JP6836411B2 - Ground fault detector, power supply system - Google Patents

Ground fault detector, power supply system Download PDF

Info

Publication number
JP6836411B2
JP6836411B2 JP2017021276A JP2017021276A JP6836411B2 JP 6836411 B2 JP6836411 B2 JP 6836411B2 JP 2017021276 A JP2017021276 A JP 2017021276A JP 2017021276 A JP2017021276 A JP 2017021276A JP 6836411 B2 JP6836411 B2 JP 6836411B2
Authority
JP
Japan
Prior art keywords
voltage
main relay
voltage battery
ground fault
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017021276A
Other languages
Japanese (ja)
Other versions
JP2018127086A (en
Inventor
佳浩 河村
佳浩 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2017021276A priority Critical patent/JP6836411B2/en
Publication of JP2018127086A publication Critical patent/JP2018127086A/en
Application granted granted Critical
Publication of JP6836411B2 publication Critical patent/JP6836411B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Static Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

本発明は、フライングキャパシタを用いた地絡検出装置および地絡検出装置を含んだ電源システムに関する。 The present invention relates to a ground fault detection device using a flying capacitor and a power supply system including a ground fault detection device.

駆動源としてエンジンと電気モータとを備えるハイブリッド車や、電気自動車のような車両においては、車体上に搭載したバッテリを充電し、バッテリから供給される電気エネルギーを利用して推進力を発生する。一般に、バッテリ関連の電源回路は、200V以上の高電圧を扱う高電圧回路として構成されており、安全性確保ため、バッテリを含む高電圧回路は接地の基準電位点となる車体から電気的に絶縁された非接地構成となっている。 In a hybrid vehicle equipped with an engine and an electric motor as a drive source, or in a vehicle such as an electric vehicle, a battery mounted on the vehicle body is charged and electric energy supplied from the battery is used to generate propulsive force. Generally, a battery-related power supply circuit is configured as a high-voltage circuit that handles a high voltage of 200 V or more, and in order to ensure safety, the high-voltage circuit including the battery is electrically insulated from the vehicle body that serves as a reference potential point for grounding. It has a non-grounded configuration.

非接地の高電圧バッテリを搭載した車両では、高電圧バッテリが設けられた系、具体的には、高電圧バッテリからモータに至るメインの電源系と車体との絶縁状態(地絡)を監視するために地絡検出装置が備えられている。地絡検出装置は、フライングキャパシタと呼ばれるコンデンサを利用した方式が広く用いられている。 In a vehicle equipped with a non-grounded high-voltage battery, the system provided with the high-voltage battery, specifically, the insulation state (ground fault) between the main power supply system from the high-voltage battery to the motor and the vehicle body is monitored. Therefore, a ground fault detection device is provided. As the ground fault detection device, a method using a capacitor called a flying capacitor is widely used.

図5は、フライングキャパシタ方式の地絡検出装置を含んだ電源系の回路例を示す図である。本図に示すように地絡検出装置400は、非接地の高電圧バッテリ300と正極側電源ライン301および負極側電源ライン302を介して接続し、高電圧バッテリ300が設けられた系の地絡を検出する装置である。 FIG. 5 is a diagram showing an example of a circuit of a power supply system including a flying capacitor type ground fault detection device. As shown in this figure, the ground fault detection device 400 is connected to the ungrounded high voltage battery 300 via the positive electrode side power supply line 301 and the negative electrode side power supply line 302, and the ground fault of the system provided with the high voltage battery 300. It is a device that detects.

高電圧バッテリ300は、正極側電源ライン301、負極側電源ライン302を介して負荷360に電源を供給等するものであり、正極側の負荷360との接続状態は、正極側メインリレー321で切り換えられ、負極側の負荷360との接続状態は、負極側メインリレー322で切り換えられる。正極側メインリレー321、負極側メインリレー322の切換は、上位装置である外部制御装置200によって連動して行なわれる。 The high-voltage battery 300 supplies power to the load 360 via the positive electrode side power supply line 301 and the negative electrode side power supply line 302, and the connection state with the positive electrode side load 360 is switched by the positive electrode side main relay 321. The connection state with the load 360 on the negative electrode side is switched by the main relay 322 on the negative electrode side. Switching between the positive electrode side main relay 321 and the negative electrode side main relay 322 is performed in conjunction with the external control device 200, which is a higher-level device.

ここで、高電圧バッテリ300の正極側と接地間の絶縁抵抗をRLp1と表し、負極側と接地間の絶縁抵抗をRLn1と表すものとする。また、負荷360側の正極と接地間の終端抵抗をRLp2と表し、負極と接地間の終端抵抗をRLn2と表すものとする。地絡が生じていない正常状態において、一般的には、高電圧バッテリ300側の絶縁抵抗RLp1、RLn1>負荷360側の終端抵抗RLp2、RLn2であり、RLp1、RLn1は、メインリレーオン時の合成抵抗RLp1//RLp2、RLn1//RLn2より明らかに大きくなる。 Here, the insulation resistance between the positive electrode side and the ground of the high voltage battery 300 is represented by RLp1, and the insulation resistance between the negative electrode side and the ground is represented by RLn1. Further, the terminating resistance between the positive electrode and the ground on the load 360 side is represented by RLp2, and the terminating resistance between the negative electrode and the ground is represented by RLn2. In a normal state where no ground fault has occurred, generally, the insulation resistors RLp1 and RLn1 on the high voltage battery 300 side are the terminating resistors RLp2 and RLn2 on the load 360 side, and RLp1 and RLn1 are combined when the main relay is on. It is clearly larger than the resistors RLp1 // RLp2 and RLn1 // RLn2.

高電圧バッテリ300の正極側電源ライン301と接地との間および負極側電源ライン302と接地との間には、電源の高周波ノイズを除去したり動作を安定化するために、それぞれYコンデンサ(ライン・バイパス・コンデンサ)と呼ばれるコンデンサCYp1、CYn1が接続されている。また、負荷360側の正極と接地との間および負荷360側の負極と接地との間には、YコンデンサとしてそれぞれCYp2、CYn2が接続されている。 Between the positive electrode side power supply line 301 and the ground of the high voltage battery 300 and between the negative electrode side power supply line 302 and the ground, Y capacitors (lines) are used to remove high frequency noise of the power supply and stabilize the operation, respectively. -Bypass capacitors) capacitors CYp1 and CYn1 are connected. Further, CYp2 and CYn2 are connected as Y capacitors between the positive electrode on the load 360 side and the ground and between the negative electrode on the load 360 side and the ground, respectively.

