WO2022082527A1 - 接触器状态检测电路、系统及车辆 - Google Patents

接触器状态检测电路、系统及车辆 Download PDF

Info

Publication number
WO2022082527A1
WO2022082527A1 PCT/CN2020/122587 CN2020122587W WO2022082527A1 WO 2022082527 A1 WO2022082527 A1 WO 2022082527A1 CN 2020122587 W CN2020122587 W CN 2020122587W WO 2022082527 A1 WO2022082527 A1 WO 2022082527A1
Authority
WO
WIPO (PCT)
Prior art keywords
contactor
state detection
detection circuit
current signal
signal detector
Prior art date
Application number
PCT/CN2020/122587
Other languages
English (en)
French (fr)
Inventor
卢伟文
宋安国
吴壬华
Original Assignee
深圳欣锐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳欣锐科技股份有限公司 filed Critical 深圳欣锐科技股份有限公司
Priority to PCT/CN2020/122587 priority Critical patent/WO2022082527A1/zh
Priority to CN202080008548.4A priority patent/CN113330323B/zh
Publication of WO2022082527A1 publication Critical patent/WO2022082527A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0416Connectors, terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the field of electric vehicles, in particular to a contactor state detection circuit, system and vehicle.
  • a contactor is a switch device that uses a current flowing through a coil to generate a magnetic field to close the contacts, and when the coil is powered off, the electromagnetic attraction disappears and the contacts are disconnected.
  • a contactor is configured between the battery and the charging interface. The specific connection is shown in Figure 1. When charging is stopped, it acts as an isolation, and when charging, it acts as a connection.
  • the present application provides a contactor state detection circuit, system and vehicle, which can accurately judge the state of the contactor.
  • an embodiment of the present application provides a contactor state detection circuit, the contactor state detection circuit includes a first power supply, a first contactor, a current signal detector, and a voltage acquisition unit, wherein:
  • One end of the first power source is connected to one end of the first contactor, and the first contactor is connected in series between the charging interface and the battery;
  • the other end of the first power supply is connected to the first end of the current signal detector
  • the second end of the current signal detector is connected to the other end of the first contactor, and the third end of the current signal detector is used to output a voltage signal representing the opening and closing state of the first contactor;
  • the third end of the current signal detector is connected to the voltage acquisition unit, and the voltage acquisition unit is configured to determine the state of the first contactor according to the voltage signal output by the current signal detector.
  • the contactor state detection circuit further includes a second contactor and a second power supply, and there is a mechanical linkage relationship between the second contactor and the first contactor;
  • One end of the second contactor is connected to the second power source, and the other end of the second contactor is connected to the voltage collecting unit.
  • the contactor state detection circuit further includes a constant current source, and the constant current source includes an input end and an output end;
  • the other end of the first power supply is connected to the first end of the current signal detector as follows:
  • the other end of the first power supply is connected to the input end of the constant current source, the output end of the constant current source is connected to the first end of the current signal detector, and the constant current source is used to send the current signal to the The detector supplies a constant current.
  • the contactor state detection circuit further includes at least one resistor, and the other end of the first power supply is connected in series to the first end of the current signal detector through the at least one resistor.
  • the contactor state detection circuit further includes a switch tube and a battery management unit;
  • the first contactor is connected in series between the charging interface and the battery as follows:
  • One end of the first contactor is connected to the charging interface, the other end of the first contactor is connected to the first end of the switch tube, the second end of the switch tube is connected to the battery, and the second end of the switch tube is connected to the battery.
  • the third end is connected to the battery management unit, and the battery management unit is configured to control the on-off of the switch tube according to the voltage signal representing the opening and closing state of the first contactor.
  • the current signal detector includes any one of a Hall current sensor, a current transformer and/or a sampling resistor.
  • the contactor state detection circuit further includes a protection unit, one end of the protection unit is connected to the output end of the constant current source, and the other end of the protection unit is connected to the first end of the current signal detector, The protection unit is used to protect the contactor state detection circuit when the voltage across the first contactor reaches a preset threshold.
  • the protection unit is a field effect transistor, and the contactor state detection circuit further includes a battery management unit;
  • One end of the protection unit is connected to the output end of the constant current source, and the other end of the protection unit is connected to the first end of the current signal detector:
  • the drain of the field effect transistor is connected to the output end of the constant current source, and the source of the field effect transistor is connected to the first end of the current signal detector;
  • the gate of the field effect transistor is connected to the battery management unit.
  • an embodiment of the present application further provides a contactor state detection system, where the contactor state detection system includes a charging interface, a battery, and any of the above-mentioned possible contactor state detection circuits.
  • an embodiment of the present application further provides a vehicle, where the vehicle includes any one of the possible contactor state detection circuits described above.
  • the contactor state detection circuit in this application includes a first power supply, a first contactor, a current signal detector, and a voltage acquisition unit, wherein: one end of the first power supply is connected to one end of the first contactor, and the The first contactor is connected in series between the charging interface and the battery; the other end of the first power supply is connected to the first end of the current signal detector; the second end of the current signal detector is connected to the first contactor The other end of the current signal detector is connected to the other end of the current signal detector, and the third end of the current signal detector is used to output a voltage signal representing the opening and closing state of the first contactor; the third end of the current signal detector is connected to the voltage acquisition unit,
  • the voltage acquisition unit is configured to determine the state of the first contactor according to the voltage signal output by the current signal detector.
  • the state of the first contactor is detected by the output voltage of the current signal detector. If the voltage acquisition unit collects that the current signal detector has no output voltage, the first contactor can be determined. If the current signal detector has a voltage output collected by the voltage acquisition unit, it can be determined that the first contactor is in a closed state, thereby accurately judging the state of the contactor.
  • FIG. 1 is a structural block diagram of a contactor application provided by an embodiment of the present application.
  • FIG. 2 is a structural block diagram of a contactor state detection circuit provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a contactor state detection circuit provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another contactor state detection circuit provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another contactor state detection circuit provided by an embodiment of the present application.
