WO2022082495A1 - 路由选择方法、装置和系统 - Google Patents

路由选择方法、装置和系统 Download PDF

Info

Publication number
WO2022082495A1
WO2022082495A1 PCT/CN2020/122441 CN2020122441W WO2022082495A1 WO 2022082495 A1 WO2022082495 A1 WO 2022082495A1 CN 2020122441 W CN2020122441 W CN 2020122441W WO 2022082495 A1 WO2022082495 A1 WO 2022082495A1
Authority
WO
WIPO (PCT)
Prior art keywords
routing
node
identifier
route
threshold
Prior art date
Application number
PCT/CN2020/122441
Other languages
English (en)
French (fr)
Inventor
易粟
贾美艺
张磊
王昕�
Original Assignee
富士通株式会社
易粟
贾美艺
张磊
王昕�
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 易粟, 贾美艺, 张磊, 王昕� filed Critical 富士通株式会社
Priority to EP20958078.6A priority Critical patent/EP4236469A4/en
Priority to PCT/CN2020/122441 priority patent/WO2022082495A1/zh
Priority to CN202080105433.7A priority patent/CN116235542A/zh
Priority to KR1020237012821A priority patent/KR20230069987A/ko
Priority to JP2023522910A priority patent/JP2023546399A/ja
Publication of WO2022082495A1 publication Critical patent/WO2022082495A1/zh
Priority to US18/133,722 priority patent/US20230247523A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/34Modification of an existing route
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0289Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/305Handover due to radio link failure

