WO2022080603A1 - 마이크로파 전력증폭기 - Google Patents
마이크로파 전력증폭기 Download PDFInfo
- Publication number
- WO2022080603A1 WO2022080603A1 PCT/KR2021/002938 KR2021002938W WO2022080603A1 WO 2022080603 A1 WO2022080603 A1 WO 2022080603A1 KR 2021002938 W KR2021002938 W KR 2021002938W WO 2022080603 A1 WO2022080603 A1 WO 2022080603A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power amplifier
- waveguide
- unit
- combiner
- amplification unit
- Prior art date
Links
- 230000003321 amplification Effects 0.000 claims description 51
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 51
- 239000000523 sample Substances 0.000 claims description 6
- 230000007704 transition Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 16
- 238000004891 communication Methods 0.000 description 5
- 239000004020 conductor Substances 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000005433 ionosphere Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
- H03F3/245—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/60—Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
- H03F3/602—Combinations of several amplifiers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/08—Coupling devices of the waveguide type for linking dissimilar lines or devices
- H01P5/10—Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
- H01P5/107—Hollow-waveguide/strip-line transitions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/12—Coupling devices having more than two ports
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0277—Selecting one or more amplifiers from a plurality of amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/56—Modifications of input or output impedances, not otherwise provided for
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High-frequency amplifiers, e.g. radio frequency amplifiers
- H03F3/19—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
- H03F3/195—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/451—Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/20—Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F2203/21—Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F2203/211—Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
- H03F2203/21106—An input signal being distributed in parallel over the inputs of a plurality of power amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/20—Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F2203/21—Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F2203/211—Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
- H03F2203/21142—Output signals of a plurality of power amplifiers are parallel combined to a common output
Definitions
- the present invention relates to a microwave power amplifier, and more specifically, it is configured to output the same output as that of a conventional power amplifier, and uses only 1/2 of a transistor compared to a conventional power amplifier, thereby reducing current consumption and improving efficiency
- it relates to a new type of microwave power amplifier for Ka-band having a flatter gain in the entire frequency band of the Ka-band of 26.5GHz to 40GHz.
- microwaves with a frequency higher than 1 GHz are used.
- 1.5GHz ⁇ 1.6GHz of L band (1 ⁇ 2GHz) is for low orbit satellites
- 2.5 ⁇ 2.6GHz of S band (2 ⁇ 4GHz) is for satellite control
- 4 ⁇ 6GHz of C band (4 ⁇ 8GHz) is for geostationary satellites
- X-band (8-12GHz) 7-8GHz is allocated for military use
- Ku-band (12-18GHz) is allocated for 12-14GHz for geostationary orbit satellites.
- a satellite communication system generally consists of elements of an earth station, a satellite, a satellite repeater, and a ground control station.
- An earth station is a device that transmits data from the ground to a satellite and receives data from the satellite.
- the Ka band power amplifier is used to amplify the signal from the earth station and transmit it to the satellite through the antenna or to transmit the signal from the satellite to the earth station.
- the transistor (TR) used in the power amplifier for the Ka band of the satellite communication system requires a large output, but since there is no TR with a large output, it is designed to produce the desired output by using several TRs with a small output. .
- FIG. 1 is a block diagram illustrating a configuration of a 10W power amplifier using a Wilkinson Power Divider/Combiner according to the related art.
- the input signal passing through the drive amplifier 100 passes through the first Power Divider 110 and the intermediate stage amplifier 120 is After each amplification in the two TRs, it is again divided into 8 signals through the second power divider 130 and 135 and the third power divider 140, and when the 8 signals reach the final stage amplification unit 150, 2.1
- the signal is reduced by a loss of dB and applied to the 8 TRs of the last stage amplification unit, and the output signals of the final stage amplification unit 150 are again sent to the first, second and third power combiners 160, 170, 180. combined and output.
- the signal finally output from the third power combiner 180 is reduced by 2.1 dB than the total output of the last stage amplifier 150 and is output.
- FIG. 9 is a graph illustrating frequency characteristics of a 10W power amplifier using a Wilkinson Power Divider/Combiner according to the related art.
- the conventional power amplifier using the Wilkinson Power Divider/Combiner shows a difference of about 4 dB in gain depending on the frequency in the Ka-band band of 26.5 GHz to 40 GHz. Therefore, the 10W power amplifier using the Wilkinson Power Divider/Combiner according to the existing technology also has a problem in that the gain according to the frequency in the entire Ka-band band is too large.
- the present invention for solving the above problems is configured to reduce the number of transistors constituting the final stage amplification unit, thereby reducing manufacturing cost and signal loss as well as amplifying the gain of the entire Ka-band band more flatly.
- An object of the present invention is to provide a power amplifier that can
- the drive amplifier is composed of one or two or more transistors to amplify an input signal; a middle stage amplification unit composed of two transistors; a GCPW, a waveguide, and a first spatial combiner unit sequentially connected between the drive amplification unit and the intermediate stage amplification unit to distribute the output signal of the drive amplification unit and provide them to transistors of the intermediate stage amplification unit; a final stage amplification unit composed of 4 transistors; A second spatial combiner unit, a waveguide divider, and a third spatial combiner unit sequentially connected between the intermediate stage amplification unit and the final stage amplification unit to divide the output signals of the intermediate stage amplification unit and provide them to the transistors of the final stage amplification unit Combiner unit; and a fourth spatial combiner unit and a waveguide combiner that are sequentially connected to the output terminal of the last stage amplification unit to combine the output signals of the transistors of the final stage amplification unit
- the GCPW is disposed between the microstrip line of the output terminal of the drive amplifier and the waveguide, and one end of the GCPW is made of a tapered probe and is connected to the waveguide between the microstrip line and the waveguide. It is desirable to achieve a transition of
- the waveguide divider and the waveguide combiner include a first port, and second and third ports branched from the first port, wherein the first port includes the second and third ports. It is preferable that the portion where the ports meet and bend is formed in a step structure composed of a plurality of layers, so that the power amplifier has a bandwidth of the Ka band of 26.5 GHz to 40 GHz.
- the power amplifier is a 10W Ka-band power amplifier for amplifying a signal of a Ka band band of 26.5 GHz to 40 GHz.
- the first spatial combiner unit and the second spatial combiner unit are made of a printed circuit board (PCB) having a Fin Line structure, and the transistors of the intermediate stage amplifier are MMIC (Monolithic Microwave Integrated Circuit) ), the first spatial combiner unit is arranged in the middle of the waveguide so that the input is divided into two and respectively connected to the input terminals of the MMICs, and the second spatial combiner unit is connected to the output terminals of the MMICs to combine the output signals of the MMICs. It is preferable to output
- the Wilkinson Power Divider/Combiner has a loss of about 0.7 dB when divided by 3 dB, so that the final output is 10W (40 dBm) using the Wilkinson Power Divider/Combiner like the conventional power amplifier shown in FIG. 1 .
- the last-stage amplifier In order to make a power amplifier, the last-stage amplifier must be configured using 8 TRs with 3W output.
- the 10W power amplifier for Ka band according to the present invention is designed using GCPW, Spatial Combiner, and Waveguide Divider/Combiner with much smaller loss, so that the final stage amplification unit can be configured using only 4 TRs with 3W output. Thereby, it is possible to implement a power amplifier with a final output of 10W (40dBm).
