WO2022080111A1 - Earth leakage determining device - Google Patents

Earth leakage determining device Download PDF

Info

Publication number
WO2022080111A1
WO2022080111A1 PCT/JP2021/034918 JP2021034918W WO2022080111A1 WO 2022080111 A1 WO2022080111 A1 WO 2022080111A1 JP 2021034918 W JP2021034918 W JP 2021034918W WO 2022080111 A1 WO2022080111 A1 WO 2022080111A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
voltage
period
electrode side
charge
Prior art date
Application number
PCT/JP2021/034918
Other languages
French (fr)
Japanese (ja)
Inventor
朝道 溝口
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112021005379.5T priority Critical patent/DE112021005379T5/en
Publication of WO2022080111A1 publication Critical patent/WO2022080111A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters

Definitions

  • This disclosure relates to an earth leakage determination device.
  • an electric leakage determination device for determining the presence or absence of an electric leakage between a DC power supply and a grounding portion has been known.
  • Patent Document 1 describes an electric leakage determination device that detects the voltage of a detection resistor portion having one end connected to the grounding portion and determines the presence or absence of electric leakage based on the detected voltage.
  • the capacitance to ground existing between the DC power supply and the grounding portion is large, the time change of the voltage of the detection resistance portion becomes gradual.
  • it is necessary to wait for the ground capacitance to be charged in order to detect the voltage of the detection resistor without being affected by the ground capacitance, it is necessary to wait for the ground capacitance to be charged. Therefore, if the charging to the ground capacitance is not completed within the required time, the voltage detection accuracy of the detection resistor portion may deteriorate, and the determination accuracy of the presence or absence of electric leakage may deteriorate.
  • Patent Document 2 describes a leakage determination device provided with a plurality of AC power supplies having different peak voltage values as a configuration for rapidly charging the ground capacitance.
  • the AC power supply having the highest peak value among the plurality of AC power supplies rapidly charges the ground capacitance.
  • Patent Document 3 describes an electric leakage determination device provided with a path for rapidly charging the ground capacitance. By reducing the resistance value of the resistor provided in this path, the capacitance to ground is rapidly charged.
  • the number of parts of the earth leakage determination device can be increased by adding a configuration for rapidly charging the ground capacitance.
  • a configuration for rapidly charging the ground capacitance For example, in Patent Document 3, the path for charging the ground capacitance existing between the positive electrode terminal of the DC power supply and the grounded portion and the ground electrostatic capacity existing between the negative electrode terminal of the DC power supply and the grounded portion.
  • Each of the paths for charging the capacitance is provided with a switch for switching between the conduction state and the cutoff state of the resistor. In this case, the number of switches increases, and the number of parts of the leakage determination device increases.
  • the present disclosure has been made in view of the above problems, and its main purpose is to provide an earth leakage determination device capable of improving the accuracy of determining the presence or absence of an electric leakage while reducing the number of parts.
  • the present disclosure relates to a detection resistance unit having one end connected to the grounding portion in an electric leakage determination device for determining the presence or absence of electric leakage between the DC power supply and the grounding portion, and the detection resistance portion by turning on.
  • the first switch which makes a conduction state between the end and the positive terminal of the DC power supply and turns off the other end of the detection resistance portion and the positive voltage terminal of the DC power supply, is turned on.
  • the other end of the detection resistance portion and the negative voltage terminal of the DC power supply are brought into a conductive state, and by turning off, the other end of the detection resistance portion and the negative voltage terminal of the DC power supply are cut off.
  • a third switch that cuts off the voltage between the two, a control unit that switches on or off the first switch, the second switch, and the third switch, and the second switch that is turned on and the first switch is turned on.
  • the voltage of the detection resistance unit which is the voltage of the detection resistance unit in the first period in which is turned off, and the voltage of the detection resistance unit in the second period in which the second switch is turned on and the first switch is turned off.
  • the control unit includes a determination unit that acquires the second voltage, and determines the presence or absence of the leakage based on the acquired first voltage and the second voltage, and the control unit is one of the first periods.
  • the third switch is turned on in the unit, the third switch is turned on in a part of the second period, and the determination unit is the third of the first period after the end of the on period of the third switch.
  • One voltage is acquired, and the second voltage after the end of the on period of the third switch in the second period is acquired.
  • an on period of the third switch is provided prior to the detection of the first voltage in the first period. Further, an on period of the third switch is provided prior to the detection of the second voltage in the second period.
  • the third switch makes the other end of the detection resistance portion and the grounded portion conductive, and the positive electrode side capacitance existing between the positive electrode terminal of the DC power supply and the grounded portion and the positive electrode side capacitance and the grounded portion. Charging and discharging are performed between the negative electrode side capacitance existing between the negative electrode terminal of the DC power supply and the grounding portion.
  • the impedance of the charging / discharging element is smaller than the resistance value of the detection resistance portion.
  • charging or discharging to the ground capacitance can be completed rapidly via the charging / discharging element.
  • charging or discharging to the ground capacitance can be completed within the required time, the voltage detection accuracy of the detection resistor can be improved, and the determination accuracy of the presence or absence of electric leakage is improved. be able to.
  • the charge / discharge control of the positive electrode side capacitance and the charge / discharge control of the negative electrode side capacitance are performed by a common charge / discharge element and a third switch. Therefore, the number of switches can be reduced as compared with the case where the charge / discharge control of the positive electrode side capacitance and the charge / discharge control of the negative electrode side capacitance are performed by different switches. As a result, the number of parts of the leakage determination device can be reduced.
  • FIG. 1 is a configuration diagram of an electric leakage determination device according to the first embodiment.
  • FIG. 2 is a diagram showing a current path when the first switch is turned on and the second and third switches are turned off.
  • FIG. 3 is a diagram showing a current path when the second switch is turned on and the first and third switches are turned off.
  • FIG. 4 is a diagram showing a current path when the first and third switches are turned on and the second switch is turned off.
  • FIG. 5 is a diagram showing a current path when the second and third switches are turned on and the first switch is turned off.
  • FIG. 6 is a time chart showing changes in the detected voltage and the like when the charge / discharge period is insufficient.
  • FIG. 7 is a time chart showing changes in the detected voltage and the like when the charge / discharge period is excessive.
  • FIG. 8 is a time chart showing changes in the detected voltage and the like when the charge / discharge period is appropriate.
  • FIG. 9 is a correspondence table between the time change amount of the first and second voltages and the first and second charge / discharge periods.
  • FIG. 10 is a flowchart of the process performed by the control device.
  • FIG. 11 is a time chart showing an example of the processing performed by the control device.
  • FIG. 12 is a configuration diagram of an electric leakage determination device according to a comparative example.
  • FIG. 13 is a correspondence table between the time change amount of the first and second voltages and the first and second charge / discharge periods according to the second embodiment.
  • FIG. 14 is a flowchart of the process performed by the control device.
  • FIG. 15 is a time chart showing an example of the processing performed by the control device.
  • FIG. 16 is a block diagram of the leakage determination device according to the third embodiment.
  • FIG. 17 is a configuration diagram of the leakage determination device according to the fourth embodiment.
  • FIG. 18 is a time chart showing changes in the current and voltage of the positive electrode side capacitance and the negative electrode side capacitance.
  • FIG. 19 is a diagram showing a current path when the first and third switches are turned on and the second switch is turned off.
  • FIG. 20 is a diagram showing a current path when the second and third switches are turned on and the first switch is turned off.
  • FIG. 21 is a time chart showing an example of the processing performed by the control device.
  • FIG. 22 is a configuration diagram of the leakage determination device according to the first modification of the fourth embodiment.
  • FIG. 23 is a configuration diagram of the leakage determination device according to the second modification of the fourth embodiment.
  • the leakage determination device of the present embodiment is mounted on a control system of an electrified vehicle such as a hybrid vehicle or an electric vehicle, for example.
  • the control system includes a storage battery 10 as a "DC power source” and an electric leakage determination device 20.
  • the positive electrode terminal of the storage battery 10 and the first external terminal P1 of the leakage determination device 20 are connected by a positive electrode side path L1.
  • the negative electrode terminal of the storage battery 10 and the second external terminal P2 of the leakage determination device 20 are connected by a negative electrode side path L2.
  • the storage battery 10 is an assembled battery in which a plurality of battery cells are connected in series, and the voltage Vc between terminals of the storage battery 10 is, for example, 100 V or more.
  • the battery cell for example, a lithium ion storage battery or a nickel hydrogen storage battery can be used.
  • the voltage Vc between the terminals of the storage battery 10 is supplied to a rotary electric machine as an in-vehicle main engine via an inverter. In FIG. 1, the inverter and the rotary electric machine constituting the control system are not shown.
  • the positive electrode side path L1 is electrically insulated from the grounding portion G1 of the vehicle body or the like.
  • the insulation state between the positive electrode side path L1 and the ground contact portion G1 can be expressed as the positive electrode side ground fault resistance Rp.
  • a capacitor as a passive element for noise reduction and a ground capacitance such as stray capacitance, which are collectively represented as a positive electrode side capacitance Cp.
  • the negative electrode side path L2 is electrically insulated from the ground contact portion G1 of the vehicle body or the like.
  • the insulation state between the negative electrode side path L2 and the grounding portion G1 can be expressed as the negative electrode side ground fault resistance Rn.
  • a capacitor as a passive element for noise reduction and a ground capacitance such as stray capacitance, which are collectively represented as the negative electrode side capacitance Cn.
  • the positive electrode side and negative electrode side capacitances Cp and Cn include, but are not limited to, the capacitance of the capacitor as a passive element in addition to the stray capacitance.
  • the positive electrode side and negative electrode side capacitances Cp and Cn are only stray capacitances. That is, the positive electrode side and negative electrode side capacitances Cp and Cn are composed of at least stray capacitance.
  • the leakage determination device 20 includes a first switch S1 and a second switch S2. One end of the first switch S1 and one end of the second switch S2 are connected at the connection point M. The other end of the first switch S1 is connected to the first external terminal P1. When the first switch S1 is turned on, the positive electrode terminal of the storage battery 10 and the connection point M are in a conductive state, and when the switch S1 is turned off, the positive electrode terminal of the storage battery 10 and the connection point M are cut off. .. The other end of the second switch S2 is connected to the second external terminal P2. When the second switch S2 is turned on, the negative electrode terminal of the storage battery 10 and the connection point M are in a conductive state, and when the switch S2 is turned off, the negative electrode terminal of the storage battery 10 and the connection point M are cut off. ..
  • the leakage determination device 20 includes a voltage detection unit 30.
  • the voltage detection unit 30 includes a first resistor 31, a second resistor 32, a third resistor 33, and a constant voltage source 34 with reference to the grounding portion G1.
  • One end of the first resistor 31 is connected to the connection point M.
  • the other end of the first resistor 31 is connected to one end of the second resistor 32.
  • Let N be the connection point between the other end of the first resistor 31 and one end of the second resistor 32.
  • the other end of the second resistor 32 is connected to the grounding portion G1.
  • the constant voltage source 34 is connected to one end of the third resistor 33, and the other end of the third resistor 33 is connected to the connection point N. Note that FIG. 1 shows the output voltage of the constant voltage source 34 in Vdc.
  • the leakage determination device 20 includes a control device 40.
  • the control device 40 outputs a signal for switching on / off of the first and second switches S1 and S2.
  • a voltage signal corresponding to the voltage of the connection point N is input to the control device 40.
  • the control device 40 has a storage unit that stores various information including the input voltage signal.
  • the storage unit is a non-transitional substantive recording medium other than ROM (for example, a non-volatile memory other than ROM).
  • the control device 40 corresponds to the "control unit".
  • the resistance values R1 to R3 of the resistors 31 to 33 are set in order to step down the voltage signal to a voltage range (for example, 0 to 5 V) that can be input to the control device 40.
  • the resistance value R1 of the first resistor 31 is larger than the resistance value R2 of the second resistor 32 and the resistance value R3 of the third resistor 33.
  • the resistance value R1 of the first resistor 31 is several M ⁇ , and the resistance values R2 and R3 of the second and third resistors 32 and 33 are several k ⁇ .
  • the control device 40 detects the voltage at the connection point N based on the input voltage signal.
  • the first to third resistors 31 to 33 correspond to the "detection resistance section".
  • the leakage determination device 20 includes a rapid charge / discharge unit 50.
  • the rapid charge / discharge unit 50 has a rapid charge / discharge path L3, a fourth resistor 51, and a third switch S3.
  • the rapid charge / discharge path L3 connects the connection point M and the third external terminal P3 of the leakage determination device 20.
  • the third external terminal P3 is connected to the grounding portion G1.
  • the fourth resistor 51 and the third switch S3 are provided in the rapid charge / discharge path L3.
  • One end of the fourth resistor 51 is connected to the third external terminal P3.
  • the third switch S3 connects the other end of the fourth resistor 51 to the connection point M.
  • the third switch S3 is switched on and off by the control device 40.
  • the resistance value R4 of the fourth resistor 51 is, for example, several hundred k ⁇ , which is smaller than the combined resistance value (R1 + R2) of the first resistor 31 and the second resistor 32.
  • the fourth resistor 51 corresponds to the “charge / discharge element”.
  • FIG. 2 shows a current path when a sufficient time has elapsed after the first switch S1 is turned on and the second and third switches S2 and S3 are turned off.
  • FIG. 3 shows a current path when a sufficient time has elapsed after the second switch S2 is turned on and the first and third switches S1 and S3 are turned off.
  • a current path including a positive electrode terminal of the storage battery 10 ⁇ a ground fault resistance Rp on the positive electrode side ⁇ a ground fault resistance Rn on the negative electrode side ⁇ a negative electrode terminal of the storage battery 10 is commonly formed.
  • the positive electrode terminal of the storage battery 10 ⁇ the first switch S1 ⁇ the first resistor 31 ⁇ the second resistor 32 ⁇ the grounding portion G1 ⁇ the negative electrode side ground fault resistance Rn ⁇ the negative electrode of the storage battery 10.
  • a current path consisting of terminals is formed.
  • the positive electrode side ground fault resistance Rp is connected in parallel to the first and second resistors 31, 32. Therefore, the voltage drop amount of the positive electrode side ground fault resistance Rp is smaller than the voltage drop amount of the negative electrode side ground fault resistance Rn. That is, the voltage applied to the positive electrode side capacitance Cp is lower than the voltage applied to the negative electrode side capacitance Cn.
  • the control device 40 acquires the detection voltage Vr of the voltage detection unit 30 in this state as the first voltage V1 and uses it for calculating the resistance values of the interrelated resistances Rp and Rn.
  • the positive electrode terminal of the storage battery 10 ⁇ the ground fault resistance Rp on the positive electrode side ⁇ the grounding portion G1 ⁇ the second resistor 32 ⁇ the first resistor 31 ⁇ the second switch S2 ⁇ the negative electrode of the storage battery 10.
  • a current path consisting of terminals is formed.
  • the negative electrode side ground fault resistance Rn is connected in parallel to the first and second resistors 31, 32. Therefore, the voltage drop amount of the negative electrode side ground fault resistance Rn is smaller than the voltage drop amount of the positive electrode side ground fault resistance Rp. That is, the voltage applied to the negative electrode side capacitance Cn is lower than the voltage applied to the positive electrode side capacitance Cp.
  • the control device 40 acquires the detected voltage Vr in this state as the second voltage V2 and uses it for calculating the resistance values of the interfering resistors Rp and Rn.
  • the constant voltage source 34 and the third resistor 33 are provided so that the second voltage V2 can be detected as a non-zero voltage value.
  • the control device 40 calculates the resistance values of the local resistances Rp and Rn based on the first and second voltages V1 and V2.
  • a method for calculating the resistance values of the interrelated resistances Rp and Rn for example, a method according to the method described in Patent Document 1 may be used. In this method, the equations including the resistance value of the ground fault resistance Rp on the positive side and the equation including the resistance value of the ground fault resistance Rn on the negative side are combined to solve the simultaneous equations, and the resistances of the ground faults Rp and Rn in each region are combined. It calculates the value. The presence or absence of electric leakage is determined based on the calculated resistance values of the local resistances Rp and Rn. In the present embodiment, the control device 40 corresponds to the "determination unit".
  • the positive electrode side capacitance Cp is discharged and the negative electrode side capacitance Cn is set. It will be charged.
  • the charging / discharging of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn is performed via the first resistor 31 having a large resistance value, it takes time to reach the state shown in FIG.
  • the third switch S3, the fourth resistor 51, and the rapid charge / discharge path L3 are provided as a configuration for rapidly charging / discharging the positive electrode side capacitance Cp and the negative electrode side capacitance Cn.
  • FIG. 4 shows a current path in the first charge / discharge period Tpp in which the first and third switches S1 and S3 are turned on and the second switch S2 is turned off.
  • the positive electrode side capacitance Cp is discharged by a current path including a first switch S1 ⁇ a third switch S3 ⁇ a fourth resistor 51 ⁇ a positive electrode side capacitance Cp.
  • the negative electrode side capacitance Cn is charged by a current path including a positive electrode terminal of the storage battery 10 ⁇ a first switch S1 ⁇ a third switch S3 ⁇ a fourth resistor 51 ⁇ a negative electrode side capacitance Cn ⁇ a negative electrode terminal of the storage battery 10.
  • the voltage applied to the positive electrode side capacitance Cp is lowered, and the voltage applied to the negative electrode side capacitance Cn is increased.
  • the discharge of the positive electrode side capacitance Cp and the charge of the negative electrode side capacitance Cn are performed via the fourth resistor 51. Since the resistance value R4 of the fourth resistor 51 is smaller than the resistance value R1 of the first resistor 31, the positive electrode side capacitance Cp is discharged and the negative electrode side capacitance Cn is rapidly charged. As a result, the period until the state shown in FIG. 2 can be obtained can be shortened.
  • FIG. 5 shows a current path in the second charge / discharge period Tpn in which the second and third switches S2 and S3 are turned on and the first switch S1 is turned off.
  • the negative electrode side capacitance Cn is discharged by a current path including a fourth resistor 51 ⁇ a third switch S3 ⁇ a second switch S2 ⁇ a negative electrode side capacitance Cn.
  • the positive electrode side capacitance Cp is charged by a current path including a positive electrode terminal of the storage battery 10 ⁇ a positive electrode side capacitance Cp ⁇ a fourth resistor 51 ⁇ a third switch S3 ⁇ a second switch S2 ⁇ a negative electrode terminal of the storage battery 10.
  • the voltage applied to the positive electrode side capacitance Cp is increased, and the voltage applied to the negative electrode side capacitance Cn is decreased.
  • the discharge of the negative electrode side capacitance Cn and the charge of the positive electrode side capacitance Cp are also performed via the fourth resistor 51. Therefore, the negative electrode side capacitance Cn is discharged and the positive electrode side capacitance Cp is charged rapidly. As a result, the period until the state shown in FIG. 3 can be obtained can be shortened.
  • FIG. 6 shows the transition of the detected voltage Vr when the first and second charge / discharge periods Tpp and Tpn are insufficient for an appropriate length.
  • (a) shows the driving state of the first switch S1
  • (b) shows the driving state of the second switch S2
  • (c) shows the driving state of the third switch S3,
  • (d) shows the driving state of the third switch S3.
  • the transition of the detected voltage Vr and the ideal voltage Vd is shown.
  • FIG. 6D the detected voltage Vr is shown by a solid line
  • the ideal voltage Vd is shown by a broken line.
  • the ideal voltage Vd is a voltage when the values of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn are 0, and is a voltage to be detected as the first voltage V1 and the second voltage V2.
  • the first and second charge / discharge periods Tpp and Tpn are set to 0.
  • the first switch S1 is switched on and the second and third switches S2 and S3 are turned off.
  • the detection voltage Vr rises.
  • the positive electrode side capacitance Cp is discharged and the negative electrode side capacitance Cn is charged.
  • the detected voltage Vr gradually decreases.
  • the charging / discharging of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn is mainly performed via the first resistor 31, the gradual decrease rate of the detected voltage Vr is low. Therefore, the first voltage V1 is detected at time t2 before the charging / discharging of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn is completed. In this case, the first voltage V1 is higher than the ideal voltage Vd, and the detection accuracy of the first voltage V1 deteriorates.
  • the second switch S2 is switched on. In this case, since the negative electrode terminal of the storage battery 10 and the connection point M are connected, the detection voltage Vr drops. In the second period T2 from the time t3 to the time t4 when the second switch S2 is switched off, the positive electrode side capacitance Cp is charged and the negative electrode side capacitance Cn is discharged. When the voltage applied to the negative electrode side capacitance Cn gradually decreases, the detected voltage Vr gradually increases. In this case, since the charging / discharging of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn is mainly performed via the first resistor 31, the gradual increase rate of the detected voltage Vr is low.
  • the second voltage V2 is detected at time t4 before the charging / discharging of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn is completed.
  • the second voltage V2 is lower than the ideal voltage Vd, and the detection accuracy of the second voltage V2 deteriorates.
  • the first and second charge / discharge periods Tpp and Tpn are 0, but also when the first and second charge / discharge periods Tpp and Tpn are insufficient for an appropriate length, the first , The detection accuracy of the second voltages V1 and V2 deteriorates.
  • FIG. 7 is a transition of the detected voltage Vr when the first and second charge / discharge periods Tpp and Tpn are excessive with respect to an appropriate length. 7 (a) to 7 (d) correspond to FIGS. 6 (a) to 6 (d).
  • the first and third switches S1 and S3 are switched on, and the second switch S2 is turned off. From time t1 to time t2 when the third switch S3 is switched off, the current path shown in FIG. 4 is formed, the positive electrode side capacitance Cp is discharged, and the negative electrode side capacitance Cn is charged. In this case, since the positive electrode side capacitance Cp and the negative electrode side capacitance Cn are charged and discharged via the fourth resistor 51, the speed at which the detected voltage Vr gradually decreases is such that charging and discharging are performed via the first resistor 31. Faster than it would be.
  • the positive electrode side capacitance Cp and the negative electrode side capacitance Cn are excessively charged / discharged.
  • the detected voltage Vr is lower than the ideal voltage Vd. Therefore, from the time t2 to the time t3 when the first switch S1 is switched off, the positive electrode side capacitance Cp is charged and the negative electrode side capacitance Cn is discharged. Therefore, the detected voltage Vr gradually increases. In this case, since the charging / discharging of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn is mainly performed via the first resistor 31, the speed at which the detected voltage Vr gradually increases is charged via the fourth resistor 51. Slower than when discharging occurs. Therefore, at time t3, the detection voltage Vr remains lower than the ideal voltage Vd, and the detection accuracy of the first voltage V1 deteriorates. In FIG. 7, the time t1 to the time t3 is the first period T1.
  • the second and third switches S2 and S3 are switched on. From time t4 to time t5 when the third switch S3 is switched off, the current path shown in FIG. 5 is formed, the positive electrode side capacitance Cp is charged, and the negative electrode side capacitance Cn is discharged. In this case, since the positive electrode side capacitance Cp and the negative electrode side capacitance Cn are charged and discharged via the fourth resistor 51, the speed at which the detected voltage Vr gradually increases is such that charging and discharging are performed via the first resistor 31. Faster than it would be.
  • the second charge / discharge period Tpn which is the period from time t4 to time t5
  • the positive electrode side capacitance Cp and the negative electrode side capacitance Cn are excessively charged / discharged.
  • the detected voltage Vr is higher than the ideal voltage Vd. Therefore, from the time t5 to the time t6 when the second switch S2 is switched off, the positive electrode side capacitance Cp is discharged and the negative electrode side capacitance Cn is charged. Therefore, the detected voltage Vr gradually decreases. In this case, since the charging / discharging of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn is mainly performed via the first resistor 31, the speed at which the detected voltage Vr gradually decreases is charged via the fourth resistor 51. Slower than when discharging occurs. Therefore, at time t6, the detection voltage Vr remains higher than the ideal voltage Vd, and the detection accuracy of the second voltage V2 deteriorates. In FIG. 7, the time t4 to the time t6 is the second period T2.
  • FIG. 8 shows the transition of the detected voltage Vr when the first and second charge / discharge periods Tpp and Tpn are set to appropriate lengths. 8 (a) to 8 (d) correspond to FIGS. 6 (a) to 6 (d).
  • the first and third switches S1 and S3 are switched on, and the second switch S2 is turned off.
  • the current path shown in FIG. 4 is formed, the positive electrode side capacitance Cp is discharged, and the negative electrode side capacitance Cn is charged.
  • the detected voltage Vr coincides with the ideal voltage Vd. Therefore, from the time t2 to the time t3 when the first switch S1 is turned off, the current path shown in FIG. 2 is formed, and the detected voltage Vr becomes constant. Therefore, the control device 40 can accurately detect the first voltage V1 at, for example, at time t3 when the first switch S1 is switched off. In FIG. 8, the time t1 to the time t3 is the first period T1.
  • the second and third switches S2 and S3 are switched on. From the time t4 to the time t5 when the second charge / discharge period Tpn has elapsed, the current path shown in FIG. 5 is formed, the positive electrode side capacitance Cp is charged, and the negative electrode side capacitance Cn is discharged. At time t5, the detected voltage Vr coincides with the ideal voltage Vd. Therefore, from the time t5 to the time t6 when the second switch S2 is switched off, the current path shown in FIG. 3 is formed, and the detected voltage Vr becomes constant. Therefore, the control device 40 can accurately detect the second voltage V2, for example, at time t6. In FIG. 8, the time t4 to the time t6 is the second period T2.
  • the detection accuracy of the first and second voltages V1 and V2 may deteriorate. .. Therefore, in the present embodiment, it is assumed that the first and second voltages V1 and V2 are detected at predetermined intervals, and the next cycle is based on the time change amounts dVp and dVn of the first and second voltages V1 and V2. It was decided that the first and second charge / discharge periods Tpp and Tpn in the above were set.
  • FIG. 9 shows the correspondence between the time change amount dVp of the first voltage V1 and the increase / decrease of the first charge / discharge period Tpp, and shows the time change amount dVn of the second voltage V2 and the increase / decrease of the second charge / discharge period Tpn. The correspondence relationship of is shown.
  • the first charge / discharge period Tpp in the next cycle is increased.
  • the time change amount dVp of the first voltage V1 is a positive value
  • the first charge / discharge period Tpp in the next cycle is shortened.
  • the first charge / discharge period Tpp in the next cycle is set so as to reduce the time change amount dVp of the first voltage V1.
  • the time change amount dVp of the first voltage V1 is 0, the first charge / discharge period Tpp in the current cycle is used as the first charge / discharge period Tpp in the next cycle.
  • the determination of whether or not the time change amount dVp of the first voltage V1 is 0 determines whether or not the absolute value of the time change amount dVp of the first voltage V1 is smaller than the predetermined value k. It is done by judging.
  • feedback control is performed in which the operation amount is set to the first charge / discharge period Tpp in order to set the time change amount dVp of the first voltage V1 to 0.
  • the proportional integral control shown in the following equation (e1) is used as the feedback control of the first voltage V1.
  • the first term on the right side of the above equation (e1) is a proportional term
  • the second term on the right side is an integral term
  • the third term on the right side is the initial value of the first charge / discharge period Tpp or the first charge / discharge in the previous control cycle.
  • the coefficient KP is a proportional coefficient and the coefficient KI is an integral coefficient.
  • the second charge / discharge period Tpn in the next cycle is increased.
  • the time change amount dVn of the second voltage V2 is a negative value
  • the second charge / discharge period Tpn in the next cycle is shortened.
  • the second charge / discharge period Tpn in the next cycle is set so as to reduce the time change amount dVn of the second voltage V2.
  • the time change amount dVn of the second voltage V2 is 0, the second charge / discharge period Tpn in the current cycle is used as the second charge / discharge period Tpn in the next cycle.
  • the determination of whether or not the time change amount dVn of the second voltage V2 is 0 determines whether or not the absolute value of the time change amount dVn of the second voltage V2 is smaller than the predetermined value k. It is done by judging.
  • feedback control is performed in which the operation amount is set to the second charge / discharge period Tpn in order to set the time change amount dVn of the second voltage V2 to 0.
  • the proportional integral control shown in the following equation (e2) is used as the feedback control of the second voltage V2.
  • the first term on the right side of the above equation (e2) is a proportional term
  • the second term on the right side is an integral term
  • the third term on the right side is the initial value of the second charge / discharge period Tpn or the second charge / discharge in the previous control cycle.
  • the period Tpn is the first term on the right side of the above equation (e2).
  • the feedback control of the first and second voltages V1 and V2 is not limited to the proportional integral control, and may be, for example, the proportional integral differential control.
  • FIG. 10 shows a procedure of processing performed by the control device 40. This process is performed when the start condition is met.
  • the start condition is set arbitrarily.
  • step S100 the initial values of the first and second charge / discharge periods Tpp and Tpn are set.