ただし、Yコンデンサは省くようにしてもよい。この場合でも、寄生容量により、接地との間にコンデンサCYp1、CYn1、CYp2、CYn2が存在する。一般には、YCp1=YCn1<<YCp2=YCn2であるが、設計や状況等により、これらの関係が成り立たない場合もある。 However, the Y capacitor may be omitted. Even in this case, due to the parasitic capacitance, there are capacitors CYp1, CYn1, CYp2, and CYn2 between the capacitors and the ground. Generally, YCp1 = YCn1 << YCp2 = YCn2, but these relationships may not hold depending on the design, situation, and the like.

本図に示すように、地絡検出装置400は、フライングキャパシタとして動作する検出用コンデンサC1を備えている。また、計測経路を切り替えるとともに、検出用コンデンサC1の充電および放電を制御するために、検出用コンデンサC1の周辺に4つのスイッチング素子S1〜S4を備えている。 As shown in this figure, the ground fault detection device 400 includes a detection capacitor C1 that operates as a flying capacitor. Further, four switching elements S1 to S4 are provided around the detection capacitor C1 in order to switch the measurement path and control the charging and discharging of the detection capacitor C1.

地絡検出装置400では、高電圧バッテリ300側の絶縁抵抗RLp1およびRLn1を把握するために、V0計測期間→Vc1n計測期間→V0計測期間→Vc1p計測期間を1サイクルとして計測動作を繰り返す。ただし、V0計測期間→Vc1n計測期間→Vc1p計測期間を1サイクルとしてもよい。いずれの計測期間とも、計測対象の電圧で検出用コンデンサC1を充電してから、検出用コンデンサC1の充電電圧の計測を行なう。そして、次の計測のために検出用コンデンサC1の放電を行なう。 In the ground fault detection device 400, in order to grasp the insulation resistances RLp1 and RLn1 on the high voltage battery 300 side, the measurement operation is repeated with the V0 measurement period → Vc1n measurement period → V0 measurement period → Vc1p measurement period as one cycle. However, the V0 measurement period → Vc1n measurement period → Vc1p measurement period may be set as one cycle. In each measurement period, the detection capacitor C1 is charged with the voltage to be measured, and then the charging voltage of the detection capacitor C1 is measured. Then, the detection capacitor C1 is discharged for the next measurement.

V0計測期間では、高電圧バッテリ300電圧に相当する電圧を計測する。このため、スイッチング素子S1、S2をオンにし、スイッチング素子S3、S4をオフにして、検出用コンデンサC1を充電する。すなわち、図6(a)に示すように、高電圧バッテリ300、抵抗R1、検出用コンデンサC1が計測経路となる。 In the V0 measurement period, the voltage corresponding to the high voltage battery 300 voltage is measured. Therefore, the switching elements S1 and S2 are turned on, the switching elements S3 and S4 are turned off, and the detection capacitor C1 is charged. That is, as shown in FIG. 6A, the high voltage battery 300, the resistor R1, and the detection capacitor C1 serve as measurement paths.

検出用コンデンサC1の充電電圧の計測時には、スイッチング素子S1、S2をオフにし、スイッチング素子S3、S4をオンにして、制御装置420でサンプリングを行ない、さらに次の計測のために検出用コンデンサC1の放電を行なう。検出用コンデンサC1の充電電圧の計測時、検出用コンデンサC1の放電時の動作は他の計測期間においても同様である。 When measuring the charging voltage of the detection capacitor C1, the switching elements S1 and S2 are turned off, the switching elements S3 and S4 are turned on, sampling is performed by the control device 420, and the detection capacitor C1 is further measured for the next measurement. Discharge. The operation at the time of measuring the charging voltage of the detection capacitor C1 and at the time of discharging the detection capacitor C1 is the same in other measurement periods.

Vc1n計測期間では、絶縁抵抗RLn1の影響を反映した電圧を計測する。このため、スイッチング素子S1、S4をオンにし、スイッチング素子S2、S3をオフにして、検出用コンデンサC1を充電する。すなわち、図6(b)に示すように、高電圧バッテリ300、抵抗R1、検出用コンデンサC1、抵抗R4、接地、絶縁抵抗RLn1が計測経路となる。 In the Vc1n measurement period, the voltage reflecting the influence of the insulation resistance RLn1 is measured. Therefore, the switching elements S1 and S4 are turned on, the switching elements S2 and S3 are turned off, and the detection capacitor C1 is charged. That is, as shown in FIG. 6B, the high-voltage battery 300, the resistor R1, the detection capacitor C1, the resistor R4, the ground, and the insulation resistor RLn1 serve as measurement paths.

Vc1p計測期間では、絶縁抵抗RLp1の影響を反映した電圧を計測する。このため、スイッチング素子S2、S3をオンにし、スイッチング素子S1、S4をオフにして、検出用コンデンサC1を充電する。すなわち、図6(c)に示すように、高電圧バッテリ300、絶縁抵抗RLp1、接地、抵抗R3、抵抗R1、検出用コンデンサC1が計測経路となる。 In the Vc1p measurement period, the voltage reflecting the influence of the insulation resistance RLp1 is measured. Therefore, the switching elements S2 and S3 are turned on, the switching elements S1 and S4 are turned off, and the detection capacitor C1 is charged. That is, as shown in FIG. 6C, the high-voltage battery 300, the insulation resistance RLp1, the ground, the resistance R3, the resistance R1, and the detection capacitor C1 serve as measurement paths.

これらの計測期間で得られたV0、Vc1n、Vc1pから算出される(Vc1p+Vc1n)/V0に基づいて、(RLp1×RLn1)/(RLp1+RLn1)を求めることができることが知られている。このため、地絡検出装置400内の制御装置420は、V0、Vc1n、Vc1pを測定することにより、絶縁抵抗RLp1、RLn1を把握することができる。そして、絶縁抵抗RLp1、RLn1が所定の判定基準レベル以下となった場合に、地絡が発生しているものとして判定し、警報を出力する。 It is known that (RLp1 × RLn1) / (RLp1 + RLn1) can be obtained based on (Vc1p + Vc1n) / V0 calculated from V0, Vc1n, and Vc1p obtained in these measurement periods. Therefore, the control device 420 in the ground fault detection device 400 can grasp the insulation resistances RLp1 and RLn1 by measuring V0, Vc1n, and Vc1p. Then, when the insulation resistances RLp1 and RLn1 are equal to or lower than the predetermined determination reference level, it is determined that a ground fault has occurred and an alarm is output.