Definitions

  • This application relates to the field of communications.
  • IAB Integrated access and backhaul
  • NG-RAN next generation radio access network
  • IAB node This relay node is called IAB node (IAB node), which supports both access and backhaul (BH) through 5G new radio (NR). All IAB nodes are connected to an IAB host (IAB-donor) through one or more hops. These multi-hop connections form a Directed Acyclic Graph (DAG) topology with the IAB host as the root node.
  • DAG Directed Acyclic Graph
  • the IAB host is responsible for performing centralized resource management, topology management, and routing management in the IAB network topology.
  • FIG. 1 shows a simple IAB network deployment with four IAB nodes and one IAB host.
  • BH RLF backhaul radio link failure
  • the embodiments of the present application provide a routing method, device and system to avoid data loss, reduce congestion, and implement load balancing.
  • a routing method includes:
  • the first node performs routing selection when at least one of the following conditions is satisfied:
  • the load on the first egress BH RLC channel exceeds the expected level
  • the load corresponding to the first route identification exceeds the expected level.
  • a routing method comprising:
  • the first node receives a first routing configuration message, where the first routing configuration message includes configuration information corresponding to multiple routing identifiers, and the configuration information corresponding to each routing identifier includes at least one of the following: priority, number of hops ( hops), and average delay.
  • a routing method comprising:
  • the IAB host sends a first routing configuration message to the first node, where the first routing configuration message is used by the first node to select a routing identifier, and the first routing configuration message includes configuration messages corresponding to multiple routing identifiers, corresponding to each routing identifier.
  • the configuration message of each routing identifier includes at least one of the following: priority (priority), number of hops (hops), and average delay (average delay).
  • a routing device which is configured on an IAB node in an IAB network, and the device includes:
  • a selection unit that performs routing selection when at least one of the following conditions is satisfied:
  • the load on the first egress BH RLC channel exceeds the expected level
  • the load corresponding to the first route identification exceeds the expected level.
  • a routing device which is configured on an IAB node in an IAB network, and the device includes:
  • a receiving unit which receives a first routing configuration message, where the first routing configuration message includes configuration information corresponding to multiple routing identifiers, and the configuration information corresponding to each routing identifier includes at least one of the following: priority, number of hops (hops), and average delay (average delay).
  • a routing device configured in an IAB host in an IAB network, and the device includes:
  • a first sending unit which sends a first routing configuration message to a first node, where the first routing configuration message is used by the first node to select a routing identifier, and the first routing configuration message includes configurations corresponding to multiple routing identifiers message, the configuration message corresponding to each routing identifier includes at least one of the following: priority (priority), hops (hops), and average delay (average delay).
  • One of the beneficial effects of the embodiments of the present application is that according to the embodiments of the present application, data loss can be avoided, congestion can be reduced, and load balancing can be achieved. Specifically, if a local routing re-selection decision is made when a BH RLF notification is received, or when a nearby node is congested, or when load balancing is required, network performance such as delay and data loss will be improved.
  • Fig. 1 is a schematic diagram of IAB network deployment
  • FIG. 2 is a schematic diagram of an example of a routing method according to an embodiment of the first aspect of the present application
  • Fig. 3 is the schematic diagram of an example of local route reselection after IAB node receives BH RLF instruction
  • Fig. 4 is the schematic diagram of an example of routing re-selection after the IAB node receives the flow control feedback
  • FIG. 5 is a schematic diagram of an example of an IAB node implementing load balancing through route reselection
  • FIG. 6 is a schematic diagram of an example of a routing method according to an embodiment of the second aspect of the present application.
  • FIG. 7 is a schematic diagram of an example of a routing method according to an embodiment of the third aspect of the present application.
  • FIG. 8 is a schematic diagram of an example of a routing device according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another example of a routing device according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of still another example of a routing device according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an example of a communication system according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of an example of an IAB node according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of an example of an IAB host according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements in terms of numelation, but do not indicate the spatial arrangement or temporal order of these elements, and these elements should not be referred to by these terms restricted.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • the terms “comprising”, “including”, “having”, etc. refer to the presence of stated features, elements, elements or components, but do not preclude the presence or addition of one or more other features, elements, elements or components.
  • the term "communication network” or “wireless communication network” may refer to a network that conforms to any of the following communication standards, such as New Radio (NR, New Radio), Long Term Evolution (LTE, Long Term Evolution), enhanced Long Term Evolution (LTE-A, LTE-Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), etc.
  • NR New Radio
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to communication protocols at any stage, for example, including but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and future 5G, 6G, etc., and/or other communication protocols currently known or to be developed in the future.
  • 1G generation
  • 2G 2.5G, 2.75G
  • 3G 3G
  • 4G 4.5G
  • future 5G, 6G, etc. and/or other communication protocols currently known or to be developed in the future.
  • Network device refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services for the terminal device.
  • Network devices may include but are not limited to the following devices: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobility management entity (MME, Mobile Management Entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller) and so on.
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), and 5G base station (gNB), etc., and may also include a remote radio head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay (relay) or low power node (eg femto, pico, etc.).
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay relay
  • low power node eg femto, pico, etc.
  • base station may include some or all of their functions, each base station may provide communication coverage for a particular geographic area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "User Equipment” refers to a device that accesses a communication network through a network device and receives network services, and may also be called “Terminal Equipment” (TE, Terminal Equipment).
  • a terminal device may be fixed or mobile, and may also be referred to as a mobile station (MS, Mobile Station), a terminal, a user, a subscriber station (SS, Subscriber Station), an access terminal (AT, Access Terminal), a station, etc. Wait.
  • the terminal device may include but is not limited to the following devices: Cellular Phone (Cellular Phone), Personal Digital Assistant (PDA, Personal Digital Assistant), wireless modem, wireless communication device, handheld device, machine type communication device, laptop computer, Cordless phones, smartphones, smart watches, digital cameras, and more.
  • Cellular Phone Cellular Phone
  • PDA Personal Digital Assistant
  • wireless modem wireless communication device
  • handheld device machine type communication device
  • laptop computer Cordless phones, smartphones, smart watches, digital cameras, and more.
  • the terminal device may also be a machine or device that performs monitoring or measurement, such as but not limited to: Machine Type Communication (MTC, Machine Type Communication) terminals, In-vehicle communication terminals, device-to-device (D2D, Device to Device) terminals, machine-to-machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • the embodiments of the present application may be used to improve the route selection of the BAP (backhaul adaptation protocol, backhaul adaptation protocol) sublayer.
  • BAP backhaul adaptation protocol, backhaul adaptation protocol
  • a 5G multi-hop IAB network deployment scenario is used as an example.
  • multiple UEs connect to the IAB host through multi-hop IAB nodes, and finally access the 5G network.
  • IAB node and the IAB host For the definitions of the IAB node and the IAB host, reference may be made to the related art, and the description is omitted here.
  • the above scenario is only an example of the implementation scenario of the embodiment of the present application, and does not constitute a limitation on the embodiment of the present application.
  • the IP layer is carried above the BAP sublayer, and the BAP sublayer implements multi-hop routing.
  • Routing enhancements include enhanced BAP processes with path redundancy, such as local routing.
  • Local routing means that in addition to coping with wireless link failures, the local (that is, the intermediate IAB node) can make routing/reselection decisions.
  • Each destination BAP address can have multiple entries in the local routing table to help implement local routing. Therefore, local routing between IAB nodes can be implemented through some enhanced technologies, such as local routing priority, etc., so as to achieve load balancing, reduce congestion, and optimize performance.
  • the routing method may be referred to as local routing or local re-routing.
  • the routing may not be performed according to the routing ID (that is, the original route) contained in the BAP header.
  • the specific action of routing selection can be the selection of routing ID, the selection of entry in routing configuration, the selection of path ID, the selection of egress connection, and so on.
  • This embodiment of the present application provides a routing method, which is described from the side of an IAB node in an IAB network.
  • the IAB node is referred to as the first node.
  • the method of the embodiment of the first aspect of the present application describes the triggering condition of routing.
  • FIG. 2 is a schematic diagram of an example of a routing method according to an embodiment of the present application. As shown in FIG. 2 , the method includes:
  • the first node performs route selection when at least one of the following conditions 1 to 4 is satisfied:
  • Condition 1 The BH RLF indication is received from the second node
  • Condition 2 the first flow control feedback information is received, and the first flow control feedback information indicates that data congestion occurs on the third node;
  • Condition 3 The load of the first egress BH RLC channel exceeds the expected level
  • Condition 4 The load corresponding to the first routing identifier exceeds an expected level.
  • data loss can be avoided, congestion can be reduced, load balancing can be achieved, and network performance can be improved.
  • the routing selection refers to at least one of the following: selection of a routing identifier, selection of an entry in a routing configuration, selection of a path identifier, and selection of an egress connection.
  • the data congestion refers to: the first flow control feedback information shows that the available buffer size of a BH RLC channel is lower than the first threshold, or the available buffer size for a route identifier is lower than the first Two thresholds.
  • the first egress BH RLC channel may be the egress connection ID corresponding to the routing identifier of the BAP header, the ingress connection ID from which the BAP data packet comes, and the ingress BH RLC channel ID, obtained from the BH RLC channel mapping configuration The egress BH RLC channel.
  • the first routing identifier may be the routing identifier included in the BAP header.
  • the first node performs route selection when receiving the BH RLC instruction. In some embodiments, when the first node receives the BH RLF indication from the second node, the first node performs routing until the RLF recovery of the first node is completed and the IAB host reroutes the first node configuration.
  • the second node may be a parent node (parent node) of the first node.
  • an IAB node first node
  • receives a BH RLF indication from its parent node (second node) it triggers routing of upstream traffic until the IAB node's RLF recovery is complete and the IAB hosts the IAB
  • the node has undergone routing reconfiguration.
  • the routing reconfiguration of the IAB node can be completed by the Donor-CU (Centralized Unit) of the IAB host, but the present application is not limited to this, and can also be completed by other units of the IAB host.
  • Donor-CU Centralized Unit
  • FIG 3 is a schematic diagram of an example of the local route reselection after the IAB node receives the BH RLF instruction.
  • the IAB node 3 (the second node) detects the BH at its IAB-MT (mobile termination) end. If the RLF recovery fails, it will send a BH RLF indication to its own child node, that is, the IAB node 2 (the first node).
  • IAB node 2 receives the BH RLF indication of IAB node 3, one of the parent nodes, it switches the uplink data transmission path from path 1 to path 2 until the RLF recovery of IAB node 2 is completed, and the Donor-CU of the IAB host Route reconfiguration is performed on IAB node 2.
  • the above BH RLF indication may be sent in the form of a BAP control PDU (protocol data unit).
  • BAP control PDU protocol data unit
  • the first node performs route selection when traffic congestion occurs. That is, when the first node receives flow control feedback information (referred to as first flow control feedback information), and the flow control feedback information indicates that data congestion occurs to the third node, route selection is performed.
  • the flow control feedback information may come from the third node or from any other node.
  • the third node may be a parent node of the first node, or may be a child node of the first node. It is assumed that the above-mentioned third node is a child node of the above-mentioned first node as an example. If an IAB node (the first node) receives a flow control feedback (flow control feedback), and the flow control feedback indicates that data congestion has occurred at another IAB node (the third node), the one IAB node (the third node) A node) can perform local routing.
  • a flow control feedback flow control feedback
  • the occurrence of data congestion may be that the available buffer size (available buffer size) of a BH RLC channel displayed in the above-mentioned flow control feedback information is lower than the first threshold, or it may be for a The available cache size of the route identification is below the second threshold.
  • the first node performs local route re-selection, which may be: to route to the above-mentioned third node.
  • the BAP data packet is rerouted, for example, when the BAP data packet is routed, the path to the above-mentioned third node is not selected; or, the BAP data packet that was originally to be mapped to the BH RLC channel was rerouted, For example, when routing BAP packets, the path that would result in mapping to the BHR RLC channel is not selected.
  • the first node if the flow control feedback information shows that the available buffer size for a route identifier is lower than the second threshold, the first node performs local route re-selection, which may be: for the route to be routed to the third node Reroute the BAP data packet, or reroute the BAP data packet containing the above routing identifier in the BAP header.
  • the above routing identity may include a destination BAP address and a path identity (path identity), but the present application is not limited thereto.
  • the BAP address is also called DESTINATION in the BAP header.
  • the first threshold and the second threshold may be configured by the IAB host for the above-mentioned first node.
  • the present application is not limited thereto, and the first threshold and the second threshold may also be predefined or preconfigured.
  • the above-mentioned flow control feedback may be triggered because the cache load exceeds a certain specified level, or may be a response to a flow control polling (flow control polling).
  • the third node or other nodes send the above-mentioned flow control feedback information to the above-mentioned first node.
  • the third node or other nodes receive a flow control request from the first node
  • the above-mentioned flow control feedback information about the third node is sent to the first node.
  • both the above-mentioned flow control request and the above-mentioned flow control feedback are sent by the BAP control PDU of each node.
  • a timer may be used to determine the duration of route reselection.
  • a timer for route re-selection can be set.
  • the timer is started, and the local route re-selection for the route that currently has data congestion occurs in this timer. Start at runtime. And after the timer expires, the local route re-selection for the route where data congestion currently occurs is disabled, that is, the route re-selection for the original route is stopped, and the original route selection is restored.
  • each timer corresponds to a route in which data congestion occurs, and the multiple timers may run independently at the same time, indicating the congestion time of different routes.
  • the duration of route reselection may be determined by flow control feedback information (referred to as second flow control feedback information) indicating that data congestion does not occur in the original route.
  • second flow control feedback information indicating that data congestion does not occur in the original route.
  • the first node may obtain the above-mentioned flow control feedback information by sending a flow control request to the third node, but the present application is not limited thereto.
  • the first node receives flow control feedback information indicating that data congestion has occurred (that is, the above-mentioned first flow control feedback information)
  • the first node continues the route reselection of the new original route.
  • the specific implementation process is as follows: As mentioned above, it will not be repeated here.
  • the above two manners of determining the duration of route reselection may be implemented separately, or may be implemented in combination, for example, when one of the above two manners of determining the duration of route reselection is satisfied, stop Local route re-election of the original route.
  • the above-mentioned original route is a general reference. If the flow control feedback (the first flow control feedback information or the second flow control feedback information) is for route identification, the original route refers to the route or path indicated by the BAP header of the BAP data packet. If the flow control feedback (the first flow control feedback information or the second flow control feedback information) is for the BH RLC channel, the original route refers to the route indicated by the BAP header of the BAP data packet and the BH RLC channel mapping configuration. The route or path of packets to be mapped to this BH RLC channel, which includes the portion of one or more route or path data that is mapped to this BH RLC channel.