  • step S101 the first switch S1 is switched on. As a result, the first period T1 is started.
  • step S102 the third switch S3 is switched on. As a result, the first charge / discharge period Tpp is started.
  • step S103 after the third switch S3 is turned on, the process waits for the first charge / discharge period Tpp. During this standby period, the positive electrode side capacitance Cp is discharged and the negative electrode side capacitance Cn is charged by the current path shown in FIG.
  • step S104 the third switch S3 is turned off. This ends the first charge / discharge period Tpp.
  • step S105 the first voltage V1 immediately after the third switch S3 is turned off is detected, and the detected value is stored in the storage unit as V1a.
  • the process of step S105 is performed at a timing slightly delayed from the off timing of the third switch S3. As a result, it is possible to suppress the noise generated when the third switch S3 is switched off from being mixed in the detection voltage Vr.
  • step S106 after the third switch S3 is turned off, the process waits only for a period excluding the first charge / discharge period Tpp from the first period T1.
  • step S107 the first voltage V1 after standby is detected and stored in the storage unit as V1b.
  • step S108 the first switch S1 is turned off. As a result, the first period T1 is terminated.
  • step S107 The process of step S107 is performed at a timing slightly earlier than the off timing of the first switch S1. As a result, it is possible to suppress the noise generated when the first switch S1 is switched off from being mixed in the detection voltage Vr.
  • step S109 the patient waits for a predetermined third period T3.
  • step S110 the second switch S2 is turned on. As a result, the second period T2 is started.
  • step S111 the third switch S3 is turned on. As a result, the second charge / discharge period Tpn is started.
  • step S112 after the third switch S3 is turned on, the process waits for the second charge / discharge period Tpn. During this standby period, the positive electrode side capacitance Cp is charged and the negative electrode side capacitance Cn is discharged by the current path shown in FIG.
  • step S113 the third switch S3 is turned off. As a result, the second charge / discharge period Tpn is terminated.
  • step S114 the second voltage V2 immediately after the third switch S3 is turned off is detected and stored in the storage unit as V2a.
  • the process of step S114 is performed at a timing slightly delayed from the off timing of the third switch S3. As a result, it is possible to suppress the noise generated when the third switch S3 is switched off from being mixed in the detection voltage Vr.
  • step S115 the standby is performed only for a period excluding the second charge / discharge period Tpn from the second period T2.
  • step S116 the second voltage V2 after standby is detected and stored in the storage unit as V2b.
  • step S117 the second switch S2 is turned off. As a result, the second period T2 is terminated.
  • the process of step S116 is performed at a timing slightly earlier than the off timing of the second switch S2. As a result, it is possible to suppress the noise generated when the second switch S2 is switched off from being mixed in the detection voltage Vr.
  • step S118 the time change amount dVp of the first voltage V1 and the time change amount dVn of the second voltage V2 are calculated.
  • the time change amount dVp of the first voltage V1 is obtained by the following equation (e3).
  • V1a is the detection voltage stored in the storage unit in step S105
  • V1b is the detection voltage stored in the storage unit in step S107
  • ⁇ t1 is the first standby time.
  • the first standby time ⁇ t1 is a period shorter than the period obtained by removing the first charge / discharge period Tpp from the first period T1. This is because the processing of step S105 is slightly delayed from the off timing of the third switch S3, and the processing of step S107 is slightly earlier than the off timing of the first switch S1.
  • the time change amount dVn of the second voltage V2 is obtained by the following equation (e4).
  • V2a is the detection voltage stored in the storage unit in step S114
  • V1b is the detection voltage stored in the storage unit in step S116
  • ⁇ t2 is the second standby time.
  • the second standby time ⁇ t2 is a period shorter than the period obtained by removing the second charge / discharge period Tpn from the second period T2. This is because the processing of step S114 is slightly delayed from the off timing of the third switch S3, and the processing of step S116 is slightly earlier than the off timing of the second switch S2.
  • step S119 the first and second charge / discharge periods Tpp and Tpn in the next control cycle are calculated by performing feedback control of the first and second voltages V1 and V2.
  • step S120 the absolute value of the calculated time change amount dVp of the first voltage V1 is smaller than the predetermined value k, and the absolute value of the calculated time change amount dVn of the second voltage V2 is larger than the predetermined value k. Determine if it is small.
  • step S120 If a negative determination is made in step S120, it is determined that the first and second charge / discharge periods Tpp and Tpn are not appropriate lengths, and the process proceeds to step S122. In step S122, only the third period T3 is awaited.
  • step S120 If an affirmative determination is made in step S120, it is determined that the first and second charge / discharge periods Tpp and Tpn have appropriate lengths, and the process proceeds to step S121.
  • step S121 the resistance values of the local entanglement resistors Rp and Rn are calculated based on the first and second voltages V1b and V2b detected in this cycle. Then, the process proceeds to step S122.
  • step S123 it is determined whether or not the stop condition of this process is satisfied.
  • the stop condition can be set arbitrarily. If a negative determination is made in step S123, the process returns to step S101, and this process is repeatedly performed using the updated first and second charge / discharge periods Tpp and Tpn. On the other hand, if an affirmative determination is made in step S123, this process ends.
  • FIG. 11 shows an example of the control performed by the control device 40.
  • (a) shows the driving state of the first switch S1
  • (b) shows the driving state of the second switch S2
  • (c) shows the driving state of the third switch S3,
  • (d) shows the driving state of the third switch S3.
  • the transition of the detected voltage Vr and the ideal voltage Vd is shown.
  • FIG. 11D the detected voltage Vr is shown by a solid line, and the ideal voltage Vd is shown by a broken line.
  • FIG. 11 shows the transition of the on / off and the detection voltage Vr of the first to third switches S1 to S3 over four cycles.
  • the time change amount dVp of the first voltage V1 is set to a negative value
  • the time change amount dVn of the second voltage V2 is set to a positive value.
  • This state is the same as the state described with reference to FIG. 6, and the charge / discharge of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn is insufficient. Therefore, the feedback control in step S119 updates the first and second charge / discharge periods Tpp and Tpn so that the first and second charge / discharge periods Tpp and Tpn in the second cycle Ts2 increase.
  • the time change amount dVp of the first voltage V1 is made smaller than the time change amount dVp of the first voltage V1 in the first cycle Ts1, and the time change amount dVp of the second voltage V2 is the first cycle. It is made smaller than the time change amount dVp of the second voltage V2 in Ts1.
  • the feedback control in step S119 again causes the third cycle Ts3.
  • the first and second charge / discharge periods Tpp and Tpn are updated so that the first and second charge / discharge periods Tpp and Tpn increase.
  • the time change amount dVp of the first voltage V1 is set to 0, and the time change amount dVp of the second voltage V2 is set to 0.
  • This state is the same as the state described with reference to FIG. 8, and the charging / discharging of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn is completed. Therefore, in the 4th cycle Ts4, the 1st and 2nd charge / discharge periods Tpp and Tpn in the 3rd cycle Ts3 are used. The calculation of the resistance values of the interrelated resistances Rp and Rn is carried out in the third cycle Ts3 and the fourth cycle Ts4.
  • FIG. 12 describes a case where the circuit unit 60 of the comparative example is provided in the leakage determination device 20 instead of the rapid charge / discharge unit 50 of the present embodiment.
  • the configurations shown in FIG. 1 above are designated by the same reference numerals for convenience.
  • the circuit unit 60 includes a fourth resistor 51, a fourth switch S4, and a fifth switch S5.
  • One end of the fourth resistor 51 is connected to the third external terminal P3.
  • the other end of the fourth resistor 51 is connected to the intermediate point A of the fourth switch S4 and the fifth switch S5.
  • the fourth switch S4 connects the intermediate point A and between the first external terminal P1 and the first switch S1.
  • the fifth switch S5 connects the intermediate point A and between the second external terminal P2 and the second switch S2.
  • the first charge / discharge period Tpp Prior to the detection of the first voltage V1, the first charge / discharge period Tpp is provided. In the first charge / discharge period Tpp, the positive electrode side capacitance Cp is discharged and the negative electrode side capacitance Cn is charged via the fourth resistor 51. On the other hand, a second charge / discharge period Tpn is provided prior to the detection of the second voltage V2. In the second charge / discharge period Tpn, the positive electrode side capacitance Cp is charged and the negative electrode side capacitance Cn is discharged via the fourth resistor 51.
  • Charging / discharging of the positive electrode side capacitance Cp and charging / discharging of the negative electrode side capacitance Cn are performed by the common fourth resistor 51 and the third switch S3. Therefore, the number of switches can be reduced as compared with the case where the charge / discharge of the positive electrode side capacitance Cp and the charge / discharge of the negative electrode side capacitance Cn are controlled by different switches. As a result, the number of parts of the leakage determination device 20 can be reduced.
  • Feedback control is carried out with the operation amount as the first charge / discharge period Tpp and the time change amount dVp of the first voltage V1 as 0. Further, feedback control is performed in which the operation amount is set to the second charge / discharge period Tpn and the time change amount dVn of the second voltage V2 is 0.
  • the first and first are appropriate in response to the changes. 2 Charge / discharge periods Tpp and Tpn are set. As a result, the detection accuracy of the first and second voltages V1 and V2 can be improved.
  • the first charge / discharge period Tpp is set based on the time change amount dVp of the first voltage V1
  • the second charge / discharge period Tpn is set based on the time change amount dVn of the second voltage V2.
  • the control device 40 repeatedly turns the third switch S3 on and off during the first charge / discharge period Tpp.
  • each on period of the third switch S3 is the first minute period Tp.
  • the first minute period Tp is a sufficiently short period as compared with the period required for the discharge of the positive electrode side capacitance Cp to be completed and the charging of the negative electrode side capacitance Cn to be completed. Therefore, in the period until the discharge of the positive electrode side capacitance Cp and the charge of the negative electrode side capacitance Cn are completed, the discharge amount of the positive electrode side capacitance Cp and the charge amount of the negative electrode side capacitance Cn are in a state of being insufficient. Further, of the first charge / discharge period Tpp, the off period of the third switch S3 sandwiched between the first minute period Tp adjacent in time is set as the minute standby period Tw.
  • the control device 40 repeatedly turns the third switch S3 on and off during the second charge / discharge period Tpn.
  • each on period of the third switch S3 is the second minute period Tn.
  • the second minute period Tn is a sufficiently short period as compared with the period required for the charging of the positive electrode side capacitance Cp to be completed and the discharge of the negative electrode side capacitance Cn to be completed. Therefore, in the period until the charging of the positive electrode side capacitance Cp and the discharging of the negative electrode side capacitance Cn are completed, the charging amount of the positive electrode side capacitance Cp and the discharging amount of the negative electrode side capacitance Cn are considered to be insufficient. Further, of the second charge / discharge period Tpn, the off period of the third switch S3 sandwiched between the second minute period Tn adjacent in time is set as the minute standby period Tw.
  • FIG. 13 shows the correspondence between the time change amount dVp of the first voltage V1 and the continuation or stop of the first charge / discharge period Tpp, and shows the time change amount dVn of the second voltage V2 and the second charge / discharge period Tpn. Shows the correspondence with continuation or suspension.
  • the time change amount dVp of the first voltage V1 is a positive value
  • the first charge / discharge period Tpp is continued, and when the time change amount dVp of the first voltage V1 is 0, the first charge / discharge period Tpp is stopped. Will be done.
  • the second charge / discharge period Tpn is continued, and when the time change amount dVn of the second voltage V2 is 0, the second charge / discharge period Tpn is stopped. Will be done.
  • FIG. 14 shows a procedure of processing performed by the control device 40. This process may be carried out at a predetermined cycle, or may be carried out when the conditions for starting the process are satisfied.
  • the start condition may be set arbitrarily.
  • step S200 the value of the first counter i is set to 1, and the value of the second counter j is set to 1.
  • the first counter i is used to calculate the duration of the first charge / discharge period Tpp
  • the second counter j is used to calculate the duration of the second charge / discharge period Tpn.
  • step S201 the first switch S1 is turned on. As a result, the first period T1 is started.
  • step S202 the third switch S3 is turned on.
  • step S203 the patient waits for the first minute period Tp.
  • step S204 the third switch S3 is turned off.
  • step S205 the first voltage V1 immediately after the third switch S3 is turned off is detected and stored in the storage unit as V1 ⁇ .
  • step S206 only the minute waiting period Tw is waited.
  • step S207 the first voltage V1 after standby is detected and stored in the storage unit as V1 ⁇ .
  • step S208 the time change amount dVp of the first voltage V1 is calculated.
  • the time change amount dVp of the first voltage V1 is obtained by the following equation (e5).
  • V1 ⁇ is the detection voltage stored in the storage unit in step S205
  • V1 ⁇ is the detection voltage stored in the storage unit in step S207.
  • the time change amount dVp of the first voltage V1 is set to a positive value.
  • step S209 it is determined whether or not the time change amount dVp of the first voltage V1 is smaller than the predetermined value k. If a negative determination is made in step S209, the process proceeds to step S210. In step S210, the value of the first counter i is incremented. Then, the process returns to step S202. As a result, the first charge / discharge period Tpp is continued. On the other hand, if an affirmative determination is made in step S209, the process proceeds to step S211. As a result, the first charge / discharge period Tpp is stopped. In the present embodiment, the first charge / discharge period Tpp is a period from the first step S202 to a positive determination in step S209.
  • the first residual period is the period obtained by excluding the first charge / discharge period Tpp from the first period T1.
  • the first charge / discharge period Tpp is i ⁇ (Tp + Tw)
  • the first residual period is T1-i ⁇ (Tp + Tw).
  • step S212 the first voltage V1 is detected and stored in the storage unit.
  • step S213 the first switch S1 is turned off. As a result, the first period T1 is terminated.
  • step S214 only the third period T3 is waited.
  • step S215 the second switch S2 is turned on. As a result, the second period T2 is started.
  • step S216 the third switch S3 is turned on.
  • step S217 the patient waits for a second minute period Tn.
  • step S218, the third switch S3 is turned off.
  • step S219 the second voltage V2 immediately after the third switch S3 is turned off is detected and stored in the storage unit as V2 ⁇ .
  • step S220 only the minute waiting period Tw is waited.
  • step S221 the second voltage V2 after standby is detected and stored in the storage unit as V2 ⁇ .
  • step S222 the time change amount dVn of the second voltage V2 is calculated.
  • the time change amount dVn of the second voltage V2 is obtained by the following equation (e6).
  • V2 ⁇ is the detection voltage stored in the storage unit in step S219
  • V2 ⁇ is the detection voltage stored in the storage unit in step S221.
  • step S223 it is determined whether or not the time change amount dVn of the second voltage V2 is smaller than the predetermined value k. If a negative determination is made in step S223, the process proceeds to step S224. In step S224, the value of the second counter j is incremented. After that, the process returns to step S216. As a result, the second charge / discharge period Tpn is continued. On the other hand, if an affirmative determination is made in step S223, the process proceeds to step S225. As a result, the second charge / discharge period Tpn is stopped. In the present embodiment, the second charge / discharge period Tpn is a period from the first step S216 to a positive determination in step S223.
  • step S225 wait only for the second residual period.
  • the second residual period is the period obtained by removing the second charge / discharge period Tpn from the second period T2.
  • the second charge / discharge period Tpn is j ⁇ (Tn + Tw)
  • the second residual period is T2-j ⁇ (Tn + Tw).
  • step S2266 the second voltage V2 is detected and stored in the storage unit.
  • step S227 the second switch S2 is turned off. As a result, the second period T2 is terminated.
  • step S2208 the resistance values of the interrelated resistances Rp and Rn are calculated based on the first voltage V1 stored in the storage unit in step S212 and the second voltage V2 stored in the storage unit in step S226.
  • step S229 the process waits only for the third period T3 and ends this process.
  • FIG. 15 shows an example of the control performed by the control device 40.
  • (a) shows the driving state of the first switch S1
  • (b) shows the driving state of the second switch S2
  • (c) shows the driving state of the third switch S3,
  • (d) shows the driving state of the third switch S3.
  • the transition of the detected voltage Vr and the ideal voltage Vd is shown.
  • FIG. 15D the detected voltage Vr is shown by a solid line, and the ideal voltage Vd is shown by a broken line.
  • the third switch S3 is turned on and off six times in the first period T1.
  • the calculated time change amount dVp1 to dVp5 of the first voltage V1 is a positive value. Therefore, the on / off of the third switch S3 is continued, and the first charge / discharge period Tpp is continued.
  • the calculated time change amount dVp6 of the first voltage V1 is 0. Therefore, the third switch S3 is turned off, and the first charge / discharge period Tpp is stopped.
  • the on / off of the third switch S3 is repeated 6 times even in the second period T2.
  • the calculated time change amounts dVn1 to dVn5 of the second voltage V2 are positive values. Therefore, the on / off of the third switch S3 is continued, and the second charge / discharge period Tpn is continued.
  • the calculated time change amount dVn6 of the second voltage V2 is 0. Therefore, the third switch S3 is turned off, and the second charge / discharge period Tpn is stopped.
  • the first charge / discharge period Tpp is continued until the time change amount dVp of the first voltage V1 becomes 0.
  • the discharge of the positive electrode side capacitance Cp and the charge of the negative electrode side capacitance Cn are completed, and an appropriate first voltage V1 is detected.
  • the second charge / discharge period Tpn is continued until the time change amount dVn of the second voltage V2 becomes 0.
  • the charging of the positive electrode side capacitance Cp and the discharging of the negative electrode side capacitance Cn are completed, and an appropriate second voltage V2 is detected.
  • the time required for the appropriate first and second voltages V1 and V2 to be detected can be shortened.
  • the third embodiment will be described with reference to the drawings, focusing on the differences from the first embodiment.
  • the rapid charge / discharge path L3 is used instead of using the time change amounts dVp and dVn of the first and second voltages V1 and V2 for setting the first and second charge / discharge periods Tpp and Tpn.
  • the flowing current is used.
  • FIG. 16 shows the configuration of the leakage determination device 20 according to the present embodiment.
  • the configurations shown in FIG. 1 above are designated by the same reference numerals for convenience.
  • the leakage determination device 20 includes a current sensor 71, an amplifier 72, and a filter 73.
  • the current sensor 71 is provided between the fourth resistor 51 and the third switch S3 in the rapid charge / discharge path L3.
  • the current sensor 71 can detect a current in a non-contact manner with the rapid charge / discharge path L3, such as a current sensor including a Hall element.
  • a voltage is supplied to the current sensor 71 from the constant voltage source 34 via the amplifier 72.
  • the voltage detected by the current sensor 71 is input to the control device 40 via the filter 73.
  • the control device 40 detects the current flowing in the rapid charge / discharge path L3 based on the input voltage.
  • the control device 40 sets the first and second charge / discharge periods Tpp and Tpn suitable for completing the charge / discharge of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn based on the detected current Ir of the current sensor 71.
  • the first and second charge / discharge periods Tpp and Tpn are set based on the detected current Ir.
  • the first and second charge / discharge periods Tpp and Tpn suitable for completing the charging / discharging of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn are set. Therefore, an appropriate first voltage V1 can be detected in the first period T1, and an appropriate second voltage V2 can be detected in the second period T2. As a result, the detection accuracy of the first voltage V1 and the second voltage V2 can be improved.
  • the charging / discharging of the positive electrode side capacitance Cp and the charging / discharging of the negative electrode side capacitance Cn are performed by the common fourth resistor and the third switch S3, so that the leakage determination device is similar to the first embodiment.
  • the number of 20 switches can be reduced.
  • the leakage determination device 20 includes a DCDC converter 80.
  • the DCDC converter 80 is a non-isolated converter.
  • the DCDC converter 80 includes a first diode D1 and a second diode D2.
  • the first diode D1 is connected in parallel to the first switch S1, the anode is connected to the connection point M, and the cathode is connected to the first external terminal P1.
  • the second diode D2 is connected in parallel to the second switch S2, the anode is connected to the second external terminal P2, and the cathode is connected to the connection point M.
  • the DCDC converter 80 includes a reactor Lx instead of the fourth resistor 51.
  • the impedance of the reactor Lx is smaller than the combined impedance of the first resistor 31 and the second resistor 32.
  • the reactor Lx corresponds to the "charge / discharge element".
  • the DCDC converter 80 includes a current sensor 71.
  • the current sensor 71 is provided between the third switch S3 and the connection point M in the rapid charge / discharge path L3.
  • the current sensor 71 can detect the current flowing in the rapid charge / discharge path L3 in a non-contact manner, and the detected current Ir of the current sensor 71 is input to the control device 40.
  • the sign of the detection current Ir is positive when it flows from the third switch S3 toward the reactor Lx.
  • FIG. 18 is a diagram showing changes in the current and voltage of the ground capacitance when the electric charge is charged to the ground capacitance.
  • (a) shows the transition of the energization current I flowing through the ground capacitance
  • (b) shows the transition of the voltage V of the ground capacitance.
  • FIGS. 18A and 18B the transition of the current-carrying current Icr and the voltage Vcr of the ground capacitance in the first embodiment is shown by a solid line, and the current-carrying current Icl and the voltage between terminals of the ground capacitance in the present embodiment are shown.
  • the transition of Vcl is shown by a broken line.
  • the energization current Icr is set to the maximum value Imax immediately after the start of charging the ground capacitance, but is gradually reduced thereafter. Therefore, the ascending speed of the voltage Vcr gradually decreases. In this case, the time required to complete the charging / discharging of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn becomes long.
  • the DCDC converter 80 is provided as a configuration for maintaining the energization current Icl at a constant value. As a result, the time required for the voltage Vcl to reach the target voltage V * can be shortened.
  • the control device 40 turns on / off the first switch S1, turns off the second switch S2, and turns on the third switch S3 in order to control the detected current Ir to a positive target current in the first charge / discharge period Tpp. Further, in the second charge / discharge period Tpn, the control device 40 turns off the first switch S1, turns the second switch S2 on and off, and turns on the third switch S3 in order to control the detected current Ir to a negative target current. do.
  • FIG. 19 shows the current paths I1 and I2 formed when the first and third switches S1 and S3 are turned on and the second switch S2 is turned off.
  • the first current path I1 is a current path including the positive electrode side capacitance Cp ⁇ the first switch S1 ⁇ the third switch S3 ⁇ the reactor Lx.
  • the second current path I2 is a current path including the negative electrode side capacitance Cn ⁇ the second diode D2 ⁇ the third switch S3 ⁇ the reactor Lx.
  • FIG. 20 shows the current paths I3 and I4 formed when the second and third switches S2 and S3 are turned on and the first switch S1 is turned off.
  • the third current path I3 is a current path including the positive electrode side capacitance Cp ⁇ the reactor Lx ⁇ the third switch S3 ⁇ the first diode D1.
  • the fourth current path I4 is a current path including the negative electrode side capacitance Cn ⁇ reactor Lx ⁇ third switch S3 ⁇ second switch S2.
  • FIG. 21 shows an example of the control performed by the control device 40.
  • (a) shows the driving state of the first switch S1
  • (b) shows the driving state of the second switch S2
  • (c) shows the driving state of the third switch S3,
  • (d) shows the driving state of the third switch S3.
  • the transition of the detected current Ir is shown
  • (e) shows the transition of the detected voltage Vr and the ideal voltage Vd.
  • the transition of the detected voltage Vr is shown by a solid line
  • the transition of the ideal voltage Vd is shown by a alternate long and short dash line.
  • the first switch S1 is turned on / off, the second switch S2 is turned off, and the third switch S3 is turned on.
  • the current paths I1 and I2 shown in FIG. 19 are formed, the positive electrode side capacitance Cp is discharged, and the negative electrode side capacitance Cn is charged. ..
  • the detected current Ir is controlled to a positive target value.
  • the duration of the first charge / discharge period Tpp may be set, for example, according to the target value of the detected current Ir in the first period T1.
  • the first switch S1 is turned off, the second switch S2 is turned on and off, and the third switch S3 is turned on.
  • the current paths I3 and I4 shown in FIG. 20 are formed, the positive electrode side capacitance Cp is charged, and the negative electrode side capacitance Cn is discharged. ..
  • the detected current Ir is controlled to a negative target value.
  • the duration of the second charge / discharge period Tpn may be set, for example, according to the target value of the detected current Ir in the second period T2.
  • the detected current Ir is maintained at the target value.
  • the current flowing through the positive electrode side capacitance Cp and the negative electrode side capacitance Cn is also maintained at a constant value.
  • the time required to complete the charging / discharging of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn can be shortened.
  • the current sensor 71 is not limited to the one capable of detecting the current without contacting the rapid charge / discharge path L3, and may have a shunt resistor directly attached to the rapid charge / discharge path L3.
  • FIG. 22 shows an example of a configuration including a shunt resistor.
  • the leakage determination device 20 includes a shunt resistor Rs and a differential amplifier circuit 90.
  • One end of the shunt resistor Rs is connected to the third external terminal P3, and the other end is connected to the reactor Lx.
  • the differential amplifier circuit 90 includes an operational amplifier 91, resistors 92 to 95, and a constant voltage source 96.
  • the output voltage of the differential amplifier circuit 90 is input to the control device 40.
  • the control device 40 sets a reference voltage based on the direction of the current flowing through the shunt resistance Rs so that the input voltage from the differential amplifier circuit 90 falls within the voltage range (for example, 0 to 5V) that can be input to the control device 40.
  • the input voltage from the differential amplifier circuit 90 is detected by setting and setting the set reference voltage to 0V. Note that FIG. 22 shows the output voltage of the constant voltage source 96 in Vdc2.
  • the DCDC converter 80 is not limited to the non-isolated converter, and may be an isolated converter. As shown in FIG. 23, the DCDC converter 80 includes sixth and seventh switches S6 and S7, third and fourth diodes D3 and D4, and a transformer 81.
  • the transformer 81 has a first coil 82 and a second coil 83.
  • the impedances of the first and second coils 82 and 83 are smaller than the combined impedance of the first resistor 31 and the second resistor 32.
  • the first and second coils 82 and 83 correspond to "charge / discharge elements".
  • the first end of the first coil 82 is connected between the first external terminal P1 and the first switch S1.
  • the second end of the first coil 82 is connected to one end of the sixth switch S6.
  • the other end of the sixth switch S6 is connected to the third external terminal P3.
  • the third diode D3 is connected in parallel to the sixth switch S6, the anode is connected to the third external terminal P3, and the cathode is connected to the second end of the first coil 82.
  • the first end of the second coil 83 is connected to the third external terminal P3.
  • the second end of the second coil 83 is connected to one end of the seventh switch S7.
  • the other end of the seventh switch S7 is connected between the second external terminal P2 and the second switch S2.
  • the fourth diode D4 is connected in parallel to the seventh switch S7, the anode is connected between the second external terminal P2 and the second switch S2, and the cathode is connected to the second end of the second coil 83. ing.
  • the first coil 82 and the second coil 83 are magnetically coupled to each other, for example, via a core included in the transformer 81.
  • an induced voltage is generated in the second coil 83 so that the potential of the first end becomes higher than that of the second end.
  • an induced voltage is generated in the second coil 83 so that the potential of the second end is higher than that of the first end.
  • the control device 40 controls the sixth switch S6 on and off during the first charge / discharge period Tpp. As a result, the positive electrode side capacitance Cp is discharged and the negative electrode side capacitance Cn is charged. On the other hand, the control device 40 controls the seventh switch S7 on and off during the second charge / discharge period Tpn. As a result, the positive electrode side capacitance Cp is charged and the negative electrode side capacitance Cn is discharged. By controlling the on / off ratio in one switching cycle of the sixth and seventh switches S6 and S7, the detection current Ir can be maintained at a constant value.
  • step S100 the initial values of the first and second charge / discharge periods Tpp and Tpn are set to 0, but the present invention is not limited to this.
  • the resistance values of the normal local entanglement resistors Rp and Rn are known, the first and second voltages V1 and V2 can be predicted.
  • the time constant with the fourth resistor 51 can also be calculated. Therefore, the first and second charge / discharge periods Tpp and Tpn may be calculated based on these parameters and used as initial values. In this case, the period until the appropriate first and second charge / discharge periods Tpp and Tpn are set can be shortened.
  • the process of step S105 in FIG. 10 may be performed at the timing of switching off of the third switch S3, and the process of step S107 may be performed at the timing of switching off of the first switch S1.
  • the first standby time ⁇ t1 used in step S118 may be a period obtained by removing the first charge / discharge period Tpp from the first period T1.
  • step S114 may be performed at the timing of switching off of the third switch S3, and the process of step S116 may be performed at the timing of switching off of the second switch S2.
  • the second standby time ⁇ t2 used in step S118 may be a period obtained by removing the second charge / discharge period Tpn from the second period T2.
  • step S209 it is determined whether or not the time change amount dVp of the first voltage V1 is smaller than the first predetermined value k1, and the time change amount dVn of the second voltage V2 is a second predetermined value different from the first predetermined value k1. It may be determined whether or not it is smaller than k2.
  • the storage battery 10 is not limited to the assembled battery, but may be a single battery.
  • the controls and methods thereof described in the present disclosure are provided by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. It may be realized. Alternatively, the controls and methods thereof described in the present disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the control unit and method thereof described in the present disclosure may be a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may be realized by one or more dedicated computers configured. Further, the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Protection Of Static Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

