WO2022227659A1 - 动力电池系统的高压接触器独立诊断装置及方法 - Google Patents

动力电池系统的高压接触器独立诊断装置及方法 Download PDF

Info

Publication number
WO2022227659A1
WO2022227659A1 PCT/CN2021/141670 CN2021141670W WO2022227659A1 WO 2022227659 A1 WO2022227659 A1 WO 2022227659A1 CN 2021141670 W CN2021141670 W CN 2021141670W WO 2022227659 A1 WO2022227659 A1 WO 2022227659A1
Authority
WO
WIPO (PCT)
Prior art keywords
contactor
current
voltage
main
processing module
Prior art date
Application number
PCT/CN2021/141670
Other languages
English (en)
French (fr)
Inventor
牛春静
刘轶鑫
荣常如
佟丽翠
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2022227659A1 publication Critical patent/WO2022227659A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the embodiments of the present application relate to vehicle safety detection technologies, for example, to an independent diagnostic device and method for a high-voltage contactor of a power battery system.
  • High-voltage contactor diagnostic devices for electric vehicles in the related art use the method of detecting the voltage at the front and rear ends of the high-voltage contactor to diagnose whether the high-voltage contactor is faulty.
  • Most of the diagnostic methods for high-voltage contactors of electric vehicles need to be combined with the high-voltage power-on and power-on sequence of the whole vehicle to diagnose whether the high-voltage contactor is faulty.
  • the related art method for diagnosing a high-voltage contactor of an electric vehicle needs to be combined with the high-voltage power-on and power-off sequence of the entire vehicle to diagnose whether the high-voltage contactor is faulty, which is limited by the high-voltage power-on and power-off sequence.
  • the present application provides an independent high-voltage contactor diagnostic device and method for a power battery system, which can avoid external voltage interference, thereby improving the detection accuracy of the high-voltage contactor independent diagnostic device for a power battery system, enabling independent high-voltage contactor diagnostics, and enabling The diagnostic method of electric vehicle high voltage contactor is not limited by time sequence.
  • an embodiment of the present application provides an independent high-voltage contactor diagnostic device for a power battery system, including a first current detection module, a second current detection module, a power supply module, a processing module, and a communication module;
  • the power battery system includes a battery pack, a battery management system, a main positive contactor, a precharge contactor, a precharge resistor, a main negative contactor, and an electrical appliance; the first end of the main positive contactor and the The first ends of the precharge contactors are respectively connected to the positive electrodes of the battery pack, the second ends of the precharge contacts are connected to the first ends of the precharge resistors, and the second ends of the main positive contactors are connected and the second end of the pre-charging resistor are respectively connected to the first end of the electrical appliance, the first end of the main negative contactor is connected to the negative electrode of the battery pack, and the second end of the main negative contactor is connected to the negative electrode of the battery pack.
  • the terminal is connected to the second terminal of the electrical appliance, the main positive contactor, the first terminal and the second terminal of the precharge contactor are respectively connected to the battery management system, and the coil of the main negative contactor is connected to the battery management system.
  • the first end and the second end of the battery are respectively connected with the battery management system, and the battery management system is configured to control the main positive contactor, the precharge contactor and the main negative contactor to close or open;
  • the first current detection module is connected to the main positive contactor and the second end of the precharge contactor and the negative electrode of the battery pack, and is configured to obtain the main positive contactor and the precharge contactor the first current between the second end of the battery pack and the negative electrode of the battery pack;
  • the second current detection module is connected to the power module and the second end of the main negative contactor, and is configured to obtain a second current between the power module and the second end of the main negative contactor;
  • the processing module is connected to the first current detection module and the second current detection module, and is configured to judge the state of the main positive contactor and the pre-charged contactor according to the first current, and according to the The second current judges the state of the main negative contactor;
  • the processing module is connected to the battery management system through the communication module, and the processing module is further configured to pass the diagnosis results of the main positive contactor, the precharge contactor and the main negative contactor through all the The communication module is sent to the battery management system.
  • an embodiment of the present application provides an independent diagnosis method for a high-voltage contactor of a power battery system, which is executed by any of the above-mentioned independent diagnosis devices for a high-voltage contactor of a power battery system, including:
  • the first current detection module acquires the first current between the second end of the main positive contactor and the negative electrode of the battery pack
  • the second current detection module obtains the second current between the power module and the second end of the main negative contactor
  • the processing module judges the state of the main positive contactor and the precharged contactor according to the first current, judges the state of the main negative contactor according to the second current, and separates the main positive contactor, the precharged contactor and the main negative contactor.
  • the diagnostic result of the contactor is sent to the battery management system through the communication module.
  • the application also provides an electronic device, comprising:
  • memory arranged to store at least one program
  • the at least one processor When the at least one program is executed by the at least one processor, the at least one processor implements the above-mentioned independent diagnosis method for a high-voltage contactor of a power battery system.
  • the present application also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the above-mentioned independent diagnosis method for a high-voltage contactor of a power battery system.
  • FIG. 1 is a schematic structural diagram of a high-voltage contactor independent diagnostic device of a power battery system provided by an embodiment of the application;
  • FIG. 2 is another schematic structural diagram of a high-voltage contactor independent diagnostic device of a power battery system provided by an embodiment of the present application;
  • FIG. 3 is a schematic flowchart of a high-voltage contactor independent diagnostic device of a power battery system provided in an embodiment of the application under one working condition;
  • FIG. 4 is a schematic flowchart of a high-voltage contactor independent diagnostic device of a power battery system provided by an embodiment of the application under another working condition;
  • FIG. 5 is a schematic flowchart of a high-voltage contactor independent diagnostic device of a power battery system provided by an embodiment of the present application under another working condition;
  • FIG. 6 is a flowchart of an independent diagnosis method for a high-voltage contactor of a power battery system according to an embodiment of the present application.
  • FIG. 1 is a structure of an independent diagnostic device for a high-voltage contactor of a power battery system provided by an embodiment of the present application Schematic diagram;
  • FIG. 2 is another structural schematic diagram of a high-voltage contactor independent diagnostic device of a power battery system provided by an embodiment of the application;
  • the power battery system includes a battery pack 10, a battery management system 20, and a main positive contactor 30.
  • Precharge contactor 40 precharge resistor R 0 , main negative contactor 50 , electrical consumers (not shown in FIG.
  • the independent diagnostic device 60 for high-voltage contactors includes a first current The detection module 61 , the second current detection module 62 , the power supply module 64 , the processing module 65 and the communication module 66 ; the first end of the main positive contactor 30 and the first end of the precharge contactor 40 are both connected to the positive electrode of the battery pack 10 , the second end of the precharge contactor 40 is connected to the first end of the precharge resistor R 0 , the second end of the main positive contactor 30 and the second end of the precharge resistor R 0 are both connected to the first end of the consumer , the first end of the main negative contactor 50 is connected to the negative electrode of the battery pack 10, the second end of the main negative contactor 50 is connected to the second end of the electrical appliance, the main positive contactor 30, the precharge contactor 40 and the main negative Both ends of the coil of the contactor 50 are connected to the battery management system 20 , and the battery management system 20 is configured to control