  • FIG. 4 is a schematic diagram of an example of routing re-selection after the IAB node receives the flow control feedback.
  • the above-mentioned flow control feedback information is sent by the third node.
  • the IAB node 5 the first node
  • the IAB node 3 the third node
  • the flow control feedback information indicates that the data congestion occurs in the IAB node 3
  • the IAB node 5 re-routes the downlink service, and switches the path 1 to the path 2.
  • the first node performs route selection when there is a demand for load balancing. That is, the first node performs routing when the load on the first egress BHRLC channel exceeds a desired level.
  • the load on the first egress BH RLC channel exceeding the desired level means that the available or desired buffer size of the first egress BH RLC channel on the first egress link is lower than the third threshold, and the available buffer size of the second egress BH RLC channel on the second egress connection is higher than the fourth threshold.
  • the available cache size is lower than the third threshold may mean that the amount of data in the buffer is higher than a certain threshold, or the buffer occupation is higher than a certain threshold, or the like.
  • That the available cache size is higher than the fourth threshold may mean that the amount of buffer data is lower than a certain threshold, or the cache occupancy rate is lower than a certain threshold, or the like.
  • the load exceeding the expected level may also mean that the difference between the buffer data volume corresponding to the first egress BH RLC channel and another buffer data volume corresponding to the second egress BH RLC channel is higher than a certain threshold.
  • the identifier of the second egress connection is determined by the next-hop BAP address (Next-Hop BAP Address) IE (information element) corresponding to a routing identifier in the BH routing configuration (BH Routing Configuration). , information element) indicates, and the BAP address corresponding to the above routing identifier is the same as the DESTINATION on the BAP header of the current data packet.
  • Next-Hop BAP Address Next-Hop BAP Address
  • IE information element
  • the BAP address corresponding to the above routing identifier is the same as the DESTINATION on the BAP header of the current data packet.
  • the above-mentioned second egress BH RLC channel is indicated by the Egress BH RLC Channel ID (Egress BH RLC CH ID) IE of an entry in the BH RLC Channel Mapping Configuration (BH RLC Channel Mapping Configuration) , the entry BH RLC channel identifier of the entry matches the entry BH RLC channel of the current BAP data packet, the entry connection identifier of the entry matches the entry connection of the current BAP data packet, and the exit connection identifier of the entry corresponds to the above-mentioned second exit connection. Therefore, the second egress BH RLC channel is the egress BH RLC channel mapped to according to the configuration after the second egress connection is selected.
  • FIG. 5 is a schematic diagram of an example in which an IAB node implements load balancing through route reselection.
  • the condition of the available buffer size of the IAB node 2 that is, the available or expected buffer size of the first egress BH RLC channel on the first egress connection (the egress connection corresponding to path 1) is low
  • the available buffer size of the second egress BH RLC channel on the second egress connection (the egress connection corresponding to path 2) is higher than the fourth threshold
  • the IAB node 2 reroutes the uplink traffic from path 1 to path 2.
  • FIG. 5 takes the uplink service as an example, and the present application is not limited thereto.
  • the methods of the embodiments of the present application are also applicable.
  • route re-selection can be performed.
  • the egress connection and egress BH RLC channel of the IAB node is in the direction of the child node. Routing is also choosing a route towards the child node.
  • the third threshold and the fourth threshold may be configured by the IAB host for the above-mentioned first node.
  • the present application is not limited thereto, and the third threshold and the fourth threshold may also be predefined or preconfigured.
  • the first node performs route selection when there is a demand for load balancing. That is, the first node performs routing selection when the load corresponding to the first routing identifier exceeds an expected level.
  • the load corresponding to the first routing identifier exceeds an expected level means: the available buffer size corresponding to the first routing identifier is lower than the fifth threshold, and another routing identifier having the same BAP address as the routing identifier
  • the corresponding available cache size is above the sixth threshold.
  • the available buffer size is lower than the fifth threshold may mean that the amount of buffer data is higher than a certain threshold, or the buffer occupation is higher than a certain threshold, or the like.
  • That the available cache size is higher than the sixth threshold may mean that the amount of buffer data is lower than a certain threshold, or the cache occupancy rate is lower than a certain threshold, or the like.
  • the load exceeding the expected level may also mean that the difference between the buffer data volume corresponding to the first routing ID and the buffer data volume of another routing ID having the same BAP address as the routing ID is higher than a certain threshold.
  • the IAB node 2 when the condition of the available cache size of the IAB node 2 is satisfied, that is, the available cache size corresponding to the first route identifier (corresponding to path 1) is lower than the fifth threshold, and another When the available buffer size corresponding to the routing identifier with the same BAP address (corresponding to path 2) with the first routing identifier is higher than the sixth threshold, the IAB node 2 reroutes the uplink service from path 1 to path 2.
  • FIG. 5 takes the uplink service as an example, and the present application is not limited thereto.
  • the methods of the embodiments of the present application are also applicable.
  • the fifth threshold and the sixth threshold may be configured by the IAB host for the above-mentioned first node.
  • the present application is not limited thereto, and the fifth threshold and the sixth threshold may also be predefined or preconfigured.
  • data loss can be avoided, congestion can be reduced, load balancing can be achieved, and network performance can be improved.
  • This embodiment of the present application provides a routing method, which is described from the side of an IAB node in an IAB network.
  • the IAB node is referred to as the first node.
  • the method of the embodiment of the second aspect of the present application describes a specific method of routing.
  • the triggering condition of the routing may be the same as the embodiment of the first aspect, but the present application is not limited to this. In the case that the routing is triggered by other conditions, the method of the embodiment of the second aspect of the present application may also be used. Make routing.
  • FIG. 6 is a schematic diagram of an example of a routing method according to an embodiment of the present application. As shown in FIG. 6 , the method includes:
  • the first node receives a first routing configuration message, where the first routing configuration message includes a configuration message corresponding to multiple routing identifiers, and the configuration message corresponding to each routing identifier includes at least one of the following: priority, jump number (hops), and average delay (average delay).
  • the IAB node by adding the above-mentioned optional information elements or fields for each routing identifier in the first routing configuration message, it can help the IAB node (the first node) to make a local decision when performing routing re-selection .
  • the above-mentioned “priority” is the priority of the route recommended by the CU of the IAB host (referred to as Donor-CU) to the IAB node. For example, for a number indicating "priority", a larger number indicates that the route has higher transmission performance in the eyes of the Donor-CU.
  • the above-mentioned "hop count” indicates the number of hops remaining to reach the destination address in the routing identifier, that is, from the first node to the destination in the routing identifier How many hops are left for the address.
  • the above-mentioned "average delay” refers to the average end-to-end delay of the path corresponding to the route identifier observed by the IAB host (for example, the Donor-CU of the IAB host) in a certain time window , which can be derived by any method of measurement and reporting.
  • the first route configuration message may be provided by the IAB host through F1AP (F1 application protocol, F1 interface application protocol) signaling.
  • F1AP F1 application protocol, F1 interface application protocol
  • the present application is not limited to this.
  • F1AP signaling reference may be made to the related art, and the description is omitted here.
  • the method further includes:
  • the first node selects a routing identifier according to the first routing configuration message.
  • the above-mentioned first routing configuration message may be a BAP mapping configuration (MAPPING CONFIGURATION) message, but the present application is not limited thereto.
  • BAP map configuration message An example of a BAP map configuration message is given in Table 1 below.
  • the "priority” field, the "hops” field and the "average delay” field are added.
  • the "priority” field if the "priority” field is 0 (or other specific values) , called the first value), it means that the path ID can only be used in RLF.
  • the "priority” field if the "priority” field is a value other than 0, it indicates the priority of the corresponding routing identifier. Therefore, the first node can select the route according to the priority indicated by the other value. , select the route ID.
  • Table 1 is just an example, and other entries or items may also be included in the BAP mapping configuration message.
  • the first node obtains the BH routing configuration according to the first routing configuration message.
  • the principle of selecting a routing identifier is to select a new routing identifier that has the same BAP address as the routing identifier in the current BAP header in the BH routing configuration. If multiple routing IDs are available, select the routing ID with high priority, few hops, and low average delay.
  • the specific algorithm is not limited.
  • the routing identity selected by the first node also needs to meet the following conditions:
  • the available buffer size of the first egress BH RLC channel on the first egress connection currently selected (that is, corresponding to the routing identifier specified by the current BAP header) is lower than the third threshold, and the second egress corresponding to the selected routing identifier
  • the available buffer size of the second egress BH RLC channel on the connection is above the fourth threshold. This condition has already been described in the embodiment of the first aspect, and the description is omitted here.
  • the first egress BH RLC channel may be the egress connection ID corresponding to the routing identifier of the BAP header, the ingress connection ID from which the BAP data packet comes, and the ingress BH RLC channel ID, obtained from the BH RLC channel mapping configuration The egress BH RLC channel.
  • the re-selected routing ID also needs to meet the following conditions:
  • the available buffer size corresponding to the current routing ID (that is, the routing ID specified by the current BAP header) is lower than the fifth threshold, and the available buffer size corresponding to the selected routing ID is higher than the sixth threshold. This condition has already been described in the embodiment of the first aspect, and the description is omitted here.
  • the first routing identifier may be the routing identifier included in the BAP header.
  • FIG. 6 only schematically illustrates the embodiment of the present application, but the present application is not limited thereto. For example, some other operations can be added, or some of them can be reduced. Those skilled in the art can make appropriate modifications according to the above content, and are not limited to the description of the above-mentioned FIG. 6 .
  • the network performance can be improved.
  • the embodiment of the present application provides a routing method, which is described from the side of the IAB host in the IAB network. The same content as in the embodiment of the second aspect will not be repeated.
  • FIG. 7 is a schematic diagram of an example of a routing method according to an embodiment of the present application. As shown in FIG. 7 , the method includes:
  • the IAB host sends a first routing configuration message to a first node, where the first routing configuration message is used for the first node to select a routing identifier, and the first routing configuration message includes configuration messages corresponding to multiple routing identifiers, corresponding to The configuration message of each route identification includes at least one of the following: priority (priority), hops (hops), and average delay (average delay).
  • the above-mentioned first node is an IAB node in the IAB network, for example, the IAB node in the embodiment of the first aspect, or the terminal IAB node in the embodiment of the second aspect.
  • the Donor-CU since the Donor-CU usually has more information about the entire topology network, it has higher authority to the IAB node, and sending a routing configuration message to the IAB node through the IAB host can help the IAB node (No. A node) makes local decisions when routing.
  • priority information can be used to indicate whether local routing is allowed or not. For example, if the value of the above priority is the first value, such as 0, then the routing identifier corresponding to the priority is only used in the case of BH RLF; if the value of the above priority is other than the first value, then The value of the priority can be used to indicate the priority of the corresponding routing identifier, so that the first node can select the routing identifier according to the priority indicated by the other value.
  • Donor-CU can implement more fine-grained local routing control, such as disabling the local selection of certain routing identifiers, thereby improving the flexibility of routing management.
  • the method further includes:
  • the IAB host sends a second routing configuration message to the first node, where the second routing configuration message is used to enable or disable the above routing selection.
  • the second routing configuration message may be 1-bit information. In this way, the enabling or disabling of routing can be realized through 1-bit information, which improves the flexibility of routing management.
  • the above-mentioned first routing configuration information may further include hops (hops) and/or average delay (average delay), which may be implemented through a BAP mapping configuration message.
  • hops hops
  • average delay average delay
  • the flexibility of route management can be improved.
  • the device may be an IAB node in an IAB network, or may be some or some components or components configured in the IAB node.
  • the IAB node is referred to as the first node.
  • FIG. 8 is a schematic diagram of an example of a routing device according to an embodiment of the present application. Since the principle of the device for solving problems is similar to the method of the embodiment of the first aspect, the specific implementation of the device may refer to the method of the embodiment of the first aspect. The implementation of the same content will not be repeated. As shown in FIG. 8 , the routing device 800 in this embodiment of the present application includes:
  • the first node receives a BHR RLF indication from the second node
  • the first node receives the first flow control feedback information, and the first flow control feedback information indicates that data congestion occurs to the third node;
  • the load on the first egress BH RLC channel exceeds the expected level
  • the load corresponding to the first route identification exceeds the expected level.
  • the second node may be a parent node of the first node
  • the third node may be a child node of the first node, but the present application is not limited thereto.
  • the selection unit 801 performs route selection when the first node receives the BH RLF indication from the second node, until the RLF recovery of the first node is completed and the IAB host performs routing on the first node route reconfiguration.
  • the selection unit 801 when the first node receives first flow control feedback information, and the first flow control feedback information indicates that data congestion occurs to the third node, the selection unit 801 performs route selection, including: :
  • the selection unit 801 selects the original The BAP data packets routed to the third node are rerouted.
  • the selection unit 801 performs route selection when the first node receives first flow control feedback information, and the first flow control feedback information indicates that data congestion occurs at the third node, including: :
  • the selection unit 801 reroutes the BAP data packets that were originally to be mapped to the BH RLC channel;
  • the selection unit 801 reroutes the BAP data packet containing the route identifier in the BAP header.
  • the selection unit 801 stops route reselection for the original route if at least one of the following conditions is satisfied:
  • Second flow control feedback information is received, where the second flow control feedback information indicates that no data congestion occurs in the original route.
  • the original route refers to: the route or path where the data congestion occurs; if the first flow control feedback information is directed to the BH RLC channel, the original route refers to the route or path of the data packet originally to be mapped to the BH RLC channel in which the data congestion occurs.
  • the route or path of the data packets of the BH RLC channel in which the data congestion occurred comprises one or more portions of the route or path data that map to the BH RLC channel.
  • the load on the first egress BH RLC channel exceeding a desired level means: the available buffer size of the first egress BH RLC channel on the first egress connection is below a third threshold, and the The available buffer size of the second egress BH RLC channel is higher than the fourth threshold.
  • the identifier of the second egress connection is indicated by the next-hop BAP address IE corresponding to a routing identifier in the BH routing configuration, and the BAP address corresponding to the routing identifier and the BAP header of the current data packet are indicated.
  • the DESTINATION is the same.
  • the second egress BH RLC channel is indicated by the egress BH RLC channel identifier IE of an entry in the BH RLC channel mapping configuration, the entry's ingress BH RLC channel identifier matching the ingress BH RLC of the current BAP data packet channel, the ingress connection identifier of the entry matches the ingress connection of the current BAP data packet, and the egress connection identifier of the entry corresponds to the second egress connection.
  • the third threshold and the fourth threshold are configured by the IAB host for the first node.
  • the load corresponding to the first routing identifier exceeds an expected level means: the available cache size corresponding to the first routing identifier is lower than a fifth threshold, and another cache with the same BAP address as the first routing identifier The available cache size corresponding to the routing identifier is higher than the sixth threshold.
  • the fifth threshold and the sixth threshold are configured by the IAB host for the first node.