An earth leakage determining device (20) for determining the presence or absence of an earth leakage between a direct-current power source (10) and a grounding portion (G1) is provided with: a detection resistance portion (31 to 33) having one end connected to the grounding portion; a first switch (S1) provided between the other end of the detection resistance portion and the positive electrode terminal of the direct-current power source; a second switch (S2) connected between the other end of the detection resistance portion and the negative electrode terminal of the direct-current power source; a charge/discharge element (51, 81, 82, Lx) and a third switch (S3) provided in a charge/discharge path (L3) connecting the grounding portion and the other end of the detection resistance portion; a control portion (40) for switching each switch on and off; and a determining portion (40) for acquiring the voltage of the detection resistance portion and determining the presence or absence of earth leakage on the basis of the acquired voltage of the detection resistance portion. The determining portion acquires the voltage to be used for determining the presence or absence of earth leakage after completion of an on-period of the third switch.

Description

漏電判定装置Leakage judgment device 関連出願の相互参照Cross-reference of related applications
 本出願は、2020年10月12日に出願された日本出願番号2020-172213号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2020-172213 filed on October 12, 2020, and the contents of the description are incorporated herein by reference.
 本開示は、漏電判定装置に関するものである。 This disclosure relates to an earth leakage determination device.
 従来、直流電源と接地部との間における漏電の有無を判定する漏電判定装置が知られている。 Conventionally, an electric leakage determination device for determining the presence or absence of an electric leakage between a DC power supply and a grounding portion has been known.
 特許文献1には、接地部に一端が接続された検出用抵抗部の電圧を検出し、検出した電圧に基づいて、漏電の有無を判定する漏電判定装置が記載されている。ここで、直流電源と接地部との間に存在する対地静電容量が大きい場合、検出用抵抗部の電圧の時間変化が緩やかになる。この場合、対地静電容量の影響を受けずに検出用抵抗部の電圧を検出するには、対地静電容量が充電されるのを待つ必要がある。このため、要求される時間内に対地静電容量への充電が完了しない場合、検出用抵抗部の電圧検出精度が悪化し、ひいては漏電の有無の判定精度が悪化する可能性がある。 Patent Document 1 describes an electric leakage determination device that detects the voltage of a detection resistor portion having one end connected to the grounding portion and determines the presence or absence of electric leakage based on the detected voltage. Here, when the capacitance to ground existing between the DC power supply and the grounding portion is large, the time change of the voltage of the detection resistance portion becomes gradual. In this case, in order to detect the voltage of the detection resistor without being affected by the ground capacitance, it is necessary to wait for the ground capacitance to be charged. Therefore, if the charging to the ground capacitance is not completed within the required time, the voltage detection accuracy of the detection resistor portion may deteriorate, and the determination accuracy of the presence or absence of electric leakage may deteriorate.
 この問題に対処するために、対地静電容量への充電を急速に行った後、漏電の有無の判定に用いる電圧を検出する技術が知られている。例えば、特許文献2には、対地静電容量への充電を急速に行うための構成として、電圧のピーク値の異なる交流電源を複数備えた漏電判定装置が記載されている。複数の交流電源のうちピーク値が最も大きな交流電源により、対地静電容量への充電が急速に行われる。また、例えば、特許文献3には、対地静電容量への充電を急速に行うための経路を備えた漏電判定装置が記載されている。この経路に備えられた抵抗体の抵抗値を小さくすることにより、対地静電容量への充電が急速に行われる。 In order to deal with this problem, there is known a technique of detecting a voltage used for determining the presence or absence of electric leakage after rapidly charging the ground capacitance. For example, Patent Document 2 describes a leakage determination device provided with a plurality of AC power supplies having different peak voltage values as a configuration for rapidly charging the ground capacitance. The AC power supply having the highest peak value among the plurality of AC power supplies rapidly charges the ground capacitance. Further, for example, Patent Document 3 describes an electric leakage determination device provided with a path for rapidly charging the ground capacitance. By reducing the resistance value of the resistor provided in this path, the capacitance to ground is rapidly charged.
特許第5861954号公報Japanese Patent No. 5861954 特開2020-64042号公報Japanese Unexamined Patent Publication No. 2020-64042 特開2020-56732号公報Japanese Unexamined Patent Publication No. 2020-56732
 対地静電容量への充電を急速に行うための構成が追加されることにより、漏電判定装置の部品数が増大し得る。例えば、特許文献3では、直流電源の正極端子と接地部との間に存在する対地静電容量への充電を行う経路と、直流電源の負極端子と接地部との間に存在する対地静電容量への充電を行う経路とのそれぞれに、抵抗体の導通状態及び遮断状態を切り替えるスイッチが備えられている。この場合、スイッチの数が増大し、ひいては漏電判定装置の部品数が増大する。 The number of parts of the earth leakage determination device can be increased by adding a configuration for rapidly charging the ground capacitance. For example, in Patent Document 3, the path for charging the ground capacitance existing between the positive electrode terminal of the DC power supply and the grounded portion and the ground electrostatic capacity existing between the negative electrode terminal of the DC power supply and the grounded portion. Each of the paths for charging the capacitance is provided with a switch for switching between the conduction state and the cutoff state of the resistor. In this case, the number of switches increases, and the number of parts of the leakage determination device increases.
 本開示は、上記課題に鑑みてなされたものであり、その主たる目的は、部品数を低減しつつ、漏電の有無の判定精度を向上することができる漏電判定装置を提供することである。 The present disclosure has been made in view of the above problems, and its main purpose is to provide an earth leakage determination device capable of improving the accuracy of determining the presence or absence of an electric leakage while reducing the number of parts.
 本開示は、直流電源と接地部との間における漏電の有無を判定する漏電判定装置において、前記接地部に一端が接続された検出用抵抗部と、オンすることにより前記検出用抵抗部の他端と前記直流電源の正極端子との間を導通状態にし、オフすることにより前記検出用抵抗部の他端と前記直流電源の正極端子との間を遮断状態にする第1スイッチと、オンすることにより前記検出用抵抗部の他端と前記直流電源の負極端子との間を導通状態にし、オフすることにより前記検出用抵抗部の他端と前記直流電源の負極端子との間を遮断状態にする第2スイッチと、前記接地部と前記検出用抵抗部の他端とを接続する充放電経路と、前記充放電経路に設けられ、前記検出用抵抗部よりも小さいインピーダンスの充放電用素子と、前記充放電経路に設けられ、オンすることにより前記検出用抵抗部の他端と前記接地部との間を導通状態にし、オフすることにより前記検出用抵抗部の他端と前記接地部との間を遮断状態にする第3スイッチと、前記第1スイッチ、前記第2スイッチ及び前記第3スイッチのオン又はオフを切り替える制御部と、前記第1スイッチがオンされるとともに前記第2スイッチがオフされる第1期間における前記検出用抵抗部の電圧である第1電圧と、前記第2スイッチがオンされるとともに前記第1スイッチがオフされる第2期間における前記検出用抵抗部の電圧である第2電圧とを取得し、取得した前記第1電圧及び前記第2電圧に基づいて、前記漏電の有無を判定する判定部と、を備え、前記制御部は、前記第1期間の一部において前記第3スイッチをオンし、前記第2期間の一部において前記第3スイッチをオンし、前記判定部は、前記第1期間のうち前記第3スイッチのオン期間の終了後の前記第1電圧を取得し、前記第2期間のうち前記第3スイッチのオン期間の終了後の前記第2電圧を取得する。 The present disclosure relates to a detection resistance unit having one end connected to the grounding portion in an electric leakage determination device for determining the presence or absence of electric leakage between the DC power supply and the grounding portion, and the detection resistance portion by turning on. The first switch, which makes a conduction state between the end and the positive terminal of the DC power supply and turns off the other end of the detection resistance portion and the positive voltage terminal of the DC power supply, is turned on. As a result, the other end of the detection resistance portion and the negative voltage terminal of the DC power supply are brought into a conductive state, and by turning off, the other end of the detection resistance portion and the negative voltage terminal of the DC power supply are cut off. A charge / discharge path for connecting the grounding portion and the other end of the detection resistance portion, and a charge / discharge element provided in the charge / discharge path and having an impedance smaller than that of the detection resistance portion. And, it is provided in the charge / discharge path, and when it is turned on, the other end of the detection resistance portion and the grounding portion are made conductive, and when it is turned off, the other end of the detection resistance portion and the grounding portion are connected. A third switch that cuts off the voltage between the two, a control unit that switches on or off the first switch, the second switch, and the third switch, and the second switch that is turned on and the first switch is turned on. The voltage of the detection resistance unit, which is the voltage of the detection resistance unit in the first period in which is turned off, and the voltage of the detection resistance unit in the second period in which the second switch is turned on and the first switch is turned off. The control unit includes a determination unit that acquires the second voltage, and determines the presence or absence of the leakage based on the acquired first voltage and the second voltage, and the control unit is one of the first periods. The third switch is turned on in the unit, the third switch is turned on in a part of the second period, and the determination unit is the third of the first period after the end of the on period of the third switch. One voltage is acquired, and the second voltage after the end of the on period of the third switch in the second period is acquired.
 対地静電容量が大きい場合、第1期間における第1電圧の時間変化が緩やかになる。この場合、対地静電容量の影響を受けずに第1電圧を検出するには、対地静電容量が充電又は放電されるのを待つ必要がある。同様に、対地静電容量が大きい場合、第2期間における第2電圧の時間変化が緩やかになる。この場合、対地静電容量の影響を受けずに第2電圧を検出するには、対地静電容量が充電又は放電されるのを待つ必要がある。このため、要求される時間内に対地静電容量の充電又は放電が完了せず、第1電圧及び第2電圧の検出精度が悪化し、ひいては漏電の有無の判定精度が悪化する可能性がある。 When the capacitance to ground is large, the time change of the first voltage in the first period becomes gradual. In this case, in order to detect the first voltage without being affected by the ground capacitance, it is necessary to wait for the ground capacitance to be charged or discharged. Similarly, when the capacitance to ground is large, the time change of the second voltage in the second period becomes gradual. In this case, in order to detect the second voltage without being affected by the ground capacitance, it is necessary to wait for the ground capacitance to be charged or discharged. Therefore, charging or discharging of the capacitance to ground may not be completed within the required time, the detection accuracy of the first voltage and the second voltage may deteriorate, and the determination accuracy of the presence or absence of electric leakage may deteriorate. ..
 そこで、本開示において、第1期間において第1電圧が検出されるのに先立ち、第3スイッチのオン期間が設けられる。また、第2期間において第2電圧が検出されるのに先立ち、第3スイッチのオン期間が設けられる。第3スイッチのオン期間では、第3スイッチにより検出用抵抗部の他端と接地部との間が導通状態とされ、直流電源の正極端子と接地部との間に存在する正極側容量、及び直流電源の負極端子と接地部との間に存在する負極側容量の間において充放電が行われる。ここで、充放電用素子のインピーダンスは、検出用抵抗部の抵抗値よりも小さい。このため、充放電用素子を介して、対地静電容量への充電又は放電を急速に完了させることができる。その結果、要求される時間内に対地静電容量への充電又は放電を完了させることができ、検出用抵抗部の電圧検出精度を向上することができ、ひいては漏電の有無の判定精度を向上することができる。 Therefore, in the present disclosure, an on period of the third switch is provided prior to the detection of the first voltage in the first period. Further, an on period of the third switch is provided prior to the detection of the second voltage in the second period. During the on period of the third switch, the third switch makes the other end of the detection resistance portion and the grounded portion conductive, and the positive electrode side capacitance existing between the positive electrode terminal of the DC power supply and the grounded portion and the positive electrode side capacitance and the grounded portion. Charging and discharging are performed between the negative electrode side capacitance existing between the negative electrode terminal of the DC power supply and the grounding portion. Here, the impedance of the charging / discharging element is smaller than the resistance value of the detection resistance portion. Therefore, charging or discharging to the ground capacitance can be completed rapidly via the charging / discharging element. As a result, charging or discharging to the ground capacitance can be completed within the required time, the voltage detection accuracy of the detection resistor can be improved, and the determination accuracy of the presence or absence of electric leakage is improved. be able to.
 本開示において、正極側容量の充放電の制御及び負極側容量の充放電の制御は、共通の充放電用素子及び第3スイッチにより行われる。そのため、正極側容量の充放電の制御及び負極側容量の充放電の制御が異なるスイッチにより行われる場合と比較して、スイッチの数を低減することができる。その結果、漏電判定装置の部品数を低減することができる。 In the present disclosure, the charge / discharge control of the positive electrode side capacitance and the charge / discharge control of the negative electrode side capacitance are performed by a common charge / discharge element and a third switch. Therefore, the number of switches can be reduced as compared with the case where the charge / discharge control of the positive electrode side capacitance and the charge / discharge control of the negative electrode side capacitance are performed by different switches. As a result, the number of parts of the leakage determination device can be reduced.
 以上より、本開示によれば、漏電判定装置の部品数を低減しつつ、漏電の有無の判定精度を向上することができる。 From the above, according to the present disclosure, it is possible to improve the accuracy of determining the presence or absence of leakage while reducing the number of parts of the leakage determination device.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態に係る漏電判定装置の構成図であり、 図2は、第1スイッチがオンされ、第2,第3スイッチがオフされた場合の電流経路を示す図であり、 図3は、第2スイッチがオンされ、第1,第3スイッチがオフされた場合の電流経路を示す図であり、 図4は、第1,第3スイッチがオンされ、第2スイッチがオフされた場合の電流経路を示す図であり、 図5は、第2,第3スイッチがオンされ、第1スイッチがオフされた場合の電流経路を示す図であり、 図6は、充放電期間が不足する場合の検出電圧等の推移を示すタイムチャートであり、 図7は、充放電期間が過剰な場合の検出電圧等の推移を示すタイムチャートであり、 図8は、充放電期間が適正な場合の検出電圧等の推移を示すタイムチャートであり、 図9は、第1,第2電圧の時間変化量と、第1,第2充放電期間との対応表であり、 図10は、制御装置が実施する処理のフローチャートであり、 図11は、制御装置が実施する処理の一例を示すタイムチャートであり、 図12は、比較例に係る漏電判定装置の構成図であり、 図13は、第2実施形態に係る第1,第2電圧の時間変化量と、第1,第2充放電期間との対応表であり、 図14は、制御装置が実施する処理のフローチャートであり、 図15は、制御装置が実施する処理の一例を示すタイムチャートであり、 図16は、第3実施形態に係る漏電判定装置の構成図であり、 図17は、第4実施形態に係る漏電判定装置の構成図であり、 図18は、正極側容量及び負極側容量の電流及び電圧の推移を示すタイムチャートであり、 図19は、第1,第3スイッチがオンされ、第2スイッチがオフされた場合の電流経路を示す図であり、 図20は、第2,第3スイッチがオンされ、第1スイッチがオフされた場合の電流経路を示す図であり、 図21は、制御装置が実施する処理の一例を示すタイムチャートであり、 図22は、第4実施形態の変形例1に係る漏電判定装置の構成図であり、 図23は、第4実施形態の変形例2に係る漏電判定装置の構成図である。
The above objectives and other objectives, features and advantages of the present disclosure will be further clarified by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a configuration diagram of an electric leakage determination device according to the first embodiment. FIG. 2 is a diagram showing a current path when the first switch is turned on and the second and third switches are turned off. FIG. 3 is a diagram showing a current path when the second switch is turned on and the first and third switches are turned off. FIG. 4 is a diagram showing a current path when the first and third switches are turned on and the second switch is turned off. FIG. 5 is a diagram showing a current path when the second and third switches are turned on and the first switch is turned off. FIG. 6 is a time chart showing changes in the detected voltage and the like when the charge / discharge period is insufficient. FIG. 7 is a time chart showing changes in the detected voltage and the like when the charge / discharge period is excessive. FIG. 8 is a time chart showing changes in the detected voltage and the like when the charge / discharge period is appropriate. FIG. 9 is a correspondence table between the time change amount of the first and second voltages and the first and second charge / discharge periods. FIG. 10 is a flowchart of the process performed by the control device. FIG. 11 is a time chart showing an example of the processing performed by the control device. FIG. 12 is a configuration diagram of an electric leakage determination device according to a comparative example. FIG. 13 is a correspondence table between the time change amount of the first and second voltages and the first and second charge / discharge periods according to the second embodiment. FIG. 14 is a flowchart of the process performed by the control device. FIG. 15 is a time chart showing an example of the processing performed by the control device. FIG. 16 is a block diagram of the leakage determination device according to the third embodiment. FIG. 17 is a configuration diagram of the leakage determination device according to the fourth embodiment. FIG. 18 is a time chart showing changes in the current and voltage of the positive electrode side capacitance and the negative electrode side capacitance. FIG. 19 is a diagram showing a current path when the first and third switches are turned on and the second switch is turned off. FIG. 20 is a diagram showing a current path when the second and third switches are turned on and the first switch is turned off. FIG. 21 is a time chart showing an example of the processing performed by the control device. FIG. 22 is a configuration diagram of the leakage determination device according to the first modification of the fourth embodiment. FIG. 23 is a configuration diagram of the leakage determination device according to the second modification of the fourth embodiment.
 <第1実施形態>
 以下、本開示に係る漏電判定装置を具体化した第1実施形態について、図面を参照しつつ説明する。本実施形態の漏電判定装置は、例えば、ハイブリッド車や電気自動車等の電動化車両の制御システムに搭載される。
<First Embodiment>
Hereinafter, the first embodiment in which the leakage determination device according to the present disclosure is embodied will be described with reference to the drawings. The leakage determination device of the present embodiment is mounted on a control system of an electrified vehicle such as a hybrid vehicle or an electric vehicle, for example.
 図1に示すように、制御システムは、「直流電源」としての蓄電池10と、漏電判定装置20とを備えている。蓄電池10の正極端子と、漏電判定装置20の第1外部端子P1との間は、正極側経路L1により接続されている。蓄電池10の負極端子と、漏電判定装置20の第2外部端子P2との間は、負極側経路L2により接続されている。 As shown in FIG. 1, the control system includes a storage battery 10 as a "DC power source" and an electric leakage determination device 20. The positive electrode terminal of the storage battery 10 and the first external terminal P1 of the leakage determination device 20 are connected by a positive electrode side path L1. The negative electrode terminal of the storage battery 10 and the second external terminal P2 of the leakage determination device 20 are connected by a negative electrode side path L2.
 蓄電池10は、複数の電池セルが直列接続された組電池であり、蓄電池10の端子間電圧Vcは、例えば百V以上である。電池セルとして、例えば、リチウムイオン蓄電池やニッケル水素蓄電池を用いることができる。蓄電池10の端子間電圧Vcは、インバータを介して車載主機としての回転電機に供給される。なお、図1において、制御システムを構成するインバータ及び回転電機の図示を省略している。 The storage battery 10 is an assembled battery in which a plurality of battery cells are connected in series, and the voltage Vc between terminals of the storage battery 10 is, for example, 100 V or more. As the battery cell, for example, a lithium ion storage battery or a nickel hydrogen storage battery can be used. The voltage Vc between the terminals of the storage battery 10 is supplied to a rotary electric machine as an in-vehicle main engine via an inverter. In FIG. 1, the inverter and the rotary electric machine constituting the control system are not shown.
 正極側経路L1は、車体等の接地部G1に対して電気的に絶縁されている。正極側経路L1と、接地部G1との間における絶縁状態を正極側地絡抵抗Rpとして表すことができる。また、正極側経路L1と、接地部G1との間には、ノイズ除去用の受動素子としてのコンデンサ及び浮遊容量等の対地静電容量が存在し、これらをまとめて正極側容量Cpとして表す。 The positive electrode side path L1 is electrically insulated from the grounding portion G1 of the vehicle body or the like. The insulation state between the positive electrode side path L1 and the ground contact portion G1 can be expressed as the positive electrode side ground fault resistance Rp. Further, between the positive electrode side path L1 and the grounding portion G1, there is a capacitor as a passive element for noise reduction and a ground capacitance such as stray capacitance, which are collectively represented as a positive electrode side capacitance Cp.
 負極側経路L2は、車体等の接地部G1に対して電気的に絶縁されている。負極側経路L2と、接地部G1との間における絶縁状態を負極側地絡抵抗Rnとして表すことができる。また、負極側経路L2と、接地部G1との間には、ノイズ除去用の受動素子としてのコンデンサ及び浮遊容量等の対地静電容量が存在し、これらをまとめて負極側容量Cnとして表す。 The negative electrode side path L2 is electrically insulated from the ground contact portion G1 of the vehicle body or the like. The insulation state between the negative electrode side path L2 and the grounding portion G1 can be expressed as the negative electrode side ground fault resistance Rn. Further, between the negative electrode side path L2 and the grounding portion G1, there is a capacitor as a passive element for noise reduction and a ground capacitance such as stray capacitance, which are collectively represented as the negative electrode side capacitance Cn.
 なお、本実施形態では、正極側,負極側容量Cp,Cnに、浮遊容量に加え、受動素子としてのコンデンサの静電容量を含めているが、これに限らない。例えば、正極側,負極側経路L1,L2と接地部G1との間に受動素子としてのコンデンサが設けられていない制御システムの場合、正極側,負極側容量Cp,Cnは浮遊容量のみとなる。つまり、正極側,負極側容量Cp,Cnは、少なくとも浮遊容量で構成されている。 In this embodiment, the positive electrode side and negative electrode side capacitances Cp and Cn include, but are not limited to, the capacitance of the capacitor as a passive element in addition to the stray capacitance. For example, in the case of a control system in which a capacitor as a passive element is not provided between the positive electrode side / negative electrode side paths L1 and L2 and the grounding portion G1, the positive electrode side and negative electrode side capacitances Cp and Cn are only stray capacitances. That is, the positive electrode side and negative electrode side capacitances Cp and Cn are composed of at least stray capacitance.
 漏電判定装置20は、第1スイッチS1及び第2スイッチS2を備えている。第1スイッチS1の一端と、第2スイッチS2の一端とは、接続点Mにおいて接続されている。第1スイッチS1の他端は、第1外部端子P1に接続されている。第1スイッチS1は、オンされることにより蓄電池10の正極端子と接続点Mとの間を導通状態とし、オフされることにより蓄電池10の正極端子と接続点Mとの間を遮断状態とする。第2スイッチS2の他端は、第2外部端子P2に接続されている。第2スイッチS2は、オンされることにより蓄電池10の負極端子と接続点Mとの間を導通状態とし、オフされることにより蓄電池10の負極端子と接続点Mとの間を遮断状態とする。 The leakage determination device 20 includes a first switch S1 and a second switch S2. One end of the first switch S1 and one end of the second switch S2 are connected at the connection point M. The other end of the first switch S1 is connected to the first external terminal P1. When the first switch S1 is turned on, the positive electrode terminal of the storage battery 10 and the connection point M are in a conductive state, and when the switch S1 is turned off, the positive electrode terminal of the storage battery 10 and the connection point M are cut off. .. The other end of the second switch S2 is connected to the second external terminal P2. When the second switch S2 is turned on, the negative electrode terminal of the storage battery 10 and the connection point M are in a conductive state, and when the switch S2 is turned off, the negative electrode terminal of the storage battery 10 and the connection point M are cut off. ..
 漏電判定装置20は、電圧検出部30を備えている。電圧検出部30は、第1抵抗体31、第2抵抗体32、第3抵抗体33及び接地部G1を基準とした定電圧源34を備えている。第1抵抗体31の一端は、接続点Mに接続されている。第1抵抗体31の他端は、第2抵抗体32の一端に接続されている。第1抵抗体31の他端及び第2抵抗体32の一端の接続点をNとする。第2抵抗体32の他端は、接地部G1に接続されている。定電圧源34は、第3抵抗体33の一端に接続され、第3抵抗体33の他端は、接続点Nに接続されている。なお、図1には、定電圧源34の出力電圧をVdcで示している。 The leakage determination device 20 includes a voltage detection unit 30. The voltage detection unit 30 includes a first resistor 31, a second resistor 32, a third resistor 33, and a constant voltage source 34 with reference to the grounding portion G1. One end of the first resistor 31 is connected to the connection point M. The other end of the first resistor 31 is connected to one end of the second resistor 32. Let N be the connection point between the other end of the first resistor 31 and one end of the second resistor 32. The other end of the second resistor 32 is connected to the grounding portion G1. The constant voltage source 34 is connected to one end of the third resistor 33, and the other end of the third resistor 33 is connected to the connection point N. Note that FIG. 1 shows the output voltage of the constant voltage source 34 in Vdc.
 漏電判定装置20は、制御装置40を備えている。制御装置40は、第1,第2スイッチS1,S2のオンオフを切り替える信号を出力する。制御装置40には、接続点Nの電圧に応じた電圧信号が入力される。制御装置40は、入力された電圧信号を含む各種情報を記憶する記憶部を有している。記憶部は、ROM以外の非遷移的実体的記録媒体(例えば、ROM以外の不揮発性メモリ)である。本実施形態において、制御装置40が「制御部」に相当する。 The leakage determination device 20 includes a control device 40. The control device 40 outputs a signal for switching on / off of the first and second switches S1 and S2. A voltage signal corresponding to the voltage of the connection point N is input to the control device 40. The control device 40 has a storage unit that stores various information including the input voltage signal. The storage unit is a non-transitional substantive recording medium other than ROM (for example, a non-volatile memory other than ROM). In the present embodiment, the control device 40 corresponds to the "control unit".
 第1~第3抵抗体31~33は、電圧信号を制御装置40に入力可能な電圧範囲(例えば0~5V)に降圧するべく、各抵抗体31~33の抵抗値R1~R3が設定される。本実施形態では、第1抵抗体31の抵抗値R1は、第2抵抗体32の抵抗値R2及び第3抵抗体33の抵抗値R3よりも大きい。例えば、第1抵抗体31の抵抗値R1は数MΩであり、第2,第3抵抗体32,33の抵抗値R2,R3は数kΩである。制御装置40は、入力された電圧信号に基づいて、接続点Nの電圧を検出する。本実施形態において、第1~第3抵抗体31~33が「検出用抵抗部」に相当する。 In the first to third resistors 31 to 33, the resistance values R1 to R3 of the resistors 31 to 33 are set in order to step down the voltage signal to a voltage range (for example, 0 to 5 V) that can be input to the control device 40. To. In the present embodiment, the resistance value R1 of the first resistor 31 is larger than the resistance value R2 of the second resistor 32 and the resistance value R3 of the third resistor 33. For example, the resistance value R1 of the first resistor 31 is several MΩ, and the resistance values R2 and R3 of the second and third resistors 32 and 33 are several kΩ. The control device 40 detects the voltage at the connection point N based on the input voltage signal. In the present embodiment, the first to third resistors 31 to 33 correspond to the "detection resistance section".
 漏電判定装置20は、急速充放電部50を備えている。急速充放電部50は、急速充放電経路L3、第4抵抗体51及び第3スイッチS3を有している。急速充放電経路L3は、接続点Mと、漏電判定装置20の第3外部端子P3とを接続する。第3外部端子P3は接地部G1に接続されている。第4抵抗体51及び第3スイッチS3は、急速充放電経路L3に設けられている。第4抵抗体51の一端が第3外部端子P3に接続されている。第3スイッチS3は、第4抵抗体51の他端と、接続点Mとを接続している。第3スイッチS3は、制御装置40によってオンオフが切り替えられる。本実施形態において、第4抵抗体51の抵抗値R4は、例えば数百kΩであり、第1抵抗体31及び第2抵抗体32の合成抵抗値(R1+R2)よりも小さい。本実施形態において、第4抵抗体51が「充放電用素子」に相当する。 The leakage determination device 20 includes a rapid charge / discharge unit 50. The rapid charge / discharge unit 50 has a rapid charge / discharge path L3, a fourth resistor 51, and a third switch S3. The rapid charge / discharge path L3 connects the connection point M and the third external terminal P3 of the leakage determination device 20. The third external terminal P3 is connected to the grounding portion G1. The fourth resistor 51 and the third switch S3 are provided in the rapid charge / discharge path L3. One end of the fourth resistor 51 is connected to the third external terminal P3. The third switch S3 connects the other end of the fourth resistor 51 to the connection point M. The third switch S3 is switched on and off by the control device 40. In the present embodiment, the resistance value R4 of the fourth resistor 51 is, for example, several hundred kΩ, which is smaller than the combined resistance value (R1 + R2) of the first resistor 31 and the second resistor 32. In the present embodiment, the fourth resistor 51 corresponds to the “charge / discharge element”.
 続いて、各地絡抵抗Rp,Rnの抵抗値の算出方法について説明する。 Next, the method of calculating the resistance values of the local entanglement resistances Rp and Rn will be described.
 図2は、第1スイッチS1がオンされ、第2,第3スイッチS2,S3がオフされた後、十分に時間が経過した場合における電流経路を示す。図3は、第2スイッチS2がオンされ、第1,第3スイッチS1,S3がオフされた後、十分に時間が経過した場合における電流経路を示す。図2及び図3に示す回路では、共通して、蓄電池10の正極端子→正極側地絡抵抗Rp→負極側地絡抵抗Rn→蓄電池10の負極端子からなる電流経路が形成される。 FIG. 2 shows a current path when a sufficient time has elapsed after the first switch S1 is turned on and the second and third switches S2 and S3 are turned off. FIG. 3 shows a current path when a sufficient time has elapsed after the second switch S2 is turned on and the first and third switches S1 and S3 are turned off. In the circuits shown in FIGS. 2 and 3, a current path including a positive electrode terminal of the storage battery 10 → a ground fault resistance Rp on the positive electrode side → a ground fault resistance Rn on the negative electrode side → a negative electrode terminal of the storage battery 10 is commonly formed.
 図2では、上述した電流経路に加えて、蓄電池10の正極端子→第1スイッチS1→第1抵抗体31→第2抵抗体32→接地部G1→負極側地絡抵抗Rn→蓄電池10の負極端子からなる電流経路が形成される。この場合、正極側地絡抵抗Rpは、第1,第2抵抗体31,32に対して並列接続される。このため、正極側地絡抵抗Rpの電圧降下量は、負極側地絡抵抗Rnの電圧降下量よりも小さくなる。つまり、正極側容量Cpに印加される電圧は、負極側容量Cnに印加される電圧よりも低くなる。制御装置40は、この状態における電圧検出部30の検出電圧Vrを第1電圧V1として取得し、各地絡抵抗Rp,Rnの抵抗値の算出に用いる。 In FIG. 2, in addition to the above-mentioned current path, the positive electrode terminal of the storage battery 10 → the first switch S1 → the first resistor 31 → the second resistor 32 → the grounding portion G1 → the negative electrode side ground fault resistance Rn → the negative electrode of the storage battery 10. A current path consisting of terminals is formed. In this case, the positive electrode side ground fault resistance Rp is connected in parallel to the first and second resistors 31, 32. Therefore, the voltage drop amount of the positive electrode side ground fault resistance Rp is smaller than the voltage drop amount of the negative electrode side ground fault resistance Rn. That is, the voltage applied to the positive electrode side capacitance Cp is lower than the voltage applied to the negative electrode side capacitance Cn. The control device 40 acquires the detection voltage Vr of the voltage detection unit 30 in this state as the first voltage V1 and uses it for calculating the resistance values of the interrelated resistances Rp and Rn.