- the present invention can provide a power amplifier with high efficiency and low power consumption, despite being able to output the same output as that of a conventional power amplifier. That is, the conventional power amplifier shown in FIG. 1 has a power efficiency of 20%, whereas the 10W power amplifier for the Ka band according to the present invention has a power efficiency of 40%, which is twice the power efficiency of the conventional power amplifier. can get On the other hand, using the method according to the present invention, it is also possible to manufacture a 20W power amplifier.
- the housing is composed of almost the same size as that of the existing power amplifier, and by reducing the number of TRs used without additional parts by half, the production cost of the product can be reduced by 30% or more. do.
- the existing 10W power amplifier using Wilkinson Power Divider/Combiner has a problem in that the difference in gain according to frequency in the entire Ka band is about 4 dB.
- the 10W power amplifier for the Ka band according to the present invention has a nearly flat characteristic with a gain difference of about 2.2 dB according to the frequency in the entire Ka band.
- the power amplifier according to the present invention can improve the characteristics of the entire system by reducing the burden on components used together.
- the loss of the Wilkinson Power Divider/Combiner used in the power amplifier using the existing Wilkinson Power Divider/Combiner is 0.7dB, respectively, and the loss of 2.1dB is shown for the output of the last stage TR, whereas the final output is reduced.
- the power amplifier according to the feature of the invention uses a Spatial Combiner with a loss of 0.25dB and a Waveguide Divider/Combiner with a Loss of 0.1dB at the output stage to significantly reduce the loss to the output signal to 0.35dB, thereby increasing the TR of the final stage amplification unit by 4 It will be possible to output more than 10W in the Ka band by using only one.
- the GCPW used in the input stage of the power amplifier according to the present invention has a relatively large loss of 0.7 dB, but it was used for the transition between the microstrip line and the waveguide, until the output of the drive amplifier reaches the TR of the intermediate stage amplifier. Although it has a loss of 1.05dB, if the outputs of the two TRs in the middle stage amplification unit are combined with a Spatial Combiner, it increases by 2.75dB. Therefore, the signal applied to the TRs of the final stage amplification unit becomes large enough as necessary.
- the power amplifier according to the present invention broadens the bandwidth by cutting the layers step by step at the point where each port of the waveguide divider/combiner meets.
- the existing Wilkinson Power Divider/Combiner amplifier has a big difference of about 4dB in gain depending on the frequency in the entire Ka-band band, so the difference between Delay and Phase is large. etc can be solved.
- FIG. 1 is a block diagram illustrating a configuration of a 10W power amplifier using a Wilkinson Power Divider/Combiner according to the related art.
- FIG. 2 is a block diagram illustrating the configuration of a 10W power amplifier using GCPW, a spatial combiner, and a waveguide divider/combiner in a power amplifier according to a preferred embodiment of the present invention.
- FIG. 3 is a diagram showing the structure of the GCPW in the power amplifier according to the preferred embodiment of the present invention.
- FIG. 4 is a diagram illustrating a field shape for each position of the GCPW of FIG. 3 in the power amplifier according to the preferred embodiment of the present invention.
- FIG. 5 is a diagram illustrating a structure of a spatial combiner and a structure in which two TRs are combined using the structure of a power amplifier according to a preferred embodiment of the present invention.
- FIG. 6A is a diagram showing the structure of the coupling part of the Spatial Combiner structure in the power amplifier according to the preferred embodiment of the present invention
- FIG. 6B is the E-Field distribution of the coupling part of the Spatial Combiner structure.
- FIG. 7 is a diagram illustrating the structure of a waveguide divider/combiner in a power amplifier according to a preferred embodiment of the present invention.
- FIG 8 is a diagram illustrating a modified structure of the edge of the waveguide to cover the entire Ka band in the power amplifier according to the preferred embodiment of the present invention.
- FIG. 9 is a graph illustrating frequency characteristics of a 10W power amplifier using a Wilkinson Power Divider/Combiner according to the related art.
- FIG. 10 is a graph illustrating frequency characteristics of a power amplifier according to a preferred embodiment of the present invention.
- the power amplifier according to the present invention may be configured as a 10W power amplifier for the Ka band.
- FIG. 2 is a block diagram illustrating the configuration of a power amplifier according to a preferred embodiment of the present invention.
- the Ka band power amplifier 20 according to the present invention, a drive amplifier 200 composed of two stages of TR, an intermediate stage amplification unit 240 composed of two transistors, and four transistors.
- the second spatial combiner unit 235 sequentially connected between the amplification units, the first waveguide divider 250 and the third spatial combiner unit 260, the fourth spatial combiner unit 280 connected to the output terminal of the final amplification unit, and the first 2 A waveguide combiner (290) is provided.
- a signal is input to the drive amplifier 200 composed of two stages of TR.
- the microstrip line of the output end of the drive amplifier is connected to the waveguide 220 using the GCPW 210, the waveguide 220 is connected to the first spatial combiner unit 230, and the first spatial combiner 230 is By being connected to the intermediate stage amplifier 240, the signal of the output terminal of the drive amplifier is applied to the two TRs of the intermediate stage amplifier.
- the signals of the output terminals of the two TRs of the intermediate stage amplification unit 240 are combined by the second spatial combiner 235, pass through the waveguide divider 250, and then again the two spatial combiners of the third spatial combiner unit 260 It is applied to four TRs of the final stage amplification unit 270 through the fields 262 and 264 .
- the output signals of the final stage amplification unit 270 are combined by two spatial combiners 282 and 284 of the fourth spatial combiner unit 280 and combined through the second waveguide combiner 290 and output, so that the final output of 10W is configured to give
- FIG. 3 is a diagram showing the structure of the GCPW in the power amplifier according to the preferred embodiment of the present invention.
- the GCPW 210 according to the present invention is characterized in that the microstrip line connected to the output terminal of the drive amplifier and the waveguide 220 are designed to be connected to each other.
- the power amplifier according to the present invention has a wide bandwidth and small loss by this design.
- the E-Field of the region A which is the GCPW part, is composed of a field going from the upper conductor to the lower conductor and a field going to the ground.
- the E-Field in the B area where the tapered probe starts only the field going from the upper conductor to the lower conductor exists, the field going to the ground disappears, and the E-Field in the C area where the tapered probe is opened is inclined.
- the E-Field in the D area where the tapered probe is finished proceeds with the waveguide in TE10 mode.
- the first spatial combiner unit 230 and the second spatial combiner unit 235 are formed of a printed circuit board (PCB) having a Fin Line structure, and transistors of the intermediate stage amplifier unit 240 are formed.
- Reference numerals 242 and 244 may be formed of a Monolithic Microwave Integrated Circuit (MMIC).
- MMIC Monolithic Microwave Integrated Circuit
- the first spatial combiner unit 230 having a Fin Line structure is disposed in the middle of the waveguide 220 so that the input is divided into two and respectively connected to the input terminals of the MMICs.
- the second spatial combiner unit 235 having a Fin Line structure is connected to the output terminals of the MMICs to combine the output signals of the MMICs and output them to the waveguide divider 2560 .