  • FIG. 6 is a structural block diagram of a contactor state detection system provided by an embodiment of the present application.
  • FIG. 2 is a structural block diagram of a contactor state detection circuit provided by an embodiment of the present application.
  • the contactor state detection circuit 20 includes a first power supply 200 , a first contactor 201 , a current signal detector 202 and a voltage acquisition unit 203 , wherein:
  • One end of the first power supply 200 is connected to one end of the first contactor 201, and the first contactor 201 is connected in series between the charging interface 21 and the battery 22;
  • the other end of the first power supply 200 is connected to the first end of the current signal detector 202;
  • the second end of the current signal detector 202 is connected to the other end of the first contactor 201 , and the third end of the current signal detector 202 is used to output a signal indicating the opening and closing state of the first contactor 201 .
  • voltage signal
  • the third end of the current signal detector 202 is connected to the voltage acquisition unit 203 , and the voltage acquisition unit 203 is configured to determine the state of the first contactor 201 according to the voltage signal output by the current signal detector 202 .
  • the first power supply 200 is used to provide a working voltage to the current signal detector 202.
  • the first power supply 200 may be a constant voltage power supply.
  • the current signal detector 202 includes any one of a Hall current sensor, a current transformer and/or a sampling resistor. Taking the Hall current sensor as an example, the Hall current sensor is a component using the principle of the Hall effect, and the current Ic is fed from the control current end of the component, and the control current end is the current signal detector.
  • the voltage acquisition unit 203 can be an integrated chip with a digital-to-analog conversion (Analog-to-Digital Converter, ADC) function, such as a central processing unit (central processing unit, CPU), a digital signal processor (digital signal processor, DSP) , application specific integrated circuit (ASIC), off-the-shelf programmable gate array (field-programmable gate array, FPGA) or other transistor logic devices.
  • ADC Analog-to-Digital Converter
  • the current signal detector 202 may also be a sampling resistor, which is connected in series with the contactor state detection circuit 20 to collect the loop current of the contactor state detection circuit 20.
  • the voltage acquisition unit 203 collects the voltage across the sampling resistor. It is determined that the first contactor 201 is in a closed state.
  • the principle of the contactor state detection circuit 20 is as follows:
  • the first power supply 200, the first contactor 201 and the current signal detector 202 form a closed loop, and the current signal detector 202 collects the loop current in the closed loop, and collects the current when the current is collected. output voltage signal.
  • the current signal detector 202 collects the current to output a voltage signal.
  • the voltage collection unit 203 determines that the current signal detector 202 has an output voltage, that is, the current signal detector 202 outputs a high level. , the voltage collection unit 203 determines that the first contactor 201 is in a closed state; if the voltage collection unit 203 collects that the current signal detector 202 has no output voltage, that is, the current signal detector 202 outputs a low voltage If it is flat, the voltage acquisition unit 203 determines that the first contactor 201 is in a disconnected state.
  • the voltage acquisition unit 203 may determine whether the first contactor 201 is in a stuck state or a normally closed state according to the state of the first contactor 201 and whether the charging interface 21 has an insertion signal.
  • the charging interface 21 has an insertion signal, which means that the external device is charging the battery 22, and the first contactor 201 is in a closed state, which is a normal closed state; if the charging interface 21 has no insertion signal, it means When the external device is not charging the battery 22, the first contactor 201 should be in an open state. If the first contactor 201 is in a closed state, it means the contact of the first contactor 201 The point is stuck, that is, the first contactor 201 is in a stuck state.
  • the insertion signal may be sent by the charging interface 21 , that is, the charging interface 21 has a function of detecting the insertion of an external device.
  • FIG. 3 is a schematic diagram of a contactor state detection circuit provided by an embodiment of the present application.
  • the first contactor KM1 is connected in series between the charging interface 31 and the battery 32 , one end of the first power source U1 is connected to the first end of the current sensor S1 , and the positive electrode of the first power source U1 Either the positive electrode or the negative electrode can be connected to the first end of the current signal detector S1, and there is no restriction on whether the positive electrode of the power supply or the negative electrode is connected to the first end of the current signal detector S1 in the present application.
  • the negative pole of the first power supply U1 is connected to one end of the first contactor KM1, and the current signal detector The second end of S1 is connected to the other end of the first contactor KM1.
  • the contactor includes two parts, one part is the contact part, and the other part is the coil part.
  • the coil part is used to generate a magnetic field according to the current, thereby attracting the contacts to pull in.
  • the contact The connection relationship of the device is all for the contact part, and the connection relationship of the coil part is not limited.
  • the third end of the current signal detector S1 is connected to the voltage acquisition unit Q1, and the voltage acquisition unit Q1 is used to collect the output voltage of the current signal detector S1. If the first contactor KM1 is in a closed state, A current is generated in the closed loop formed by the first power supply U1, the current signal detector S1 and the first contactor KM1, and the current signal detector S1 outputs a voltage signal; if the first contactor KM1 is in In the off state, the first power supply U1 , the current signal detector S1 and the first contactor KM1 do not form a closed loop, and the current signal detector S1 does not output a voltage signal.
  • the voltage acquisition unit Q1 determines the opening and closing state of the first contactor KM1 according to whether the current signal detector S1 has a voltage signal output.
  • FIG. 4 is a schematic diagram of another contactor state detection circuit provided by an embodiment of the present application. As shown in FIG. 4 , the other end of the first power supply U2 is connected to the input end of the constant current source i1, the output end of the constant current source i1 is connected to the first end of the current signal detector S2, and the constant current source i1 is connected to the first end of the current signal detector S2.
  • the source i1 is used to supply a constant current to the current signal detector S2.
  • the current signal detector S2 can detect the current, so the voltage signal can be output according to the detected current, so as to avoid when the first contactor KM2 is closed, due to The shunt or interference of other circuits causes the current signal detector S2 to fail to detect the current, and misjudgment occurs. Implementing this embodiment can improve the accuracy of contactor state detection.
  • the first contactor and the current signal detector in order to protect the closed loop formed by the first power supply, the first contactor and the current signal detector, on the basis of the foregoing description in conjunction with FIG.
  • At least one resistor is connected to the detection circuit, and the other end of the first power supply U1 is connected in series to the first end of the current signal detector S1 through the at least one resistor.
  • the first power supply U1 directly provides voltage to the current signal detector S1 , and the voltage of the first power supply U1 passes through the wires between the two and all the The internal resistance of the current signal detector S1 generates current.