  • the first current detection module 61 is connected to the second end of the main positive contactor 30, the second end of the precharge contactor 40 and the negative electrode of the battery pack 10, and is configured to obtain the second end of the main positive contactor 30, the precharge contactor the first current I 1 between the second end of the contactor 40 and the negative electrode of the battery pack 10;
  • the second current detection module 62 is connected to the power module 64 and the second end of the main negative contactor 50, and is configured to obtain the power module 64 and the second end of the main negative contactor 50.
  • the second current I 2 between the second ends of the main negative contactor 50; the processing module 65 is connected to the first current detection module 61 and the second current detection module 62, and is set to determine the main positive contactor according to the first current I 1 30 and the state of the pre-charged contactor 40, the state of the main negative contactor 50 is judged according to the second current I 30.
  • the diagnostic results of the precharge contactor 40 and the main negative contactor 50 are sent to the battery management system 20 through the communication module 66 .
  • R 0 is a precharge resistance, connected between the precharge contactor 40 and the first current detection module 61 , and the battery management system 20 includes functions such as controlling the opening and closing of each contactor, and receiving diagnostic signals.
  • the high-voltage contactor independent diagnostic device 60 can communicate with the battery management system 20 through the CAN bus, and the communication content includes whether the contact terminals of the main positive contactor 30, the main negative contactor 50, and the precharge contactor 40 are in normal or stuck state.
  • the first current detection module 61 includes a first current sampling unit 611 and a first current calculation unit 612;
  • the first current sampling unit 611 includes at least one first voltage dividing resistor and a first sampling resistor.
  • the first end of the first voltage dividing resistor is connected to the second end of the main positive contactor 30
  • the second end of the first voltage dividing resistor is connected to the second end of the main positive contactor 30 .
  • the first current calculation unit 612 is connected to the first end of the first sampling resistor, and is configured to calculate the first current
  • the second current detection module 62 includes a second current sampling unit 621 and a second current calculation unit 622;
  • the second current sampling unit 621 includes at least one second voltage dividing resistor and a second sampling resistor, the first end of the second voltage dividing resistor is connected to the power module 64, and the second end of the second voltage dividing resistor is connected to the second sampling resistor. The first end is connected, and the second end of the second sampling resistor is connected with the second end of the main negative contactor 50;
  • the second current calculating unit 622 is connected to the first end of the second sampling resistor, and is configured to calculate the second current.
  • the first current sampling unit 611 may include at least one first voltage dividing resistor and a first sampling resistor.
  • the first voltage dividing resistor may be R 1
  • the first sampling resistor may be R 2 .
  • R 1 and R 2 are connected in series, and the connection point between R 1 and R 2 is connected to the first current calculation unit 612;
  • the first current sampling unit 611 may also include two first voltage dividing resistors and first sampling resistors and a current In the calculation unit, the first end of the first voltage dividing resistor is connected to the V 1+ end, and the second end of the first sampling resistor is connected to the V 1- end.
  • the V 1+ terminal is the second terminal of the main positive contactor 30
  • the V 1- terminal is the negative terminal of the battery pack 10 .
  • the first voltage dividing resistors may be R 1 and R 3
  • the first sampling resistors may be R 2 and R 4
  • R1 and R2 are connected in series
  • R3 and R4 are connected in series
  • the connection point between R1 and R2 is connected to the first current calculation unit 612
  • the connection point between R3 and R4 is connected to the first current calculation unit 612
  • the first current sampling unit 611 may also include more than two
  • the first voltage dividing resistor, the first sampling resistor and the current calculation unit of the circuit, and their composition and connection relationship are deduced by analogy.
  • the second current sampling unit 621 may include one or more channels of second voltage dividing resistors and second sampling resistors, and a current calculating unit.
  • the second voltage dividing resistor may be R 7
  • the second sampling resistor may be R 8 .
  • the first end of the second voltage dividing resistor is connected to V 2+
  • the second end of the second sampling resistor is connected to the V 2- end.
  • the V 2+ terminal is the output terminal of the power module 64
  • the V 2- terminal is the second terminal of the main negative contactor 50 .
  • the VCC terminal is the power input terminal of the power module 64 .
  • the contactor diagnostic device 60 further includes a voltage detection module 63 , the voltage detection module 63 is connected to the second end of the main positive contactor 30 and configured to acquire the first voltage of the second end of the main positive contactor 30 , the voltage detection module 63 is connected to the second end of the main negative contactor 50, and is configured to obtain the second voltage of the second end of the main negative contactor 50;
  • the processing module 65 is connected to the voltage detection module 63 and configured to judge the working state of the main positive contactor 30 and the precharge contactor 40 according to the first voltage, and judge the working state of the main negative contactor 50 according to the second voltage.
  • the insulation condition of the vehicle is detected by the voltage detection module 63, which plays a role in verifying the detection result of the current detection. Security has been improved.
  • the independent high-voltage contactor diagnostic device 60 further includes a self-diagnostic module 67 , the first end of the self-diagnostic module 67 is connected to the power module 64 , the second end is grounded, and the self-diagnostic module is configured as the contactor diagnostic device 60 initialization and real-time self-diagnosis during operation.
  • the diagnosis of the main positive contactor 30 , the precharged contactor 40 and the main negative contactor 50 is performed only when the self-diagnosis module 67 detects that the current value is a credible state, thereby ensuring the accuracy of detection and preventing misdiagnosis.
  • the self-diagnosis module 67 includes a third voltage dividing resistor 671, a third sampling resistor 672 and a third current calculating unit 673.
  • the first end of the third voltage dividing resistor 671 is connected to the power supply module 64, and the third voltage dividing resistor 671 is connected to the power supply module 64.
  • the second end of the voltage dividing resistor 671 is connected to the first end of the third sampling resistor 672, and the second end of the third sampling resistor 672 is grounded;
  • the third current calculation unit 673 is connected to the first end of the third sampling resistor 672, and is configured to calculate the third current
  • the processing module 65 is connected to the third current calculation unit 672, and is configured to judge the working state of the contactor diagnostic device 60 according to the third current.
  • the third voltage dividing resistor 671 may be R 5
  • the third sampling resistor 672 may be R 6
  • the first current calculation unit 612, the second current calculation unit 622, and the third current calculation unit 673 use the same current calculation unit.
  • the three current calculation units may also be independent of each other. The embodiment does not limit this.
  • the processing module 65 is respectively connected with the current detection module and the voltage detection module 63, and is configured to receive the data transmitted by the current detection module and the voltage detection module 63, and to determine the main positive contactor 30, the precharged contactor 40 and the main negative contactor 30. Whether the contactor 50 is faulty can then be communicated to the battery management system 20 via the communication module 66 .
  • the current detection module has two or more voltage dividing resistors and sampling resistors, which are respectively used in systems with different working voltages. When different working voltages are detected, different voltage dividing resistors and sampling resistors are matched.
  • the current detection module can have two voltage dividing resistors and sampling resistors. When the working voltage is detected to be less than 500V, the current of the first circuit is collected as the detection result; when the working voltage is detected to be greater than or equal to 500V, the current of the second circuit is collected as the detection result. Test results.
  • the resistance values of the voltage dividing resistor and the sampling resistor of the first circuit are different from those of the voltage dividing resistor and the sampling resistor of the second circuit.
  • the specific resistance values of the voltage dividing resistor and the sampling resistor can be set according to actual needs.
  • the current detection module in this embodiment is applicable to one or both of the first current detection module 61 or the second current detection module 62 .
