WO2022082523A1 - 一种信息传输的方法、相关装置以及设备 - Google Patents

一种信息传输的方法、相关装置以及设备 Download PDF

Info

Publication number
WO2022082523A1
WO2022082523A1 PCT/CN2020/122580 CN2020122580W WO2022082523A1 WO 2022082523 A1 WO2022082523 A1 WO 2022082523A1 CN 2020122580 W CN2020122580 W CN 2020122580W WO 2022082523 A1 WO2022082523 A1 WO 2022082523A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
weighting coefficient
frequency
beams
maximum value
Prior art date
Application number
PCT/CN2020/122580
Other languages
English (en)
French (fr)
Inventor
杭海存
王潇涵
金黄平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20958106.5A priority Critical patent/EP4207650A4/en
Priority to CN202080105032.1A priority patent/CN116114183A/zh
Priority to PCT/CN2020/122580 priority patent/WO2022082523A1/zh
Publication of WO2022082523A1 publication Critical patent/WO2022082523A1/zh
Priority to US18/304,005 priority patent/US20230261715A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a method, related apparatus, and device for information transmission.
  • a new radio (NR) communication system has higher requirements on system capacity, spectrum efficiency, and the like.
  • 5G communication systems large-scale multi-antenna technology plays a crucial role in the spectral efficiency of the system.
  • a multi-station cooperation method is usually used to serve a user.
  • the latest codebook is a space-frequency dual-domain compression codebook.
  • the channel measured by the user equipment (UE) is reported independently for each rank. Therefore, when the terminal equipment reports the channel state information (CSI), it mainly reports the channel state information (CSI).
  • CSI channel state information
  • the selected spatial domain beam, the selected frequency domain beam and the corresponding weighting coefficient are reported, and the corresponding weighting coefficient needs to be quantized and then reported.
  • Embodiments of the present application provide an information transmission method, related apparatus, and device, which feed back different small-scale information to different network devices, or feed back different small-scale information and large-scale information, so as to improve performance gain and thereby reduce performance loss.
  • the present application provides a method for information transmission.
  • the method may be executed by a terminal device, or may also be executed by a chip configured in the terminal device, which is not limited in this application.
  • the method includes: the terminal device acquires R pieces of channel information, the channel information includes large-scale information and small-scale information, and R is an integer greater than or equal to 1, and then normalizes the R pieces of channel information to obtain R th channel information.
  • One information and R pieces of second information the first information is the normalized small-scale information, the second information is the normalized large-scale information, and finally the channel state information CSI is sent, and the CSI includes R pieces of first information after quantization processing, or R pieces of first information after quantization processing and R pieces of second information after quantization processing.
  • the terminal device acquires channel information of different network devices, and performs normalization and quantization processing on the large-scale information and small-scale information included in the channel information.
  • the sparsity is not the same, and the importance of the CSI from the terminal to the TRP is also different, and the importance of the CSI fed back by the terminal device to the network device is also different. Feeding back the information obtained through the channel information of different network devices can improve the performance gain. , thereby reducing performance loss.
  • the channel information is information on at least one frequency domain unit.
  • the frequency domain unit may be at least one resource granularity (Resource Element, RE), at least one resource block (Resource Block, RB) or at least one subband.
  • the channel information is specifically refined to be information on multiple frequency domain units, and the further quantization of the first information provides frequency domain beam resources, and the frequency domain units can be a variety of different units, thereby improving the Flexibility of this program.
  • the first information includes a first spatial domain beam set, a first frequency domain beam set and a first weighting coefficient set.
  • the quantized first information includes a second spatial beam set, a second frequency domain beam set and a second weighting coefficient set, wherein the second spatial beam set is a subset of the first spatial beam set, and the second frequency domain beam set is a subset of the first spatial beam set.
  • the domain beam set is a subset of the first frequency domain beam set
  • the second weighting coefficient set is obtained by quantizing the subset of the first weighting coefficient set.
  • the first information after the quantization process includes the second spatial domain beam set and the second frequency domain beam set.
  • Feedback such as Precoding Matrix Indicator (PMI) feedback. Therefore, when a CSI includes multiple channel measurement resources, each channel information needs to be arranged in a certain order.
  • PMI Precoding Matrix Indicator
  • the second spatial beam set is a subset of the first spatial beam set
  • the second frequency domain beam set is a subset of the first frequency domain beam set
  • the second weighting coefficient set is a subset of the first weighting coefficient set
  • Subsets are obtained after quantification.
  • the number of weighting coefficients is jointly selected, so as to solve the problem that different network devices require different number of weighting coefficients due to different large-scale information or different channel sparsity.
  • receive channel measurement configuration information where the channel measurement configuration information is used to determine the maximum value of the total number of spatial beams in the R second set of spatial beams, or receive channel measurement configuration information , the channel measurement configuration information is used to determine the maximum number of spatial beams in each second spatial beam set, and one second spatial beam set corresponds to the maximum number of spatial beams in one second spatial beam set.
  • the received channel measurement configuration information can also be used to determine the maximum value of the number of spatial beams, and the flexibility of this solution can be improved by determining different maximum values, and the R second spatial beams can be jointly determined.
  • the number of spatial beams in the set improves the feasibility of this scheme.
  • the channel measurement configuration information includes a first spatial beam value, where the first spatial beam value is used to obtain the maximum value of the total number of spatial beams in the R second spatial beam sets, and the first spatial beam value is A spatial beam value can be an integer or a scaling factor.
  • the channel measurement configuration information includes the second spatial beam value, where the second spatial beam value is used to obtain the maximum value of the number of spatial beams in the second spatial beam set.
  • the value of the second spatial beam may be an integer or a scaling factor.
  • the channel measurement configuration information may include the first spatial beam value or the second spatial beam value, and the maximum number of spatial beams in the case of failure is determined, thereby improving the flexibility of this solution.
  • the maximum value is obtained by determination or indirect calculation, which further improves the flexibility of determining the maximum number of spatial beams.
  • the total number of spatial beams in the R second spatial beam sets obtained after the quantization process is less than or equal to the maximum value of the total number of spatial beams in the R second spatial beam sets.
  • the number of airspace beams in the second airspace beam set is less than or equal to the maximum value of the corresponding number of airspace beams in the second airspace beam set.
  • the number of spatial beams after quantization and joint selection is reduced, that is, the number of spatial beams included in the CSI is reduced, thereby reducing the overhead of reporting CSI.
  • receive channel measurement configuration information where the channel measurement configuration information is used to determine the maximum value of the total number of frequency-domain beams in the R second frequency-domain beam sets, or receive channel measurement Configuration information, the channel measurement configuration information is used to determine the maximum value of the number of frequency domain beams in each second frequency domain beam set, and one second frequency domain beam set corresponds to the number of frequency domain beams in one second frequency domain beam set the maximum value of .
  • the received channel measurement configuration information can also be used to determine the maximum value of the number of frequency-domain beams. By determining different maximum values, the flexibility of this solution is improved, and the R second frequency beams are jointly determined. The number of frequency domain beams in the domain beam set, thereby improving the feasibility of this scheme.
  • the channel measurement configuration information includes a first frequency-domain beam value, where the first frequency-domain beam value is used to obtain the total number of frequency-domain beams in the R second frequency-domain beam sets
  • the maximum value, the value of the first frequency domain beam can be an integer or a proportional coefficient.
  • the channel measurement configuration information includes a second frequency-domain beam value, where the second frequency-domain beam value is used to obtain the maximum value of the number of frequency-domain beams in the second frequency-domain beam set.
  • the second frequency-domain beam value may be an integer or a proportional coefficient.
  • the channel measurement configuration information may include a first frequency-domain beam value, and the first frequency-domain beam value is used to obtain the maximum value of the total number of frequency-domain beams in the R second frequency-domain beam sets.
  • the channel The measurement configuration information may also include a second frequency-domain beam value, and the maximum number of frequency-domain beams in each second frequency-domain beam set can be obtained through the second frequency-domain beam value, which further improves the feasibility of this solution. , and secondly, it can also be obtained by direct determination or indirect calculation, thereby improving the flexibility of determining the maximum number of beams in the frequency domain.
  • the number of frequency-domain beams in the R second frequency-domain beam sets obtained after the quantization process is less than or equal to the total number of frequency-domain beams in the R second frequency-domain beam sets maximum value.
  • the number of frequency-domain beams in the second frequency-domain beam set obtained after the quantization process is less than or equal to the maximum value of the corresponding number of frequency-domain beams in the second frequency-domain beam set.
  • the number of frequency-domain beams after quantization and joint selection is reduced, that is, the number of frequency-domain beams included in the CSI is reduced, thereby reducing the overhead of reporting CSI.
  • channel measurement configuration information is received, where the channel measurement configuration information is used to determine the maximum value of the total number of weighting coefficients in the R second weighting coefficient sets, or, channel measurement configuration information is received , the channel measurement configuration information is used to determine the maximum value of the number of weighting coefficients in each second weighting coefficient set, and one second weighting coefficient set corresponds to the maximum value of the number of weighting coefficients in one second weighting coefficient set.
  • the received channel measurement configuration information can also be used to determine the maximum value of the number of weighting coefficients, and the flexibility of the scheme can be improved by determining different maximum values, and the R second weighting coefficients can be jointly determined. The number of weighting coefficients in the set, thereby improving the feasibility of this scheme.
  • the channel measurement configuration information includes a first weighting coefficient value, where the first weighting coefficient value is used to obtain the maximum value of the total number of weighting coefficients in the R second weighting coefficient sets, and the first weighting coefficient value is used to obtain the maximum value of the total number of weighting coefficients in the R second weighting coefficient sets.
  • a weighting coefficient value can be an integer or a proportional coefficient.
  • the channel measurement configuration information includes a second weighting coefficient value, where the second weighting coefficient value is used to obtain the maximum value of the number of weighting coefficients in the second weighting coefficient set, and the second weighting coefficient value may be an integer or a proportional weighting coefficient.
  • the channel measurement configuration information may include a first weighting coefficient value, and the maximum value of the total number of weighting coefficients in the R second weighting coefficient sets is obtained through the first weighting coefficient value.
  • the channel measurement configuration information also includes It can include a second weighting coefficient value, and the maximum value of the number of weighting coefficients in each second weighting coefficient set can be obtained through the second weighting coefficient value, which further improves the feasibility of this solution. Obtained or obtained by indirect calculation, thereby improving the flexibility of determining the maximum number of weighting coefficients.
  • the total number of weighting coefficients in the R second weighting coefficient sets obtained after the quantization process is less than or equal to the maximum value of the number of weighting coefficients in the R second weighting coefficient sets.
  • the number of weighting coefficients in the second weighting coefficient set obtained after the quantization process is less than or equal to the maximum value of the number of weighting coefficients in the corresponding second weighting coefficient set.
  • the number of weighting coefficients that are jointly selected and quantized is reduced, that is, the number of weighting coefficients included in the CSI is reduced, thereby reducing the overhead of reporting CSI.
  • the first weighting coefficient set can be quantized in two ways.
  • One way is to determine a weighting coefficient in a subset of the R first weighting coefficient sets as the first reference weighting coefficient, and the first reference weighting coefficient is the weighting coefficient with the largest amplitude in the subset of the R first weighting coefficient sets, that is, the first reference weighting coefficient is set to 1 as the quantization reference, and then the R weighting coefficient sets are The relative amplitudes and relative phases of all the weighting coefficients and the first reference weighting coefficients are quantized to obtain R second weighting coefficient sets.
  • another method is to determine R second reference weighting coefficients in a subset of the R first weighting coefficient sets, and a subset of the first weighting coefficient set corresponds to a second reference weighting coefficient, and the second reference weighting coefficient is the weighting coefficient with the largest magnitude in the corresponding subset of the first weighting coefficient set, that is, setting the second reference weighting coefficient to 1 as the quantization reference, and then determining a second reference weighting coefficient among the R second reference weighting coefficients is the third reference weighting coefficient, and then quantizes the relative amplitudes and relative phases of the R weighting coefficient sets and the corresponding second reference weighting coefficients, and quantifies the relative magnitudes of the R second reference weighting coefficients and the third reference weighting coefficients.
  • the amplitude and the relative phase are quantized to obtain R second weighting coefficient sets.
  • the relative relationship between the small-scale information in the channel information of different network devices is calculated in different ways, so as to improve the accuracy of the obtained second weighting coefficient set, so that after the corresponding network device obtains the second weighting coefficient set, Accurately obtain channel information, thereby reducing performance loss.
  • the third reference weighting coefficient may be the maximum amplitude among the R second reference weighting coefficients, or the minimum amplitude among the R second reference weighting coefficients, or the initial value of the terminal device
  • the second reference weighting coefficient corresponding to the accessed network device is the third reference weighting coefficient, or, the second reference weighting coefficient corresponding to the initial access cell of the terminal device is the third reference weighting coefficient, or, the third reference weighting coefficient corresponding to any network device.
  • the second reference weighting coefficient is the third reference weighting coefficient, or the second reference weighting coefficient corresponding to the weighting coefficient set that identifies the smallest network device is the third reference weighting coefficient, or, the second reference weighting coefficient corresponding to the weighting coefficient set that identifies the largest network device
  • the second reference weighting coefficient is the third reference weighting coefficient.
  • the third reference weighting coefficient is determined in different ways, which can further improve the flexibility of the solution.
  • the second information can be quantized in two ways.
  • one way is to extract the R pieces of second information from the Determine one piece of second information as the reference information, that is, set the reference information to 1 as the quantization reference, and then perform quantization processing on the relative values of the R pieces of second information and the reference information to obtain R pieces of second information after quantization processing .
  • another method is to determine one second information from the R pieces of second information as the reference information, that is, set the reference information to 1 as the quantization Then, the relative values of the R pieces of second information and the reference information are quantized, and the absolute values of the reference information are quantized, so as to obtain R pieces of quantized second information.
  • the relative relationship of the large-scale information in the channel information of different network devices is calculated in different ways, so as to improve the accuracy of the second information after the quantization processing, so that the corresponding network device can obtain the information after the quantization processing. After the second information, channel information is accurately obtained, thereby reducing performance loss.
  • the reference information may be the maximum value among the R pieces of second information, or the minimum value among the R pieces of second information, or, the second information of the initial access cell is the reference information, Or, the second information of the initially accessed network device is the reference information, or, the second information corresponding to the weighting coefficient set of the network device that identifies the smallest is the reference information, or, the second information corresponding to the weighting coefficient set of the largest network device is identified.
  • the second information is the reference information.
  • the reference information is determined in different ways, which can further improve the flexibility of the solution.
  • the normalization processing method includes at least one of the following: column normalization, row normalization and overall normalization.
  • the normalization processing method may be predefined, or the normalization processing method may also be determined through signaling, and the signaling is RRC signaling or MAC CE signaling. make.
  • the normalization processing method to be used can be determined in different ways to further improve the flexibility of this solution. Secondly, because the terminal device and the network device need to use the same normalization processing method, it is The normalization processing method can enable the network device to recover channel information with higher accuracy.
  • the present application provides another information transmission method.
  • the method may be executed by a network device, or may also be executed by a chip configured in the network device, which is not limited in this application.
  • the method includes: each network device that provides services to the terminal device can receive the CSI sent by the terminal device, and the CSI includes R pieces of first information after quantization processing, or the CSI includes R pieces of first information for quantization The processed first information and the R pieces of quantized second information.
  • the specific acquisition of the first information after the quantization process and the second information after the quantization process, and the manner of acquiring the first information and the second information are similar to those in the embodiment of the first aspect, and details are not described herein again.
  • the network device acquires target channel information according to the CSI, where the target channel information includes small-scale information corresponding to the network device and large-scale information corresponding to the network device.
  • the network device acquires the small-scale information and the large-scale information in the channel information corresponding to the network device according to the CSI, so as to improve the performance gain and thereby reduce the performance loss.
  • the channel information is information on at least one frequency domain unit.
  • the frequency domain unit may be at least one RE, at least one RB or at least one subband.
  • the channel information is specifically refined to be information on multiple frequency domain units, and the further quantization of the first information provides frequency domain beam resources, and the frequency domain units can be a variety of different units, thereby improving the Flexibility of this program.
  • the first information includes a first spatial domain beam set, a first frequency domain beam set and a first weighting coefficient set.
  • the quantized first information includes a second spatial beam set, a second frequency domain beam set and a second weighting coefficient set, wherein the second spatial beam set is a subset of the first spatial beam set, and the second frequency domain beam set is a subset of the first spatial beam set.
  • the domain beam set is a subset of the first frequency domain beam set
  • the second weighting coefficient set is obtained by quantizing the subset of the first weighting coefficient set.
  • the first information after the quantization process includes the second spatial domain beam set and the second frequency domain beam set. PMI feedback. Therefore, when a CSI includes multiple channel measurement resources, the network device arranges and obtains each channel information in a certain order.
  • the network device can determine the position of the non-zero weighting coefficients through a bitmap, and then obtain the submatrix determined by the second spatial domain beam set and the second frequency domain beam set for quantization. result.
  • the bit quantization described in the embodiments of the present application is to quantize each weighting coefficient in the subset of the first weighting coefficient set with N bits.
  • the second spatial beam set is a subset of the first spatial beam set
  • the second frequency domain beam set is a subset of the first frequency domain beam set
  • the second weighting coefficient set is a subset of the first weighting coefficient set
  • Subsets are obtained after quantification.
  • the number of weighting coefficients is jointly selected, so as to solve the problem that different network devices require different number of weighting coefficients due to different large-scale information or different channel sparsity.
  • the network device sends channel measurement configuration information, where the channel measurement configuration information is used to determine the maximum value of the total number of airspace beams in the R second airspace beam sets, or the network device sends Channel measurement configuration information, the channel measurement configuration information is used to determine the maximum value of the number of spatial beams in each second spatial beam set, and one second spatial beam set corresponds to the maximum number of spatial beams in one second spatial beam set .
  • the channel measurement configuration information sent by the network device can also determine the maximum value of the number of spatial beams, so that the terminal device can improve the flexibility of this solution by determining different maximum values, and jointly determine R The number of spatial beams in the second set of spatial beams.
  • the channel measurement configuration information includes a first spatial beam value, where the first spatial beam value is used to obtain the maximum value of the total number of spatial beams in the R second spatial beam sets, and the first spatial beam value is A spatial beam value can be an integer or a scaling factor.
  • the channel measurement configuration information includes the second spatial beam value, where the second spatial beam value is used to obtain the maximum value of the number of spatial beams in the second spatial beam set.
  • the value of the second spatial beam may be an integer or a scaling factor.
  • the channel measurement configuration information may include a first spatial beam value, and the maximum value of the total number of spatial beams in the R second spatial beam sets is obtained by using the first spatial beam value.
  • the channel measurement configuration information also includes It can include the value of the second airspace beam, and the maximum value of the number of airspace beams in each second airspace beam set can be obtained through the second airspace beam value, which further improves the feasibility of this solution.
  • it can also be determined by directly determining Obtained or obtained by indirect calculation, thereby improving the flexibility of determining the maximum number of spatial beams.
  • the total number of spatial beams in the R second spatial beam sets obtained after the quantization process is less than or equal to the maximum value of the total number of spatial beams in the R second spatial beam sets.
  • the number of airspace beams in the second airspace beam set is less than or equal to the maximum value of the corresponding number of airspace beams in the second airspace beam set.
  • the number of spatial beams after quantization and joint selection is reduced, that is, the number of spatial beams included in the CSI is reduced, thereby reducing the overhead of the terminal equipment for reporting CSI, thereby reducing the time required for the network equipment to obtain channel information in the CSI. overhead.
  • the network device sends channel measurement configuration information, where the channel measurement configuration information is used to determine the maximum value of the total number of frequency-domain beams in the R second frequency-domain beam sets, or, the network The device sends channel measurement configuration information, where the channel measurement configuration information is used to determine the maximum number of frequency domain beams in each second frequency domain beam set, and one second frequency domain beam set corresponds to a second frequency domain beam set in the second frequency domain beam set. Maximum number of frequency domain beams.
  • the channel measurement configuration information sent by the network device can also determine the maximum value of the number of frequency-domain beams, so that the terminal device can improve the flexibility of this solution by determining different maximum values, and jointly determine The number of frequency-domain beams in the R second frequency-domain beam sets, thereby improving the feasibility of this solution.
  • the channel measurement configuration information includes a first frequency-domain beam value, where the first frequency-domain beam value is used to obtain the total number of frequency-domain beams in the R second frequency-domain beam sets
  • the maximum value, the value of the first frequency domain beam can be an integer or a proportional coefficient.
  • the channel measurement configuration information includes a second frequency-domain beam value, where the second frequency-domain beam value is used to obtain the maximum value of the number of frequency-domain beams in the second frequency-domain beam set.
  • the second frequency-domain beam value may be an integer or a proportional coefficient.
  • the channel measurement configuration information may include the first frequency-domain beam value or the second frequency-domain beam value, and determine the maximum number of frequency-domain beams in the case of failure, thereby improving the flexibility of this solution.
  • the maximum value can be obtained by direct determination or indirect calculation, which further improves the flexibility of determining the maximum value of the number of beams in the frequency domain.
  • the number of frequency-domain beams in the R second frequency-domain beam sets obtained after the quantization process is less than or equal to the total number of frequency-domain beams in the R second frequency-domain beam sets maximum value.
  • the number of frequency-domain beams in the second frequency-domain beam set obtained after the quantization process is less than or equal to the maximum value of the corresponding number of frequency-domain beams in the second frequency-domain beam set.
  • the number of frequency-domain beams after quantization and joint selection is reduced, that is, the number of frequency-domain beams included in the CSI is reduced, thereby reducing the overhead of the terminal equipment for reporting CSI, thereby reducing the network equipment acquiring channels in the CSI Information cost.
  • the network device sends channel measurement configuration information, where the channel measurement configuration information is used to determine the maximum value of the total number of weighting coefficients in the R second weighting coefficient sets, or, the network device sends Channel measurement configuration information, where the channel measurement configuration information is used to determine the maximum value of the number of weighting coefficients in each second weighting coefficient set, and one second weighting coefficient set corresponds to the maximum value of the number of weighting coefficients in one second weighting coefficient set .
  • the channel measurement configuration information sent by the network device can also determine the maximum value of the number of weighting coefficients, so that the terminal device can improve the flexibility of this solution by determining different maximum values, and jointly determine R The number of weighting coefficients in the second set of weighting coefficients, thereby improving the feasibility of this solution.
  • the channel measurement configuration information includes a first weighting coefficient value, where the first weighting coefficient value is used to obtain the maximum value of the total number of weighting coefficients in the R second weighting coefficient sets, and the first weighting coefficient value is used to obtain the maximum value of the total number of weighting coefficients in the R second weighting coefficient sets.
  • a weighting coefficient value can be an integer or a proportional coefficient.
  • the channel measurement configuration information includes a second weighting coefficient value, where the second weighting coefficient value is used to obtain the maximum value of the number of weighting coefficients in the second weighting coefficient set, and the second weighting coefficient value may be an integer or a proportional weighting coefficient.
  • the channel measurement configuration information may include a first weighting coefficient value or a second weighting coefficient value, and the maximum number of weighting coefficients in the case of failure is determined, thereby improving the flexibility of this solution.
  • the maximum value is obtained by determining or indirectly calculating, which further improves the flexibility of determining the maximum value of the number of weighting coefficients.
  • the total number of weighting coefficients in the R second weighting coefficient sets obtained after the quantization process is less than or equal to the maximum value of the number of weighting coefficients in the R second weighting coefficient sets.
  • the number of weighting coefficients in the second weighting coefficient set obtained after the quantization process is less than or equal to the maximum value of the number of weighting coefficients in the corresponding second weighting coefficient set.
  • the number of weighting coefficients after quantization and joint selection is reduced, that is, the number of weighting coefficients included in the CSI is reduced, thereby reducing the overhead of the terminal equipment for reporting the CSI, thereby reducing the time required for the network equipment to obtain channel information in the CSI. overhead.
  • the first weighting coefficient set can be quantized in two ways.
  • One way is to determine a weighting coefficient in a subset of the R first weighting coefficient sets as the first reference weighting coefficient, and the first reference weighting coefficient is the weighting coefficient with the largest amplitude in the subset of the R first weighting coefficient sets, that is, the first reference weighting coefficient is set to 1 as the quantization reference, and then the R weighting coefficient sets are The relative amplitudes and relative phases of all the weighting coefficients and the first reference weighting coefficients are quantized to obtain R second weighting coefficient sets.
  • another method is to determine R second reference weighting coefficients in a subset of the R first weighting coefficient sets, and a subset of the first weighting coefficient set corresponds to a second reference weighting coefficient, and the second reference weighting coefficient is the weighting coefficient with the largest magnitude in the corresponding subset of the first weighting coefficient set, that is, setting the second reference weighting coefficient to 1 as the quantization reference, and then determining a second reference weighting coefficient among the R second reference weighting coefficients is the third reference weighting coefficient, and then quantizes the relative amplitudes and relative phases of the R weighting coefficient sets and the corresponding second reference weighting coefficients, and quantifies the relative magnitudes of the R second reference weighting coefficients and the third reference weighting coefficients.
  • the amplitude and the relative phase are quantized to obtain R second weighting coefficient sets.
  • the relative relationship between the small-scale information in the channel information of different network devices is calculated in different ways, so as to improve the accuracy of the obtained second weighting coefficient set, so that after the corresponding network device obtains the second weighting coefficient set, Accurately obtain channel information, thereby reducing performance loss.
  • the third reference weighting coefficient may be the maximum amplitude among the R second reference weighting coefficients, or the minimum amplitude among the R second reference weighting coefficients, or the initial value of the terminal device
  • the second reference weighting coefficient corresponding to the accessed network device is the third reference weighting coefficient, or, the second reference weighting coefficient corresponding to the initial access cell of the terminal device is the third reference weighting coefficient, or, the third reference weighting coefficient corresponding to any network device.
  • the second reference weighting coefficient is the third reference weighting coefficient, or, the second reference weighting coefficient corresponding to the weighting coefficient set that identifies the smallest network device is the third reference weighting coefficient, and the second reference weighting coefficient that identifies the largest network device's weighting coefficient set
  • the weighting coefficient is the third reference weighting coefficient.
  • the third reference weighting coefficient is determined in different ways, which can further improve the flexibility of the solution.
  • the second information can be quantized in two ways.
  • One way is to determine one piece of second information from the R pieces of second information as the reference information, that is, to set the reference information to 1 as the quantization reference, and then perform quantization processing on the relative values of the R pieces of second information and the reference information to obtain R pieces of second information after quantization processing are obtained.
  • another method is to determine one second information from the R pieces of second information as the reference information, that is, set the reference information to 1 as the quantization Then, the relative values of the R pieces of second information and the reference information are quantized, and the absolute values of the reference information are quantized, so as to obtain R pieces of quantized second information.
  • the relative relationship of the large-scale information in the channel information of different network devices is calculated in different ways, so as to improve the accuracy of the second information after the quantization processing, so that the corresponding network device can obtain the information after the quantization processing. After the second information, channel information is accurately obtained, thereby reducing performance loss.
  • the reference information may be the maximum value among the R pieces of second information, or the minimum magnitude among the R pieces of second reference weighting coefficients, or the first value corresponding to the initial access cell of the terminal device.
  • the second reference weighting coefficient is the third reference weighting coefficient, or, the second reference weighting coefficient corresponding to any network device is the third reference weighting coefficient, or, the second information of the initially accessed network device is the reference information, or, or , the second reference weighting coefficient corresponding to the weighting coefficient set identifying the smallest network device is the third reference weighting coefficient, and the second information corresponding to the weighting coefficient set identifying the largest network device being the reference information.
  • the reference information is determined in different ways, which can further improve the flexibility of the solution.
  • the CSI includes R pieces of first information after quantization processing, so the network device can measure the uplink sounding reference signal SRS, obtain uplink large-scale information, and then perform quantization according to the R pieces of information.
  • the processed first information and the uplink large-scale information are used to obtain target channel information.
  • the acquired uplink large-scale information is equivalent to the second information after quantization processing, thereby acquiring corresponding channel information and improving the accuracy of channel information acquisition.
  • the normalization processing method includes at least one of the following: column normalization, row normalization and overall normalization.
  • the normalization processing method may be predefined, for example, if the predefined normalization processing method is overall normalization, the terminal device normalizes the channel information The overall normalization is used in processing, and the network equipment also adopts the overall normalization method when recovering the channel information.
  • the normalization processing method can also be determined through signaling, and the signaling is RRC signaling or MAC CE signaling.
  • a communication device in a third aspect, has part or all of the functions for implementing the first aspect and the terminal device described in any possible implementation manner of the first aspect.
  • the functions of the apparatus may have the functions of some or all of the embodiments of the terminal device in this application, and may also have the functions of independently implementing any one of the embodiments of this application.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a processing module and a transceiver module, and the processing module is configured to support the communication device to perform the corresponding functions in the above method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module for coupling with the processing module and the communication module, which stores necessary program instructions and data for the communication device.
  • the communication device includes:
  • a processing module configured to acquire R pieces of channel information, wherein the channel information includes large-scale information and small-scale information, and R is an integer greater than or equal to 1;
  • the processing module is further configured to perform normalization processing on the R pieces of channel information to obtain R pieces of first information and R pieces of second information, wherein the first pieces of information are the normalized small pieces of information. scale information, the second information is large-scale information after normalization processing;
  • a transceiver module configured to send channel state information CSI, wherein the CSI includes R pieces of first information after quantization processing, or R pieces of first information after quantization processing and R pieces of second information after quantization processing information.
  • the processing module may be a processor or a processing unit
  • the transceiver module may be a transceiver
  • the storage module may be a memory or a storage unit.
  • the communication device may include:
  • a processor configured to acquire R pieces of channel information, wherein the channel information includes large-scale information and small-scale information, and R is an integer greater than or equal to 1;
  • the processor is further configured to perform normalization processing on the R pieces of channel information to obtain R pieces of first information and R pieces of second information, wherein the first pieces of information are the normalized small pieces of information. scale information, the second information is large-scale information after normalization processing;
  • a transceiver configured to send channel state information CSI, where the CSI includes R pieces of first information after quantization processing, or R pieces of first information after quantization processing and R pieces of second information after quantization processing information.
  • the processor may be used to perform, for example but not limited to, baseband related processing
  • the transceiver may be used to perform, for example but not limited to, radio frequency transceiving.
  • the above-mentioned devices may be respectively arranged on chips that are independent of each other, or at least part or all of them may be arranged on the same chip.
  • processors can be further divided into analog baseband processors and digital baseband processors.
  • the analog baseband processor can be integrated with the transceiver on the same chip, and the digital baseband processor can be set on a separate chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be integrated with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip may be called a System on Chip. Whether each device is independently arranged on different chips or integrated on one or more chips often depends on the needs of product design. The embodiments of the present application do not limit the implementation form of the foregoing device.
  • a communication apparatus including a processor.
  • the processor is coupled to the memory and can be used to execute instructions in the memory to implement the method in any one of the possible implementations of the first aspect above.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, the processor is coupled to the communication interface, the communication interface is used for inputting and/or outputting information, and the information includes at least one of instructions and data.
  • the communication apparatus is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication apparatus is a chip or a chip system configured in the terminal device.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, and the like.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • a communication device has part or all of the functions of implementing the second aspect and the network device described in any possible implementation manner of the second aspect.
