组件为正常组件且电站组件不具有热红外故障时,确定无需对电站组件进行运维,即该电站组件为正常组件。
在一些可行的实施方式中,至少两种数据采集终端包括可见光数据采集终端和短波红外数据采集终端,至少两种组件图像数据包括可见光图像数据和短波红外图像数据。中央控制器根据可见光图像数据确定电站组件是否具有表面故障,在电站组件具有表面故障时确定电站组件为故障组件。同时,中央控制器也可以根据红外图像数据确定电站组件的形态,若电站组件的形态包含于缺陷形态样本数据库中,则确定电站组件具有目标缺陷。进一步地,中央控制器在电站组件为故障组件且电站组件具有目标缺陷时,确定电站组件为待运维组件。这时,中央控制器可以确定待运维组件的组件运维参数,并在待运维组件的组件运维参数满足运维条件时确定待运维组件为目标运维组件。
可选的,中央控制器可以根据可见光图像数据确定电站组件是否具有表面故障,在电站组件不具有表面故障时确定电站组件为正常组件。同时,若在多种缺陷形态中未匹配到与该电站组件的形态相匹配的目标缺陷形态,则中央控制器可以确定电站组件的形态未包含于缺陷形态样本数据库中,进而可以确定电站组件不具有缺陷。进一步地,中央控制器可以在电站组件为正常组件且电站组件不具有缺陷时,确定无需对电站组件进行运维,即该电站组件为正常组件。
在一些可行的实施方式中,至少两种数据采集终端包括热红外数据采集终端和短波红外数据采集终端,至少两种组件图像数据包括热红外图像数据和短波红外图像数据。中央 控制器也可以根据热红外图像数据确定电站组件的测试温度或者热红外面积,若测试温度大于预置温度阈值或者热红外面积大于阈值面积阈值,则确定电站组件具有热红外故障(如热斑)。同时,中央控制器也可以根据红外图像数据确定电站组件的形态,若电站组件的形态包含于缺陷形态样本数据库中,则确定电站组件具有目标缺陷。进一步地,中央控制器在电站组件具有热红外故障且电站组件具有目标缺陷时,确定电站组件为待运维组件。这时,中央控制器确定待运维组件的组件运维参数,并在待运维组件的组件运维参数满足运维条件时确定待运维组件为目标运维组件。
可选的,中央控制器可以根据可见光图像数据确定电站组件是否具有表面故障,在电站组件不具有表面故障时确定电站组件为正常组件。同时,若中央控制器在多种缺陷形态中未匹配到与该电站组件的形态相匹配的目标缺陷形态,则确定电站组件的形态未包含于缺陷形态样本数据库中,进而可以确定电站组件不具有缺陷。进一步地,中央控制器在电站组件不具有热红外故障且电站组件不具有缺陷时,确定无需对电站组件进行运维,即该电站组件为正常组件。
在一些可行的实施方式中,至少两种数据采集终端包括可见光数据采集终端、热红外数据采集终端以及短波红外数据采集终端,至少两种组件图像数据包括可见光组件图像数据、热红外图像数据和短波红外图像数据。中央控制器根据可见光图像数据确定电站组件是否具有表面故障,在电站组件具有表面故障时确定电站组件为故障组件。同时,中央控制器还可以根据热红外图像数据确定电站组件的测试温度或者热红外面积,若测试温度大于预置温度阈值或者热红外面积大于阈值面积阈值,则确定电站组件具有热红外故障(如热斑)。与此同时,中央控制器也可以根据红外图像数据确定电站组件的形态,若电站组件的形态包含于缺陷形态样本数据库中,则确定电站组件具有目标缺陷。进一步地,中央控制器在电站组件为故障组件、电站组件具有热红外故障且电站组件具有目标缺陷时,确定电站组件为待运维组件。这时,中央控制器可以确定待运维组件的组件运维参数,并在待运维组件的组件运维参数满足运维条件时确定待运维组件为目标运维组件。