図7は、V0計測期間、Vc1n計測期間、V0計測期間、Vc1p計測期間の1サイクルにおける検出コンデンサC1の両端の一般的な電圧波形を示している。ここで、図7(a)は、正極側メインリレー321、負極側メインリレー322の両方のメインリレーをオフにしたときの一般的な波形であり、図7(b)は、両方のメインリレーをオンにしたときの一般的な波形である。 FIG. 7 shows general voltage waveforms across the detection capacitor C1 in one cycle of the V0 measurement period, the Vc1n measurement period, the V0 measurement period, and the Vc1p measurement period. Here, FIG. 7A shows a general waveform when both the main relays 321 on the positive electrode side and the main relay 322 on the negative electrode side are turned off, and FIG. 7B shows both main relays. This is a general waveform when is turned on.

上述のように、高電圧バッテリ300側の絶縁抵抗RLp1、RLn1>負荷360側の終端抵抗RLp2、RLn2である。このため、メインリレーがオンであると、絶縁抵抗と終端抵抗とが合成され、Vc1n計測期間、Vc1p計測期間で流れる電流が大きくなる。この結果、Vc1n計測期間、Vc1p計測期間で充電される電圧が大きくなる。 As described above, the insulation resistors RLp1 and RLn1 on the high voltage battery 300 side> the terminating resistors RLp2 and RLn2 on the load 360 side. Therefore, when the main relay is on, the insulation resistance and the terminating resistance are combined, and the current flowing during the Vc1n measurement period and the Vc1p measurement period becomes large. As a result, the voltage charged during the Vc1n measurement period and the Vc1p measurement period increases.

したがって、一方のメインリレーのみをオンにすると、図7(c)に示すように、両方のメインリレーをオフにしたときに比べ、Vc1n計測期間、Vc1p計測期間のうち一方の充電電圧のみが大きくなる。本図の例では、負極側メインリレー322のみをオンにしており、Vc1n計測期間の充電電圧のみが大きくなっている。 Therefore, when only one main relay is turned on, as shown in FIG. 7 (c), only one of the Vc1n measurement period and the Vc1p measurement period has a larger charging voltage than when both main relays are turned off. Become. In the example of this figure, only the negative electrode side main relay 322 is turned on, and only the charging voltage during the Vc1n measurement period is large.

このことから、メインリレーが両方オンの状態から、メインリレーを両方オフにする切換制御を行なったときに、図8(a)に示すように、Vc1n計測期間、Vc1p計測期間とも検出コンデンサC1の充電電圧が大幅に小さくなれば、両方のメインリレーが正常にオンからオフに切り換わったこと、すなわち、オン固着が生じていないことを検知できる。 From this, as shown in FIG. 8A, when switching control is performed from the state where both main relays are on to the state where both main relays are off, the detection capacitor C1 is used for both the Vc1n measurement period and the Vc1p measurement period. If the charging voltage is significantly reduced, it can be detected that both main relays have normally switched from on to off, that is, no sticking has occurred.

一方、メインリレーが両方オンの状態から、メインリレーを両方オフにする制御を行なったにもかかわらず、図8(b)に示すように、Vc1n計測期間、Vc1n計測期間のいずれかで検出コンデンサC1の充電電圧が小さくならなければ、一方のメインリレーがオンのままであること、すなわち、オン固着が生じていることを検知できる。 On the other hand, as shown in FIG. 8B, even though the control was performed to turn off both main relays from the state where both main relays were on, the detection capacitor was detected during either the Vc1n measurement period or the Vc1n measurement period. If the charging voltage of C1 does not decrease, it can be detected that one of the main relays remains on, that is, the on-sticking occurs.

これに関連して、特許文献1には、メインリレーをオフにした際に、絶縁抵抗を含んだ測定経路の充電電圧値が、メインリレーオンのときの充電電圧値と略等しい場合に、メインリレーがオン固着していると判定することが記載されている。 In this regard, Patent Document 1 states that when the main relay is turned off, the charging voltage value of the measurement path including the insulation resistance is substantially equal to the charging voltage value when the main relay is turned on. It is described that it is determined that the relay is on and stuck.

特開2015−214264号公報Japanese Unexamined Patent Publication No. 2015-214264

しかしながら、メインリレーをオフにした際に、絶縁抵抗を含んだ測定経路の充電電圧値がオンのときの充電電圧値と略等しい場合をオン固着発生の判定基準とすると、地絡検出装置100が組み込まれる電源システムの設計上の特性や、特性変動等により、オン固着が発生していないにもかかわらず、オン固着と判定したり、オン固着が発生しているのにもかかわらず、オン固着と判定しない状況が起こり得る。 However, when the main relay is turned off, the ground fault detection device 100 determines that the on-stick occurrence occurs when the charging voltage value of the measurement path including the insulation resistance is substantially equal to the charging voltage value when it is on. Due to the design characteristics of the built-in power supply system, characteristic fluctuations, etc., it is determined that the on-stick is on even though the on-stick has not occurred, or the on-stick is on even though the on-stick has occurred. There may be a situation where it is not determined.

例えば、絶縁抵抗RLp1あるいはRLn1が低下しているときに、図9(a)に示すような波形が得られる場合がある。この場合、メインリレーがオンのときのVc1n計測期間の充電電圧と、メインリレーがオフのときのVc1n計測期間の充電電圧とが略等しいと判定されると、オン固着が発生していないにもかかわらず、オン固着が誤検出される。 For example, when the insulation resistance RLp1 or RLn1 is lowered, a waveform as shown in FIG. 9A may be obtained. In this case, if it is determined that the charging voltage during the Vc1n measurement period when the main relay is on and the charging voltage during the Vc1n measurement period when the main relay is off are approximately equal, the on-sticking does not occur. Regardless, on-sticking is erroneously detected.