  • the function of the apparatus may have the function of some or all of the embodiments of the network device in this application, or may have the function of independently implementing any one of the embodiments of this application.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a processing module and a transceiver module, and the processing module is configured to support the communication device to perform the corresponding functions in the above method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module for coupling with the processing module and the communication module, which stores necessary program instructions and data for the communication device.
  • the communication device includes:
  • a transceiver module configured to receive channel state information CSI, wherein the CSI includes R pieces of first information after quantization processing, or R pieces of first information after quantization processing and R pieces of second information after quantization processing information, the first information is normalized small-scale information, the second information is normalized large-scale information, the small-scale information and the large-scale information belong to channel information , the R is an integer greater than or equal to 1;
  • a processing module for the network device to acquire target channel information according to the CSI, where the target channel information includes small-scale information corresponding to the network device and large-scale information corresponding to the network device.
  • the processing module may be a processor or a processing unit
  • the transceiver module may be a transceiver
  • the storage module may be a memory or a storage unit.
  • the communication device may include:
  • a transceiver configured to receive channel state information CSI, where the CSI includes R pieces of first information after quantization processing, or R pieces of first information after quantization processing and R pieces of second information after quantization processing information, the first information is normalized small-scale information, the second information is normalized large-scale information, the small-scale information and the large-scale information belong to channel information , the R is an integer greater than or equal to 1;
  • the network device to acquire target channel information according to the CSI, where the target channel information includes small-scale information corresponding to the network device and large-scale information corresponding to the network device.
  • a communication apparatus including a processor.
  • the processor is coupled to the memory and can be used to execute instructions in the memory to implement the method in any of the possible implementations of the second aspect above.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, the processor is coupled to the communication interface, the communication interface is used for inputting and/or outputting information, and the information includes at least one of instructions and data.
  • the communication apparatus is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication apparatus is a chip or a chip system configured in a network device.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, and the like.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the method in any one of the possible implementations of the first aspect and the second aspect.
  • the above-mentioned processor may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver
  • the signal output by the output circuit may be, for example, but not limited to, output to and transmitted by a transmitter
  • the circuit can be the same circuit that acts as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
  • a communication apparatus including a communication interface and a processor.
  • the communication interface is coupled with the processor.
  • the communication interface is used to input and/or output information.
  • the information includes at least one of instructions and data.
  • the processor is configured to execute a computer program to cause the communication device to perform the method in any of the possible implementations of the first aspect and the second aspect.
  • processors there are one or more processors and one or more memories.
  • a communication device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through a receiver and transmit signals through a transmitter, so that the apparatus performs the method in any one of the possible implementations of the first aspect and the second aspect.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the memory can be a non-transitory memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be separately set in different On the chip, the embodiment of the present application does not limit the type of the memory and the setting manner of the memory and the processor.
  • ROM read only memory
  • sending indication information may be a process of outputting indication information from the processor
  • receiving indication information may be a process of inputting received indication information to the processor.
  • the information output by the processing can be output to the transmitter, and the input information received by the processor can be from the receiver.
  • the transmitter and the receiver may be collectively referred to as a transceiver.
  • the communication device in the eighth aspect and the ninth aspect may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, or the like; when When implemented by software, the processor can be a general-purpose processor, and is implemented by reading software codes stored in a memory, which can be integrated in the processor or located outside the processor and exist independently.
  • a computer program product comprising: a computer program (also referred to as code, or instructions), which, when the computer program is executed, causes a computer to execute the first aspect and the first aspect above.
  • a computer program also referred to as code, or instructions
  • the method in any possible implementation manner of the two aspects.
  • a computer-readable storage medium stores a computer program (also referred to as code, or instruction) when it runs on a computer, causing the computer to execute the above-mentioned first A method of any possible implementation of the aspect and the second aspect.
  • a computer program also referred to as code, or instruction
  • a twelfth aspect provides a communication system, including the aforementioned terminal device and network device.
  • the present application provides a chip system, the chip system includes a processor and an interface, the interface is used to obtain a program or an instruction, and the processor is used to call the program or instruction to implement or support a terminal device To implement the functions involved in the first aspect, for example, to determine or process at least one of the data and information involved in the above method.
  • the chip system further includes a memory for storing necessary program instructions and data of the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a chip system, the chip system includes a processor and an interface, the interface is used to obtain a program or an instruction, and the processor is used to call the program or instruction to implement or support a network device To implement the functions involved in the second aspect, for example, to determine or process at least one of the data and information involved in the above method.
  • the chip system further includes a memory for storing necessary program instructions and data of the network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • FIG. 1 is a schematic diagram of a system framework in an embodiment of the application.
  • FIG. 2 is a schematic diagram of multi-station cooperation based on coherent cooperative transmission in an embodiment of the present application
  • FIG. 3 is a schematic diagram of an embodiment of a method for information transmission in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another embodiment of a method for information transmission in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another embodiment of a method for information transmission in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another embodiment of a method for information transmission in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an embodiment of a communication device in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another embodiment of the communication device in the embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a communication device in an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • 5G fifth generation
  • NR new radio
  • future networks such as 6G systems or even future systems
  • D2D device-to-device
  • M2M machine-to-machine
  • the network device in the communication system can be any device with a wireless transceiver function or a chip that can be provided in the device, and the device includes but is not limited to: evolved Node B (evolved Node B, eNB), wireless Network Controller (Radio Network Controller, RNC), Node B (Node B, NB), Base Station Controller (Base Station Controller, BSC), Base Transceiver Station (Base Transceiver Station, BTS), Home Base Station (for example, Home evolved NodeB , or Home Node B, HNB), baseband unit (BaseBand Unit, BBU), access point (Access Point, AP), wireless relay node, wireless backhaul node, wireless fidelity (Wireless Fidelity, WIFI) system Transmission point (TP) or transmit and receive point (TRP), etc., can also be used in 5G, 6G and even future systems, such as NR, gNB in the system, or transmission point (TRP or TP), 5G One or a group (including multiple antenna panels), 5G,
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU implements the functions of the radio resource control (RRC) layer and the packet data convergence protocol (PDCP) layer
  • the DU implements the functions of the radio resource control (RRC) layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RRC radio resource control
  • the network device may be a CU node, a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into network equipment in the access network RAN, and the CU may also be divided into network equipment in the core network CN, which is not limited herein.
  • the apparatus for implementing the function of the network device may be a network device; it may also be an apparatus capable of supporting the network device to implement the function, such as a chip system, which may be installed in the network device.
  • terminal equipment in the communication system may also be referred to as user equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user Terminal, terminal, wireless communication device, user agent or user equipment.
  • UE user equipment
  • the terminal device in the embodiments of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security ( Wireless terminals in transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, wireless terminals in the aforementioned V2X Internet of Vehicles or RSUs of wireless terminal type, etc.
  • the embodiments of the present application do not limit application scenarios.
  • the numbering may start from 0 consecutively.
  • the 0th symbol in a certain time slot may refer to the first symbol of the time slot.
  • the specific implementation is not limited to this.
  • it can also be numbered consecutively from 1.
  • the first symbol in a certain time slot may also refer to the first symbol of the time slot. Since the starting values of the numbers are different, the numbers corresponding to the same symbol in the time slots are also different.
  • At least one means one or more, and “plurality” means two or more.
  • And/or which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b and c can represent: a, or, b, or, c, or, a and b, or, a and c, or, b and c, or, a , b and c.
  • a, b and c can be single or multiple respectively.
  • the embodiments disclosed herein will present various aspects, embodiments or features of the present application around a system including a plurality of devices, components, modules, and the like. It is to be understood and appreciated that the various systems may include additional devices, components, modules, etc., and/or may not include all of the devices, components, modules, etc. discussed in connection with the figures. In addition, combinations of these schemes can also be used.
  • FIG. 1 is the system framework in the embodiment of the present application.
  • FIG. 1 A schematic diagram, as shown in Figure 1, in Figure 1 (A), the base station Base station and UE1 to UE6 form a communication system, wherein the base station can include one or more panels (panel), and in the communication system Among them, UE1 to UE6 send uplink data to the base station, and the base station needs to receive the uplink data sent by UE1 to UE6.
  • UE4 to UE6 can also form a communication system. Therefore, in this communication system, the base station can send downlink data to UE1, UE2 and UE5, and the base station needs to receive the uplink data sent by UE1, UE2 and UE5.
  • Base station 1 to Base station 3 and UE1 to UE3 can also form a communication system, and Base station 1 to Base station 3 serve UE2 at the same time.
  • FIG. 2 is a schematic diagram of multi-station cooperation based on coherent cooperative transmission in an embodiment of the application.
  • TRP is a base station that provides services for UE, and network device 1, network device 2, and network device 3 simultaneously Serving the UE, and the transmitted data uses the same demodulation reference signal (Demodulation Reference Signal, DMRS) port, then the network device 1 transmits the channel information 1 (H1) to the UE, and the network device 2 transmits the channel information 2 (H2) to the UE.
  • DMRS Demodulation Reference Signal
  • the network device 3 transmits the channel information 3 (H3) to the UE, and in the coherent cooperative transmission method, the UE regards the network device 1, the network device 2 and the network device 3 as equivalently as a network device 1, the network device 2 And the Base station formed by the network device 3, so the UE will regard H1 to H3 as the channel information transmitted by a base station.
  • the network device introduced in this embodiment may also be a plurality of antenna panels (panels) deployed on the network device.
  • Multi-Input Multi-Output MIMO
  • MIMO multiple-input multiple-output
  • the base station sends data to the UE
  • modulation coding and signal precoding need to be performed. How to send data to the UE depends on the CSI fed back by the UE to the base station.
  • TDD Time Division Dual
  • the uplink channel and the downlink channel use the same bandwidth, the uplink channel and the downlink channel are reciprocal, and the base station can use the reciprocity of the uplink channel and the downlink channel to pass The uplink channel obtains the CSI of the downlink channel, and then performs signal precoding.
  • the base station needs to rely on the CSI fed back by the UE to the base station. Due to the phase difference between each TRP, the sparsity between each TRP and the UE is also different, and the importance of the CSI fed back by the terminal to the TRP is also different, and the UE feeds back the same number of spatial beams to different TRPs , the number of frequency domain beams and the number of weighting coefficients will increase the performance loss.
  • FDD Frequency Division Duplex
  • an embodiment of the present application provides an information transmission method, which is used to feed back different large-scale information and small-scale information to different network devices, thereby reducing performance loss.
  • FIG. 3 is a schematic diagram of an embodiment of the information transmission method in the embodiment of the present application.
  • the information transmission method includes: follow the steps below.
  • the terminal device acquires R pieces of channel information, where the channel information includes large-scale information and small-scale information, and R is an integer greater than or equal to 1.
  • the terminal device may receive the CSI-RS corresponding to the R network devices respectively, and then measure the CSI-RS corresponding to the R network devices respectively, and obtain the R channel information corresponding to the network devices, and each
  • the pieces of channel information include large-scale information and small-scale information, where R is an integer greater than or equal to 1.
  • the channel information is information on at least one frequency domain unit.
  • the frequency domain unit may be at least one RE, at least one RB or at least one subband.
  • the introduction is made based on the method of multi-station cooperation based on coherent cooperative transmission introduced in FIG. 2 , that is, there are three network devices serving the terminal device, so the terminal device can obtain the CSI- RS, and measure the CSI-RS corresponding to the three network devices respectively, and obtain the channel information corresponding to the three network devices. Since each channel information includes large-scale information and small-scale information, if the three network devices are network devices 1. Network device 2 and network device 3, then the channel information 1 (H1) including large-scale information 1 and small-scale information 1 corresponding to network device 1 can be obtained, and network device 2 corresponding to large-scale information 2 and small-scale information 1.
  • the value of should be flexibly determined according to the situation of the network equipment that provides services to the terminal equipment.
  • the terminal device normalizes the R pieces of channel information to obtain R pieces of first information and R pieces of second information, where the first pieces of information are normalized small-scale pieces of information, and the second pieces of information are pieces of Large-scale information after normalization.
  • the terminal device normalizes the R pieces of channel information acquired in step S101 to obtain R pieces of first information corresponding to the channel information one-to-one, and R pieces of second information corresponding to the channel information one-to-one.
  • the first information is small-scale information after normalization processing
  • the second information is large-scale information after normalization processing.
  • formula (1) can describe the relationship between the channel information, the first information and the second information:
  • H i indicates the channel information corresponding to the network device i
  • ⁇ i indicates the second information corresponding to H i
  • three network devices serving the terminal device are used as an example for introduction.
  • the three network devices are network device 1, network device 2 and network device 3 respectively.
  • the terminal device can obtain the channel information 1 corresponding to network device 1. , the channel information 2 corresponding to the network device 2 and the channel information 3 corresponding to the network device 3. Therefore, after normalizing H1, H2 and H3, three pieces of first information and three pieces of second information can be obtained. There is a one-to-one correspondence with the first information, and a one-to-one correspondence between the channel information and the second information. Based on the formula (1), the following equation can be obtained:
  • H1 indicates the channel information 1 corresponding to the network device 1
  • H2 indicates the channel information 2 corresponding to the network device 2
  • H3 indicates the channel information 3 corresponding to the network device 3
  • ⁇ 1 indicates the corresponding channel information to H1.
  • the second information indicates the second information corresponding to H 1
  • ⁇ 2 indicates the second information corresponding to H 2
  • ⁇ 3 indicates the first information corresponding to H3
  • the first information may include a first spatial domain beam set, a first frequency domain beam set and a first weighting coefficient set.
  • the method for normalizing the channel information includes, but is not limited to, column normalization, row normalization or overall normalization, wherein column normalization represents that the total energy of each column of the channel is P, and row normalization represents the channel The total energy of each row of is P, and the overall normalization means that the total energy of the channel is P.
  • the total energy P value can be 1 or any other value.
  • P is the number of transmit antennas, or the number of transmit ports, or the number of receive antennas, or the number of receive ports, or the number of transmit antennas and the number of receive antennas.
  • the product of or the product of the number of sending ports and the number of receiving ports, etc.
  • the normalization processing method can be predefined, such as , the predefined normalization processing method is overall normalization, then the terminal device uses the overall normalization when normalizing the channel information, and the network device also adopts the overall normalization method when restoring the channel information.
  • the normalization processing method can also be determined through signaling, and the signaling is RRC signaling or MAC CE signaling.
  • the network device notifies the terminal equipment through RRC signaling that the normalization processing method is column normalization, Then, the terminal device uses column normalization when normalizing the channel information, and the network device also uses the column normalization method when restoring the channel information.
  • the terminal device sends channel state information CSI, where the CSI includes R pieces of first information after quantization processing, or R pieces of first information after quantization processing and R pieces of second information after quantization processing.
  • the terminal device further performs quantization processing on the R pieces of first information and the R pieces of second information obtained in step S102, thereby obtaining R pieces of first information after quantization processing and R pieces of first information after quantization processing. and send the CSI to R network devices.
  • the CSI may include R pieces of first information after quantization processing, or include R pieces of first information after quantization processing and R pieces of first information after quantization processing. the second information.
  • the first information includes the first spatial beam set, the first frequency domain beam set and the first weighting coefficient set
  • the first information after quantization processing includes the second spatial beam set, and the first Two frequency-domain beam sets and a second weighting coefficient set
  • the second spatial-domain beam set is a subset of the first spatial-domain beam set
  • the second frequency-domain beam set is a subset of the first frequency-domain beam set
  • the second spatial beam set includes at least one column selected from all columns, such as the first spatial beam The set includes 10 columns, then the second spatial beam set includes 1 column, 2 columns, 3 columns or more columns among the 10 columns.
  • the second frequency-domain beam set since the first spatial-domain beam set is a set of all rows in the codebook, the second frequency-domain beam set includes at least one row selected from all columns, for example, the first frequency-domain beam set includes 10 lines, then the second frequency-domain beam set includes 1 line, 2 lines, 3 lines or more of the 10 lines.
  • the second set of weighting coefficients includes bit quantization of at least one weighting coefficient selected from all the weighting coefficients, For example, the first weighting coefficient set includes 100 weighting coefficients, then the second weighting coefficient set may include 2 weighting coefficients, 4 weighting coefficients, 6 weighting coefficients or multiple weighting coefficients among the 100 weighting coefficients.
  • the second weighting coefficient set may also determine a sub-matrix by using the second spatial-domain beam set and the second frequency-domain beam set, and then select at least one weighting coefficient from the sub-matrix, so as to obtain a subset of the first weighting coefficient set , and then perform bit quantization on the subset of the first weighting coefficient set to obtain.
  • the bit quantization described in the embodiments of the present application is to quantize each weighting coefficient in the subset of the first weighting coefficient set with N bits.
  • formula (2) can describe the relationship between the first information and the first spatial domain beam set, the first frequency domain beam set and the first weighting coefficient set:
  • Si indicates the first spatial domain beam set
  • Ci indicates the first weighting coefficient set
  • Fi H indicates the first frequency domain beam set.
  • H1 indicates the channel information 1 corresponding to the network device 1
  • H2 indicates the channel information 2 corresponding to the network device 2
  • H3 indicates the channel information 3 corresponding to the network device 3
  • ⁇ 1 indicates the quantization processing corresponding to H1.
  • the second information ⁇ 2 indicates the quantized second information corresponding to H 2
  • ⁇ 3 indicates the quantized second information corresponding to H 3
  • S1 indicates the second spatial beam set corresponding to H 1
  • C1 Indicates the second set of weighting coefficients corresponding to H 1
  • F1 H indicates the second frequency domain beam set corresponding to H 1
  • S2 indicates the second spatial domain beam set corresponding to H 1
  • C2 Indicates the second weighting corresponding to H 2 Coefficient set
  • F2 H indicates the second frequency domain beam set corresponding to H 2
  • S3 indicates the second spatial domain beam set corresponding to H 3
  • C3 indicates the second weighting coefficient set corresponding to H 3
  • F3 H indicates that H 3 The corresponding second frequency domain beam set.
  • the three second spatial beam sets, the three second frequency domain beam sets and the three second weighting coefficient sets may also be the following equations:
  • ⁇ 1 indicates the quantized second information corresponding to the channel information 1
  • ⁇ 2 indicates the quantized second information corresponding to the channel information 2
  • ⁇ 3 indicates the quantized second information corresponding to the channel information 3.
  • Second information S1 indicates the second spatial beam set corresponding to the channel information 1
  • C1 indicates the second weighting coefficient set corresponding to the channel information 1
  • F1 H indicates the second frequency domain beam set corresponding to the channel information 1
  • S2 indicates the The second spatial beam set corresponding to channel information 2
  • C2 indicates the second weighting coefficient set corresponding to channel information 2
  • F2 H indicates the second frequency domain beam set corresponding to channel information 2
  • S3 indicates the first corresponding to channel information 3.
  • Two spatial domain beam sets, C3 indicates a second weighting coefficient set corresponding to channel information 3
  • F3 H indicates a second frequency domain beam set corresponding to channel information 3.
  • the second weighting coefficient set therein can solve the problem of channel phase alignment among different network devices.
  • FIG. 4 is a schematic diagram of another embodiment of an information transmission method in an embodiment of the present application.
  • the information transmission method includes the following steps.
  • the network device receives channel state information CSI, where the CSI includes R pieces of first information after quantization processing, or, R pieces of first information after quantization processing and R pieces of second information after quantization processing.
  • the first information is the normalized small-scale information
  • the second information is the normalized large-scale information
  • the small-scale information and the large-scale information belong to channel information
  • R is an integer greater than or equal to 1.
  • each network device that provides services to the terminal device can receive the CSI sent by the terminal device, and the CSI includes R pieces of first information after quantization processing, or the CSI includes R pieces of first information for The quantized first information and the R pieces of quantized second information.
  • the specific acquisition of the first information after the quantization process and the second information after the quantization process, and the manner of acquiring the first information and the second information are similar to those in the foregoing embodiments, and will not be repeated here.
  • the network device acquires target channel information according to the CSI, where the target channel information includes small-scale information corresponding to the network device and large-scale information corresponding to the network device.
  • the network device performs quantization processing and normalization processing according to the CSI, and obtains the corresponding information of the network device.
  • the network device also needs to measure the uplink sounding reference signal (Sounding Reference Signal, SRS) to obtain uplink large-scale information, and then perform quantization processing according to the R pieces of information.
  • SRS Sounding Reference Signal
  • the target channel information of the network device is obtained, and the target channel information may include the small-scale information corresponding to the network device and the large-scale information corresponding to the network device, including the small-scale information corresponding to the network device.
  • Other reference signals such as SRS, obtain large-scale information corresponding to network equipment.
  • the network device can determine the position of the non-zero weighting coefficients through a bitmap, and then obtain the second spatial-domain beam set and the sub-matrix determined by the second frequency-domain beam set for quantization. the result of.
  • the network device determines the channel information according to the CSI fed back by the terminal device to determine the precoding and the number of transmission streams to transmit data to the terminal device, and the network device can determine the channel quality (Channel Quality Indication, CQI) fed back by the terminal device.
  • CQI Channel Quality Indication
  • the CSI that the terminal device may send may include R pieces of first information after quantization processing and R pieces of second information after quantization processing, or include R pieces of first information after quantization processing .
  • the following takes two network devices serving the terminal device as an example, and respectively introduces the case where the CSI includes different information.
  • the CSI includes R pieces of first information after quantization processing.
  • FIG. 5 is a schematic diagram of another embodiment of the information transmission method in the embodiment of the present application.
  • the information transmission method specifically includes the following steps.
  • a terminal device receives channel measurement configuration information sent by two network devices.
  • the terminal device receives channel measurement configuration information sent by two network devices, that is, receives channel measurement configuration information 1 sent by network device A and channel measurement configuration information 2 sent by network device B.
  • the CSI reporting overhead can be controlled, that is, the number of space-domain beams, the number of frequency-domain beams, and the number of weighting coefficients can be determined in the channel configuration information, which will be introduced separately below.
  • the channel configuration information sent by the network device may be used to determine the maximum value of the total number of spatial beams in the two second spatial beam sets.
  • the channel measurement configuration information includes a first spatial beam value
  • the first spatial beam value is used to obtain the maximum value of the total number of spatial beams in the two second spatial beam sets
  • the first spatial beam value may be an integer or a ratio.
  • Coefficient it should be understood that in practical applications, an integer can directly determine the maximum value of the total number of airspace beams in the two second airspace beam sets.
  • the value of the first airspace beam The maximum value of the total number of included spatial beams is 12.
  • the integer can also determine the average value of the number of airspace beams in the two second airspace beam sets.
  • the maximum value of the total number of airspace beams in the two second airspace beam sets is 24.
  • the value of the first airspace beam is an integer, whether to directly determine the maximum value of the total number of airspace beams in the two second airspace beam sets, or to determine the average value of the number of airspace beams in each second airspace beam set, you can is predefined, or determined by signaling, and the signaling is RRC signaling or MAC CE signaling.
  • the proportional coefficient can also directly determine the maximum value of the total number of spatial beams in the two second spatial beam sets.
  • the value of the second spatial beam is 2/5, then Explain that the maximum value of the total number of spatial beams included in the two second spatial beam sets is 2/5 of the total number of spatial beams included in the first spatial beam set, that is, 40%.
  • the scale factor can also determine the average value of the number of airspace beams in the two second airspace beam sets. For example, if the value of the first airspace beam is 1/10, then the maximum number of the total number of airspace beams in the two second airspace beam sets The value is 2/10, where 2 is a positive integer greater than or equal to 10.
  • the value of the first airspace beam is a proportional coefficient, whether to directly determine the maximum value of the total number of airspace beams in the two second airspace beam sets, or to determine the average value of the number of airspace beams in each second airspace beam set, It can be predefined, or determined through signaling, and the signaling is RRC signaling or MAC CE signaling.
  • the channel configuration information may also be used to determine the maximum number of spatial beams in each second spatial beam set, and one second spatial beam set corresponds to the maximum number of spatial beams in one second spatial beam set.
  • the channel measurement configuration information includes the second spatial beam value, and the second spatial beam value may be an integer or a proportional coefficient.
  • the second spatial beam set is the second spatial beam set A and the second spatial beam set B, then there are The first spatial beam set includes a first spatial beam set A and a first spatial beam set B.
  • the second spatial beam value is an integer
  • the second spatial beam value is 8 and 4
  • 8 corresponds to the second spatial beam
  • the sets A and 4 correspond to the second spatial beam set B
  • the maximum number of spatial beams included in the second spatial beam set A is 8
  • the maximum number of spatial beams included in the second spatial beam set B is 8. The value is 4.
  • the second spatial beam value is a proportional coefficient
  • the second spatial beam value is 2/5 and 3/5
  • 2/5 corresponds to the second spatial beam set A
  • 3/5 corresponds to the second spatial beam set B
  • the maximum number of spatial beams included in the second spatial beam set A is 2/5 of the first spatial beam set A, that is, 40%
  • the spatial beams included in the second spatial beam set B are The maximum value of the number is 3/5 of the number of spatial beams in the first spatial beam set B, that is, 60%.
  • the channel configuration information may be used to determine the maximum number of spatial beams in the second spatial beam set, which is limited to the maximum number of spatial beams in the second spatial beam set in one polarization direction.
  • the determined maximum value of one polarization direction is also It needs to be multiplied by 2 to limit the number of spatial beams in the dual polarization case.
  • the maximum number of spatial beams in the second spatial beam set obtained in the foregoing manner is 12, then the maximum number of spatial beams in the second spatial beam set under dual polarization should be 24. It should be understood that the foregoing examples are only used to understand this solution, and should not be construed as a limitation of this solution.
  • the channel configuration information sent by the network device may be used to determine the maximum value of the total number of frequency-domain beams in the two second frequency-domain beam sets.
  • the channel measurement configuration information includes a first frequency-domain beam value
  • the first frequency-domain beam value may be an integer or a proportional coefficient. It should be understood that, in practical applications, an integer can directly determine the number of the R second frequency-domain beam sets.
  • the maximum value of the total number of frequency-domain beams for example, the value of the first frequency-domain beam is 20, then the maximum value of the total number of frequency-domain beams included in the two second frequency-domain beam sets is 20.
  • the integer can also determine the average value of the number of frequency-domain beams in each second frequency-domain beam set.
  • the total number of frequency-domain beams in the R second frequency-domain beam sets The maximum value is 20*R.
  • the value of the first frequency domain beam is an integer, whether to directly determine the maximum value of the total number of frequency domain beams in the R second frequency domain beam sets, or to determine the number of frequency domain beams in each second frequency domain beam set
  • the average value of may be predefined, or determined through signaling, and the signaling is RRC signaling or MAC CE signaling.
  • the proportional coefficient can also directly determine the maximum value of the total number of frequency-domain beams in the R second frequency-domain beam sets, for example, the value of the second frequency-domain beam is 1 /4, then the maximum value of the total number of frequency-domain beams included in the R second frequency-domain beam sets is 1/4 of the total number of frequency-domain beams included in the first frequency-domain beam set, that is, 25%.
  • the scale factor can also determine the average value of the number of frequency domain beams in the R second frequency domain beam sets.
  • the frequency domain beams in the R second frequency domain beam sets The maximum value of the total number of beams is R/20, where R is a positive integer greater than or equal to 20.
  • R is a positive integer greater than or equal to 20.
  • the value of the first frequency-domain beam is a proportional coefficient, whether to directly determine the maximum value of the total number of frequency-domain beams in the R second frequency-domain beam sets, or to determine the frequency-domain beams in each second frequency-domain beam set
  • the average value of the number may be predefined, or determined by signaling, and the signaling is RRC signaling or MAC CE signaling.
  • the channel configuration information can also be used to determine the maximum value of the number of frequency domain beams in each second frequency domain beam set, and one second frequency domain beam set corresponds to the number of frequency domain beams in one second frequency domain beam set the maximum value of .
  • the channel measurement configuration information includes a second frequency-domain beam value, and the second frequency-domain beam value may be an integer or a proportional coefficient.
  • the second frequency-domain beam set is the second frequency-domain beam set A and the second frequency-domain beam set respectively.
  • Set B there is a first frequency domain beam set including a first frequency domain beam set A and a first frequency domain beam set B.
  • the second frequency domain beam value is an integer
  • the second frequency domain beam value when the second frequency domain beam value is 15 and 5, and 15 corresponds to the second frequency domain beam set A, and 5 corresponds to the second frequency domain beam set B
  • the maximum number of frequency domain beams included in the second frequency domain beam set A is 15, and the first The maximum value of the number of frequency-domain beams included in the two-frequency-domain beam set B is 5.
  • the value of the second frequency domain beam is a proportional coefficient
  • the value of the second frequency domain beam is 3/4 and 1/4, and 3/4 corresponds to the second frequency domain beam set A, and 1/4 corresponds to the second frequency domain beam set A.
  • the maximum number of frequency domain beams included in the second frequency domain beam set A is 3/4 of the number of frequency domain beams in the first frequency domain beam set A, that is, 75%, and the second frequency domain beam set A.
  • the maximum value of the number of frequency-domain beams included in the frequency-domain beam set B is 1/4 of the number of frequency-domain beams in the first frequency-domain beam set B, that is, 25%.
  • the channel measurement configuration information may further include a bitmap, and the number of spatial-domain beams and the number of frequency-domain beams are limited by the size of the bitmap.
  • the channel configuration information includes a first bitmap, and through the first bitmap, the maximum value of the total number of spatial beams in the two second spatial beam sets, and the total number of frequency domain beams in the two second frequency domain beam sets can be obtained.
  • the maximum value of the number for example, if the first bitmap is 64, then the maximum value of the total number of air-domain beams in the two second air-domain beam sets and the maximum number of frequency-domain beams in the two second frequency-domain beam sets
  • the maximum value of the product between is 64.
  • the first bitmap may also determine the maximum value of the sum of the products of the number of air-domain beams in each second set of spatial-domain beams and the number of frequency-domain beams in the second set of frequency-domain beams,
  • formula (3) can be the relationship between the number of spatial beams in the first bitmap and the second spatial beam set and the number of frequency domain beams in the second frequency domain beam set:
  • Mi indicates the number of frequency-domain beams in the second frequency-domain beam set
  • Li indicates the number of spatial-domain beams in the second spatial-domain beam set
  • X indicates the first bitmap
  • the channel configuration information may further include a second bitmap, through which the maximum value of the number of spatial beams in each second spatial beam set and the maximum number of frequency domain beams in each second frequency domain beam set may be limited.
  • the maximum value and the specific corresponding relationship are similar to those in the foregoing embodiments, and are not repeated here.
  • the second spatial beam set is the second spatial beam set A and the second spatial beam set B
  • the second frequency domain beam set is the second frequency domain beam set A and the second frequency domain beam set B, respectively.
  • bitmap When the bitmap is 16 and 4, and 16 corresponds to the second spatial beam set A and the second frequency domain beam set A, and 4 corresponds to the second spatial beam set B and the second frequency domain beam set B, then in the second spatial beam set A
  • the product between the number of spatial beams in the second frequency domain beam set A and the number of frequency domain beams in the second frequency domain beam set A is less than or equal to 16.
  • the second frequency domain beam The value range of the number of frequency-domain beams in set A is [1, 4], and secondly, the value of the number of spatial-domain beams in the second set of spatial-domain beams B and the value of the number of frequency-domain beams in the second set of frequency-domain beams B The product of is less than or equal to 4.
  • the value range of the number of frequency domain beams in the second frequency domain beam set B is [1, 2].
  • the number of air-domain beams in the second air-domain beam set and the number of frequency-domain beams in the second frequency-domain beam set may also be limited through a table.
  • the form is predefined.
  • Table 1 indicates the combination of the number of spatial-domain beams and the number of frequency-domain beams corresponding to each base station.
  • Index1 indicates the combination of the number of the first type of spatial beams and the number of frequency domain beams corresponding to the base station.
  • the number of spatial beams in the second set of spatial beams corresponding to Index1 is L1
  • the intermediate frequency of the second set of frequency domain beams is L1.
  • the number of domain beams is M1
  • the number of spatial beams in the second spatial beam set corresponding to Index1 is 2L1
  • the number of frequency domain beams in the second frequency domain beam set is M1
  • Index2 indicates the second corresponding to the base station.
  • the number of spatial beams in the second spatial beam set corresponding to Index2 is L2, and the number of frequency domain beams in the second frequency domain beam set is M2,
  • the number of air-domain beams in the second spatial-domain beam set corresponding to Index2 is 2L2, and the number of frequency-domain beams in the second frequency-domain beam set is M2.
  • the channel measurement configuration information may include a parameter index through which the limited number of beams may be determined.