- FIG. 6A is a diagram showing the structure of the coupling part of the Spatial Combiner structure in the power amplifier according to the preferred embodiment of the present invention
- FIG. 6B is the E-Field distribution of the coupling part of the Spatial Combiner structure.
- the signal incident to the waveguide of port 1 of the Spatial Combiner has the opposite direction of the current induced by the E-field parallel to the probe as shown in FIG. It is transmitted with the same phase and opposite phase.
- the output of two TRs combined by the Spatial Combiner 235 of FIG. 5 outputs twice that of the case of using one TR while passing through the output stage Spatial Combiner.
- the above-described output signal of the second spatial combiner unit 235 is divided into four through the waveguide divider 250 and the two spatial combiners 262 and 264 of the third spatial combiner unit 260, and then amplified at the final stage.
- Each of the four transistors of the section 270 is applied as an input.
- 7 is a diagram illustrating the structure of a waveguide divider/combiner 250/290 in a power amplifier according to a preferred embodiment of the present invention.
- the signals input to the final stage amplification unit 270 are amplified at each TR of the final stage amplification unit, and then they are bundled again in the fourth spatial combiner unit 280 and pass through the waveguide combiner 290 to give a final output.
- the total loss of the fourth spatial combiner unit 280 and the waveguide combiner 290 combining the outputs of the final stage amplification unit 270 is 0.35 dB, 1.75 dB is lower than the case of using the conventional Wilkinson Power Divider/Combiner. With loss, the final output is as high as 1.75dB.
- the TRs of the last stage amplification unit must each output 33.1dBm (2.14W) to finally output 40dBm (10W).
- the TRs of the final stage amplification unit must each output 34.35dBm (2.2W) to finally output 10W (40dBm), which increases the burden of each TR slightly, but 35dBm (3W) TRs There is no problem in outputting either 2.14W or 2.2W from the standpoint of the final stage amplifier composed of
- the loss of GCPW required for the transition between the microstrip line and the waveguide is 0.7 dB
- the loss of the spatial combiner for tying two TRs is 0.25 dB
- the output of the entire TR is Since the loss of the Waveguide Divider/Combiner required for grouping is 0.1dB, only 4 TRs are used in the final amplification section to output 10W in the Ka band.
- the power amplifier as shown in FIG. 2 passes through the GCPW 210, the Waveguide 220, and the first Spatial Combiner unit 230, and the signal reduced by the loss of 1.05 dB is the second Spatial Combiner unit ( 235) is applied to the intermediate stage TR 240, and this signal is reduced by only 0.6 dB Loss while passing through the Waveguide Divider 250 and the third Spatial Combiner unit 240. It is applied to the transistors, which is 0.45dB less loss than the conventional method, so there is not much difference.
- the output of the final stage amplification unit 270 is reduced only by a loss of 0.35 dB after passing through the fourth spatial combiner unit 280 and the waveguide combiner 290 and is finally output, so that the output signal is increased by 1.75 dB compared to the conventional method. state is output.
- the present invention can solve the existing problem of using 8 TRs having 3W output in the final stage amplification unit to make a 10W (40dBm) power amplifier.
- the power amplifier according to the present invention can reduce the current consumed while reducing the number of TRs of the last-stage amplification unit used by 1/2 by 1/2.
- the conventional power amplifier using Wilkinson Power Divider/Combiner shows a difference of about 4 dB in gain depending on the frequency in the entire band of 26.5 GHz to 40 GHz, which is the Ka-band band.
- the bandwidth can be widened by modifying the structure of the waveguide divider/combiner.
- 8 is a diagram illustrating a modified structure of the edge of the waveguide to cover the entire Ka band in the power amplifier according to the preferred embodiment of the present invention. Referring to FIG. 8 , the waveguide divider/combiner according to the present invention transforms the bent part where Port 1 of FIG. 7 meets Port 2 and Port 3 into a step-by-step structure in which layers are placed, thereby widening the bandwidth. .
- FIG. 10 is a graph illustrating frequency characteristics of a power amplifier according to a preferred embodiment of the present invention.
- the gain of the entire Ka-band band has a difference of about 2.2 dB depending on the frequency. Accordingly, since the waveguide divider/combiner of the power amplifier according to the present invention reduces the difference between the delay and the phase, it is possible to significantly reduce the amount of output reduction when using a plurality of amplifiers in a bundle.
- the 10W power amplifier for Ka band can be utilized for Ka band communication of 26.5 GHz to 40 GHz, which is commercially used due to insufficient RF supply compared to demand due to rapid increase in traffic. It is used as a power amplifier for the Ka band, which is essential for transmitting and receiving data between the earth station and the satellite of the satellite communication system, which consists of elements of earth station, satellite, satellite repeater, and ground control center, as well as being applied to amplifiers used in other bands for TR It can be used in the design of a power amplifier that increases efficiency and reduces power consumption by reducing the number of devices and producing the same output.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Microwave Amplifiers (AREA)
- Amplifiers (AREA)
Abstract
본 발명은 Ka 밴드용 10W 전력증폭기에 관한 것이다. 상기 전력증폭기는, 드라이브 증폭부; 2개의 트랜지스터로 구성된 중간단 증폭부; 4개의 트랜지스터로 구성된 최종단 증폭부; 상기 드라이브 증폭부와 상기 중간단 증폭부의 사이에 순차적으로 연결되어 드라이브 증폭부의 출력 신호를 분배하여 중간단 증폭부의 트랜지스터들로 제공하는 GCPW, Waveguide 및 제1 Spatial Combiner부; 상기 중간단 증폭부와 상기 최종단 증폭부의 사이에 순차적으로 연결되어, 상기 중간단 증폭부의 출력 신호들을 분배하여 상기 최종단 증폭부의 트랜지스터들로 제공하는 제2 Spatial Combiner부, Waveguide Divider 및 제3 Spatial Combiner부; 상기 최종단 증폭부의 출력단에 순차적으로 연결되어 상기 최종단 증폭부의 트랜지스터들의 출력 신호들을 결합하여 최종 출력하는 제4 Spatial Combiner부 및 Waveguide Combiner;를 구비한다.
Description
본 발명은 마이크로파 전력증폭기에 관한 것으로서, 더욱 구체적으로는, 기존의 전력증폭기와 동일한 출력을 낼 수 있도록 구성되면서, 기존의 전력증폭기보다 트랜지스터를 1/2만 사용하여 전류 소모가 감소되어 효율이 향상될 뿐만 아니라, 26.5GHz ~ 40GHz의 Ka-밴드의 전체 주파수 대역에서의 이득이 더 평탄한 특성을 갖는 새로운 형태의 Ka-밴드용 마이크로파 전력증폭기에 관한 것이다.