また、Yコンデンサについて、一般に、YCp1=YCn1<<YCp2=YCn2の関係があるが、YCp1、YCn1が設計上の都合や寄生容量の関係等から大きいときに、図9(b)に示すような波形が得られる場合がある。この場合にも、メインリレーがオンのときのVc1n計測期間の充電電圧と、メインリレーがオフのときのVc1n計測期間の充電電圧とが略等しいと判定されると、オン固着が発生していないにもかかわらず、オン固着が誤検出される。 Further, regarding the Y capacitor, there is generally a relationship of YCp1 = YCn1 << YCp2 = YCn2, but when YCp1 and YCn1 are large due to design reasons, parasitic capacitance, etc., as shown in FIG. 9B. Waveforms may be obtained. In this case as well, if it is determined that the charging voltage during the Vc1n measurement period when the main relay is on and the charging voltage during the Vc1n measurement period when the main relay is off are approximately equal, on-sticking does not occur. Nevertheless, on-sticking is erroneously detected.

一方で、YCp1、YCn1、YCp2、YCn2がほぼ等しい場合は、オン固着が発生しているときであっても、図9(c)に示すように、メインリレーがオンのときのVc1n計測期間の充電電圧と、メインリレーがオフのときのVc1n計測期間の充電電圧とに差が生じる場合がある。両者が略等しいと判定されないと、オン固着が発生しているのにもかかわらず、オン固着が検出されないことになる。 On the other hand, when YCp1, YCn1, YCp2, and YCn2 are almost equal, even when on-sticking occurs, as shown in FIG. 9C, the Vc1n measurement period when the main relay is on There may be a difference between the charging voltage and the charging voltage during the Vc1n measurement period when the main relay is off. If it is not determined that the two are substantially equal, the on-sticking will not be detected even though the on-sticking has occurred.

このように、メインリレーをオフにした際に、絶縁抵抗を含んだ測定経路の充電電圧値がオンのときの充電電圧値と略等しい場合をオン固着の判定基準とすると、オン固着を誤検出したりオン固着の検出漏れが生じる状況が起こり得る。 In this way, when the main relay is turned off and the charging voltage value of the measurement path including the insulation resistance is approximately equal to the charging voltage value when it is on, the on-sticking is erroneously detected. There may be a situation where the detection omission of the on-sticking occurs.

そこで、本発明は、メインリレーのオン固着の新たな判定基準を提供することを目的とする。 Therefore, an object of the present invention is to provide a new criterion for determining whether the main relay is fixed on.

上記課題を解決するため、本発明の第1の態様である地絡検出装置は、接地との間に終端抵抗を有する負荷との接続状態がメインリレーで切り換えられる、非接地の高電圧バッテリと接続し、前記高電圧バッテリが設けられた系の地絡を検出する地絡検出装置であって、フライングキャパシタとして動作する検出用コンデンサと、前記高電圧バッテリと、前記高電圧バッテリの正極と接地との絶縁抵抗と、前記検出用コンデンサとを含んだ正極測定経路と、前記高電圧バッテリと、前記高電圧バッテリの負極と接地との絶縁抵抗と、前記検出用コンデンサとを含んだ負極測定経路と、を切り換えるスイッチ群と、前記正極測定経路および前記負極測定経路のそれぞれについて、前記メインリレーがオンに切換制御されているときの、前記検出用コンデンサの充電電圧であるオン時電圧と、前記メインリレーがオフに切換制御されているときの、前記検出用コンデンサの充電電圧であるオフ時電圧とを比較し、いずれかの測定経路において、前記オフ時電圧が前記オン時電圧よりも大きい場合に、前記メインリレーでオン固着が発生したと判定する制御部と、を備えたことを特徴とする。
ここで、前記制御部は、前記オフ時電圧が前記オン時電圧よりも大きい極側に配置されたメインリレーでオン固着が発生したと判定することができる。
また、前記スイッチ群は、さらに、前記高電圧バッテリと、前記検出用コンデンサとを含み、絶縁抵抗を含まない電源測定経路に切り換え可能であり、前記制御部は、前記電源測定経路について、前記メインリレーがオンに切換制御されているときの前記検出用コンデンサの充電電圧であるオン時電源電圧と、前記メインリレーがオフに切換制御されているときの、前記検出用コンデンサの充電電圧であるオフ時電源電圧とで所定の基準を超える変動があった場合には、前記比較を行なわないようにしてもよい。
前記制御部は、前記メインリレーの切換制御情報を上位装置である外部制御装置から取得することができる。
上記課題を解決するため、本発明の第2の態様である電源システムは、非接地の高電圧バッテリと、接地との間に終端抵抗を有する負荷と、前記高電圧バッテリと前記負荷との接続状態を切り換えるメインリレーと、前記メインリレーの切換制御を行なう外部制御装置と、前記高電圧バッテリと接続し、前記高電圧バッテリが設けられた系の地絡を検出する地絡検出装置とを備えた電源システムであって、前記地絡検出装置は、フライングキャパシタとして動作する検出用コンデンサと、前記高電圧バッテリと、前記高電圧バッテリの正極と接地との絶縁抵抗と、前記検出用コンデンサとを含んだ正極測定経路と、前記高電圧バッテリと、前記高電圧バッテリの負極と接地との絶縁抵抗と、前記検出用コンデンサとを含んだ負極測定経路と、を切り換えるスイッチ群と、前記正極測定経路および前記負極測定経路のそれぞれについて、前記メインリレーがオンに切換制御されているときの、前記検出用コンデンサの充電電圧であるオン時電圧と、前記メインリレーがオフに切換制御されているときの、前記検出用コンデンサの充電電圧であるオフ時電圧とを比較し、いずれかの測定経路において、前記オフ時電圧が前記オン時電圧よりも大きい場合に、前記メインリレーでオン固着が発生したと判定する制御部と、を備えたことを特徴とする。
In order to solve the above problems, the ground fault detection device according to the first aspect of the present invention includes a non-grounded high-voltage battery in which the connection state with a load having a termination resistance between the ground and the ground is switched by a main relay. A ground fault detection device that is connected to detect a ground fault in a system provided with the high voltage battery, and is a detection capacitor that operates as a flying capacitor, the high voltage battery, and a positive electrode and ground of the high voltage battery. A positive voltage measurement path including the insulation resistance with and the detection capacitor, an insulation resistance between the high voltage battery, the negative voltage of the high voltage battery and the ground, and a negative voltage measurement path including the detection capacitor. The on-time voltage, which is the charging voltage of the detection capacitor when the main relay is switched on for each of the positive-side measurement path and the negative-position measurement path, and the on-time voltage. When the off voltage is larger than the on voltage in any of the measurement paths by comparing with the off voltage which is the charging voltage of the detection capacitor when the main relay is switched off. In addition, the main relay is provided with a control unit for determining that on-sticking has occurred.
Here, the control unit can determine that on-sticking has occurred in the main relay arranged on the pole side where the off voltage is larger than the on voltage.
Further, the switch group can be switched to a power supply measurement path that further includes the high voltage battery and the detection capacitor and does not include an insulation resistance, and the control unit uses the power supply measurement path as the main. The on power supply voltage, which is the charging voltage of the detection capacitor when the relay is switched on, and the off, which is the charging voltage of the detection capacitor when the main relay is switched off. If there is a fluctuation exceeding a predetermined reference with the current power supply voltage, the above comparison may not be performed.
The control unit can acquire switching control information of the main relay from an external control device which is a higher-level device.
In order to solve the above problems, the power supply system according to the second aspect of the present invention includes a non-grounded high-voltage battery, a load having a termination resistance between the grounded capacitors, and a connection between the high-voltage battery and the load. It is provided with a main relay for switching states, an external control device for switching control of the main relay, and a ground fault detecting device which is connected to the high-voltage battery and detects a ground fault in a system provided with the high-voltage battery. a power system, the ground fault detection device, a detection capacitor which operates as a flying capacitor, and the high-voltage battery, and the insulation resistance between the ground and the positive pole of the high voltage battery, and said detecting capacitor A switch group that switches between a positive voltage measurement path including the positive voltage battery, an insulation resistance between the negative voltage of the high voltage battery and the ground, and a negative voltage measurement path including the detection capacitor, and the positive voltage measurement path. And for each of the negative electrode measurement paths, when the main relay is switched on and controlled, the on voltage which is the charging voltage of the detection capacitor and when the main relay is switched off and controlled. Compared with the off voltage, which is the charging voltage of the detection capacitor, when the off voltage is larger than the on voltage in any of the measurement paths, the main relay is stuck on. It is characterized by including a control unit for determining.