 図3では、上述した電流経路に加えて、蓄電池10の正極端子→正極側地絡抵抗Rp→接地部G1→第2抵抗体32→第1抵抗体31→第2スイッチS2→蓄電池10の負極端子からなる電流経路が形成される。この場合、負極側地絡抵抗Rnは、第1,第2抵抗体31,32に対して並列接続される。このため、負極側地絡抵抗Rnの電圧降下量は、正極側地絡抵抗Rpの電圧降下量よりも小さくなる。つまり、負極側容量Cnに印加される電圧は、正極側容量Cpに印加される電圧よりも低くなる。制御装置40は、この状態における検出電圧Vrを、第2電圧V2として取得し、各地絡抵抗Rp,Rnの抵抗値の算出に用いる。なお、定電圧源34及び第3抵抗体33は、第2電圧V2が0でない電圧値として検出できるようにするために設けられている。 In FIG. 3, in addition to the above-mentioned current path, the positive electrode terminal of the storage battery 10 → the ground fault resistance Rp on the positive electrode side → the grounding portion G1 → the second resistor 32 → the first resistor 31 → the second switch S2 → the negative electrode of the storage battery 10. A current path consisting of terminals is formed. In this case, the negative electrode side ground fault resistance Rn is connected in parallel to the first and second resistors 31, 32. Therefore, the voltage drop amount of the negative electrode side ground fault resistance Rn is smaller than the voltage drop amount of the positive electrode side ground fault resistance Rp. That is, the voltage applied to the negative electrode side capacitance Cn is lower than the voltage applied to the positive electrode side capacitance Cp. The control device 40 acquires the detected voltage Vr in this state as the second voltage V2 and uses it for calculating the resistance values of the interfering resistors Rp and Rn. The constant voltage source 34 and the third resistor 33 are provided so that the second voltage V2 can be detected as a non-zero voltage value.
 制御装置40は、第1,第2電圧V1,V2に基づいて、各地絡抵抗Rp,Rnの抵抗値を算出する。各地絡抵抗Rp,Rnの抵抗値を算出する方法としては、例えば、特許文献1に記載された方法に準じた方法を用いればよい。この方法は、正極側地絡抵抗Rpの抵抗値を含む方程式と、負極側地絡抵抗Rnの抵抗値を含む方程式とを連立させることにより、連立方程式の解として各地絡抵抗Rp,Rnの抵抗値を算出するものである。算出された各地絡抵抗Rp,Rnの抵抗値に基づいて、漏電の有無が判定される。本実施形態において、制御装置40が「判定部」に相当する。 The control device 40 calculates the resistance values of the local resistances Rp and Rn based on the first and second voltages V1 and V2. As a method for calculating the resistance values of the interrelated resistances Rp and Rn, for example, a method according to the method described in Patent Document 1 may be used. In this method, the equations including the resistance value of the ground fault resistance Rp on the positive side and the equation including the resistance value of the ground fault resistance Rn on the negative side are combined to solve the simultaneous equations, and the resistances of the ground faults Rp and Rn in each region are combined. It calculates the value. The presence or absence of electric leakage is determined based on the calculated resistance values of the local resistances Rp and Rn. In the present embodiment, the control device 40 corresponds to the "determination unit".
 第1スイッチS1がオンされるとともに第2,第3スイッチS2,S3がオフされてから、図2に示した状態とされるまでの間、正極側容量Cpは放電され、負極側容量Cnは充電される。この場合、正極側容量Cp及び負極側容量Cnの充放電は、抵抗値の大きな第1抵抗体31を介して行われるため、図2に示した状態とされるまでには時間を要する。 From the time when the first switch S1 is turned on and the second and third switches S2 and S3 are turned off until the state shown in FIG. 2 is obtained, the positive electrode side capacitance Cp is discharged and the negative electrode side capacitance Cn is set. It will be charged. In this case, since the charging / discharging of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn is performed via the first resistor 31 having a large resistance value, it takes time to reach the state shown in FIG.
 一方、第2スイッチS2がオンされるとともに第1,第3スイッチS1,S3がオフされてから、図3に示した状態とされるまでの間、正極側容量Cpは充電され、負極側容量Cnは放電される。この場合も、正極側容量Cp及び負極側容量Cnの充放電は、抵抗値の大きな第1抵抗体31を介して行われるため、図3に示した状態とされるまでには時間を要する。そのため、正極側容量Cp及び負極側容量Cnの充放電が要求される時間内に完了せず、第1,第2電圧V1,V2の検出精度が悪化する可能性がある。特に、正極側容量Cp及び負極側容量Cnが大きい場合には、第1,第2電圧V1,V2の検出精度の悪化が顕著になる可能性がある。 On the other hand, from the time when the second switch S2 is turned on and the first and third switches S1 and S3 are turned off until the state shown in FIG. 3 is obtained, the positive electrode side capacitance Cp is charged and the negative electrode side capacitance is charged. Cn is discharged. Also in this case, since the charging / discharging of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn is performed via the first resistor 31 having a large resistance value, it takes time to reach the state shown in FIG. Therefore, charging / discharging of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn may not be completed within the required time, and the detection accuracy of the first and second voltages V1 and V2 may deteriorate. In particular, when the positive electrode side capacitance Cp and the negative electrode side capacitance Cn are large, the detection accuracy of the first and second voltages V1 and V2 may be significantly deteriorated.
 そこで、本実施形態において、正極側容量Cp及び負極側容量Cnの充放電を急速に行うための構成として、第3スイッチS3、第4抵抗体51及び急速充放電経路L3が設けられている。 Therefore, in the present embodiment, the third switch S3, the fourth resistor 51, and the rapid charge / discharge path L3 are provided as a configuration for rapidly charging / discharging the positive electrode side capacitance Cp and the negative electrode side capacitance Cn.
 図4は、第1,第3スイッチS1,S3がオンされ、第2スイッチS2がオフされる第1充放電期間Tppにおける電流経路を示す。正極側容量Cpは、第1スイッチS1→第3スイッチS3→第4抵抗体51→正極側容量Cpからなる電流経路により放電される。一方、負極側容量Cnは、蓄電池10の正極端子→第1スイッチS1→第3スイッチS3→第4抵抗体51→負極側容量Cn→蓄電池10の負極端子からなる電流経路により充電される。これにより、正極側容量Cpに印加される電圧が低くされ、負極側容量Cnに印加される電圧が高くされる。 FIG. 4 shows a current path in the first charge / discharge period Tpp in which the first and third switches S1 and S3 are turned on and the second switch S2 is turned off. The positive electrode side capacitance Cp is discharged by a current path including a first switch S1 → a third switch S3 → a fourth resistor 51 → a positive electrode side capacitance Cp. On the other hand, the negative electrode side capacitance Cn is charged by a current path including a positive electrode terminal of the storage battery 10 → a first switch S1 → a third switch S3 → a fourth resistor 51 → a negative electrode side capacitance Cn → a negative electrode terminal of the storage battery 10. As a result, the voltage applied to the positive electrode side capacitance Cp is lowered, and the voltage applied to the negative electrode side capacitance Cn is increased.
 ここで、正極側容量Cpの放電及び負極側容量Cnの充電は、第4抵抗体51を介して行われる。第4抵抗体51の抵抗値R4は、第1抵抗体31の抵抗値R1よりも小さいため、正極側容量Cpの放電及び負極側容量Cnの充電が急速に行われる。これにより、図2に示す状態とされるまでの期間を短縮することができる。 Here, the discharge of the positive electrode side capacitance Cp and the charge of the negative electrode side capacitance Cn are performed via the fourth resistor 51. Since the resistance value R4 of the fourth resistor 51 is smaller than the resistance value R1 of the first resistor 31, the positive electrode side capacitance Cp is discharged and the negative electrode side capacitance Cn is rapidly charged. As a result, the period until the state shown in FIG. 2 can be obtained can be shortened.
 図5は、第2,第3スイッチS2,S3がオンされ、第1スイッチS1がオフされる第2充放電期間Tpnにおける電流経路を示す。負極側容量Cnは、第4抵抗体51→第3スイッチS3→第2スイッチS2→負極側容量Cnからなる電流経路により放電される。一方、正極側容量Cpは、蓄電池10の正極端子→正極側容量Cp→第4抵抗体51→第3スイッチS3→第2スイッチS2→蓄電池10の負極端子からなる電流経路により充電される。これにより、正極側容量Cpに印加される電圧が高くされ、負極側容量Cnに印加される電圧が低くされる。 FIG. 5 shows a current path in the second charge / discharge period Tpn in which the second and third switches S2 and S3 are turned on and the first switch S1 is turned off. The negative electrode side capacitance Cn is discharged by a current path including a fourth resistor 51 → a third switch S3 → a second switch S2 → a negative electrode side capacitance Cn. On the other hand, the positive electrode side capacitance Cp is charged by a current path including a positive electrode terminal of the storage battery 10 → a positive electrode side capacitance Cp → a fourth resistor 51 → a third switch S3 → a second switch S2 → a negative electrode terminal of the storage battery 10. As a result, the voltage applied to the positive electrode side capacitance Cp is increased, and the voltage applied to the negative electrode side capacitance Cn is decreased.
 ここで、負極側容量Cnの放電及び正極側容量Cpの充電も、第4抵抗体51を介して行われる。そのため、負極側容量Cnの放電及び正極側容量Cpの充電が急速に行われる。これにより、図3に示す状態とされるまでの期間を短縮することができる。 Here, the discharge of the negative electrode side capacitance Cn and the charge of the positive electrode side capacitance Cp are also performed via the fourth resistor 51. Therefore, the negative electrode side capacitance Cn is discharged and the positive electrode side capacitance Cp is charged rapidly. As a result, the period until the state shown in FIG. 3 can be obtained can be shortened.
 続いて、各スイッチS1~S3がオンオフされたときの検出電圧Vrの推移を詳しく説明する。 Next, the transition of the detected voltage Vr when each switch S1 to S3 is turned on and off will be described in detail.
 図6は、第1,第2充放電期間Tpp,Tpnが適切な長さに対して不足する場合の検出電圧Vrの推移である。図6において、(a)は第1スイッチS1の駆動状態を示し、(b)は第2スイッチS2の駆動状態を示し、(c)は第3スイッチS3の駆動状態を示し、(d)は検出電圧Vr及び理想電圧Vdの推移を示す。図6(d)では、検出電圧Vrを実線で示し、理想電圧Vdを破線で示している。理想電圧Vdは、正極側容量Cp及び負極側容量Cnの値を0とした場合の電圧であり、第1電圧V1及び第2電圧V2として検出されるべき電圧である。なお、図6では、第1,第2充放電期間Tpp,Tpnが0とされる。 FIG. 6 shows the transition of the detected voltage Vr when the first and second charge / discharge periods Tpp and Tpn are insufficient for an appropriate length. In FIG. 6, (a) shows the driving state of the first switch S1, (b) shows the driving state of the second switch S2, (c) shows the driving state of the third switch S3, and (d) shows the driving state of the third switch S3. The transition of the detected voltage Vr and the ideal voltage Vd is shown. In FIG. 6D, the detected voltage Vr is shown by a solid line, and the ideal voltage Vd is shown by a broken line. The ideal voltage Vd is a voltage when the values of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn are 0, and is a voltage to be detected as the first voltage V1 and the second voltage V2. In FIG. 6, the first and second charge / discharge periods Tpp and Tpn are set to 0.
 時刻t1において、第1スイッチS1がオンに切り替えられ、第2,第3スイッチS2,S3がオフされる。この場合、蓄電池10の正極端子と接続点Mとが接続されるため、検出電圧Vrが上昇する。時刻t1から、第1スイッチS1がオフに切り替えられる時刻t2までの第1期間T1において、正極側容量Cpは放電され、負極側容量Cnは充電される。正極側容量Cpに印加される電圧が漸減すると、検出電圧Vrは漸減する。この場合、正極側容量Cp及び負極側容量Cnの充放電は、主に第1抵抗体31を介して行われるため、検出電圧Vrの漸減速度は低い。そのため、正極側容量Cp及び負極側容量Cnの充放電が完了する前の時刻t2において、第1電圧V1が検出される。この場合、第1電圧V1は理想電圧Vdに比べて高く、第1電圧V1の検出精度が悪化する。 At time t1, the first switch S1 is switched on and the second and third switches S2 and S3 are turned off. In this case, since the positive electrode terminal of the storage battery 10 and the connection point M are connected, the detection voltage Vr rises. In the first period T1 from the time t1 to the time t2 when the first switch S1 is switched off, the positive electrode side capacitance Cp is discharged and the negative electrode side capacitance Cn is charged. When the voltage applied to the positive electrode side capacitance Cp gradually decreases, the detected voltage Vr gradually decreases. In this case, since the charging / discharging of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn is mainly performed via the first resistor 31, the gradual decrease rate of the detected voltage Vr is low. Therefore, the first voltage V1 is detected at time t2 before the charging / discharging of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn is completed. In this case, the first voltage V1 is higher than the ideal voltage Vd, and the detection accuracy of the first voltage V1 deteriorates.
 時刻t3において、第2スイッチS2がオンに切り替えられる。この場合、蓄電池10の負極端子と接続点Mとが接続されるため、検出電圧Vrが低下する。時刻t3から、第2スイッチS2がオフに切り替えられる時刻t4までの第2期間T2において、正極側容量Cpは充電され、負極側容量Cnは放電される。負極側容量Cnに印加される電圧が漸減すると、検出電圧Vrは漸増する。この場合、正極側容量Cp及び負極側容量Cnの充放電は、主に第1抵抗体31を介して行われるため、検出電圧Vrの漸増速度は低い。そのため、正極側容量Cp及び負極側容量Cnの充放電が完了する前の時刻t4において、第2電圧V2が検出される。この場合、第2電圧V2は理想電圧Vdに比べて低く、第2電圧V2の検出精度が悪化する。なお、第1,第2充放電期間Tpp,Tpnが0である場合に限らず、第1,第2充放電期間Tpp,Tpnが適正な長さに対して不足する場合、同様に、第1,第2電圧V1,V2の検出精度が悪化する。 At time t3, the second switch S2 is switched on. In this case, since the negative electrode terminal of the storage battery 10 and the connection point M are connected, the detection voltage Vr drops. In the second period T2 from the time t3 to the time t4 when the second switch S2 is switched off, the positive electrode side capacitance Cp is charged and the negative electrode side capacitance Cn is discharged. When the voltage applied to the negative electrode side capacitance Cn gradually decreases, the detected voltage Vr gradually increases. In this case, since the charging / discharging of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn is mainly performed via the first resistor 31, the gradual increase rate of the detected voltage Vr is low. Therefore, the second voltage V2 is detected at time t4 before the charging / discharging of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn is completed. In this case, the second voltage V2 is lower than the ideal voltage Vd, and the detection accuracy of the second voltage V2 deteriorates. Not only when the first and second charge / discharge periods Tpp and Tpn are 0, but also when the first and second charge / discharge periods Tpp and Tpn are insufficient for an appropriate length, the first , The detection accuracy of the second voltages V1 and V2 deteriorates.
 図7は、第1,第2充放電期間Tpp,Tpnが適切な長さに対して過剰となる場合の検出電圧Vrの推移である。図7(a)~(d)は、図6(a)~(d)に対応している。 FIG. 7 is a transition of the detected voltage Vr when the first and second charge / discharge periods Tpp and Tpn are excessive with respect to an appropriate length. 7 (a) to 7 (d) correspond to FIGS. 6 (a) to 6 (d).
 時刻t1において、第1,第3スイッチS1,S3がオンに切り替えられ、第2スイッチS2がオフされる。時刻t1から、第3スイッチS3がオフに切り替えられる時刻t2までの間、図4に示した電流経路が形成され、正極側容量Cpが放電され、負極側容量Cnが充電される。この場合、正極側容量Cp及び負極側容量Cnの充放電は、第4抵抗体51を介して行われるため、検出電圧Vrが漸減する速さは、第1抵抗体31を介して充放電が行われる場合に比べて速い。そのため、時刻t1から時刻t2までの期間である第1充放電期間Tppが適切な長さに対して過剰に長いと、正極側容量Cp及び負極側容量Cnの充放電が過剰に行われる。 At time t1, the first and third switches S1 and S3 are switched on, and the second switch S2 is turned off. From time t1 to time t2 when the third switch S3 is switched off, the current path shown in FIG. 4 is formed, the positive electrode side capacitance Cp is discharged, and the negative electrode side capacitance Cn is charged. In this case, since the positive electrode side capacitance Cp and the negative electrode side capacitance Cn are charged and discharged via the fourth resistor 51, the speed at which the detected voltage Vr gradually decreases is such that charging and discharging are performed via the first resistor 31. Faster than it would be. Therefore, if the first charge / discharge period Tpp, which is the period from time t1 to time t2, is excessively long with respect to an appropriate length, the positive electrode side capacitance Cp and the negative electrode side capacitance Cn are excessively charged / discharged.
 時刻t2において、検出電圧Vrは理想電圧Vdよりも低い。そのため、時刻t2から、第1スイッチS1がオフに切り替えられる時刻t3までの間、正極側容量Cpが充電され、負極側容量Cnが放電される。そのため、検出電圧Vrが漸増する。この場合、正極側容量Cp及び負極側容量Cnの充放電は、主に第1抵抗体31を介して行われるため、検出電圧Vrが漸増する速さは、第4抵抗体51を介して充放電が行われる場合よりも遅い。よって、時刻t3において、検出電圧Vrは理想電圧Vdよりも低いままであり、第1電圧V1の検出精度が悪化する。なお、図7において、時刻t1から時刻t3までが第1期間T1である。 At time t2, the detected voltage Vr is lower than the ideal voltage Vd. Therefore, from the time t2 to the time t3 when the first switch S1 is switched off, the positive electrode side capacitance Cp is charged and the negative electrode side capacitance Cn is discharged. Therefore, the detected voltage Vr gradually increases. In this case, since the charging / discharging of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn is mainly performed via the first resistor 31, the speed at which the detected voltage Vr gradually increases is charged via the fourth resistor 51. Slower than when discharging occurs. Therefore, at time t3, the detection voltage Vr remains lower than the ideal voltage Vd, and the detection accuracy of the first voltage V1 deteriorates. In FIG. 7, the time t1 to the time t3 is the first period T1.
 時刻t4において、第2,第3スイッチS2,S3がオンに切り替えられる。時刻t4から、第3スイッチS3がオフに切り替えられる時刻t5までの間、図5に示した電流経路が形成され、正極側容量Cpが充電され、負極側容量Cnが放電される。この場合、正極側容量Cp及び負極側容量Cnの充放電は、第4抵抗体51を介して行われるため、検出電圧Vrが漸増する速さは、第1抵抗体31を介して充放電が行われる場合に比べて速い。そのため、時刻t4から時刻t5までの期間である第2充放電期間Tpnが適切な長さに対して過剰に長いと、正極側容量Cp及び負極側容量Cnの充放電が過剰に行われる。 At time t4, the second and third switches S2 and S3 are switched on. From time t4 to time t5 when the third switch S3 is switched off, the current path shown in FIG. 5 is formed, the positive electrode side capacitance Cp is charged, and the negative electrode side capacitance Cn is discharged. In this case, since the positive electrode side capacitance Cp and the negative electrode side capacitance Cn are charged and discharged via the fourth resistor 51, the speed at which the detected voltage Vr gradually increases is such that charging and discharging are performed via the first resistor 31. Faster than it would be. Therefore, if the second charge / discharge period Tpn, which is the period from time t4 to time t5, is excessively long with respect to an appropriate length, the positive electrode side capacitance Cp and the negative electrode side capacitance Cn are excessively charged / discharged.
 時刻t5において、検出電圧Vrは理想電圧Vdよりも高い。そのため、時刻t5から、第2スイッチS2がオフに切り替えられる時刻t6までの間、正極側容量Cpが放電され、負極側容量Cnが充電される。そのため、検出電圧Vrが漸減する。この場合、正極側容量Cp及び負極側容量Cnの充放電は、主に第1抵抗体31を介して行われるため、検出電圧Vrが漸減する速さは、第4抵抗体51を介して充放電が行われる場合よりも遅い。よって、時刻t6において、検出電圧Vrは理想電圧Vdよりも高いままであり、第2電圧V2の検出精度が悪化する。なお、図7において、時刻t4から時刻t6までが第2期間T2である。 At time t5, the detected voltage Vr is higher than the ideal voltage Vd. Therefore, from the time t5 to the time t6 when the second switch S2 is switched off, the positive electrode side capacitance Cp is discharged and the negative electrode side capacitance Cn is charged. Therefore, the detected voltage Vr gradually decreases. In this case, since the charging / discharging of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn is mainly performed via the first resistor 31, the speed at which the detected voltage Vr gradually decreases is charged via the fourth resistor 51. Slower than when discharging occurs. Therefore, at time t6, the detection voltage Vr remains higher than the ideal voltage Vd, and the detection accuracy of the second voltage V2 deteriorates. In FIG. 7, the time t4 to the time t6 is the second period T2.
 図8は、第1,第2充放電期間Tpp,Tpnが適切な長さに設定された場合の検出電圧Vrの推移である。図8(a)~(d)は、図6(a)~(d)に対応している。 FIG. 8 shows the transition of the detected voltage Vr when the first and second charge / discharge periods Tpp and Tpn are set to appropriate lengths. 8 (a) to 8 (d) correspond to FIGS. 6 (a) to 6 (d).
 時刻t1において、第1,第3スイッチS1,S3がオンに切り替えられ、第2スイッチS2がオフされる。時刻t1から、第1充放電期間Tppだけ経過した時刻t2までの間、図4に示した電流経路が形成され、正極側容量Cpが放電され、負極側容量Cnが充電される。時刻t2において、検出電圧Vrが理想電圧Vdと一致する。そのため、時刻t2から、第1スイッチS1がオフされる時刻t3までの間、図2に示した電流経路が形成され、検出電圧Vrは一定となる。よって、制御装置40は、例えば第1スイッチS1がオフに切り替えられる時刻t3において、第1電圧V1を精度よく検出することができる。なお、図8において、時刻t1から時刻t3までが第1期間T1である。 At time t1, the first and third switches S1 and S3 are switched on, and the second switch S2 is turned off. From the time t1 to the time t2 when the first charge / discharge period Tpp has elapsed, the current path shown in FIG. 4 is formed, the positive electrode side capacitance Cp is discharged, and the negative electrode side capacitance Cn is charged. At time t2, the detected voltage Vr coincides with the ideal voltage Vd. Therefore, from the time t2 to the time t3 when the first switch S1 is turned off, the current path shown in FIG. 2 is formed, and the detected voltage Vr becomes constant. Therefore, the control device 40 can accurately detect the first voltage V1 at, for example, at time t3 when the first switch S1 is switched off. In FIG. 8, the time t1 to the time t3 is the first period T1.
 時刻t4において、第2,第3スイッチS2,S3がオンに切り替えられる。時刻t4から、第2充放電期間Tpnだけ経過した時刻t5までの間、図5に示した電流経路が形成され、正極側容量Cpが充電され、負極側容量Cnが放電される。時刻t5において、検出電圧Vrが理想電圧Vdと一致する。そのため、時刻t5から、第2スイッチS2がオフに切り替えられる時刻t6までの間、図3に示した電流経路が形成され、検出電圧Vrは一定となる。よって、制御装置40は、例えば時刻t6において、第2電圧V2を精度よく検出することができる。なお、図8において、時刻t4から時刻t6までが第2期間T2である。 At time t4, the second and third switches S2 and S3 are switched on. From the time t4 to the time t5 when the second charge / discharge period Tpn has elapsed, the current path shown in FIG. 5 is formed, the positive electrode side capacitance Cp is charged, and the negative electrode side capacitance Cn is discharged. At time t5, the detected voltage Vr coincides with the ideal voltage Vd. Therefore, from the time t5 to the time t6 when the second switch S2 is switched off, the current path shown in FIG. 3 is formed, and the detected voltage Vr becomes constant. Therefore, the control device 40 can accurately detect the second voltage V2, for example, at time t6. In FIG. 8, the time t4 to the time t6 is the second period T2.
 図6,7において説明したように、第1,第2充放電期間Tpp,Tpnが適切な長さに設定されない場合、第1,第2電圧V1,V2の検出精度が悪化する可能性がある。そこで、本実施形態において、第1,第2電圧V1,V2は所定周期毎に検出されるものとし、第1,第2電圧V1,V2の時間変化量dVp,dVnに基づいて、次の周期における第1,第2充放電期間Tpp,Tpnが設定されることとした。 As described in FIGS. 6 and 7, if the first and second charge / discharge periods Tpp and Tpn are not set to appropriate lengths, the detection accuracy of the first and second voltages V1 and V2 may deteriorate. .. Therefore, in the present embodiment, it is assumed that the first and second voltages V1 and V2 are detected at predetermined intervals, and the next cycle is based on the time change amounts dVp and dVn of the first and second voltages V1 and V2. It was decided that the first and second charge / discharge periods Tpp and Tpn in the above were set.
 図9は、第1電圧V1の時間変化量dVpと、第1充放電期間Tppの増減との対応関係を示し、第2電圧V2の時間変化量dVnと、第2充放電期間Tpnの増減との対応関係を示す。 FIG. 9 shows the correspondence between the time change amount dVp of the first voltage V1 and the increase / decrease of the first charge / discharge period Tpp, and shows the time change amount dVn of the second voltage V2 and the increase / decrease of the second charge / discharge period Tpn. The correspondence relationship of is shown.
 第1電圧V1の時間変化量dVpが負の値である場合、次の周期における第1充放電期間Tppが増加させられる。第1電圧V1の時間変化量dVpが正の値である場合、次の周期における第1充放電期間Tppが短縮させられる。これにより、次の周期における第1充放電期間Tppは、第1電圧V1の時間変化量dVpを小さくするように設定される。第1電圧V1の時間変化量dVpが0である場合、次の周期における第1充放電期間Tppとして、現在の周期における第1充放電期間Tppが用いられる。なお、本実施形態において、第1電圧V1の時間変化量dVpが0であるか否かの判定は、第1電圧V1の時間変化量dVpの絶対値が所定値kよりも小さいか否かを判定することにより行われる。 When the time change amount dVp of the first voltage V1 is a negative value, the first charge / discharge period Tpp in the next cycle is increased. When the time change amount dVp of the first voltage V1 is a positive value, the first charge / discharge period Tpp in the next cycle is shortened. As a result, the first charge / discharge period Tpp in the next cycle is set so as to reduce the time change amount dVp of the first voltage V1. When the time change amount dVp of the first voltage V1 is 0, the first charge / discharge period Tpp in the current cycle is used as the first charge / discharge period Tpp in the next cycle. In the present embodiment, the determination of whether or not the time change amount dVp of the first voltage V1 is 0 determines whether or not the absolute value of the time change amount dVp of the first voltage V1 is smaller than the predetermined value k. It is done by judging.
 本実施形態では、第1電圧V1の時間変化量dVpを0にするべく、操作量を第1充放電期間Tppとするフィードバック制御が実施される。第1電圧V1のフィードバック制御として、下式(e1)に示す比例積分制御が用いられる。 In the present embodiment, feedback control is performed in which the operation amount is set to the first charge / discharge period Tpp in order to set the time change amount dVp of the first voltage V1 to 0. As the feedback control of the first voltage V1, the proportional integral control shown in the following equation (e1) is used.
Figure JPOXMLDOC01-appb-M000001
 上式(e1)の右辺第1項は比例項であり、右辺第2項は積分項であり、右辺第3項は第1充放電期間Tppの初期値又は前回の制御周期における第1充放電期間Tppである。係数KPは比例係数であり、係数KIは積分係数である。
Figure JPOXMLDOC01-appb-M000001
The first term on the right side of the above equation (e1) is a proportional term, the second term on the right side is an integral term, and the third term on the right side is the initial value of the first charge / discharge period Tpp or the first charge / discharge in the previous control cycle. The period Tpp. The coefficient KP is a proportional coefficient and the coefficient KI is an integral coefficient.
 第2電圧V2の時間変化量dVnが正の値である場合、次の周期における第2充放電期間Tpnが増加させられる。第2電圧V2の時間変化量dVnが負の値である場合、次の周期における第2充放電期間Tpnが短縮させられる。これにより、次の周期における第2充放電期間Tpnは、第2電圧V2の時間変化量dVnを小さくするように設定される。第2電圧V2の時間変化量dVnが0である場合、次の周期における第2充放電期間Tpnは、現在の周期における第2充放電期間Tpnを用いる。なお、本実施形態において、第2電圧V2の時間変化量dVnが0であるか否かの判定は、第2電圧V2の時間変化量dVnの絶対値が所定値kよりも小さいか否かを判定することにより行われる。 When the time change amount dVn of the second voltage V2 is a positive value, the second charge / discharge period Tpn in the next cycle is increased. When the time change amount dVn of the second voltage V2 is a negative value, the second charge / discharge period Tpn in the next cycle is shortened. As a result, the second charge / discharge period Tpn in the next cycle is set so as to reduce the time change amount dVn of the second voltage V2. When the time change amount dVn of the second voltage V2 is 0, the second charge / discharge period Tpn in the current cycle is used as the second charge / discharge period Tpn in the next cycle. In the present embodiment, the determination of whether or not the time change amount dVn of the second voltage V2 is 0 determines whether or not the absolute value of the time change amount dVn of the second voltage V2 is smaller than the predetermined value k. It is done by judging.
 本実施形態では、第2電圧V2の時間変化量dVnを0にするべく、操作量を第2充放電期間Tpnとするフィードバック制御が実施される。第2電圧V2のフィードバック制御として、下式(e2)に示す比例積分制御が用いられる。 In the present embodiment, feedback control is performed in which the operation amount is set to the second charge / discharge period Tpn in order to set the time change amount dVn of the second voltage V2 to 0. As the feedback control of the second voltage V2, the proportional integral control shown in the following equation (e2) is used.
Figure JPOXMLDOC01-appb-M000002
 上式(e2)の右辺第1項は比例項であり、右辺第2項は積分項であり、右辺第3項は第2充放電期間Tpnの初期値又は前回の制御周期における第2充放電期間Tpnである。なお、第1,第2電圧V1,V2のフィードバック制御としては、比例積分制御に限らず、例えば比例積分微分制御であってもよい。
Figure JPOXMLDOC01-appb-M000002
The first term on the right side of the above equation (e2) is a proportional term, the second term on the right side is an integral term, and the third term on the right side is the initial value of the second charge / discharge period Tpn or the second charge / discharge in the previous control cycle. The period Tpn. The feedback control of the first and second voltages V1 and V2 is not limited to the proportional integral control, and may be, for example, the proportional integral differential control.
 図10に、制御装置40が実施する処理の手順を示す。この処理は、開始条件が満たされた場合に実施される。開始条件は任意に設定される。 FIG. 10 shows a procedure of processing performed by the control device 40. This process is performed when the start condition is met. The start condition is set arbitrarily.
 ステップS100では、第1,第2充放電期間Tpp,Tpnの初期値を設定する。本実施形態では、初期値として、第1充放電期間Tpp=0,第2充放電期間Tpn=0とする。 In step S100, the initial values of the first and second charge / discharge periods Tpp and Tpn are set. In the present embodiment, the first charge / discharge period Tpp = 0 and the second charge / discharge period Tpn = 0 are set as initial values.
 ステップS101では、第1スイッチS1をオンに切り替える。これにより、第1期間T1が開始される。ステップS102では、第3スイッチS3をオンに切り替える。これにより、第1充放電期間Tppが開始される。ステップS103では、第3スイッチS3をオンしてから第1充放電期間Tppだけ待機する。この待機期間において、図4に示す電流経路により正極側容量Cpが放電され、負極側容量Cnが充電される。ステップS104では、第3スイッチS3をオフする。これにより、第1充放電期間Tppが終了される。 In step S101, the first switch S1 is switched on. As a result, the first period T1 is started. In step S102, the third switch S3 is switched on. As a result, the first charge / discharge period Tpp is started. In step S103, after the third switch S3 is turned on, the process waits for the first charge / discharge period Tpp. During this standby period, the positive electrode side capacitance Cp is discharged and the negative electrode side capacitance Cn is charged by the current path shown in FIG. In step S104, the third switch S3 is turned off. This ends the first charge / discharge period Tpp.