  • the parameter index included in the channel measurement configuration information is Index1, and in the case of dual polarization, it can be determined that the number of spatial beams in the limited second spatial beam set is 2L1, and the number of frequency domain beams in the second frequency domain beam set is M1.
  • the number of bitmaps may also be limited in the table, so that the number of air-domain beams in the second spatial-domain beam set and the number of frequency-domain beams in the second frequency-domain beam set.
  • the number of bitmaps of the base station is indicated by Table 2, and the specific manner of indicating the number of bitmaps has been introduced in the foregoing embodiments, and will not be repeated here.
  • Index1 indicates the number of the first type of bitmaps corresponding to the base station
  • the first bitmap and/or the second bitmap corresponding to Index1 is X1
  • Index2 indicates the number of the second type of bitmaps corresponding to the base station
  • the first bitmap and/or the second bitmap corresponding to Index2 bitmap is X2.
  • the channel measurement configuration information may include a parameter index through which the limited number of beams may be determined. For example, if the parameter index included in the channel measurement configuration information is Index2, then the limited number of bitmaps can be determined to be X2, and the limited number of spatial beams in the second spatial beam set and the second frequency The number of frequency domain beams in the domain beam set will not be repeated here.
  • the channel configuration information sent by the network device may be used to determine the maximum value of the total number of weighting coefficients in the two second weighting coefficient sets.
  • the channel measurement configuration information includes a first weighting coefficient value
  • the first weighting coefficient value may be an integer or a proportional coefficient. It should be understood that in practical applications, the integer can directly determine the total number of spatial beams in the R second weighting coefficient sets.
  • the maximum value of the number for example, the value of the first weighting coefficient is 100, it means that the maximum value of the total number of weighting coefficients included in the two second weighting coefficient sets is 100.
  • the integer can also determine the average value of the number of weighting coefficients in each second weighting coefficient set.
  • the maximum value of the total number of weighting coefficients in the R second weighting coefficient sets is 10 *R.
  • the value of the first weighting coefficient is an integer, whether to directly determine the maximum value of the total number of weighting coefficients in the R second weighting coefficient sets, or to determine the average value of the number of weighting coefficients in each second weighting coefficient set, you can is predefined, or determined by signaling, and the signaling is RRC signaling or MAC CE signaling.
  • the second weighting coefficient set is a sub-matrix determined from the first weighting coefficient set, and then a set of partial weighting coefficients for bit quantization is selected from the sub-matrix , so the scale coefficient is used to determine the number of weighting coefficients for bit quantization in the sub-matrix, where the scale coefficient can directly determine the maximum value of the number of weighting coefficients for bit quantization in the sub-matrix, for example, the value of the first weighting coefficient is 1/2, Then it is explained that the maximum value of the total number of weighting coefficients for bit quantization included in the R second weighting coefficient sets is 1/2 of the total number of weighting coefficients included in the sub-matrix, that is, 50%.
  • the scale coefficient can also determine the average value of the number of weighting coefficients for bit quantization in the sub-matrix.
  • the channel information includes three first weighting coefficient sets, and the three first weighting coefficient sets are respectively the first weighting coefficient set 1.
  • the maximum value is 3/5 of the total number of weighting coefficients included in the 3 sub-matrices, that is, 60%.
  • the value of the first weighting coefficient is a proportional coefficient, whether to directly determine the maximum value of the total number of weighting coefficients in the R second weighting coefficient sets, or to determine the average value of the number of weighting coefficients in each second weighting coefficient set, It can be predefined, or determined through signaling, and the signaling is RRC signaling or MAC CE signaling.
  • the channel configuration information can also be used to determine the maximum value of the number of weighting coefficients in each second weighting coefficient set, and one second weighting coefficient set corresponds to the maximum value of the number of weighting coefficients in one second weighting coefficient set.
  • the channel measurement configuration information includes a second weighting coefficient value, and the second weighting coefficient value may be an integer or a proportional weighting coefficient.
  • the second weighting coefficient set is the second weighting coefficient set A and the second weighting coefficient set B, respectively, then There is a first weighting coefficient set including a first weighting coefficient set A and a first weighting coefficient set B.
  • the second weighting coefficient value is an integer
  • the second weighting coefficient value is 50 and 30, and 50 corresponds to the second weighting
  • the coefficient set A and 30 correspond to the second weighting coefficient set B
  • the maximum value of the number of weighting coefficients included in the second weighting coefficient set A is 50
  • the maximum number of weighting coefficients included in the second weighting coefficient set B is 50.
  • the maximum value is 30.
  • the second weighting coefficient value is a proportional coefficient
  • the maximum value of the number of weighting coefficients for bit quantization included in the second weighting coefficient set A is 1/5 of the total number of weighting coefficients included in the submatrix corresponding to the first weighting coefficient set A
  • the maximum value of the number of weighting coefficients for bit quantization included in the second weighting coefficient set B is 2/5 of the total number of weighting coefficients included in the submatrix corresponding to the first weighting coefficient set B.
  • the terminal device acquires two channel state information reference signals CSI-RS corresponding to the two network devices.
  • two network devices send CSI-RS to the terminal device, so that the terminal device can acquire two channel state information reference signal CSI-RSs corresponding to the two network devices.
  • the terminal device acquires two channel information.
  • the terminal device measures two CSI-RSs corresponding to two network devices, and obtains two pieces of channel information.
  • the specific channel information and the method for obtaining the channel information are similar to step 101, and are not repeated here.
  • the terminal device normalizes the two channel information to obtain two first information and two second information.
  • the terminal device normalizes two pieces of channel information to obtain two pieces of first information and two pieces of second information. No longer.
  • S305 The terminal device performs quantization processing on the two pieces of first information, and obtains two pieces of first information after the quantization processing.
  • the first information includes the first spatial beam set, the first frequency domain beam set and the first weighting coefficient set. Therefore, the terminal device needs to perform quantization processing on two pieces of first information, that is, the terminal The device performs quantization processing on the first spatial domain beam set, the first frequency domain beam set and the subset of the first weighting coefficient set, and obtains the second spatial domain beam set, the second frequency domain beam set and the second weighting coefficient set.
  • the number of spatial domain beams, the frequency domain beam The number and the number of weighting coefficients are determined. Therefore, based on the maximum value determined by the channel measurement configuration information, the number of spatial beams in the second spatial beam set, the number of frequency domain beams in the second frequency domain beam set, and the second weighting The number of weighting coefficients in a subset of the coefficient set is jointly determined. They are introduced separately below.
  • the channel measurement configuration information is used to determine the maximum value of the total number of airspace beams in the two second airspace beam sets, then the total number of airspace beams in the two second airspace beam sets is less than or equal to the number of airspace beams in the two second airspace beam sets.
  • the maximum value of the total number of spatial beams For example, the maximum value of the total number of spatial beams in the two second spatial beam sets determined by the channel measurement configuration information is 12, then the value range of the total number of spatial beams in the two second spatial beam sets is [1, 12 ].
  • the channel measurement configuration information is used to determine the maximum number of spatial beams in each second spatial beam set, and one second spatial beam set corresponds to the maximum number of spatial beams in one second spatial beam set, then the first The number of spatial beams in the second spatial beam set is less than or equal to the maximum value of the corresponding number of spatial beams in the second spatial beam set.
  • the second spatial beam set is the second spatial beam set A and the second spatial beam set B respectively, when the second spatial beam values are 8 and 4, and 8 corresponds to the second spatial beam set A, and 4 corresponds to the second spatial beam Set B, then the value range of the number of airspace beams in the second airspace beam set A is [1, 8], and the value range of the number of airspace beams in the second airspace beam set B is [1, 4].
  • the first spatial beam set may also be a codebook, and the codebook form is a DFT matrix form, such as DFT(TX) or Kron(DFT(RX), DFT(TX)) or DFT(RX).
  • DFT(TX) is the Discrete Fourier Transform (DFT) matrix of TX dimension size
  • Kron(DFT(RX), DFT(TX)) is the Kronecker of DFT(RX) and DFT(TX) product, where the DFT(RX) dimension is a DFT matrix of size RX.
  • TX is the value of the transmit antenna, or the value of the transmit port
  • RX is the value of the receive antenna, or the value of the receive port.
  • DFT(TX) mainly considers the weight of the transmitter
  • DFT(RX) mainly reflects the weight of the receiver
  • Kron(DFT(RX), DFT(TX)) considers the weight of the transceiver joint.
  • the total number of frequency domain beams in the two second frequency domain beam sets is less than or equal to the two second frequency domain beam sets The maximum value of the total number of frequency domain beams in the beam set. For example, the maximum value of the total number of frequency domain beams in the two second frequency domain beam sets determined by the channel measurement configuration information is 20, then the value range of the total number of frequency domain beams in the two second frequency domain beam sets is [ 1, 20].
  • one second frequency-domain beam set corresponds to the number of frequency-domain beams in one second frequency-domain beam set the maximum value
  • the number of frequency-domain beams in the second frequency-domain beam set is less than or equal to the corresponding maximum value of the number of frequency-domain beams in the second frequency-domain beam set.
  • the second frequency domain beam sets are respectively the second frequency domain beam set A and the second frequency domain beam set B, when the second frequency domain beam values are 15 and 5, and 15 corresponds to the second frequency domain beam sets A, 5
  • the value range of the number of frequency domain beams in the second frequency domain beam set A is [1, 15]
  • the value of the number of frequency domain beams in the second frequency domain beam set B The range is [1, 5].
  • the codebook form of the first frequency-domain beam set is DFT(S), and DFT(S) determines a DFT matrix with a size of S dimension.
  • S is the frequency domain unit value.
  • the total number of weighting coefficients in the two second weighting coefficient sets is less than or equal to the number of weighting coefficients in the two second weighting coefficient sets
  • the maximum value of the total number of weighting factors For example, the maximum value of the total number of weighting coefficients in the two second weighting coefficient sets determined by the channel measurement configuration information is 100, then the value range of the total number of weighting coefficients in the two second weighting coefficient sets is [1, 100 ].
  • the channel measurement configuration information is used to determine the maximum number of weighting coefficients in each second weighting coefficient set, and one second weighting coefficient set corresponds to the maximum number of weighting coefficients in one second weighting coefficient set, then the first The number of weighting coefficients in the second weighting coefficient set is less than or equal to the maximum value of the number of weighting coefficients in the corresponding second weighting coefficient set.
  • the second weighting coefficient sets are respectively the second weighting coefficient set A and the second weighting coefficient set B, when the second weighting coefficient values are 50 and 50, and 50 corresponds to the second weighting coefficient set A, and 50 corresponds to the second weighting coefficient Set B, then the value range of the number of weighting coefficients in the second weighting coefficient set A is [1, 50], and the value range of the number of weighting coefficients in the second weighting coefficient set B is [1, 50].
  • the first weighting coefficient set can be quantized in two ways.
  • One way is to determine one weighting coefficient in the subset of the two first weighting coefficient sets as the first reference weighting coefficient, and the first reference weighting coefficient is the weighting coefficient with the largest magnitude in the subsets of the two first weighting coefficient sets, that is, setting the first benchmark weighting coefficient to 1 as the quantization benchmark, and then comparing all the weighting coefficients in the two first weighting coefficient sets with the first benchmark.
  • the relative amplitude and relative phase of the weighting coefficients are quantized to obtain two second weighting coefficient sets.
  • the second weighting coefficient set may include the first reference weighting coefficient or may not include the first reference weighting coefficient.
  • Another method is to determine two second reference weighting coefficients in a subset of two first weighting coefficient sets, and a subset of the first weighting coefficient set corresponds to a second reference weighting coefficient, and the second reference weighting coefficient is the weighting coefficient with the largest magnitude in the corresponding subset of the first weighting coefficient set, that is, setting the second benchmark weighting coefficient to 1 as the quantization benchmark, and then determining a second benchmark weighting coefficient among the two second benchmark weighting coefficients is the third reference weighting coefficient, and then quantizes the relative amplitude and relative phase of the two first weighting coefficient sets and the corresponding second reference weighting coefficients, and quantifies the two second reference weighting coefficients and the third reference weighting coefficient.
  • the relative amplitude and relative phase are quantized to obtain two second weighting coefficient sets.
  • the second weighting coefficient set may include the second reference weighting coefficient, or may not include the second reference weighting coefficient.
  • the network device needs to be notified of the location of the second reference weighting coefficient.
  • the third reference weighting coefficient may be the maximum value among the two second reference weighting coefficients, or the minimum value among the two second reference weighting coefficients, or the second reference corresponding to the network device initially accessed by the terminal device.
  • the weighting coefficient is the third reference weighting coefficient, or the second reference weighting coefficient corresponding to the initial access cell of the terminal device is the third reference weighting coefficient, or the second reference weighting coefficient corresponding to any network device is the third reference weighting coefficient , or, the second reference weighting coefficient corresponding to the network device with the smallest identification is the third reference weighting coefficient, or, the second reference weighting coefficient corresponding to the network device with the largest identification is the third reference weighting coefficient.
  • the specific manner of determining the third reference weighting coefficient is not limited herein.
  • the terminal device sends CSI to two network devices, where the CSI includes two pieces of first information after quantization processing.
  • the specific manner in which the terminal device sends the CSI to the two network devices is similar to step S103, and details are not described herein again.
  • the first information after the quantization process includes the second spatial domain beam set and the second frequency domain beam set, and the second spatial domain beam set and the second frequency domain beam set can be fed back directly, or can be fed back through a parameter index, for example PMI feedback. Therefore, when a CSI includes multiple channel measurement resources, each channel information needs to be arranged in a certain order.
  • each quantized first information may include the number of the second spatial domain beam, the second spatial domain beam set, the second frequency domain beam number, the second frequency domain beam set, the bitmap and the second weighting coefficient set.
  • the number of second spatial beams, the second spatial beam set, the second frequency domain beam, the second frequency domain beam set, the bitmap, and the first included in the quantized first information 1
  • the second weighting coefficient set is reported, and then the number of second spatial beams, the second spatial beam set, the second frequency domain beam, the second frequency domain beam set, the bitmap and the second frequency domain beam included in the quantized first information 2
  • the weighting coefficient set is reported, and so on, and is fed back in this order.
  • the number of the second spatial beams of the quantized first information 1 and the second spatial beams of the quantized first information 2 may be The order of the number and the number of second spatial beams of the quantized first information 3", then for the second spatial beam set, it can be in the order of "the second spatial beam set of the first information 1, the first information 2, the second spatial beam set of the first information 3, and the second spatial beam set of the first information 3”.
  • the number of “quantized first information 1 The number of beams in the second frequency domain, the number of beams in the second frequency domain of the quantized first information 2, and the number of beams in the second frequency domain of the quantized first information 3 are sorted in order, and the number of beams in the second frequency domain of the quantized first information 3
  • the ordering manner of the beam set, the bitmap, and the second weighting coefficient set is similar to that in the foregoing example, and details are not repeated here.
  • the number of the second spatial-domain beams and the number of the second frequency-domain beams in the embodiments of the present application are indexes of a table.
  • the second weighting coefficient set is not reported, and the number of second frequency-domain beams or the number of second spatial-domain beams is not reported. The number can be reported as 0, or it defaults to 0.
  • the second weighting coefficient set is not reported, and the number of the second frequency-domain beams or the number of the second spatial-domain beams may be reported as 0, or 0 by default.
  • the terminal device may add N bits of information to notify the network device whether quantization feedback exists in all three channel measurement resources.
  • the terminal device obtains the quantized first information 1, the quantized first information 2, and the quantized first information 3 according to the measured channel information, wherein the terminal device chooses to report only the quantized first information 1, the quantized first information, and the quantized first information 3.
  • the quantized first information 3 is not reported, and 3 bits may be used to notify the network device whether the three quantized first information exist.
  • the network device acquires the uplink large-scale information of the terminal device.
  • the network device measures an uplink sounding reference signal (Sounding Reference Signal, SRS) to obtain uplink large-scale information.
  • SRS Sounding Reference Signal
  • the network device acquires target channel information according to the two pieces of first information after quantization processing and the uplink large-scale information.
  • step S202 The specific manner in which the network device obtains the target channel information according to the two quantized first information and the uplink large-scale information is similar to step S202, and details are not repeated here.
  • the CSI includes R pieces of first information after quantization processing and R pieces of second information after quantization processing.
  • FIG. 6 is a schematic diagram of another embodiment of the information transmission method in the embodiment of the present application.
  • the information transmission method specifically includes the following steps.
  • a terminal device receives channel measurement configuration information sent by two network devices.
  • step S301 the specific manner in which the terminal device receives the channel measurement configuration information sent by the two network devices is similar to step S301, and details are not repeated here.
  • the terminal device acquires two channel state information reference signals CSI-RS corresponding to the two network devices.
  • step S302 the specific manner in which the terminal device obtains the two channel state information reference signals CSI-RS corresponding to the two network devices is similar to step S302, and details are not described herein again.
  • the terminal device acquires two channel information.
  • step S303 the specific manner in which the terminal device acquires the two channel information is similar to step S303, and details are not repeated here.
  • the terminal device performs normalization processing on the two channel information to obtain two first information and two second information.
  • the terminal device performs normalization processing on two pieces of channel information to obtain two pieces of first information and two pieces of second information.
  • the terminal device performs quantization processing on two pieces of first information and two pieces of second information, and obtains two pieces of first information after quantization processing and two pieces of second information after quantization processing.
  • the terminal device performs quantization processing on two pieces of first information to obtain two pieces of first information after quantization processing, which is similar to step S305, and is not repeated here.
  • the second information can be quantized in two ways. In order to ensure the relative value of energy between multiple channel information, one way is that the terminal device determines one second information from two second information as the reference information, That is, the reference information is set as 1 as the quantization reference, and then the relative values of the two pieces of second information and the reference information are quantized to obtain two pieces of second information after quantization.
  • the terminal device determines one second information from the two second information as the reference information, that is, to set the reference information to 1 As a quantization reference, quantization processing is performed on the relative values of the two pieces of second information and the reference information, and quantization processing is performed on the absolute value of the reference information, so as to obtain two pieces of second information after quantization processing.
  • the reference information may be the maximum value among the two pieces of second information, or the minimum value among the two pieces of second information, or, the second information corresponding to the network device initially accessed by the terminal device is the reference information, or,
  • the second information of the terminal equipment initially accessing the cell is the reference information, or, the second information of any network device is the reference information, or, the second information corresponding to the network device with the smallest identification is the reference information, or, the network with the largest identification
  • the second information corresponding to the device is reference information.
  • the specific manner of determining the reference information is not limited herein.
  • the terminal device sends CSI to two network devices, where the CSI includes two pieces of first information after quantization processing.
  • the specific manner in which the terminal device sends the CSI to the two network devices is similar to step S306, and details are not described herein again.
  • the CSI includes 2 pieces of first information after quantization processing and 2 pieces of second information after quantization processing.
  • the network device acquires target channel information according to the two pieces of first information after quantization processing and the two pieces of second information after quantization processing.
  • step S202 The specific manner of acquiring the target channel information by the network device according to the two pieces of first information subjected to quantization processing and the two pieces of second information subjected to quantization processing is similar to that of step S202, which is not repeated here.
  • the communication apparatus and the communication apparatus include corresponding hardware structures and/or software modules for executing each function.
  • the present application can be implemented in hardware or in the form of a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • This embodiment of the present application may divide the communication device into functional modules based on the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • FIG. 7 is a schematic diagram of an embodiment of the communication device in the embodiment of the present application.
  • the communication device 700 includes a processing module 701 and a transceiver module 702 .
  • the communication apparatus 700 may correspond to the terminal device in the above method embodiments, for example, may be a terminal device, or a component (such as a circuit, a chip or a chip system, etc.) configured in the terminal device.
  • the communication apparatus 700 may correspond to the method in FIG. 3 , or the method in FIG. 5 , or the method in FIG. 6 according to an embodiment of the present application, and the communication apparatus 700 may include a method for executing the method in FIG. 3 . , or the method in FIG. 5 , or the unit of the method performed by the terminal device in the method in FIG. 6 . Moreover, each unit in the communication apparatus 700 and the above-mentioned other operations and/or functions are respectively to implement the corresponding flow of the method in FIG. 3 , or the method in FIG. 5 , or the method in FIG. 6 .
  • the processing module 701 can be used to perform steps S101 and S102 of the method in FIG. 3
  • the transceiver module 702 can be used to perform step S103 of the method in FIG. 3 .
  • the processing module 701 can be used to execute steps S301 , S302 , S303 , S304 and S305 of the method in FIG. 5
  • the transceiver module 702 can be used to execute the steps in FIG. 5 .
  • step S306 of the method It should be understood that the specific process of each unit performing the above-mentioned corresponding steps has been described in detail in the above-mentioned method embodiments, and for the sake of brevity, it will not be repeated here.
  • the processing module 701 can be used to execute steps S401 , S402 , S403 , S404 and S405 of the method in FIG. 6
  • the transceiver module 702 can be used to execute the steps in FIG. 6 .
  • step S406 of the method It should be understood that the specific process of each unit performing the above-mentioned corresponding steps has been described in detail in the above-mentioned method embodiments, and for the sake of brevity, it will not be repeated here.
  • the transceiver module 702 in the communication apparatus 700 may be implemented by a transceiver, for example, it may correspond to the transceiver 920 in the communication apparatus 900 shown in FIG. 9 or the transceiver 920 in FIG. 10 .
  • the transceiver 3020 in the shown terminal device 3000, the processing module 701 in the communication apparatus 700 may be implemented by at least one processor, for example, may correspond to the processor 910 in the communication apparatus 900 shown in FIG. 9 or FIG. 10
  • the transceiver module 702 in the communication device 700 can be implemented through input/output interfaces, circuits, etc., and the processing module 701 in the communication device 700 It can be implemented by a processor, microprocessor or integrated circuit integrated on the chip or chip system.
  • FIG. 8 is a schematic diagram of another embodiment of the communication device according to the embodiment of the present application.
  • the communication device 800 includes a transceiver module 801 and a processing module 802 .
  • the communication apparatus 800 may correspond to the network device in the above method embodiments, for example, may be a network device, or a component (such as a circuit, a chip, or a chip system, etc.) configured in the network device.
  • the communication apparatus 800 may correspond to the method in FIG. 4 , or the method in FIG. 5 , or the method in FIG. 6 according to an embodiment of the present application, and the communication apparatus 800 may include a method for executing the method in FIG. 4 . , or the method in FIG. 5 , or the unit of the method performed by the network device in the method in FIG. 6 .
  • each unit in the communication device 800 and the above other operations and/or functions are respectively for implementing the method in FIG. 4 , or the method in FIG. 5 , or the corresponding flow of the method in FIG. 6 .
  • the transceiver module 801 can be used to perform step S201 of the method in FIG. 4
  • the processing module 802 can be used to perform step S202 of the method in FIG. 4 .
  • the transceiver module 801 can be used to execute steps S301 and S306 of the method in FIG. 5
  • the processing module 802 can be used to execute steps S307 and S308 of the method in FIG. 5 .
  • the transceiver module 801 can be used to perform steps S401 and S406 of the method in FIG. 6
  • the processing module 802 can be used to perform step S407 of the method in FIG. 6 .
  • the transceiver module 801 in the communication apparatus 800 may be implemented by a transceiver, for example, it may correspond to the transceiver 920 in the communication apparatus 900 shown in FIG.
  • the processing module 802 in the communication apparatus 800 may be implemented by at least one processor, for example, may correspond to the communication apparatus shown in FIG. 9
  • the processor 910 in 900 or the processing unit 4200 or the processor 4202 in the network device 4000 shown in FIG. 11 may correspond to the communication apparatus shown in FIG. 9
  • the processor 910 in 900 or the processing unit 4200 or the processor 4202 in the network device 4000 shown in FIG. 11 may correspond to the communication apparatus shown in FIG.
  • the transceiver module 801 in the communication apparatus 800 may be implemented through input/output interfaces, circuits, etc., and the processing module 802 in the communication apparatus 800 It can be implemented by a processor, microprocessor or integrated circuit integrated on the chip or chip system.
  • FIG. 9 is a schematic block diagram of a communication apparatus 900 in an embodiment of the present application.
  • the communication device 900 includes a processor 910 , a transceiver 920 and a memory 930 .
  • the processor 910, the transceiver 920 and the memory 930 communicate with each other through an internal connection path, the memory 930 is used to store instructions, and the processor 910 is used to execute the instructions stored in the memory 930 to control the transceiver 920 to send signals and / or receive signals.
  • the communication apparatus 900 may correspond to the terminal device in the above method embodiments, and may be used to execute various steps and/or processes performed by the network device or the terminal device in the above method embodiments.
  • the memory 930 may include read only memory and random access memory and provide instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory 930 may be a separate device or may be integrated in the processor 910 .
  • the processor 910 may be configured to execute the instructions stored in the memory 930, and when the processor 910 executes the instructions stored in the memory, the processor 910 is configured to execute each of the foregoing method embodiments corresponding to the network device or the terminal device steps and/or processes.
  • the communication apparatus 900 is the terminal device in the foregoing embodiment.
  • the communication apparatus 900 is the network device in the foregoing embodiment.
  • the transceiver 920 may include a transmitter and a receiver.
  • the transceiver 920 may further include antennas, and the number of the antennas may be one or more.
  • the processor 910, the memory 930 and the transceiver 920 may be devices integrated on different chips.
  • the processor 910 and the memory 930 may be integrated in the baseband chip, and the transceiver 920 may be integrated in the radio frequency chip.
  • the processor 910, the memory 930 and the transceiver 920 may also be devices integrated on the same chip. This application does not limit this.
  • the communication apparatus 900 is a component configured in a terminal device, such as a circuit, a chip, a chip system, and the like.
  • the communication apparatus 900 is a component configured in a network device, such as a circuit, a chip, a chip system, and the like.
  • the transceiver 920 may also be a communication interface, such as an input/output interface, a circuit, and the like.
  • the transceiver 920, the processor 910 and the memory 920 can be integrated in the same chip, such as integrated in a baseband chip.
  • FIG. 10 is a schematic structural diagram of a terminal device 3000 provided by an embodiment of the present application.
  • the terminal device 3000 can be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the foregoing method embodiments.
  • the terminal device 3000 includes a processor 3010 and a transceiver 3020 .
  • the terminal device 3000 further includes a memory 3030 .
  • the processor 3010, the transceiver 3020 and the memory 3030 can communicate with each other through an internal connection path to transmit control and/or data signals.
  • the computer program is invoked and executed to control the transceiver 3020 to send and receive signals.
  • the terminal device 3000 may further include an antenna 3040 for sending the uplink data or uplink control signaling output by the transceiver 3020 through wireless signals.
  • the above-mentioned processor 3010 and the memory 3030 can be combined into a communication device, and the processor 3010 is configured to execute the program codes stored in the memory 3030 to realize the above-mentioned functions.
  • the memory 3030 may also be integrated in the processor 3010 or independent of the processor 3010 .
  • the processor 3010 may correspond to the processing module 701 in FIG. 7 or the processor 910 in FIG. 9 .
  • the transceiver 3020 described above may correspond to the transceiver module 702 in FIG. 7 or the transceiver 920 in FIG. 9 .
  • the transceiver 3020 may include a receiver (or called receiver, receiving circuit) and a transmitter (or called transmitter, transmitting circuit). Among them, the receiver is used for receiving signals, and the transmitter is used for transmitting signals.
  • the terminal device 3000 shown in FIG. 10 can implement various processes involving the terminal device in the method embodiments shown in FIG. 3 , FIG. 5 or FIG. 6 .
  • the operations and/or functions of each module in the terminal device 3000 are respectively to implement the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 3010 may be configured to perform the actions described in the foregoing method embodiments that are implemented inside the terminal device, and the transceiver 3020 may be configured to execute the operations described in the foregoing method embodiments that the terminal device sends to or receives from the network device. action.
  • the transceiver 3020 may be configured to execute the operations described in the foregoing method embodiments that the terminal device sends to or receives from the network device. action.
  • the above-mentioned terminal device 3000 may further include a power supply 3050 for providing power to various devices or circuits in the terminal device.
  • the terminal device 3000 may further include one or more of an input unit 3060, a display unit 3070, an audio circuit 3080, a camera 3090, a sensor 3100, etc., the audio circuit Speakers 3082, microphones 3084, etc. may also be included.
  • FIG. 11 is a schematic structural diagram of a network device provided by an embodiment of the present application, which may be, for example, a schematic structural diagram of a base station.
  • the base station 4000 can be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiments.
  • the base station 4000 may include one or more radio frequency units, such as an RRU 4100 , and one or more baseband units (BBUs) (also referred to as distributed units (DUs)) 4200 .
  • BBUs baseband units
  • DUs distributed units
  • the RRU 4100 may be called a transceiver unit, and may correspond to the transceiver module 802 in FIG. 8 or the transceiver 2020 in FIG. 9 .
  • the RRU 4100 may also be referred to as a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 4101 and a radio frequency unit 4102.
  • the RRU 4100 may include a receiving unit and a sending unit, the receiving unit may correspond to a receiver (or called a receiver, a receiving circuit), and the sending unit may correspond to a transmitter (or called a transmitter, a sending circuit).
  • the RRU 4100 part is mainly used for receiving and sending radio frequency signals and converting radio frequency signals to baseband signals, for example, for sending indication information to terminal equipment.
  • the part of the BBU4200 is mainly used to perform baseband processing and control the base station.
  • the RRU 4100 and the BBU 4200 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 4200 is the control center of the base station, and can also be called a processing unit, which can correspond to the processing module 802 in FIG. 8 or the processor 910 in FIG. 9 , and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, etc. , modulation, spread spectrum, etc.
  • the BBU processing unit
  • the BBU may be used to control the base station to perform the operation procedure of the network device in the foregoing method embodiments, for example, to generate the foregoing indication information and the like.
  • the BBU 4200 may be composed of one or more boards, and the multiple boards may jointly support a wireless access network (such as an LTE network) of a single access standard, or may respectively support a wireless access network of different access standards.
  • Wireless access network (such as LTE network, 5G network or other network).
  • the BBU 4200 also includes a memory 4201 and a processor 4202.
  • the memory 4201 is used to store necessary instructions and data.
  • the processor 4202 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation flow of the network device in the foregoing method embodiments.
  • the memory 4201 and the processor 4202 may serve one or more single boards. That is to say, the memory and processor can be provided separately on each single board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits may also be provided on each single board.
  • the base station 4000 shown in FIG. 11 can implement various processes involving network devices in the method embodiments shown in FIG. 4 , FIG. 5 and FIG. 6 .
  • the operations and/or functions of each module in the base station 4000 are respectively to implement the corresponding processes in the foregoing method embodiments.
  • the above-mentioned BBU 4200 may be used to perform the actions described in the foregoing method embodiments that are implemented internally by the network device, while the RRU 4100 may be used to perform the actions described in the foregoing method embodiments that the network device sends to or receives from the terminal device.
  • the RRU 4100 may be used to perform the actions described in the foregoing method embodiments that the network device sends to or receives from the terminal device.
  • the base station 4000 shown in FIG. 11 is only a possible form of network equipment, and should not constitute any limitation to the present application.
  • the method provided in this application can be applied to other forms of network equipment.
  • it includes AAU, may also include CU and/or DU, or includes BBU and adaptive radio unit (ARU), or BBU; may also be customer terminal equipment (customer premises equipment, CPE), may also be
  • AAU adaptive radio unit
  • BBU adaptive radio unit
  • CPE customer premises equipment
  • the CU and/or DU may be used to perform the actions implemented by the network device described in the foregoing method embodiments, and the AAU may be used to execute the network device described in the foregoing method embodiments to send or receive from the terminal device. Actions. For details, please refer to the descriptions in the foregoing method embodiments, which will not be repeated here.
  • the present application also provides a communication apparatus, including at least one processor, where the at least one processor is configured to execute a computer program stored in a memory, so that the communication apparatus executes the terminal device or network device in any of the foregoing method embodiments method performed.
  • the above communication device may be one or more chips.
  • the communication device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or a It is a central processing unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • MCU microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • the embodiments of the present application also provide a communication apparatus, including a processor and a communication interface.
  • the communication interface is coupled with the processor.
  • the communication interface is used to input and/or output information.
  • the information includes at least one of instructions and data.
  • the processor is configured to execute a computer program, so that the communication apparatus executes the method executed by the terminal device or the network device in any of the foregoing method embodiments.
  • An embodiment of the present application also provides a communication device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the communication apparatus executes the method performed by the terminal device or the network device in any of the above method embodiments.
  • each step of the above-mentioned method can be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, detailed description is omitted here.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the aforementioned processors may be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • the methods, steps, and logic block diagrams disclosed in the embodiments of this application can be implemented or executed.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code is run on a computer, the computer is made to execute the steps shown in FIGS. 3 to 6 .
  • the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores program codes, and when the program codes are run on a computer, the computer is made to execute FIGS. 3 to 3 . 6.
  • the present application further provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the network equipment in each of the above apparatus embodiments completely corresponds to the terminal equipment and the network equipment or terminal equipment in the method embodiments, and corresponding steps are performed by corresponding modules or units.
  • a processing unit processor
  • processor For functions of specific units, reference may be made to corresponding method embodiments.
  • the number of processors may be one or more.
  • the terminal device may be used as an example of a receiving device
  • the network device may be used as an example of a sending device.
  • the sending device and the receiving device may both be terminal devices or the like. This application does not limit the specific types of the sending device and the receiving device.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