可选的,中央控制器可以根据可见光图像数据确定电站组件是否具有表面故障,在电站组件不具有表面故障时确定电站组件为正常组件。同时,中央控制器在检测到电站组件的测试温度小于或者等于预置温度阈值,或者组件热红外面积小于或者等于预置面积阈值时,确定该电站组件不具有热红外故障。与此同时,若中央控制器在多种缺陷形态中未匹配到与该电站组件的形态相匹配的目标缺陷形态,则确定电站组件的形态未包含于缺陷形态样本数据库中,进而可以确定电站组件不具有缺陷。进一步地,中央控制器在电站组件为正常组件、电站组件不具有热红外故障且电站组件不具有缺陷时,确定无需对电站组件进行运维,即该电站组件为正常组件。
在一些可行的实施方式中,待运维组件的组件运维参数包括待运维组件的发电量损失值和安全风险参数中的至少一种。中央控制器可以基于发电量损失计算模型和/或其它方式确定待运维组件的发电量损失值和/或安全风险参数。在待运维组件的组件运维参数包括待运维组件的发电量损失值时,中央控制器可以在待运维组件的发电量损失值大于或者等于发电量损失阈值时,确定待运维组件的组件运维参数满足运维条件,并将待运维组件确定为目标运维组件。在待运维组件的组件运维参数包括待运维组件的安全风险参数时,中央 控制器可以在待运维组件的安全风险参数大于或者等于安全风险阈值时,确定待运维组件的组件运维参数满足运维条件,并将待运维组件确定为目标运维组件。
在一些可行的实施方式中,中央控制器确定目标运维组件的异常类型,并根据目标运维组件的异常类型以及组件运维参数生成目标运维组件的运维报告。这里目标运维组件的异常类型可以包含三类,具体可以包含表面故障类型、热红外故障类型以及缺陷类型。本申请可以将上述具有表面故障的故障组件的异常类型称之为表面故障类型。本申请还可以将上述具有热红外故障的电站组件的异常类型称之为热红外故障类型。本申请也可以将上述具有缺陷的电站组件的类型称之为缺陷类型。可以理解,目标运维组件的运维报告中可以包含但不限于目标运维组件的地理位置数据、数量以及异常类型,等等。中央控制器在生成目标运维组件的运维报告之后,可以信息提示电站运维人员及时查看目标运维组件的运维报告,以使电站运维人员通过运维报告对目标运维组件进行修整或者更换,从而提高了运维效率和供电可靠性,适用性更强。
在一些可行的实施方式中,中央控制器在确定电站组件为目标运维组件时,输出组件异常告警。中央控制器输出组件异常告警的方式可以包含但不限于:通过蜂鸣器(如压电式蜂鸣器或者电磁式蜂鸣器)告警,通过异常提示信息(如短信)告警,等等。为方便描述,下面将以输出组件异常告警的方式为异常提示信息为例进行说明,中央控制器可以向地面控制站发送异常提示信息告警,这里的异常提示信息可以包含目标运维组件的相关信息(如目标运维组件的图像数据、异常类型以及地理位置数据),这时电站运维人员可以根据异常提示信息进一步运维该目标运维组件,进而提高了运维效率和供电可靠性,适用性更强。
具体实现中,本申请提供的电站巡视方法中的中央控制器所执行的更多操作可参见图2至图5所示的电站巡视系统及其工作原理中的中央控制器所执行的实现方式,在此不再赘述。
在本申请中,可对电站组件的至少两种组件图像数据进行图像数据协同分析,进而结合电站组件的组件运维参数以快速确定该电站组件是否为目标运维组件,从而提高了系统的灵活性,操作简便,运维效率高,适用性更强。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (21)