 ステップS105では、第3スイッチS3がオフされた直後の第1電圧V1を検出し、検出された値をV1aとして記憶部に記憶する。ステップS105の処理は、第3スイッチS3のオフタイミングから少し遅れたタイミングに実施する。これにより、第3スイッチS3がオフに切り替えられる場合に発生するノイズが検出電圧Vrに混入することを抑制できる。ステップS106では、第3スイッチS3がオフされた後、第1期間T1から第1充放電期間Tppを除いた期間だけ待機する。ステップS107では、待機後の第1電圧V1を検出し、V1bとして記憶部に記憶する。ステップS108では、第1スイッチS1をオフにする。これにより、第1期間T1が終了される。ステップS107の処理は、第1スイッチS1のオフタイミングよりも少し早いタイミングに実施する。これにより、第1スイッチS1がオフに切り替えられる場合に発生するノイズが検出電圧Vrに混入することを抑制できる。ステップS109では、所定の第3期間T3だけ待機する。 In step S105, the first voltage V1 immediately after the third switch S3 is turned off is detected, and the detected value is stored in the storage unit as V1a. The process of step S105 is performed at a timing slightly delayed from the off timing of the third switch S3. As a result, it is possible to suppress the noise generated when the third switch S3 is switched off from being mixed in the detection voltage Vr. In step S106, after the third switch S3 is turned off, the process waits only for a period excluding the first charge / discharge period Tpp from the first period T1. In step S107, the first voltage V1 after standby is detected and stored in the storage unit as V1b. In step S108, the first switch S1 is turned off. As a result, the first period T1 is terminated. The process of step S107 is performed at a timing slightly earlier than the off timing of the first switch S1. As a result, it is possible to suppress the noise generated when the first switch S1 is switched off from being mixed in the detection voltage Vr. In step S109, the patient waits for a predetermined third period T3.
 ステップS110では、第2スイッチS2をオンする。これにより、第2期間T2が開始される。ステップS111では、第3スイッチS3をオンする。これにより、第2充放電期間Tpnが開始される。ステップS112では、第3スイッチS3をオンしてから第2充放電期間Tpnだけ待機する。この待機期間において、図5に示す電流経路により正極側容量Cpが充電され、負極側容量Cnが放電される。ステップS113では、第3スイッチS3をオフする。これにより、第2充放電期間Tpnが終了される。 In step S110, the second switch S2 is turned on. As a result, the second period T2 is started. In step S111, the third switch S3 is turned on. As a result, the second charge / discharge period Tpn is started. In step S112, after the third switch S3 is turned on, the process waits for the second charge / discharge period Tpn. During this standby period, the positive electrode side capacitance Cp is charged and the negative electrode side capacitance Cn is discharged by the current path shown in FIG. In step S113, the third switch S3 is turned off. As a result, the second charge / discharge period Tpn is terminated.
 ステップS114では、第3スイッチS3がオフされた直後の第2電圧V2を検出し、V2aとして記憶部に記憶する。ステップS114の処理は、第3スイッチS3のオフタイミングから少し遅れたタイミングに実施する。これにより、第3スイッチS3がオフに切り替えられる場合に発生するノイズが検出電圧Vrに混入することを抑制できる。ステップS115では、第2期間T2から第2充放電期間Tpnを除いた期間だけ待機する。ステップS116では、待機後の第2電圧V2を検出し、V2bとして記憶部に記憶する。ステップS117では、第2スイッチS2をオフする。これにより、第2期間T2が終了される。ステップS116の処理は、第2スイッチS2のオフタイミングよりも少し早いタイミングに実施する。これにより、第2スイッチS2がオフに切り替えられる場合に発生するノイズが検出電圧Vrに混入することを抑制できる。 In step S114, the second voltage V2 immediately after the third switch S3 is turned off is detected and stored in the storage unit as V2a. The process of step S114 is performed at a timing slightly delayed from the off timing of the third switch S3. As a result, it is possible to suppress the noise generated when the third switch S3 is switched off from being mixed in the detection voltage Vr. In step S115, the standby is performed only for a period excluding the second charge / discharge period Tpn from the second period T2. In step S116, the second voltage V2 after standby is detected and stored in the storage unit as V2b. In step S117, the second switch S2 is turned off. As a result, the second period T2 is terminated. The process of step S116 is performed at a timing slightly earlier than the off timing of the second switch S2. As a result, it is possible to suppress the noise generated when the second switch S2 is switched off from being mixed in the detection voltage Vr.
 ステップS118では、第1電圧V1の時間変化量dVp及び第2電圧V2の時間変化量dVnを算出する。第1電圧V1の時間変化量dVpは下式(e3)により求められる。 In step S118, the time change amount dVp of the first voltage V1 and the time change amount dVn of the second voltage V2 are calculated. The time change amount dVp of the first voltage V1 is obtained by the following equation (e3).
Figure JPOXMLDOC01-appb-M000003
 ここで、V1aはステップS105において記憶部に記憶された検出電圧であり、V1bはステップS107において記憶部に記憶された検出電圧であり、Δt1は第1待機時間である。本実施形態において、第1待機時間Δt1は、第1期間T1から第1充放電期間Tppを除いた期間よりも短い期間である。これは、ステップS105の処理が第3スイッチS3のオフタイミングから少し遅れること、及びステップS107の処理が第1スイッチS1のオフタイミングよりも少し早められることを考慮したためである。
Figure JPOXMLDOC01-appb-M000003
Here, V1a is the detection voltage stored in the storage unit in step S105, V1b is the detection voltage stored in the storage unit in step S107, and Δt1 is the first standby time. In the present embodiment, the first standby time Δt1 is a period shorter than the period obtained by removing the first charge / discharge period Tpp from the first period T1. This is because the processing of step S105 is slightly delayed from the off timing of the third switch S3, and the processing of step S107 is slightly earlier than the off timing of the first switch S1.
 第2電圧V2の時間変化量dVnは下式(e4)により求められる。 The time change amount dVn of the second voltage V2 is obtained by the following equation (e4).
Figure JPOXMLDOC01-appb-M000004
 ここで、V2aはステップS114において記憶部に記憶された検出電圧であり、V1bはステップS116において記憶部に記憶された検出電圧であり、Δt2は第2待機時間である。本実施形態において、第2待機時間Δt2は、第2期間T2から第2充放電期間Tpnを除いた期間よりも短い期間である。これは、ステップS114の処理が第3スイッチS3のオフタイミングから少し遅れること、及びステップS116の処理が第2スイッチS2のオフタイミングよりも少し早められることを考慮したためである。
Figure JPOXMLDOC01-appb-M000004
Here, V2a is the detection voltage stored in the storage unit in step S114, V1b is the detection voltage stored in the storage unit in step S116, and Δt2 is the second standby time. In the present embodiment, the second standby time Δt2 is a period shorter than the period obtained by removing the second charge / discharge period Tpn from the second period T2. This is because the processing of step S114 is slightly delayed from the off timing of the third switch S3, and the processing of step S116 is slightly earlier than the off timing of the second switch S2.
 ステップS119では、第1,第2電圧V1,V2のフィードバック制御を実施することにより、次の制御周期における第1,第2充放電期間Tpp,Tpnを算出する。 In step S119, the first and second charge / discharge periods Tpp and Tpn in the next control cycle are calculated by performing feedback control of the first and second voltages V1 and V2.
 ステップS120では、算出された第1電圧V1の時間変化量dVpの絶対値が所定値kよりも小さく、かつ、算出された第2電圧V2の時間変化量dVnの絶対値が所定値kよりも小さいか否かを判定する。 In step S120, the absolute value of the calculated time change amount dVp of the first voltage V1 is smaller than the predetermined value k, and the absolute value of the calculated time change amount dVn of the second voltage V2 is larger than the predetermined value k. Determine if it is small.
 ステップS120において否定判定した場合、第1,第2充放電期間Tpp,Tpnが適切な長さでないと判定し、ステップS122に進む。ステップS122では、第3期間T3だけ待機する。 If a negative determination is made in step S120, it is determined that the first and second charge / discharge periods Tpp and Tpn are not appropriate lengths, and the process proceeds to step S122. In step S122, only the third period T3 is awaited.
 ステップS120において肯定判定した場合、第1,第2充放電期間Tpp,Tpnが適切な長さであると判定し、ステップS121に進む。ステップS121では、今回の周期において検出した第1,第2電圧V1b,V2bに基づいて、各地絡抵抗Rp,Rnの抵抗値を算出する。その後、ステップS122に進む。 If an affirmative determination is made in step S120, it is determined that the first and second charge / discharge periods Tpp and Tpn have appropriate lengths, and the process proceeds to step S121. In step S121, the resistance values of the local entanglement resistors Rp and Rn are calculated based on the first and second voltages V1b and V2b detected in this cycle. Then, the process proceeds to step S122.
 ステップS123では、本処理の停止条件を満たしているか否かを判定する。停止条件は任意に設定することができる。ステップS123において否定判定した場合、ステップS101に戻り、更新した第1,第2充放電期間Tpp,Tpnを用いて本処理を繰り返し実施する。一方、ステップS123において肯定判定した場合、本処理を終了する。 In step S123, it is determined whether or not the stop condition of this process is satisfied. The stop condition can be set arbitrarily. If a negative determination is made in step S123, the process returns to step S101, and this process is repeatedly performed using the updated first and second charge / discharge periods Tpp and Tpn. On the other hand, if an affirmative determination is made in step S123, this process ends.
 図11に、制御装置40が実施する制御の一例を示す。図11において、(a)は第1スイッチS1の駆動状態を示し、(b)は第2スイッチS2の駆動状態を示し、(c)は第3スイッチS3の駆動状態を示し、(d)は検出電圧Vr及び理想電圧Vdの推移を示す。図11(d)では、検出電圧Vrを実線で示し、理想電圧Vdを破線で示している。図11には、4周期に亘る第1~第3スイッチS1~S3のオンオフ及び検出電圧Vrの推移を示す。 FIG. 11 shows an example of the control performed by the control device 40. In FIG. 11, (a) shows the driving state of the first switch S1, (b) shows the driving state of the second switch S2, (c) shows the driving state of the third switch S3, and (d) shows the driving state of the third switch S3. The transition of the detected voltage Vr and the ideal voltage Vd is shown. In FIG. 11D, the detected voltage Vr is shown by a solid line, and the ideal voltage Vd is shown by a broken line. FIG. 11 shows the transition of the on / off and the detection voltage Vr of the first to third switches S1 to S3 over four cycles.
 第1周期Ts1において、第1電圧V1の時間変化量dVpが負の値とされ、第2電圧V2の時間変化量dVnが正の値とされる。この状態は、図6において説明した状態と同様であり、正極側容量Cp及び負極側容量Cnの充放電が不足している。そのため、ステップS119のフィードバック制御により、第2周期Ts2における第1,第2充放電期間Tpp,Tpnが増加するように、第1,第2充放電期間Tpp,Tpnが更新される。 In the first cycle Ts1, the time change amount dVp of the first voltage V1 is set to a negative value, and the time change amount dVn of the second voltage V2 is set to a positive value. This state is the same as the state described with reference to FIG. 6, and the charge / discharge of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn is insufficient. Therefore, the feedback control in step S119 updates the first and second charge / discharge periods Tpp and Tpn so that the first and second charge / discharge periods Tpp and Tpn in the second cycle Ts2 increase.
 第2周期Ts2において、第1電圧V1の時間変化量dVpが、第1周期Ts1における第1電圧V1の時間変化量dVpよりも小さくされ、第2電圧V2の時間変化量dVpが、第1周期Ts1における第2電圧V2の時間変化量dVpよりも小さくされる。しかし、第1電圧V1の時間変化量dVpが負の値とされ、第2電圧V2の時間変化量dVpが正の値とされるため、再びステップS119のフィードバック制御により、第3周期Ts3における第1,第2充放電期間Tpp,Tpnが増加するように、第1,第2充放電期間Tpp,Tpnが更新される。 In the second cycle Ts2, the time change amount dVp of the first voltage V1 is made smaller than the time change amount dVp of the first voltage V1 in the first cycle Ts1, and the time change amount dVp of the second voltage V2 is the first cycle. It is made smaller than the time change amount dVp of the second voltage V2 in Ts1. However, since the time change amount dVp of the first voltage V1 is set to a negative value and the time change amount dVp of the second voltage V2 is set to a positive value, the feedback control in step S119 again causes the third cycle Ts3. The first and second charge / discharge periods Tpp and Tpn are updated so that the first and second charge / discharge periods Tpp and Tpn increase.
 第3周期Ts3において、第1電圧V1の時間変化量dVpが0とされ、第2電圧V2の時間変化量dVpが0とされる。この状態は、図8において説明した状態と同様であり、正極側容量Cp及び負極側容量Cnの充放電が完了している。そのため、第4周期Ts4では、第3周期Ts3における第1,第2充放電期間Tpp,Tpnが用いられる。各地絡抵抗Rp,Rnの抵抗値の算出は、第3周期Ts3及び第4周期Ts4において実施される。 In the third cycle Ts3, the time change amount dVp of the first voltage V1 is set to 0, and the time change amount dVp of the second voltage V2 is set to 0. This state is the same as the state described with reference to FIG. 8, and the charging / discharging of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn is completed. Therefore, in the 4th cycle Ts4, the 1st and 2nd charge / discharge periods Tpp and Tpn in the 3rd cycle Ts3 are used. The calculation of the resistance values of the interrelated resistances Rp and Rn is carried out in the third cycle Ts3 and the fourth cycle Ts4.
 図12では、本実施形態の急速充放電部50に代えて、比較例の回路部60が漏電判定装置20に備えられている場合について説明する。図12において、先の図1に示した構成については、便宜上、同一の符号を付している。 FIG. 12 describes a case where the circuit unit 60 of the comparative example is provided in the leakage determination device 20 instead of the rapid charge / discharge unit 50 of the present embodiment. In FIG. 12, the configurations shown in FIG. 1 above are designated by the same reference numerals for convenience.
 回路部60は、第4抵抗体51、第4スイッチS4及び第5スイッチS5を備えている。第4抵抗体51の一端は第3外部端子P3に接続されている。第4抵抗体51の他端は、第4スイッチS4及び第5スイッチS5の中間点Aに接続されている。第4スイッチS4は、中間点Aと、第1外部端子P1及び第1スイッチS1の間とを接続している。第5スイッチS5は、中間点Aと、第2外部端子P2及び第2スイッチS2の間とを接続している。 The circuit unit 60 includes a fourth resistor 51, a fourth switch S4, and a fifth switch S5. One end of the fourth resistor 51 is connected to the third external terminal P3. The other end of the fourth resistor 51 is connected to the intermediate point A of the fourth switch S4 and the fifth switch S5. The fourth switch S4 connects the intermediate point A and between the first external terminal P1 and the first switch S1. The fifth switch S5 connects the intermediate point A and between the second external terminal P2 and the second switch S2.
 第4スイッチS4がオンされ、第5スイッチS5がオフされることにより、正極側容量Cpが放電され、負極側容量Cnが充電される。また、第5スイッチS5がオンされ、第4スイッチS4がオフされることにより、正極側容量Cpが充電され、負極側容量Cnが放電される。しかし、この場合、正極側容量Cp及び負極側容量Cnの充放電を実施するために2つのスイッチが必要となる。その結果、比較例では、漏電判定装置20の部品数が増大する。 When the 4th switch S4 is turned on and the 5th switch S5 is turned off, the positive electrode side capacitance Cp is discharged and the negative electrode side capacitance Cn is charged. Further, when the fifth switch S5 is turned on and the fourth switch S4 is turned off, the positive electrode side capacitance Cp is charged and the negative electrode side capacitance Cn is discharged. However, in this case, two switches are required to charge and discharge the positive electrode side capacitance Cp and the negative electrode side capacitance Cn. As a result, in the comparative example, the number of parts of the leakage determination device 20 increases.
 以上詳述した本実施形態によれば、以下の効果が得られるようになる。 According to the present embodiment described in detail above, the following effects can be obtained.
 第1電圧V1が検出されるのに先立ち、第1充放電期間Tppが設けられる。第1充放電期間Tppでは、第4抵抗体51を介して、正極側容量Cpが放電され、負極側容量Cnが充電される。一方、第2電圧V2が検出されるのに先立ち、第2充放電期間Tpnが設けられる。第2充放電期間Tpnでは、第4抵抗体51を介して、正極側容量Cpが充電され、負極側容量Cnが放電される。これにより、第1,第2抵抗体31,32を介して正極側容量Cp及び負極側容量Cnの充放電を行う場合よりも、正極側容量Cp及び負極側容量Cnの充放電を早く完了することができる。このため、第1期間T1内に適正な第1電圧V1を検出でき、第2期間T2内に適正な第2電圧V2を検出できる。その結果、第1電圧V1及び第2電圧V2の検出精度を向上することができ、ひいては漏電の有無の判定精度を向上することができる。 Prior to the detection of the first voltage V1, the first charge / discharge period Tpp is provided. In the first charge / discharge period Tpp, the positive electrode side capacitance Cp is discharged and the negative electrode side capacitance Cn is charged via the fourth resistor 51. On the other hand, a second charge / discharge period Tpn is provided prior to the detection of the second voltage V2. In the second charge / discharge period Tpn, the positive electrode side capacitance Cp is charged and the negative electrode side capacitance Cn is discharged via the fourth resistor 51. As a result, charging / discharging of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn is completed earlier than in the case of charging / discharging the positive electrode side capacitance Cp and the negative electrode side capacitance Cn via the first and second resistors 31 and 32. be able to. Therefore, an appropriate first voltage V1 can be detected in the first period T1, and an appropriate second voltage V2 can be detected in the second period T2. As a result, the detection accuracy of the first voltage V1 and the second voltage V2 can be improved, and by extension, the determination accuracy of the presence or absence of electric leakage can be improved.
 正極側容量Cpの充放電及び負極側容量Cnの充放電が、共通の第4抵抗体51及び第3スイッチS3により行われる。そのため、正極側容量Cpの充放電及び負極側容量Cnの充放電が異なるスイッチにより制御される場合と比較して、スイッチの数を低減することができる。その結果、漏電判定装置20の部品数を低減することができる。 Charging / discharging of the positive electrode side capacitance Cp and charging / discharging of the negative electrode side capacitance Cn are performed by the common fourth resistor 51 and the third switch S3. Therefore, the number of switches can be reduced as compared with the case where the charge / discharge of the positive electrode side capacitance Cp and the charge / discharge of the negative electrode side capacitance Cn are controlled by different switches. As a result, the number of parts of the leakage determination device 20 can be reduced.
 操作量を第1充放電期間Tppとして、第1電圧V1の時間変化量dVpを0とするフィードバック制御が実施される。また、操作量を第2充放電期間Tpnとして、第2電圧V2の時間変化量dVnを0とするフィードバック制御が実施される。これにより、正極側容量Cp及び負極側容量Cnが変化し、正極側容量Cp及び負極側容量Cnへの充放電に要する時間が変化したとしても、その変化に対応して適切な第1,第2充放電期間Tpp,Tpnが設定される。その結果、第1,第2電圧V1,V2の検出精度を向上することができる。 Feedback control is carried out with the operation amount as the first charge / discharge period Tpp and the time change amount dVp of the first voltage V1 as 0. Further, feedback control is performed in which the operation amount is set to the second charge / discharge period Tpn and the time change amount dVn of the second voltage V2 is 0. As a result, even if the positive electrode side capacitance Cp and the negative electrode side capacitance Cn change and the time required for charging / discharging to the positive electrode side capacitance Cp and the negative electrode side capacitance Cn changes, the first and first are appropriate in response to the changes. 2 Charge / discharge periods Tpp and Tpn are set. As a result, the detection accuracy of the first and second voltages V1 and V2 can be improved.
 第1充放電期間Tppが第1電圧V1の時間変化量dVpに基づいて設定され、第2充放電期間Tpnが第2電圧V2の時間変化量dVnに基づいて設定される。これにより、第1,第2充放電期間Tpp,Tpnを設定するための部品が新たに追加される構成と比較して、漏電判定装置20の部品数を低減することができる。 The first charge / discharge period Tpp is set based on the time change amount dVp of the first voltage V1, and the second charge / discharge period Tpn is set based on the time change amount dVn of the second voltage V2. As a result, the number of parts of the leakage determination device 20 can be reduced as compared with the configuration in which parts for setting the first and second charge / discharge periods Tpp and Tpn are newly added.
 以上より、本実施形態によれば、漏電判定装置20の部品数を低減しつつ、漏電の有無の判定精度を向上することができる。 From the above, according to the present embodiment, it is possible to improve the accuracy of determining the presence or absence of electric leakage while reducing the number of parts of the electric leakage determination device 20.
 <第2実施形態>
 以下、第2実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、第1,第2充放電期間Tpp,Tpnの設定方法が変更される。
<Second Embodiment>
Hereinafter, the second embodiment will be described with reference to the drawings, focusing on the differences from the first embodiment. In this embodiment, the method of setting the first and second charge / discharge periods Tpp and Tpn is changed.
 制御装置40は、第1充放電期間Tppにおいて、第3スイッチS3を繰り返しオンオフさせる。第1充放電期間Tppのうち、第3スイッチS3の各オン期間は第1微小期間Tpである。第1微小期間Tpは、正極側容量Cpの放電が完了し、負極側容量Cnの充電が完了するまでに必要な期間と比較して十分に短い期間である。このため、正極側容量Cpの放電及び負極側容量Cnの充電が完了するまでの期間において、正極側容量Cpの放電量及び負極側容量Cnの充電量は不足した状態とされる。また、第1充放電期間Tppのうち、時間的に隣り合う第1微小期間Tpに挟まれる第3スイッチS3のオフ期間が微小待機期間Twとされている。 The control device 40 repeatedly turns the third switch S3 on and off during the first charge / discharge period Tpp. Of the first charge / discharge period Tpp, each on period of the third switch S3 is the first minute period Tp. The first minute period Tp is a sufficiently short period as compared with the period required for the discharge of the positive electrode side capacitance Cp to be completed and the charging of the negative electrode side capacitance Cn to be completed. Therefore, in the period until the discharge of the positive electrode side capacitance Cp and the charge of the negative electrode side capacitance Cn are completed, the discharge amount of the positive electrode side capacitance Cp and the charge amount of the negative electrode side capacitance Cn are in a state of being insufficient. Further, of the first charge / discharge period Tpp, the off period of the third switch S3 sandwiched between the first minute period Tp adjacent in time is set as the minute standby period Tw.
 制御装置40は、第2充放電期間Tpnにおいて、第3スイッチS3を繰り返しオンオフさせる。第2充放電期間Tpnのうち、第3スイッチS3の各オン期間は第2微小期間Tnである。第2微小期間Tnは、正極側容量Cpの充電が完了し、負極側容量Cnの放電が完了するまでに必要な期間と比較して十分に短い期間である。このため、正極側容量Cpの充電及び負極側容量Cnの放電が完了するまでの期間において、正極側容量Cpの充電量及び負極側容量Cnの放電量は不足した状態とされる。また、第2充放電期間Tpnのうち、時間的に隣り合う第2微小期間Tnに挟まれる第3スイッチS3のオフ期間が微小待機期間Twとされている。 The control device 40 repeatedly turns the third switch S3 on and off during the second charge / discharge period Tpn. Of the second charge / discharge period Tpn, each on period of the third switch S3 is the second minute period Tn. The second minute period Tn is a sufficiently short period as compared with the period required for the charging of the positive electrode side capacitance Cp to be completed and the discharge of the negative electrode side capacitance Cn to be completed. Therefore, in the period until the charging of the positive electrode side capacitance Cp and the discharging of the negative electrode side capacitance Cn are completed, the charging amount of the positive electrode side capacitance Cp and the discharging amount of the negative electrode side capacitance Cn are considered to be insufficient. Further, of the second charge / discharge period Tpn, the off period of the third switch S3 sandwiched between the second minute period Tn adjacent in time is set as the minute standby period Tw.
 図13は、第1電圧V1の時間変化量dVpと、第1充放電期間Tppの継続又は停止との対応関係を示し、第2電圧V2の時間変化量dVnと、第2充放電期間Tpnの継続又は停止との対応関係を示す。第1電圧V1の時間変化量dVpが正の値である場合、第1充放電期間Tppが継続され、第1電圧V1の時間変化量dVpが0である場合、第1充放電期間Tppが停止される。第2電圧V2の時間変化量dVnが正の値である場合、第2充放電期間Tpnが継続され、第2電圧V2の時間変化量dVnが0である場合、第2充放電期間Tpnが停止される。 FIG. 13 shows the correspondence between the time change amount dVp of the first voltage V1 and the continuation or stop of the first charge / discharge period Tpp, and shows the time change amount dVn of the second voltage V2 and the second charge / discharge period Tpn. Shows the correspondence with continuation or suspension. When the time change amount dVp of the first voltage V1 is a positive value, the first charge / discharge period Tpp is continued, and when the time change amount dVp of the first voltage V1 is 0, the first charge / discharge period Tpp is stopped. Will be done. When the time change amount dVn of the second voltage V2 is a positive value, the second charge / discharge period Tpn is continued, and when the time change amount dVn of the second voltage V2 is 0, the second charge / discharge period Tpn is stopped. Will be done.
 図14に、制御装置40が実施する処理の手順を示す。この処理は、所定周期で実施されてもよいし、処理の開始条件が満たされた場合に実施されてもよい。開始条件は任意に設定されればよい。 FIG. 14 shows a procedure of processing performed by the control device 40. This process may be carried out at a predetermined cycle, or may be carried out when the conditions for starting the process are satisfied. The start condition may be set arbitrarily.
 ステップS200では、第1カウンタiの値を1に設定し、第2カウンタjの値を1に設定する。第1カウンタiは第1充放電期間Tppの継続時間を算出するのに用いられ、第2カウンタjは第2充放電期間Tpnの継続時間を算出するのに用いられる。 In step S200, the value of the first counter i is set to 1, and the value of the second counter j is set to 1. The first counter i is used to calculate the duration of the first charge / discharge period Tpp, and the second counter j is used to calculate the duration of the second charge / discharge period Tpn.
 ステップS201では、第1スイッチS1をオンする。これにより、第1期間T1が開始される。ステップS202では、第3スイッチS3をオンする。ステップS203では、第1微小期間Tpだけ待機する。ステップS204では、第3スイッチS3をオフする。ステップS205では、第3スイッチS3がオフされた直後の第1電圧V1を検出し、V1αとして記憶部に記憶する。ステップS206では、微小待機期間Twだけ待機する。ステップS207では、待機後の第1電圧V1を検出し、V1βとして記憶部に記憶する。 In step S201, the first switch S1 is turned on. As a result, the first period T1 is started. In step S202, the third switch S3 is turned on. In step S203, the patient waits for the first minute period Tp. In step S204, the third switch S3 is turned off. In step S205, the first voltage V1 immediately after the third switch S3 is turned off is detected and stored in the storage unit as V1α. In step S206, only the minute waiting period Tw is waited. In step S207, the first voltage V1 after standby is detected and stored in the storage unit as V1β.
 ステップS208では、第1電圧V1の時間変化量dVpを算出する。第1電圧V1の時間変化量dVpは下式(e5)により求められる。 In step S208, the time change amount dVp of the first voltage V1 is calculated. The time change amount dVp of the first voltage V1 is obtained by the following equation (e5).
Figure JPOXMLDOC01-appb-M000005
 ここで、V1αはステップS205において記憶部に記憶された検出電圧であり、V1βはステップS207において記憶部に記憶された検出電圧である。なお、上式(e5)では、第1電圧V1の時間変化量dVpが正の値とされる。
Figure JPOXMLDOC01-appb-M000005
Here, V1α is the detection voltage stored in the storage unit in step S205, and V1β is the detection voltage stored in the storage unit in step S207. In the above equation (e5), the time change amount dVp of the first voltage V1 is set to a positive value.
 ステップS209では、第1電圧V1の時間変化量dVpが所定値kよりも小さいか否かを判定する。ステップS209において否定判定した場合、ステップS210に進む。ステップS210では、第1カウンタiの値をインクリメントする。その後、ステップS202に戻る。これにより、第1充放電期間Tppが継続される。一方、ステップS209において肯定判定した場合、ステップS211に進む。これにより、第1充放電期間Tppが停止される。なお、本実施形態において、第1充放電期間Tppは、最初のステップS202からステップS209において肯定判定されるまでの期間である。 In step S209, it is determined whether or not the time change amount dVp of the first voltage V1 is smaller than the predetermined value k. If a negative determination is made in step S209, the process proceeds to step S210. In step S210, the value of the first counter i is incremented. Then, the process returns to step S202. As a result, the first charge / discharge period Tpp is continued. On the other hand, if an affirmative determination is made in step S209, the process proceeds to step S211. As a result, the first charge / discharge period Tpp is stopped. In the present embodiment, the first charge / discharge period Tpp is a period from the first step S202 to a positive determination in step S209.
 ステップS211では、第1残余期間だけ待機する。第1残余期間は、第1期間T1から第1充放電期間Tppを除いた期間である。本実施形態において、第1充放電期間Tppは、i×(Tp+Tw)であり、第1残余期間は、T1-i×(Tp+Tw)である。 In step S211, only the first residual period is waited. The first residual period is the period obtained by excluding the first charge / discharge period Tpp from the first period T1. In the present embodiment, the first charge / discharge period Tpp is i × (Tp + Tw), and the first residual period is T1-i × (Tp + Tw).
 ステップS212では、第1電圧V1を検出し、記憶部に記憶する。ステップS213では、第1スイッチS1をオフする。これにより、第1期間T1が終了される。 In step S212, the first voltage V1 is detected and stored in the storage unit. In step S213, the first switch S1 is turned off. As a result, the first period T1 is terminated.
 ステップS214では、第3期間T3だけ待機する。ステップS215では、第2スイッチS2をオンする。これにより、第2期間T2が開始される。ステップS216では、第3スイッチS3をオンする。ステップS217では、第2微小期間Tnだけ待機する。ステップS218では、第3スイッチS3をオフする。ステップS219では、第3スイッチS3がオフされた直後の第2電圧V2を検出し、V2αとして記憶部に記憶する。ステップS220では、微小待機期間Twだけ待機する。ステップS221では、待機後の第2電圧V2を検出し、V2βとして記憶部に記憶する。 In step S214, only the third period T3 is waited. In step S215, the second switch S2 is turned on. As a result, the second period T2 is started. In step S216, the third switch S3 is turned on. In step S217, the patient waits for a second minute period Tn. In step S218, the third switch S3 is turned off. In step S219, the second voltage V2 immediately after the third switch S3 is turned off is detected and stored in the storage unit as V2α. In step S220, only the minute waiting period Tw is waited. In step S221, the second voltage V2 after standby is detected and stored in the storage unit as V2β.
 ステップS222では、第2電圧V2の時間変化量dVnを算出する。第2電圧V2の時間変化量dVnは下式(e6)により求められる。 In step S222, the time change amount dVn of the second voltage V2 is calculated. The time change amount dVn of the second voltage V2 is obtained by the following equation (e6).
Figure JPOXMLDOC01-appb-M000006
 ここで、V2αはステップS219において記憶部に記憶された検出電圧であり、V2βはステップS221において記憶部に記憶された検出電圧である。
Figure JPOXMLDOC01-appb-M000006
Here, V2α is the detection voltage stored in the storage unit in step S219, and V2β is the detection voltage stored in the storage unit in step S221.
 ステップS223では、第2電圧V2の時間変化量dVnが所定値kよりも小さいか否かを判定する。ステップS223において否定判定した場合、ステップS224に進む。ステップS224では、第2カウンタjの値をインクリメントする。その後、ステップS216に戻る。これにより、第2充放電期間Tpnが継続される。一方、ステップS223において肯定判定した場合、ステップS225に進む。これにより、第2充放電期間Tpnが停止される。なお、本実施形態において、第2充放電期間Tpnは、最初のステップS216からステップS223において肯定判定されるまでの期間である。 In step S223, it is determined whether or not the time change amount dVn of the second voltage V2 is smaller than the predetermined value k. If a negative determination is made in step S223, the process proceeds to step S224. In step S224, the value of the second counter j is incremented. After that, the process returns to step S216. As a result, the second charge / discharge period Tpn is continued. On the other hand, if an affirmative determination is made in step S223, the process proceeds to step S225. As a result, the second charge / discharge period Tpn is stopped. In the present embodiment, the second charge / discharge period Tpn is a period from the first step S216 to a positive determination in step S223.
 ステップS225では、第2残余期間だけ待機する。第2残余期間は、第2期間T2から第2充放電期間Tpnを除いた期間である。本実施形態において、第2充放電期間Tpnは、j×(Tn+Tw)であり、第2残余期間は、T2-j×(Tn+Tw)である。 In step S225, wait only for the second residual period. The second residual period is the period obtained by removing the second charge / discharge period Tpn from the second period T2. In the present embodiment, the second charge / discharge period Tpn is j × (Tn + Tw), and the second residual period is T2-j × (Tn + Tw).
 ステップS226では、第2電圧V2を検出し、記憶部に記憶する。ステップS227では、第2スイッチS2をオフする。これにより、第2期間T2が終了される。 In step S226, the second voltage V2 is detected and stored in the storage unit. In step S227, the second switch S2 is turned off. As a result, the second period T2 is terminated.