本申请提供了一种信息传输的方法、相关装置以及设备,适用于通信领域,用于反馈通过不同网络设备的信道信息得到的信息,能够提升性能增益,从而降低性能损失。该方法包括:终端设备获取至少一个包括大尺度信息与小尺度信息的信道信息,并对该信道信息进行归一化处理,得到至少一个第一信息与至少一个第二信息,且第一信息为进行归一化处理后的小尺度信息,第二信息为进行归一化处理后的大尺度信息,然后发送信道状态信息CSI,该CSI可以包括R个进行量化处理后的第一信息,或者包括R个进行量化处理后的第一信息与R个进行量化处理后的第二信息。

Description

一种信息传输的方法、相关装置以及设备 技术领域
本申请实施例涉及通信领域,尤其涉及一种信息传输的方法、相关装置以及设备。
背景技术
新空口(new radio,NR)通信系统对系统容量、频谱效率等方面有了更高的要求。在5G通信系统中,大规模多天线技术对系统的频谱效率起到至关重要的作用。为了提高系统的吞吐性能以及用户的体验,通常采用多站协作的方式来为一个用户服务。
目前,最新的码本是空频双域压缩码本。而在双域压缩码本中,用户设备(User Equipment,UE)测量的信道是每个秩(rank)独立上报,因此终端设备进行信道状态信息(Channel state information,CSI)上报时,主要是将选择空域波束、选择的频域波束以及对应的加权系数上报,其对应的加权系数需要进行量化处理后再上报。
然而,在多站传输的场景中,每个传输接收点(transmission reception point,TRP)之间存在相位差,每个TRP与UE之间的稀疏度也不相同,并且终端向TRP反馈的CSI的重要性也不相同,因此会增加性能损失。
发明内容
本申请实施例提供了一种信息传输的方法、相关装置以及设备,对不同网络设备反馈不同小尺度信息,或者反馈不同的小尺度信息以及大尺度信息,提升性能增益,从而降低性能损失。
第一方面,本申请提供了一种信息传输的方法。该方法可以由终端设备执行,或者也可以由配置于终端设备中的芯片执行,本申请对此不作限定。该方法包括:终端设备获取R个信道信息,该信道信息包括大尺度信息与小尺度信息,且R为大于或等于1的整数,再对R个信道信息进行归一化处理,得到R个第一信息与R个第二信息,第一信息为进行归一化处理后的小尺度信息,第二信息为进行归一化处理后的大尺度信息,最后发送信道状态信息CSI,该CSI包括R个进行量化处理后的第一信息,或,R个进行量化处理后的第一信息与R个进行量化处理后的第二信息。
在该实施方式中,终端设备获取不同网络设备的信道信息,并且对信道信息所包括的大尺度信息以及小尺度信息进行归一化处理以及量化处理,由于每个网络设备与终端设备之间的稀疏度不相同,并且终端向TRP的CSI的重要性也不相同,并且终端设备向网络设备反馈的CSI的重要性也不相同,反馈通过不同网络设备的信道信息得到的信息,能够提升性能增益,从而降低性能损失。
在本申请的一种可选实施方式中,信道信息为至少一个频域单元上的信息。其中,频域单元可以为至少一个资源粒度(Resource Element,RE),至少一个资源块(Resource Block,RB)或者至少一个子带。
在该实施方式中,具体细化信道信息为多个频域单元上的信息,对第一信息进行进一步地量化提供了频域波束资源,并且频域单元可以为多种不同单元,由此提升本方案的灵活性。
在本申请的一种可选实施方式中,第一信息包括第一空域波束集合,第一频域波束集合与第一加权系数集合。其次,进行量化处理后的第一信息包括第二空域波束集合,第二频域波束集合与第二加权系数集合,其中,第二空域波束集合为第一空域波束集合的子集,第二频域波束集合为第一频域波束集合的子集,第二加权系数集合为第一加权系数集合的子集进行量化后得到的。
在该实施方式中,进行量化处理后的第一信息包括进行第二空域波束集合以及第二频域波束集合,第二空域波束集合以及第二频域波束集合可以直接反馈,也可以通过参数索引反馈,例如预编码矩阵指示(Precoding Matrix Indicator,PMI)反馈。因此,当一个CSI中包括多个信道测量资源,每个信道信息需要按照一定的顺序排列。
在该实施方式中,第二空域波束集合为第一空域波束集合的子集,第二频域波束集合为第一频域波束集合的子集,第二加权系数集合为第一加权系数集合的子集进行量化后得到的。该过程中需要对空域波束数量进行联合选择,从而解决网络设备间信道的空域稀疏性不同的问题,其次,还需要对频域波束数量进行联合选择,从而解决网络设备间信道的频域稀疏性不同的问题,再次,对加权系数数量进行联合选择,从而解决不同的网络设备因大尺度信息不同或者因信道稀疏度不同,导致所需要的加权系数个数不同的问题。
在本申请的一种可选实施方式中,接收信道测量配置信息,该信道测量配置信息用于确定R个第二空域波束集合中的空域波束总数量的最大值,或者,接收信道测量配置信息,该信道测量配置信息用于确定每个第二空域波束集合中的空域波束数量的最大值,一个第二空域波束集合对应一个第二空域波束集合中的空域波束数量的最大值。
在该实施方式中,所接收的信道测量配置信息还可以确定空域波束数量的最大值的方式,通过不同最大值的确定方式,提升本方案的灵活性,以及,联合确定R个第二空域波束集合中的空域波束数量,从而提升本方案的可行性。
在本申请的一种可选实施方式中,信道测量配置信息包括第一空域波束数值,该第一空域波束数值用于得到R个第二空域波束集合中的空域波束总数量的最大值,第一空域波束数值可以为整数或者比例系数。或者,信道测量配置信息包括第二空域波束数值,其中,第二空域波束数值用于得到第二空域波束集合中的空域波束数量的最大值。第二空域波束数值可以为整数或者比例系数。
在该实施方式中,信道测量配置信息可以包括第一空域波束数值或第二空域波束数值,确定不通过情况下空域波束数量最大值,由此提升本方案的灵活性,其次,还可以通过直接确定得到或者间接计算的方式得到最大值,进一步地提升确定空域波束数量最大值的灵活性。
在本申请的一种可选实施方式中,经过量化处理后所得到R个第二空域波束集合中空域波束总数量小于或等于R个第二空域波束集合中的空域波束总数量的最大值。或者,第二空域波束集合中空域波束数量小于或等于所对应的第二空域波束集合中的空域波束数量的最大值。
在该实施方式中,经过量化并且进行联合选择后的空域波束数量减少,即降低CSI中所包括的空域波束数量,由此降低上报CSI的开销。
在本申请的一种可选实施方式中,接收信道测量配置信息,该信道测量配置信息用于 确定R个第二频域波束集合中的频域波束总数量的最大值,或者,接收信道测量配置信息,该信道测量配置信息用于确定每个第二频域波束集合中的频域波束数量的最大值,一个第二频域波束集合对应一个第二频域波束集合中的频域波束数量的最大值。
在该实施方式中,所接收的信道测量配置信息还可以确定频域波束数量的最大值的方式,通过不同最大值的确定方式,提升本方案的灵活性,以及,联合确定R个第二频域波束集合中的频域波束数量,从而提升本方案的可行性。
在本申请的一种可选实施方式中,信道测量配置信息包括第一频域波束数值,该第一频域波束数值用于得到R个第二频域波束集合中的频域波束总数量的最大值,第一频域波束数值可以为整数或者比例系数。或者,信道测量配置信息包括第二频域波束数值,该第二频域波束数值用于得到第二频域波束集合中的频域波束数量的最大值。第二频域波束数值可以为整数或者比例系数。
在该实施方式中,信道测量配置信息可以包括第一频域波束数值,通过第一频域波束数值得到R个第二频域波束集合中的频域波束总数量的最大值,同理,信道测量配置信息还可以包括包括第二频域波束数值,通过第二频域波束数值可得到每个第二频域波束集合中的频域波束数量的最大值,进一步地提升了本方案的可行性,其次,还可以通过直接确定得到或者间接计算的方式得到,由此提升确定频域波束数量最大值的灵活性。
在本申请的一种可选实施方式中,经过量化处理后所得到的R个第二频域波束集合中频域波束数量小于或等于R个第二频域波束集合中的频域波束总数量的最大值。或者,经过量化处理后所得到的第二频域波束集合中频域波束数量小于或等于所对应的第二频域波束集合中的频域波束数量的最大值。
在该实施方式中,经过量化并且进行联合选择后的频域波束数量减少,即降低CSI中所包括的频域波束数量,由此降低上报CSI的开销。
在本申请的一种可选实施方式中,接收信道测量配置信息,该信道测量配置信息用于确定R个第二加权系数集合中的加权系数总数量的最大值,或者,接收信道测量配置信息,该信道测量配置信息用于确定每个第二加权系数集合中的加权系数数量的最大值,一个第二加权系数集合对应一个第二加权系数集合中的加权系数数量的最大值。
在该实施方式中,所接收的信道测量配置信息还可以确定加权系数数量的最大值的方式,通过不同最大值的确定方式,提升本方案的灵活性,以及,联合确定R个第二加权系数集合中的加权系数数量,从而提升本方案的可行性。
在本申请的一种可选实施方式中,信道测量配置信息包括第一加权系数数值,该第一加权系数数值用于得到R个第二加权系数集合中的加权系数总数量的最大值,第一加权系数数值可以为整数或者比例系数。或者,信道测量配置信息包括第二加权系数数值,该第二加权系数数值用于得到第二加权系数集合中的加权系数数量的最大值,第二加权系数数值可以为整数或者比例加权系数。
在该实施方式中,信道测量配置信息可以包括第一加权系数数值,通过第一加权系数数值得到R个第二加权系数集合中的加权系数总数量的最大值,同理,信道测量配置信息还可以包括包括第二加权系数数值,通过第二加权系数数值可得到每个第二加权系数集合中的加权系数数量的最大值,进一步地提升了本方案的可行性,其次,还可以通过直接确 定得到或者间接计算的方式得到,由此提升确定加权系数数量最大值的灵活性。
在本申请的一种可选实施方式中,经过量化处理后所得到的R个第二加权系数集合中加权系数总数量小于或等于R个第二加权系数集合中的加权系数数量的最大值。或者,经过量化处理后所得到的第二加权系数集合中加权系数数量小于或等于所对应的第二加权系数集合中的加权系数数量的最大值。
在该实施方式中,进行联合选择并经过量化的加权系数数量减少,即降低CSI中所包括的加权系数数量,由此降低上报CSI的开销。
在本申请的一种可选实施方式中,对第一加权系数集合进行量化处理可以通过两种方式,一种方式为在R个第一加权系数集合的子集中确定一个加权系数为第一基准加权系数,并且第一基准加权系数为R个第一加权系数集合的子集中幅度最大的加权系数,也就是将第一基准加权系数设置为1作为量化基准,然后对R个加权系数集合中的所有加权系数与第一基准加权系数的相对幅度与相对相位进行量化处理,以得到R个第二加权系数集合。其次,另一种方式为在R个第一加权系数集合的子集中确定R个第二基准加权系数,且一个第一加权系数集合的子集对应一个第二基准加权系数,第二基准加权系数为所对应的第一加权系数集合的子集中幅度最大的加权系数,也就是将第二基准加权系数设置为1作为量化基准,然后在R个第二基准加权系数中确定一个第二基准加权系数为第三基准加权系数,再对R个加权系数集合与所对应的第二基准加权系数的相对幅度与相对相位进行量化处理,且对R个第二基准加权系数与第三基准加权系数的相对幅度与相对相位进行量化处理,得到R个第二加权系数集合。
在该实施方式中,通过不同的方式计算不同网络设备信道信息中小尺度信息的相对关系,提升所得到第二加权系数集合的准确度,从而能够使得对应网络设备获取到第二加权系数集合后,准确得到信道信息,从而降低性能损失。
在本申请的一种可选实施方式中,第三基准加权系数可以为R个第二基准加权系数中幅度最大值,或,R个第二基准加权系数中幅度最小值,或,终端设备初始接入的网络设备对应的第二基准加权系数为第三基准加权系数,或,终端设备初始接入小区对应的第二基准加权系数为第三基准加权系数,或,任一网络设备对应的第二基准加权系数为第三基准加权系数,或,标识最小的网络设备的加权系数集合对应的第二基准加权系数为第三基准加权系数,或,标识最大的网络设备的加权系数集合对应的第二基准加权系数为第三基准加权系数。
在该实施方式中,通过不同的方式确定第三基准加权系数,可以进一步地提升本方案的灵活性。
在本申请的一种可选实施方式中,对第二信息进行量化处理可以通过两种方式,为保证多个信道信息之间的能量的相对值,一种方式为从R个第二信息中确定一个第二信息作为基准信息,也就是将基准信息设置为1作为量化基准,然后对R个第二信息与基准信息的相对值进行量化处理,以得到R个进行量化处理后的第二信息。其次,为了提升所反馈下行的大尺度信息的准确度,并且提升性能,另一种方式为从R个第二信息中确定一个第二信息作为基准信息,也就是将基准信息设置为1作为量化基准,然后对R个第二信息与基准信息的相对值进行量化处理,且对基准信息的绝对值进行量化处理,以得到R个进行 量化处理后的第二信息。
在该实施方式中,通过不同的方式计算不同网络设备信道信息中大尺度信息的相对关系,提升进行量化处理后的第二信息的准确度,从而能够使得对应网络设备获取到进行量化处理后的第二信息后,准确得到信道信息,从而降低性能损失。
在本申请的一种可选实施方式中,基准信息可以为R个第二信息中最大值,或,R个第二信息中最小值,或,初始接入小区的第二信息为基准信息,或,初始接入的网络设备的第二信息为基准信息,或,标识最小的网络设备的加权系数集合对应的第二信息为基准信息,或,标识最大的网络设备的加权系数集合对应的第二信息为基准信息。
在该实施方式中,通过不同的方式确定基准信息,可以进一步地提升本方案的灵活性。
在本申请的一种可选实施方式中,归一化处理的方法包括以下至少一项:列归一,行归一和整体归一。
在该实施方式中,可以根据实际情况采用不同的归一化处理的方法,进一步提升本方案的灵活性。
在本申请的一种可选实施方式中,归一化处理的方法可以为预定义的,或者,归一化处理的方法还可以通过信令确定,并且信令为RRC信令或者MAC CE信令。
在该实施方式中,可以通过不同的方式确定所采用的归一化处理的方法,进一步提升本方案的灵活性,其次,由于终端设备与网络设备需要采用相同的归一化处理方法,因此确定归一化处理的方法,可以使得网络设备恢复出准确度较高的信道信息。
第二方面,本申请提供了另一种信息传输的方法。该方法可以由网络设备执行,或者也可以由配置于网络设备中的芯片执行,本申请对此不作限定。该方法包括:对终端设备提供服务的每个网络设备均可以接收到终端设备发送的CSI,且该CSI中包括R个进行量化处理后的第一信息,或者,该CSI中包括R个进行量化处理后的第一信息与R个进行量化处理后的第二信息。具体获取量化处理后的第一信息与进行量化处理后的第二信息,以及获取第一信息以及第二信息方式与第一方面实施例类似,在此不再赘述。进而,网络设备根据CSI获取目标信道信息,该目标信道信息包括网络设备对应的小尺度信息以及网络设备对应的大尺度信息。
在该实施方式中,网络设备根据CSI获取网络设备对应的信道信息中的小尺度信息以及大尺度信息,提升性能增益,从而降低性能损失。
在本申请的一种可选实施方式中,信道信息为至少一个频域单元上的信息。其中,频域单元可以为至少一个RE,至少一个RB或者至少一个子带。
在该实施方式中,具体细化信道信息为多个频域单元上的信息,对第一信息进行进一步地量化提供了频域波束资源,并且频域单元可以为多种不同单元,由此提升本方案的灵活性。
在本申请的一种可选实施方式中,其特征在于,第一信息包括第一空域波束集合,第一频域波束集合与第一加权系数集合。其次,进行量化处理后的第一信息包括第二空域波束集合,第二频域波束集合与第二加权系数集合,其中,第二空域波束集合为第一空域波束集合的子集,第二频域波束集合为第一频域波束集合的子集,第二加权系数集合为第一加权系数集合的子集进行量化后得到的。
应理解,进行量化处理后的第一信息包括进行第二空域波束集合以及第二频域波束集合,第二空域波束集合以及第二频域波束集合可以直接反馈,也可以通过参数索引反馈,例如PMI反馈。因此,当一个CSI中包括多个信道测量资源,网络设备是按照一定的顺序排列接收获取到每个信道信息的。
其次,网络设备获取第二加权系数集合之后,可以通过bitmap(比特位图)确定非零加权系数的位置,然后得到第二空域波束集合以及第二频域波束集合确定的子矩阵进行量化后的结果。具体地,本申请实施例中所描述的bit量化是对第一加权系数集合的子集中的每个加权系数用N个bit进行量化。
在该实施方式中,第二空域波束集合为第一空域波束集合的子集,第二频域波束集合为第一频域波束集合的子集,第二加权系数集合为第一加权系数集合的子集进行量化后得到的。该过程中需要对空域波束数量进行联合选择,从而解决网络设备间信道的空域稀疏性不同的问题,其次,还需要对频域波束数量进行联合选择,从而解决网络设备间信道的频域稀疏性不同的问题,再次,对加权系数数量进行联合选择,从而解决不同的网络设备因大尺度信息不同或者因信道稀疏度不同,导致所需要的加权系数个数不同的问题。
在本申请的一种可选实施方式中,网络设备发送信道测量配置信息,该信道测量配置信息用于确定R个第二空域波束集合中的空域波束总数量的最大值,或者,网络设备发送信道测量配置信息,该信道测量配置信息用于确定每个第二空域波束集合中的空域波束数量的最大值,一个第二空域波束集合对应一个第二空域波束集合中的空域波束数量的最大值。
在该实施方式中,网络设备所发送的信道测量配置信息还可以确定空域波束数量的最大值的方式,使得终端设备通过不同最大值的确定方式,提升本方案的灵活性,以及,联合确定R个第二空域波束集合中的空域波束数量。
在本申请的一种可选实施方式中,信道测量配置信息包括第一空域波束数值,该第一空域波束数值用于得到R个第二空域波束集合中的空域波束总数量的最大值,第一空域波束数值可以为整数或者比例系数。或者,信道测量配置信息包括第二空域波束数值,其中,第二空域波束数值用于得到第二空域波束集合中的空域波束数量的最大值。第二空域波束数值可以为整数或者比例系数。
在该实施方式中,信道测量配置信息可以包括第一空域波束数值,通过第一空域波束数值得到R个第二空域波束集合中的空域波束总数量的最大值,同理,信道测量配置信息还可以包括包括第二空域波束数值,通过第二空域波束数值可得到每个第二空域波束集合中的空域波束数量的最大值,进一步地提升了本方案的可行性,其次,还可以通过直接确定得到或者间接计算的方式得到,由此提升确定空域波束数量最大值的灵活性。
在本申请的一种可选实施方式中,经过量化处理后所得到R个第二空域波束集合中空域波束总数量小于或等于R个第二空域波束集合中的空域波束总数量的最大值。或者,第二空域波束集合中空域波束数量小于或等于所对应的第二空域波束集合中的空域波束数量的最大值。
在该实施方式中,经过量化并且进行联合选择后的空域波束数量减少,即降低CSI中所包括的空域波束数量,由此降低终端设备上报CSI的开销,从而降低网络设备获取CSI 中信道信息的开销。
在本申请的一种可选实施方式中,网络设备发送信道测量配置信息,该信道测量配置信息用于确定R个第二频域波束集合中的频域波束总数量的最大值,或,网络设备发送信道测量配置信息,该信道测量配置信息用于确定每个第二频域波束集合中的频域波束数量的最大值,一个第二频域波束集合对应一个第二频域波束集合中的频域波束数量的最大值。
在该实施方式中,网络设备发送的信道测量配置信息还可以确定频域波束数量的最大值的方式,使得终端设备可以通过不同最大值的确定方式,提升本方案的灵活性,以及,联合确定R个第二频域波束集合中的频域波束数量,从而提升本方案的可行性。
在本申请的一种可选实施方式中,信道测量配置信息包括第一频域波束数值,该第一频域波束数值用于得到R个第二频域波束集合中的频域波束总数量的最大值,第一频域波束数值可以为整数或者比例系数。或者,信道测量配置信息包括第二频域波束数值,该第二频域波束数值用于得到第二频域波束集合中的频域波束数量的最大值。第二频域波束数值可以为整数或者比例系数。
在该实施方式中,信道测量配置信息可以包括第一频域波束数值或第二频域波束数值,确定不通过情况下频域波束数量最大值,由此提升本方案的灵活性,其次,还可以通过直接确定得到或者间接计算的方式得到最大值,进一步地提升确定频域波束数量最大值的灵活性。
在本申请的一种可选实施方式中,经过量化处理后所得到的R个第二频域波束集合中频域波束数量小于或等于R个第二频域波束集合中的频域波束总数量的最大值。或者,经过量化处理后所得到的第二频域波束集合中频域波束数量小于或等于所对应的第二频域波束集合中的频域波束数量的最大值。
在该实施方式中,经过量化并且进行联合选择后的频域波束数量减少,即降低CSI中所包括的频域波束数量,由此降低终端设备上报CSI的开销,从而降低网络设备获取CSI中信道信息的开销。
在本申请的一种可选实施方式中,网络设备发送信道测量配置信息,该信道测量配置信息用于确定R个第二加权系数集合中的加权系数总数量的最大值,或,网络设备发送信道测量配置信息,该信道测量配置信息用于确定每个第二加权系数集合中的加权系数数量的最大值,一个第二加权系数集合对应一个第二加权系数集合中的加权系数数量的最大值。
在该实施方式中,网络设备发送的信道测量配置信息还可以确定加权系数数量的最大值的方式,使得终端设备可以通过不同最大值的确定方式,提升本方案的灵活性,以及,联合确定R个第二加权系数集合中的加权系数数量,从而提升本方案的可行性。
在本申请的一种可选实施方式中,信道测量配置信息包括第一加权系数数值,该第一加权系数数值用于得到R个第二加权系数集合中的加权系数总数量的最大值,第一加权系数数值可以为整数或者比例系数。或者,信道测量配置信息包括第二加权系数数值,该第二加权系数数值用于得到第二加权系数集合中的加权系数数量的最大值,第二加权系数数值可以为整数或者比例加权系数。
在该实施方式中,信道测量配置信息可以包括第一加权系数数值或第二加权系数数值,确定不通过情况下加权系数数量最大值,由此提升本方案的灵活性,其次,还可以通过直 接确定得到或者间接计算的方式得到最大值,进一步地提升确定加权系数数量最大值的灵活性。
在本申请的一种可选实施方式中,经过量化处理后所得到的R个第二加权系数集合中加权系数总数量小于或等于R个第二加权系数集合中的加权系数数量的最大值。或者,经过量化处理后所得到的第二加权系数集合中加权系数数量小于或等于所对应的第二加权系数集合中的加权系数数量的最大值。
在该实施方式中,经过量化并且进行联合选择后的加权系数数量减少,即降低CSI中所包括的加权系数数量,由此降低终端设备上报CSI的开销,从而降低网络设备获取CSI中信道信息的开销。
在本申请的一种可选实施方式中,对第一加权系数集合进行量化处理可以通过两种方式,一种方式为在R个第一加权系数集合的子集中确定一个加权系数为第一基准加权系数,并且第一基准加权系数为R个第一加权系数集合的子集中幅度最大的加权系数,也就是将第一基准加权系数设置为1作为量化基准,然后对R个加权系数集合中的所有加权系数与第一基准加权系数的相对幅度与相对相位进行量化处理,以得到R个第二加权系数集合。其次,另一种方式为在R个第一加权系数集合的子集中确定R个第二基准加权系数,且一个第一加权系数集合的子集对应一个第二基准加权系数,第二基准加权系数为所对应的第一加权系数集合的子集中幅度最大的加权系数,也就是将第二基准加权系数设置为1作为量化基准,然后在R个第二基准加权系数中确定一个第二基准加权系数为第三基准加权系数,再对R个加权系数集合与所对应的第二基准加权系数的相对幅度与相对相位进行量化处理,且对R个第二基准加权系数与第三基准加权系数的相对幅度与相对相位进行量化处理,得到R个第二加权系数集合。
在该实施方式中,通过不同的方式计算不同网络设备信道信息中小尺度信息的相对关系,提升所得到第二加权系数集合的准确度,从而能够使得对应网络设备获取到第二加权系数集合后,准确得到信道信息,从而降低性能损失。
在本申请的一种可选实施方式中,第三基准加权系数可以为R个第二基准加权系数中幅度最大值,或,R个第二基准加权系数中幅度最小值,或,终端设备初始接入的网络设备对应的第二基准加权系数为第三基准加权系数,或,终端设备初始接入小区对应的第二基准加权系数为第三基准加权系数,或,任一网络设备对应的第二基准加权系数为第三基准加权系数,或,标识最小的网络设备的加权系数集合对应的第二基准加权系数为第三基准加权系数,标识最大的网络设备的加权系数集合对应的第二基准加权系数为第三基准加权系数。
在该实施方式中,通过不同的方式确定第三基准加权系数,可以进一步地提升本方案的灵活性。
在本申请的一种可选实施方式中在本申请的一种可选实施方式中,对第二信息进行量化处理可以通过两种方式,为保证多个信道信息之间的能量的相对值,一种方式为从R个第二信息中确定一个第二信息作为基准信息,也就是将基准信息设置为1作为量化基准,然后对R个第二信息与基准信息的相对值进行量化处理,以得到R个进行量化处理后的第二信息。其次,为了提升所反馈下行的大尺度信息的准确度,并且提升性能,另一种方式 为从R个第二信息中确定一个第二信息作为基准信息,也就是将基准信息设置为1作为量化基准,然后对R个第二信息与基准信息的相对值进行量化处理,且对基准信息的绝对值进行量化处理,以得到R个进行量化处理后的第二信息。
在该实施方式中,通过不同的方式计算不同网络设备信道信息中大尺度信息的相对关系,提升进行量化处理后的第二信息的准确度,从而能够使得对应网络设备获取到进行量化处理后的第二信息后,准确得到信道信息,从而降低性能损失。
在本申请的一种可选实施方式中,基准信息可以为R个第二信息中最大值,或,R个第二基准加权系数中幅度最小值,或,终端设备初始接入小区对应的第二基准加权系数为第三基准加权系数,或,任一网络设备对应的第二基准加权系数为第三基准加权系数,或,初始接入的网络设备的第二信息为基准信息,或,或,标识最小的网络设备的加权系数集合对应的第二基准加权系数为第三基准加权系数,标识最大的网络设备的加权系数集合对应的第二信息为基准信息。
在该实施方式中,通过不同的方式确定基准信息,可以进一步地提升本方案的灵活性。
在本申请的一种可选实施方式中,CSI包括R个进行量化处理后的第一信息,因此网络设备可以对上行探测参考信号SRS进行测量,获取上行大尺度信息,然后根据R个进行量化处理后的第一信息以及上行大尺度信息,获取目标信道信息。
在该实施方式中,将所获取的上行大尺度信息等效为量化处理后的第二信息,由此获取对应的信道信息,提升信道信息获取的准确度。
在本申请的一种可选实施方式中,归一化处理的方法包括归一化处理的方法包括以下至少一项:列归一,行归一和整体归一。
在该实施方式中,可以根据实际情况采用不同的归一化处理的方法,进一步提升本方案的灵活性。
在本申请的一种可选实施方式中,归一化处理的方法可以为预定义的,例如,预定义的归一化处理的方法为整体归一,那么终端设备对信道信息进行归一化处理时采用整体归一,而网络设备在恢复信道信息时也采用整体归一的方法。或者,归一化处理的方法还可以通过信令确定,并且信令为RRC信令或者MAC CE信令。
第三方面,提供了一种通信装置。该通信装置具有实现上述第一方面以及第一方面中任一种可能实现方式中所述的终端设备的部分或全部功能。比如,装置的功能可具备本申请中终端设备的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该通信装置的结构中可包括处理模块和收发模块,所述处理模块被配置为支持通信装置执行上述方法中相应的功能。所述收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与处理模块和通信模块耦合,其保存通信装置必要的程序指令和数据。
一种实施方式中,所述通信装置包括:
处理模块,用于获取R个信道信息,其中,所述信道信息包括大尺度信息与小尺度信息,所述R为大于或等于1的整数;
所述处理模块,还用于对所述R个信道信息进行归一化处理,得到R个第一信息与R个第二信息,其中,所述第一信息为进行归一化处理后的小尺度信息,所述第二信息为进行归一化处理后的大尺度信息;
收发模块,用于发送信道状态信息CSI,其中,所述CSI包括R个进行量化处理后的第一信息,或,R个进行量化处理后的第一信息与R个进行量化处理后的第二信息。
该实施方式的相关内容可参见上述第一方面的相关内容,此处不再详述。
作为示例,处理模块可以为处理器或者处理单元,收发模块可以为收发器,通信接口或通信单元,存储模块可以为存储器或存储单元。
另一种实施方式中,所述通信装置,可包括:
处理器,用于获取R个信道信息,其中,所述信道信息包括大尺度信息与小尺度信息,所述R为大于或等于1的整数;
所述处理器,还用于对所述R个信道信息进行归一化处理,得到R个第一信息与R个第二信息,其中,所述第一信息为进行归一化处理后的小尺度信息,所述第二信息为进行归一化处理后的大尺度信息;
收发器,用于发送信道状态信息CSI,其中,所述CSI包括R个进行量化处理后的第一信息,或,R个进行量化处理后的第一信息与R个进行量化处理后的第二信息。
该实施方式的相关内容可参见上述第一方面的相关内容,此处不再详述。
在实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器。其中,模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多。例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(System on Chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的需要。本申请实施例对上述器件的实现形式不做限定。
第四方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息,所述信息包括指令和数据中的至少一项。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片或芯片系统。当该通信装置为配置于终端设备中的芯片或芯片系统时,所述通信接口可以是输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
第五方面,提供了一种通信装置。该通信装置具有实现上述第二方面以及第二方面中任一种可能实现方式中所述的网络设备的部分或全部功能。比如,装置的功能可具备本申请中网络设备的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该通信装置的结构中可包括处理模块和收发模块,所述处理模块被配置为支持通信装置执行上述方法中相应的功能。所述收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与处理模块和通信模块耦合,其保存通信装置必要的程序指令和数据。
一种实施方式中,所述通信装置包括:
收发模块,用于接收信道状态信息CSI,其中,所述CSI包括R个进行量化处理后的第一信息,或,R个进行量化处理后的第一信息与R个进行量化处理后的第二信息,所述第一信息为进行归一化处理后的小尺度信息,所述第二信息为进行归一化处理后的大尺度信息,所述小尺度信息以及所述大尺度信息属于信道信息,所述R为大于或等于1的整数;
处理模块,用于所述网络设备根据所述CSI获取目标信道信息,其中,所述目标信道信息包括所述网络设备对应的小尺度信息以及所述网络设备对应的大尺度信息。
该实施方式的相关内容可参见上述第二方面的相关内容,此处不再详述。
作为示例,处理模块可以为处理器或者处理单元,收发模块可以为收发器,通信接口或通信单元,存储模块可以为存储器或存储单元。
另一种实施方式中,所述通信装置,可包括:
收发器,用于接收信道状态信息CSI,其中,所述CSI包括R个进行量化处理后的第一信息,或,R个进行量化处理后的第一信息与R个进行量化处理后的第二信息,所述第一信息为进行归一化处理后的小尺度信息,所述第二信息为进行归一化处理后的大尺度信息,所述小尺度信息以及所述大尺度信息属于信道信息,所述R为大于或等于1的整数;
处理器,用于所述网络设备根据所述CSI获取目标信道信息,其中,所述目标信道信息包括所述网络设备对应的小尺度信息以及所述网络设备对应的大尺度信息。
该实施方式的相关内容可参见上述第二方面的相关内容,此处不再详述。
第六方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息,所述信息包括指令和数据中的至少一项。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片或芯片系统。当该通信装置为配置于网络设备中的芯片或芯片系统时,所述通信接口可以是输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻 辑电路。
第七方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行上述第一方面和第二方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第八方面,提供了一种通信装置,包括通信接口和处理器。所述通信接口与所述处理器耦合。所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。所述处理器用于执行计算机程序,以使得所述通信装置执行第一方面和第二方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