  • FIG. 3 is a schematic flowchart of a high-voltage contactor independent diagnostic device for a power battery system provided in an embodiment of the present application under one working condition, as shown in FIG.
  • the processing module obtains the first current I 1 ⁇ 10 ⁇ A, it is determined that both the main positive contactor and the precharge contactor are normal;
  • the main positive contactor is determined adhesion
  • processing module obtains the second current I 2 ⁇ 10 ⁇ A, it is determined that the main negative contactor is normal;
  • the processing module obtains the second current I 2 ⁇ (230 ⁇ A-280 ⁇ A), it is determined that the main negative contactor is stuck.
  • V 1+ represents the second terminal voltage of the main positive contactor 30
  • V 2+ represents the voltage provided by the power supply module 64 to the second current detection module 62
  • R 0 represents the pre-charging resistor
  • R 1 represents the first voltage dividing resistor
  • R 2 represents the first sampling resistor
  • R 7 represents the second voltage dividing resistor
  • R 8 represents the second sampling resistor.
  • the high-voltage contactor independent diagnostic device 60 when the high-voltage contactor independent diagnostic device 60 is powered on before the power battery system, the battery management system 20 does not issue the main positive contactor 30 coil end pull-in command and the main negative contactor 50 coil end pull-in command, the high-voltage contactor The stand-alone diagnostic device 60 is in condition 1 .
  • working condition 1 the first current and the second current can be obtained to determine whether the main positive contactor 30, the main negative contactor 50 and the precharge contactor 40 are stuck, and if there is sticking, an alarm will be issued to prohibit the whole vehicle High voltage power up.
  • the first voltage and the second voltage are stuck, and if there is sticking, an alarm will be issued to prohibit the high-voltage power-on of the whole vehicle.
  • the diagnostic results are checked in a way to improve the accuracy of the diagnosis.
  • FIG. 4 is a schematic flowchart of a high-voltage contactor independent diagnosis device for a power battery system provided by an embodiment of the application under another working condition.
  • the high-voltage contactor independent diagnosis When the device 60 is powered on the power battery system, the battery management system 20 judges that the precharging process has been completed, the coil end of the main positive contactor 30 and the coil end of the main negative contactor 50 are all pulled in, and the coil end of the precharge contactor 40 is disconnected :
  • the processing module obtains the first current I 1 ⁇ 10 ⁇ A, it is determined that the main positive contactor is disconnected and the precharge contactor is normal;
  • the main positive contactor is determined normal
  • the processing module obtains the first current I 1 ⁇ (5 ⁇ A-25 ⁇ A), it is determined that the precharge contactor is stuck and the main positive contactor is disconnected;
  • processing module obtains the second current I 2 ⁇ 10 ⁇ A, it is determined that the main negative contactor is disconnected;
  • the processing module obtains the second current I 2 ⁇ (230 ⁇ A-280 ⁇ A), it is determined that the main negative contactor is normal.
  • V 1+ represents the second terminal voltage of the main positive contactor 30
  • V 2+ represents the voltage provided by the power supply module 64 to the second current detection module 62
  • R 0 represents the pre-charging resistor
  • R 1 represents the first voltage dividing resistor
  • R 2 represents the first sampling resistor
  • R 7 represents the second voltage dividing resistor
  • R 8 represents the second sampling resistor.
  • the battery management system 20 judges that the pre-charging process has been completed, the coil end of the main positive contactor 30 and the coil end of the main negative contactor 50 are both pulled in, and the pre-charging contact When the coil end of the contactor 40 has been disconnected, the independent diagnostic device 60 of the high-voltage contactor is in working condition 2.
  • FIG. 5 is a schematic flowchart of a high-voltage contactor independent diagnostic device of a power battery system provided by an embodiment of the application under another working condition.
  • the high-voltage contactor is independent
  • the battery management system 20 has issued an instruction to disconnect the main positive contactor 30 and the main negative contactor 50, and when the coil ends of the main positive contactor 30 and the main negative contactor 50 have been disconnected:
  • the processing module obtains the first current I 1 ⁇ 10 ⁇ A, it is determined that both the main positive contactor and the precharge contactor are normal;
  • the main positive contactor is determined adhesion
  • the processing module obtains the first current I 1 ⁇ (5 ⁇ A-25 ⁇ A), it is determined that the precharge contactor is stuck and the main positive contactor is normal;
  • processing module obtains the second current I 2 ⁇ 10 ⁇ A, it is determined that the main negative contactor is normal;
  • V 1+ represents the second terminal voltage of the main positive contactor 30
  • V 2+ represents the voltage provided by the power supply module 64 to the second current detection module 62
  • R 0 represents the pre-charging resistor
  • R 1 represents the first voltage dividing resistor
  • R 2 represents the first sampling resistor
  • R 7 represents the second voltage dividing resistor
  • R 8 represents the second sampling resistor.
  • the battery management system 20 has issued an instruction to disconnect the main positive contactor 30 and the main negative contactor 50, and the main positive contactor 30 and the main negative contactor 50 When the coil end has been disconnected, the independent diagnostic device 60 of the high-voltage contactor is in working condition 3.
  • the alarm content is that the main positive contactor 30 is stuck and the entire vehicle is prohibited. High-voltage power-on; or the main and negative contactors 50 are stuck, prohibiting the high-voltage power-on of the whole vehicle.
  • FIG. 6 is a flowchart of an independent diagnosis method for a high-voltage contactor of a power battery system provided by an embodiment of the application.
  • the independent diagnosis method for a high-voltage contactor may be any one of the high-voltage contactors provided in the above-mentioned embodiments.
  • the device-independent diagnostic device 60 performs, including:
  • the first current detection module 61 obtains the first current between the second end of the main positive contactor 30 and the negative electrode of the battery pack 10;
  • the second current detection module 62 obtains the second current between the power module 64 and the second end of the main negative contactor 50;
  • the processing module 65 judges the working state of the main positive contactor 30 and the precharged contactor 40 according to the first current, judges the working state of the main negative contactor 50 according to the second current, and separates the main positive contactor 30 and the precharged contactor 40 and the working status of the main negative contactor 50 are sent to the battery management system 20 through the communication module 66 .
  • the contactor contact detection method of the vehicle provided by the embodiment of the present application can be executed by the contactor contact detection device provided by any embodiment of the present application, and has corresponding functional modules and beneficial effects of the executing device.
  • the contactor contact detection device 60 for performing the contactor contact detection method further includes a voltage detection module 63, and the contactor contact detection method further includes:
  • the voltage detection module 63 obtains the first voltage of the second terminal of the main positive contactor 30;
  • the voltage detection module 63 obtains the second voltage of the second terminal of the main negative contactor 50;
  • the processing module 65 judges the working state of the main positive contactor 30 and the precharge contactor 40 according to the first voltage, and judges the working state of the main negative contactor 50 according to the second voltage.
  • the first voltage and the second voltage are acquired through the voltage detection module 63, thereby obtaining another detection result other than the current detection method.
  • the accuracy of diagnosis can be greatly improved.
  • the application not only avoids the situation that the external voltage interference affects the measurement accuracy, but also realizes the independent diagnosis of the main positive contactor, the precharged contactor and the main negative contactor, thereby improving the accuracy and reliability of the diagnosis of the high-voltage contactor of the electric vehicle sex.
  • the application also provides an electronic device, comprising:
  • memory arranged to store at least one program
  • the at least one processor When the at least one program is executed by the at least one processor, the at least one processor implements the above-mentioned independent diagnosis method for a high-voltage contactor of a power battery system.
  • the present application also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the above-mentioned independent diagnosis method for a high-voltage contactor of a power battery system.
  • the computer-readable storage medium may be a non-transitory computer-readable storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本申请公开了一种动力电池系统的高压接触器独立诊断装置及方法。该装置包括第一电流检测模块、第二电流检测模块、电源模块、处理模块及通信模块;第一电流检测模块设置为获取主正接触器和预充接触器的第二端和电池包的负极之间的第一电流;第二电流检测模块设置为获取电源模块和主负接触器的第二端之间的第二电流;处理模块设置为获取主正接触器、预充接触器和主负接触器诊断结果、并将诊断结果通过通信模块发送至电池管理系统。