  1. 一种电站巡视系统,其特征在于,所述电站巡视系统包括无人机以及设置于所述无人机上的无人机飞行控制器、中央控制器以及至少两种数据采集终端;
    所述中央控制器用于控制所述无人机飞行控制器,以使所述无人机飞行控制器控制所述无人机的飞行;
    所述中央控制器还用于控制所述至少两种数据采集终端在所述无人机飞行过程中采集电站组件的至少两种组件图像数据;
    所述中央控制器还用于根据所述至少两种数据采集终端所采集的至少两种组件图像数据以及所述电站组件的组件运维参数,确定所述电站组件是否为目标运维组件。
  2. 根据权利要求1所述的电站巡视系统,其特征在于,所述中央控制器中包括数据处理模块;
    所述数据处理模块用于根据所述至少两种数据采集终端所采集的至少两种组件图像数据、所述电站组件的组件运维参数确定所述电站组件是否为目标运维组件。
  3. 根据权利要求2所述的电站巡视系统,其特征在于,所述至少两种数据采集终端包括可见光数据采集终端和热红外数据采集终端,所述至少两种组件图像数据包括可见光图像数据和热红外图像数据;
    所述数据处理模块用于在基于所述可见光图像数据确定所述电站组件为故障组件,且基于所述热红外图像数据确定所述电站组件的测试温度大于预置温度阈值或者组件热红外面积大于预置面积阈值时,确定所述电站组件为待运维组件,并确定所述待运维组件的组件运维参数,在所述待运维组件的组件运维参数满足运维条件时确定所述待运维组件为目标运维组件。
  4. 根据权利要求2所述的电站巡视系统,其特征在于,所述至少两种数据采集终端包括可见光数据采集终端和短波红外数据采集终端,所述至少两种组件图像数据包括可见光图像数据和短波红外图像数据;
    所述数据处理模块用于在基于所述可见光图像数据确定所述电站组件为故障组件且基于所述短波红外图像数据确定所述电站组件的形态包含于缺陷形态样本数据库时,确定所述电站组件为待运维组件,并确定所述待运维组件的组件运维参数,在所述待运维组件的组件运维参数满足运维条件时确定所述待运维组件为目标运维组件。
  5. 根据权利要求2所述的电站巡视系统,其特征在于,所述至少两种数据采集终端包括热红外数据采集终端和短波红外数据采集终端,所述至少两种组件图像数据包括热红外图像数据和短波红外图像数据;
    所述数据处理模块用于在基于所述热红外图像数据确定所述电站组件的测试温度大于预置温度阈值或者组件热红外面积大于预置面积阈值,且基于所述短波红外图像数据确定所述电站组件的形态包含于缺陷形态样本数据库时,确定所述电站组件为待运维组件,并确定所述待运维组件的组件运维参数,并在所述待运维组件的组件运维参数满足运维条件时确定所述待运维组件为目标运维组件。
  6. 根据权利要求2所述的电站巡视系统,其特征在于,所述至少两种数据采集终端包括可见光数据采集终端、热红外数据采集终端以及短波红外数据采集终端,所述至少两种 组件图像数据包括可见光组件图像数据、热红外图像数据和短波红外图像数据;
    所述数据处理模块用于在基于所述可见光图像数据确定所述电站组件为故障组件、基于所述热红外图像数据确定所述电站组件的测试温度大于预置温度阈值或者组件热红外面积大于预置面积阈值、且基于所述短波红外图像数据确定所述电站组件的形态包含于缺陷形态样本数据库时,确定所述电站组件为待运维组件,并确定所述待运维组件的组件运维参数,并在所述待运维组件的组件运维参数满足运维条件时确定所述待运维组件为目标运维组件。
  7. 根据权利要求3-6任一项所述的电站巡视系统,其特征在于,所述待运维组件的组件运维参数包括所述待运维组件的发电量损失值和安全风险参数中的至少一种。
  8. 根据权利要求7所述的电站巡视系统,其特征在于,所述待运维组件的组件运维参数包括所述待运维组件的发电量损失值;
    所述数据处理模块还用于在所述待运维组件的发电量损失值大于或者等于发电量损失阈值时,确定所述待运维组件的组件运维参数满足运维条件,并将所述待运维组件确定为目标运维组件。