위성과의 통신은 전리층을 통과해야 하므로 주파수가 1GHz 이상으로 높은 마이크로파를 사용한다. L대역(1~2GHz)중 1.5GHz~1.6GHz는 저궤도 위성용, S대역(2~4GHz)중 2.5~2.6GHz는 위성관제용, C대역(4~8GHz)중 4~6GHz는 정지궤도 위성용, X대역(8~12GHz)중 7~8GHz는 군사용, Ku대역(12~18GHz)은 12~14GHz는 정지궤도 위성용 등으로 할당되어 있다. 그러나 최근에는 트래픽이 급증하여 주파수 재사용(Frequency Reuse)의 이중편파를 사용하여도 수요에 RF 공급이 부족하여 그동안 기상에 따른 감쇄가 심해 별로 관심을 받지 못했던 26.5GHz~40GHz의 Ka대역의 상업적 이용이 활발해지고 있다.
위성통신 시스템은 일반적으로 지구국, 위성, 위성 중계기, 지상 관제소의 요소로 이루어져 있다. 지구국(earth station)이란 지상에서 위성으로 데이터를 전송하고 또 위성으로부터 데이터를 수신하는 장치이다. Ka 밴드용 전력증폭기는 지구국에서 신호를 증폭하여 안테나를 통해 위성으로 전송하거나 위성에서 지구국으로 신호를 전송하는데 사용이 된다. 이와 같이 위성통신 시스템의 Ka 밴드용 전력증폭기에 사용되는 트랜지스터(TR)는 큰 출력이 요구되나, 출력이 큰 TR이 없기 때문에 작은 출력을 가진 TR 여러 개를 사용해서 원하는 출력을 낼 수 있도록 설계된다.
도 1은 종래의 기술에 따른 Wilkinson Power Divider/Combiner를 이용한 10W 전력증폭기의 구성을 도시한 블록도이다. 도 1을 참조하면, 종래의 기술에 따른 Wilkinson Power Divider/Combiner를 이용한 전력증폭기는, 드라이브 증폭부(100)를 거친 입력신호가 제1 Power Divider(110)를 거쳐 중간단 증폭부(120)의 2개의 TR에서 각각 증폭된 후, 다시 제2 Power Divider(130, 135)와 제3 Power Divider(140)를 거쳐 8개의 신호로 나뉘고, 8개의 신호는 최종단 증폭부(150)에 도달하면 2.1dB의 Loss만큼 신호가 감소되어 최종단 증폭부의 8개의 TR들에 인가되고, 최종단 증폭부(150)의 출력 신호들은 다시 제1, 제2 및 제3 Power Combiner(160, 170, 180)에 의해 결합되어 출력된다. 상기 제3 Power Combiner(180)로부터 최종적으로 출력되는 신호는 최종단 증폭부(150)의 전체 출력보다 2.1dB만큼 감소되어 출력된다.
전술한 바와 같이, Wilkinson Power Divider/Combiner를 이용하여 10W의 출력을 내는 전력증폭기를 구성하는 경우, 최종단 증폭부(150)에서 3W의 TR 8개를 사용해야 하므로 효율도 떨어지고 전력소모량도 커지는 문제점이 있다.
도 9는 종래의 기술에 따른 Wilkinson Power Divider/Combiner를 이용한 10W 전력증폭기의 주파수 특성을 도시한 그래프이다. 도 9를 참조하면, 기존의 Wilkinson Power Divider/Combiner를 이용한 전력증폭기는 도 9에 나타난 바와 같이 Ka-밴드 대역인 26.5GHz ~ 40GHz의 전체 대역에서 주파수에 따라 이득이 4dB정도의 차이를 보이게 된다. 따라서, 기존의 기술에 따른 Wilkinson Power Divider/Combiner를 이용한 10W 전력증폭기는, Ka-밴드의 전체 대역에서 주파수에 따른 이득이 너무 큰 차이를 보인다는 문제점도 있다.
전술한 문제점을 해결하기 위한 본 발명은 최종단 증폭부를 구성하는 트랜지스터의 개수를 감소시킬 수 있도록 구성하여 제작 비용 및 신호 손실도 감소시킬 수 있을 뿐만 아니라 Ka-밴드 전체 대역의 이득을 더 평탄하게 증폭할 수 있는 전력증폭기를 제공하는 것을 목적으로 한다.
전술한 목적을 달성하기 위한 본 발명의 특징에 따른 전력증폭기는, 하나 또는 둘 이상의 트랜지스터들로 구성되어 입력 신호를 증폭하는 드라이브 증폭부; 2개의 트랜지스터로 구성된 중간단 증폭부; 상기 드라이브 증폭부와 상기 중간단 증폭부의 사이에 순차적으로 연결되어 드라이브 증폭부의 출력 신호를 분배하여 중간단 증폭부의 트랜지스터들로 제공하는 GCPW, Waveguide 및 제1 Spatial Combiner부; 4개의 트랜지스터로 구성된 최종단 증폭부; 상기 중간단 증폭부와 상기 최종단 증폭부의 사이에 순차적으로 연결되어, 상기 중간단 증폭부의 출력 신호들을 분배하여 상기 최종단 증폭부의 트랜지스터들로 제공하는 제2 Spatial Combiner부, Waveguide Divider 및 제3 Spatial Combiner부; 상기 최종단 증폭부의 출력단에 순차적으로 연결되어 상기 최종단 증폭부의 트랜지스터들의 출력 신호들을 결합하여 최종 출력하는 제4 Spatial Combiner부 및 Waveguide Combiner;를 구비한다.
본 발명의 특징에 따른 전력 증폭기에 있어서, 상기 GCPW는 상기 드라이브 증폭부의 출력단의 마이크로스트립 라인과 Waveguide의 사이에 배치되고, GCPW의 일단은 Tapered Probe로 이루어져 Waveguide에 연결되어 마이크로스트립 라인과 Waveguide의 사이의 트랜지션(Transition)을 이루게 되는 것이 바람직하다.
본 발명의 특징에 따른 전력 증폭기에 있어서, 상기 Waveguide Divider 및 Waveguide Combiner는, 제1 포트, 상기 제1 포트로부터 분기되는 제2 및 제3 포트들을 구비하며, 상기 제1 포트가 제2 및 제3 포트들과 만나서 꺽이는 부분은 복수 개의 층으로 이루어진 계단 구조로 형성되어, 상기 전력 증폭기가 26.5GHz ~ 40GHz의 Ka 밴드의 대역폭을 갖도록 구성된 것이 바람직하다.
본 발명의 특징에 따른 전력 증폭기에 있어서, 상기 전력 증폭기는 26.5 GHz ~ 40GHz의 Ka 밴드 대역의 신호를 증폭하는 10W Ka-밴드용 전력 증폭기인 것이 바람직하다.
본 발명의 특징에 따른 전력 증폭기에 있어서, 상기 제1 Spatial Combiner부 및 제2 Spatial Combiner부는 Fin Line 구조의 인쇄회로기판(PCB)으로 이루어지고, 상기 중간단 증폭부의 트랜지스터들은 MMIC(Monolithic Microwave Integrated Circuit)으로 이루어지며, 상기 제1 Spatial Combiner부는 상기 Waveguide의 중간에 배치하여 입력이 둘로 나뉘어져서 MMIC들의 입력단에 각각 연결되고, 상기 제2 Spatial Combiner부는 MMIC들의 출력단에 연결되어 MMIC들의 출력 신호들을 결합하여 출력하는 것이 바람직하다.