Description

动力电池系统的高压接触器独立诊断装置及方法
本申请要求在2021年4月26日提交中国专利局、申请号为202110454323.8的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及车辆安全检测技术,例如涉及一种动力电池系统的高压接触器独立诊断装置及方法。
背景技术
随着电动汽车的普及,电动汽车的使用安全问题越来越受到人们的关注。
相关技术中的电动汽车高压接触器诊断装置多采用检测高压接触器前后端电压的方式来诊断高压接触器是否存在故障。电动汽车高压接触器诊断方法多需要结合整车高压上下电时序来诊断高压接触器是否存在故障。
由于相关技术中的电动汽车高压接触器诊断装置采集的高压接触器前后端电压容易受到环境中其他干扰因素的影响,导致采样精度较低。相关技术的的电动汽车高压接触器诊断方法需要结合整车高压上下电时序来诊断高压接触器是否存在故障,受高压上下电时序的限制。
发明内容
本申请提供一种动力电池系统的高压接触器独立诊断装置及方法,能够避免外界电压干扰,进而提高动力电池系统的高压接触器独立诊断装置的检测精度,可实现高压接触器独立诊断,且使电动汽车高压接触器诊断方法不受时序所限。
第一方面,本申请实施例提供了一种动力电池系统的高压接触器独立诊断装置,包括第一电流检测模块、第二电流检测模块、电源模块、处理模块以及通信模块;
其中,所述动力电池系统包括电池包、电池管理系统、主正接触器、预充接触器、预充电阻、主负接触器以及用电器;所述主正接触器的第一端和所述预充接触器的第一端分别与所述电池包的正极连接,所述预充接触器的第二端 与所述预充电阻的第一端连接,所述主正接触器的第二端和所述预充电阻的第二端分别与所述用电器的第一端连接,所述主负接触器的第一端与所述电池包的负极连接,所述主负接触器的第二端与所述用电器的第二端连接,所述主正接触器、所述预充接触器的第一端和第二端分别与所述电池管理系统连接,所述主负接触器的线圈的第一端和第二端分别与所述电池管理系统连接,所述电池管理系统设置为控制所述主正接触器、所述预充接触器和所述主负接触器闭合或断开;
所述第一电流检测模块与所述主正接触器和所述预充接触器的第二端以及所述电池包的负极连接,设置为获取所述主正接触器和所述预充接触器的第二端和所述电池包的负极之间的第一电流;
所述第二电流检测模块与所述电源模块以及所述主负接触器的第二端连接,设置为获取所述电源模块和所述主负接触器的第二端之间的第二电流;
所述处理模块与所述第一电流检测模块和所述第二电流检测模块连接,设置为根据所述第一电流判断所述主正接触器和所述预充接触器的状态,根据所述第二电流判断所述主负接触器的状态;
所述处理模块通过所述通信模块与所述电池管理系统连接,所述处理模块还设置为将所述主正接触器、所述预充接触器和所述主负接触器的诊断结果通过所述通信模块发送至所述电池管理系统。
第二方面,本申请实施例提供了一种动力电池系统的高压接触器独立诊断方法,由上述任一的动力电池系统的高压接触器独立诊断装置执行,包括:
第一电流检测模块获取主正接触器的第二端和电池包的负极之间的第一电流;
第二电流检测模块获取电源模块和主负接触器的第二端之间的第二电流;
处理模块根据第一电流判断主正接触器和预充接触器的状态,根据第二电流判断主负接触器的状态,将所述主正接触器、所述预充接触器和所述主负接触器的诊断结果通过通信模块发送至电池管理系统。
第三方面,本申请还提供了一种电子设备,包括:
至少一个处理器;
存储器,设置为存储至少一个程序,
当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如前所述的动力电池系统的高压接触器独立诊断方法。
第四方面,本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如前所述的动力电池系统的高压接触器独立诊断方法。
附图说明
图1为本申请实施例提供的一种动力电池系统的高压接触器独立诊断装置的结构示意图;
图2为本申请实施例提供的一种动力电池系统的高压接触器独立诊断装置的另一结构示意图;
图3为本申请实施例提供的一种动力电池系统的高压接触器独立诊断装置在一种工况下的流程示意图;
图4为本申请实施例提供的一种动力电池系统的高压接触器独立诊断装置在另一种工况下的流程示意图;
图5为本申请实施例提供的一种动力电池系统的高压接触器独立诊断装置在又一种工况下的流程示意图;
图6为本申请实施例提供的一种动力电池系统的高压接触器独立诊断方法的流程图。
具体实施方式
下面结合附图和实施例对本申请作详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
本申请实施例提供一种动力电池系统的高压接触器独立诊断装置,其中动力电池系统可以为电动汽车,图1为本申请实施例提供的一种动力电池系统的高压接触器独立诊断装置的结构示意图;图2为本申请实施例提供的一种动力电池系统的高压接触器独立诊断装置的另一结构示意图;参见图1,动力电池系统包括电池包10、电池管理系统20、主正接触器30、预充接触器40、预充电阻R 0、主负接触器50、用电器(图1中未示出)和高压接触器独立诊断装置60,高压接触器独立诊断装置60包括第一电流检测模块61、第二电流检测模块62、电源模块64、处理模块65以及通信模块66;主正接触器30的第一端和预充接触器40的第一端均与电池包10的正极连接,预充接触器40的第二端与预充电 阻R 0的第一端连接,主正接触器30的第二端和预充电阻R 0的第二端均与用电器的第一端连接,主负接触器50的第一端与电池包10的负极连接,主负接触器50的第二端与用电器的第二端连接,主正接触器30、预充接触器40和主负接触器50的线圈两端均与电池管理系统20连接,电池管理系统20设置为控制主正接触器30、预充接触器40和主负接触器50闭合或断开。
第一电流检测模块61与主正接触器30的第二端、预充接触器40的第二端以及电池包10的负极连接,设置为获取主正接触器30的第二端、预充接触器40的第二端和电池包10的负极之间的第一电流I 1;第二电流检测模块62与电源模块64以及主负接触器50的第二端连接,设置为获取电源模块64和主负接触器50的第二端之间的第二电流I 2;处理模块65与第一电流检测模块61和第二电流检测模块62连接,设置为根据第一电流I 1判断主正接触器30和预充接触器40的状态,根据第二电流I 2判断主负接触器50的状态;处理模块65通过通信模块66与电池管理系统20连接,处理模块65还设置为将主正接触器30、预充接触器40和主负接触器50的诊断结果通过通信模块66发送至电池管理系统20。