  • FIG. 9 is a schematic diagram of another example of a routing device according to an embodiment of the present application. Since the principle of the device for solving problems is similar to the method of the embodiment of the second aspect, the specific implementation of the device may refer to the embodiment of the second aspect. The implementation of the method will not be repeated for the same content. As shown in FIG. 9 , the routing device 900 in this embodiment of the present application includes:
  • a receiving unit 901 which receives a first routing configuration message, where the first routing configuration message includes configuration information corresponding to multiple routing identifiers, and the configuration information corresponding to each routing identifier includes at least one of the following: priority, jump number (hops), and average delay (average delay).
  • the apparatus 900 further includes:
  • a selection unit 902 which selects a routing identifier according to the first routing configuration message.
  • the first route configuration message is provided by the IAB host through F1AP signaling.
  • the priority is the priority of the route recommended by the IAB host to the first node; the hop count indicates the remaining hop count to reach the destination address in the route identifier ;
  • the average delay refers to the average end-to-end delay in a time window of the path observed by the IAB host corresponding to the route identifier.
  • the routing identifier corresponding to the priority is only used in the case of BH RLF; if the value of the priority is other than the first value value, the value of the priority indicates the priority of the corresponding routing identifier, and the first node performs route selection according to the priority indicated by the other values.
  • the selected routing identity if the routing selection is caused by the load of the first egress BH RLC channel exceeding the expected level, the selected routing identity also needs to meet the following conditions:
  • the available buffer size of the first egress BH RLC channel on the first egress connection is lower than the third threshold, and the available buffer size of the second egress BH RLC channel on the second egress connection corresponding to the selected route identifier is higher than the fourth threshold .
  • the selected routing identification if the routing selection is caused by the load corresponding to the first routing identification exceeding the expected level, the selected routing identification also needs to meet the following conditions:
  • the available buffer size corresponding to the first routing identifier is lower than the fifth threshold, and the available buffer size corresponding to the selected routing identifier is higher than the sixth threshold.
  • the first egress BH RLC channel may be the egress connection ID corresponding to the routing identifier of the BAP header, the ingress connection ID from which the BAP data packet comes, and the ingress BH RLC channel ID, obtained from the BH RLC channel mapping configuration The egress BH RLC channel.
  • the first routing identifier may be the routing identifier included in the BAP header.
  • routing device 800/900 in this embodiment of the present application may further include other components or modules, and for the specific content of these components or modules, reference may be made to the related art.
  • FIG. 8 and FIG. 9 only exemplarily show the connection relationship or signal direction between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used .
  • the above-mentioned components or modules may be implemented by hardware facilities such as processors, memories, transmitters, receivers, etc. The implementation of this application does not limit this.
  • network performance can be improved.
  • An embodiment of the present application provides a routing device, for example, the device may be an IAB host in an IAB network, or may be one or some components or components configured in the IAB host.
  • FIG. 10 is a schematic diagram of an example of a routing device according to an embodiment of the present application. As shown in FIG. 10 , the routing device 1000 in the embodiment of the present application includes:
  • a first sending unit 1001 which sends a first routing configuration message to a first node, where the first routing configuration message is used by the first node to select a routing identifier, and the first routing configuration message includes configurations corresponding to multiple routing identifiers message, the configuration message corresponding to each routing identifier includes at least one of the following: priority (priority), hops (hops), and average delay (average delay).
  • the apparatus 1000 further includes:
  • a second sending unit which sends a second routing configuration message to the first node, where the second routing configuration message is used to enable or disable the routing.
  • the second routing configuration message is 1-bit information.
  • the priority is the priority of the route recommended by the IAB host to the first node; the hop count indicates the remaining hop count to reach the destination address in the route identifier ;
  • the average delay refers to the average end-to-end delay in a time window of the path observed by the IAB host corresponding to the route identifier.
  • the routing identifier corresponding to the priority is only used in the case of BH RLF; if the value of the priority is other than the first value value, the value of the priority indicates the priority of the corresponding routing identifier, and the first node performs route selection according to the priority indicated by the other values.
  • routing device 1000 in this embodiment of the present application may further include other components or modules, and for the specific content of these components or modules, reference may be made to the related art.
  • FIG. 10 only exemplarily shows the connection relationship or signal direction between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used.
  • the above-mentioned components or modules may be implemented by hardware facilities such as processors, memories, transmitters, receivers, etc. The implementation of this application does not limit this.
  • the flexibility of route management can be improved.
  • the embodiments of the present application provide a communication system.
  • FIG. 11 is a schematic diagram of an example of a communication system according to an embodiment of the present application.
  • the communication system 1100 in this embodiment of the present application includes an IAB node 1101 and an IAB host 1102 .
  • FIG. 11 only takes four IAB nodes 1101 and one IAB host 1102 as an example for description, but the embodiment of the present application is not limited thereto.
  • the communication system 1100 may also include a terminal device (not shown in the figure).
  • the IAB node 1101 and the IAB host 1102 reference may be made to related technologies, and the description is omitted here.
  • the existing service or the service that can be implemented in the future may be transmitted between the IAB node 1101 and the terminal device.
  • these services may include, but are not limited to: Enhanced Mobile Broadband (eMBB), Massive Machine Type Communication (mMTC), Highly Reliable Low Latency Communication (URLLC), and Vehicle-to-Network (V2X) communication, among others.
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • URLLC Highly Reliable Low Latency Communication
  • V2X Vehicle-to-Network
  • the IAB node 1101 is configured to perform the method of an embodiment of the first aspect or the second aspect.
  • the IAB host 1102 is configured to perform the method of the embodiments of the third aspect.
  • the related content of the IAB node 1101 and the IAB host 1102 please refer to the embodiments of the first aspect to the third aspect, and the description is omitted here.
  • the embodiment of the present application also provides an IAB node.
  • FIG. 12 is a schematic diagram of an example of an IAB node according to an embodiment of the present application.
  • the IAB node 1200 may include a processor 1201 and a memory 1202 ; the memory 1202 stores data and programs, and is coupled to the processor 1201 .
  • this figure is exemplary; other types of structures may be used in addition to or in place of this structure to implement telecommunication functions or other functions.
  • the processor 1201 may be configured to execute a program to implement the method as described in the embodiments of the first aspect or the second aspect.
  • the IAB node 1200 may further include: a communication module 1203 , an input unit 1204 , a display 1205 , and a power supply 1206 .
  • the functions of the above components are similar to those in the prior art, and details are not repeated here. It is worth noting that the IAB node 1200 does not necessarily include all the components shown in FIG. 12 , and the above components are not required; in addition, the IAB node 1200 may also include components not shown in FIG. 12 . There is technology.
  • the embodiments of the present application also provide an IAB host.
  • FIG. 13 is a schematic diagram of an example of an IAB host according to an embodiment of the present application.
  • the IAB host 1300 may include a processor 1301 and a memory 1302 ; the memory 1302 stores data and programs, and is coupled to the processor 1301 .
  • this figure is exemplary; other types of structures may be used in addition to or in place of this structure to implement telecommunication functions or other functions.
  • the processor 1301 may be configured to execute a program to implement the method as described in the embodiments of the third aspect.
  • the IAB host 1300 may further include: a communication module 1303 , an input unit 1304 , a display 1305 , and a power supply 1306 .
  • the functions of the above components are similar to those in the prior art, and details are not repeated here. It is worth noting that the IAB host 1300 does not necessarily include all the components shown in FIG. 13 , and the above components are not required; in addition, the IAB host 1300 may also include components not shown in FIG. 13 . There is technology.
  • the embodiments of the present application further provide a computer-readable program, wherein when the program is executed in an IAB node, the program causes a computer to execute the embodiment of the first aspect or the second aspect in the IAB node. method.
  • the embodiment of the present application further provides a storage medium storing a computer-readable program, wherein the computer-readable program causes a computer to execute the method described in the embodiment of the first aspect or the second aspect in an IAB node.
  • the embodiment of the present application also provides a computer-readable program, wherein when the program is executed in an IAB host, the program causes a computer to execute the method described in the embodiments of the third aspect in the IAB host.
  • the embodiment of the present application further provides a storage medium storing a computer-readable program, wherein the computer-readable program causes a computer to execute the method described in the embodiment of the third aspect in an IAB host.
  • the apparatuses and methods above in the present application may be implemented by hardware, or may be implemented by hardware combined with software.
  • the present application relates to a computer-readable program that, when executed by logic components, enables the logic components to implement the above-described apparatus or constituent components, or causes the logic components to implement the above-described various methods or steps.
  • Logic components such as field programmable logic components, microprocessors, processors used in computers, and the like.
  • the present application also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, and the like.
  • the method/apparatus described in conjunction with the embodiments of this application may be directly embodied as hardware, a software module executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams shown in the figures and/or one or more combinations of the functional block diagrams may correspond to either software modules or hardware modules of the computer program flow.
  • These software modules may respectively correspond to the various steps shown in the figure.
  • These hardware modules can be implemented by, for example, solidifying these software modules using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor, such that the processor can read information from, and write information to, the storage medium; or the storage medium can be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the software module can be stored in the memory of the mobile terminal, or can be stored in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • the functional blocks and/or one or more combinations of the functional blocks described in the figures can be implemented as a general-purpose processor, a digital signal processor (DSP) for performing the functions described in this application ), Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or any suitable combination thereof.
  • DSP digital signal processor
  • ASICs Application Specific Integrated Circuits
  • FPGAs Field Programmable Gate Arrays
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described with respect to the figures can also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors processor, one or more microprocessors in communication with the DSP, or any other such configuration.
  • a routing method wherein the method comprises:
  • the first node performs routing selection when at least one of the following conditions is satisfied:
  • the load on the first egress BH RLC channel exceeds the expected level
  • the load corresponding to the first route identification exceeds the expected level.
  • routing selection refers to at least one of the following: selection of a routing identifier, selection of an entry in a routing configuration, selection of a path identifier, and selection of an egress connection.
  • the method according to appendix 1 wherein, the first exit BH RLC channel is the exit connection ID corresponding to the routing identifier of the BAP header, the entry connection ID and the entry BH RLC channel ID from which the BAP data packet comes, are The egress BH RLC channel obtained by the BH RLC channel mapping configuration.
  • the available buffer size of the first egress BH RLC channel on the first egress connection is below the third threshold, and the available buffer size of the second egress BH RLC channel on the second egress connection is above the fourth threshold.
  • the available buffer size corresponding to the first routing identifier is lower than the fifth threshold, and the available buffer size corresponding to another routing identifier having the same BAP address as the first routing identifier is higher than the sixth threshold.
  • the first node will The BAP data packets routed to the third node are rerouted.
  • Routing including:
  • the first node reroutes the BAP data packet that was originally to be mapped to the BHRLC channel;
  • the first node reroutes the BAP data packet containing the route identifier in the BAP header.
  • route reselection for the original route is stopped:
  • Second flow control feedback information is received, where the second flow control feedback information indicates that no data congestion occurs in the original route.
  • the original route refers to: the route or path where the data congestion occurs;
  • the original route refers to the route or path of the data packet originally to be mapped to the BH RLC channel in which the data congestion occurs.
  • the route or path of the data packet of the BH RLC channel in which the data congestion occurs includes one or more parts of the route or path data that are mapped to the BH RLC channel.
  • a routing method wherein the method comprises:
  • the first node receives a first routing configuration message, where the first routing configuration message includes configuration information corresponding to multiple routing identifiers, and the configuration information corresponding to each routing identifier includes at least one of the following: priority, number of hops ( hops), and average delay.
  • the first node selects a routing identifier according to the first routing configuration message.
  • the route selection is caused by the load on the first egress BH RLC channel exceeding the expected level, then the selected route identity satisfies the following conditions:
  • the available buffer size of the first egress BH RLC channel on the first egress connection is lower than the third threshold, and the available buffer size of the second egress BH RLC channel on the second egress connection corresponding to the selected route identifier is higher than the fourth threshold .
  • the selected routing ID satisfies the following conditions:
  • the available buffer size corresponding to the first routing identifier is lower than the fifth threshold, and the available buffer size corresponding to the selected routing identifier is higher than the sixth threshold.
  • the priority is the priority of the route recommended by the IAB host to the first node
  • the number of hops indicates the number of hops remaining to reach the destination address (destination address) in the routing identifier
  • the average delay refers to the average end-to-end delay in a time window of the path corresponding to the route identifier observed by the IAB host.
  • the routing identifier corresponding to the priority is only used in the case of BH RLF;
  • the value of the priority indicates the priority of the corresponding routing identifier, and the first node performs routing according to the priority indicated by the other value choose.
  • a routing method wherein the method comprises:
  • the IAB host sends a first routing configuration message to the first node, where the first routing configuration message is used by the first node to select a routing identifier, and the first routing configuration message includes configuration messages corresponding to multiple routing identifiers, corresponding to each routing identifier.
  • the configuration message of each routing identifier includes at least one of the following: priority (priority), number of hops (hops), and average delay (average delay).
  • the IAB host sends a second routing configuration message to the first node, the second routing configuration message being used to enable or disable the routing.
  • the priority is the priority of the route recommended by the IAB host to the first node
  • the number of hops indicates the number of hops remaining to reach the destination address (destination address) in the routing identifier
  • the average delay refers to the average end-to-end delay in a time window of the path corresponding to the route identifier observed by the IAB host.
  • the routing identifier corresponding to the priority is only used in the case of BH RLF;
  • the value of the priority indicates the priority of the corresponding routing identifier, and the first node performs routing according to the priority indicated by the other value choose.
  • An IAB node in an IAB network comprising a memory and a processor, wherein the memory stores a computer program, wherein the processor is configured to execute the computer program to implement any one of supplementary notes 1 to 18 the method described.
  • An IAB host in an IAB network comprising a memory and a processor, wherein the memory stores a computer program, wherein the processor is configured to execute the computer program to achieve any one of appendix 19 to 23 the method described.
  • a communication system comprising an IAB node and an IAB host, wherein the IAB node is configured to perform the method described in any one of appendices 1 to 18, and the IAB host is configured to execute appendices 19 to 23 The method of any one.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种路由选择方法、装置和系统,其中,所述方法包括:第一节点在以下条件的至少之一满足时,进行路由选择:从第二节点接收到BH RLF指示;接收到第一流量控制反馈信息,并且所述第一流量控制反馈信息指示第三节点发生了数据拥塞;第一出口BH RLC信道的负载超出期望的水平;第一路由标识对应的负载超出期望的水平。