 ステップS228では、ステップS212において記憶部に記憶された第1電圧V1と、ステップS226において記憶部に記憶された第2電圧V2に基づいて、各地絡抵抗Rp,Rnの抵抗値を算出する。ステップS229では、第3期間T3だけ待機し、本処理を終了する。 In step S228, the resistance values of the interrelated resistances Rp and Rn are calculated based on the first voltage V1 stored in the storage unit in step S212 and the second voltage V2 stored in the storage unit in step S226. In step S229, the process waits only for the third period T3 and ends this process.
 図15に、制御装置40が実施する制御の一例を示す。図15において、(a)は第1スイッチS1の駆動状態を示し、(b)は第2スイッチS2の駆動状態を示し、(c)は第3スイッチS3の駆動状態を示し、(d)は検出電圧Vr及び理想電圧Vdの推移を示す。図15(d)では、検出電圧Vrを実線で示し、理想電圧Vdを破線で示している。 FIG. 15 shows an example of the control performed by the control device 40. In FIG. 15, (a) shows the driving state of the first switch S1, (b) shows the driving state of the second switch S2, (c) shows the driving state of the third switch S3, and (d) shows the driving state of the third switch S3. The transition of the detected voltage Vr and the ideal voltage Vd is shown. In FIG. 15D, the detected voltage Vr is shown by a solid line, and the ideal voltage Vd is shown by a broken line.
 図15に示す例では、第1期間T1において、第3スイッチS3のオンオフが6回繰り返される。第3スイッチS3のオンオフ回数が1回目から5回目までの期間において、算出された第1電圧V1の時間変化量dVp1~dVp5は正の値である。そのため、第3スイッチS3のオンオフが継続され、第1充放電期間Tppが継続される。第3スイッチS3のオンオフ回数が6回目の期間において、算出された第1電圧V1の時間変化量dVp6は0である。そのため、第3スイッチS3がオフされ、第1充放電期間Tppが停止される。この場合、正極側容量Cpの放電及び負極側容量Cnの充電が完了しているため、その後の検出電圧Vrは一定となる。そのため、第1残余期間だけ経過した後、適切な第1電圧V1が検出される。 In the example shown in FIG. 15, the third switch S3 is turned on and off six times in the first period T1. In the period from the first turn to the fifth turn of the third switch S3, the calculated time change amount dVp1 to dVp5 of the first voltage V1 is a positive value. Therefore, the on / off of the third switch S3 is continued, and the first charge / discharge period Tpp is continued. In the period when the number of on / off times of the third switch S3 is the sixth time, the calculated time change amount dVp6 of the first voltage V1 is 0. Therefore, the third switch S3 is turned off, and the first charge / discharge period Tpp is stopped. In this case, since the discharge of the positive electrode side capacitance Cp and the charge of the negative electrode side capacitance Cn are completed, the subsequent detection voltage Vr becomes constant. Therefore, after only the first residual period has elapsed, an appropriate first voltage V1 is detected.
 図15に示す例では、第2期間T2においても、第3スイッチS3のオンオフが6回繰り返される。第3スイッチS3のオンオフ回数が1回目から5回目までの期間において、算出された第2電圧V2の時間変化量dVn1~dVn5は正の値である。そのため、第3スイッチS3のオンオフが継続され、第2充放電期間Tpnが継続される。第3スイッチS3のオンオフ回数が6回目の期間において、算出された第2電圧V2の時間変化量dVn6は0である。そのため、第3スイッチS3がオフされ、第2充放電期間Tpnが停止される。この場合、正極側容量Cpの充電及び負極側容量Cnの放電が完了しているため、その後の検出電圧Vrは一定となる。そのため、第2残余期間だけ経過した後、適切な第2電圧V2が検出される。 In the example shown in FIG. 15, the on / off of the third switch S3 is repeated 6 times even in the second period T2. In the period from the first to the fifth on / off frequency of the third switch S3, the calculated time change amounts dVn1 to dVn5 of the second voltage V2 are positive values. Therefore, the on / off of the third switch S3 is continued, and the second charge / discharge period Tpn is continued. In the period when the number of on / off times of the third switch S3 is the sixth time, the calculated time change amount dVn6 of the second voltage V2 is 0. Therefore, the third switch S3 is turned off, and the second charge / discharge period Tpn is stopped. In this case, since the charging of the positive electrode side capacitance Cp and the discharging of the negative electrode side capacitance Cn are completed, the subsequent detection voltage Vr becomes constant. Therefore, an appropriate second voltage V2 is detected after only the second residual period has elapsed.
 本実施形態において、第1実施形態と同様の効果に加え、以下の効果を得ることができる。 In this embodiment, in addition to the same effects as in the first embodiment, the following effects can be obtained.
 第1期間T1において、第1電圧V1の時間変化量dVpが0とされるまで、第1充放電期間Tppが継続される。これにより、第1期間T1中に、正極側容量Cpの放電及び負極側容量Cnの充電が完了し、適切な第1電圧V1が検出される。また、第2期間T2において、第2電圧V2の時間変化量dVnが0とされるまで、第2充放電期間Tpnが継続される。これにより、第2期間T2中に、正極側容量Cpの充電及び負極側容量Cnの放電が完了し、適切な第2電圧V2が検出される。その結果、適切な第1,第2電圧V1,V2が検出されるまでに要する時間を短縮することができる。 In the first period T1, the first charge / discharge period Tpp is continued until the time change amount dVp of the first voltage V1 becomes 0. As a result, during the first period T1, the discharge of the positive electrode side capacitance Cp and the charge of the negative electrode side capacitance Cn are completed, and an appropriate first voltage V1 is detected. Further, in the second period T2, the second charge / discharge period Tpn is continued until the time change amount dVn of the second voltage V2 becomes 0. As a result, during the second period T2, the charging of the positive electrode side capacitance Cp and the discharging of the negative electrode side capacitance Cn are completed, and an appropriate second voltage V2 is detected. As a result, the time required for the appropriate first and second voltages V1 and V2 to be detected can be shortened.
 <第3実施形態>
 以下、第3実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、第1,第2充放電期間Tpp,Tpnの設定に、第1,第2電圧V1,V2の時間変化量dVp,dVnが用いられることに代えて、急速充放電経路L3に流れる電流が用いられる。
<Third Embodiment>
Hereinafter, the third embodiment will be described with reference to the drawings, focusing on the differences from the first embodiment. In the present embodiment, instead of using the time change amounts dVp and dVn of the first and second voltages V1 and V2 for setting the first and second charge / discharge periods Tpp and Tpn, the rapid charge / discharge path L3 is used. The flowing current is used.
 図16に、本実施形態に係る漏電判定装置20の構成を示す。図16において、先の図1に示した構成については、便宜上、同一の符号を付している。 FIG. 16 shows the configuration of the leakage determination device 20 according to the present embodiment. In FIG. 16, the configurations shown in FIG. 1 above are designated by the same reference numerals for convenience.
 漏電判定装置20は、電流センサ71、増幅器72及びフィルタ73を備えている。電流センサ71は、急速充放電経路L3のうち第4抵抗体51と、第3スイッチS3との間に設けられている。電流センサ71は、例えばホール素子を備える電流センサのように、急速充放電経路L3と非接触で電流を検出可能なものである。電流センサ71には、定電圧源34から増幅器72を介して電圧が供給される。電流センサ71によって検出された電圧が、フィルタ73を介して制御装置40に入力される。制御装置40は、入力された電圧に基づいて、急速充放電経路L3に流れる電流を検出する。 The leakage determination device 20 includes a current sensor 71, an amplifier 72, and a filter 73. The current sensor 71 is provided between the fourth resistor 51 and the third switch S3 in the rapid charge / discharge path L3. The current sensor 71 can detect a current in a non-contact manner with the rapid charge / discharge path L3, such as a current sensor including a Hall element. A voltage is supplied to the current sensor 71 from the constant voltage source 34 via the amplifier 72. The voltage detected by the current sensor 71 is input to the control device 40 via the filter 73. The control device 40 detects the current flowing in the rapid charge / discharge path L3 based on the input voltage.
 制御装置40は、電流センサ71の検出電流Irに基づいて、正極側容量Cp及び負極側容量Cnの充放電が完了するのに適切な第1,第2充放電期間Tpp,Tpnを設定する。 The control device 40 sets the first and second charge / discharge periods Tpp and Tpn suitable for completing the charge / discharge of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn based on the detected current Ir of the current sensor 71.
 本実施形態では、検出電流Irに基づいて、第1,第2充放電期間Tpp,Tpnが設定される。これにより、正極側容量Cp及び負極側容量Cnの充放電が完了するのに適切な第1,第2充放電期間Tpp,Tpnが設定される。このため、第1期間T1において適切な第1電圧V1を検出することができ、第2期間T2において適切な第2電圧V2を検出することができる。その結果、第1電圧V1及び第2電圧V2の検出精度を向上することができる。 In this embodiment, the first and second charge / discharge periods Tpp and Tpn are set based on the detected current Ir. As a result, the first and second charge / discharge periods Tpp and Tpn suitable for completing the charging / discharging of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn are set. Therefore, an appropriate first voltage V1 can be detected in the first period T1, and an appropriate second voltage V2 can be detected in the second period T2. As a result, the detection accuracy of the first voltage V1 and the second voltage V2 can be improved.
 本実施形態においても、正極側容量Cpの充放電及び負極側容量Cnの充放電が、共通の第4抵抗体及び第3スイッチS3により行われるため、第1実施形態と同様に、漏電判定装置20のスイッチの数を低減することができる。 Also in this embodiment, the charging / discharging of the positive electrode side capacitance Cp and the charging / discharging of the negative electrode side capacitance Cn are performed by the common fourth resistor and the third switch S3, so that the leakage determination device is similar to the first embodiment. The number of 20 switches can be reduced.
 以上より、本実施形態によれば、漏電判定装置20の部品数を低減しつつ、第1,第2電圧V1,V2の検出精度を向上することができる。 From the above, according to the present embodiment, it is possible to improve the detection accuracy of the first and second voltages V1 and V2 while reducing the number of parts of the leakage determination device 20.
 <第4実施形態>
 以下、第4実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、漏電判定装置20の構成が変更される。
<Fourth Embodiment>
Hereinafter, the fourth embodiment will be described with reference to the drawings, focusing on the differences from the first embodiment. In this embodiment, the configuration of the leakage determination device 20 is changed.
 図17に示すように、漏電判定装置20はDCDCコンバータ80を備えている。本実施形態において、DCDCコンバータ80は、非絶縁型コンバータである。図17において、先の図1に示した構成については、便宜上、同一の符号を付している。DCDCコンバータ80は、第1ダイオードD1及び第2ダイオードD2を備えている。第1ダイオードD1は、第1スイッチS1に並列接続されており、アノードが接続点Mに接続され、カソードが第1外部端子P1に接続される。第2ダイオードD2は、第2スイッチS2に並列接続されており、アノードが第2外部端子P2に接続され、カソードが接続点Mに接続される。 As shown in FIG. 17, the leakage determination device 20 includes a DCDC converter 80. In the present embodiment, the DCDC converter 80 is a non-isolated converter. In FIG. 17, the configurations shown in FIG. 1 above are designated by the same reference numerals for convenience. The DCDC converter 80 includes a first diode D1 and a second diode D2. The first diode D1 is connected in parallel to the first switch S1, the anode is connected to the connection point M, and the cathode is connected to the first external terminal P1. The second diode D2 is connected in parallel to the second switch S2, the anode is connected to the second external terminal P2, and the cathode is connected to the connection point M.
 DCDCコンバータ80は、第4抵抗体51に代えて、リアクトルLxを備えている。ここで、リアクトルLxのインピーダンスは、第1抵抗体31及び第2抵抗体32の合成インピーダンスよりも小さい。本実施形態において、リアクトルLxが「充放電用素子」に相当する。 The DCDC converter 80 includes a reactor Lx instead of the fourth resistor 51. Here, the impedance of the reactor Lx is smaller than the combined impedance of the first resistor 31 and the second resistor 32. In the present embodiment, the reactor Lx corresponds to the "charge / discharge element".
 DCDCコンバータ80は、電流センサ71を備えている。電流センサ71は、急速充放電経路L3のうち第3スイッチS3と、接続点Mとの間に設けられている。本実施形態において、電流センサ71は非接触で急速充放電経路L3に流れる電流を検出可能なものであり、電流センサ71の検出電流Irは制御装置40に入力される。検出電流Irの符号は、第3スイッチS3からリアクトルLxへと向かうに流れる場合を正とする。 The DCDC converter 80 includes a current sensor 71. The current sensor 71 is provided between the third switch S3 and the connection point M in the rapid charge / discharge path L3. In the present embodiment, the current sensor 71 can detect the current flowing in the rapid charge / discharge path L3 in a non-contact manner, and the detected current Ir of the current sensor 71 is input to the control device 40. The sign of the detection current Ir is positive when it flows from the third switch S3 toward the reactor Lx.
 図18は、対地静電容量へ電荷が充電される場合において、対地静電容量の電流及び電圧の推移を示す図である。図18において、(a)が対地静電容量に流れる通電電流Iの推移を示し、(b)が対地静電容量の電圧Vの推移を示す。図18(a),(b)では、第1実施形態における対地静電容量の通電電流Icr及び電圧Vcrの推移を実線で示し、本実施形態における対地静電容量の通電電流Icl及び端子間電圧Vclの推移を破線で示す。 FIG. 18 is a diagram showing changes in the current and voltage of the ground capacitance when the electric charge is charged to the ground capacitance. In FIG. 18, (a) shows the transition of the energization current I flowing through the ground capacitance, and (b) shows the transition of the voltage V of the ground capacitance. In FIGS. 18A and 18B, the transition of the current-carrying current Icr and the voltage Vcr of the ground capacitance in the first embodiment is shown by a solid line, and the current-carrying current Icl and the voltage between terminals of the ground capacitance in the present embodiment are shown. The transition of Vcl is shown by a broken line.
 第1実施形態に係る構成では、対地静電容量の充電開始直後において、通電電流Icrは最大値Imaxとされるが、その後漸減する。そのため、電圧Vcrの上昇速度が徐々に低下する。この場合、正極側容量Cp及び負極側容量Cnの充放電が完了するまでに要する時間が長くなる。 In the configuration according to the first embodiment, the energization current Icr is set to the maximum value Imax immediately after the start of charging the ground capacitance, but is gradually reduced thereafter. Therefore, the ascending speed of the voltage Vcr gradually decreases. In this case, the time required to complete the charging / discharging of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn becomes long.
 そこで、本実施形態では、通電電流Iclを一定値に維持するための構成として、DCDCコンバータ80が備えられている。これにより、電圧Vclが目標電圧V*に到達するまでの時間を短縮することができる。 Therefore, in the present embodiment, the DCDC converter 80 is provided as a configuration for maintaining the energization current Icl at a constant value. As a result, the time required for the voltage Vcl to reach the target voltage V * can be shortened.
 次に、DCDCコンバータ80の制御について説明する。 Next, the control of the DCDC converter 80 will be described.
 制御装置40は、第1充放電期間Tppにおいて、検出電流Irを正の目標電流に制御すべく、第1スイッチS1をオンオフし、第2スイッチS2をオフし、第3スイッチS3をオンする。また、制御装置40は、第2充放電期間Tpnにおいて、検出電流Irを負の目標電流に制御すべく、第1スイッチS1をオフし、第2スイッチS2をオンオフし、第3スイッチS3をオンする。 The control device 40 turns on / off the first switch S1, turns off the second switch S2, and turns on the third switch S3 in order to control the detected current Ir to a positive target current in the first charge / discharge period Tpp. Further, in the second charge / discharge period Tpn, the control device 40 turns off the first switch S1, turns the second switch S2 on and off, and turns on the third switch S3 in order to control the detected current Ir to a negative target current. do.
 図19に、第1,第3スイッチS1,S3がオンされ、第2スイッチS2がオフされた場合に形成される各電流経路I1,I2を示す。第1電流経路I1は、正極側容量Cp→第1スイッチS1→第3スイッチS3→リアクトルLxからなる電流経路である。第2電流経路I2は、負極側容量Cn→第2ダイオードD2→第3スイッチS3→リアクトルLxからなる電流経路である。これにより、正極側容量Cpが放電され、負極側容量Cnが充電される。 FIG. 19 shows the current paths I1 and I2 formed when the first and third switches S1 and S3 are turned on and the second switch S2 is turned off. The first current path I1 is a current path including the positive electrode side capacitance Cp → the first switch S1 → the third switch S3 → the reactor Lx. The second current path I2 is a current path including the negative electrode side capacitance Cn → the second diode D2 → the third switch S3 → the reactor Lx. As a result, the positive electrode side capacitance Cp is discharged and the negative electrode side capacitance Cn is charged.
 図20に、第2,第3スイッチS2,S3がオンされ、第1スイッチS1がオフされた場合に形成される各電流経路I3,I4を示す。第3電流経路I3は、正極側容量Cp→リアクトルLx→第3スイッチS3→第1ダイオードD1からなる電流経路である。第4電流経路I4は、負極側容量Cn→リアクトルLx→第3スイッチS3→第2スイッチS2からなる電流経路である。これにより、正極側容量Cpが充電され、負極側容量Cnが放電される。 FIG. 20 shows the current paths I3 and I4 formed when the second and third switches S2 and S3 are turned on and the first switch S1 is turned off. The third current path I3 is a current path including the positive electrode side capacitance Cp → the reactor Lx → the third switch S3 → the first diode D1. The fourth current path I4 is a current path including the negative electrode side capacitance Cn → reactor Lx → third switch S3 → second switch S2. As a result, the positive electrode side capacitance Cp is charged and the negative electrode side capacitance Cn is discharged.
 図21に、制御装置40が実施する制御の一例を示す。図21において、(a)は第1スイッチS1の駆動状態を示し、(b)は第2スイッチS2の駆動状態を示し、(c)は第3スイッチS3の駆動状態を示し、(d)は検出電流Irの推移を示し、(e)は検出電圧Vr及び理想電圧Vdの推移を示す。図21(e)では、検出電圧Vrの推移を実線で示し、理想電圧Vdの推移を一点鎖線で示す。 FIG. 21 shows an example of the control performed by the control device 40. In FIG. 21, (a) shows the driving state of the first switch S1, (b) shows the driving state of the second switch S2, (c) shows the driving state of the third switch S3, and (d) shows the driving state of the third switch S3. The transition of the detected current Ir is shown, and (e) shows the transition of the detected voltage Vr and the ideal voltage Vd. In FIG. 21 (e), the transition of the detected voltage Vr is shown by a solid line, and the transition of the ideal voltage Vd is shown by a alternate long and short dash line.
 第1充放電期間Tppにおいて、第1スイッチS1がオンオフされ、第2スイッチS2がオフされ、第3スイッチS3がオンされる。第1充放電期間Tppのうち第1スイッチS1がオンされる期間において、図19に示した各電流経路I1,I2が形成され、正極側容量Cpが放電され、負極側容量Cnが充電される。これにより、検出電流Irが正の目標値に制御される。その結果、第1充放電期間Tppの継続時間を短縮することができる。第1充放電期間Tppの継続時間は、例えば第1期間T1における検出電流Irの目標値に応じて設定されればよい。 In the first charge / discharge period Tpp, the first switch S1 is turned on / off, the second switch S2 is turned off, and the third switch S3 is turned on. During the period in which the first switch S1 is turned on in the first charge / discharge period Tpp, the current paths I1 and I2 shown in FIG. 19 are formed, the positive electrode side capacitance Cp is discharged, and the negative electrode side capacitance Cn is charged. .. As a result, the detected current Ir is controlled to a positive target value. As a result, the duration of the first charge / discharge period Tpp can be shortened. The duration of the first charge / discharge period Tpp may be set, for example, according to the target value of the detected current Ir in the first period T1.
 第2充放電期間Tpnにおいて、第1スイッチS1がオフされ、第2スイッチS2がオンオフされ、第3スイッチS3がオンされる。第2充放電期間Tpnのうち第2スイッチS2がオンされる期間において、図20に示した各電流経路I3,I4が形成され、正極側容量Cpが充電され、負極側容量Cnが放電される。これにより、検出電流Irが負の目標値に制御される。その結果、第2充放電期間Tpnの継続時間を短縮することができる。第2充放電期間Tpnの継続時間は、例えば第2期間T2における検出電流Irの目標値に応じて設定されればよい。 In the second charge / discharge period Tpn, the first switch S1 is turned off, the second switch S2 is turned on and off, and the third switch S3 is turned on. During the period in which the second switch S2 is turned on in the second charge / discharge period Tpn, the current paths I3 and I4 shown in FIG. 20 are formed, the positive electrode side capacitance Cp is charged, and the negative electrode side capacitance Cn is discharged. .. As a result, the detected current Ir is controlled to a negative target value. As a result, the duration of the second charge / discharge period Tpn can be shortened. The duration of the second charge / discharge period Tpn may be set, for example, according to the target value of the detected current Ir in the second period T2.
 本実施形態において、検出電流Irが目標値に維持される。これにより、正極側容量Cp及び負極側容量Cnに流れる電流も一定値に維持される。その結果、正極側容量Cp及び負極側容量Cnの充放電が完了するまでに要する時間を短縮することができる。 In this embodiment, the detected current Ir is maintained at the target value. As a result, the current flowing through the positive electrode side capacitance Cp and the negative electrode side capacitance Cn is also maintained at a constant value. As a result, the time required to complete the charging / discharging of the positive electrode side capacitance Cp and the negative electrode side capacitance Cn can be shortened.
 <第4実施形態の変形例1>
 電流センサ71は、急速充放電経路L3に非接触で電流を検出可能なものに限られず、急速充放電経路L3に直接取り付けられるシャント抵抗を備えるものであってもよい。シャント抵抗を備える構成の一例を図22に示す。
<Modification 1 of the fourth embodiment>
The current sensor 71 is not limited to the one capable of detecting the current without contacting the rapid charge / discharge path L3, and may have a shunt resistor directly attached to the rapid charge / discharge path L3. FIG. 22 shows an example of a configuration including a shunt resistor.
 図22に示すように、漏電判定装置20は、シャント抵抗Rs及び差動増幅回路90を備えている。シャント抵抗Rsは、一端が第3外部端子P3に接続され、他端がリアクトルLxに接続されている。差動増幅回路90は、オペアンプ91と、抵抗体92~95と、定電圧源96を備えている。差動増幅回路90の出力電圧は、制御装置40に入力される。制御装置40は、差動増幅回路90からの入力電圧が、制御装置40に入力可能な電圧範囲(例えば0~5V)に収まるように、シャント抵抗Rsに流れる電流の方向に基づいて基準電圧を設定し、設定した基準電圧を0Vとして、差動増幅回路90からの入力電圧を検出する。なお、図22には、定電圧源96の出力電圧をVdc2で示している。 As shown in FIG. 22, the leakage determination device 20 includes a shunt resistor Rs and a differential amplifier circuit 90. One end of the shunt resistor Rs is connected to the third external terminal P3, and the other end is connected to the reactor Lx. The differential amplifier circuit 90 includes an operational amplifier 91, resistors 92 to 95, and a constant voltage source 96. The output voltage of the differential amplifier circuit 90 is input to the control device 40. The control device 40 sets a reference voltage based on the direction of the current flowing through the shunt resistance Rs so that the input voltage from the differential amplifier circuit 90 falls within the voltage range (for example, 0 to 5V) that can be input to the control device 40. The input voltage from the differential amplifier circuit 90 is detected by setting and setting the set reference voltage to 0V. Note that FIG. 22 shows the output voltage of the constant voltage source 96 in Vdc2.
 <第4実施形態の変形例2>
 DCDCコンバータ80は、非絶縁型コンバータに限られず、絶縁型コンバータであってもよい。図23に示すように、DCDCコンバータ80は、第6,第7スイッチS6,S7、第3,第4ダイオードD3,D4及びトランス81を備えている。トランス81は、第1コイル82及び第2コイル83を有している。第1,第2コイル82,83のインピーダンスは、第1抵抗体31及び第2抵抗体32の合成インピーダンスよりも小さい。本実施形態において、第1,第2コイル82,83が「充放電用素子」に相当する。
<Modification 2 of the fourth embodiment>
The DCDC converter 80 is not limited to the non-isolated converter, and may be an isolated converter. As shown in FIG. 23, the DCDC converter 80 includes sixth and seventh switches S6 and S7, third and fourth diodes D3 and D4, and a transformer 81. The transformer 81 has a first coil 82 and a second coil 83. The impedances of the first and second coils 82 and 83 are smaller than the combined impedance of the first resistor 31 and the second resistor 32. In this embodiment, the first and second coils 82 and 83 correspond to "charge / discharge elements".
 第1コイル82の第1端は、第1外部端子P1及び第1スイッチS1の間に接続されている。第1コイル82の第2端は、第6スイッチS6の一端に接続されている。第6スイッチS6の他端は第3外部端子P3に接続されている。第3ダイオードD3は、第6スイッチS6に対して並列接続されており、アノードが第3外部端子P3に接続され、カソードが第1コイル82の第2端に接続される。 The first end of the first coil 82 is connected between the first external terminal P1 and the first switch S1. The second end of the first coil 82 is connected to one end of the sixth switch S6. The other end of the sixth switch S6 is connected to the third external terminal P3. The third diode D3 is connected in parallel to the sixth switch S6, the anode is connected to the third external terminal P3, and the cathode is connected to the second end of the first coil 82.
 第2コイル83の第1端は、第3外部端子P3に接続されている。第2コイル83の第2端は、第7スイッチS7の一端に接続されている。第7スイッチS7の他端は、第2外部端子P2及び第2スイッチS2の間に接続されている。第4ダイオードD4は、第7スイッチS7に対して並列接続されており、アノードが第2外部端子P2及び第2スイッチS2の間に接続され、カソードが第2コイル83の第2端に接続されている。 The first end of the second coil 83 is connected to the third external terminal P3. The second end of the second coil 83 is connected to one end of the seventh switch S7. The other end of the seventh switch S7 is connected between the second external terminal P2 and the second switch S2. The fourth diode D4 is connected in parallel to the seventh switch S7, the anode is connected between the second external terminal P2 and the second switch S2, and the cathode is connected to the second end of the second coil 83. ing.
 第1コイル82及び第2コイル83は、例えばトランス81が備えるコアを介して、互いに磁気結合する。第1コイル82の第1端に対する第2端の電位が高くなる場合、第2コイル83には、第2端よりも第1端の電位が高くなるような誘起電圧が発生する。一方、第1コイル82の第2端に対する第1端の電位が高くなる場合、第2コイル83には、第1端よりも第2端の電位が高くなるような誘起電圧が発生する。 The first coil 82 and the second coil 83 are magnetically coupled to each other, for example, via a core included in the transformer 81. When the potential of the second end with respect to the first end of the first coil 82 becomes high, an induced voltage is generated in the second coil 83 so that the potential of the first end becomes higher than that of the second end. On the other hand, when the potential of the first end with respect to the second end of the first coil 82 is high, an induced voltage is generated in the second coil 83 so that the potential of the second end is higher than that of the first end.
 制御装置40は、第1充放電期間Tppにおいて、第6スイッチS6をオンオフ制御する。これにより、正極側容量Cpが放電され、負極側容量Cnが充電される。一方、制御装置40は、第2充放電期間Tpnにおいて、第7スイッチS7をオンオフ制御する。これにより、正極側容量Cpが充電され、負極側容量Cnが放電される。第6,第7スイッチS6,S7の1スイッチング周期におけるオンオフ比を制御することにより、検出電流Irを一定値に維持することができる。 The control device 40 controls the sixth switch S6 on and off during the first charge / discharge period Tpp. As a result, the positive electrode side capacitance Cp is discharged and the negative electrode side capacitance Cn is charged. On the other hand, the control device 40 controls the seventh switch S7 on and off during the second charge / discharge period Tpn. As a result, the positive electrode side capacitance Cp is charged and the negative electrode side capacitance Cn is discharged. By controlling the on / off ratio in one switching cycle of the sixth and seventh switches S6 and S7, the detection current Ir can be maintained at a constant value.
 <その他の実施形態>
 なお、上記各実施形態は、以下のように変更して実施してもよい。
<Other embodiments>
In addition, each of the above-mentioned embodiments may be changed and carried out as follows.
 ・第1実施形態において、ステップS100では、第1,第2充放電期間Tpp,Tpnの初期値が0とされたが、これに限られない。正常な各地絡抵抗Rp,Rnの抵抗値が既知である場合、第1,第2電圧V1,V2を予想できる。また、正極側容量Cpの静電容量及び負極側容量Cnの静電容量が既知である場合、第4抵抗体51との時定数も計算できる。よって、これらのパラメータに基づいて、第1,第2充放電期間Tpp,Tpnを算出し、初期値として用いてもよい。この場合、適切な第1,第2充放電期間Tpp,Tpnが設定されるまでの期間を短縮することができる。 -In the first embodiment, in step S100, the initial values of the first and second charge / discharge periods Tpp and Tpn are set to 0, but the present invention is not limited to this. When the resistance values of the normal local entanglement resistors Rp and Rn are known, the first and second voltages V1 and V2 can be predicted. Further, when the capacitance of the positive electrode side capacitance Cp and the capacitance of the negative electrode side capacitance Cn are known, the time constant with the fourth resistor 51 can also be calculated. Therefore, the first and second charge / discharge periods Tpp and Tpn may be calculated based on these parameters and used as initial values. In this case, the period until the appropriate first and second charge / discharge periods Tpp and Tpn are set can be shortened.
 ・第1実施形態において、図10のステップS105の処理は第3スイッチS3のオフへの切替タイミングに実施し、ステップS107の処理は第1スイッチS1のオフへの切替タイミングに実施してもよい。この場合、ステップS118で用いられる第1待機時間Δt1は、第1期間T1から第1充放電期間Tppを除いた期間とされればよい。 In the first embodiment, the process of step S105 in FIG. 10 may be performed at the timing of switching off of the third switch S3, and the process of step S107 may be performed at the timing of switching off of the first switch S1. .. In this case, the first standby time Δt1 used in step S118 may be a period obtained by removing the first charge / discharge period Tpp from the first period T1.
 ・第1実施形態において、ステップS114の処理は第3スイッチS3のオフへの切替タイミングに実施し、ステップS116の処理は第2スイッチS2のオフへの切替タイミングに実施してもよい。この場合、ステップS118で用いられる第2待機時間Δt2は、第2期間T2から第2充放電期間Tpnを除いた期間とされればよい。 -In the first embodiment, the process of step S114 may be performed at the timing of switching off of the third switch S3, and the process of step S116 may be performed at the timing of switching off of the second switch S2. In this case, the second standby time Δt2 used in step S118 may be a period obtained by removing the second charge / discharge period Tpn from the second period T2.
 第2実施形態において、ステップS209の処理及びステップS223の処理では、同一の所定値kを用いたが、これに限られない。ステップS209では、第1電圧V1の時間変化量dVpが第1所定値k1よりも小さいか否かを判定し、第2電圧V2の時間変化量dVnが第1所定値k1と異なる第2所定値k2よりも小さいか否かを判定してもよい。 In the second embodiment, the same predetermined value k is used in the process of step S209 and the process of step S223, but the present invention is not limited to this. In step S209, it is determined whether or not the time change amount dVp of the first voltage V1 is smaller than the first predetermined value k1, and the time change amount dVn of the second voltage V2 is a second predetermined value different from the first predetermined value k1. It may be determined whether or not it is smaller than k2.
 ・蓄電池10は組電池に限らず、単電池であってもよい。 -The storage battery 10 is not limited to the assembled battery, but may be a single battery.
 ・本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。 The controls and methods thereof described in the present disclosure are provided by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. It may be realized. Alternatively, the controls and methods thereof described in the present disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the control unit and method thereof described in the present disclosure may be a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may be realized by one or more dedicated computers configured. Further, the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described in accordance with the examples, it is understood that the present disclosure is not limited to the examples and structures. The present disclosure also includes various variations and variations within a uniform range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are within the scope and scope of the present disclosure.