其中,R 0为预充电阻,连接于预充接触器40与第一电流检测模块61之间,电池管理系统20包括控制各个接触器断开和闭合,接收诊断信号等功能。高压接触器独立诊断装置60可以通过CAN总线与电池管理系统20通讯,通讯内容包括主正接触器30、主负接触器50、预充接触器40的触点端是正常或粘连状态。通过上述过程来判断接触器的开合状态,进而判断接触器触点是否粘连。不受环境中的静电电压等干扰电压的干扰,相对相关技术中的诊断装置提高了测量精度。
在另一些实施例中,第一电流检测模块61包括第一电流采样单元611和第一电流计算单元612;
第一电流采样单元611包括至少一路第一分压电阻和第一采样电阻,第一分压电阻的第一端与主正接触器30的第二端连接,第一分压电阻的第二端与第一采样电阻的第一端连接,第一采样电阻的第二端与电池包10的负极连接;
第一电流计算单元612与第一采样电阻的第一端连接,设置为计算第一电流;
第二电流检测模块62包括第二电流采样单元621和第二电流计算单元622;
第二电流采样单元621包括至少一路第二分压电阻和第二采样电阻,第二 分压电阻的第一端与电源模块64连接,第二分压电阻的第二端与第二采样电阻的第一端连接,第二采样电阻的第二端与主负接触器50的第二端连接;
第二电流计算单元622与第二采样电阻的第一端连接,设置为计算第二电流。
其中,第一电流采样单元611可以包括至少一路第一分压电阻和第一采样电阻。示例性的,第一分压电阻可以是R 1,第一采样电阻可以是R 2。R 1和R 2串联连接,R 1和R 2间的连接点与第一电流计算单元612相连接;第一电流采样单元611还可以包括两路第一分压电阻和第一采样电阻以及电流计算单元,第一分压电阻第一端与V 1+端连接,第一采样电阻第二端与V 1-端连接。V 1+端为主正接触器30的第二端,V 1-端为电池包10的负极。示例性的,第一分压电阻可以是R 1和R 3,第一采样电阻可以是R 2和R 4。R 1和R 2串联连接,R 3和R 4串联连接。R 1和R 2间的连接点与第一电流计算单元612相连接,R 3和R 4间的连接点与第一电流计算单元612相连接;第一电流采样单元611还可以包括多于两路的第一分压电阻和第一采样电阻以及电流计算单元,其组成以及连接关系以此类推。
第二电流采样单元621可以包括一路或多路第二分压电阻和第二采样电阻,以及电流计算单元。示例性的,当第二电流采样单元621包括一路第二分压电阻和第二采样电阻时,第二分压电阻可以是R 7,第二采样电阻可以是R 8。第二分压电阻的第一端连接V 2+,第二采样电阻的第二端连接V 2-端。V 2+端为电源模块64的输出端,V 2-端为主负接触器50的第二端。VCC端为电源模块64的电源输入端。
在另一些实施例中,接触器诊断装置60还包括电压检测模块63,电压检测模块63与主正接触器30的第二端连接,设置为获取主正接触器30的第二端的第一电压,电压检测模块63与主负接触器50的第二端连接,设置为获取主负接触器50的第二端的第二电压;
处理模块65与电压检测模块63连接,设置为根据第一电压判断主正接触器30和预充接触器40的工作状态,根据第二电压判断主负接触器50的工作状态。
本申请实施例通过电压检测模块63检测了车辆绝缘状况,对电流检测的检测结果起到校验作用。安全性得到了提升。
在另一些实施例中,高压接触器独立诊断装置60还包括自诊断模块67,自 诊断模块67的第一端与电源模块64连接,第二端接地,自诊断模块设置为接触器诊断装置60的初始化以及工作过程中实时自诊断。
其中,当自诊断模块67检测到电流值为可信状态时,才进行主正接触器30、预充接触器40和主负接触器50的诊断,从而保证检测的准确性,防止误诊断。
在上述实施例基础上,自诊断模块67包括第三分压电阻671、第三采样电阻672和第三电流计算单元673,第三分压电阻671的第一端与电源模块64连接,第三分压电阻671的第二端与第三采样电阻672的第一端连接,第三采样电阻672的第二端接地;
第三电流计算单元673与第三采样电阻672的第一端连接,设置为计算第三电流;
处理模块65与第三电流计算单元672连接,设置为根据第三电流判断接触器诊断装置60的工作状态。
其中,第三分压电阻671可以是R 5,第三采样电阻672可以是R 6。本实施例中,第一电流计算单元612、第二电流计算单元622和第三电流计算单元673采用同一个电流计算单元,在其他实施例中,三个电流计算单元也可以相互独立,本申请实施例对此不作限定。通过对第三电流的采样计算,能够确定自诊断模块检测到电流值是否为可信状态。
其中,处理模块65分别与电流检测模块和电压检测模块63相连接,设置为接收电流检测模块和电压检测模块63传输来的数据,并判断主正接触器30、预充接触器40和主负接触器50是否存在故障,然后可通过通信模块66传输到电池管理系统20。
例如,电流检测模块具有两路或以上的分压电阻和采样电阻,分别用于不同工作电压的系统。在检测到不同工作电压时,匹配不同的分压电阻和采样电阻。例如电流检测模块可以有两路分压电阻和采样电阻,在检测到工作电压小于500V时,采集第一路的电流作为检测结果;检测到工作电压大于等于500V时,采集第二路的电流作为检测结果。其中第一路的分压电阻和采样电阻的阻值与第二路的分压电阻和采样电阻的阻值不同,具体分压电阻和采样电阻的阻值可根据实际需要进行设定。本实施例中的电流检测模块适用于第一电流检测模块61或第二电流检测模块62中的其中一个或全部。
在另一些实施例中,图3本申请实施例提供的一种动力电池系统的高压接触器独立诊断装置在一种工况下的流程示意图,如图3所示,利用图1或图2 所示的高压接触器独立诊断装置60,在动力电池系统上电前,电池管理系统20未发出主正接触器30线圈端吸合指令和主负接触器50线圈端吸合指令时:
若处理模块获取到第一电流I 1<10μA则判定主正接触器和预充接触器均正常;
若处理模块在540V电压平台下获取到第一电流I 1∈(179μA-299μA),或者处理模块在360V电压平台下获取到第一电流I 1∈(259μA-419μA),则判定主正接触器粘连;
若处理模块获取到第二电流I 2<10μA,则判定主负接触器正常;
若处理模块获取到第二电流I 2∈(230μA-280μA),则判定主负接触器粘连。
其中,V 1+表示主正接触器30的第二端电压,V 2+表示电源模块64给第二电流检测模块62提供的电压,R 0表示预充电阻,R 1表示第一分压电阻,R 2表示第一采样电阻,R 7表示第二分压电阻,R 8表示第二采样电阻。