  • At least one resistor is connected to the contactor state detection circuit 30, which can reduce the closed-loop circuit current of the first power supply U1, the first contactor KM1 and the current signal detector S1, And improve the reliability of the contactor state detection circuit.
  • the contactor state detection circuit further includes a switch tube and a battery management unit.
  • one end of the first contactor KM2 is connected to the charging Interface 41
  • the other end of the first contactor KM2 is connected to the first end of the switch tube K1
  • the second end of the switch tube K1 is connected to the battery 42
  • the third end of the switch tube K1 is connected to the The battery management unit Q3
  • the battery management unit Q3 is used to control the on-off of the switch tube K1 according to the voltage signal indicating the opening and closing state of the first contactor KM2.
  • the battery management unit Q3 and the voltage acquisition unit Q2 may be units integrated in the same integrated chip, and the battery management unit Q3 is used to send the data to the voltage signal collected by the voltage acquisition unit Q2.
  • the switch tube K1 outputs a control signal.
  • the switch tube K1 is a field effect transistor, the field effect transistor is turned off when the battery management unit Q3 outputs a high level, and the field effect transistor is turned on when it outputs a low level.
  • the voltage acquisition unit Q2 collects the voltage output When the signal is on, it means that the first contactor KM2 is in a closed state. Further, it can also be combined with the insertion signal sent by the charging interface 41 to determine whether the first contactor KM2 is in a sticking state.
  • the battery management unit Q3 outputs a high level to the switch tube K1, and the switch tube K1 is disconnected. Since the first contactor KM2 and the switch tube K1 are in a series relationship, when the switch tube K1 is connected in series When K1 is in an open state, even if the first contactor KM2 is in a closed state, the charging interface 41 and the battery 42 will not be connected together, so that the voltage of the charging interface 41 can be reduced to zero, Instead of the battery voltage, the safety of the charging interface is greatly improved.
  • the contactor state detection circuit 40 further includes a protection unit, one end of the protection unit is connected to the output end of the constant current source, and the other end of the protection unit is connected to the first terminal of the current signal detector. terminal, the protection unit is configured to protect the contactor state detection circuit when the voltage across the first contactor reaches a preset threshold.
  • the protection unit is a field effect transistor Q1.
  • the drain of the field effect transistor Q1 is connected to the output end of the constant current source i1, the source electrode of the field effect transistor Q1 is connected to the first end of the current signal detector S2, and the The gate of the field effect transistor Q1 is connected to the battery management unit Q3, and the battery management unit Q3 is used for outputting a voltage to the field effect transistor Q1 when the voltage across the first contactor KM2 is greater than a preset threshold signal to control the field effect transistor Q1 to be turned off, so that the contactor state detection circuit 40 is turned off.
  • the contactor state detection circuit can be disconnected when the voltage at both ends of the first contactor is too high, thereby improving the safety of using the contactor state detection circuit.
  • FIG. 5 is a schematic diagram of still another contactor state detection circuit provided by an embodiment of the present application.
  • the contactor state detection circuit 50 includes a first power supply U3 , a first contactor KM3 , a current signal detector S3 and the voltage acquisition unit Q4 .
  • the specific implementation process please refer to the foregoing description in conjunction with FIG.
  • the contactor state detection circuit 50 may further include a constant current source i2, and further, the contactor state detection circuit 50 may further include a switch tube K2 and a battery management unit Q5, and the specific implementation process may refer to the foregoing combination. The embodiment described in FIG. 4 will not be repeated here.
  • the contactor state detection circuit 50 further includes a second contactor KM4 and a second power supply U4, the second contactor KM4 and the first contactor KM3 have a mechanical linkage relationship; the second contactor KM4 One end of the second contactor KM4 is connected to the second power supply U4, and the other end of the second contactor KM4 is connected to the voltage acquisition unit Q4. Specifically, the voltages of the first power supply U3 and the second power supply U4 may be the same. From the mechanical linkage between the second contactor KM4 and the first contactor KM3, it can be known that the second contactor KM4 has a mechanical linkage relationship with the first contactor KM3. The contactor KM4 has an associated relationship with the opening and closing states of the first contactor KM3.
  • the state of the first contactor KM3 and the second contactor KM4 is the same, that is, the first contactor KM3 is in a closed state, and the second contactor KM4 will also be closed;
  • the state of a contactor KM3 and the second contactor KM4 are the same and opposite, that is, the first contactor KM3 is in a closed state, while the second contactor KM4 is in an open state.
  • the first contactor KM3 and the second contactor KM4 are in the same state as an example to introduce. When the first contactor KM3 is closed, the second contactor KM4 is closed, and the second contactor KM4 is closed.
  • the voltage of the power supply U4 is transmitted to the voltage acquisition unit Q4 through the second contactor KM4, and the voltage acquisition unit Q4 determines that the second contactor KM4 is at a high level according to the voltage acquired by the second contactor KM4.
  • the contactor KM4 is in a closed state, so it is determined that the first contactor KM3 is in a closed state.
  • the first contact can be determined according to whether the voltage of the second contactor KM4 or the output voltage signal of the current signal detector S3 collected by the voltage acquisition unit Q4 is a high level.
  • the device KM3 is closed.
  • FIG. 6 is a structural block diagram of a contactor state detection system provided by an embodiment of the present application.
  • the contactor state detection system 60 includes a charging interface 600 , a battery 602 and any possible contactor state detection circuit 601 described above in conjunction with FIGS. 1 to 5 , wherein the contactor state
  • the detection circuit 601 includes at least one contactor, the charging interface 600 is used to receive the charging current of an external device, and the contactor in the contactor state detection circuit 601 is used to connect the charging interface 600 and the battery 602, so that the external The charging current of the device may be provided to the battery 602 .
  • the contactor state detection circuit 601 is used to detect the opening and closing state of the contactor connected in series between the charging interface 600 and the battery 602 .
  • an embodiment of the present application further provides a vehicle, where the vehicle includes any one of the possible contactor state detection circuits described above in conjunction with FIG. 1 to FIG. 5 .
  • FIG. 1 and FIG. 5 may also have other implementation manners.
  • the unit and the battery management unit are integrated into one unit, etc., which are not listed here.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM) or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种接触器状态检测电路(20)、系统(60)及车辆,接触器状态检测电路(20)包括第一电源(200)、第一接触器(201)、电流信号检测器(202)以及电压采集单元(203),第一电源(200)的一端与第一接触器(201)的一端连接,第一接触器(201)串联在充电接口(21)与电池(22)之间;第一电源(200)的另一端连接电流信号检测器(202)的第一端;电流信号检测器(202)的第二端与第一接触器(201)的另一端连接,电流信号检测器(202)的第三端用于输出表示第一接触器(201)开合状态的电压信号;电流信号检测器(202)的第三端与电压采集单元(203)连接,电压采集单元(203)用于根据电流信号检测器(202)输出的电压信号确定第一接触器(201)的状态,通过电流信号检测器(202)的输出电压来对第一接触器(201)的状态进行检测,从而对接触器的状态进行准确的判断。