  9. 根据权利要求7所述的电站巡视系统,其特征在于,所述待运维组件的组件运维参数包括所述待运维组件的安全风险参数;
    所述数据处理模块还用于在所述待运维组件的安全风险参数大于或者等于安全风险阈值时,确定所述待运维组件的组件运维参数满足运维条件,并将所述待运维组件确定为目标运维组件。
  10. 根据权利要求1-9任一项所述的电站巡视系统,其特征在于,所述数据处理模块还用于确定所述目标运维组件的异常类型,并基于所述目标运维组件的异常类型以及组件运维参数生成所述目标运维组件的运维报告。
  11. 根据权利要求1-10任一项所述的电站巡视系统,其特征在于,所述中央控制器还包括无线网络通讯模块或者第五代移动通信技术5G通讯模块。
  12. 根据权利要求1-11任一项所述的电站巡视系统,其特征在于,所述中央控制器用于通过并行通讯接口与所述至少两个数据采集终端中各数据采集终端进行独立并行通讯。
  13. 一种电站巡视方法,其特征在于,所述方法适用于权利要求1-12任一项所述的电站巡视系统中的所述中央控制器,包括:
    所述中央控制器从所述至少两种数据采集终端获取所述至少两种数据采集终端在所述无人机飞行过程中采集的电站组件的至少两种组件图像数据;
    所述中央控制器根据所述至少两种数据采集终端所采集的所述至少两种组件图像数据以及所述电站组件的组件运维参数,确定所述电站组件是否为目标运维组件。
  14. 根据权利要求13所述的电站巡视方法,其特征在于,所述至少两种数据采集终端包括可见光数据采集终端和热红外数据采集终端,所述至少两种组件图像数据包括可见光图像数据和热红外图像数据;
    所述中央控制器根据所述至少两种数据采集终端所采集的所述至少两种组件图像数据以及所述电站组件的组件运维参数,确定所述电站组件是否为目标运维组件,包括:
    所述中央控制器在基于所述可见光图像数据确定所述电站组件为故障组件且基于所述 热红外图像数据确定所述电站组件的测试温度大于预置温度阈值或者组件热红外面积大于预置面积阈值时,确定所述电站组件为待运维组件;
    所述中央控制器确定所述待运维组件的组件运维参数,并在所述待运维组件的组件运维参数满足运维条件时确定所述待运维组件为目标运维组件。
  15. 根据权利要求13所述的电站巡视方法,其特征在于,所述至少两种数据采集终端包括可见光数据采集终端和短波红外数据采集终端,所述至少两种组件图像数据包括可见光图像数据和短波红外图像数据;
    所述中央控制器根据所述至少两种数据采集终端所采集的所述至少两种组件图像数据以及所述电站组件的组件运维参数,确定所述电站组件是否为目标运维组件,包括:
    所述中央控制器在基于所述可见光图像数据确定所述电站组件为故障组件且基于所述短波红外图像数据确定所述电站组件的形态包含于缺陷形态样本数据库时,确定所述电站组件为待运维组件;
    所述中央控制器确定所述待运维组件的组件运维参数,并在所述待运维组件的组件运维参数满足运维条件时确定所述待运维组件为目标运维组件。
  16. 根据权利要求13所述的电站巡视方法,其特征在于,所述至少两种数据采集终端包括热红外数据采集终端和短波红外数据采集终端,所述至少两种组件图像数据包括热红外图像数据和短波红外图像数据;
    所述中央控制器根据所述至少两种数据采集终端所采集的所述至少两种组件图像数据以及所述电站组件的组件运维参数,确定所述电站组件是否为目标运维组件,包括:
    所述中央控制器在基于所述热红外图像数据确定所述电站组件的测试温度大于预置温度阈值或者组件热红外面积大于预置面积阈值,且基于所述短波红外图像数据确定所述电站组件的形态包含于缺陷形态样本数据库时,确定所述电站组件为待运维组件;
    所述中央控制器确定所述待运维组件的组件运维参数,并在所述待运维组件的组件运维参数满足运维条件时确定所述待运维组件为目标运维组件。
  17. 根据权利要求13所述的电站巡视方法,其特征在于,所述至少两种数据采集终端包括可见光数据采集终端、热红外数据采集终端以及短波红外数据采集终端,所述至少两种组件图像数据包括可见光组件图像数据、热红外图像数据和短波红外图像数据;