Claims (5)

  1.  直流電源(10)と接地部(G1)との間における漏電の有無を判定する漏電判定装置(20)において、
     前記接地部に一端が接続された検出用抵抗部(31~33)と、
     オンすることにより前記検出用抵抗部の他端と前記直流電源の正極端子との間を導通状態にし、オフすることにより前記検出用抵抗部の他端と前記直流電源の正極端子との間を遮断状態にする第1スイッチ(S1)と、
     オンすることにより前記検出用抵抗部の他端と前記直流電源の負極端子との間を導通状態にし、オフすることにより前記検出用抵抗部の他端と前記直流電源の負極端子との間を遮断状態にする第2スイッチ(S2)と、
     前記接地部と前記検出用抵抗部の他端とを接続する充放電経路(L3)と、
     前記充放電経路に設けられ、前記検出用抵抗部よりも小さいインピーダンスの充放電用素子(51,81,82,Lx)と、
     前記充放電経路に設けられ、オンすることにより前記検出用抵抗部の他端と前記接地部との間を導通状態にし、オフすることにより前記検出用抵抗部の他端と前記接地部との間を遮断状態にする第3スイッチ(S3)と、
     前記第1スイッチ、前記第2スイッチ及び前記第3スイッチのオン又はオフを切り替える制御部(40)と、
     前記第1スイッチがオンされるとともに前記第2スイッチがオフされる第1期間における前記検出用抵抗部の電圧である第1電圧と、前記第2スイッチがオンされるとともに前記第1スイッチがオフされる第2期間における前記検出用抵抗部の電圧である第2電圧とを取得し、取得した前記第1電圧及び前記第2電圧に基づいて、前記漏電の有無を判定する判定部(40)と、を備え、
     前記制御部は、前記第1期間の一部において前記第3スイッチをオンし、前記第2期間の一部において前記第3スイッチをオンし、
     前記判定部は、前記第1期間のうち前記第3スイッチのオン期間の終了後の前記第1電圧を取得し、前記第2期間のうち前記第3スイッチのオン期間の終了後の前記第2電圧を取得する漏電判定装置。
    In the leakage determination device (20) for determining the presence or absence of leakage between the DC power supply (10) and the grounding portion (G1).
    A detection resistor portion (31 to 33) having one end connected to the grounding portion,
    By turning it on, the other end of the detection resistance portion and the positive electrode terminal of the DC power supply are made conductive, and by turning it off, the other end of the detection resistance portion and the positive electrode terminal of the DC power supply are connected. The first switch (S1) to shut off and
    By turning it on, the other end of the detection resistance portion and the negative electrode terminal of the DC power supply are made conductive, and by turning it off, the other end of the detection resistance portion and the negative electrode terminal of the DC power supply are connected. The second switch (S2) to shut off and
    A charge / discharge path (L3) connecting the grounding portion and the other end of the detection resistance portion,
    Charge / discharge elements (51, 81, 82, Lx) provided in the charge / discharge path and having an impedance smaller than that of the detection resistance portion, and
    It is provided in the charge / discharge path, and when it is turned on, the other end of the detection resistance portion and the grounding portion are brought into a conductive state, and when it is turned off, the other end of the detection resistance portion and the grounding portion are connected to each other. The third switch (S3) that shuts off the space,
    A control unit (40) for switching on or off of the first switch, the second switch, and the third switch.
    The first voltage, which is the voltage of the detection resistor portion in the first period when the first switch is turned on and the second switch is turned off, and the first switch is turned off when the second switch is turned on. A determination unit (40) that acquires a second voltage, which is the voltage of the detection resistance unit in the second period, and determines the presence or absence of the electric leakage based on the acquired first voltage and the second voltage. And with
    The control unit turns on the third switch in a part of the first period, and turns on the third switch in a part of the second period.
    The determination unit acquires the first voltage after the end of the on period of the third switch in the first period, and the second of the second period after the end of the on period of the third switch. An earth leakage determination device that acquires voltage.
  2.  前記判定部は、前記第1電圧及び前記第2電圧を各制御周期において取得し、
     前記制御部は、
     今回の制御周期において取得した前記第1電圧の時間変化量よりも、次回の制御周期における前記第1電圧の時間変化量が小さくなるように、次回の制御周期における前記第1期間に含まれる前記第3スイッチのオン期間を設定し、
     今回の制御周期において取得した前記第2電圧の時間変化量よりも、次回の制御周期における前記第2電圧の時間変化量が小さくなるように、次回の制御周期における前記第2期間に含まれる前記第3スイッチのオン期間を設定する請求項1に記載の漏電判定装置。
    The determination unit acquires the first voltage and the second voltage in each control cycle, and obtains the first voltage and the second voltage in each control cycle.
    The control unit
    The said amount included in the first period in the next control cycle so that the time change amount of the first voltage in the next control cycle is smaller than the time change amount of the first voltage acquired in the current control cycle. Set the on period of the 3rd switch,
    The said is included in the second period in the next control cycle so that the time change amount of the second voltage in the next control cycle is smaller than the time change amount of the second voltage acquired in the current control cycle. The leakage determination device according to claim 1, wherein the on period of the third switch is set.
  3.  前記制御部は、
     前記第1期間において前記第3スイッチのオンオフを繰り返し、前記第1期間のうち前記第3スイッチがオフされる期間における前記第1電圧の時間変化量を算出し、算出した前記第1電圧の時間変化量が第1所定値以下となった場合に前記第3スイッチをオフにし、
     前記第2期間において前記第3スイッチのオンオフを繰り返し、前記第2期間のうち第3スイッチがオフされる期間における前記第2電圧の時間変化量を算出し、算出した前記第2電圧の時間変化量が第2所定値以下となった場合に前記第3スイッチをオフにする請求項1に記載の漏電判定装置。
    The control unit
    The on / off of the third switch is repeated in the first period, the time change amount of the first voltage in the period in which the third switch is turned off in the first period is calculated, and the calculated time of the first voltage is calculated. When the amount of change is equal to or less than the first predetermined value, the third switch is turned off.
    The on / off of the third switch is repeated in the second period, the time change amount of the second voltage in the period in which the third switch is turned off in the second period is calculated, and the time change of the second voltage is calculated. The leakage determination device according to claim 1, wherein the third switch is turned off when the amount is equal to or less than the second predetermined value.
  4.  前記充放電用素子は、リアクトル(Lx)であり、
     前記第1スイッチ及び前記第2スイッチのスイッチング制御により、前記直流電源の正極端子と前記接地部との間に存在する正極側容量と、前記直流電源の負極端子と前記接地部の間に存在する負極側容量との間において電力の授受を行うDCDCコンバータ(80)を備え、
     前記制御部は、前記第3スイッチのオン期間において、前記DCDCコンバータの入出力電流を制御する請求項1~3のいずれか一項に記載の漏電判定装置。
    The charge / discharge element is a reactor (Lx) and has a reactor (Lx).
    Due to the switching control of the first switch and the second switch, the positive electrode side capacitance existing between the positive electrode terminal of the DC power supply and the grounded portion, and the negative electrode side capacitance of the DC power supply exists between the negative electrode terminal and the grounded portion. A DCDC converter (80) that transfers power to and from the negative electrode side capacitance is provided.
    The leakage determination device according to any one of claims 1 to 3, wherein the control unit controls the input / output current of the DCDC converter during the on period of the third switch.
  5.  前記制御部は、
     前記第1期間のうち、前記第3スイッチのオン期間において前記正極側容量から前記負極側容量へと放電すべく前記第1スイッチのスイッチング制御を行い、その後第3スイッチをオフし、
     前記第2期間のうち、前記第3スイッチのオン期間において前記負極側容量から前記正極側容量へと放電すべく前記第2スイッチのスイッチング制御を行い、その後第3スイッチをオフすることにより、前記入出力電流を制御する請求項4に記載の漏電判定装置。
    The control unit
    During the on period of the third switch in the first period, the switching control of the first switch is performed in order to discharge from the positive electrode side capacitance to the negative electrode side capacitance, and then the third switch is turned off.
    In the second period, during the on period of the third switch, the switching control of the second switch is performed in order to discharge from the negative electrode side capacitance to the positive electrode side capacitance, and then the third switch is turned off. The leakage determination device according to claim 4, wherein the entry output current is controlled.
PCT/JP2021/034918 2020-10-12 2021-09-23 Earth leakage determining device WO2022080111A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112021005379.5T DE112021005379T5 (en) 2020-10-12 2021-09-23 leakage current determination device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020172213A JP7468287B2 (en) 2020-10-12 2020-10-12 Leakage detection device
JP2020-172213 2020-10-12