Description

接触器状态检测电路、系统及车辆 技术领域
本申请涉及电动汽车领域,尤其是一种接触器状态检测电路、系统及车辆。
背景技术
接触器是利用线圈流过电流产生磁场使触点闭合,当线圈断电时电磁吸力消失使触点断开的开关器件。在大电流充电设备中,在电池和充电接口之间配置接触器,具体连接如图1所示,当停止充电后起隔离作用,当充电时起连接作用。
随着电动汽车的发展,电动汽车的充电速度越来越高,充电电流也越来越大,接触器频繁出现粘连的情况,接触器发生粘连时,是无法通过线圈断电来使接触器的触点断开,这样充电接口由于接触器触点闭合,在没有充电的状态时刻与电池连通,导致电池电压反映在充电接口上,即充电接口时刻处于高压状态,这样带来了极大的安全隐患。
发明内容
本申请提供了一种接触器状态检测电路、系统及车辆,可以准确地判断接触器的状态。
第一方面,本申请实施例提供了一种接触器状态检测电路,所述接触器状态检测电路包括第一电源、第一接触器、电流信号检测器以及电压采集单元,其中:
所述第一电源的一端与所述第一接触器的一端连接,所述第一接触器串联在充电接口与电池之间;
所述第一电源的另一端连接所述电流信号检测器的第一端;
所述电流信号检测器的第二端与所述第一接触器的另一端连接,所述电流信号检测器的第三端用于输出表示所述第一接触器开合状态的电压信号;
所述电流信号检测器的第三端与所述电压采集单元连接,所述电压采集单元用于根据所述电流信号检测器输出的电压信号确定所述第一接触器的状态。
在一种可能的实施例中,所述接触器状态检测电路还包括第二接触器以及第二电源,所述第二接触器与所述第一接触器之间具有机械联动关系;
所述第二接触器的一端与所述第二电源连接,所述第二接触器的另一端与 所述电压采集单元连接。
在一种可能的实现方式中,所述接触器状态检测电路还包括恒流源,所述恒流源包括输入端与输出端;
所述第一电源的另一端连接所述电流信号检测器的第一端为:
所述第一电源的另一端连接所述恒流源的输入端,所述恒流源的输出端连接所述电流信号检测器的第一端,所述恒流源用于向所述电流信号检测器提供恒定的电流。
在另一种可能的实现方式中,所述接触器状态检测电路还包括至少一个电阻,所述第一电源的另一端经过所述至少一个电阻串联至所述电流信号检测器的第一端。
进一步的,所述接触器状态检测电路还包括开关管以及电池管理单元;
所述第一接触器串联在充电接口与电池之间为:
所述第一接触器的一端连接所述充电接口,所述第一接触器另一端连接所述开关管的第一端,所述开关管的第二端连接所述电池,所述开关管的第三端与所述电池管理单元连接,所述电池管理单元用于根据表示所述第一接触器开合状态的电压信号控制所述开关管的通断。
可选的,所述电流信号检测器包括霍尔电流传感器、电流互感器和/或采样电阻中的任意一种。
进一步的,所述接触器状态检测电路还包括保护单元,所述保护单元的一端连接所述恒流源的输出端,所述保护单元的另一端连接所述电流信号检测器的第一端,所述保护单元用于在所述第一接触器两端的电压达到预设阈值时,保护所述接触器状态检测电路。
可选的,所述保护单元为场效应管,所述接触器状态检测电路还包括电池管理单元;
所述保护单元的一端连接所述恒流源的输出端,所述保护单元的另一端连接所述电流信号检测器的第一端为:
所述场效应管的漏极连接所述恒流源的输出端,所述场效应管的源极连接所述电流信号检测器的第一端;
所述场效应管的栅极连接所述电池管理单元。
第二方面,本申请实施例还提供了一种接触器状态检测系统,所述接触器 状态检测系统包括充电接口、电池以及上面所述任意一种可能的接触器状态检测电路。
第三方面,本申请实施例还提供了一种车辆,所述车辆包括上面所述任意一种可能的接触器状态检测电路。
本申请中的接触器状态检测电路包括第一电源、第一接触器、电流信号检测器以及电压采集单元,其中:所述第一电源的一端与所述第一接触器的一端连接,所述第一接触器串联在充电接口与电池之间;所述第一电源的另一端连接所述电流信号检测器的第一端;所述电流信号检测器的第二端与所述第一接触器的另一端连接,所述电流信号检测器的第三端用于输出表示所述第一接触器开合状态的电压信号;所述电流信号检测器的第三端与所述电压采集单元连接,所述电压采集单元用于根据所述电流信号检测器输出的电压信号确定所述第一接触器的状态。实施本申请,通过电流信号检测器的输出电压来对第一接触器的状态进行检测,若所述电压采集单元采集到所述电流信号检测器没有输出电压,则可以确定所述第一接触器断开,若所述电压采集单元采集到所述电流信号检测器有电压输出,则可以确定所述第一接触器处于闭合状态,由此对接触器的状态进行准确地判断。
附图说明
图1为本申请实施例提供的一种接触器应用的结构框图;
图2为本申请实施例提供的一种接触器状态检测电路的结构框图;
图3为本申请实施例提供的一种接触器状态检测电路的原理图;
图4为本申请实施例提供的另一种接触器状态检测电路的原理图;
图5为本申请实施例提供的又一种接触器状态检测电路的原理图;
图6为本申请实施例提供的一种接触器状态检测系统的结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合附图来对本申请的技术方案的实施作进一步的详细描述。
参见图2,图2为本申请实施例提供的一种接触器状态检测电路的结构框图。如图2所示,接触器状态检测电路20包括第一电源200、第一接触器201、电流信号检测器202以及电压采集单元203,其中:
所述第一电源200的一端与所述第一接触器201的一端连接,所述第一接触器201串联在充电接口21与电池22之间;
所述第一电源200的另一端连接所述电流信号检测器202的第一端;
所述电流信号检测器202的第二端与所述第一接触器201的另一端连接,所述电流信号检测器202的第三端用于输出表示所述第一接触器201开合状态的电压信号;
所述电流信号检测器202的第三端与所述电压采集单元203连接,所述电压采集单元203用于根据所述电流信号检测器202输出的电压信号确定所述第一接触器201的状态。