    所述中央控制器根据所述至少两种数据采集终端所采集的所述至少两种组件图像数据以及所述电站组件的组件运维参数,确定所述电站组件是否为目标运维组件,包括:
    所述中央控制器在基于所述可见光图像数据确定所述电站组件为故障组件、基于所述热红外图像数据确定所述电站组件的测试温度大于预置温度阈值或者组件热红外面积大于预置面积阈值、且基于所述短波红外图像数据确定所述电站组件的形态包含于缺陷形态样本数据库时,确定所述电站组件为待运维组件;
    所述中央控制器确定所述待运维组件的组件运维参数,并在所述待运维组件的组件运维参数满足运维条件时确定所述待运维组件为目标运维组件。
  18. 根据权利要求14-17所述的电站巡视方法,其特征在于,所述待运维组件的组件运维参数包括所述待运维组件的发电量损失值和安全风险参数中的至少一种。
  19. 根据权利要求18所述的电站巡视方法,其特征在于,所述待运维组件的组件运维 参数包括所述待运维组件的发电量损失值;
    所述中央控制器在所述待运维组件的组件运维参数满足运维条件时确定所述待运维组件为目标运维组件,包括:
    所述中央控制器在所述待运维组件的发电量损失值大于或者等于发电量损失阈值时,确定所述待运维组件的组件运维参数满足运维条件,并将所述待运维组件确定为目标运维组件。
  20. 根据权利要求18所述的电站巡视方法,其特征在于,所述待运维组件的组件运维参数包括所述待运维组件的安全风险参数;
    所述中央控制器在所述待运维组件的组件运维参数满足运维条件时确定所述待运维组件为目标运维组件,包括:
    所述中央控制器在所述待运维组件的安全风险参数大于或者等于安全风险阈值时,确定所述待运维组件的组件运维参数满足运维条件,并将所述待运维组件确定为目标运维组件。
  21. 根据权利要求13-20任一项所述的电站巡视方法,其特征在于,所述方法还包括:
    所述中央控制器确定所述目标运维组件的异常类型,并基于所述目标运维组件的异常类型以及组件运维参数生成所述目标运维组件的运维报告。
PCT/CN2020/122986 2020-10-22 2020-10-22 电站巡视系统及电站巡视方法 WO2022082660A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20958242.8A EP4220325A4 (en) 2020-10-22 2020-10-22 POWER PLANT INSPECTION SYSTEM AND POWER PLANT INSPECTION PROCEDURES
PCT/CN2020/122986 WO2022082660A1 (zh) 2020-10-22 2020-10-22 电站巡视系统及电站巡视方法
CN202080011904.8A CN114667493A (zh) 2020-10-22 2020-10-22 电站巡视系统及电站巡视方法
US18/305,171 US20230260097A1 (en) 2020-10-22 2023-04-21 Power station inspection system and power station inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/122986 WO2022082660A1 (zh) 2020-10-22 2020-10-22 电站巡视系统及电站巡视方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/305,171 Continuation US20230260097A1 (en) 2020-10-22 2023-04-21 Power station inspection system and power station inspection method