Publications (1)

Publication Number Publication Date
WO2022080111A1 true WO2022080111A1 (en) 2022-04-21

Family

ID=81207910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034918 WO2022080111A1 (en) 2020-10-12 2021-09-23 Earth leakage determining device

Country Status (3)

Country Link
JP (1) JP7468287B2 (en)
DE (1) DE112021005379T5 (en)
WO (1) WO2022080111A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325382A (en) * 2003-04-28 2004-11-18 Honda Motor Co Ltd Grounding detection device
JP2006343267A (en) * 2005-06-10 2006-12-21 Chugoku Electric Power Co Inc:The Insulation resistance measuring instrument of dc circuit, electrostatic capacitance measuring instrument, insulation resistance measuring method and electrostatic capacitance measuring method
JP2013033825A (en) * 2011-08-01 2013-02-14 Jx Nippon Oil & Energy Corp Ground fault detection device, ground fault detection method, photovoltaic power generation system, and ground fault detection program
JP2016211978A (en) * 2015-05-11 2016-12-15 富士電機株式会社 Method and device for measuring insulation resistance
CN108333429A (en) * 2018-02-28 2018-07-27 北京新能源汽车股份有限公司 Power battery management system, the insulation resistance detection device of power battery and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56732A (en) 1979-05-30 1981-01-07 Fujitsu Ltd Amplifying circuit for gain control
JP2003066090A (en) * 2001-08-29 2003-03-05 Omron Corp Leak detector
EP2801837B1 (en) 2012-03-26 2018-09-19 LG Chem, Ltd. Device and method for measuring insulation resistance of battery
US9772392B2 (en) * 2015-02-26 2017-09-26 Lear Corporation Apparatus and method for diagnosing hardware in an insulation resistance monitoring system for a vehicle
JP7169935B2 (en) 2018-10-16 2022-11-11 株式会社Soken Leakage determination device
JP2020172213A (en) 2019-04-12 2020-10-22 株式会社豊田自動織機 Vehicle opening/closing structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325382A (en) * 2003-04-28 2004-11-18 Honda Motor Co Ltd Grounding detection device
JP2006343267A (en) * 2005-06-10 2006-12-21 Chugoku Electric Power Co Inc:The Insulation resistance measuring instrument of dc circuit, electrostatic capacitance measuring instrument, insulation resistance measuring method and electrostatic capacitance measuring method
JP2013033825A (en) * 2011-08-01 2013-02-14 Jx Nippon Oil & Energy Corp Ground fault detection device, ground fault detection method, photovoltaic power generation system, and ground fault detection program
JP2016211978A (en) * 2015-05-11 2016-12-15 富士電機株式会社 Method and device for measuring insulation resistance
CN108333429A (en) * 2018-02-28 2018-07-27 北京新能源汽车股份有限公司 Power battery management system, the insulation resistance detection device of power battery and method

Also Published As

Publication number Publication date
JP7468287B2 (en) 2024-04-16
JP2022063792A (en) 2022-04-22
DE112021005379T5 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
EP3792639B1 (en) Ground fault detection apparatus
JP5727851B2 (en) Method and apparatus for detecting insulation state of ungrounded power supply
US8159230B2 (en) Insulation measurement method and insulation measurement apparatus
CN110023771B (en) DC leakage detection device and leakage detection device
CN110927457B (en) Inverter and insulation detection circuit
CN111284344A (en) On-board charger, method of operating the same, and vehicle including the same
CN108964447B (en) Power converter and method of charging a power adapter having a power converter
CN109765430B (en) Insulation impedance detection system and detection method
US11418050B2 (en) Method for controlling discharge of power storage device
CN115290977A (en) Insulation resistance detection circuit and method and electric automobile
JP7395240B2 (en) Ground fault detection device
WO2022080111A1 (en) Earth leakage determining device
CN111337850B (en) Ground fault detection device
JP6836411B2 (en) Ground fault detector, power supply system
JP7100554B2 (en) Leakage determination device
US20220043073A1 (en) Electric leakage determination device
CN116160861A (en) Insulation monitoring device, control method of insulation monitoring device and electric automobile
JP2017001425A (en) Power supply system
KR100585426B1 (en) Device for lengthening life span of storage battery by adjusting amplitude of pulse current according to storage power status
WO2020153161A1 (en) Power supply control circuit
JPH1066275A (en) Method and device for charging and charging control circuit
KR20230152459A (en) Apparatus charging battery for vehicle and method for controlling the same
JP2003004823A (en) Device for calculating residual capacity of battery
KR200341518Y1 (en) Device for lengthening life span of storage battery by adjusting amplitude of pulse current according to storage power status
JP2996208B2 (en) Capacitance measurement method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879852

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21879852

Country of ref document: EP

Kind code of ref document: A1