第九方面,提供了一种通信装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以使得所述装置执行第一方面和第二方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的信息交互过程,例如发送指示信息可以为从处理器输出指示信息的过程,接收指示信息可以为向处理器输入接收到的指示信息的过程。具体地,处理输出的信息可以输出给发射器,处理器接收的输入信息可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第八方面和第九方面中的通信装置可以是芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面和第二方面中任一种可能实现方式中的方法。
第十一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面和第二方面中任一种可能实现方式中的方法。
第十二方面,提供了一种通信系统,包括前述的终端设备和网络设备。
第十三方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,所述接口用于获取程序或指令,所述处理器用于调用所述程序或指令以实现或者支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。
在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十四面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,所述接口用于获取程序或指令,所述处理器用于调用所述程序或指令以实现或者支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。
在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
需要说明的是,本申请第三方面至第十二方面的实施方式所带来的有益效果可以参照第一方面与第二方面的实施方式进行理解,因此没有重复赘述。
附图说明
图1为本申请实施例中系统框架的一个示意图;
图2为本申请实施例中基于相干协作传输进行多站协作的一个示意图;
图3为本申请实施例中信息传输的方法一个实施例的示意图;
图4为本申请实施例中信息传输的方法另一实施例的示意图;
图5为本申请实施例中信息传输的方法另一实施例的示意图;
图6为本申请实施例中信息传输的方法另一实施例的示意图;
图7为本申请实施例中通信装置的一种实施例示意图;
图8为本申请实施例中通信装置的另一实施例示意图;
图9为本申请实施例中通信装置的示意性框图;
图10是本申请实施例提供的终端设备的结构示意图;
图11是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)。随着通信系统的不断发展,本申请的技术方案可应用于第五代(5th generation,5G)系统或新无线(new radio,NR),还可应用于未来网络,如6G系统甚至未来系统;或者还可用于设备到设备(device to device,D2D)系统,机器到机器(machine to machine,M2M)系统等等。
应理解,该通信系统中的网络设备可以是任意一种具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网 络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU),无线保真(Wireless Fidelity,WIFI)系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(TRP)等,还可以为5G、6G甚至未来系统中使用的设备,如NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU),或微微基站(Picocell),或毫微微基站(Femtocell),或,车联网(vehicle to everything,V2X)或者智能驾驶场景中的路侧单元(road side unit,RSU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC)层,分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理层(physical layer,PHY)的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
本申请公开的实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。
还应理解,该通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、前述的V2X车联网中的无线终端或无线终端类型的RSU等等。本申请的实施例对应用场景不做限定。
此外,为了便于理解本申请实施例,作出以下几点说明。
第一,在本申请中,为便于描述,在涉及编号时,可以从0开始连续编号。例如,某一时隙中的第0个符号,可以是指该时隙的首个符号。当然,具体实现时不限于此。例如,也可以从1开始连续编号。例如,某一时隙中的第1个符号,也可以是指该时隙的首个符号。由于编号的起始值不同,同一个符号在时隙中所对应的编号也不同。
应理解,上文所述均为便于描述本申请实施例提供的技术方案而进行的设置,而并非 用于限制本申请的范围。
第二,在下文示出的实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”描述的技术特征间无先后顺序或者大小顺序。
第三,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或,b,或,c,或,a和b,或,a和c,或,b和c,或,a、b和c。其中a、b和c分别可以是单个,也可以是多个。
第四,在下文示出的实施例中,部分场景以无线通信网络中NR网络的场景为例进行说明,应当指出的是,本申请公开的实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
第五,本申请公开的实施例将围绕包括多个设备、组件、模块等的系统来呈现本申请的各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
第六,本申请公开的实施例中,“的(of)”,“相应的(relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
为了更好地理解本申请实施例公开的一种信息传输的方法、装置以及设备,首先,对本申请实施例所使用的通信系统的系统架构进行描述。本申请可以用于一个基站(Base station)和多个UE组成一个通信系统,也可以用于多个Base station和多个UE组成一个通信系统,基于此,图1为本申请实施例中系统框架的一个示意图,如图1所示,在图1中(A)图中,基站Base station与UE1到UE6组成一个通信系统,其中基站可以包含一个或多个面板(panel),而在该通信系统中,UE1到UE6向基站发送上行数据,基站则需要接收UE1到UE6发送的上行数据。此外,UE4到UE6也可以组成一个通信系统,因此,在该通信系统中,基站可以向UE1、UE2以及UE5发送下行数据,基站则需要接收UE1、UE2以及UE5发送的上行数据,而在UE4到UE6组成的通信系统中,UE5向UE4以及UE6发送下行数据,并且UE5需要接收UE4以及UE6发送的上行信息。其次,在图1中(B)图中,Base station 1至Base station 3与UE1到UE3也可以组成一个通信系统,并且Base station 1至Base station 3同时服务UE2。
通过图1中(B)图可知,本申请可以采用多站协作的方式来为一个用户服务,例如相干协作传输(Coherent joint transmission,CJT)即为其中的一种传输方式。基于此,图2为本申请实施例中基于相干协作传输进行多站协作的一个示意图,如图所示,TRP是为UE提供服务的基站,而网络设备1、网络设备2以及网络设备3同时为UE服务,且传输的数据采用同一个解调参考信号(Demodulation Reference Signal,DMRS)端口,然后 网络设备1向UE传输信道信息1(H1),网络设备2向UE传输信道信息2(H2)以及网络设备3向UE传输信道信息3(H3),而在相干协作传输的方式中,UE会将网络设备1、网络设备2以及网络设备3等效看做一个由网络设备1、网络设备2以及网络设备3共同组成的Base station,因此UE会将H1到H3看做一个基站所传输的信道信息。本实施例中所介绍的网络设备还可以为部署于网络设备的多个天线面板(panel)。
进一步地,在采用多输入多输出(Multi-Input Multi-Output,MIMO)技术时,即基站向UE发送数据时,需要进行调制编码及信号预编码。而向UE如何发送数据,需要依靠UE向基站反馈的CSI。在时分双工(Time Division Dual,TDD)系统中,由于上行信道和下行信道使用相同的带宽,因此上行信道和下行信道具有互易性,基站可以利用上行信道和下行信道的互易性,通过上行信道获取下行信道的CSI,进而进行信号预编码。而在频分复用(Frequency Division Duplex,FDD)系统中,由于上下行频带的间隔远大于相干带宽,因此上下行信道不具有完整的互易性,基站无法直接利用上行信道信息来做准确的下行预编码,因此在FDD系统中,基站需要依靠UE向基站反馈的CSI。由于每个TRP之间存在相位差,因此每个TRP与UE之间的稀疏度也不相同,并且终端向反馈TRP的CSI的重要性也不相同,UE对不同的TRP反馈相同的空域波束数量,频域波束数量以及加权系数数量,会增加性能损失。
为了解决上述问题,本申请实施例提供了一种信息传输的方法,用于对不同网络设备反馈不同的大尺度信息以及小尺度信息,从而降低性能损失。
下面先以终端设备为执行主体对本申请实施例使用的信息传输的方法进行详细描述,请参阅图3,图3为本申请实施例中信息传输的方法一个实施例的示意图,信息传输的方法包括如下步骤。
S101、终端设备获取R个信道信息,其中,信道信息包括大尺度信息与小尺度信息,R为大于或等于1的整数。
本实施例中,终端设备可以接收到R个网络设备分别对应的CSI-RS,然后对R个网络设备分别对应的CSI-RS进行测量,获取到R个与网络设备对应的信道信息,并且每个信道信息包括大尺度信息与小尺度信息,其中R为大于或等于1的整数。具体地,信道信息为至少一个频域单元上的信息。该频域单元可以为至少一个RE,至少一个RB或至少一个子带。
示例性地,基于图2所介绍的基于相干协作传输进行多站协作的方式进行介绍,即存在3个网络设备对终端设备进行服务,因此终端设备可以获取到3个网络设备分别对应的CSI-RS,并且对3个网络设备分别对应的CSI-RS进行测量,得到与3个网络设备对应的信道信息,由于每个信道信息包括大尺度信息与小尺度信息,若3个网络设备为网络设备1,网络设备2以及网络设备3,那么可以得到包括网络设备1对应的包括大尺度信息1以及小尺度信息1的信道信息1(H1),网络设备2对应的包括大尺度信息2以及小尺度信息2的信道信息2(H2),以及网络设备3对应的包括大尺度信息3以及小尺度信息3的信道信息3(H3),应理解,前述示例仅用于理解本申请实施例,具体R的数值应根据对终端设备提供服务的网络设备的情况灵活确定。
S102、终端设备对R个信道信息进行归一化处理,得到R个第一信息与R个第二信息, 其中,第一信息为进行归一化处理后的小尺度信息,第二信息为进行归一化处理后的大尺度信息。
本实施例中,终端设备对步骤S101所获取到的R个信道信息进行归一化处理,得到R个与信道信息一一对应的第一信息,以及R个与信道信息一一对应的第二信息,并且第一信息为进行归一化处理后的小尺度信息,第二信息为进行归一化处理后的大尺度信息。
具体地,公式(1)可以描述信道信息与第一信息以及第二信息的关系:
Figure PCTCN2020122580-appb-000001
其中,H i指示网络设备i对应的信道信息,α i指示与H i对应的第二信息,
Figure PCTCN2020122580-appb-000002
指示与H i对应的第一信息。
示例性地,以3个网络设备对终端设备进行服务作为示例进行介绍,3个网络设备分别为网络设备1,网络设备2以及网络设备3,终端设备可以获取到网络设备1对应的信道信息1,网络设备2对应的信道信息2以及网络设备3对应的信道信息3,因此对H1,H2以及H3进行归一化处理后,可以得到3个第一信息以及3个第二信息,由于信道信息与第一信息一一对应,信道信息与第二信息一一对应,基于公式(1)可以得到如下等式:
Figure PCTCN2020122580-appb-000003
或者,如下等式:
Figure PCTCN2020122580-appb-000004
前述两个等式中,H 1指示网络设备1对应的信道信息1,H 2指示网络设备2对应的信道信息2,H 3指示网络设备3对应的信道信息3,α 1指示与H 1对应的第二信息,
Figure PCTCN2020122580-appb-000005
指示与H 1对应的第二信息,α 2指示与H 2对应的第二信息,
Figure PCTCN2020122580-appb-000006
指示与H 2对应的第一信息,α 3指示与H 3对应的第一信息,
Figure PCTCN2020122580-appb-000007
指示与H 3对应的第一信息。
具体地,第一信息可以包括第一空域波束集合,第一频域波束集合与第一加权系数集合。
具体地,对信道信息进行归一化处理的方法包括但不限于列归一,行归一或者整体归一,其中,列归一表示信道的每一列的总能量为P,行归一表示信道的每一行的总能量为P,而整体归一表示信道的总能量为P。总能量P值可以取值为1,也可以为其他的任意值,例如P取值为发送天线数,或发送端口数,或接收天线数,或接收端口数,或发送天线数与接收天线数的乘积,或发送端口数与接收端口数的乘积等。
可选地,由于终端设备与网络设备需要采用相同的归一化处理方法,从而使得网络设备可以恢复出准确度较高的信道信息,因此,归一化处理的方法可以为预定义的,例如,预定义的归一化处理的方法为整体归一,那么终端设备对信道信息进行归一化处理时采用整体归一,而网络设备在恢复信道信息时也采用整体归一的方法。或者,归一化处理的方 法还可以通过信令确定,并且信令为RRC信令或者MAC CE信令,例如,网络设备通过RRC信令通知终端设备归一化处理的方法为列归一,那么终端设备对信道信息进行归一化处理时采用列归一,而网络设备在恢复信道信息时也采用列归一的方法。
S103、终端设备发送信道状态信息CSI,其中,CSI包括R个进行量化处理后的第一信息,或,R个进行量化处理后的第一信息与R个进行量化处理后的第二信息。
本实施例中,终端设备再对步骤S102所得到的R个第一信息与R个第二信息进行量化处理,由此可以得到R个进行量化处理后的第一信息与R个进行量化处理后的第二信息,并向R个网络设备发送CSI,此时CSI中可以包括R个进行量化处理后的第一信息,或者包括R个进行量化处理后的第一信息与R个进行量化处理后的第二信息。
具体地,通过前述实施例可知,第一信息包括第一空域波束集合,第一频域波束集合与第一加权系数集合,因此进行量化处理后的第一信息包括第二空域波束集合,而第二频域波束集合与第二加权系数集合,并且第二空域波束集合为第一空域波束集合的子集,第二频域波束集合为第一频域波束集合的子集,第二加权系数集合为第一加权系数集合的子集进行量化后得到的。本实施例中,对于第一空域波束集合而言,由于第一空域波束集合为码本中所有列的集合,因此第二空域波束集合包括所有列中所选择的至少一列,例如第一空域波束集合包括10列,那么第二空域波束集合即包括10列中的1列,2列,3列或者多列。对于第一频域波束集合而言,由于第一空域波束集合为码本中所有行的集合,因此第二频域波束集合包括所有列中所选择的至少一行,例如第一频域波束集合包括10行,那么第二频域波束集合即包括10行中的1行,2行,3行或者多行。对于第一加权系数集合而言,由于第一加权系数集合为码本中所有加权系数的集合,因此第二加权系数集合包括所有加权系数中所选择的至少一个加权系数的比特(bit)量化,例如第一加权系数集合包括100个加权系数,那么第二加权系数集合即可以包括100个加权系数中的2个加权系数,4个加权系数,6个加权系数或者多个加权系数。其次,第二加权系数集合还可以通过第二空域波束集合以及第二频域波束集合确定一个子矩阵,再从该子矩阵中选择至少一个加权系数,从而得到为第一加权系数集合的子集,然后再对第一加权系数集合的子集进行bit量化处理得到。具体地,本申请实施例中所描述的bit量化是对第一加权系数集合的子集中的每个加权系数用N个bit进行量化。应理解,前述示例仅用于理解本方案,不应理解为本方案的限定。
具体地,公式(2)可以描述第一信息与第一空域波束集合,第一频域波束集合与第一加权系数集合的关系:
Figure PCTCN2020122580-appb-000008
其中,
Figure PCTCN2020122580-appb-000009
指示网络设备i对应的第一信息,Si指示第一空域波束集合,Ci指示第一加权系数集合,Fi H指示第一频域波束集合。
示例性地,以3个网络设备对终端设备进行服务作为示例进行介绍,那么基于前述实施例可以得到如下等式:
Figure PCTCN2020122580-appb-000010
或,
[H 1 H 2 H 3]≈[α 1S1C1F1 H α 2S2C2F2 H α 3S3C3F3 H];
其中,H 1指示网络设备1对应的信道信息1,H 2指示网络设备2对应的信道信息2,H 3指示网络设备3对应的信道信息3,α 1指示与H 1对应的量化处理后的第二信息,α 2指示与H 2对应的量化处理后的第二信息,α 3指示与H 3对应的量化处理后的第二信息,S1指示与H 1对应的第二空域波束集合,C1指示与H 1对应的第二加权系数集合,F1 H指示与H 1对应的第二频域波束集合,S2指示与H 1对应的第二空域波束集合,C2指示与H 2对应的第二加权系数集合,F2 H指示与H 2对应的第二频域波束集合,S3指示与H 3对应的第二空域波束集合,C3指示与H 3对应的第二加权系数集合,F3 H指示与H 3对应的第二频域波束集合。
进一步地,3个第二空域波束集合,3个第二频域波束集合与3个第二加权系数集合还可以为如下等式:
Figure PCTCN2020122580-appb-000011
或者,还可以为如下等式:
Figure PCTCN2020122580-appb-000012
其中,α 1指示与信道信息1对应的量化处理后的第二信息,α 2指示与信道信息2对应的量化处理后的第二信息,α 3指示与信道信息3对应的量化处理后的第二信息,S1指示与信道信息1对应的第二空域波束集合,C1指示与信道信息1对应的第二加权系数集合,F1 H指示与信道信息1对应的第二频域波束集合,S2指示与信道信息2对应的第二空域波束集合,C2指示与信道信息2对应的第二加权系数集合,F2 H指示与信道信息2对应的第二频域波束集合,S3指示与信道信息3对应的第二空域波束集合,C3指示与信道信息3对应的第二加权系数集合,F3 H指示与信道信息3对应的第二频域波束集合。
由于向终端设备联合反馈至少一个进行量化处理后的第一信息,其中的第二加权系数集合可以解决不同的网络设备间信道相位对齐的问题。
上面主要以终端设备为执行主体对本申请实施例中使用的信息传输的方法进行了介绍,下面将以网络设备为执行主体对本申请实施例使用的信息传输的方法进行详细描述,请参阅图4,图4为本申请实施例中信息传输的方法另一实施例的示意图,信息传输的方法包括如下步骤。
S201、网络设备接收信道状态信息CSI,其中,CSI包括R个进行量化处理后的第一信息,或,R个进行量化处理后的第一信息与R个进行量化处理后的第二信息,第一信息为进行归一化处理后的小尺度信息,第二信息为进行归一化处理后的大尺度信息,小尺度信息以及大尺度信息属于信道信息,R为大于或等于1的整数。
本实施例中,对终端设备提供服务的每个网络设备均可以接收到终端设备发送的CSI,且该CSI中包括R个进行量化处理后的第一信息,或者,该CSI中包括R个进行量化处理 后的第一信息与R个进行量化处理后的第二信息。具体获取量化处理后的第一信息与进行量化处理后的第二信息,以及获取第一信息以及第二信息方式与前述实施例类似,在此不再赘述。
S202、网络设备根据CSI获取目标信道信息,其中,目标信道信息包括网络设备对应的小尺度信息以及网络设备对应的大尺度信息。
本实施例中,若CSI包括R个进行量化处理后的第一信息与R个进行量化处理后的第二信息,那么网络设备根据该CSI进行量化处理以及归一化处理,获取网络设备对应的小尺度信息以及网络设备对应的大尺度信息。其次,若CSI仅包括R个进行量化处理后的第一信息,那么网络设备还需要对上行探测参考信号(Sounding Reference Signal,SRS)进行测量,得到上行大尺度信息,然后根据R个进行量化处理后的第一信息以及上行大尺度信息,获取网络设备目标信道信息,该目标信道信息可以包括网络设备对应的小尺度信息以及网络设备对应的大尺度信息,包括网络设备对应的小尺度信息,通过其他参考信号,例如SRS获得网络设备对应的大尺度信息。具体地,网络设备获取第二加权系数集合之后,可以通过bitmap(比特位图)确定非零加权系数的位置,然后得到第二空域波束集合以及第二频域波束集合确定的子矩阵进行量化后的结果。
具体地,网络设备根据终端设备反馈的CSI确定信道信息从而确定给终端设备传输数据的预编码和传输流数,网络设备可以根据终端设备反馈的信道质量确定(Channel Quality Indication,CQI)确定给终端设备传输数据的调制阶数,及信道编码的码率,从而网络设备可以根据流数,调制阶数,码率以及预编码向终端设备发送数据。
通过前述实施例可知,终端设备可以所发送的CSI可以包括R个进行量化处理后的第一信息与R个进行量化处理后的第二信息,或者,包括R个进行量化处理后的第一信息。下面以2个网络设备对终端设备进行服务作为示例,分别对CSI包括不同信息的情况进行介绍。
一、CSI包括R个进行量化处理后的第一信息。
请参阅图5,图5为本申请实施例中信息传输的方法另一实施例的示意图,信息传输的方法具体包括如下步骤。
S301、终端设备接收2个网络设备发送的信道测量配置信息。
本实施例中,终端设备接收2个网络设备发送的信道测量配置信息,即接收网络设备A发送的信道测量配置信息1,以及网络设备B发送的信道测量配置信息2。为了降低终端设备的上报CSI的开销量,因此可以控制CSI上报开销,即信道配置信息中可以对空域波束数量,频域波束数量以及加权系数数量进行确定,下面分别进行介绍。
一、空域波束数量
网络设备发送的信道配置信息可以用于确定2个第二空域波束集合中的空域波束总数量的最大值。具体地,信道测量配置信息包括第一空域波束数值,该第一空域波束数值用于得到2个第二空域波束集合中的空域波束总数量的最大值,第一空域波束数值可以为整数或者比例系数,应理解,在实际应用中,整数可以直接确定2个第二空域波束集合中的空域波束总数量的最大值,例如第一空域波束数值为12,那么说明2个第二空域波束集合中所包括的空域波束的总数量的最大值为12。其次,整数还可以确定2个第二空域波束集 合中的空域波束数量的平均值,例如第一空域波束数值为12,那么2个第二空域波束集合中的空域波束总数量的最大值为24。其中,第一空域波束数值为整数时,是直接确定2个第二空域波束集合中的空域波束总数量的最大值,还是确定每个第二空域波束集合中的空域波束数量的平均值,可以是预定义的,或者,通过信令确定,并且信令为RRC信令或者MAC CE信令。
其次,在第一空域波束数值为比例系数的情况下,比例系数也可以直接确定2个第二空域波束集合中的空域波束总数量的最大值,例如第二空域波束数值为2/5,那么说明2个第二空域波束集合中所包括的空域波束的总数量的最大值,为第一空域波束集合中所包括的空域波束的总数量的2/5,即40%。其次,比例系数还可以确定2个第二空域波束集合中的空域波束数量的平均值,例如第一空域波束数值为1/10,那么2个第二空域波束集合中的空域波束总数量的最大值为2/10,此时2为大于或等于10的正整数。其中,第一空域波束数值为比例系数时,是直接确定2个第二空域波束集合中的空域波束总数量的最大值,还是确定每个第二空域波束集合中的空域波束数量的平均值,可以是预定义的,或者,通过信令确定,并且信令为RRC信令或者MAC CE信令。
可选的,信道配置信息还可以用于确定每个第二空域波束集合中的空域波束数量的最大值,且一个第二空域波束集合对应一个第二空域波束集合中的空域波束数量的最大值。具体地,信道测量配置信息包括第二空域波束数值,第二空域波束数值可以为整数或者比例系数,例如第二空域波束集合分别为第二空域波束集合A以及第二空域波束集合B,那么有第一空域波束集合包括第一空域波束集合A以及第一空域波束集合B,在第二空域波束数值为整数的情况下,当第二空域波束数值为8以及4,且8对应第二空域波束集合A,4对应第二空域波束集合B时,可以说明第二空域波束集合A中所包括的空域波束数量的最大值为8,而第二空域波束集合B中所包括的空域波束数量的最大值为4。在第二空域波束数值为比例系数的情况下,例如第二空域波束数值为2/5以及3/5,且2/5对应第二空域波束集合A,3/5对应第二空域波束集合B时,可以说明第二空域波束集合A中所包括的空域波束数量的最大值为第一空域波束集合A中的2/5,即40%,而第二空域波束集合B中所包括的空域波束数量的最大值为第一空域波束集合B中空域波束数量的3/5,即60%。
具体地,信道配置信息可以用于确定第二空域波束集合中的空域波束数量的最大值,此时限制的为一个极化方向的第二空域波束集合中的空域波束数量的最大值。然而,在实际应用中,若在双极化的情况下,需要限制两个极化方向的第二空域波束集合中的空域波束数量的最大值,因此所确定的一个极化方向的最大值还需要乘以2,才能用于限制双极化情况下的空域波束数量。例如,通过前述方式所得到的第二空域波束集合中的空域波束数量的最大值为12,那么双极化情况下的第二空域波束集合中的空域波束数量的最大值应为24。应理解,前述示例仅用于理解本方案,不应理解为本方案的限定。
二、频域波束数量
网络设备发送的信道配置信息可以用于确定2个第二频域波束集合中的频域波束总数量的最大值。具体地,信道测量配置信息包括第一频域波束数值,第一频域波束数值可以为整数或者比例系数,应理解,在实际应用中,整数可以直接确定R个第二频域波束集合中的频域波束总数量的最大值,例如第一频域波束数值为20,那么说明2个第二频域波束 集合中所包括的频域波束的总数量的最大值为20。其次,整数还可以确定每个第二频域波束集合中的频域波束数量的平均值,例如第一频域波束数值为20,那么R个第二频域波束集合中的频域波束总数量的最大值为20*R。其中,第一频域波束数值为整数时,是直接确定R个第二频域波束集合中的频域波束总数量的最大值,还是确定每个第二频域波束集合中的频域波束数量的平均值,可以是预定义的,或者,通过信令确定,并且信令为RRC信令或者MAC CE信令。其次,在第一频域波束数值为比例系数的情况下,比例系数也可以直接确定R个第二频域波束集合中的频域波束总数量的最大值,例如第二频域波束数值为1/4,那么说明R个第二频域波束集合中所包括的频域波束的总数量的最大值,为第一频域波束集合中所包括的频域波束的总数量的1/4,即25%。其次,比例系数还可以确定R个第二频域波束集合中的频域波束数量的平均值,例如第一频域波束数值为1/20,那么R个第二频域波束集合中的频域波束总数量的最大值为R/20,此时R为大于或等于20的正整数。其中,第一频域波束数值为比例系数时,是直接确定R个第二频域波束集合中的频域波束总数量的最大值,还是确定每个第二频域波束集合中的频域波束数量的平均值,可以是预定义的,或者,通过信令确定,并且信令为RRC信令或者MAC CE信令。
其次,信道配置信息还可以用于确定每个第二频域波束集合中的频域波束数量的最大值,且一个第二频域波束集合对应一个第二频域波束集合中的频域波束数量的最大值。具体地,信道测量配置信息包括第二频域波束数值,第二频域波束数值可以为整数或者比例系数,例如第二频域波束集合分别为第二频域波束集合A以及第二频域波束集合B,那么有第一频域波束集合包括第一频域波束集合A以及第一频域波束集合B,在第二频域波束数值为整数的情况下,当第二频域波束数值为15以及5,且15对应第二频域波束集合A,5对应第二频域波束集合B时,可以说明第二频域波束集合A中所包括的频域波束数量的最大值为15,而第二频域波束集合B中所包括的频域波束数量的最大值为5。在第二频域波束数值为比例系数的情况下,例如第二频域波束数值为3/4以及1/4,且3/4对应第二频域波束集合A,1/4对应第二频域波束集合B时,可以说明第二频域波束集合A中所包括的频域波束数量的最大值为第一频域波束集合A中频域波束数量的3/4,即75%,而第二频域波束集合B中所包括的频域波束数量的最大值为第一频域波束集合B中频域波束数量的1/4,即25%。
应理解,在实际应用中,信道测量配置信息还可以包括bitmap,并且通过bitmap大小限制空域波束数量以及频域波束数量。具体地,信道配置信息包括第一bitmap,通过第一bitmap可以计算得到2个第二空域波束集合中的空域波束总数量的最大值,以及2个第二频域波束集合中的频域波束总数量的最大值,例如第一bitmap为64,那么2个第二空域波束集合中的空域波束总数量的最大值,与2个第二频域波束集合中的频域波束总数量的最大值之间的乘积的最大值为64。或者,第一bitmap还可以确定每个第二空域波束集合中空域波束数量与第二频域波束集合中的频域波束数量的乘积之和的最大值,
具体地,公式(3)可以第一bitmap与第二空域波束集合中空域波束数量与第二频域波束集合中的频域波束数量之间的关系:
iM iL i≤X;(3)
其中,M i指示第二频域波束集合中的频域波束数量,L i指示第二空域波束集合中的空 域波束数量,X指示第一bitmap。
其次,信道配置信息还可以包括第二bitmap,通过第二bitmap可以限制每个第二空域波束集合中的空域波束数量的最大值,以及每个第二频域波束集合中的频域波束数量的最大值,具体对应关系与前述实施例类似,在此不再赘述。例如第二空域波束集合分别为第二空域波束集合A以及第二空域波束集合B,而第二频域波束集合分别为第二频域波束集合A以及第二频域波束集合B,当第二bitmap为16以及4,且16对应第二空域波束集合A与第二频域波束集合A,4对应第二空域波束集合B与第二频域波束集合B时,那么第二空域波束集合A中的空域波束数量值与第二频域波束集合A中的频域波束数量值之间的乘积小于等于16,当第二空域波束集合A中的空域波束数量为4时,那么第二频域波束集合A中的频域波束数量的取值范围为[1,4],其次,第二空域波束集合B中的空域波束数量值与第二频域波束集合B中的频域波束数量值之间的乘积小于等于4,当第二空域波束集合B中的空域波束数量值为2时,那么第二频域波束集合B中的频域波束数量值的取值范围为[1,2]。
可选地,还可以通过表格限制第二空域波束集合中空域波束数量,以及第二频域波束集合中频域波束数量。该表格是预定义的。例如,通过表1指示每个基站对应的空域波束数量与频域波束数量组合。
表1
参数索引 空域波束数量 频域波束数量
Index1 L1 M1
Index2 L2 M2
其中,Index1指示基站对应的第一种空域波束数量与频域波束数量组合,在单极化的情况下,Index1对应的第二空域波束集合中空域波束数量为L1,第二频域波束集合中频域波束数量为M1,而在双极化的情况下,Index1对应的第二空域波束集合中空域波束数量为2L1,第二频域波束集合中频域波束数量为M1,Index2指示基站对应的第二种空域波束数量与频域波束数量组合,同理,在单极化的情况下,Index2对应的第二空域波束集合中空域波束数量为L2,第二频域波束集合中频域波束数量为M2,而在双极化的情况下,Index2对应的第二空域波束集合中空域波束数量为2L2,第二频域波束集合中频域波束数量为M2。
因此,信道测量配置信息可以包括参数索引,通过参数索引可以确定所限制的波束数量。例如,信道测量配置信息包括的参数索引为Index1,且处于双极化的情况下,可以确定所限制的第二空域波束集合中空域波束数量为2L1,第二频域波束集合中频域波束数量为M1。
可选地,还可以通过在表格中限制bitmap数量,从而第二空域波束集合中空域波束数量,以及第二频域波束集合中频域波束数量。例如,通过表2指示基站的bitmap数量,具体bitmap数量的指示方式在前述实施例中已介绍,在此不再赘述。
表2
参数索引 bitmap数量
Index1 X1
Index2 X2
其中,Index1指示基站对应的第一种bitmap数量,Index1对应的第一bitmap和/或第二bitmap为X1,Index2指示基站对应的第二种bitmap数量,Index2对应的第一bitmap和/或第二bitmap为X2。