Description

路由选择方法、装置和系统 技术领域
本申请涉及通信领域。
背景技术
接入回传一体化(integrated access and backhaul,IAB)在下一代无线接入网络(next generation radio access network,NG-RAN)中实现了无线中继的功能。这个中继节点叫做IAB节点(IAB node),它通过5G新无线(new radio,NR)同时支持接入和回传(backhaul,BH)。所有IAB节点通过一跳或者多跳来连接到一个IAB宿主(IAB-donor)。这些多跳连接形成了一个以IAB宿主为根节点的有向无环图(Directed Acyclic Graph,DAG)拓扑结构。IAB宿主负责执行IAB网络拓扑中集中式的资源管理、拓扑管理和路由管理。
在现有标准(3GPP Rel-16)中,当无线链路失败(radio link failure,RLF)发生时,IAB节点可以选择另一条路径来实现路由重选(re-routing)。图1示出了一个简单的IAB网络部署,其中包含四个IAB节点和一个IAB宿主。当IAB节点2和IAB节点3之间的链路发生了回传无线链路失败(BH RLF)时,IAB节点2可以将上行路由路径从路径1切换到路径2。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
发明人发现,不同路径上的数据速率的波动会使得某些路径上发生拥塞,尽管其他能到达同样终点的可用的路径其实是有容量的。在目前的标准中,任何指定数据单元都是被固定在一条路径上传输。即使BH RLF发生后可以在多个路径中进行选择,目前也没有好的路径重选机制来提高路由的灵活性,以及避免拥塞的路径,或者避免选择性能差的回传链路。
为了解决上述问题的至少一种或其它类似问题,本申请实施例提供了一种路由选 择方法、装置和系统,以避免数据丢失,减少拥塞,以及实现负载均衡。
根据本申请实施例的一方面,提供一种路由选择方法,所述方法包括:
第一节点在以下条件的至少之一满足时,进行路由选择:
从第二节点接收到BH RLF指示;
接收到第一流量控制反馈信息,并且所述第一流量控制反馈信息指示第三节点发生了数据拥塞;
第一出口BH RLC信道的负载超出期望的水平;
第一路由标识对应的负载超出期望的水平。
根据本申请实施例的另一方面,提供一种路由选择方法,所述方法包括:
第一节点接收第一路由配置消息,所述第一路由配置消息包括对应多个路由标识的配置信息,对应每个路由标识的配置信息包括以下至少之一:优先级(priority),跳数(hops),以及平均延迟(average delay)。
根据本申请实施例的再一方面,提供一种路由选择方法,所述方法包括:
IAB宿主向第一节点发送第一路由配置消息,所述第一路由配置消息用于所述第一节点选择路由标识,所述第一路由配置消息包括对应多个路由标识的配置消息,对应每个路由标识的配置消息包括以下至少之一:优先级(priority),跳数(hops),以及平均延迟(average delay)。
根据本申请实施例的一方面,提供一种路由选择装置,配置于IAB网络中的IAB节点,所述装置包括:
选择单元,其在以下条件的至少之一满足时,进行路由选择:
从第二节点接收到BH RLF指示;
接收到第一流量控制反馈信息,并且所述第一流量控制反馈信息指示第三节点发生了数据拥塞;
第一出口BH RLC信道的负载超出期望的水平;
第一路由标识对应的负载超出期望的水平。
根据本申请实施例的另一方面,提供一种路由选择装置,配置于IAB网络中的IAB节点,所述装置包括:
接收单元,其接收第一路由配置消息,所述第一路由配置消息包括对应多个路由标识的配置信息,对应每个路由标识的配置信息包括以下至少之一:优先级(priority), 跳数(hops),以及平均延迟(average delay)。
根据本申请实施例的再一方面,提供一种路由选择装置,配置于IAB网络中的IAB宿主,所述装置包括:
第一发送单元,其向第一节点发送第一路由配置消息,所述第一路由配置消息用于所述第一节点选择路由标识,所述第一路由配置消息包括对应多个路由标识的配置消息,对应每个路由标识的配置消息包括以下至少之一:优先级(priority),跳数(hops),以及平均延迟(average delay)。
本申请实施例的有益效果之一在于:根据本申请实施例,能够避免数据丢失,减少拥塞,以及实现负载均衡。具体来说,如果在收到BH RLF通知时,或者在附近节点发生拥塞时,或者需要负载均衡时进行本地的路由重选决策,网络性能比如延迟、数据丢失等会得到提升。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。在附图中:
图1是IAB网络部署的一个示意图;
图2是本申请第一方面的实施例的路由选择方法的一个示例的示意图;
图3是IAB节点收到BH RLF指示后进行本地路由重选的一个示例的示意图;
图4是IAB节点收到流量控制反馈之后进行路由重选的一个示例的示意图;
图5是IAB节点通过路由重选实现负载均衡的一个示例的示意图;
图6是本申请第二方面的实施例的路由选择方法的一个示例的示意图;
图7是本申请第三方面的实施例的路由选择方法的一个示例的示意图;
图8是本申请实施例的路由选择装置的一个示例的示意图;
图9是本申请实施例的路由选择装置的另一个示例的示意图;
图10是本申请实施例的路由选择装置的再一个示例的示意图;
图11是本申请实施例的通信系统的一个示例的示意图;
图12是本申请实施例的IAB节点的一个示例的示意图;
图13是本申请实施例的IAB宿主的一个示例的示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意 通信标准的网络,例如新无线(NR,New Radio)、长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、6G等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”(UE,User Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备,也可以称为“终端设备”(TE,Terminal Equipment)。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行 监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
根据本申请实施例的一方面,本申请实施例可以用于对BAP(backhaul adaptation protocol,回传适配协议)子层的路由选择进行改进。下面结合附图对本申请的各种实施方式进行说明。这些实施方式只是示例性的,不是对本申请的限制。
在下面的说明中,为了说明的方便,以5G多跳IAB网络部署场景为例,在该场景下,多个UE通过多跳的IAB节点连接到IAB宿主,最后接入5G网络。关于IAB节点和IAB宿主的定义,可以参考相关技术,此处省略说明。另外需要说明的是,上述场景只作为本申请实施例的实施场景的一个举例,对本申请实施例不构成限制。
在本申请实施例中,在无线回传中,IP层携带在BAP子层之上,由BAP子层来实现多跳路由。路由增强包括利用路径冗余进行增强的BAP流程,比如本地路由(local routing)。本地路由指在除了应对无线链路失败之外,本地(也就是中间IAB节点)可以做路由选择/重选的决策。每个目的BAP地址可以在本地路由表中有多个条目,用来帮助实现本地路由选择。因此,IAB节点之间的本地路由可以通过一些增强技术来实现,比如本地路由优先级等,从而达到负载均衡,减少拥塞,性能优化等。
在本申请实施例中,路由选择方法可以称为本地路由(local routing)或本地路由重选(local re-routing)。具体指在IAB节点对BAP数据包做路由决策时,可以不按照BAP报头包含的路由ID(也就是原有路由)进行路由。路由选择的具体动作可以是路由标识(routing ID)的选择,路由配置中条目的选择,路径标识(path id)的选择,出口连接的选择等。
第一方面的实施例
本申请实施例提供一种路由选择方法,从IAB网络中IAB节点的一侧进行说明。为了方便说明,将该IAB节点称为第一节点。本申请第一方面的实施例的方法描述路由选择的触发条件。
图2是本申请实施例的路由选择方法的一个示例的示意图,如图2所示,该方法包括:
201:第一节点在以下条件一至四的至少之一满足时,进行路由选择:
条件一:从第二节点接收到BH RLF指示;
条件二:接收到第一流量控制反馈信息,并且所述第一流量控制反馈信息指示第三节点发生了数据拥塞;
条件三:第一出口BH RLC信道的负载超出期望的水平;
条件四:第一路由标识对应的负载超出期望的水平。
根据本申请实施例的方法,能够避免数据丢失,减少拥塞,实现负载均衡,进而能够提升网络性能。
在本申请实施例中,所述路由选择是指以下至少之一:路由标识的选择,路由配置中条目的选择,路径标识的选择,出口连接的选择。
在本申请实施例中,所述数据拥塞是指:所述第一流量控制反馈信息中显示一个BH RLC信道的可用缓存大小低于第一阈值,或者针对一路由标识的可用缓存大小低于第二阈值。
在本申请实施例中,第一出口BH RLC信道可以是根据BAP报头的路由标识对应的出口连接ID,BAP数据包来自的入口连接ID和入口BH RLC信道ID,由BH RLC信道映射配置所得到的出口BH RLC信道。
在本申请实施例中,第一路由标识可以是BAP报头包含的路由标识。
在本申请实施例中,根据条件一,第一节点在收到BH RLC指示时进行路由选择。在一些实施例中,当上述第一节点从第二节点接收到BH RLF指示时,第一节点进行路由选择,直到该第一节点的RLF恢复完成并且IAB宿主对该第一节点进行了路由重配置。
在本申请实施例中,上述第二节点可以是上述第一节点的父节点(parent node)。例如,如果一个IAB节点(第一节点)从它的父节点(第二节点)收到BH RLF指示,则触发上行业务的路由选择,直到该IAB节点的RLF恢复完成,并且IAB宿主对该IAB节点进行了路由重配置。对该IAB节点进行路由重配置可以由该IAB宿主的Donor-CU(Centralized Unit)完成,但本申请不限于此,也可以由该IAB宿主的其他单元来完成。
图3是IAB节点收到BH RLF指示后进行本地路由重选的一个示例的示意图,如图3所示,IAB节点3(第二节点)在它的IAB-MT(mobile termination)端检测出BH RLF恢复失败,它会给自己的子节点即IAB节点2(第一节点)发送BH RLF 指示。当IAB节点2收到父节点之一的IAB节点3的BH RLF指示时,它将上行数据传输路径从路径1切换到路径2,直到IAB节点2的RLF恢复完成,并且IAB宿主的Donor-CU对IAB节点2进行了路由重配置。
在上述示例中,上述BH RLF指示可以以BAP控制PDU(protocol data unit)的形式发送。但本申请不限于此。
在本申请实施例中,根据条件二,第一节点在业务发生拥塞时进行路由选择。也即,第一节点在接收到流量控制反馈信息(称为第一流量控制反馈信息),并且该流量控制反馈信息指示第三节点发生了数据拥塞时,进行路由选择。该流量控制反馈信息可能来自该第三节点,也可能来自任意其他节点。
在本申请实施例中,上述第三节点可以是上述第一节点的父节点,也可以是上述第一节点的子节点。以上述第三节点是上述第一节点的子节点为例。如果一个IAB节点(第一节点)收到一个流量控制反馈信息(flow control feedback),且该流量控制反馈表明在另一个IAB节点(第三节点)处发生了数据拥塞,该一个IAB节点(第一节点)可以进行本地路由选择。
在本申请实施例中,在一些实施例中,发生了数据拥塞可以是上述流量控制反馈信息中显示一个BH RLC信道的可用缓存大小(available buffer size)低于第一阈值,也可以是针对一路由标识的可用缓存大小低于第二阈值。
在一些实施例中,如果上述流量控制反馈信息中显示一个BH RLC信道的可用缓存大小低于第一阈值,则第一节点进行本地路由重选,可以是:对本来要路由到上述第三节点的BAP数据包重选路由,例如在对BAP数据包进行路由选择时,不选择路由到上述第三节点的路径;或者,对本来要映射到所述BH RLC信道的BAP数据包重选路由,例如在对BAP数据包进行路由选择时,不选择会导致映射到所述BH RLC信道的路径。
在一些实施例中,如果上述流量控制反馈信息中显示针对一路由标识的可用缓存大小低于第二阈值,则第一节点进行本地路由重选,可以是:对本来要路由到上述第三节点的BAP数据包重选路由,或者,对BAP报头中包含上述路由标识的BAP数据包重选路由。上述路由标识可以包括目的BAP地址和路径标识(path identity),但本申请不限于此。BAP地址在BAP报头中也被称为DESTINATION(目的地)。
在上述实施例中,第一阈值和第二阈值可以由IAB宿主为上述第一节点进行配 置。本申请不限于此,第一阈值和第二阈值也可以是预定义或预配置的。
在上述实施例中,上述流量控制反馈可以是由于缓存负荷超出某一指定水平而触发的,也可以是针对流量控制请求(flow control polling)的响应。
例如,当第三节点的缓存负荷超出某一指定水平时,该第三节点或其他节点向上述第一节点发送上述流量控制反馈信息。
再例如,当第三节点或其他节点接收到来自第一节点的流量控制请求时,向所述第一节点发送关于第三节点的上述流量控制反馈信息。
在一些实施例中,上述流量控制请求和上述流量控制反馈都是由各节点的BAP控制PDU发送。
在本申请实施例中,在一些实施例中,可以通过定时器来决定路由重选的持续时间。例如,可以设定针对路由重选的定时器,当第一节点根据上述条件二,确定发生了数据拥塞时启动该定时器,针对目前发生了数据拥塞的路由的本地路由重选在该定时器运行时启动。并且在该定时器到期后,针对目前发生了数据拥塞的路由的本地路由重选被禁用,也即停止针对原有路由的路由重选,恢复原有路由选择。
在上述实施例中,定时器可以有多个,每个定时器对应一个发生了数据拥塞的路由,这多个定时器可以同时独立运行,表明不同路由的拥塞时间。
在本申请实施例中,在一些实施例中,可以通过指示原有路由没有发生数据拥塞的流量控制反馈信息(称为第二流量控制反馈信息)来决定路由重选的持续时间。例如,当第一节点接收到第二流量控制反馈信息,并且该第二流量控制反馈信息指示原有路由没有发生数据拥塞时,则恢复原有路由选择,停止针对原有路由的路由重选。在一些实施例中,第一节点可以通过向第三节点发送流量控制请求来得到上述流量控制反馈信息,但本申请不限于此。此外,如果第一节点接收到指示发生了数据拥塞的流量控制反馈信息(也即上述第一流量控制反馈信息),则第一节点继续新的原有路由的路由重选,具体的实施过程如前所述,此处不再赘述。
在本申请实施例中,上述两种决定路由重选的持续时间的方式可以分别实施,也可以合并实施,例如,当上述两种决定路由重选的持续时间的方式的其中一种满足时停止原有路由的本地路由重选。
在本申请实施例中,上述原有路由是个泛指。如果流量控制反馈(第一流量控制反馈信息或第二流量控制反馈信息)是针对路由标识的,则原有路由是指BAP数据 包的BAP报头指示的路由或路径。如果流量控制反馈(第一流量控制反馈信息或第二流量控制反馈信息)是针对BH RLC信道的,则原有路由是指根据BAP数据包的BAP报头指示的路由以及BH RLC信道映射配置,本来要映射到该BH RLC信道的数据包的路由或路径,它包括一个或多个路由或路径数据中映射到该BH RLC信道的部分。
图4是IAB节点收到流量控制反馈之后进行路由重选的一个示例的示意图。在这个示例中,由第三节点发送上述流量控制反馈信息。如图4所示,当IAB节点5(第一节点)收到其子节点即IAB节点3(第三节点)的流量控制反馈信息,并且,该流量控制反馈信息指示IAB节点3发生了数据拥塞时,IAB节点5对下行业务进行路由重选,将路径1切换到路径2。
在本申请实施例中,根据条件三,第一节点在有负载均衡的需求时进行路由选择。也即,第一节点在第一出口BH RLC信道的负载超出期望的水平时进行路由选择。