本発明によれば、メインリレーのオン固着の新たな判定基準が提供される。 According to the present invention, a new criterion for determining whether the main relay is stuck on is provided.

本発明の実施形態に係る地絡検出装置を含んだ電源系の回路を示す図である。It is a figure which shows the circuit of the power-source system including the ground fault detection device which concerns on embodiment of this invention. 正極−接地間と負極−接地間の降圧電圧のバランス例を説明する図である。It is a figure explaining the balance example of the step-down voltage between a positive electrode-ground and a negative electrode-ground. オン固着の有無とVc1計測期間で得られるメインリレーオンオフの際の電圧変化を説明する図である。It is a figure explaining the presence / absence of on sticking and the voltage change at the time of turning on / off a main relay obtained in a Vc1 measurement period. メインリレーのオン固着検出の手順を示すフローチャートである。It is a flowchart which shows the procedure of on sticking detection of a main relay. フライングキャパシタ方式の地絡検出装置を含んだ電源系の回路例を示す図である。It is a figure which shows the circuit example of the power-source system including the ground fault detection device of a flying capacitor type. V0計測期間とVc1n計測期間とVc1p計測期間の計測経路を示す図である。It is a figure which shows the measurement path of the V0 measurement period, the Vc1n measurement period, and the Vc1p measurement period. V0計測期間、Vc1n計測期間、V0計測期間、Vc1p計測期間の1サイクルにおける検出コンデンサの両端の一般的な電圧波形を示している。The general voltage waveforms across the detection capacitor in one cycle of V0 measurement period, Vc1n measurement period, V0 measurement period, and Vc1p measurement period are shown. メインリレーのオン固着の有無と波形の変化を説明する図である。It is a figure explaining the presence / absence of on sticking of a main relay, and the change of a waveform. 充電電圧値が略等しい場合をオン固着の判定基準としたときの、誤検出と検出漏れの例を示す図である。It is a figure which shows the example of false detection and detection omission when the case where the charge voltage value is substantially equal is used as the determination criterion of on sticking.

本発明の実施形態について、図面を参照して詳細に説明する。図1は、本発明の実施形態に係る地絡検出装置100を含んだ電源系の回路を示す図である。本図に示すように地絡検出装置100は、非接地の高電圧バッテリ300と正極側電源ライン301および負極側電源ライン302を介して接続し、高電圧バッテリ300が設けられた系の地絡を検出する装置である。地絡検出装置100を含んだ電源系の回路の基本的な構成は、従来と同様とすることができる。ここで、高電圧とは、車両内の各種機器(ランプ、ワイパー等)を駆動させるための低電圧バッテリ(一般的には12V)よりも高い電圧を意味し、高電圧バッテリ300は、車両走行の駆動用に用いられるバッテリである。 Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing a circuit of a power supply system including a ground fault detection device 100 according to an embodiment of the present invention. As shown in this figure, the ground fault detection device 100 is connected to the ungrounded high voltage battery 300 via the positive electrode side power supply line 301 and the negative electrode side power supply line 302, and the ground fault of the system provided with the high voltage battery 300. It is a device that detects. The basic configuration of the circuit of the power supply system including the ground fault detection device 100 can be the same as the conventional one. Here, the high voltage means a voltage higher than the low voltage battery (generally 12V) for driving various devices (lamps, wipers, etc.) in the vehicle, and the high voltage battery 300 means the vehicle travels. It is a battery used for driving.

高電圧バッテリ300は、リチウムイオン電池等のように充電可能なバッテリにより構成されている。高電圧バッテリ300は、正極側電源ライン301、負極側電源ライン302を介して負荷360に電源を供給等するものであり、正極側の負荷360との接続状態は、正極側メインリレー321で切り換えられ、負極側の負荷360との接続状態は、負極側メインリレー322で切り換えられる。正極側メインリレー321、負極側メインリレー322の切換は、上位装置である外部制御装置200によって行なわれる。 The high voltage battery 300 is composed of a rechargeable battery such as a lithium ion battery. The high-voltage battery 300 supplies power to the load 360 via the positive electrode side power supply line 301 and the negative electrode side power supply line 302, and the connection state with the positive electrode side load 360 is switched by the positive electrode side main relay 321. The connection state with the load 360 on the negative electrode side is switched by the main relay 322 on the negative electrode side. Switching between the positive electrode side main relay 321 and the negative electrode side main relay 322 is performed by the external control device 200, which is a higher-level device.