因此,信道测量配置信息可以包括参数索引,通过参数索引可以确定所限制的波束数量。例如,信道测量配置信息包括的参数索引为Index2,那么可以确定所限制的bitmap数量为X2,通过前述实施例的类似方式可以确定所限制的第二空域波束集合中空域波束数量,以及第二频域波束集合中频域波束数量,在此不做赘述。
应理解,在实际应用中,还可以为其他的限制方式,具体限制的方式不应理解为本申请的限定。
三、系数数量
网络设备发送的信道配置信息可以用于确定2个第二加权系数集合中的加权系数总数量的最大值。具体地,信道测量配置信息包括第一加权系数数值,第一加权系数数值可以为整数或者比例系数,应理解,在实际应用中,整数可以直接确定R个第二加权系数集合中的空域波束总数量的最大值,例如第一加权系数数值为100,那么说明2个第二加权系数集合中所包括的加权系数的总数量的最大值为100。其次,整数还可以确定每个第二加权系数集合中的加权系数数量的平均值,例如第一加权系数数值为10,那么R个第二加权系数集合中的加权系数总数量的最大值为10*R。其中,第一加权系数数值为整数时,是直接确定R个第二加权系数集合中的加权系数总数量的最大值,还是确定每个第二加权系数集合中的加权系数数量的平均值,可以是预定义的,或者,通过信令确定,并且信令为RRC信令或者MAC CE信令。其次,在第一加权系数数值为比例系数的情况下,由于第二加权系数集合是从第一加权系数集合中确定了一个子矩阵,再从子矩阵中选择了部分加权系数进行bit量化的集合,因此比例系数用于确定子矩阵中进行bit量化的加权系数数量,其中,比例系数可以直接确定子矩阵中进行bit量化的加权系数数量的最大值,例如第一加权系数数值为1/2,那么说明R个第二加权系数集合中所包括的进行bit量化的加权系数的总数量的最大值,为子矩阵中所包括的加权系数的总数量的1/2,即50%。其次,比例系数还可以确子矩阵中进行bit量化的加权系数数量的平均值,例如,信道信息中包括3个第一加权系数集合,且3个第一加权系数集合分别为第一加权系数集合1,第一加权系数集合2以及第一加权系数集合3,而第一加权系数数值为1/5,那么说明3个第二加权系数集合中所包括的进行bit量化的加权系数的总数量的最大值,为3个子矩阵中所包括的加权系数的总数量的3/5,即60%。其中,第一加权系数数值为比例系数时,是直接确定R个第二加权系数集合中的加权系数总数量的最大值,还是确定每个第二加权系数集合中的加权系数数量的平均值,可以是预定义的,或者,通过信令确定,并且信令为RRC信令或者MAC CE信令。
其次,信道配置信息还可以用于确定每个第二加权系数集合中的加权系数数量的最大 值,且一个第二加权系数集合对应一个第二加权系数集合中的加权系数数量的最大值。具体地,信道测量配置信息包括第二加权系数数值,第二加权系数数值可以为整数或者比例加权系数,例如第二加权系数集合分别为第二加权系数集合A以及第二加权系数集合B,那么有第一加权系数集合包括第一加权系数集合A以及第一加权系数集合B,在第二加权系数数值为整数的情况下,当第二加权系数数值为50以及30,且50对应第二加权系数集合A,30对应第二加权系数集合B时,可以说明第二加权系数集合A中所包括的加权系数数量的最大值为50,而第二加权系数集合B中所包括的加权系数数量的最大值为30。其次,在第二加权系数数值为比例系数的情况下,当第二加权系数数值为1/5以及2/5,且1/5对应第二加权系数集合A,2/5对应第二加权系数集合B时,那么第二加权系数集合A中所包括的进行bit量化的加权系数数量的最大值,为第一加权系数集合A对应子矩阵中所包括的加权系数的总数量的1/5,而第二加权系数集合B中所包括的进行bit量化的加权系数数量的最大值,为第一加权系数集合B对应子矩阵中所包括的加权系数的总数量的2/5。
可以理解的是,前述示例仅用于理解本方案,具体空域波束数量,频域波束数量以及加权系数数量需要根据实际情况灵活确定。
S302、终端设备获取2个网络设备对应的2个信道状态信息参考信号CSI-RS。
本实施例中,2个网络设备向终端设备发送CSI-RS,由此终端设备可以获取2个网络设备对应的2个信道状态信息参考信号CSI-RS。
S303、终端设备获取2个信道信息。
本实施例中,终端设备对2个网络设备对应的2个CSI-RS进行测量,得到2个信道信息,具体信道信息以及得到信道信息的方式与步骤101类似,在此不再赘述。
S304、终端设备对2个信道信息进行归一化处理,得到2个第一信息与2个第二信息。
本实施例中,终端设备对2个信道信息进行归一化处理,得到2个第一信息与2个第二信息,具体第一信息,第二信息以及获取的方式与步骤102类似,在此不再赘述。
S305、终端设备对2个第一信息进行量化处理,得到2个进行量化处理后的第一信息。
本实施例中,通过前述实施例可知,第一信息包括第一空域波束集合,第一频域波束集合与第一加权系数集合,因此终端设备需要对2个第一信息进行量化处理,即终端设备对第一空域波束集合,第一频域波束集合与第一加权系数集合的子集进行量化处理,并得到第二空域波束集合,第二频域波束集合与第二加权系数集合。
对第一信息进行量化处理,具体为对第一信息中的第一加权系数集合的子集进行量化处理,下面由于在步骤S301中网络设备发送的信道测量配置信息对空域波束数量,频域波束数量以及加权系数数量进行确定,因此需要基于信道测量配置信息所确定的最大值,对第二空域波束集合中的空域波束数量,第二频域域波束集合中的频域波束数量以及第二加权系数集合子集中加权系数数量进行联合确定。下面分别进行介绍。
一、空域波束数量
若信道测量配置信息用于确定2个第二空域波束集合中的空域波束总数量的最大值,那么2个第二空域波束集合中空域波束总数量小于或等于2个第二空域波束集合中的空域波束总数量的最大值。例如,信道测量配置信息所确定的2个第二空域波束集合中的空域波束总数量的最大值为12,那么2个第二空域波束集合中空域波束总数量的取值范围为[1, 12]。其次,若信道测量配置信息用于确定每个第二空域波束集合中的空域波束数量的最大值,一个第二空域波束集合对应一个第二空域波束集合中的空域波束数量的最大值,那么第二空域波束集合中空域波束数量小于或等于所对应的第二空域波束集合中的空域波束数量的最大值。例如,第二空域波束集合分别为第二空域波束集合A以及第二空域波束集合B,当第二空域波束数值为8以及4,且8对应第二空域波束集合A,4对应第二空域波束集合B,那么第二空域波束集合A中的空域波束数量的取值范围为[1,8],第二空域波束集合B中的空域波束数量的取值范围为[1,4]。
通过对2个第一空域波束集合进行联合选择,从而解决网络设备间信道的空域稀疏性不同的问题。具体地,第一空域波束集合也可以为码本,且码本形式为DFT矩阵形式,例如为DFT(TX)或者Kron(DFT(RX),DFT(TX))或者DFT(RX)。DFT(TX)为TX维度大小的离散傅里叶变换(Discrete Fourier Transform,DFT)矩阵,Kron(DFT(RX),DFT(TX))为DFT(RX)和DFT(TX)的克罗内克积,其中DFT(RX)维度大小RX大小的DFT矩阵。其中TX为发送天线数值,或者为发送端口数值,RX为接收天线数值,或者为接收端口数值。DFT(TX)主要是考虑发送端的权重,DFT(RX)主要体现了接收端的权重,Kron(DFT(RX),DFT(TX))则是考虑收发联合的权重。
二、频域波束数量
若信道测量配置信息用于确定2个第二频域波束集合中的频域波束总数量的最大值,那么2个第二频域波束集合中频域波束总数量小于或等于2个第二频域波束集合中的频域波束总数量的最大值。例如,信道测量配置信息所确定的2个第二频域波束集合中的频域波束总数量的最大值为20,那么2个第二频域波束集合中频域波束总数量的取值范围为[1,20]。其次,若信道测量配置信息用于确定每个第二频域波束集合中的频域波束数量的最大值,一个第二频域波束集合对应一个第二频域波束集合中的频域波束数量的最大值,那么第二频域波束集合中频域波束数量小于或等于所对应的第二频域波束集合中的频域波束数量的最大值。例如,第二频域波束集合分别为第二频域波束集合A以及第二频域波束集合B,当第二频域波束数值为15以及5,且15对应第二频域波束集合A,5对应第二频域波束集合B,那么第二频域波束集合A中的频域波束数量的取值范围为[1,15],第二频域波束集合B中的频域波束数量的取值范围为[1,5]。
通过对2个第一频域波束集合进行联合选择,从而解决网络设备间信道的频域稀疏性不同的问题。具体地,第一频域波束集合的码本形式为DFT(S),DFT(S)确定S维度大小的DFT矩阵。S为频域单元数值。
三、加权系数数量
若信道测量配置信息用于确定2个第二加权系数集合中的加权系数总数量的最大值,那么2个第二加权系数集合中加权系数总数量小于或等于2个第二加权系数集合中的加权系数总数量的最大值。例如,信道测量配置信息所确定的2个第二加权系数集合中的加权系数总数量的最大值为100,那么2个第二加权系数集合中加权系数总数量的取值范围为[1,100]。其次,若信道测量配置信息用于确定每个第二加权系数集合中的加权系数数量的最大值,一个第二加权系数集合对应一个第二加权系数集合中的加权系数数量的最大值,那么第二加权系数集合中加权系数数量小于或等于所对应的第二加权系数集合中的加权系 数数量的最大值。例如,第二加权系数集合分别为第二加权系数集合A以及第二加权系数集合B,当第二加权系数数值为50以及50,且50对应第二加权系数集合A,50对应第二加权系数集合B,那么第二加权系数集合A中的加权系数数量的取值范围为[1,50],第二加权系数集合B中的加权系数数量的取值范围为[1,50]。
通过对2个第一加权系数集合中子集的加权系数数量进行联合确定,从而解决不同的网络设备因大尺度信息不同或者因信道稀疏度不同,导致所需要的加权系数个数不同的问题。
可以理解的是,前述示例仅用于理解本方案,具体第二空域波束集合中的空域波束数量,第二频域波束集合中的频域波束数量,以及第二加权系数集合中的加权系数数量不应理解为本方案的限定。
具体地,对第一加权系数集合进行量化处理可以通过两种方式,一种方式为在2个第一加权系数集合的子集中确定一个加权系数为第一基准加权系数,并且第一基准加权系数为2个第一加权系数集合的子集中幅度最大的加权系数,也就是将第一基准加权系数设置为1作为量化基准,然后对2个第一加权系数集合中的所有加权系数与第一基准加权系数的相对幅度与相对相位进行量化处理,以得到2个第二加权系数集合。第二加权系数集合中可以包含第一基准加权系数,也可以不包含第一基准加权系数,当第二加权系数集合中不包含第二基准加权系数时,需要通知网络设备第一基准加权系数的位置。其次,另一种方式为在2个第一加权系数集合的子集中确定2个第二基准加权系数,且一个第一加权系数集合的子集对应一个第二基准加权系数,第二基准加权系数为所对应的第一加权系数集合的子集中幅度最大的加权系数,也就是将第二基准加权系数设置为1作为量化基准,然后在2个第二基准加权系数中确定一个第二基准加权系数为第三基准加权系数,再对2个第一加权系数集合与所对应的第二基准加权系数的相对幅度与相对相位进行量化处理,且对2个第二基准加权系数与第三基准加权系数的相对幅度与相对相位进行量化处理,得到2个第二加权系数集合。第二加权系数集合中可以包含第二基准加权系数,也可以不包含第二基准加权系数。当第二加权系数集合中不包含第二基准加权系数时,需要通知网络设备第二基准加权系数的位置。
可选地,第三基准加权系数可以为2个第二基准加权系数中最大值,或,2个第二基准加权系数中最小值,或,终端设备初始接入的网络设备对应的第二基准加权系数为第三基准加权系数,或,终端设备初始接入小区对应的第二基准加权系数为第三基准加权系数,或,任一网络设备对应的第二基准加权系数为第三基准加权系数,或,标识最小的网络设备对应的第二基准加权系数为第三基准加权系数,或,标识最大的网络设备对应的第二基准加权系数为第三基准加权系数。具体确定第三基准加权系数的方式在此不做限定。
S306、终端设备向2个网络设备发送CSI,其中,CSI包括2个进行量化处理后的第一信息。
本实施例中,终端设备向2个网络设备发送CSI的具体方式与步骤S103类似,在此不再赘述。其中,进行量化处理后的第一信息包括进行第二空域波束集合以及第二频域波束集合,而第二空域波束集合以及第二频域波束集合可以直接反馈,也可以通过参数索引反馈,例如PMI反馈。因此,当一个CSI中包括多个信道测量资源,每个信道信息需要按照 一定的顺序排列。
示例性地,若CSI测量配置中包含3个信道测量资源,且量化后的第一信息1基于第一个信道测量资源得到的,量化后的第一信息2基于第二个信道测量资源得到的,量化后的第一信息3基于第三个信道测量资源得到的,那么需要按照“量化后的第一信息1、量化后的第一信息2、量化后的第一信息3”的顺序进行排列。由于每个量化后的第一信息可以包括第二空域波束个数、第二空域波束集合、第二频域波束个数、第二频域波束集合、bitmap以及第二加权系数集合。
在一种可能性中,先将量化后的第一信息1所包括的第二空域波束个数、第二空域波束集合、第二频域波束个数、第二频域波束集合、bitmap以及第二加权系数集合上报,再将量化后的第一信息2所包括的第二空域波束个数、第二空域波束集合、第二频域波束个数、第二频域波束集合、bitmap以及第二加权系数集合上报,以此类推,按照这样的顺序反馈。
其次,在另一种可能性中,对于第二空域波束个数而言,可以以“量化后的第一信息1的第二空域波束个数、量化后的第一信息2的第二空域波束个数、量化后的第一信息3的第二空域波束个数”的顺序进行排序,那么对于第二空域波束集合而言,可以以“第一信息1的第二空域波束集合、第一信息2的第二空域波束集合、第一信息3的第二空域波束集合”的顺序进行排序,同理可知,对于第二频域波束个数而言,可以以“量化后的第一信息1的第二频域波束个数、量化后的第一信息2的第二频域波束个数、量化后的第一信息3的第二频域波束个数”的顺序进行排序,而第二频域波束集合、bitmap以及第二加权系数集合的排序方式与前述示例类似,在此不再赘述。具体地,本申请实施例中第二空域波束个数和第二频域波束个数为一个表格的索引。
可选地,若选择的第二频域波束集合大小为0或者选择的第二空域波束集合大小为0,则不上报第二加权系数集合,第二频域波束个数或者第二空域波束个数可以上报0,或者默认为0。
可选地,若选择的第二加权系数集合大小为0,则不上报第二加权系数集合,第二频域波束个数或者第二空域波束个数可以上报0,或者默认为0。
可选地,终端设备可以增加N个bit信息通知网络设备3个信道测量资源是否都存在量化反馈。例如终端设备根据测量的信道信息得到量化后的第一信息1、量化后的第一信息2和量化后的第一信息3,其中终端设备选择仅上报量化后的第一信息1、量化后的第一信息2,量化后的第一信息3不上报,则可以采用3bit通知网络设备3个量化后的第一信息是否存在。
应理解,前述示例仅用于理解本方案,不应理解为本方案的限定。
S307、网络设备获取终端设备的上行大尺度信息。
本实施例中,网络设备对上行探测参考信号(Sounding Reference Signal,SRS)进行测量,得到上行大尺度信息。
S308、网络设备根据2个进行量化处理后的第一信息以及上行大尺度信息,获取目标信道信息。
网络设备根据2个进行量化处理后的第一信息以及上行大尺度信息,获取目标信道信 息的具体方式与步骤S202类似,在此不再赘述。
二、CSI包括R个进行量化处理后的第一信息与R个进行量化处理后的第二信息。
请参阅图6,图6为本申请实施例中信息传输的方法另一实施例的示意图,信息传输的方法具体包括如下步骤。
S401、终端设备接收2个网络设备发送的信道测量配置信息。
本实施例中,终端设备接收2个网络设备发送的信道测量配置信息的具体方式与步骤S301类似,在此不再赘述。
S402、终端设备获取2个网络设备对应的2个信道状态信息参考信号CSI-RS。
本实施例中,终端设备获取2个网络设备对应的2个信道状态信息参考信号CSI-RS的具体方式与步骤S302类似,在此不再赘述。
S403、终端设备获取2个信道信息。
本实施例中,终端设备获取2个信道信息的具体方式与步骤S303类似,在此不再赘述。
S404、终端设备对2个信道信息进行归一化处理,得到2个第一信息与2个第二信息。
本实施例中,终端设备对2个信道信息进行归一化处理,得到2个第一信息与2个第二信息的具体方式与步骤S304类似,在此不再赘述。
S405、终端设备对2个第一信息进行量化处理以及2个第二信息进行量化处理,得到2个进行量化处理后的第一信息以及2个进行量化处理后的第二信息。
本实施例中,终端设备对2个第一信息进行量化处理得到2个进行量化处理后的第一信息与步骤S305类似,在此不再赘述。而对第二信息进行量化处理可以通过两种方式,为保证多个信道信息之间的能量的相对值,一种方式为终端设备从2个第二信息中确定一个第二信息作为基准信息,也就是将基准信息设置为1作为量化基准,然后对2个第二信息与基准信息的相对值进行量化处理,以得到2个进行量化处理后的第二信息。其次,为了提升所反馈下行的大尺度信息的准确度,并且提升性能,另一种方式为终端设备从2个第二信息中确定一个第二信息作为基准信息,也就是将基准信息设置为1作为量化基准,然后对2个第二信息与基准信息的相对值进行量化处理,且对基准信息的绝对值进行量化处理,以得到2个进行量化处理后的第二信息。
可选地,基准信息可以为2个第二信息中最大值,或,2个第二信息中最小值,或,终端设备初始接入的网络设备对应的的第二信息为基准信息,或,终端设备初始接入小区的第二信息为基准信息,或,任一网络设备的第二信息为基准信息,或,标识最小的网络设备对应的第二信息为基准信息,或,标识最大的网络设备对应的第二信息为基准信息。具体确定基准信息的方式在此不做限定。
S406、终端设备向2个网络设备发送CSI,其中,CSI包括2个进行量化处理后的第一信息。
本实施例中,终端设备向2个网络设备发送CSI的具体方式与步骤S306类似,在此不再赘述。此时CSI包括2个进行量化处理后的第一信息以及2个进行量化处理后的第二信息。
S407、网络设备根据2个进行量化处理后的第一信息以及2个进行量化处理后的第二信息,获取目标信道信息。
网络设备根据2个进行量化处理后的第一信息以及2个进行量化处理后的第二信息,获取目标信道信息的具体方式与步骤S202类似,在此不再赘述。
上述主要以方法的角度对本申请实施例提供的方案进行了介绍。可以理解的是,通信装置以及通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以基于上述方法示例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
下面对本申请中的通信装置进行详细描述,请参阅图7,图7为本申请实施例中通信装置的一种实施例示意图,如图所示,该通信装置700包括处理模块701以及收发模块702。
可选地,该通信装置700可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的部件(如电路、芯片或芯片系统等)。
应理解,该通信装置700可对应于根据本申请实施例的图3中的方法,或,图5中的方法,或,图6中的方法,该通信装置700可以包括用于执行图3中的方法,或,图5中的方法,或,图6中的方法中终端设备执行的方法的单元。并且,该通信装置700中的各单元和上述其他操作和/或功能分别为了实现图3中的方法,或,图5中的方法,或,图6中的方法的相应流程。
其中,当该通信装置700用于执行图3中的方法时,处理模块701可用于执行图3中的方法的步骤S101以及步骤S102,收发模块702可用于执行图3中的方法的步骤S103。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置700用于执行图5中的方法时,处理模块701可用于执行图5中的方法的步骤S301,步骤S302,步骤S303,步骤S304以及S305,收发模块702可用于执行图5中的方法的步骤S306。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置700用于执行图6中的方法时,处理模块701可用于执行图6中的方法的步骤S401,步骤S402,步骤S403,步骤S404以及S405,收发模块702可用于执行图6中的方法的步骤S406。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置700为终端设备时,该通信装置700中的收发模块702可以通过收发器实现,例如可对应于图9中示出的通信装置900中的收发器920或图10中示出的终端设备3000中的收发器3020,该通信装置700中的处理模块701可通过至少一个处理 器实现,例如可对应于图9中示出的通信装置900中的处理器910或图10中示出的终端设备3000中的处理器3010。
还应理解,该通信装置700为配置于终端设备中的芯片或芯片系统时,该通信装置700中的收发模块702可以通过输入/输出接口、电路等实现,该通信装置700中的处理模块701可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
其次,请参阅图8,图8为本申请实施例中通信装置的另一实施例示意图,如图所示,通信装置800包括收发模块801以及处理模块802。
可选地,该通信装置800可对应于上文方法实施例中的网络设备,例如,可以为网络设备,或者配置于网络设备中的部件(如电路、芯片或芯片系统等)。
应理解,该通信装置800可对应于根据本申请实施例的图4中的方法,或,图5中的方法,或,图6中的方法,该通信装置800可以包括用于执行图4中的方法,或,图5中的方法,或,图6中的方法中网络设备执行的方法的单元。并且,该通信装置800中的各单元和上述其他操作和/或功能分别为了实现图4中的方法,或,图5中的方法,或,图6中的方法的相应流程。
其中,当该通信装置800用于执行图4中的方法时,收发模块801可用于执行图4中的方法的步骤S201,处理模块802可用于执行图4中的方法的步骤S202。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置800用于执行图5中的方法时,收发模块801可用于执行图5中的方法的步骤S301以及步骤S306,处理模块802可用于执行图5中的方法的步骤S307以及步骤S308。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置800用于执行图6中的方法时,收发模块801可用于执行图6中的方法的步骤S401以及步骤S406,处理模块802可用于执行图6中的方法的步骤S407。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置800为网络设备时,该通信装置800中的收发模块801可以通过收发器实现,例如可对应于图9中示出的通信装置900中的收发器920或图9中示出的网络设备4000中的远端射频单元(remote radio unit,RRU)4100,该通信装置800中的处理模块802可通过至少一个处理器实现,例如可对应于图9中示出的通信装置900中的处理器910或图11中示出的网络设备4000中的处理单元4200或处理器4202。
还应理解,该通信装置800为配置于网络设备中的芯片或芯片系统时,该通信装置800中的收发模块801可以通过输入/输出接口、电路等实现,该通信装置800中的处理模块802可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
图9为本申请实施例中通信装置900的示意性框图。如图9所示,该通信装置900包括处理器910、收发器920和存储器930。其中,处理器910、收发器920和存储器930通过内部连接通路互相通信,该存储器930用于存储指令,该处理器910用于执行该存储器930存储的指令,以控制该收发器920发送信号和/或接收信号。
应理解,该通信装置900可以对应于上述方法实施例中的终端设备,并且可以用于执行上述方法实施例中网络设备或终端设备执行的各个步骤和/或流程。可选地,该存储器930可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。存储器930可以是一个单独的器件,也可以集成在处理器910中。该处理器910可以用于执行存储器930中存储的指令,并且当该处理器910执行存储器中存储的指令时,该处理器910用于执行上述与网络设备或终端设备对应的方法实施例的各个步骤和/或流程。
可选地,该通信装置900是前文实施例中的终端设备。
可选地,该通信装置900是前文实施例中的网络设备。
其中,收发器920可以包括发射机和接收机。收发器920还可以进一步包括天线,天线的数量可以为一个或多个。该处理器910和存储器930与收发器920可以是集成在不同芯片上的器件。如,处理器910和存储器930可以集成在基带芯片中,收发器920可以集成在射频芯片中。该处理器910和存储器930与收发器920也可以是集成在同一个芯片上的器件。本申请对此不作限定。
可选地,该通信装置900是配置在终端设备中的部件,如电路、芯片、芯片系统等。
可选地,该通信装置900是配置在网络设备中的部件,如电路、芯片、芯片系统等。
其中,收发器920也可以是通信接口,如输入/输出接口、电路等。该收发器920与处理器910和存储器920都可以集成在同一个芯片中,如集成在基带芯片中。
图10是本申请实施例提供的终端设备3000的结构示意图。该终端设备3000可应用于如图1所示的系统中,执行上述方法实施例中终端设备的功能。如图所示,该终端设备3000包括处理器3010和收发器3020。可选地,该终端设备3000还包括存储器3030。其中,处理器3010、收发器3020和存储器3030之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器3030用于存储计算机程序,该处理器3010用于从该存储器3030中调用并运行该计算机程序,以控制该收发器3020收发信号。可选地,终端设备3000还可以包括天线3040,用于将收发器3020输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器3010可以和存储器3030可以合成一个通信装置,处理器3010用于执行存储器3030中存储的程序代码来实现上述功能。具体实现时,该存储器3030也可以集成在处理器3010中,或者独立于处理器3010。该处理器3010可以与图7中的处理模块701或图9中的处理器910对应。
上述收发器3020可以与图7中的收发模块702或图9中的收发器920对应。收发器3020可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图10所示的终端设备3000能够实现图3,图5或图6所示方法实施例中涉及终端设备的各个过程。终端设备3000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述处理器3010可以用于执行前面方法实施例中描述的由终端设备内部实现的动作, 而收发器3020可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备3000还可以包括电源3050,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备3000还可以包括输入单元3060、显示单元3070、音频电路3080、摄像头3090和传感器3100等中的一个或多个,所述音频电路还可以包括扬声器3082、麦克风3084等。
图11是本申请实施例提供的网络设备的结构示意图,例如可以为基站的结构示意图。该基站4000可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。如图所示,该基站4000可以包括一个或多个射频单元,如RRU4100和一个或多个基带单元(BBU)(也可称为分布式单元(DU))4200。所述RRU 4100可以称为收发单元,可以与图8中的收发模块802或图9中的收发器2020对应。可选地,该RRU 4100还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线4101和射频单元4102。可选地,RRU4100可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述RRU 4100部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU4200部分主要用于进行基带处理,对基站进行控制等。所述RRU 4100与BBU 4200可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 4200为基站的控制中心,也可以称为处理单元,可以与图8中的处理模块802或图9中的处理器910对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 4200可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 4200还包括存储器4201和处理器4202。所述存储器4201用以存储必要的指令和数据。所述处理器4202用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器4201和处理器4202可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图11所示的基站4000能够实现图4,图5以及图6所示方法实施例中涉及网络设备的各个过程。基站4000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述BBU 4200可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而RRU 4100可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
应理解,图11所示出的基站4000仅为网络设备的一种可能的形态,而不应对本申请构成任何限定。本申请所提供的方法可适用于其他形态的网络设备。例如,包括AAU,还 可以包括CU和/或DU,或者包括BBU和自适应无线单元(adaptive radio unit,ARU),或BBU;也可以为客户终端设备(customer premises equipment,CPE),还可以为其它形态,本申请对于网络设备的具体形态不做限定。
其中,CU和/或DU可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而AAU可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请还提供了一种通信装置,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述通信装置执行上述任一方法实施例中终端设备或网络设备所执行的方法。
应理解,上述通信装置可以是一个或多个芯片。例如,该通信装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
本申请实施例还提供了一种通信装置,包括处理器和通信接口。所述通信接口与所述处理器耦合。所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。所述处理器用于执行计算机程序,以使得所述通信装置执行上述任一方法实施例中终端设备或网络设备所执行的方法。
本申请实施例还提供了一种通信装置,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于从所述存储器调用并运行所述计算机程序,以使得所述通信装置执行上述任一方法实施例中终端设备或网络设备所执行的方法。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存 储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图3至图6所示实施例中的终端设备执行的方法或网络设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图3至图6所示实施例中的终端设备执行的方法或网络设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
上述实施例中,终端设备可以作为接收设备的一例,网络设备可以作为发送设备的一例。但这不应对本申请构成任何限定。例如,发送设备和接收设备也可以均为终端设备等。本申请对于发送设备和接收设备的具体类型不作限定。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及 算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (79)