在一些实施例中,第一出口BH RLC信道的负载超出期望的水平是指:第一出口连接(egress link)上的第一出口BH RLC信道的可用或期望(desired)缓存大小低于第三阈值,并且第二出口连接上的第二出口BH RLC信道的可用缓存大小高于第四阈值。这里,可用缓存大小低于第三阈值可以是指缓冲区数据量高于某个阈值,或者缓存占用率(buffer occupation)高于某个阈值等。可用缓存大小高于第四阈值可以是指缓冲区数据量低于某个阈值,或者缓存占用率低于某个阈值等。负载超出期望水平还可以是指第一出口BH RLC信道对应的缓冲区数据量和另外一个与所述第二出口BH RLC信道对应的缓冲区数据量的差值高于某个阈值。
在上述实施例中,在一些实施例中,上述第二出口连接的标识被BH路由配置(BH Routing Configuration)中一个路由标识对应的下一跳BAP地址(Next-Hop BAP Address)IE(information element,信息元素)指示,并且,上述路由标识对应的BAP地址和当前数据包的BAP报头上的DESTINATION相同。由此,该第二出口连接和第一出口连接都可以路由到相同的BAP地址。
在上述实施例中,在一些实施例中,上述第二出口BH RLC信道被BH RLC信道映射配置(BH RLC Channel Mapping Configuration)中一个条目的出口BH RLC信道标识(Egress BH RLC CH ID)IE指示,该条目的入口BH RLC信道标识匹配当前BAP数据包的入口BH RLC信道,该条目的入口连接标识匹配当前BAP数据包的入 口连接,并且,该条目的出口连接标识对应上述第二出口连接。由此,该第二出口BH RLC信道是选择第二出口连接之后根据配置映射到的出口BH RLC信道。
图5是IAB节点通过路由重选实现负载均衡的一个示例的示意图。如图5所示,当IAB节点2的可用缓存大小的条件被满足时,也即,第一出口连接(路径1对应的出口连接)上的第一出口BH RLC信道的可用或期望缓存大小低于第三阈值,并且第二出口连接(路径2对应的出口连接)上的第二出口BH RLC信道的可用缓存大小高于第四阈值时,IAB节点2将上行业务从路径1重新路由到路径2。
图5是以上行业务为例,本申请不限于此,对于下行业务,本申请实施例的方法同样适用。例如,对于下行业务,与上行的方法一致,当某个IAB节点有多个子节点时,可以进行路由重选。该IAB节点的出口连接和出口BH RLC信道是朝着子节点的方向。路由选择也是选择朝着子节点方向的路由。
在上述实施例中,第三阈值和第四阈值可以由IAB宿主为上述第一节点进行配置。本申请不限于此,第三阈值和第四阈值也可以是预定义或预配置的。
在本申请实施例中,根据条件四,第一节点在有负载均衡的需求时进行路由选择。也即,第一节点在第一路由标识对应的负载超出期望的水平时进行路由选择。
在一些实施例中,第一路由标识对应的负载超出期望的水平是指:第一路由标识对应的可用缓存大小低于第五阈值,而且另外一个与所述路由标识具有相同BAP地址的路由标识对应的可用缓存大小高于第六阈值。这里,可用缓存大小低于第五阈值可以是指缓冲区数据量高于某个阈值,或者缓存占用率(buffer occupation)高于某个阈值等。可用缓存大小高于第六阈值可以是指缓冲区数据量低于某个阈值,或者缓存占用率低于某个阈值等。负载超出期望水平还可以是指第一路由标识对应的缓冲区数据量和另外一个与所述路由标识具有相同BAP地址的路由标识的缓冲区数据量的差值高于某个阈值。
仍以图5为例,当IAB节点2的可用缓存大小的条件被满足时,也即,第一路由标识(对应路径1)对应的可用缓存大小低于第五阈值,而且另外一个与所述第一路由标识具有相同BAP地址的路由标识(对应路径2)对应的可用缓存大小高于第六阈值时,IAB节点2将上行业务从路径1重新路由到路径2。
同理,图5是以上行业务为例,本申请不限于此,对于下行业务,本申请实施例的方法同样适用。
在上述实施例中,第五阈值和第六阈值可以由IAB宿主为上述第一节点进行配置。本申请不限于此,第五阈值和第六阈值也可以是预定义或预配置的。
根据本申请实施例的方法,能够避免数据丢失,减少拥塞,实现负载均衡,进而能够提升网络性能。
第二方面的实施例
本申请实施例提供一种路由选择方法,从IAB网络中的IAB节点的一侧进行说明。为了方便说明,将该IAB节点称为第一节点。本申请第二方面的实施例的方法描述路由选择的具体方法。关于该路由选择的触发条件,可以与第一方面的实施例相同,但本申请不限于此,在通过其他条件触发了路由选择的情况下,也可以通过本申请第二方面的实施例的方法进行路由选择。
图6是本申请实施例的路由选择方法的一个示例的示意图,如图6所示,该方法包括:
601:第一节点接收第一路由配置消息,所述第一路由配置消息包括对应多个路由标识的配置消息,对应每个路由标识的配置消息包括以下至少之一:优先级(priority),跳数(hops),以及平均延迟(average delay)。
根据本申请实施例的方法,通过在第一路由配置消息中针对每一个路由标识,增加上述可选信息元素或字段,可以帮助IAB节点(第一节点)在进行路由重选时做出本地决策。
在本申请实施例中,在一些实施例中,上述“优先级”是IAB宿主的CU(称为Donor-CU)对IAB节点推荐的路由优先级。例如,对于表示“优先级”的数字而言,更大的数字表示在Donor-CU看来该路由有着更高的传输性能。
在本申请实施例中,在一些实施例中,上述“跳数”表示到达该路由标识中的目的地址(destination address)所剩余的跳数,即,从第一节点到达该路由标识中的目的地址还剩下多少跳。
在本申请实施例中,在一些实施例中,上述“平均延迟”表示IAB宿主(例如IAB宿主的Donor-CU)观察的对应该路由标识的路径的在某一时间窗口的平均端到端延迟,可以通过任意测量和汇报方法得出。
在本申请实施例中,在一些实施例中,该第一路由配置消息可以由IAB宿主通 过F1AP(F1application protocol,F1接口应用协议)信令提供。本申请不限于此。关于F1AP信令的定义和实现方法,可以参考相关技术,此处省略说明。
在一些实施例中,如图6所示,该方法还包括:
602:所述第一节点根据所述第一路由配置消息选择路由标识。
在本申请实施例中,上述第一路由配置消息可以是BAP映射配置(MAPPING CONFIGURATION)消息,但本申请不限于此。
下面的表1给出了BAP映射配置消息的一个示例。如表1所示,在该BAP映射配置消息中,增加了“priority”字段、“hops”字段以及“average delay”字段,在一些实施例中,如果“priority”字段为0(或其他特定值,称为第一值),则表示该路径ID仅能在RLF时使用。在一些实施例中,如果“priority”字段为除0以外的其他值,则表示相应路由标识的优先级,由此,该第一节点可以按照该其他值所指示的优先级在进行路由选择时,选择路由标识。
表1:
Figure PCTCN2020122441-appb-000001
上述表1只是示例,在该BAP映射配置消息中,还可以包含其他条目或项目。
在本申请实施例中,所述第一节点根据所述第一路由配置消息得到BH路由配置。选择路由标识的原则就是在BH路由配置中,选择一个和当前BAP报头中的路由标识具有相同的BAP地址的新的路由标识。如果有多个路由标识可选,可选择具有高优先级、少跳数、低平均延迟的路由标识。具体算法不做限制。
在一些实施例中,如果路由选择是由当前选择的出口BH RLC信道(第一出口BH RLC信道)的负载超出期望的水平引起,则第一节点选择的路由标识还需满足以下条件:
当前选择的(也就是由当前BAP报头所指定的路由标识对应的)第一出口连接上的第一出口BH RLC信道的可用缓存大小低于第三阈值,并且选择的路由标识对应的第二出口连接上的第二出口BH RLC信道的可用缓存大小高于第四阈值。关于该条件已经在第一方面的实施例中做了说明,此处省略说明。
在本申请实施例中,第一出口BH RLC信道可以是根据BAP报头的路由标识对应的出口连接ID,BAP数据包来自的入口连接ID和入口BH RLC信道ID,由BH RLC信道映射配置所得到的出口BH RLC信道。
在一些实施例中,如果路由选择是由当前路由标识(第一路由标识)对应的负载超出期望的水平引起,则重新选择的路由标识还需满足以下条件:
当前路由标识(也就是由当前BAP报头指定的路由标识)对应的可用缓存大小低于第五阈值,而且选择的路由标识对应的可用缓存大小高于第六阈值。关于该条件已经在第一方面的实施例中做了说明,此处省略说明。
在本申请实施例中,第一路由标识可以是BAP报头包含的路由标识。
值得注意的是,以上图6仅对本申请实施例进行了示意性说明,但本申请不限于此。例如还可以增加其他的一些操作,或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图6的记载。
根据本申请实施例的方法,能够提升网络性能。
第三方面的实施例
本申请实施例提供一种路由选择方法,从IAB网络中的IAB宿主的一侧进行说明。其中与第二方面的实施例相同的内容不再重复说明。
图7是本申请实施例的路由选择方法的一个示例的示意图,如图7所示,该方法包括:
701:IAB宿主向第一节点发送第一路由配置消息,所述第一路由配置消息用于所述第一节点选择路由标识,上述第一路由配置消息包括对应多个路由标识的配置消息,对应每个路由标识的配置消息包括以下至少之一:优先级(priority),跳数(hops),以及平均延迟(average delay)。
在本申请实施例中,上述第一节点即为IAB网络中的IAB节点,例如为第一方面的实施例中的IAB节点,或者为第二方面的实施例终端IAB节点。根据本申请实施例的方法,由于Donor-CU通常具有整个拓扑网络的更多信息,其对IAB节点具有更高的权威性,通过IAB宿主向IAB节点发送路由配置消息,可以帮助IAB节点(第一节点)在进行路由选择时做出本地决策。
在上述实施例中,“优先级”、“跳数”以及“平均延迟”的含义与第二方面的实施例相同,此处不再赘述。例如,“优先级”的信息可以用于指示本地路由是否被与允许。例如,如果上述优先级的值为第一值,例如为0,则该优先级对应的路由标识只在BH RLF的情况下使用;如果上述优先级的值为第一值以外的其他值,则该优先级的值可以用于指示相应的路由标识的优先级,由此,第一节点可以按照该其他值所指示的优先级选择路由标识。
由此,Donor-CU可以实现更细粒度的本地路由控制,例如禁用某些路由标识的本地选择,从而提高路由管理的灵活性。
在一些实施例中,如图7所示,该方法还包括:
702:所述IAB宿主向所述第一节点发送第二路由配置消息,该第二路由配置消息用于启用或禁用上述路由选择。
在上述实施例中,该第二路由配置消息可以是1比特的信息。由此,通过1比特的信息即可实现对路由选择的启用或禁用,提高了路由管理的灵活性。
在本申请实施例中,上述第一路由配置信息还可以包括跳数(hops)和/或平均延迟(average delay),其可以通过BAP映射配置消息来实现,关于该跳数和平均延迟的相关内容以及BAP映射配置消息的内容已经在第二方面的实施例中做了说明,其内容被合并于此,此处不再赘述。
根据本申请实施例的方法,能够提高路由管理的灵活性。
第四方面的实施例
本申请实施例提供一种路由选择装置,该装置例如可以是IAB网络中的IAB节点,也可以是配置于IAB节点的某个或某些部件或者组件。为了方便说明,将该IAB节点称为第一节点。
图8是本申请实施例的路由选择装置的一个示例的示意图,由于该装置解决问题的原理与第一方面的实施例的方法类似,因此其具体的实施可以参照第一方面的实施例的方法的实施,内容相同之处不再重复说明。如图8所示,本申请实施例的路由选择装置800包括:
选择单元801,其在以下条件的至少之一满足时,进行路由选择:
所述第一节点从第二节点接收到BH RLF指示;
所述第一节点接收到第一流量控制反馈信息,并且所述第一流量控制反馈信息指示第三节点发生了数据拥塞;
第一出口BH RLC信道的负载超出期望的水平;
第一路由标识对应的负载超出期望的水平。
在本申请实施例中,上述第二节点可以是上述第一节点的父节点,上述第三节点可以是上述第一节点的子节点,但本申请不限于此。
在一些实施例中,选择单元801在所述第一节点从第二节点接收到BH RLF指示时,进行路由选择,直到所述第一节点的RLF恢复完成并且IAB宿主对所述第一节点进行了路由重配置。
在一些实施例中,选择单元801在所述第一节点接收到第一流量控制反馈信息,并且所述第一流量控制反馈信息指示所述第三节点发生了数据拥塞时,进行路由选择,包括:
如果所述第一流量控制反馈信息中显示一个BH RLC信道的可用缓存大小低于第一阈值,或者显示针对一路由标识的可用缓存大小低于第二阈值,则所述选择单元801对本来要路由到所述第三节点的BAP数据包重选路由。
在一些实施例中,选择单元801在所述第一节点接收到第一流量控制反馈信息,并且所述第一流量控制反馈信息指示所述第三节点发生了数据拥塞时,进行路由选择,包括:
如果所述第一流量控制反馈信息中显示一个BH RLC信道的可用缓存大小低于第一阈值,则所述选择单元801对本来要映射到所述BH RLC信道的BAP数据包重选路由;
如果所述第一流量控制反馈信息中显示针对一路由标识的可用缓存大小低于第二阈值,则所述选择单元801对BAP报头中包含所述路由标识的BAP数据包重选路由。
在一些实施例中,如果下面条件的至少一个满足,则选择单元801停止针对原有路由的路由重选:
在发生了所述数据拥塞时启动的定时器超时;
接收到第二流量控制反馈信息,所述第二流量控制反馈信息指示原有路由没有发生数据拥塞。
在一些实施例中,如果所述第一流量控制反馈信息针对路由标识,则所述原有路由是指:发生了所述数据拥塞的路由或路径;如果所述第一流量控制反馈信息针对BH RLC信道,则所述原有路由是指本来要映射到发生了所述数据拥塞的BH RLC信道的数据包的路由或路径。
在一些实施例中,发生了所述数据拥塞的BH RLC信道的数据包的路由或路径包括一个或多个路由或路径数据中映射到所述BH RLC信道的部分。
在一些实施例中,第一出口BH RLC信道的负载超出期望的水平是指:第一出口连接上的第一出口BH RLC信道的可用缓存大小低于第三阈值,并且第二出口连接上的第二出口BH RLC信道的可用缓存大小高于第四阈值。
在一些实施例中,所述第二出口连接的标识被BH路由配置中一个路由标识对应的下一跳BAP地址IE指示,并且,所述路由标识对应的BAP地址和当前数据包的BAP报头上的DESTINATION相同。
在一些实施例中,所述第二出口BH RLC信道被BH RLC信道映射配置中一个条目的出口BH RLC信道标识IE指示,所述条目的入口BH RLC信道标识匹配当前BAP数据包的入口BH RLC信道,所述条目的入口连接标识匹配当前BAP数据包的入口连接,并且,所述条目的出口连接标识对应所述第二出口连接。
在一些实施例中,所述第三阈值和所述第四阈值由IAB宿主为所述第一节点进行配置。
在一些实施例中,第一路由标识对应的负载超出期望的水平是指:第一路由标识对应的可用缓存大小低于第五阈值,而且另外一个与所述第一路由标识具有相同BAP地址的路由标识对应的可用缓存大小高于第六阈值。
在一些实施例中,所述第五阈值和所述第六阈值由IAB宿主为所述第一节点进行配置。
图9是本申请实施例的路由选择装置的另一个示例的示意图,由于该装置解决问题的原理与第二方面的实施例的方法类似,因此其具体的实施可以参照第二方面的实施例的方法的实施,内容相同之处不再重复说明。如图9所示,本申请实施例的路由选择装置900包括:
接收单元901,其接收第一路由配置消息,所述第一路由配置消息包括对应多个路由标识的配置信息,对应每个路由标识的配置信息包括以下至少之一:优先级(priority),跳数(hops),以及平均延迟(average delay)。
在一些实施例中,如图9所示,所述装置900还包括:
选择单元902,其根据所述第一路由配置消息选择路由标识。
在一些实施例中,所述第一路由配置消息由IAB宿主通过F1AP信令提供。
在一些实施例中,所述优先级为IAB宿主对所述第一节点推荐的路由的优先级;所述跳数指示了到达所述路由标识中的目的地址(destination address)所剩余的跳数;所述平均延迟是指所述IAB宿主观察的对应所述路由标识的路径的在一时间窗口的平均端到端延迟。