負荷360は、例えば、インバータ等を介して接続された電気モータとすることができる。また、高電圧バッテリ300は、回生時や充電設備接続時には、充電を行なうことができる。 The load 360 can be, for example, an electric motor connected via an inverter or the like. Further, the high voltage battery 300 can be charged at the time of regeneration or at the time of connecting to the charging equipment.

ここで、高電圧バッテリ300の正極側と接地間の絶縁抵抗をRLp1と表し、負極側と接地間の絶縁抵抗をRLn1と表すものとする。また、負荷360側の正極と接地間の終端抵抗をRLp2と表し、負極と接地間の終端抵抗をRLn2と表すものとする。 Here, the insulation resistance between the positive electrode side and the ground of the high voltage battery 300 is represented by RLp1, and the insulation resistance between the negative electrode side and the ground is represented by RLn1. Further, the terminating resistance between the positive electrode and the ground on the load 360 side is represented by RLp2, and the terminating resistance between the negative electrode and the ground is represented by RLn2.

高電圧バッテリ300の正極側電源ライン301と接地との間および負極側電源ライン302と接地との間には、電源の高周波ノイズを除去したり動作を安定化するために、それぞれYコンデンサ(ライン・バイパス・コンデンサ)と呼ばれるコンデンサCYp1、CYn1が接続されている。また、負荷360側の正極と接地との間および負荷360側の負極と接地との間には、YコンデンサとしてそれぞれCYp2、CYn2が接続されている。ただし、Yコンデンサは省くようにしてもよい。この場合でも、寄生容量により、接地との間にコンデンサCYp1、CYn1、CYp2、CYn2が存在する。 Between the positive electrode side power supply line 301 and the ground of the high voltage battery 300 and between the negative electrode side power supply line 302 and the ground, Y capacitors (lines) are used to remove high frequency noise of the power supply and stabilize the operation, respectively. -Bypass capacitors) capacitors CYp1 and CYn1 are connected. Further, CYp2 and CYn2 are connected as Y capacitors between the positive electrode on the load 360 side and the ground and between the negative electrode on the load 360 side and the ground, respectively. However, the Y capacitor may be omitted. Even in this case, due to the parasitic capacitance, there are capacitors CYp1, CYn1, CYp2, and CYn2 between the capacitors and the ground.

本図に示すように、地絡検出装置100は、フライングキャパシタとして動作する検出用コンデンサC1と、制御装置120と、4つのスイッチング素子S1〜S4を備えている。スイッチング素子S1〜S4は、計測経路を切り替えるとともに、検出用コンデンサC1の充電および放電を制御するために、検出用コンデンサC1の周辺に配置されている。 As shown in this figure, the ground fault detection device 100 includes a detection capacitor C1 that operates as a flying capacitor, a control device 120, and four switching elements S1 to S4. The switching elements S1 to S4 are arranged around the detection capacitor C1 in order to switch the measurement path and control the charging and discharging of the detection capacitor C1.

スイッチング素子S1〜S4は、光MOSFETのように絶縁型のスイッチング素子で構成することができる。制御装置120は、あらかじめ組み込まれたプログラムを実行することにより、スイッチ切り換え処理等の地絡検出装置100に必要とされる各種制御を実行する。 The switching elements S1 to S4 can be configured by an isolated switching element such as an optical MOSFET. The control device 120 executes various controls required for the ground fault detection device 100, such as a switch switching process, by executing a program incorporated in advance.

スイッチング素子S1は、一端が正極側電源ライン301と接続し、他端がダイオードD1のアノード側と接続している。ダイオードD1のカソード側は抵抗R1と接続し、抵抗R1の他端は検出用コンデンサC1の正極側端子と接続している。 One end of the switching element S1 is connected to the positive electrode side power supply line 301, and the other end is connected to the anode side of the diode D1. The cathode side of the diode D1 is connected to the resistor R1, and the other end of the resistor R1 is connected to the positive electrode side terminal of the detection capacitor C1.

スイッチング素子S2は、一端が負極側電源ライン302と接続し、他端が抵抗R5と接続している。抵抗R5の他端は検出用コンデンサC1の負極側端子と接続している。 One end of the switching element S2 is connected to the negative electrode side power supply line 302, and the other end is connected to the resistor R5. The other end of the resistor R5 is connected to the negative electrode side terminal of the detection capacitor C1.

スイッチング素子S3は、一端が抵抗R2およびダイオードD3のアノード側と接続し、他端が抵抗R3と制御装置120のアナログ入力端子と接続している。ダイオードD3のカソード側は検出用コンデンサC1の正極側端子と接続し、抵抗R2の他端はダイオードD2のカソード側と接続し、ダイオードD2のアノード側は検出用コンデンサC1の正極側端子と接続している。抵抗R3の他端は接地している。 One end of the switching element S3 is connected to the anode side of the resistor R2 and the diode D3, and the other end is connected to the resistor R3 and the analog input terminal of the control device 120. The cathode side of the diode D3 is connected to the positive electrode side terminal of the detection capacitor C1, the other end of the resistor R2 is connected to the cathode side of the diode D2, and the anode side of the diode D2 is connected to the positive electrode side terminal of the detection capacitor C1. ing. The other end of the resistor R3 is grounded.

スイッチング素子S4は、一端が検出用コンデンサC1の負極側端子と接続し、他端が抵抗R4と接続している。抵抗R4の他端は接地している。 One end of the switching element S4 is connected to the negative electrode side terminal of the detection capacitor C1, and the other end is connected to the resistor R4. The other end of the resistor R4 is grounded.

地絡検出装置100では、高電圧バッテリ300側の絶縁抵抗RLp1およびRLn1を把握するために、V0計測期間→Vc1n計測期間→V0計測期間→Vc1p計測期間を1サイクルとして計測動作を繰り返す。ただし、V0計測期間→Vc1n計測期間→Vc1p計測期間を1サイクルとしてもよい。各計測期間で得られる測定値に基づく地絡判定については従来と同様である。なお、V0計測期間は、高電圧バッテリ300の電圧に相当する電圧を測定する期間であり、Vc1n計測期間およびVc1p計測期間は、絶縁抵抗を含んだ経路の電圧を測定する期間である。 In the ground fault detection device 100, in order to grasp the insulation resistances RLp1 and RLn1 on the high voltage battery 300 side, the measurement operation is repeated with the V0 measurement period → Vc1n measurement period → V0 measurement period → Vc1p measurement period as one cycle. However, the V0 measurement period → Vc1n measurement period → Vc1p measurement period may be set as one cycle. The ground fault determination based on the measured values obtained in each measurement period is the same as before. The V0 measurement period is a period for measuring the voltage corresponding to the voltage of the high voltage battery 300, and the Vc1n measurement period and the Vc1p measurement period are periods for measuring the voltage of the path including the insulation resistance.