  1. 一种信息传输的方法,其特征在于,包括:
    终端设备获取R个信道信息,其中,所述信道信息包括大尺度信息与小尺度信息,所述R为大于或等于1的整数;
    所述终端设备对所述R个信道信息进行归一化处理,得到R个第一信息与R个第二信息,其中,所述第一信息为进行归一化处理后的小尺度信息,所述第二信息为进行归一化处理后的大尺度信息;
    所述终端设备发送信道状态信息CSI,其中,所述CSI包括R个进行量化处理后的第一信息,或,R个进行量化处理后的第一信息与R个进行量化处理后的第二信息。
  2. 根据权利要求1所述的方法,其特征在于,所述信道信息为至少一个频域单元上的信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一信息包括第一空域波束集合,第一频域波束集合与第一加权系数集合;
    所述进行量化处理后的第一信息包括第二空域波束集合,第二频域波束集合与第二加权系数集合,其中,所述第二空域波束集合为所述第一空域波束集合的子集,所述第二频域波束集合为所述第一频域波束集合的子集,所述第二加权系数集合为所述第一加权系数集合的子集进行量化后得到的。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收信道测量配置信息,其中,所述信道测量配置信息用于确定R个所述第二空域波束集合中的空域波束总数量的最大值;
    或,
    所述终端设备接收所述信道测量配置信息,其中,所述信道测量配置信息用于确定每个所述第二空域波束集合中的空域波束数量的最大值,每个所述第二空域波束集合对应一个所述第二空域波束集合中的空域波束数量的最大值。
  5. 根据权利要求4所述的方法,其特征在于,所述信道测量配置信息包括第一空域波束数值,其中,所述第一空域波束数值用于得到所述R个所述第二空域波束集合中的空域波束总数量的最大值;
    或,
    所述信道测量配置信息包括第二空域波束数值,其中,所述第二空域波束数值用于得到所述第二空域波束集合中的空域波束数量的最大值。
  6. 根据权利要求4或5所述的方法,其特征在于,所述R个所述第二空域波束集合中空域波束总数量小于或等于所述R个所述第二空域波束集合中的空域波束总数量的最大值;
    或,
    所述第二空域波束集合中空域波束数量小于或等于所对应的所述第二空域波束集合中的空域波束数量的最大值。
  7. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收信道测量配置信息,其中,所述信道测量配置信息用于确定R个所述第二频域波束集合中的频域波束总数量的最大值;
    或,
    所述终端设备接收所述信道测量配置信息,其中,所述信道测量配置信息用于确定每个所述第二频域波束集合中的频域波束数量的最大值,每个所述第二频域波束集合对应一个所述第二频域波束集合中的频域波束数量的最大值。
  8. 根据权利要求7所述的方法,其特征在于,所述信道测量配置信息包括第一频域波束数值,其中,所述第一频域波束数值用于得到所述R个所述第二频域波束集合中的频域波束总数量的最大值;
    或,
    所述信道测量配置信息包括第二频域波束数值,其中,所述第二频域波束数值用于得到所述第二频域波束集合中的频域波束数量的最大值。
  9. 根据权利要求7或8所述的方法,其特征在于,所述R个所述第二频域波束集合中频域波束数量小于或等于所述R个所述第二频域波束集合中的频域波束总数量的最大值;
    或,
    所述第二频域波束集合中频域波束数量小于或等于所对应的所述第二频域波束集合中的频域波束数量的最大值。
  10. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收信道测量配置信息,其中,所述信道测量配置信息用于确定R个所述第二加权系数集合中的加权系数总数量的最大值;
    或,
    所述终端设备接收所述信道测量配置信息,其中,所述信道测量配置信息用于确定每个所述第二加权系数集合中的加权系数数量的最大值,每个所述第二加权系数集合对应一个所述第二加权系数集合中的加权系数数量的最大值。
  11. 根据权利要求10所述的方法,其特征在于,所述信道测量配置信息包括第一加权系数数值,其中,所述第一加权系数数值用于得到所述R个所述第二加权系数集合中的加权系数总数量的最大值;
    或,
    所述信道测量配置信息包括第二加权系数数值,其中,所述第二加权系数数值用于得到所述第二加权系数集合中的加权系数数量的最大值。
  12. 根据权利要求10或11所述的方法,其特征在于,所述R个所述第二加权系数集合中加权系数总数量小于或等于所述R个所述第二加权系数集合中的加权系数数量的最大值;
    或,
    所述第二加权系数集合中加权系数数量小于或等于所对应的所述第二加权系数集合中的加权系数数量的最大值。
  13. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述终端设备在R个所述第一加权系数集合中确定一个加权系数为第一基准加权系数,其中,所述第一基准加权系数为R个所述第一加权系数集合中幅度最大的加权系数;
    所述终端设备对R个所述第一加权系数集合中的所有加权系数与所述第一基准加权系 数的相对幅度与相对相位进行量化处理,得到R个所述第二加权系数集合;
    或,
    所述终端设备在R个所述第一加权系数集合中确定R个第二基准加权系数,其中,一个第二基准加权系数对应一个所述第一加权系数集合,所述第二基准加权系数为所对应的第一加权系数集合中幅度最大的加权系数;
    所述终端设备在所述R个第二基准加权系数中确定一个第二基准加权系数为第三基准加权系数;
    所述终端设备对R个所述第一加权系数集合与所对应的所述第二基准加权系数的相对幅度与相对相位进行量化处理,且对所述R个第二基准加权系数与所述第三基准加权系数的相对幅度与相对相位进行量化处理,得到所述R个所述第二加权系数集合。
  14. 根据权利要求13所述的方法,其特征在于,所述R个第二基准加权系数中幅度最大值为所述第三基准加权系数;
    或,
    所述终端设备初始接入的网络设备对应的所述第二基准加权系数为所述第三基准加权系数;
    或,
    标识最大的所述网络设备对应的所述第二基准加权系数为所述第三基准加权系数。
  15. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述终端设备从所述R个第二信息中确定一个第二信息作为基准信息;
    所述终端设备对所述R个第二信息与所述基准信息的相对值进行量化处理,得到所述R个进行量化处理后的第二信息;
    或,
    所述终端设备从所述R个第二信息中确定一个第二信息作为基准信息;
    所述终端设备对所述R个第二信息与所述基准信息的相对值进行量化处理,且对所述基准信息的绝对值进行量化处理,得到所述R个进行量化处理后的第二信息。
  16. 根据权利要求15所述的方法,其特征在于,所述R个第二信息中最大值为所述基准信息;
    或,
    所述终端设备初始接入的网络设备对应的所述第二信息为所述基准信息;
    或,
    标识最大的所述网络设备对应的所述第二信息为所述基准信息。
  17. 根据权利要求1所述的方法,其特征在于,所述归一化处理的方法包括以下至少一项:列归一,行归一和整体归一。
  18. 根据权利要求17所述的方法,其特征在于,所述归一化处理的方法为预定义的;
    或,
    所述归一化处理的方法是通过信令确定的,其中,所述信令为无线资源控制RRC信令或者媒体介入控制控制单元MAC CE信令。
  19. 一种信息传输的方法,其特征在于,包括:
    网络设备接收信道状态信息CSI,其中,所述CSI包括R个进行量化处理后的第一信息,或,R个进行量化处理后的第一信息与R个进行量化处理后的第二信息,所述第一信息为进行归一化处理后的小尺度信息,所述第二信息为进行归一化处理后的大尺度信息,所述小尺度信息以及所述大尺度信息属于信道信息,所述R为大于或等于1的整数;
    所述网络设备根据所述CSI获取目标信道信息,其中,所述目标信道信息包括所述网络设备对应的小尺度信息以及所述网络设备对应的大尺度信息。
  20. 根据权利要求19所述的方法,其特征在于,所述信道信息为至少一个频域单元上的信息。
  21. 根据权利要求19或20所述的方法,其特征在于,所述第一信息包括第一空域波束集合,第一频域波束集合与第一加权系数集合;
    所述进行量化处理后的第一信息包括第二空域波束集合,第二频域波束集合与第二加权系数集合,其中,所述第二空域波束集合为所述第一空域波束集合的子集,所述第二频域波束集合为所述第一频域波束集合的子集,所述第二加权系数集合为所述第一加权系数集合的子集进行量化后得到的。
  22. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送信道测量配置信息,其中,所述信道测量配置信息用于确定R个所述第二空域波束集合中的空域波束总数量的最大值;
    或,
    所述网络设备发送所述信道测量配置信息,其中,所述信道测量配置信息用于确定每个所述第二空域波束集合中的空域波束数量的最大值,每个所述第二空域波束集合对应一个所述第二空域波束集合中的空域波束数量的最大值。
  23. 根据权利要求22所述的方法,其特征在于,所述信道测量配置信息包括第一空域波束数值,其中,所述第一空域波束数值用于得到所述R个所述第二空域波束集合中的空域波束总数量的最大值;
    或,
    所述信道测量配置信息包括第二空域波束数值,其中,所述第二空域波束数值用于得到所述第二空域波束集合中的空域波束数量的最大值。
  24. 根据权利要求22或23所述的方法,其特征在于,所述R个所述第二空域波束集合中空域波束总数量小于或等于所述R个所述第二空域波束集合中的空域波束总数量的最大值;
    或,
    所述第二空域波束集合中空域波束数量小于或等于所对应的所述第二空域波束集合中的空域波束数量的最大值。
  25. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送信道测量配置信息,其中,所述信道测量配置信息用于确定R个所述第二频域波束集合中的频域波束总数量的最大值;
    或,
    所述网络设备发送所述信道测量配置信息,其中,所述信道测量配置信息用于确定每 个所述第二频域波束集合中的频域波束数量的最大值,每个所述第二频域波束集合对应一个所述第二频域波束集合中的频域波束数量的最大值。
  26. 根据权利要求25所述的方法,其特征在于,所述信道测量配置信息包括第一频域波束数值,其中,所述第一频域波束数值用于得到所述R个所述第二频域波束集合中的频域波束总数量的最大值;
    或,
    所述信道测量配置信息包括第二频域波束数值,其中,所述第二频域波束数值用于得到所述第二频域波束集合中的频域波束数量的最大值。
  27. 根据权利要求25或26所述的方法,其特征在于,所述R个所述第二频域波束集合中频域波束数量小于或等于所述R个所述第二频域波束集合中的频域波束总数量的最大值;
    或,
    所述第二频域波束集合中频域波束数量小于或等于所对应的所述第二频域波束集合中的频域波束数量的最大值。
  28. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送信道测量配置信息,其中,所述信道测量配置信息用于确定R个所述第二加权系数集合中的加权系数总数量的最大值;
    或,
    所述网络设备发送所述信道测量配置信息,其中,所述信道测量配置信息用于确定每个所述第二加权系数集合中的加权系数数量的最大值,每个所述第二加权系数集合对应一个所述第二加权系数集合中的加权系数数量的最大值。
  29. 根据权利要求28所述的方法,其特征在于,所述信道测量配置信息包括第一加权系数数值,其中,所述第一加权系数数值用于得到所述R个所述第二加权系数集合中的加权系数总数量的最大值;
    或,
    所述信道测量配置信息包括第二加权系数数值,其中,所述第二加权系数数值用于得到所述第二加权系数集合中的加权系数数量的最大值。
  30. 根据权利要求28或29所述的方法,其特征在于,所述R个所述第二加权系数集合中加权系数总数量小于或等于所述R个所述第二加权系数集合中的加权系数数量的最大值;
    或,
    所述第二加权系数集合中加权系数数量小于或等于所对应的所述第二加权系数集合中的加权系数数量的最大值。
  31. 根据权利要求21所述的方法,其特征在于,所述R个所述第二加权系数集合为对R个所述第一加权系数集合中的所有加权系数与第一基准加权系数的相对幅度与相对相位进行量化处理得到的,所述第一基准加权系数为R个所述第一加权系数集合中幅度最大的加权系数;
    所述R个所述第二加权系数集合为对所述终端设备对R个所述第一加权系数集合与所 对应的第二基准加权系数的相对幅度与相对相位进行量化处理,且对所述R个第二基准加权系数与第三基准加权系数的相对幅度与相对相位进行量化处理得到的,所述第二基准加权系数为所对应的第一加权系数集合中幅度最大的加权系数,一个第二基准加权系数对应一个所述第一加权系数集合,所述第三基准加权系数是在所述R个第二基准加权系数中确定的。
  32. 根据权利要求31所述的方法,其特征在于,所述R个第二基准加权系数中幅度最大值为所述第三基准加权系数;
    或,
    所述终端设备初始接入的网络设备对应的所述第二基准加权系数为所述第三基准加权系数;
    或,
    标识最大的所述网络设备对应的所述第二基准加权系数为所述第三基准加权系数。
  33. 根据权利要求19或20所述的方法,其特征在于,所述R个进行量化处理后的第二信息为对所述R个第二信息与基准信息的相对值进行量化处理得到的,所述基准信息是在所述R个第二信息中确定的;
    或,
    所述R个进行量化处理后的第二信息为对所述R个第二信息与所述基准信息的相对值进行量化处理,且对所述基准信息的绝对值进行量化处理的到的,所述基准信息是在所述R个第二信息中确定的。
  34. 根据权利要求33所述的方法,其特征在于,所述R个第二信息中最大值为所述基准信息;
    或,
    所述终端设备初始接入的网络设备对应的所述第二信息为所述基准信息;
    或,
    标识最大的所述网络设备对应的所述第二信息为所述基准信息。
  35. 根据权利要求19所述的方法,所述CSI包括所述R个进行量化处理后的第一信息;
    所述方法还包括:
    所述网络设备获取上行大尺度信息,其中,所述上行大尺度信息是对上行探测参考信号SRS进行测量得到的;
    所述网络设备根据所述CSI获取目标信道信息,包括:
    所述网络设备根据所述R个进行量化处理后的第一信息以及所述上行大尺度信息,获取所述目标信道信息。
  36. 根据权利要求19所述的方法,其特征在于,所述归一化处理的方法包括以下至少一项:列归一,行归一和整体归一。
  37. 根据权利要求36所述的方法,其特征在于,所述归一化处理的方法为预定义的;
    或,
    所述归一化处理的方法是通过信令确定的,其中,所述信令为无线资源控制RRC信令或者媒体介入控制控制单元MAC CE信令。
  38. 一种通信装置,其特征在于,包括:
    处理模块,用于获取R个信道信息,其中,所述信道信息包括大尺度信息与小尺度信息,所述R为大于或等于1的整数;
    所述处理模块,还用于对所述R个信道信息进行归一化处理,得到R个第一信息与R个第二信息,其中,所述第一信息为进行归一化处理后的小尺度信息,所述第二信息为进行归一化处理后的大尺度信息;
    收发模块,用于发送信道状态信息CSI,其中,所述CSI包括R个进行量化处理后的第一信息,或,R个进行量化处理后的第一信息与R个进行量化处理后的第二信息。
  39. 根据权利要求38所述的装置,其特征在于,所述信道信息为至少一个频域单元上的信息。
  40. 根据权利要求38或39所述的装置,其特征在于,所述第一信息包括第一空域波束集合,第一频域波束集合与第一加权系数集合;
    所述进行量化处理后的第一信息包括第二空域波束集合,第二频域波束集合与第二加权系数集合,其中,所述第二空域波束集合为所述第一空域波束集合的子集,所述第二频域波束集合为所述第一频域波束集合的子集,所述第二加权系数集合为所述第一加权系数集合的子集进行量化后得到的。
  41. 根据权利要求40所述的装置,其特征在于,所述收发模块,还用于接收信道测量配置信息,其中,所述信道测量配置信息用于确定R个所述第二空域波束集合中的空域波束总数量的最大值;
    或,
    所述收发模块,还用于接收所述信道测量配置信息,其中,所述信道测量配置信息用于确定每个所述第二空域波束集合中的空域波束数量的最大值,每个所述第二空域波束集合对应一个所述第二空域波束集合中的空域波束数量的最大值。
  42. 根据权利要求41所述的装置,其特征在于,所述信道测量配置信息包括第一空域波束数值,其中,所述第一空域波束数值用于得到所述R个所述第二空域波束集合中的空域波束总数量的最大值;
    或,
    所述信道测量配置信息包括第二空域波束数值,其中,所述第二空域波束数值用于得到所述第二空域波束集合中的空域波束数量的最大值。
  43. 根据权利要求41或42所述的装置,其特征在于,所述R个所述第二空域波束集合中空域波束总数量小于或等于所述R个所述第二空域波束集合中的空域波束总数量的最大值;
    或,
    所述第二空域波束集合中空域波束数量小于或等于所对应的所述第二空域波束集合中的空域波束数量的最大值。
  44. 根据权利要求40所述的装置,其特征在于,所述收发模块,还用于接收信道测量配置信息,其中,所述信道测量配置信息用于确定R个所述第二频域波束集合中的频域波束总数量的最大值;
    或,
    所述收发模块,还用于接收所述信道测量配置信息,其中,所述信道测量配置信息用于确定每个所述第二频域波束集合中的频域波束数量的最大值,每个所述第二频域波束集合对应一个所述第二频域波束集合中的频域波束数量的最大值。
  45. 根据权利要求44所述的装置,其特征在于,所述信道测量配置信息包括第一频域波束数值,其中,所述第一频域波束数值用于得到所述R个所述第二频域波束集合中的频域波束总数量的最大值;
    或,
    所述信道测量配置信息包括第二频域波束数值,其中,所述第二频域波束数值用于得到所述第二频域波束集合中的频域波束数量的最大值。
  46. 根据权利要求44或45所述的装置,其特征在于,所述R个所述第二频域波束集合中频域波束数量小于或等于所述R个所述第二频域波束集合中的频域波束总数量的最大值;
    或,
    所述第二频域波束集合中频域波束数量小于或等于所对应的所述第二频域波束集合中的频域波束数量的最大值。
  47. 根据权利要求40所述的装置,其特征在于,所述收发模块,还用于接收信道测量配置信息,其中,所述信道测量配置信息用于确定R个所述第二加权系数集合中的加权系数总数量的最大值;
    或,
    所述收发模块,还用于接收所述信道测量配置信息,其中,所述信道测量配置信息用于确定每个所述第二加权系数集合中的加权系数数量的最大值,每个所述第二加权系数集合对应一个所述第二加权系数集合中的加权系数数量的最大值。
  48. 根据权利要求47所述的装置,其特征在于,所述信道测量配置信息包括第一加权系数数值,其中,所述第一加权系数数值用于得到所述R个所述第二加权系数集合中的加权系数总数量的最大值;
    或,
    所述信道测量配置信息包括第二加权系数数值,其中,所述第二加权系数数值用于得到所述第二加权系数集合中的加权系数数量的最大值。
  49. 根据权利要求47或48所述的装置,其特征在于,所述R个所述第二加权系数集合中加权系数总数量小于或等于所述R个所述第二加权系数集合中的加权系数数量的最大值;
    或,
    所述第二加权系数集合中加权系数数量小于或等于所对应的所述第二加权系数集合中的加权系数数量的最大值。
  50. 根据权利要求40所述的装置,其特征在于,所述处理模块,还用于在R个第一所述加权系数集合中确定一个加权系数为第一基准加权系数,其中,所述第一基准加权系数为所述R个第一所述加权系数集合中幅度最大的加权系数;
    所述处理模块,还用于对所述R个第一所述加权系数集合中的所有加权系数与所述第一基准加权系数的相对幅度与相对相位进行量化处理,得到R个所述第二加权系数集合;
    或,
    所述处理模块,还用于在所述R个第一所述加权系数集合中确定R个第二基准加权系数,其中,一个第二基准加权系数对应一个所述第一加权系数集合,所述第二基准加权系数为所对应的第一加权系数集合中幅度最大的加权系数;
    所述处理模块,还用于在所述R个第二基准加权系数中确定一个第二基准加权系数为第三基准加权系数;
    所述处理模块,还用于对R个所述加权系数集合与所对应的所述第二基准加权系数的相对幅度与相对相位进行量化处理,且对所述R个第二基准加权系数与所述第三基准加权系数的相对幅度与相对相位进行量化处理,得到所述R个所述第二加权系数集合。
  51. 根据权利要求50所述的装置,其特征在于,所述R个第二基准加权系数中幅度最大值为所述第三基准加权系数;
    或,
    所述终端设备初始接入的网络设备对应的所述第二基准加权系数为所述第三基准加权系数;
    或,
    标识最大的所述网络设备对应的所述第二基准加权系数为所述第三基准加权系数。
  52. 根据权利要求38或39所述的装置,其特征在于,所述处理模块,还用于从所述R个第二信息中确定一个第二信息作为基准信息;
    所述处理模块,还用于对所述R个第二信息与所述基准信息的相对值进行量化处理,得到所述R个进行量化处理后的第二信息;
    或,
    所述处理模块,还用于从所述R个第二信息中确定一个第二信息作为基准信息;
    所述处理模块,还用于对所述R个第二信息与所述基准信息的相对值进行量化处理,且对所述基准信息的绝对值进行量化处理,得到所述R个进行量化处理后的第二信息。
  53. 根据权利要求52所述的装置,其特征在于,所述R个第二信息中最大值为所述基准信息;
    或,
    所述终端设备初始接入的网络设备对应的所述第二信息为所述基准信息;
    或,
    标识最大的所述网络设备对应的所述第二信息为所述基准信息。
  54. 根据权利要求39所述的装置,其特征在于,所述归一化处理的方法包括以下至少一项:列归一,行归一和整体归一。
  55. 根据权利要求54所述的装置,其特征在于,所述归一化处理的方法为预定义的;
    或,
    所述归一化处理的方法是通过信令确定的,其中,所述信令为无线资源控制RRC信令或者媒体介入控制控制单元MAC CE信令。
  56. 一种通信装置,其特征在于,包括:
    收发模块,用于接收信道状态信息CSI,其中,所述CSI包括R个进行量化处理后的第一信息,或,R个进行量化处理后的第一信息与R个进行量化处理后的第二信息,所述第一信息为进行归一化处理后的小尺度信息,所述第二信息为进行归一化处理后的大尺度信息,所述小尺度信息以及所述大尺度信息属于信道信息,所述R为大于或等于1的整数;
    处理模块,用于所述网络设备根据所述CSI获取目标信道信息,其中,所述目标信道信息包括所述网络设备对应的小尺度信息以及所述网络设备对应的大尺度信息。
  57. 根据权利要求56所述的装置,其特征在于,所述信道信息为至少一个频域单元上的信息。
  58. 根据权利要求56或57所述的装置,其特征在于,所述第一信息包括第一空域波束集合,第一频域波束集合与第一加权系数集合;
    所述进行量化处理后的第一信息包括第二空域波束集合,第二频域波束集合与第二加权系数集合,其中,所述第二空域波束集合为所述第一空域波束集合的子集,所述第二频域波束集合为所述第一频域波束集合的子集,所述第二加权系数集合为所述第一加权系数集合的子集进行量化后得到的。
  59. 根据权利要求58所述的装置,其特征在于,所述收发模块,还用于发送信道测量配置信息,其中,所述信道测量配置信息用于确定R个所述第二空域波束集合中的空域波束总数量的最大值;
    或,
    所述收发模块,还用于发送所述信道测量配置信息,其中,所述信道测量配置信息用于确定每个所述第二空域波束集合中的空域波束数量的最大值,每个所述第二空域波束集合对应一个所述第二空域波束集合中的空域波束数量的最大值。
  60. 根据权利要求59所述的装置,其特征在于,所述信道测量配置信息包括第一空域波束数值,其中,所述第一空域波束数值用于得到所述R个所述第二空域波束集合中的空域波束总数量的最大值;
    或,
    所述信道测量配置信息包括第二空域波束数值,其中,所述第二空域波束数值用于得到所述第二空域波束集合中的空域波束数量的最大值。
  61. 根据权利要求59或60所述的装置,其特征在于,所述R个所述第二空域波束集合中空域波束总数量小于或等于所述R个所述第二空域波束集合中的空域波束总数量的最大值;
    或,
    所述第二空域波束集合中空域波束数量小于或等于所对应的所述第二空域波束集合中的空域波束数量的最大值。
  62. 根据权利要求58所述的装置,其特征在于,所述收发模块,还用于发送信道测量配置信息,其中,所述信道测量配置信息用于确定R个所述第二频域波束集合中的频域波束总数量的最大值;
    或,
    所述收发模块,还用于发送所述信道测量配置信息,其中,所述信道测量配置信息用于确定每个所述第二频域波束集合中的频域波束数量的最大值,每个所述第二频域波束集合对应一个所述第二频域波束集合中的频域波束数量的最大值。
  63. 根据权利要求62所述的装置,其特征在于,所述信道测量配置信息包括第一频域波束数值,其中,所述第一频域波束数值用于得到所述R个所述第二频域波束集合中的频域波束总数量的最大值;
    或,
    所述信道测量配置信息包括第二频域波束数值,其中,所述第二频域波束数值用于得到所述第二频域波束集合中的频域波束数量的最大值。
  64. 根据权利要求62或63所述的装置,其特征在于,所述R个所述第二频域波束集合中频域波束数量小于或等于所述R个所述第二频域波束集合中的频域波束总数量的最大值;
    或,
    所述第二频域波束集合中频域波束数量小于或等于所对应的所述第二频域波束集合中的频域波束数量的最大值。
  65. 根据权利要求58所述的装置,其特征在于,所述收发模块,还用于发送信道测量配置信息,其中,所述信道测量配置信息用于确定R个所述第二加权系数集合中的加权系数总数量的最大值;
    或,
    所述收发模块,还用于发送所述信道测量配置信息,其中,所述信道测量配置信息用于确定每个所述第二加权系数集合中的加权系数数量的最大值,每个所述第二加权系数集合对应一个所述第二加权系数集合中的加权系数数量的最大值。
  66. 根据权利要求65所述的装置,其特征在于,所述信道测量配置信息包括第一加权系数数值,其中,所述第一加权系数数值用于得到所述R个所述第二加权系数集合中的加权系数总数量的最大值;
    或,
    所述信道测量配置信息包括第二加权系数数值,其中,所述第二加权系数数值用于得到所述第二加权系数集合中的加权系数数量的最大值。
  67. 根据权利要求65或66所述的装置,其特征在于,所述R个所述第二加权系数集合中加权系数总数量小于或等于所述R个所述第二加权系数集合中的加权系数数量的最大值;
    或,
    所述第二加权系数集合中加权系数数量小于或等于所对应的所述第二加权系数集合中的加权系数数量的最大值。
  68. 根据权利要求58所述的装置,其特征在于,所述R个所述第二加权系数集合为对R个所述第一加权系数集合中的所有加权系数与第一基准加权系数的相对幅度与相对相位进行量化处理得到的,所述第一基准加权系数为R个所述第一加权系数集合中幅度最大的加权系数;
    所述R个所述第二加权系数集合为对所述终端设备对R个所述第一加权系数集合与所对应的第二基准加权系数的相对幅度与相对相位进行量化处理,且对所述R个第二基准加权系数与第三基准加权系数的相对幅度与相对相位进行量化处理得到的,所述第二基准加权系数为所对应的第一加权系数集合中幅度最大的加权系数,一个第二基准加权系数对应一个所述第一加权系数集合,所述第三基准加权系数是在所述R个第二基准加权系数中确定的。
  69. 根据权利要求68所述的装置,其特征在于,所述R个第二基准加权系数中幅度最大值为所述第三基准加权系数;
    或,
    所述终端设备初始接入的网络设备对应的所述第二基准加权系数为所述第三基准加权系数;
    或,
    标识最大的所述网络设备对应的所述第二基准加权系数为所述第三基准加权系数。
  70. 根据权利要求56或57所述的装置,其特征在于,所述R个进行量化处理后的第二信息为对所述R个第二信息与基准信息的相对值进行量化处理得到的,所述基准信息是在所述R个第二信息中确定的;
    或,
    所述R个进行量化处理后的第二信息为对所述R个第二信息与所述基准信息的相对值进行量化处理,且对所述基准信息的绝对值进行量化处理的到的,所述基准信息是在所述R个第二信息中确定的。
  71. 根据权利要求70所述的装置,其特征在于,所述R个第二信息中最大值为所述基准信息;
    或,
    所述终端设备初始接入的网络设备对应的所述第二信息为所述基准信息;
    或,
    标识最大的所述网络设备对应的所述第二信息为所述基准信息。
  72. 根据权利要求56所述的装置,其特征在于,所述CSI包括所述R个进行量化处理后的第一信息;
    所述处理模块,还用于获取上行大尺度信息,其中,所述上行大尺度信息是对上行探测参考信号SRS进行测量得到的;
    所述处理模块,具体用于所述网络设备根据所述R个进行量化处理后的第一信息以及所述上行大尺度信息,获取所述目标信道信息。
  73. 根据权利要求56所述的装置,其特征在于,所述归一化处理的方法包括以下至少一项:列归一,行归一和整体归一。
  74. 根据权利要求73所述的装置,其特征在于,所述归一化处理的方法为预定义的;
    或,
    所述归一化处理的方法是通过信令确定的,其中,所述信令为无线资源控制RRC信令或者媒体介入控制控制单元MAC CE信令。
  75. 一种终端设备,其特征在于,包括:
    处理器、存储器、输入输出接口;
    所述处理器与所述存储器、所述输入输出接口耦合;
    所述处理器通过运行所述存储器中的代码执行如权利要求1至18中任一项所述的方法。
  76. 一种网络设备,其特征在于,包括:
    处理器、存储器、输入输出接口;
    所述处理器与所述存储器、所述输入输出接口耦合;
    所述处理器通过运行所述存储器中的代码执行如权利要求19至37中任一项所述的方法。
  77. 一种芯片,其特征在于,所述芯片包括至少一个处理器,所述至少一个处理器与至少一个存储器通信连接,所述至少一个存储器中存储有指令;所述指令被所述至少一个处理器执行权利要求1至18中任一项所述的方法,或,执行权利要求19至37中任一项所述的方法。
  78. 一种计算机可读存储介质,其中存储有指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至18任一所述的方法,或,执行权利要求19至37任一所述的方法。
  79. 一种通信系统,包括网络设备和终端设备,终端设备执行如权利要求1至18中任一项所述的方法,网络设备执行如权利要求19至37中任一项所述的方法。
PCT/CN2020/122580 2020-10-21 2020-10-21 一种信息传输的方法、相关装置以及设备 WO2022082523A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20958106.5A EP4207650A4 (en) 2020-10-21 2020-10-21 INFORMATION TRANSMISSION METHOD, APPARATUS AND APPARATUS
CN202080105032.1A CN116114183A (zh) 2020-10-21 2020-10-21 一种信息传输的方法、相关装置以及设备
PCT/CN2020/122580 WO2022082523A1 (zh) 2020-10-21 2020-10-21 一种信息传输的方法、相关装置以及设备
US18/304,005 US20230261715A1 (en) 2020-10-21 2023-04-20 Information transmission method, related apparatus, and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/122580 WO2022082523A1 (zh) 2020-10-21 2020-10-21 一种信息传输的方法、相关装置以及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/304,005 Continuation US20230261715A1 (en) 2020-10-21 2023-04-20 Information transmission method, related apparatus, and device