具体的,所述第一电源200用于向所述电流信号检测器202提供工作电压,可选的,所述第一电源200可以是恒压源。所述电流信号检测器202包括霍尔电流传感器、电流互感器和/或采样电阻中的任意一种。以所述霍尔电流传感器为例,所述霍尔电流传感器是利用霍尔效应原理的元器件,从元件的控制电流端通入电流Ic,所述控制电流端即为所述电流信号检测器202的所述第一端以及所述第二端,并在元件平面的法线方向上施加磁感应强度为B的磁场,那么在垂直于电流和磁场方向(即输出端之间),将产生一个电势VH,所述输出端即为所述传感器202的第三端。所述电压采集单元203可以是具有数模转换(Analog-to-Digital Converter,ADC)功能的集成芯片,例如中央处理单元(central processing unit,CPU)、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field-programmable gate array,FPGA)或者其他晶体管逻辑器件等。可选的,所述电流信号检测器202也可以是采样电阻,该采样电阻串联在所述接触器状态检测电路20中,用于采集所述接触器状态检测电路20的回路电流,当所述第一接触器201闭合时,所述接触器状态检测电路20中有回路电流,所述电压采集单元203对所述采样电阻两端的电压进行采集,若采集到所述电阻两端具有电压,则确定所述第一接触器201处于闭合状态。
所述接触器状态检测电路20的原理如下:
所述第一电源200、所述第一接触器201以及所述电流信号检测器202组成闭合回路,所述电流信号检测器202对所述闭合回路中的回路电流进行采集,并在采集到电流的情况下输出电压信号。当所述第一接触器201处于断开状态时,所述闭合回路中没有电流流过,即所述电流信号检测器202没有采集到电流,没有电压信号输出;当所述第一接触器201处于闭合状态时,所述闭合回路中有电流流过,所述电流信号检测器202采集到电流,从而输出电压信号。所述电压采集单元203采集所述电流信号检测器202的输出电压,若所述电压采集单元203采集到所述电流信号检测器202有输出电压,即所述电流信号检测器202输出高电平,所述电压采集单元203确定所述第一接触器201处于闭合状态;若所述电压采集单元203采集到所述电流信号检测器202没有输出电压,即所述电流信号检测器202输出低电平,所述电压采集单元203确定所述第一接触器201处于断开状态。
进一步的,所述电压采集单元203可以根据所述第一接触器201的状态以及所述充电接口21是否具有插入信号来确定所述第一接触器201是处于粘连状态还是正常闭合状态。例如所述充电接口21有插入信号,代表外部设备在对所述电池22进行充电,所述第一接触器201处于闭合状态是正常的闭合状态;若所述充电接口21没有插入信号,即代表外部设备没有在向所述电池22进行充电的情况下,所述第一接触器201应该处于断开状态,若所述第一接触器201处于闭合状态,代表所述第一接触器201的触点发生了粘连,即所述第一接触器201处于粘连状态。可选的,所述插入信号可以是由所述充电接口21发出的,即所述充电接口21具有检测外部设备插入的功能。
下面结合具体的元器件对图2的结构图进行介绍。参见图3,图3为本申请实施例提供的一种接触器状态检测电路的原理图。如图3所示,所述第一接触器KM1串联在充电接口31与电池32之间,所述第一电源U1的一端连接电流传感S1的第一端,所述第一电源U1的正极或负极均可与所述电流信号检测器S1的第一端连接,在本申请中没有对电源的正极还是负极连接所述电流信号检测器S1的第一端作出限制。以所述第一电源U1的正极连接所述电流信号检测器S1的第一端为例,所述第一电源U1的负极与所述第一接触器KM1的一端连 接,所述电流信号检测器S1的第二端与所述第一接触器KM1的另一端连接。需要说明的是,接触器包括有两部分,一部分是触点部分,另一部分是线圈部分,线圈部分是用来根据电流产生磁场,从而吸引触点吸合的,在本申请中所说的接触器的连接关系均是对于触点部分而言,并不对所述线圈部分的连接关系进行限制。所述电流信号检测器S1的第三端与电压采集单元Q1连接,所述电压采集单元Q1用于采集所述电流信号检测器S1的输出电压,若所述第一接触器KM1处于闭合状态,所述第一电源U1、所述电流信号检测器S1以及所述第一接触器KM1形成的闭合回路中产生电流,所述电流信号检测器S1输出电压信号;若所述第一接触器KM1处于断开状态,所述第一电源U1、所述电流信号检测器S1以及所述第一接触器KM1没有形成闭合回路,所述电流信号检测器S1没有输出电压信号。所述电压采集单元Q1根据所述电流信号检测器S1是否有电压信号输出确定所述第一接触器KM1的开合状态。
在一种可能的实施例中,为了排除电路中其他因素干扰电流信号检测器电压信号的输出,在前文结合图3所描述的基础上,在所述接触器状态检测电路中接入恒流源,所述恒流源包括输入端与输出端。具体的,参见图4,图4为本申请实施例提供的另一种接触器状态检测电路的原理图。如图4所示,第一电源U2的另一端连接所述恒流源i1的输入端,所述恒流源i1的输出端连接所述电流信号检测器S2的第一端,所述恒流源i1用于向所述电流信号检测器S2提供恒定的电流。当所述第一接触器KM2处于闭合状态时,保证所述电流信号检测器S2可以检测到电流,因而可以根据检测到的电流输出电压信号,避免在所述第一接触器KM2闭合时,由于其他电路的分流或者干扰导致所述电流信号检测器S2检测不到电流,出现误判的情况,实施本实施例,可以提高接触器状态检测的准确性。
在另一种可能的实施例中,为了保护所述第一电源、第一接触器以及所述电流信号检测器形成的闭合回路,在前文结合图3所描述的基础上,在所述接触器检测电路中接入至少一个电阻,所述第一电源U1的另一端经过所述至少一个电阻串联至所述电流信号检测器S1的第一端。具体的,在前文结合图3所描述的实施例中,所述第一电源U1直接向所述电流信号检测器S1提供电压,所述第一电源U1的电压经过两者之间的电线以及所述电流信号检测器S1的内阻 产生电流,由于所述电流信号检测器S1的内阻以及所述第一电源U1与所述电流信号检测器S1之间的走线电阻一般来说不大,因此实施本实施例,在所述接触器状态检测电路30中接入至少一个电阻,可以降低所述第一电源U1、第一接触器KM1以及所述电流信号检测器S1的闭合回路电路电流,以及提高所述接触器状态检测电路的可靠性。