在一些实施例中,如果所述优先级的值为第一值,则所述优先级对应的路由标识只在BH RLF的情况下使用;如果所述优先级的值为第一值以外的其他值,则所述优先级的值指示了相应的路由标识的优先级,所述第一节点按照所述其他值所指示的优先级进行路由选择。
在一些实施例中,如果路由选择是由第一出口BH RLC信道的负载超出期望的水平引起,则选择的路由标识还需满足以下条件:
第一出口连接上的第一出口BH RLC信道的可用缓存大小低于第三阈值,并且选择的路由标识对应的第二出口连接上的第二出口BH RLC信道的可用缓存大小高于第四阈值。
在一些实施例中,如果路由选择是由第一路由标识对应的负载超出期望的水平引 起,则选择的路由标识还需满足以下条件:
第一路由标识对应的可用缓存大小低于第五阈值,而且选择的路由标识对应的可用缓存大小高于第六阈值。
在本申请实施例中,第一出口BH RLC信道可以是根据BAP报头的路由标识对应的出口连接ID,BAP数据包来自的入口连接ID和入口BH RLC信道ID,由BH RLC信道映射配置所得到的出口BH RLC信道。
在本申请实施例中,第一路由标识可以是BAP报头包含的路由标识。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。本申请实施例的路由选择装置800/900还可以包括其它部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图8和图9中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
根据本申请实施例,能够提升网络性能。
第五方面的实施例
本申请实施例提供一种路由选择装置,该装置例如可以是IAB网络中的IAB宿主,也可以是配置于IAB宿主的某个或某些部件或者组件。
图10是本申请实施例的路由选择装置的一个示例的示意图,如图10所示,本申请实施例的路由选择装置1000包括:
第一发送单元1001,其向第一节点发送第一路由配置消息,所述第一路由配置消息用于所述第一节点选择路由标识,上述第一路由配置消息包括对应多个路由标识的配置消息,对应每个路由标识的配置消息包括以下至少之一:优先级(priority),跳数(hops),以及平均延迟(average delay)。
在一些实施例中,如图10所示,所述装置1000还包括:
第二发送单元,其向所述第一节点发送第二路由配置消息,所述第二路由配置消息用于启用或禁用所述路由选择。
在上述实施例中,所述第二路由配置消息为1比特的信息。
在一些实施例中,所述优先级为IAB宿主对所述第一节点推荐的路由的优先级;所述跳数指示了到达所述路由标识中的目的地址(destination address)所剩余的跳数;所述平均延迟是指所述IAB宿主观察的对应所述路由标识的路径的在一时间窗口的平均端到端延迟。
在一些实施例中,如果所述优先级的值为第一值,则所述优先级对应的路由标识只在BH RLF的情况下使用;如果所述优先级的值为第一值以外的其他值,则所述优先级的值指示了相应的路由标识的优先级,所述第一节点按照所述其他值所指示的优先级进行路由选择。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。本申请实施例的路由选择装置1000还可以包括其它部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图10中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
根据本申请实施例,能够提高路由管理的灵活性。
第六方面的实施例
本申请实施例提供了一种通信系统。
图11是本申请实施例的通信系统的一个示例的示意图。如图11所示,本申请实施例的通信系统1100包括IAB节点1101和IAB宿主1102。为简单起见,图11仅以四个IAB节点1101和一个IAB宿主1102为例进行说明,但本申请实施例不限于此。例如,该通信系统1100还可以包括终端设备(图中未示出)。关于终端设备、IAB节点1101和IAB宿主1102的网络架构可以参考相关技术,此处省略说明。
在本申请实施例中,IAB节点1101和终端设备之间可以进行现有的业务或者未来可实施的业务传输。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB)、大规模机器类型通信(mMTC)、高可靠低时延通信(URLLC)和车联网(V2X)通信,等等。
在一些实施例中,IAB节点1101被配置为执行第一方面或第二方面的实施例所 述的方法。在一些实施例中,IAB宿主1102被配置为执行第三方面的实施例所述的方法。关于IAB节点1101和IAB宿主1102的相关内容请参见第一方面至第三方面的实施例,此处省略说明。
本申请实施例还提供一种IAB节点。
图12是本申请实施例的IAB节点的一个示例的示意图。如图12所示,该IAB节点1200可以包括处理器1201和存储器1202;存储器1202存储有数据和程序,并耦合到处理器1201。值得注意的是,该图是示例性的;还可以使用其它类型的结构,来补充或代替该结构,以实现电信功能或其它功能。
例如,处理器1201可以被配置为执行程序而实现如第一方面或第二方面的实施例所述的方法。
如图12所示,该IAB节点1200还可以包括:通信模块1203、输入单元1204、显示器1205、电源1206。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,IAB节点1200也并不是必须要包括图12中所示的所有部件,上述部件并不是必需的;此外,IAB节点1200还可以包括图12中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种IAB宿主。
图13是本申请实施例的IAB宿主的一个示例的示意图。如图13所示,该IAB宿主1300可以包括处理器1301和存储器1302;存储器1302存储有数据和程序,并耦合到处理器1301。值得注意的是,该图是示例性的;还可以使用其它类型的结构,来补充或代替该结构,以实现电信功能或其它功能。
例如,处理器1301可以被配置为执行程序而实现如第三方面的实施例所述的方法。
如图13所示,该IAB宿主1300还可以包括:通信模块1303、输入单元1304、显示器1305、电源1306。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,IAB宿主1300也并不是必须要包括图13中所示的所有部件,上述部件并不是必需的;此外,IAB宿主1300还可以包括图13中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种计算机可读程序,其中当在IAB节点中执行所述程序时,所述程序使得计算机在所述IAB节点中执行第一方面或第二方面的实施例所述 的方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在IAB节点中执行第一方面或第二方面的实施例所述的方法。
本申请实施例还提供一种计算机可读程序,其中当在IAB宿主中执行所述程序时,所述程序使得计算机在所述IAB宿主中执行第三方面的实施例所述的方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在IAB宿主中执行第三方面的实施例所述的方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。逻辑部件例如现场可编程逻辑部件、微处理器、计算机中使用的处理器等。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方 框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于本实施例公开的上述实施方式,还公开了如下的附记:
1、一种路由选择方法,其中,所述方法包括:
第一节点在以下条件的至少之一满足时,进行路由选择:
从第二节点接收到BH RLF指示;
接收到第一流量控制反馈信息,并且所述第一流量控制反馈信息指示第三节点发生了数据拥塞;
第一出口BH RLC信道的负载超出期望的水平;
第一路由标识对应的负载超出期望的水平。
1a、根据附记1所述的方法,其中,所述路由选择是指以下至少之一:路由标识的选择,路由配置中条目的选择,路径标识的选择,出口连接的选择。
1b、根据附记1所述的方法,其中,所述数据拥塞是指:所述第一流量控制反馈信息中显示一个BH RLC信道的可用缓存大小低于第一阈值,或者针对一路由标识的可用缓存大小低于第二阈值。
1c、根据附记1所述的方法,其中,所述第一出口BH RLC信道是根据BAP报头的路由标识对应的出口连接ID,BAP数据包来自的入口连接ID和入口BH RLC信道ID,由BH RLC信道映射配置所得到的出口BH RLC信道。
1d、根据附记1所述的方法,其中,所述第一路由标识是BAP报头包含的路由标识。
2、根据附记1所述的方法,其中,第一出口BH RLC信道的负载超出期望的水平是指:
第一出口连接上的第一出口BH RLC信道的可用缓存大小低于第三阈值,并且第二出口连接上的第二出口BH RLC信道的可用缓存大小高于第四阈值。
3、根据附记1所述的方法,其中,第一路由标识对应的负载超出期望的水平是指:
第一路由标识对应的可用缓存大小低于第五阈值,而且另外一个与所述第一路由标识具有相同BAP地址的路由标识对应的可用缓存大小高于第六阈值。
4、根据附记1所述的方法,其中,所述第一节点在从第二节点接收到BH RLF指示时,进行路由选择,直到所述第一节点的RLF恢复完成并且IAB宿主对所述第一节点进行了路由重配置。
5、根据附记1所述的方法,其中,所述第一节点在接收到第一流量控制反馈信息,并且所述第一流量控制反馈信息指示所述第三节点发生了数据拥塞时,进行路由选择,包括:
如果所述第一流量控制反馈信息中显示一个BH RLC信道的可用缓存大小低于第一阈值,或者显示针对一路由标识的可用缓存大小低于第二阈值,则所述第一节点对本来要路由到所述第三节点的BAP数据包重选路由。
6、根据附记1所述的方法,其中,所述第一节点在接收到第一流量控制反馈信息,并且所述第一流量控制反馈信息指示所述第三节点发生了数据拥塞时,进行路由选择,包括:
如果所述第一流量控制反馈信息中显示一个BH RLC信道的可用缓存大小低于第一阈值,则所述第一节点对本来要映射到所述BH RLC信道的BAP数据包重选路由;
如果所述第一流量控制反馈信息中显示针对一路由标识的可用缓存大小低于第二阈值,则所述第一节点对BAP报头中包含所述路由标识的BAP数据包重选路由。
7、根据附记1所述的方法,其中,所述第一节点在接收到第一流量控制反馈信息,并且所述第一流量控制反馈信息指示所述第三节点发生了数据拥塞时,进行路由重选之后,所述方法还包括:
如果下面条件的至少一个满足,则停止针对原有路由的路由重选:
在发生了所述数据拥塞时启动的定时器超时;
接收到第二流量控制反馈信息,所述第二流量控制反馈信息指示原有路由没有发生数据拥塞。
8、根据附记7所述的方法,其中,
如果所述第一流量控制反馈信息针对路由标识,则所述原有路由是指:发生了所述数据拥塞的路由或路径;
如果所述第一流量控制反馈信息针对BH RLC信道,则所述原有路由是指:本来要映射到发生了所述数据拥塞的BH RLC信道的数据包的路由或路径。
9、根据附记8所述的方法,其中,发生了所述数据拥塞的BH RLC信道的数据包的路由或路径包括一个或多个路由或路径数据中映射到所述BH RLC信道的部分。
10、根据附记2所述的方法,其中,所述第二出口连接的标识被BH路由配置中一个路由标识对应的下一跳BAP地址IE指示,并且,所述路由标识对应的BAP地址和当前数据包的BAP报头上的DESTINATION相同。
11、根据附记2所述的方法,其中,所述第二出口BH RLC信道被BH RLC信道映射配置中一个条目的出口BH RLC信道标识IE指示,所述条目的入口BH RLC信道标识匹配当前BAP数据包的入口BH RLC信道,所述条目的入口连接标识匹配当前BAP数据包的入口连接,并且,所述条目的出口连接标识对应所述第二出口连接。
12、根据附记2所述的方法,其中,所述第三阈值和所述第四阈值由IAB宿主为所述第一节点进行配置。
13、根据附记3所述的方法,其中,所述第五阈值和所述第六阈值由IAB宿主为所述第一节点进行配置。
14、一种路由选择方法,其中,所述方法包括:
第一节点接收第一路由配置消息,所述第一路由配置消息包括对应多个路由标识的配置信息,对应每个路由标识的配置信息包括以下至少之一:优先级(priority),跳数(hops),以及平均延迟(average delay)。
15、根据附记14所述的方法,其中,所述方法还包括:
所述第一节点根据所述第一路由配置消息选择路由标识。
15a、根据附记15所述的方法,其中,所述方法还包括:
如果路由选择是由第一出口BH RLC信道的负载超出期望的水平引起,则选择的路由标识满足以下条件:
第一出口连接上的第一出口BH RLC信道的可用缓存大小低于第三阈值,并且选择的路由标识对应的第二出口连接上的第二出口BH RLC信道的可用缓存大小高于 第四阈值。
15b、根据附记15所述的方法,其中,所述方法还包括:
如果路由选择是由第一路由标识对应的负载超出期望的水平引起,则选择的路由标识满足以下条件:
第一路由标识对应的可用缓存大小低于第五阈值,而且选择的路由标识对应的可用缓存大小高于第六阈值。
16、根据附记14所述的方法,其中,所述第一路由配置消息由IAB宿主通过F1AP信令提供。
17、根据附记14所述的方法,其中,
所述优先级为IAB宿主对所述第一节点推荐的路由的优先级;
所述跳数指示了到达所述路由标识中的目的地址(destination address)所剩余的跳数;
所述平均延迟是指所述IAB宿主观察的对应所述路由标识的路径的在一时间窗口的平均端到端延迟。
18、根据附记14或17所述的方法,其中,
如果所述优先级的值为第一值,则所述优先级对应的路由标识只在BH RLF的情况下使用;
如果所述优先级的值为第一值以外的其他值,则所述优先级的值指示了相应的路由标识的优先级,所述第一节点按照所述其他值所指示的优先级进行路由选择。
19、一种路由选择方法,其中,所述方法包括:
IAB宿主向第一节点发送第一路由配置消息,所述第一路由配置消息用于所述第一节点选择路由标识,所述第一路由配置消息包括对应多个路由标识的配置消息,对应每个路由标识的配置消息包括以下至少之一:优先级(priority),跳数(hops),以及平均延迟(average delay)。
20、根据附记19所述的方法,其中,所述方法还包括:
所述IAB宿主向所述第一节点发送第二路由配置消息,所述第二路由配置消息用于启用或禁用所述路由选择。
21、根据附记20所述的方法,其中,所述第二路由配置消息为1比特的信息。
22、根据附记19所述的方法,其中,
所述优先级为IAB宿主对所述第一节点推荐的路由的优先级;
所述跳数指示了到达所述路由标识中的目的地址(destination address)所剩余的跳数;
所述平均延迟是指所述IAB宿主观察的对应所述路由标识的路径的在一时间窗口的平均端到端延迟。
23、根据附记19或22所述的方法,其中,
如果所述优先级的值为第一值,则所述优先级对应的路由标识只在BH RLF的情况下使用;
如果所述优先级的值为第一值以外的其他值,则所述优先级的值指示了相应的路由标识的优先级,所述第一节点按照所述其他值所指示的优先级进行路由选择。
24、一种IAB网络中的IAB节点,包括存储器和处理器,所述存储器存储有计算机程序,其中,所述处理器被配置为执行所述计算机程序而实现如附记1至18任一项所述的方法。
25、一种IAB网络中的IAB宿主,包括存储器和处理器,所述存储器存储有计算机程序,其中,所述处理器被配置为执行所述计算机程序而实现如附记19至23任一项所述的方法。
26、一种通信系统,包括IAB节点和IAB宿主,其中,所述IAB节点被配置为执行附记1至18任一项所述的方法,所述IAB宿主被配置为执行附记19至23任一项所述的方法。