其中,当高压接触器独立诊断装置60在动力电池系统上电前,电池管理系统20未发出主正接触器30线圈端吸合指令和主负接触器50线圈端吸合指令时,高压接触器独立诊断装置60处于工况1。在工况1下,能够通过获取第一电流和第二电流,以判断主正接触器30、主负接触器50和预充接触器40是否粘连,如有粘连则进行报警,以禁止整车高压上电。例如,还可以通过获取第一电压和第二电压,以判断主正接触器30和主负接触器50是否粘连,如有粘连则进行报警,以禁止整车高压上电,通过电流和电压两种方式对诊断结果进行校验,以提高诊断的准确性。
在另一些实施例中,图4为本申请实施例提供的一种动力电池系统的高压接触器独立诊断装置在另一种工况下的流程示意图,如图4所示,高压接触器独立诊断装置60在动力电池系统上电,电池管理系统20判断预充过程已完成,主正接触器30线圈端、主负接触器50线圈端均吸合,预充接触器40线圈端已断开时:
若处理模块获取到第一电流I 1<10μA,则判定主正接触器断开,预充接触器正常;
若处理模块在540V电压平台下获取到第一电流I 1∈(179μA-299μA),或者处理模块在360V电压平台下获取到第一电流I 1∈(259μA-419μA),则判定主正接触器正常;
若处理模块获取到第一电流I 1∈(5μA-25μA),则判定预充接触器粘连,主正 接触器断开;
若处理模块获取到第二电流I 2<10μA,则判定主负接触器断开;
若处理模块获取到第二电流I 2∈(230μA-280μA),则判定主负接触器正常。
其中,V 1+表示主正接触器30的第二端电压,V 2+表示电源模块64给第二电流检测模块62提供的电压,R 0表示预充电阻,R 1表示第一分压电阻,R 2表示第一采样电阻,R 7表示第二分压电阻,R 8表示第二采样电阻。
其中,当高压接触器独立诊断装置60在动力电池系统上电,电池管理系统20判断预充过程已完成,主正接触器30线圈端、主负接触器50线圈端均吸合,预充接触器40线圈端已断开时,高压接触器独立诊断装置60处于工况2。在工况2下,能够通过获取第一电流和第二电流,以判断主正接触器30和主负接触器50是否断开,预充接触器40是否粘连,如果预充接触器40粘连则进行报警,报警内容为:预充接触器40粘连,禁止整车高压上电;如果主正接触器30断开则进行报警,报警内容为:主正接触器30断开;如果主负接触器50断开则进行报警,报警内容为:主负接触器50断开。例如,还可以通过获取第一电压和第二电压,以判断主正接触器30和主负接触器50是否断开,如有断开则进行报警,报警内容为主正接触器30断开,或者为主负接触器50断开。
在另一些实施例中,图5为本申请实施例提供的一种动力电池系统的高压接触器独立诊断装置在另又一种工况下的流程示意图,如图5所示,高压接触器独立诊断装置60在动力电池系统下电后,电池管理系统20已发出主正接触器30、主负接触器50断开指令,主正接触器30、主负接触器50线圈端已断开时:
若处理模块获取到第一电流I 1<10μA,则判定主正接触器和预充接触器均正常;
若处理模块在540V电压平台下获取到第一电流I 1∈(179μA-299μA),或者处理模块在360V电压平台下获取到第一电流I 1∈(259μA-419μA),则判定主正接触器粘连;
若处理模块获取到第一电流I 1∈(5μA-25μA),则判定预充接触器粘连,主正接触器正常;
若处理模块获取到第二电流I 2<10μA,则判定主负接触器正常;
若处理模块获取到第二电流I 2∈(230μA-280μA),则判定主负接触器粘连。其中,V 1+表示主正接触器30的第二端电压,V 2+表示电源模块64给第二电流检 测模块62提供的电压,R 0表示预充电阻,R 1表示第一分压电阻,R 2表示第一采样电阻,R 7表示第二分压电阻,R 8表示第二采样电阻。
其中,当高压接触器独立诊断装置60在动力电池系统下电后,电池管理系统20已发出主正接触器30、主负接触器50断开指令,主正接触器30、主负接触器50线圈端已断开时,高压接触器独立诊断装置60处于工况3。在工况3下,能够通过获取第一电流和第二电流,以判断主正接触器30、主负接触器50和预充接触器40是否粘连,如果预充接触器40粘连则进行报警,报警内容为:预充接触器40粘连,禁止整车高压上电;如果主正接触器30粘连则进行报警,报警内容为:主正接触器30粘连,禁止整车高压上电;如果主负接触器50粘连则进行报警,报警内容为:主负接触器50粘连,禁止整车高压上电。例如,还可以通过获取第一电压和第二电压,以判断主正接触器30和主负接触器50是否粘连,如有粘连则进行报警,报警内容为主正接触器30粘连,禁止整车高压上电;或者为主负接触器50粘连,禁止整车高压上电。
图6为本申请实施例提供的一种动力电池系统的高压接触器独立诊断方法的流程图,如图6所示,该高压接触器独立诊断方法可以由上述实施例提供的任意一种高压接触器独立诊断装置60执行,包括:
S11:第一电流检测模块61获取主正接触器30的第二端和电池包10的负极之间的第一电流;
S12:第二电流检测模块62获取电源模块64和主负接触器50的第二端之间的第二电流;
S20:处理模块65根据第一电流判断主正接触器30和预充接触器40的工作状态,根据第二电流判断主负接触器50的工作状态,将主正接触器30、预充接触器40和主负接触器50的工作状态通过通信模块66发送至电池管理系统20。
本申请实施例所提供的车辆的接触器触点检测方法可被本申请任意实施例所提供的接触器触点检测装置执行,具备执行装置相应的功能模块和有益效果。
在另一些实施例中,执行接触器触点检测方法的接触器触点检测装置60还包括电压检测模块63,接触器触点检测方法还包括:
电压检测模块63获取主正接触器30的第二端的第一电压;
电压检测模块63获取主负接触器50的第二端的第二电压;
处理模块65根据第一电压判断主正接触器30和预充接触器40的工作状态,根据第二电压判断主负接触器50的工作状态。
通过电压检测模块63获取第一电压和第二电压,进而得到电流检测方式之外的另一检测结果。将该结果与电流检测方式所得到的结果进行校验,能够大幅提高诊断的准确性。
本申请不仅避免了外接电压干扰影响测量精度的情况,同时还实现了主正接触器和预充接触器与主负接触器的独立诊断,从而提高了电动车高压接触器诊断的准确性和可靠性。
本申请还提供了一种电子设备,包括:
至少一个处理器;
存储器,设置为存储至少一个程序,
当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如前所述的动力电池系统的高压接触器独立诊断方法。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如前所述的动力电池系统的高压接触器独立诊断方法。计算机可读存储介质可以是非暂态计算机可读存储介质。