进一步的,在前文结合图4所描述的实施例中,所述接触器状态检测电路还包括开关管以及电池管理单元,如图4所示,所述第一接触器KM2的一端连接所述充电接口41,所述第一接触器KM2的另一端连接所述开关管K1的第一端,所述开关管K1的第二端连接所述电池42,所述开关管K1的第三端与所述电池管理单元Q3连接,所述电池管理单元Q3用于根据表示所述第一接触器KM2开合状态的电压信号控制所述开关管K1的通断。具体的,所述电池管理单元Q3与所述电压采集单元Q2可以是集合在同一个集成芯片里面的单元,所述电池管理单元Q3用于根据所述电压采集单元Q2采集到的电压信号来向所述开关管K1输出控制信号。示例性的,所述开关管K1为场效应管,所述电池管理单元Q3输出高电平时场效应管截止,输出低电平时场效应管导通,当所述电压采集单元Q2采集到电压输出信号时,代表所述第一接触器KM2处于闭合状态,进一步的,也可以结合充电接口41发出的插入信号来判断所述第一接触器KM2是否处于粘连状态,具体实现过程可以参考前文结合图2所描述的实施例,此处不作赘述。所述电池管理单元Q3向所述开关管K1输出高电平,所述开关管K1断开,由于所述第一接触器KM2与所述开关管K1之间是串联关系,当所述开关管K1处于断开状态时,即使所述第一接触器KM2处于闭合状态,所述充电接口41与所述电池42也不会连接在一起,从而可以使得所述充电接口41的电压降低为零,而不是电池电压,大大提高了充电接口使用的安全性。
更进一步的,所述接触器状态检测电路40还包括保护单元,所述保护单元的一端连接所述恒流源的输出端,所述保护单元的另一端连接所述电流信号检测器的第一端,所述保护单元用于在所述第一接触器两端的电压达到预设阈值时,保护所述接触器状态检测电路。示例性的,如图4所示,所述保护单元为场效应管Q1。可选的,所述场效应管Q1的漏极与所述恒流源i1的输出端连接,所述场效应管Q1的源极与所述电流信号检测器S2的第一端连接,所述场效应管Q1的栅极与所述电池管理单元Q3连接,所述电池管理单元Q3用于在所述 第一接触器KM2两端的电压大于预设阈值时,向所述场效应管Q1输出电压信号,控制所述场效应管Q1断开,从而所述接触器状态检测电路40断开。实施本实施例,可以实现在第一接触器两端电压过高的情况下,断开所述接触器状态检测电路,提高了所述接触器状态检测电路使用的安全性。
在前文结合图3所描述的基础上,为了进一步提高所述第一接触器状态检测的可靠性,本申请还可以通过对与所述第一接触器具有机械联动关系的第二接触器进行状态检测,从而确定所述第一接触器的状态。在一种可能的实现方式中,参考图5,图5为本申请实施例提供的又一种接触器状态检测电路的原理图。如图5所示,所述接触器状态检测电路50包括第一电源U3、第一接触器KM3、电流信号检测器S3以及所述电压采集单元Q4,具体实现过程可以参考前文结合图3所描述的实施例,此处不作赘述。可选的,所述接触器状态检测电路50还可以包括恒流源i2,进一步的,所述接触器状态检测电路50还可以包括开关管K2以及电池管理单元Q5,具体实现过程可以参考前文结合图4所描述的实施例,此处不作赘述。
所述接触器状态检测电路50还包括第二接触器KM4以及第二电源U4,所述第二接触器KM4与所述第一接触器KM3之间具有机械联动关系;所述第二接触器KM4的一端与所述第二电源U4连接,所述第二接触器KM4的另一端与所述电压采集单元Q4连接。具体的,所述第一电源U3和所述第二电源U4的电压大小可以相同,由所述第二接触器KM4与所述第一接触器KM3之间具有机械联动关系,可知所述第二接触器KM4与所述第一接触器KM3的开合状态具有关联关系。例如所述第一接触器KM3与所述第二接触器KM4的状态相同,即所述第一接触器KM3处于闭合状态,所述第二接触器KM4也会随之闭合;又例如所述第一接触器KM3与所述第二接触器KM4的状态相同相反,即所述第一接触器KM3处于闭合状态,所述第二接触器KM4却处于断开状态。以所述第一接触器KM3与所述第二接触器KM4的状态相同为例进行介绍,当所述第一接触器KM3闭合时,所述第二接触器KM4随之闭合,所述第二电源U4的电压经过所述第二接触器KM4传递至所述电压采集单元Q4中,所述电压采集单元Q4根据采集到所述第二接触器KM4的电压为高电平,确定所述第二接触器KM4为闭合状态,从而确定所述第一接触器KM3处于闭合状态。可选 的,可以根据所述电压采集单元Q4采集到所述第二接触器KM4的电压或所述电流信号检测器S3的输出电压信号中的任意一个为高电平,确定所述第一接触器KM3处于闭合状态。实施本实施例,通过增加对与所述第一接触器KM3具有机械联动关系的第二接触器KM4的状态检测,进一步提高所述第一接触器KM3状态检测的可靠性。
参见图6,图6为本申请实施例提供的一种接触器状态检测系统的结构框图。如图6所示,所述接触器状态检测系统60包括充电接口600、电池602以及前文结合图1至图5所描述的任意一种可能的接触器状态检测电路601,其中所述接触器状态检测电路601包括至少一个接触器,所述充电接口600用于接收外部设备的充电电流,所述接触器状态检测电路601中的接触器用于连接所述充电接口600与所述电池602,使外部设备的充电电流可以提供至所述电池602。所述接触器状态检测电路601用于检测串联在所述充电接口600与所述电池602之间的接触器的开合状态。
在一种可能的应用场景中,本申请实施例还提供了一种车辆,所述车辆包括前文结合图1至图5所描述的任意一种可能的接触器状态检测电路。
需要说明的是,上述术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。可以理解的是,图1至图5对应的示例仅用于解释本申请实施例,不应构成限定,在可选方式中,图1和图5还可以有其他实现方式,例如可以将电压采集单元与电池管理单元集成到一个单元中等,在此不再列举。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本申请较佳实施例而已,当然不能以此来限定本申请之权利范围,因此依本申请权利要求所作的等同变化,仍属本申请所涵盖的范围。