일반적으로, Wilkinson Power Divider/Combiner는 3dB로 나뉘면서 약 0.7dB의 Loss를 갖게 되므로, 도 1에 도시된 기존의 전력 증폭기와 같이 Wilkinson Power Divider/Combiner를 이용하여 최종 출력이 10W(40dBm)가 되는 전력증폭기를 만들기 위해서는 최종단 증폭부를 3W 출력을 갖는 TR 8개를 사용하여 구성하여야만 된다. 하지만, 본 발명에 따른 Ka 밴드용 10W 전력증폭기는, Loss가 훨씬 작은 GCPW, Spatial Combiner, Waveguide Divider/Combiner를 사용하여 설계함으로써, 최종단 증폭부를 3W 출력을 갖는 TR 4개만을 사용하여 구성할 수 있게 되고, 이에 따라 최종 출력이 10W(40dBm)가 되는 전력증폭기를 구현할 수 있게 된다.
따라서, 본 발명은 기존의 전력증폭기와 동일한 출력을 낼 수 있음에도 불구하고, 효율은 높고 전력소모량은 작은 전력증폭기를 제공할 수 있게 된다. 즉, 도 1에 도시된 기존의 전력증폭기는 전력효율이 20%인 반면에, 본 발명에 따른 Ka 밴드용 10W 전력증폭기는 전력효율이 40%로써, 기존의 전력 증폭기에 비해 2배의 전력효율을 얻을 수 있다. 한편, 본 발명에 따른 방법을 이용하면 20W 전력증폭기도 제작 가능하다.
또한, 본 발명에 따른 전력 증폭기는, 하우징은 기존의 전력증폭기와 거의 동일한 사이즈로 구성되고 추가되는 부품없이 사용하는 TR의 갯수를 반으로 줄임으로써, 제품의 생산 단가를 30% 이상 감소시킬 수 있게 된다.
또한, 기존의 Wilkinson Power Divider/Combiner를 이용한 10W 전력증폭기는 Ka 밴드 전체 대역에서 주파수에 따른 이득 차이가 약 4dB로 크다는 문제점이 있다. 하지만, 본 발명에 따른 Ka 밴드용 10W 전력증폭기는 Ka 밴드 전체 대역에서 주파수에 따른 이득 차이가 약 2.2dB로 거의 평탄한 특성을 가지게 된다. 그 결과, 본 발명에 따른 전력증폭기는 같이 사용하는 부품들에 대한 부담을 감소시켜서 전체 시스템의 특성을 향상시킬 수 있다.
한편, 기존의 Wilkinson Power Divider/Combiner를 이용한 전력증폭기에 사용된 Wilkinson Power Divider/Combiner의 Loss가 각각 0.7dB로써, 최종단 TR의 출력에 대해 2.1dB의 Loss가 나타나 최종 출력을 감소시키는데 반해, 본 발명의 특징에 따른 전력증폭기는 출력단에 Loss가 0.25dB인 Spatial Combiner, Loss가 0.1dB인 Waveguide Divider/Combiner를 사용하여 출력신호에 대한 Loss를 0.35dB로 대폭 감소시킴으로써, 최종단 증폭부의 TR을 4개만 사용하여 Ka 밴드에서 10W 이상의 출력을 낼 수 있게 된다.
또한, 본 발명에 따른 전력 증폭기의 입력단에 사용된 GCPW는 Loss가 0.7dB로 비교적 크지만 마이크로스트립 라인과 Waveguide사이의 transition을 위해 사용되었으며, 드라이브 증폭부의 출력이 중간단 증폭부의 TR에 도달하기 까지 1.05dB의 Loss를 가지지만 중간단 증폭부에 있는 두 개의 TR의 출력을 Spatial Combiner로 묶으면 2.75dB만큼 증가하므로 최종단 증폭부의 TR들에 인가되는 신호는 필요한 만큼 충분히 큰 값이 된다.
또한, 본 발명에 따른 전력증폭기는, Waveguide Divider/Combiner의 각 Port들이 만나는 지점에 단계별로 층을 깎아서 대역폭을 넓히는 방법으로 Ka-밴드 전체 대역에서 주파수에 따라 이득이 2.2dB정도의 차이를 갖도록 하여, 기존의 Wilkinson Power Divider/Combiner를 이용한 증폭기가 Ka-밴드 전체 대역에서 주파수에 따라 이득이 4dB정도의 큰 차이를 가짐으로써 Delay와 Phase의 차이가 커져서 증폭기를 여러 개 묶어서 사용할 때 출력이 감소되는 문제점 등을 해결할 수 있게 된다.
도 1은 종래의 기술에 따른 Wilkinson Power Divider/Combiner를 이용한 10W 전력증폭기의 구성을 도시한 블록도이다.
도 2는 본 발명의 바람직한 실시예에 따른 전력 증폭기에 있어서, GCPW, Spatial Combiner, Waveguide Divider/Combiner를 이용한 10W 전력증폭기의 구성을 도시한 블록도이다.
도 3은 본 발명의 바람직한 실시예에 따른 전력 증폭기에 있어서, GCPW의 구조를 도시한 그림이다.
도 4는 본 발명의 바람직한 실시예에 따른 전력 증폭기에 있어서, 도 3의 GCPW의 위치별 Field모양을 도시한 그림이다.
도 5는 본 발명의 바람직한 실시예에 따른 전력 증폭기에 있어서, Spatial Combiner의 구조와 이를 이용하여 두개의 TR을 결합한 구조를 도시한 그림이다.
도 6a는 본 발명의 바람직한 실시예에 따른 전력 증폭기에 있어서, Spatial Combiner 구조의 결합 부분에 대한 구조를 도시한 그림이고, 도 6b는 Spatial Combiner 구조의 결합 부분의 E-Field 분포이다.
도 7은 본 발명의 바람직한 실시예에 따른 전력 증폭기에 있어서, Waveguide Divider/Combiner의 구조를 도시한 그림이다.
도 8은 본 발명의 바람직한 실시예에 따른 전력 증폭기에 있어서, Ka 밴드 전체를 커버하기 위한 Waveguide 모서리의 변형된 구조를 도시한 그림이다.
도 9는 종래의 기술에 따른 Wilkinson Power Divider/Combiner를 이용한 10W 전력증폭기의 주파수 특성을 도시한 그래프이다.
도 10은 본 발명의 바람직한 실시예에 따른 전력 증폭기의 주파수 특성을 도시한 그래프이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 전력 증폭기의 구조 및 동작에 대하여 구체적으로 설명한다. 특히, 본 발명에 따른 전력 증폭기는 Ka 밴드용 10W 전력증폭기로 구성될 수 있다.
도 2는 본 발명의 바람직한 실시예에 따른 전력 증폭기의 구성을 도시한 블록도이다. 도 2를 참조하면, 본 발명에 따른 Ka 밴드용 전력증폭기(20)는, 2단의 TR로 구성된 드라이브 증폭부(200), 2개의 트랜지스터로 구성된 중간단 증폭부(240), 4개의 트랜지스터로 구성된 최종단 증폭부(270), 상기 드라이브 증폭부와 중간단 증폭부의 사이에 순차적으로 연결된 GCPW(210), Waveguide(220)와 제1 Spatial Combiner 부(230), 상기 중간단 증폭부와 최종단 증폭부의 사이에 순차적으로 연결된 제2 Spatial Combiner부(235), 제1 Waveguide Divider(250)와 제3 Spatial Combiner부(260), 최종단 증폭부의 출력단에 연결된 제4 Spatial Combiner부(280)와 제2 Waveguide Combiner(290)를 구비한다.