Claims (20)

  1. 一种路由选择装置,配置于第一节点,其中,所述装置包括:
    选择单元,其在以下条件的至少之一满足时,进行路由选择:
    从第二节点接收到BH RLF指示;
    接收到第一流量控制反馈信息,并且所述第一流量控制反馈信息指示第三节点发生了数据拥塞;
    第一出口BH RLC信道的负载超出期望的水平;
    第一路由标识对应的负载超出期望的水平。
  2. 根据权利要求1所述的装置,其中,第一出口BH RLC信道的负载超出期望的水平是指:
    第一出口连接上的第一出口BH RLC信道的可用缓存大小低于第三阈值,并且第二出口连接上的第二出口BH RLC信道的可用缓存大小高于第四阈值。
  3. 根据权利要求1所述的装置,其中,第一路由标识对应的负载超出期望的水平是指:
    第一路由标识对应的可用缓存大小低于第五阈值,而且另外一个与所述路由标识具有相同BAP地址的路由标识对应的可用缓存大小高于第六阈值。
  4. 根据权利要求1所述的装置,其中,在从第二节点接收到BH RLF指示时,所述选择单元进行路由选择,直到所述第一节点的RLF恢复完成并且IAB宿主对所述第一节点进行了路由重配置。
  5. 根据权利要求1所述的装置,其中,在接收到第一流量控制反馈信息,并且所述第一流量控制反馈信息指示所述第三节点发生了数据拥塞时,所述选择单元进行路由选择,包括:
    如果所述第一流量控制反馈信息中显示一个BH RLC信道的可用缓存大小低于第一阈值,或者显示针对一路由标识的可用缓存大小低于第二阈值,则所述选择单元对本来要路由到所述第三节点的BAP数据包重选路由。
  6. 根据权利要求1所述的装置,其中,在接收到第一流量控制反馈信息,并且所述第一流量控制反馈信息指示所述第三节点发生了数据拥塞时,所述选择单元进行路由选择,包括:
    如果所述第一流量控制反馈信息中显示一个BH RLC信道的可用缓存大小低于第一阈值,则所述选择单元对本来要映射到所述BH RLC信道的BAP数据包重选路由;
    如果所述第一流量控制反馈信息中显示针对一路由标识的可用缓存大小低于第二阈值,则所述选择单元对BAP报头中包含所述路由标识的BAP数据包重选路由。
  7. 根据权利要求1所述的装置,其中,在接收到第一流量控制反馈信息,并且所述第一流量控制反馈信息指示所述第三节点发生了数据拥塞时,所述选择单元进行路由重选之后,如果下面条件的至少一个满足,则所述选择单元停止针对原有路由的路由重选:
    在发生了所述数据拥塞时启动的定时器超时;
    接收到第二流量控制反馈信息,所述第二流量控制反馈信息指示原有路由没有发生数据拥塞。
  8. 根据权利要求2所述的装置,其中,所述第二出口连接的标识被BH路由配置中一个路由标识对应的下一跳BAP地址IE指示,并且,所述路由标识对应的BAP地址和当前数据包的BAP报头上的DESTINATION相同。
  9. 根据权利要求2所述的装置,其中,所述第二出口BH RLC信道被BH RLC信道映射配置中一个条目的出口BH RLC信道标识IE指示,所述条目的入口BH RLC信道标识匹配当前BAP数据包的入口BH RLC信道,所述条目的入口连接标识匹配当前BAP数据包的入口连接,并且,所述条目的出口连接标识对应所述第二出口连接。
  10. 根据权利要求2所述的装置,其中,所述第三阈值和所述第四阈值由IAB宿主为所述第一节点进行配置。
  11. 根据权利要求3所述的装置,其中,所述第五阈值和所述第六阈值由IAB宿主为所述第一节点进行配置。
  12. 一种路由选择装置,配置于第一节点,其中,所述装置包括:
    接收单元,其接收第一路由配置消息,所述第一路由配置消息包括对应多个路由标识的配置信息,对应每个路由标识的配置信息包括以下至少之一:优先级(priority),跳数(hops),以及平均延迟(average delay)。
  13. 根据权利要求12所述的装置,其中,所述装置还包括:
    选择单元,其根据所述第一路由配置消息选择路由标识。
  14. 根据权利要求13所述的装置,其中,
    如果路由选择是由第一出口BH RLC信道的负载超出期望的水平引起,则所述选择单元选择的路由标识满足以下条件:
    第一出口连接上的第一出口BH RLC信道的可用缓存大小低于第三阈值,并且选择的路由标识对应的第二出口连接上的第二出口BH RLC信道的可用缓存大小高于第四阈值。
  15. 根据权利要求13所述的装置,其中,
    如果路由选择是由第一路由标识对应的负载超出期望的水平引起,则所述选择单元选择的路由标识满足以下条件:
    第一路由标识对应的可用缓存大小低于第五阈值,而且选择的路由标识对应的可用缓存大小高于第六阈值。
  16. 根据权利要求12所述的装置,其中,所述第一路由配置消息由IAB宿主通过F1AP信令提供。
  17. 根据权利要求12所述的装置,其中,
    所述优先级为IAB宿主对所述第一节点推荐的路由的优先级;
    所述跳数指示了到达所述路由标识中的目的地址(destination address)所剩余的跳数;
    所述平均延迟是指所述IAB宿主观察的对应所述路由标识的路径的在一时间窗口的平均端到端延迟。
  18. 根据权利要求12所述的装置,其中,
    如果所述优先级的值为第一值,则所述优先级对应的路由标识只在BH RLF的情况下使用;
    如果所述优先级的值为第一值以外的其他值,则所述优先级的值指示了相应的路由标识的优先级,所述第一节点按照所述其他值所指示的优先级进行路由选择。
  19. 一种路由选择装置,配置于IAB宿主,其中,所述装置包括:
    第一发送单元,其向第一节点发送第一路由配置消息,所述第一路由配置消息用于所述第一节点选择路由标识,所述第一路由配置消息包括对应多个路由标识的配置消息,对应每个路由标识的配置消息包括以下至少之一:优先级(priority),跳数(hops), 以及平均延迟(average delay)。
  20. 根据权利要求19所述的装置,其中,所述装置还包括:
    第二发送单元,其向所述第一节点发送第二路由配置消息,所述第二路由配置消息用于启用或禁用所述路由选择。
PCT/CN2020/122441 2020-10-21 2020-10-21 路由选择方法、装置和系统 WO2022082495A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20958078.6A EP4236469A4 (en) 2020-10-21 2020-10-21 ROUTING METHOD, DEVICE AND SYSTEM
PCT/CN2020/122441 WO2022082495A1 (zh) 2020-10-21 2020-10-21 路由选择方法、装置和系统
CN202080105433.7A CN116235542A (zh) 2020-10-21 2020-10-21 路由选择方法、装置和系统
KR1020237012821A KR20230069987A (ko) 2020-10-21 2020-10-21 라우팅 방법, 장치 및 시스템
JP2023522910A JP2023546399A (ja) 2020-10-21 2020-10-21 ルーティング選択方法、装置及びシステム
US18/133,722 US20230247523A1 (en) 2020-10-21 2023-04-12 Routing selection method and apparatus and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/122441 WO2022082495A1 (zh) 2020-10-21 2020-10-21 路由选择方法、装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/133,722 Continuation US20230247523A1 (en) 2020-10-21 2023-04-12 Routing selection method and apparatus and system

Publications (1)

Publication Number Publication Date
WO2022082495A1 true WO2022082495A1 (zh) 2022-04-28

Family

ID=81291355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122441 WO2022082495A1 (zh) 2020-10-21 2020-10-21 路由选择方法、装置和系统

Country Status (6)

Country Link
US (1) US20230247523A1 (zh)
EP (1) EP4236469A4 (zh)
JP (1) JP2023546399A (zh)
KR (1) KR20230069987A (zh)
CN (1) CN116235542A (zh)
WO (1) WO2022082495A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7547629B2 (ja) * 2020-09-30 2024-09-09 華為技術有限公司 通信方法及び関連デバイス
WO2022237357A1 (zh) * 2021-05-11 2022-11-17 华为技术有限公司 通信方法和装置
US12126528B2 (en) * 2023-03-24 2024-10-22 Nokia Solutions And Networks Oy Egress rerouting of packets at a communication device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536350A (zh) * 2019-02-14 2019-12-03 中兴通讯股份有限公司 Iab链路控制方法、通信单元、计算机可读存储介质
CN110740485A (zh) * 2019-09-30 2020-01-31 河南牧业经济学院 集成接入和回程系统的节点选择方法及其装置
WO2020059470A1 (en) * 2018-09-21 2020-03-26 Sharp Kabushiki Kaisha Systems, devices, and methods for connection reestablishment via alternative routes in integrated access and backhaul due to radio link failures

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3925173B1 (en) * 2019-02-14 2022-08-10 Telefonaktiebolaget LM Ericsson (publ) A central unit (cu), a distributed unit (du) and methods therein for forwarding of data in an integrated access backhaul (iab) network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059470A1 (en) * 2018-09-21 2020-03-26 Sharp Kabushiki Kaisha Systems, devices, and methods for connection reestablishment via alternative routes in integrated access and backhaul due to radio link failures
CN110536350A (zh) * 2019-02-14 2019-12-03 中兴通讯股份有限公司 Iab链路控制方法、通信单元、计算机可读存储介质
CN110740485A (zh) * 2019-09-30 2020-01-31 河南牧业经济学院 集成接入和回程系统的节点选择方法及其装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Routing in IAB network", 3GPP DRAFT; R3-196992, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Reno, NV, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 8, XP051820651 *
SAMSUNG: "Discussion on local decision make for routing", 3GPP DRAFT; R2-1913810_WASR2-1910374_ROUTELOCALDECISON_V0.1, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Chongqing, China; 20191014 - 20191018, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051791801 *
See also references of EP4236469A4 *

Also Published As

Publication number Publication date
JP2023546399A (ja) 2023-11-02
KR20230069987A (ko) 2023-05-19
EP4236469A4 (en) 2023-12-06
CN116235542A (zh) 2023-06-06
EP4236469A1 (en) 2023-08-30
US20230247523A1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
JP7433455B2 (ja) リンク切替、リンク切替構成方法、装置、通信ノード及び媒体
US20200383005A1 (en) QOS Flow Control Method and Apparatus
CN111543080B (zh) 用于网络拓扑管理的系统和方法
US11968565B2 (en) User plane information reporting method and apparatus
WO2022082495A1 (zh) 路由选择方法、装置和系统
US20230147304A1 (en) Communication Method and Communications Apparatus
US11729686B2 (en) Transmission control method, apparatus, and system
WO2021031022A1 (zh) 链路切换的方法和通信设备
WO2011109938A1 (zh) 无线接入网元信息上报方法、设备和系统
US20230269653A1 (en) Rerouting method and apparatus, and communication device
WO2022082518A1 (zh) 信号的接收和发送方法、装置和通信系统
EP3654726B1 (en) Data repeat transmission method and device
WO2022205253A1 (zh) 发送和接收信号的方法、装置和通信系统
WO2022082543A1 (zh) Iab节点的移植方法及装置
WO2022082690A1 (zh) 群组切换的方法、装置和系统
WO2022151095A1 (zh) 信号的发送和接收方法、装置和通信系统
WO2022205251A1 (zh) 信息收发方法,数据发送方法以及装置
WO2023197185A1 (zh) Iab节点设备、iab宿主设备以及传输地址确定方法
WO2022205485A1 (zh) 信息收发方法以及装置
US20240080262A1 (en) Communication method and apparatus
WO2024207195A1 (zh) 多路径的通信方法以及装置
WO2023197105A1 (zh) 配置信息的方法、装置和通信系统
US20240334298A1 (en) Routing method, apparatus and system
WO2022205389A1 (zh) 条件重配置的方法及装置
WO2021163855A1 (zh) 信息发送方法、接收方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958078

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202337026858

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2023522910

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237012821

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020958078

Country of ref document: EP

Effective date: 20230522