Publications (1)

Publication Number Publication Date
WO2022082660A1 true WO2022082660A1 (zh) 2022-04-28

Family

ID=81291135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122986 WO2022082660A1 (zh) 2020-10-22 2020-10-22 电站巡视系统及电站巡视方法

Country Status (4)

Country Link
US (1) US20230260097A1 (zh)
EP (1) EP4220325A4 (zh)
CN (1) CN114667493A (zh)
WO (1) WO2022082660A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116399405A (zh) * 2023-06-07 2023-07-07 国网上海市电力公司 一种基于多模态融合感知的绝缘子串状态诊断方法和系统
CN117439541A (zh) * 2023-09-13 2024-01-23 华能国际电力股份有限公司河北清洁能源分公司 一种光伏场站设备健康状态监控系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108919821A (zh) * 2018-06-12 2018-11-30 浙江大学 一种面向规模化集中式光伏电站的无人机自动巡检系统及方法
KR20200012467A (ko) * 2018-07-27 2020-02-05 한국전력공사 전력설비 감시용 무인 진단장치 및 방법
CN110850890A (zh) * 2019-11-20 2020-02-28 中山飞旋天行航空科技有限公司 光伏电站无人机巡检系统及其控制方法
JP2020078209A (ja) * 2018-11-09 2020-05-21 中国電力株式会社 点検システム、点検支援方法および点検支援プログラム
CN111459190A (zh) * 2020-05-16 2020-07-28 苏州求臻智能科技有限公司 面向规模化集中式光伏电站自动巡检的无人机及巡检方法
CN111766895A (zh) * 2020-05-29 2020-10-13 苏州云思翼电子科技有限公司 光伏电站无人机巡检系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105263000A (zh) * 2015-10-16 2016-01-20 广西大学 基于无人机载双相机的大型光伏电站巡检装置
GB201601303D0 (en) * 2016-01-25 2016-03-09 Above Surveying Ltd Utilising UAVs for detecting defects in solar panel arrays
CN109196553B (zh) * 2017-10-31 2022-03-29 深圳市大疆创新科技有限公司 一种光伏板识别方法、地面站、控制设备及无人机
CN111522355B (zh) * 2020-03-19 2023-06-13 尚特杰电力科技有限公司 一种基于边缘计算的无人机巡检系统及其巡检方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108919821A (zh) * 2018-06-12 2018-11-30 浙江大学 一种面向规模化集中式光伏电站的无人机自动巡检系统及方法
KR20200012467A (ko) * 2018-07-27 2020-02-05 한국전력공사 전력설비 감시용 무인 진단장치 및 방법
JP2020078209A (ja) * 2018-11-09 2020-05-21 中国電力株式会社 点検システム、点検支援方法および点検支援プログラム
CN110850890A (zh) * 2019-11-20 2020-02-28 中山飞旋天行航空科技有限公司 光伏电站无人机巡检系统及其控制方法
CN111459190A (zh) * 2020-05-16 2020-07-28 苏州求臻智能科技有限公司 面向规模化集中式光伏电站自动巡检的无人机及巡检方法
CN111766895A (zh) * 2020-05-29 2020-10-13 苏州云思翼电子科技有限公司 光伏电站无人机巡检系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4220325A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116399405A (zh) * 2023-06-07 2023-07-07 国网上海市电力公司 一种基于多模态融合感知的绝缘子串状态诊断方法和系统
CN116399405B (zh) * 2023-06-07 2023-09-15 国网上海市电力公司 一种基于多模态融合感知的绝缘子串状态诊断方法和系统
CN117439541A (zh) * 2023-09-13 2024-01-23 华能国际电力股份有限公司河北清洁能源分公司 一种光伏场站设备健康状态监控系统

Also Published As

Publication number Publication date
EP4220325A1 (en) 2023-08-02
EP4220325A4 (en) 2023-11-08
CN114667493A (zh) 2022-06-24
US20230260097A1 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
CN105511495B (zh) 电力线路无人机智能巡检控制方法和系统
US20230260097A1 (en) Power station inspection system and power station inspection method
CN108370233B (zh) 检测光伏板的方法、设备及无人机
CN206348665U (zh) 一种基于北斗导航的热力管网无人机智能巡检系统
CN109961157B (zh) 太阳能光伏发电系统的巡检方法及系统
CN108957240A (zh) 电网故障远程定位方法及系统
CN105700544A (zh) 一种无人机光伏电站电气设备巡检系统及实现方法
CN114898232B (zh) 基于光伏组串数据分析的光伏电站无人机巡检方法及系统
CN205375192U (zh) 一种基于红外影像技术的无人机配电网巡检系统
CN115133874A (zh) 一种无人机联动巡查光伏电站故障检测的方法及系统
CN107147710A (zh) 一种电网无人机巡检管理控制装置
CN207020539U (zh) 一种光伏板智能无人机巡检装置
CN109542114A (zh) 一种无人机输电线路巡检方法及系统
CN111428629A (zh) 变电站运行监测方法、状态确定方法及无人机巡检系统
CN115441832A (zh) 一种智能光伏运维管控系统
CN111244822A (zh) 一种复杂地理环境的固定翼无人机巡线方法、系统和装置
CN116136613A (zh) 一种数据中心自动巡检方法、装置、设备及介质
CN115562349A (zh) 一种无人机与地面巡检机器人协同作业的巡检方法及装置
CN205029774U (zh) 一种基于bds/gps的无人机值守定位监测系统
CN210199580U (zh) 一种配电网巡检无人机
CN109470712A (zh) 一种风电叶片检测系统
CN109270957A (zh) 一种植保系统及其飞行器控制方法和装置
CN114627569B (zh) 电力线路巡检无人机的异常处理方法、装置和计算机设备
CN110146132B (zh) 一种架空线路通道环境参数采集装置
Karthikeyan et al. Edge AI–Based Aerial Monitoring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958242

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020958242

Country of ref document: EP

Effective date: 20230426

NENP Non-entry into the national phase

Ref country code: DE