Claims (10)

  1. 一种接触器状态检测电路,其特征在于,所述接触器状态检测电路包括第一电源、第一接触器、电流信号检测器以及电压采集单元,其中:
    所述第一电源的一端与所述第一接触器的一端连接,所述第一接触器串联在充电接口与电池之间;
    所述第一电源的另一端连接所述电流信号检测器的第一端;
    所述电流信号检测器的第二端与所述第一接触器的另一端连接,所述电流信号检测器的第三端用于输出表示所述第一接触器开合状态的电压信号;
    所述电流信号检测器的第三端与所述电压采集单元连接,所述电压采集单元用于根据所述电流信号检测器输出的电压信号确定所述第一接触器的状态。
  2. 如权利要求1所述的接触器状态检测电路,其特征在于,所述接触器状态检测电路还包括第二接触器以及第二电源,所述第二接触器与所述第一接触器之间具有机械联动关系;
    所述第二接触器的一端与所述第二电源连接,所述第二接触器的另一端与所述电压采集单元连接。
  3. 如权利要求1所述的接触器状态检测电路,其特征在于,所述接触器状态检测电路还包括恒流源,所述恒流源包括输入端与输出端;
    所述第一电源的另一端连接所述电流信号检测器的第一端为:
    所述第一电源的另一端连接所述恒流源的输入端,所述恒流源的输出端连接所述电流信号检测器的第一端,所述恒流源用于向所述电流信号检测器提供恒定的电流。
  4. 如权利要求1所述的接触器状态检测电路,其特征在于,所述接触器状态检测电路还包括至少一个电阻,所述第一电源的另一端经过所述至少一个电阻串联至所述电流信号检测器的第一端。
  5. 如权利要求1所述的接触器状态检测电路,其特征在于,所述接触器状 态检测电路还包括开关管以及电池管理单元;
    所述第一接触器串联在充电接口与电池之间为:
    所述第一接触器的一端连接所述充电接口,所述第一接触器的另一端连接所述开关管的第一端,所述开关管的第二端连接所述电池,所述开关管的第三端与所述电池管理单元连接,所述电池管理单元用于根据表示所述第一接触器开合状态的电压信号控制所述开关管的通断。
  6. 如权利要求1-5任一项所述的接触器状态检测电路,其特征在于,所述电流信号检测器包括霍尔电流传感器、电流互感器和/或采样电阻中的任意一种。
  7. 如权利要求3所述的接触器状态检测电路,其特征在于,所述接触器状态检测电路还包括保护单元;
    所述恒流源的输出端连接所述电流信号检测器的第一端为:
    所述保护单元的一端连接所述恒流源的输出端,所述保护单元的另一端连接所述电流信号检测器的第一端,所述保护单元用于在所述第一接触器两端的电压达到预设阈值时,保护所述接触器状态检测电路。
  8. 根据权利要求7所述的接触器状态检测电路,其特征在于,所述保护单元为场效应管,所述接触器状态检测电路还包括电池管理单元;
    所述保护单元的一端连接所述恒流源的输出端,所述保护单元的另一端连接所述电流信号检测器的第一端为:
    所述场效应管的漏极连接所述恒流源的输出端,所述场效应管的源极连接所述电流信号检测器的第一端;
    所述场效应管的栅极连接所述电池管理单元。
  9. 一种接触器状态检测系统,其特征在于,所述接触器状态检测系统包括充电接口、电池以及权利要求1-8任意一项所述接触器状态检测电路。
  10. 一种车辆,其特征在于,所述车辆包括权利要求1-8任意一项所述接触器状态检测电路。
PCT/CN2020/122587 2020-10-21 2020-10-21 接触器状态检测电路、系统及车辆 WO2022082527A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/122587 WO2022082527A1 (zh) 2020-10-21 2020-10-21 接触器状态检测电路、系统及车辆
CN202080008548.4A CN113330323B (zh) 2020-10-21 2020-10-21 接触器状态检测电路、系统及车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/122587 WO2022082527A1 (zh) 2020-10-21 2020-10-21 接触器状态检测电路、系统及车辆

Publications (1)

Publication Number Publication Date
WO2022082527A1 true WO2022082527A1 (zh) 2022-04-28

Family

ID=77413327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122587 WO2022082527A1 (zh) 2020-10-21 2020-10-21 接触器状态检测电路、系统及车辆

Country Status (2)