また、地絡検出装置100は、正極側メインリレー321および負極側メインリレー322(「メインリレー」と総称する)がオンからオフに切り換えられたときに、Vc1n計測期間およびVc1p計測期間(「Vc1計測期間」と総称する)で得られる検出用コンデンサC1の充電波形の変化に基づいて、メインリレーのオン固着(溶着)の判定を行なう。もちろん、メインリレーがオフからオンに切り換えられたときの充電波形の変化に基づいて判定を行なってもよい。 Further, the ground fault detection device 100 has a Vc1n measurement period and a Vc1p measurement period (“Vc1”) when the positive electrode side main relay 321 and the negative electrode side main relay 322 (collectively referred to as “main relay”) are switched from on to off. Based on the change in the charging waveform of the detection capacitor C1 obtained in the "measurement period"), the on-sticking (welding) of the main relay is determined. Of course, the determination may be made based on the change in the charging waveform when the main relay is switched from off to on.

上述のように、メインリレーオン時とオフ時とで、Vc1計測期間の充電電圧の値が略同一かどうかの判定では、絶縁抵抗の状態、Yコンデンサの状態等により、オン固着の誤検出や検出漏れが起こるおそれがある。 As described above, in determining whether the charging voltage value during the Vc1 measurement period is approximately the same when the main relay is on and off, erroneous detection of on-sticking may occur depending on the state of the insulation resistance, the state of the Y capacitor, etc. Detection omission may occur.

ところで、メインリレーの一方でオン固着が発生すると、オフ制御のときに、オン固着が発生した極の絶縁抵抗が見かけ上小さくなる。これは、メインリレーのオン固着により、絶縁抵抗に負荷側の終端抵抗が合成されるからである。ここでは、この見かけ上の絶縁抵抗を地絡抵抗と称する。 By the way, when on-sticking occurs on one side of the main relay, the insulation resistance of the pole on which on-sticking occurs apparently decreases during off-control. This is because the terminating resistance on the load side is combined with the insulation resistance when the main relay is fixed on. Here, this apparent insulation resistance is referred to as a ground fault resistance.

メインリレーでオン固着が発生していない場合は、図2(a)に示すように、メインリレーをオン制御しているときには、地絡抵抗は絶縁抵抗と終端抵抗との合成抵抗に等しいため、正極側、負極側とも低い値でバランスが取れる。また、メインリレーをオフ制御しているときには、地絡抵抗は絶縁抵抗に等しいため、正極側、負極側とも高い値でバランスが取れる。メインリレーをオフ制御している方が、地絡抵抗が大きく、また、負荷側の浮遊容量からの電荷移動もないため、地絡抵抗を流れる電流が小さくなる。この結果、Vc1計測期間で得られる電圧値は、図3(a)に示すように、正極側、負極側とも小さくなる。 When the main relay is not stuck on, as shown in FIG. 2A, when the main relay is on-controlled, the ground fault resistance is equal to the combined resistance of the insulation resistance and the terminating resistance. Both the positive electrode side and the negative electrode side can be balanced with low values. Further, when the main relay is off-controlled, the ground fault resistance is equal to the insulation resistance, so that a high value can be balanced on both the positive electrode side and the negative electrode side. When the main relay is off-controlled, the ground fault resistance is large and there is no charge transfer from the stray capacitance on the load side, so the current flowing through the ground fault resistance is small. As a result, the voltage value obtained in the Vc1 measurement period becomes smaller on both the positive electrode side and the negative electrode side, as shown in FIG. 3A.

一方、メインリレーの一方でオン固着が発生している場合は、図2(b)に示すように、メインリレーをオン制御しているときには、地絡抵抗は絶縁抵抗と終端抵抗との合成抵抗に等しいため、正極側、負極側とも低い値でバランスが取れる。しかしながら、メインリレーをオフ制御しているときには、オン固着が発生していない極の地絡抵抗は絶縁抵抗に等しく高い値となるが、オン固着が発生している極の値絡抵抗は、絶縁抵抗と終端抵抗との合成抵抗である低い値となる。 On the other hand, when on-stick occurs on one side of the main relay, as shown in FIG. 2B, when the main relay is on-controlled, the ground fault resistance is the combined resistance of the insulation resistance and the terminating resistance. Since it is equal to, both the positive electrode side and the negative electrode side can be balanced at a low value. However, when the main relay is off-controlled, the ground fault resistance of the pole where on-sticking does not occur becomes a value equal to the insulation resistance, but the terminating resistance of the pole where on-sticking occurs is insulated. It is a low value that is the combined resistance of the resistance and the terminating resistance.

このため、図3(b)に示すように、地絡抵抗によって分圧される正極と接地間、負極と接地間の電圧バランスが崩れ、固着している極側のVc1計測期間での電圧が、オフ制御のときに上昇するという特有の現象が生じる。上述のように、オフ制御のとき、メインリレーでオン固着が発生していない場合には、Vc1計測期間で得られる電圧値は、正極側、負極側とも小さくなるため、電圧値が上昇したときにはオン固着が発生していると判定することができる。 Therefore, as shown in FIG. 3B, the voltage balance between the positive electrode and the ground and between the negative electrode and the ground, which is divided by the ground fault resistance, is lost, and the voltage in the Vc1 measurement period on the fixed electrode side is changed. , A peculiar phenomenon that it rises at the time of off control occurs. As described above, when the main relay is not stuck on during the off control, the voltage value obtained in the Vc1 measurement period becomes small on both the positive electrode side and the negative electrode side, so that when the voltage value rises, It can be determined that on-sticking has occurred.

そこで、本発明では、メインリレーのオフ制御時に、Vc1p、Vc1nのいずれかが上昇した場合にオン固着が発生したと判定する。このとき、上昇した側の極でオン固着が発生したと固着箇所を特定するようにしてもよい。 Therefore, in the present invention, it is determined that on-sticking has occurred when either Vc1p or Vc1n rises during the off control of the main relay. At this time, the sticking point may be specified when the on-sticking occurs at the pole on the raised side.