전술한 구성을 갖는 전력 증폭기의 전체 신호 흐름을 간단하게 설명한다. 먼저, 2단의 TR로 구성된 드라이브 증폭부(200)로 신호가 입력된다. 드라이브 증폭부의 츨력단의 마이크로스트립 라인은 GCPW(210)를 이용하여 Waveguide(220)와 연결되며, Waveguide(220)는 제1 Spatial Combiner부(230)와 연결되고, 제1 Spatial Combiner(230)는 중간단 증폭부(240)에 연결됨으로써, 드라이브 증폭부의 출력단의 신호는 중간단 증폭부의 2개의 TR들로 인가된다. 다음, 중간단 증폭부(240)의 2개의 TR의 출력단의 신호는 제2 Spatial Combiner(235)에 의해 결합되어 Waveguide Divider(250)를 거치고 다시 제3 Spatial Combiner부(260)의 2개의 Spatial Combiner들(262,264)을 통해 최종단 증폭부(270)의 TR 4개로 인가된다. 최종단 증폭부(270)의 출력 신호들은 제4 Spatial Combiner부(280)의 2개의 Spatial Combiner(282,284)에 의해 결합되고 제2 Waveguide Combiner(290)를 통해 결합되어 출력됨으로써, 최종적으로 10W의 출력을 내도록 구성된다.
이하, 전술한 각 구성 요소들에 대하여 보다 구체적으로 설명한다.
도 3은 본 발명의 바람직한 실시예에 따른 전력 증폭기에 있어서, GCPW의 구조를 도시한 그림이다. 도 3을 참조하면, 본 발명에 따른 GCPW(210)는 드라이브 증폭부의 출력단에 연결된 마이크로스트립 선로와 Waveguide(220)가 서로 연결되도록 설계된 것을 특징으로 한다. 본 발명에 따른 전력 증폭기는 이러한 설계에 의하여 넓은 대역폭과 작은 Loss를 갖게 된다.
도 4는 도 3에 도시된 GCPW의 위치별 E-Field모양을 도시한 그림이다. 도 4를 참조하여 GCPW의 각 위치에 따른 E-Field의 분포를 살펴보면, GCPW부분인 A영역의 E-Field는 위 Conductor에서 아래 Conductor로 가는 Field와 Ground로 가는 Field로 구성되어 있다. Tapered Probe가 시작되는 B영역의 E-Field는 위 Conductor에서 아래 Conductor로 가는 Field만 존재하고 Ground로 가는 Field는 없어지게 되며, Tapered Probe가 벌어지는 C영역에서의 E-Field는 기울어진 모양이다. 그리고, Tapered Probe가 끝난 D 영역에서의 E-Field는 TE10 mode로 Waveguide를 진행하게 된다. 전술한 과정에 의해, GCPW로 입력된 신호는 마이크로스트립 라인과 Waveguide 사이의 Transition을 이루게 된다.
도 5는 본 발명의 바람직한 실시예에 따른 전력 증폭기에 있어서, Spatial Combiner의 구조와 이를 이용하여 두개의 TR을 결합한 구조를 도시한 그림이다. 도 5를 참조하면, 상기 제1 Spatial Combiner부(230) 및 제2 Spatial Combiner부(235)는 Fin Line 구조의 인쇄회로기판(PCB)으로 이루어지고, 상기 중간단 증폭부(240)의 트랜지스터들(242, 244)은 MMIC(Monolithic Microwave Integrated Circuit)으로 이루어질 수 있다. Fin Line 구조의 상기 제1 Spatial Combiner부(230)는 상기 Waveguide(220)의 중간에 배치되어 입력이 둘로 나뉘어져서 MMIC들의 입력단에 각각 연결된다. Fin Line 구조의 상기 제2 Spatial Combiner부(235)는 MMIC들의 출력단에 연결되어 MMIC들의 출력 신호들을 결합하여 Waveguide Divider(2560)으로 출력하는 것이 바람직하다.
도 6a는 본 발명의 바람직한 실시예에 따른 전력 증폭기에 있어서, Spatial Combiner 구조의 결합 부분에 대한 구조를 도시한 그림이고, 도 6b는 Spatial Combiner 구조의 결합 부분의 E-Field 분포이다.
도 6a를 참조하면, Spatial Combiner의 port 1의 Waveguide로 입사된 신호는 도 6b에 표시된 바와 같이 프로브에 평행인 E-field에 의해 유도된 전류의 방향이 반대가 되므로 port 2와 port 3로는 크기가 같고 위상은 반대가 되어 전송되게 된다. 도 5의 Spatial Combiner(235)에 의해 묶인 TR 2개의 출력은 출력단 Spatial Combiner를 거치면서 TR 1개를 사용한 경우보다 2배의 출력을 내게 된다.
전술한 제2 Spatial Combiner부(235)의 출력 신호는 Waveguide Divider(250)와 제3 Spatial Combiner부(260)의 2개의 Spatial Combiner들(262, 264)를 거쳐 4개로 나뉘어진 후, 최종단 증폭부(270)의 4개의 트랜지스터들의 입력으로 각각 인가된다. 도 7은 본 발명의 바람직한 실시예에 따른 전력 증폭기에 있어서, Waveguide Divider/Combiner(250/290)의 구조를 도시한 그림이다.
최종단 증폭부(270)로 입력된 신호들은 최종단 증폭부의 각 TR에서 증폭된 후 다시 제4 Spatial Combiner부(280)에서 묶여서 Waveguide Combiner(290)를 거쳐 최종 출력을 내게 된다. 이때, 최종단 증폭부(270)의 출력을 묶는 제4 Spatial Combiner부(280)와 Waveguide Combiner(290)의 Total Loss는 0.35dB가 되므로 기존의 Wilkinson Power Divider/Combiner를 이용한 경우보다 1.75dB가 낮은 Loss를 갖게 되어 최종 출력이 1.75dB만큼 높아지게 된다. 기존의 Wilkinson Power Divider/Combiner를 이용한 경우 최종단 증폭부의 TR들은 각각 33.1dBm (2.14W)을 출력해야 최종적으로 40dBm(10W)의 출력을 내게 된다. 하지만, 본 발명에 따른 전력증폭기는 최종단 증폭부의 TR들이 각각 34.35dBm(2.2W)을 출력해야 최종적으로 10W (40dBm)의 출력을 내게 되어 각 TR의 부담은 약간 커지지만 35dBm(3W) TR들로 구성된 최종단 증폭부의 입장에서는 2.14W나 2.2W 둘 다 출력하는데 이상이 없다.
전술한 구성을 갖는 본 발명에 따른 전력증폭기는, 마이크로스트립 라인과 Waveguide사이의 transition을 위해 필요한 GCPW의 Loss가 0.7dB, 2개의 TR을 묶기 위한 Spatial Combiner의 Loss가 0.25dB, 전체 TR의 출력을 묶기 위해 필요한 Waveguide Divider/Combiner의 Loss가 0.1dB이므로, 최종단 증폭부에 TR을 4개만 사용하여 Ka 밴드에서 10W의 출력을 낼 수 있다.