Claims (12)

  1. 一种动力电池系统的高压接触器独立诊断装置,包括第一电流检测模块、第二电流检测模块、电源模块、处理模块以及通信模块;
    其中,所述动力电池系统包括:电池包、电池管理系统、主正接触器、预充接触器、预充电阻、主负接触器以及用电器;所述主正接触器的第一端和所述预充接触器的第一端分别与所述电池包的正极连接,所述预充接触器的第二端与所述预充电阻的第一端连接,所述主正接触器的第二端和所述预充电阻的第二端分别与所述用电器的第一端连接,所述主负接触器的第一端与所述电池包的负极连接,所述主负接触器的第二端与所述用电器的第二端连接,所述主正接触器、所述预充接触器的第一端和第二端分别与所述电池管理系统连接,所述主负接触器的线圈的第一端和第二端分别与所述电池管理系统连接,所述电池管理系统设置为控制所述主正接触器、所述预充接触器和所述主负接触器闭合或断开;
    所述第一电流检测模块与所述主正接触器的第二端、所述预充接触器的第二端以及所述电池包的负极连接,设置为获取所述主正接触器的第二端、所述预充接触器的第二端和所述电池包的负极之间的第一电流;
    所述第二电流检测模块与所述电源模块以及所述主负接触器的第二端连接,设置为获取所述电源模块和所述主负接触器的第二端之间的第二电流;
    所述处理模块与所述第一电流检测模块和所述第二电流检测模块连接,设置为根据所述第一电流判断所述主正接触器和所述预充接触器的状态,根据所述第二电流判断所述主负接触器的状态;
    所述处理模块通过所述通信模块与所述电池管理系统连接,所述处理模块还设置为将所述主正接触器、所述预充接触器和所述主负接触器的诊断结果通过所述通信模块发送至所述电池管理系统。
  2. 根据权利要求1所述的装置,其中,所述第一电流检测模块包括第一电流采样单元和第一电流计算单元;
    所述第一电流采样单元包括至少一路第一分压电阻和第一采样电阻,所述第一分压电阻的第一端与所述主正接触器的第二端连接,所述第一分压电阻的第二端与所述第一采样电阻的第一端连接,所述第一采样电阻的第二端与所述电池包的负极连接;
    所述第一电流计算单元与所述第一采样电阻的第一端连接,设置为计算所 述第一电流;
    所述第二电流检测模块包括第二电流采样单元和第二电流计算单元;
    所述第二电流采样单元包括至少一路第二分压电阻和第二采样电阻,所述第二分压电阻的第一端与所述电源模块连接,所述第二分压电阻的第二端与所述第二采样电阻的第一端连接,所述第二采样电阻的第二端与所述主负接触器的第二端连接;
    所述第二电流计算单元与所述第二采样电阻的第一端连接,设置为计算所述第二电流。
  3. 根据权利要求1所述的装置,还包括电压检测模块,所述电压检测模块与所述主正接触器的第二端连接,设置为获取所述主正接触器的第二端的第一电压,所述电压检测模块与所述主负接触器的第二端连接,设置为获取所述主负接触器的第二端的第二电压;
    所述处理模块与所述电压检测模块连接,设置为根据所述第一电压判断所述主正接触器和所述预充接触器的工作状态,根据所述第二电压判断所述主负接触器的工作状态。
  4. 根据权利要求1所述的装置,还包括自诊断模块,所述自诊断模块的第一端与所述电源模块连接,第二端接地,所述自诊断模块设置为执行所述高压接触器独立诊断装置的初始化以及工作过程中实时自诊断。
  5. 根据权利要求4所述的装置,其中,所述自诊断模块包括第三分压电阻、第三采样电阻和第三电流计算单元,所述第三分压电阻的第一端与所述电源模块连接,所述第三分压电阻的第二端与所述第三采样电阻的第一端连接,所述第三采样电阻的第二端接地;
    所述第三电流计算单元与所述第三采样电阻的第一端连接,设置为计算第三电流;
    所述处理模块与所述第三电流计算单元连接,设置为根据所述第三电流判断所述接触器诊断装置的工作状态。
  6. 根据权利要求2所述的装置,其中,在所述动力电池系统上电前,所述电池管理系统未发出主正接触器线圈端吸合指令和主负接触器线圈端吸合指令时:
    响应于确定所述处理模块获取到所述第一电流I 1<10μA,判定所述主正接触器和所述预充接触器正常;
    响应于确定所述处理模块在540V电压平台下获取到所述第一电流I 1∈(179μA-299μA),或者所述处理模块在360V电压平台下获取到所述第一电流I 1∈(259μA-419μA),判定所述主正接触器粘连;
    响应于确定所述处理模块获取到所述第一电流I 1∈(5μA-25μA),判定所述预充接触器粘连;若所述处理模块获取到所述第二电流I 2<10μA,判定所述主负接触器正常;
    响应于确定所述处理模块获取到所述第二电流I 2∈(230μA-280μA),判定所述主负接触器粘连。
  7. 根据权利要求2所述的装置,其中,在所述动力电池系统上电,所述电池管理系统判断预充过程已完成,主正接触器线圈端吸合、主负接触器线圈端吸合,预充接触器线圈端已断开时:
    响应于确定所述处理模块获取到所述第一电流I 1<10μA,判定所述主正接触器断开,所述预充接触器正常;
    响应于确定所述处理模块在540V电压平台下获取到所述第一电流I 1∈(179μA-299μA),或者所述处理模块在360V电压平台下获取到所述第一电流I 1∈(259μA-419μA),判定所述主正接触器正常;
    响应于确定所述处理模块获取到所述第一电流I 1∈(5μA-25μA),判定所述预充接触器粘连,所述主正接触器断开;
    响应于确定所述处理模块获取到所述第二电流I 2<10μA,判定所述主负接触器断开;
    响应于确定所述处理模块获取到所述第二电流I 2∈(230μA-280μA),判定所述主负接触器正常。
  8. 根据权利要求2所述的装置,其中,在所述动力电池系统下电后,所述电池管理系统已发出主正接触器、主负接触器断开指令,主正接触器、主负接触器线圈端已断开时:
    响应于确定所述处理模块获取到所述第一电流I 1<10μA,判定所述主正接触器和所述预充接触器均正常;
    响应于确定所述处理模块在540V电压平台下获取到所述第一电流I 1∈(179μA-299μA),或者所述处理模块在360V电压平台下获取到所述第一电流I 1∈(259μA-419μA),判定所述主正接触器粘连;
    响应于确定所述处理模块获取到所述第一电流I 1∈(5μA-25μA),判定所述预 充接触器粘连,所述主正接触器正常;
    响应于确定所述处理模块获取到所述第二电流I 2<10μA,判定所述主负接触器正常;
    响应于确定所述处理模块获取到所述第二电流I 2∈(230μA-280μA),判定所述主负接触器粘连。
  9. 一种动力电池系统的高压接触器独立诊断方法,由权利要求1~8任一所述的动力电池系统的高压接触器独立诊断装置执行,包括:
    第一电流检测模块获取主正接触器和预充接触器的第二端和电池包的负极之间的第一电流;
    第二电流检测模块获取电源模块和主负接触器的第二端之间的第二电流;
    处理模块根据所述第一电流判断所述主正接触器和预充接触器的状态,根据所述第二电流判断所述主负接触器的状态,将所述主正接触器、所述预充接触器和所述主负接触器的诊断结果通过通信模块发送至电池管理系统。
  10. 根据权利要求9所述的方法,所述高压接触器独立诊断装置还包括电压检测模块,所述方法还包括:
    所述电压检测模块获取所述主正接触器的第二端的第一电压;
    所述电压检测模块获取所述主负接触器的第二端的第二电压;
    所述处理模块根据所述第一电压判断所述主正接触器和所述预充接触器的工作状态,根据所述第二电压判断所述主负接触器的工作状态。
  11. 一种电子设备,包括:
    至少一个处理器;
    存储器,设置为存储至少一个程序,
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求9-10中任一所述的动力电池系统的高压接触器独立诊断方法。
  12. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求9-10中任一所述的动力电池系统的高压接触器独立诊断方法。
PCT/CN2021/141670 2021-04-26 2021-12-27 动力电池系统的高压接触器独立诊断装置及方法 WO2022227659A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110454323.8 2021-04-26
CN202110454323.8A CN113092922B (zh) 2021-04-26 2021-04-26 一种动力电池系统的高压接触器独立诊断装置及方法