Country Link
CN (1) CN113330323B (zh)
WO (1) WO2022082527A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116088487A (zh) * 2023-04-11 2023-05-09 湖南长长电泵科技有限公司 一种用于水泵控制器应急监测装置
CN116609665A (zh) * 2023-06-01 2023-08-18 沃尔特电子(苏州)有限公司 接触器黏连检测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113866645A (zh) * 2021-09-07 2021-12-31 上海德朗能电子科技有限公司 充电电池、接触器的故障检测方法、装置、存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080143462A1 (en) * 2006-12-14 2008-06-19 Hamilton Sundstrand Corporation High voltage DC contactor hybrid without a DC arc break
CN104142466A (zh) * 2013-05-06 2014-11-12 广州汽车集团股份有限公司 一种汽车继电器触点闭合状态检测系统及其检测方法
CN205982555U (zh) * 2016-05-24 2017-02-22 深圳市沃特玛电池有限公司 一种直流接触器主触点的工作状态检测电路
CN108287536A (zh) * 2017-12-26 2018-07-17 浙江吉利汽车研究院有限公司 一种负极接触器烧结检测装置及方法
CN108303641A (zh) * 2017-01-11 2018-07-20 上海埃而生电气股份有限公司 高压接触器状态微电流注入检测电路及检测方法和系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202794463U (zh) * 2012-09-27 2013-03-13 潍柴动力股份有限公司 一种高压直流接触器主触点故障的检测装置
CN105929325B (zh) * 2016-06-15 2019-11-08 宁德时代新能源科技股份有限公司 一种继电器粘连检测电路及继电器粘连检测方法
CN206131093U (zh) * 2016-09-30 2017-04-26 宁波方太厨具有限公司 微波炉门控装置
CN106772002A (zh) * 2016-11-30 2017-05-31 深圳市沃特玛电池有限公司 一种充电继电器粘连检测装置
CN207037030U (zh) * 2017-07-28 2018-02-23 深圳驿普乐氏科技有限公司 一种检测电源模块输出端开关黏连的系统
CN207234401U (zh) * 2017-10-09 2018-04-13 中航锂电(洛阳)有限公司 一种储能电源系统
CN208855459U (zh) * 2018-09-20 2019-05-14 广州小鹏汽车科技有限公司 一种电动汽车及其电池充电电路的接触器状态的检测装置
CN111077440A (zh) * 2018-10-19 2020-04-28 株洲中车时代电气股份有限公司 一种牵引变流器及其接触器的状态检测方法、装置和设备
CN209441202U (zh) * 2018-12-29 2019-09-27 四川永贵科技有限公司 一种集成继电器粘连检测模块的电动汽车高压配电盒
CN110824351B (zh) * 2019-11-20 2022-05-13 天津津航计算技术研究所 一种继电器冗余的故障检测电路及其检测方法
CN213482400U (zh) * 2020-10-21 2021-06-18 深圳欣锐科技股份有限公司 接触器状态检测电路、系统及车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080143462A1 (en) * 2006-12-14 2008-06-19 Hamilton Sundstrand Corporation High voltage DC contactor hybrid without a DC arc break
CN104142466A (zh) * 2013-05-06 2014-11-12 广州汽车集团股份有限公司 一种汽车继电器触点闭合状态检测系统及其检测方法
CN205982555U (zh) * 2016-05-24 2017-02-22 深圳市沃特玛电池有限公司 一种直流接触器主触点的工作状态检测电路
CN108303641A (zh) * 2017-01-11 2018-07-20 上海埃而生电气股份有限公司 高压接触器状态微电流注入检测电路及检测方法和系统
CN108287536A (zh) * 2017-12-26 2018-07-17 浙江吉利汽车研究院有限公司 一种负极接触器烧结检测装置及方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116088487A (zh) * 2023-04-11 2023-05-09 湖南长长电泵科技有限公司 一种用于水泵控制器应急监测装置
CN116609665A (zh) * 2023-06-01 2023-08-18 沃尔特电子(苏州)有限公司 接触器黏连检测方法
CN116609665B (zh) * 2023-06-01 2024-03-19 沃尔特电子(苏州)有限公司 接触器黏连检测方法

Also Published As

Publication number Publication date
CN113330323B (zh) 2023-07-21
CN113330323A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2022082527A1 (zh) 接触器状态检测电路、系统及车辆
KR101354583B1 (ko) 누설전류를 발생시키지 않고 셀프 테스트 기능을 가진 절연저항 측정회로
EP3010128B1 (en) Electronic circuit
CN106646077A (zh) 一种检测负载开短路的检测装置
CN109596888A (zh) 汽车电池的绝缘电阻检测方法、检测电路及电池管理系统
CN110192315B (zh) 用于为接收装置的电源提供保护的电子电路
CN103913668A (zh) 一种ad信号或开关信号的处理及其诊断电路
WO2022021964A1 (zh) 开关状态检测电路、方法和装置
CN116699475B (zh) 基于源表的远端采样接触检测系统、方法及源表装置
CN208872806U (zh) 一种高压直流输电线路电压等级识别装置
CN109507487A (zh) 晶闸管触发脉冲信号检测电路
WO2022227659A1 (zh) 动力电池系统的高压接触器独立诊断装置及方法
WO2022082529A1 (zh) 继电器粘连检测方法及系统
CN205232007U (zh) 车载开关电源工作状态指示电路
CN105242167B (zh) 变电站常规采样仪用互感器二次回路断线在线检测方法
CN213482400U (zh) 接触器状态检测电路、系统及车辆
CN103116122B (zh) 一种功率单元检测电路、串联型电路及旁路检测系统
CN207184027U (zh) 一种usb接口对车载电源短路保护电路
CN105872931B (zh) 改进型开机检测电路及系统
CN108237305A (zh) 电焊机掉电保护装置及电焊机
CN113439215A (zh) 基于正负极的继电器检测电路及检测装置
CN202886498U (zh) 负载断线检测器
CN206559103U (zh) 一种汽车启动电源接线夹脱落保护与反接保护系统
TW202110030A (zh) 電壓電流變換電路以及充放電控制裝置
CN110133431A (zh) 电池的正反接检测电路与具有充电功能的电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958110

Country of ref document: EP

Kind code of ref document: A1