그러나, 도 2에 나타난 바와 같은 전력증폭기는 입력신호의 경우 GCPW(210), Waveguide(220), 제1 Spatial Combiner부(230)를 거쳐 1.05 dB의 Loss만큼 감소된 신호가 제2 Spatial Combiner부(235)로 묶인 중간단 TR(240)에 인가되고, 이 신호는 Waveguide Divider(250)와 제3 Spatial Combiner부(240)를 거치면서 0.6 dB의 Loss만큼만 감소되어 최종단 증폭부(270)의 4개의 트랜지스터들에 인가되는데 이는 기존의 방법보다 0.45dB 작은 Loss로 그렇게 큰 차이가 나지는 않는다. 그러나, 최종단 증폭부(270)의 출력은 제4 Spatial Combiner부(280)와 Waveguide Combiner(290)를 거치면 0.35dB의 Loss만큼만 감소되어 최종 출력되므로, 출력신호는 기존의 방법보다 1.75dB만큼 증가한 상태로 출력된다. 최종단의 Waveguide Divider(250)로 인가되고, 다시 제3 Spatial Combiner부(260)를 통해 최종단 증폭부(270)의 각 TR에 인가되는 입력신호는 기존의 방법보다 0.45dB 큰 신호가 인가되고, Spatial Combiner와 Waveguide Combiner의 작은 Loss로 인해 3W 출력을 갖는 4개의 TR로 구성된 최종단 증폭부(270)로 10W의 출력을 낼 수 있게 된다. 그 결과, 본 발명은 10W(40dBm) 전력증폭기를 만들기 위해서는 최종단 증폭부에 3W 출력을 갖는 TR 8개를 사용해야 한다는 기존의 문제점을 해결할 수 있게 된다. 이와 같이, 본 발명에 따른 전력증폭기는, 사용하는 최종단 증폭부의 TR의 갯수를 1/2로 감소시키면서 소모되는 전류도 1/2로 감소시킬 수 있게 된다.
또한, Waveguide Divider/Combiner의 각 Port들이 만나는 지점에 단계별로 층을 깎아서 대역폭을 넓히는 방법으로 Ka-밴드 전체 대역인 26.5GHz ~ 40GHz에 대해 증폭을 할 수 있도록 하여 기존의 Wilkinson Power Divider/Combiner를 이용한 증폭기의 Ka-밴드 전체 대역에서 이득 차이가 크다는 문제점을 해결할 수 있다.
기존의 Wilkinson Power Divider/Combiner를 이용한 전력증폭기는 도 9에 나타난 바와 같이 Ka-밴드 대역인 26.5GHz ~ 40GHz의 전체 대역에서 주파수에 따라 이득이 4dB정도의 차이를 보이게 된다. 하지만, 본 발명에서는 Waveguide Divider/Combiner의 구조를 변형시킴으로써 대역폭을 넓힐 수 있게 된다. 도 8은 본 발명의 바람직한 실시예에 따른 전력 증폭기에 있어서, Ka 밴드 전체를 커버하기 위한 Waveguide 모서리의 변형된 구조를 도시한 그림이다. 도 8을 참조하면, 본 발명에 따른 Waveguide Divider/Combiner는 도 7의 Port 1이 Port 2와 Port 3가 만나는 부분인 꺾이는 부분을 단계별로 층을 두는 계단 구조로 변형시킴으로써, 대역폭을 넓힐 수 있게 된다. 도 10은 본 발명의 바람직한 실시예에 따른 전력 증폭기의 주파수 특성을 도시한 그래프이다. 이와 같이 Waveguide Divider/Combiner의 모서리 영역에 대한 구조를 변형시킴으로써, 도 10에 나타난 바와 같이 Ka-밴드 전체 대역에서 주파수에 따라 이득이 2.2dB정도의 차이를 갖도록 하였다. 이에 따라, 본 발명에 따른 전력 증폭기의 Waveguide Divider/Combiner는 Delay와 Phase의 차이를 감소시킴으로 인해 증폭기를 여러 개 묶어서 사용할 때 출력이 감소되는 양을 크게 줄일 수 있다.
이상에서 본 발명에 대하여 그 바람직한 실시 예를 중심으로 설명하였으나, 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 발명의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
본 발명에 따른 Ka 밴드용 10W 전력증폭기는 트래픽이 급증하여 수요에 비해 RF 공급이 부족하여 상업적 이용이 활발해지고 있는 26.5GHz~40GHz의 Ka대역통신에 활용이 될 수 있다. 지구국, 위성, 위성 중계기, 지상 관제소의 요소로 이루어져 있는 위성통신 시스템의 지구국과 위성 사이의 데이터를 전송 및 수신에 필수적인 Ka 밴드용 전력증폭기로 사용됨은 물론, 다른 대역에서 사용하는 증폭기에도 적용하여 TR의 갯수를 줄이면서도 동일한 출력을 내도록 하여 효율을 높이고 전력소모량도 줄인 전력증폭기의 설계에 이용할 수 있다.
Claims (5)
- 하나 또는 둘 이상의 트랜지스터들로 구성되어 입력 신호를 증폭하는 드라이브 증폭부;2개의 트랜지스터로 구성된 중간단 증폭부;상기 드라이브 증폭부와 상기 중간단 증폭부의 사이에 순차적으로 연결되어 드라이브 증폭부의 출력 신호를 분배하여 중간단 증폭부의 트랜지스터들로 제공하는 GCPW, Waveguide 및 제1 Spatial Combiner부;4개의 트랜지스터로 구성된 최종단 증폭부;상기 중간단 증폭부와 상기 최종단 증폭부의 사이에 순차적으로 연결되어, 상기 중간단 증폭부의 출력 신호들을 분배하여 상기 최종단 증폭부의 트랜지스터들로 제공하는 제2 Spatial Combiner부, Waveguide Divider 및 제3 Spatial Combiner부; 및상기 최종단 증폭부의 출력단에 순차적으로 연결되어 상기 최종단 증폭부의 트랜지스터들의 출력 신호들을 결합하여 최종 출력하는 제4 Spatial Combiner부 및 Waveguide Combiner;를 구비하는 전력 증폭기.
- 제1항에 있어서, 상기 GCPW는 상기 드라이브 증폭부의 출력단의 마이크로스트립 라인과 Waveguide의 사이에 배치되고,GCPW의 일단은 Tapered Probe로 이루어져 Waveguide에 연결되어 마이크로스트립 라인과 Waveguide의 사이의 트랜지션(Transition)을 이루게 되는 것을 특징으로 하는 전력 증폭기.
- 제1항에 있어서, 상기 Waveguide Divider 및 Waveguide Combiner는,제1 포트, 상기 제1 포트로부터 분기되는 제2 및 제3 포트들을 구비하며,상기 제1 포트가 제2 및 제3 포트들과 만나서 꺽이는 부분은 복수 개의 층으로 이루어진 계단 구조로 형성되어,상기 전력 증폭기가 26.5GHz ~ 40GHz의 Ka 밴드의 대역폭을 갖도록 구성된 것을 특징으로 하는 전력 증폭기.