Publications (1)

Publication Number Publication Date
WO2022227659A1 true WO2022227659A1 (zh) 2022-11-03

Family

ID=76679993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141670 WO2022227659A1 (zh) 2021-04-26 2021-12-27 动力电池系统的高压接触器独立诊断装置及方法

Country Status (2)

Country Link
CN (1) CN113092922B (zh)
WO (1) WO2022227659A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116609665A (zh) * 2023-06-01 2023-08-18 沃尔特电子(苏州)有限公司 接触器黏连检测方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113092922B (zh) * 2021-04-26 2023-10-03 中国第一汽车股份有限公司 一种动力电池系统的高压接触器独立诊断装置及方法
CN113702820B (zh) * 2021-08-30 2023-02-03 中国第一汽车股份有限公司 车辆控制系统及车辆继电器组的故障检测方法、装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105676117A (zh) * 2014-11-17 2016-06-15 上海海拉电子有限公司 一种继电器故障检测电路及检测方法
CN111788491A (zh) * 2018-03-09 2020-10-16 株式会社杰士汤浅国际 电流计测装置、蓄电装置、电流计测方法
CN111812492A (zh) * 2019-04-10 2020-10-23 Sk新技术株式会社 电池管理系统及继电器诊断装置
CN113092922A (zh) * 2021-04-26 2021-07-09 中国第一汽车股份有限公司 一种动力电池系统的高压接触器独立诊断装置及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10017071B2 (en) * 2016-10-13 2018-07-10 GM Global Technology Operations LLC Method and system for diagnosing contactor health in a high-voltage electrical system
CN107472029B (zh) * 2016-12-13 2020-03-24 宝沃汽车(中国)有限公司 车辆的高压故障检测方法及车辆
CN107271923B (zh) * 2017-08-14 2019-07-30 中国重汽集团济南动力有限公司 一种动力电池高压接触器故障检测系统及检测方法
CN108287536A (zh) * 2017-12-26 2018-07-17 浙江吉利汽车研究院有限公司 一种负极接触器烧结检测装置及方法
CN110816365B (zh) * 2019-09-18 2022-11-22 南京恒天领锐汽车有限公司 双源控制系统及其控制方法、电动汽车
CN111638448A (zh) * 2020-05-15 2020-09-08 中国第一汽车股份有限公司 一种接触器故障检测装置、方法及车辆

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105676117A (zh) * 2014-11-17 2016-06-15 上海海拉电子有限公司 一种继电器故障检测电路及检测方法
CN111788491A (zh) * 2018-03-09 2020-10-16 株式会社杰士汤浅国际 电流计测装置、蓄电装置、电流计测方法
CN111812492A (zh) * 2019-04-10 2020-10-23 Sk新技术株式会社 电池管理系统及继电器诊断装置
CN113092922A (zh) * 2021-04-26 2021-07-09 中国第一汽车股份有限公司 一种动力电池系统的高压接触器独立诊断装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116609665A (zh) * 2023-06-01 2023-08-18 沃尔特电子(苏州)有限公司 接触器黏连检测方法
CN116609665B (zh) * 2023-06-01 2024-03-19 沃尔特电子(苏州)有限公司 接触器黏连检测方法

Also Published As

Publication number Publication date
CN113092922A (zh) 2021-07-09
CN113092922B (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
WO2022227659A1 (zh) 动力电池系统的高压接触器独立诊断装置及方法
CN109521359B (zh) 一种动力电池负极继电器状态检测电路及方法
US9194904B2 (en) Systems and methods for detecting leakage paths in a battery sensing circuit
CN107942243B (zh) 继电器粘连检测电路和检测方法
US9194918B2 (en) Leakage detection circuit with integral circuit robustness check
CN109416383A (zh) 漏电检测装置以及漏电检测方法
CN106997007B (zh) 电动汽车直流高压系统绝缘电阻测量装置及其测量方法
WO2018145397A1 (zh) 车辆直流充电继电器的诊断系统
CN112558583B (zh) 车载高压安全检测系统及汽车
CN110568366B (zh) 一种绝缘电路、电池组漏电检测方法及硬件检测方法
KR101658522B1 (ko) 차량의 차대에 배치된 전지팩의 절연저항을 측정하기 위한 방법 및 시스템
US9896047B2 (en) Power supply apparatus and vehicle including the same
US11340297B2 (en) Relay examination device and battery management system
JP5615342B2 (ja) 漏電検知装置
WO2022135554A1 (zh) 车辆高压电路检测方法、装置、车辆及存储介质
CN115091957A (zh) 一种高压上下电接触器触点状态诊断装置、方法及车辆
CN106053975B (zh) 车辆高电压系统的隔离测试
JP2022545423A (ja) リレー診断装置、リレー診断方法、バッテリーシステム及び電気車両
JP2023511169A (ja) リレー診断装置、リレー診断方法、バッテリーシステム及び電気車両
KR20230002747A (ko) 전원과 접지 간의 절연 고장을 검출하는 방법
JP2018038138A (ja) 車両
KR102256099B1 (ko) 배터리 팩
JP2019184577A (ja) 診断装置及び診断方法
KR20210051539A (ko) 배터리 절연 진단 장치
CN113874738A (zh) 漏电流检测设备、漏电流检测方法和电动车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939118

Country of ref document: EP

Kind code of ref document: A1