Publications (1)

Publication Number Publication Date
WO2022082523A1 true WO2022082523A1 (zh) 2022-04-28

Family

ID=81291370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122580 WO2022082523A1 (zh) 2020-10-21 2020-10-21 一种信息传输的方法、相关装置以及设备

Country Status (4)

Country Link
US (1) US20230261715A1 (zh)
EP (1) EP4207650A4 (zh)
CN (1) CN116114183A (zh)
WO (1) WO2022082523A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024041212A1 (zh) * 2022-08-22 2024-02-29 华为技术有限公司 一种通信方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100104033A1 (en) * 2008-10-24 2010-04-29 Qualcomm Incorporated Method and apparatus for separable channel state feedback in a wireless communication system
CN102237950A (zh) * 2010-04-29 2011-11-09 株式会社Ntt都科摩 一种用户设备、基站及信道信息反馈方法
US20120115427A1 (en) * 2010-11-08 2012-05-10 Dennis Hui Receiver and method for reducing an amount of channel state information feedback to a transmitter
CN103959839A (zh) * 2011-08-12 2014-07-30 黑莓有限公司 在协调多点无线通信系统中的信道状态信息反馈和发送的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102546129A (zh) * 2012-02-06 2012-07-04 北京新岸线无线技术有限公司 一种信道状态信息的发送、接收方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100104033A1 (en) * 2008-10-24 2010-04-29 Qualcomm Incorporated Method and apparatus for separable channel state feedback in a wireless communication system
CN102237950A (zh) * 2010-04-29 2011-11-09 株式会社Ntt都科摩 一种用户设备、基站及信道信息反馈方法
US20120115427A1 (en) * 2010-11-08 2012-05-10 Dennis Hui Receiver and method for reducing an amount of channel state information feedback to a transmitter
CN103959839A (zh) * 2011-08-12 2014-07-30 黑莓有限公司 在协调多点无线通信系统中的信道状态信息反馈和发送的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "NG tunnelling to support of dual connectivity in 5G", 3GPP DRAFT; R3-171639, vol. RAN WG3, 6 May 2017 (2017-05-06), Hangzhou P R China, pages 1 - 3, XP051265556 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024041212A1 (zh) * 2022-08-22 2024-02-29 华为技术有限公司 一种通信方法和装置

Also Published As

Publication number Publication date
CN116114183A (zh) 2023-05-12
US20230261715A1 (en) 2023-08-17
EP4207650A4 (en) 2023-10-25
EP4207650A1 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
US20220263560A1 (en) Channel state information reporting method and communications apparatus
WO2020199964A1 (zh) 通信方法及装置
WO2021203373A1 (zh) 一种信道测量方法和通信装置
WO2020221118A1 (zh) 指示和确定预编码矩阵的方法以及通信装置
WO2020083057A1 (zh) 指示和确定预编码向量的方法以及通信装置
WO2022048593A1 (zh) 信道测量的方法和装置
WO2021083157A1 (zh) 一种预编码矩阵的处理方法和通信装置
CN112312464B (zh) 上报信道状态信息的方法和通信装置
WO2020143577A1 (zh) 参数配置方法和通信装置
WO2020125511A1 (zh) 一种信道测量方法和通信装置
US20220271900A1 (en) Method for configuring transmit port of downlink reference signal and communication apparatus
US11943014B2 (en) Channel measurement method and communications apparatus
US20220416866A1 (en) Channel state information feedback method and communications apparatus
US20230013510A1 (en) Method for indicating channel state information csi measurement and communication apparatus
WO2020143580A1 (zh) 用于构建预编码向量的向量指示方法和通信装置
WO2021081847A1 (zh) 一种信道测量方法和通信装置
WO2020143461A1 (zh) 指示和确定预编码向量的方法以及通信装置
WO2022160322A1 (zh) 一种信道状态信息反馈方法及通信装置
US20230261715A1 (en) Information transmission method, related apparatus, and device
WO2021159309A1 (zh) 一种信道测量方法和通信装置
US20230239028A1 (en) Channel measurement method and communication apparatus
WO2022227976A1 (zh) 通信方法和通信装置
CN116743217A (zh) 信道状态信息的反馈方法和通信装置
WO2021189302A1 (zh) 更新的方法和通信装置
WO2024027393A1 (zh) 信道状态信息反馈方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958106

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020958106

Country of ref document: EP

Effective date: 20230328

NENP Non-entry into the national phase

Ref country code: DE