- 제1항에 있어서, 상기 전력 증폭기는 26.5GHz ~ 40GHz의 Ka 밴드 대역의 신호를 증폭하는 Ka-밴드용 전력 증폭기인 것을 특징으로 하는 전력 증폭기.
- 제1항에 있어서, 상기 제1 Spatial Combiner부 및 제2 Spatial Combiner부는 Fin Line 구조의 인쇄회로기판(PCB)으로 이루어지고,상기 중간단 증폭부의 트랜지스터들은 MMIC(Monolithic Microwave Integrated Circuit)으로 이루어지며,상기 제1 Spatial Combiner부는 상기 Waveguide의 중간에 배치하여 입력이 둘로 나뉘어져서 MMIC들의 입력단에 각각 연결되고,상기 제2 Spatial Combiner부는 MMIC들의 출력단에 연결되어 MMIC들의 출력 신호들을 결합하여 출력하는 것을 특징으로 하는 전력 증폭기.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/023,605 US20230308061A1 (en) | 2020-10-13 | 2021-03-10 | Microwave power amplifier |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200131596A KR102242300B1 (ko) | 2020-10-13 | 2020-10-13 | 마이크로파 전력증폭기 |
KR10-2020-0131596 | 2020-10-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022080603A1 true WO2022080603A1 (ko) | 2022-04-21 |
Family
ID=75743327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/002938 WO2022080603A1 (ko) | 2020-10-13 | 2021-03-10 | 마이크로파 전력증폭기 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230308061A1 (ko) |
KR (1) | KR102242300B1 (ko) |
WO (1) | WO2022080603A1 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113347780B (zh) * | 2021-06-02 | 2022-08-02 | 电子科技大学 | 一种多层电路板构成的鳍线结构 |
CN113764850B (zh) * | 2021-09-10 | 2022-06-03 | 中国科学院空天信息创新研究院 | 一种接地共面波导-矩形波导滤波过渡结构 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160116942A (ko) * | 2015-03-31 | 2016-10-10 | 한국전자통신연구원 | Rf 및 마이크로파 고출력 증폭기를 위한 저비용 고정확 범용 측정 고정 장치 |
KR20170034748A (ko) * | 2015-09-21 | 2017-03-29 | 가천대학교 산학협력단 | 이중 신호면과 공통 접지면을 갖는 안티포달 핀라인 변환기 및 안티포달 핀라인 변환기를 이용한 공간 결합 전력 증폭기 |
KR20180016432A (ko) * | 2015-06-05 | 2018-02-14 | 엠케이에스 인스트루먼츠, 인코포레이티드 | 솔리드 스테이트 마이크로파 생성기 및 전력 증폭기 |
KR20180065462A (ko) * | 2016-12-08 | 2018-06-18 | (주)엑스엠더블유 | 확장성을 갖는 밀리미터파 증폭기 구조 |
KR20180084284A (ko) * | 2017-01-16 | 2018-07-25 | 주식회사 브로던 | 동축 도파관 공간결합기를 이용한 고출력 전력 증폭기 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100330224B1 (ko) | 1999-06-26 | 2002-03-25 | 윤종용 | 전력증폭기 회로 및 증폭용 트랜지스터 |
KR101001282B1 (ko) | 2008-07-18 | 2010-12-14 | 충남대학교산학협력단 | Ldmos fet를 이용한 l-대역 고속 펄스 고전력증폭기 |
-
2020
- 2020-10-13 KR KR1020200131596A patent/KR102242300B1/ko active IP Right Grant
-
2021
- 2021-03-10 WO PCT/KR2021/002938 patent/WO2022080603A1/ko active Application Filing
- 2021-03-10 US US18/023,605 patent/US20230308061A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160116942A (ko) * | 2015-03-31 | 2016-10-10 | 한국전자통신연구원 | Rf 및 마이크로파 고출력 증폭기를 위한 저비용 고정확 범용 측정 고정 장치 |
KR20180016432A (ko) * | 2015-06-05 | 2018-02-14 | 엠케이에스 인스트루먼츠, 인코포레이티드 | 솔리드 스테이트 마이크로파 생성기 및 전력 증폭기 |
KR20170034748A (ko) * | 2015-09-21 | 2017-03-29 | 가천대학교 산학협력단 | 이중 신호면과 공통 접지면을 갖는 안티포달 핀라인 변환기 및 안티포달 핀라인 변환기를 이용한 공간 결합 전력 증폭기 |
KR20180065462A (ko) * | 2016-12-08 | 2018-06-18 | (주)엑스엠더블유 | 확장성을 갖는 밀리미터파 증폭기 구조 |
KR20180084284A (ko) * | 2017-01-16 | 2018-07-25 | 주식회사 브로던 | 동축 도파관 공간결합기를 이용한 고출력 전력 증폭기 |
Also Published As
Publication number | Publication date |
---|---|
KR102242300B1 (ko) | 2021-04-20 |
US20230308061A1 (en) | 2023-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10615482B2 (en) | Amplifier assemblies with multiple antenna structures and amplifiers | |
WO2022080603A1 (ko) | 마이크로파 전력증폭기 | |
CN113161709B (zh) | 宽带毫米波混合波导魔t功分器/合成器 | |
CN107069172A (zh) | 一种超宽带新型平面魔t | |
CN114256580A (zh) | 一种基于新型t波导的功率分配/合成器 | |
US20010040486A1 (en) | High power combiner apparatus | |
CN116111312A (zh) | 基于主副不同脊波导宽带双定向耦合器及矢量网络分析仪 | |
CN116014402A (zh) | 一种基于e面的径向功率合成器 | |
CN114039184A (zh) | 一种多路径向功率合成放大器 | |
CN115378368B (zh) | 一种超宽带固态功率放大器 | |
KR100431521B1 (ko) | 불균형적인 결합구조를 통해 길이축소 및 높은 지향성을갖는 방향성 결합기 | |
CN110620285A (zh) | 花瓣状1分4波导功分器 | |
CN219287484U (zh) | 一种三通耦合器电路及含有其的三通耦合器 | |
CN116632488B (zh) | 一种差分功分器、发射链路系统及接收链路系统 | |
CN218525716U (zh) | 一种微带功分耦合器 | |
CN219611733U (zh) | 一种Ka频段限幅低噪放电路 | |
JPH1168404A (ja) | 周波数フィルタ | |
KR100906776B1 (ko) | 스위치 lna가 구비된 iss 필터 모듈 | |
CN214625343U (zh) | 一种多路定向耦合器 | |
CN118842439A (en) | Ultra-wideband power amplifier | |
CN112332058B (zh) | 一种具有宽带或双带特性的功分器 | |
CN106684517A (zh) | 新型宽带3dB90°电桥 | |
CN209913804U (zh) | 一种ka频段倍频开关组件 | |
CN115996032A (zh) | 三通耦合器电路及含有其的三通耦合器 | |
KR100270312B1 (ko) | 분배기와 결합기 구조를 갖는 전력증폭회로 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21880255 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21880255 Country of ref document: EP Kind code of ref document: A1 |