メインリレーのオン固着検出は、例えば、地絡検出装置100の制御装置120が行なうようにする。図4は、メインリレーのオン固着検出の手順を示すフローチャートである。ここで、地絡検出装置100の制御装置120は、外部制御装置200からメインリレーのオン制御情報、オフ制御情報を取得できるものとする。 For example, the control device 120 of the ground fault detection device 100 performs the on-stick detection of the main relay. FIG. 4 is a flowchart showing a procedure for detecting on-sticking of the main relay. Here, it is assumed that the control device 120 of the ground fault detection device 100 can acquire the on control information and the off control information of the main relay from the external control device 200.

地絡検出装置100の制御装置120は、メインリレーがオン制御の状態で(S101)、地絡検出のための計測サイクルを実行し、V0、Vc1p、Vc1nを計測する(S102)。また、メインリレーがオフ制御の状態で(S103)、地絡検出のための計測サイクルを実行し、V0、Vc1p、Vc1nを計測する(S104)。 The control device 120 of the ground fault detection device 100 executes a measurement cycle for ground fault detection while the main relay is on-controlled (S101), and measures V0, Vc1p, and Vc1n (S102). Further, while the main relay is off-controlled (S103), a measurement cycle for detecting a ground fault is executed, and V0, Vc1p, and Vc1n are measured (S104).

そして、両計測の間で、高電圧バッテリ300の電圧に変動があったかどうかを判定する(S105)。高電圧バッテリ300の電圧に変動があると、Vc1の測定値に影響を与えるからである。この判定は、高電圧バッテリ300の電圧に相当する測定値V0を参照して行なうことができる。 Then, it is determined whether or not the voltage of the high voltage battery 300 has fluctuated between the two measurements (S105). This is because if the voltage of the high voltage battery 300 fluctuates, it affects the measured value of Vc1. This determination can be made with reference to the measured value V0 corresponding to the voltage of the high voltage battery 300.

この結果、高電圧バッテリ300の電圧に所定の基準を超える変動があった場合には(S105:Yes)、Vc1の増減の判定精度が落ちるため、今回の測定値を用いたオン固着判定をキャンセルする(S106)。ただし、高電圧バッテリ300の電圧変動量を用いてVc1p、Vc1nの値を補正することで、今回のオン固着判定を行なうようにしてもよい。 As a result, if the voltage of the high-voltage battery 300 fluctuates beyond a predetermined standard (S105: Yes), the accuracy of determining the increase / decrease of Vc1 is lowered, so the on-stick determination using the measured value this time is cancelled. (S106). However, the on-sticking determination may be performed this time by correcting the values of Vc1p and Vc1n using the voltage fluctuation amount of the high-voltage battery 300.

高電圧バッテリ300の電圧に変動がなかった場合には(S105:No)、Vc1p、Vc1nとも、オフ制御時が小さくなっているかを判定する(S107)。その結果、Vc1p、Vc1nとも、オフ制御時が小さくなっている場合(S107:Yes)には、オン固着は発生していないと判定する(S108)。 When there is no fluctuation in the voltage of the high-voltage battery 300 (S105: No), it is determined whether the off control time is small for both Vc1p and Vc1n (S107). As a result, when both Vc1p and Vc1n are small at the time of off control (S107: Yes), it is determined that on-sticking has not occurred (S108).

一方、Vc1p、Vc1nのいずれかがオフ制御時で小さくなっていない場合(S107:No)には、オン固着が発生していると判定する(S109)。このとき、Vc1p、Vc1nのうち、オフ制御時に大きくなっている方の極側のメインリレーでオン固着が発生していると判定してもよい。 On the other hand, when either Vc1p or Vc1n is not reduced at the time of off control (S107: No), it is determined that on-sticking has occurred (S109). At this time, it may be determined that the main relay on the pole side of Vc1p and Vc1n, which is larger during the off control, is stuck on.

メインリレーのオン固着の判定は、外部制御装置300が行なってもよい。この場合、メインリレーのオンオフ制御を行なうとともに、それぞれの状態におけるVc1p、Vc1nの値を地絡検出装置100の制御装置120から取得すればよい。高電圧バッテリ300の電圧変動は、V0を地絡検出装置100の制御装置120から取得して判定してもよいし、別途測定した高電圧バッテリ300の電圧を取得して判定してもよい。 The external control device 300 may determine whether the main relay is stuck on. In this case, the main relay may be turned on and off, and the values of Vc1p and Vc1n in each state may be acquired from the control device 120 of the ground fault detection device 100. The voltage fluctuation of the high-voltage battery 300 may be determined by acquiring V0 from the control device 120 of the ground fault detection device 100, or by acquiring the voltage of the high-voltage battery 300 separately measured.

100 地絡検出装置
120 制御装置
200 外部制御装置
300 高電圧バッテリ
301 正極側電源ライン
302 負極側電源ライン
321 正極側メインリレー
322 負極側メインリレー
360 負荷
100 Ground fault detection device 120 Control device 200 External control device 300 High voltage battery 301 Positive electrode side power supply line 302 Negative electrode side power supply line 321 Positive electrode side main relay 322 Negative electrode side main relay 360 Load

Claims (5)

接地との間に終端抵抗を有する負荷との接続状態がメインリレーで切り換えられる、非接地の高電圧バッテリと接続し、前記高電圧バッテリが設けられた系の地絡を検出する地絡検出装置であって、
フライングキャパシタとして動作する検出用コンデンサと、
前記高電圧バッテリと、前記高電圧バッテリの正極と接地との絶縁抵抗と、前記検出用コンデンサとを含んだ正極測定経路と、前記高電圧バッテリと、前記高電圧バッテリの負極と接地との絶縁抵抗と、前記検出用コンデンサとを含んだ負極測定経路と、を切り換えるスイッチ群と、
前記正極測定経路および前記負極測定経路のそれぞれについて、前記メインリレーがオンに切換制御されているときの、前記検出用コンデンサの充電電圧であるオン時電圧と、前記メインリレーがオフに切換制御されているときの、前記検出用コンデンサの充電電圧であるオフ時電圧とを比較し、いずれかの測定経路において、前記オフ時電圧が前記オン時電圧よりも大きい場合に、前記メインリレーでオン固着が発生したと判定する制御部と、
を備えたことを特徴とする地絡検出装置。
A ground fault detection device that detects a ground fault in a system provided with the high voltage battery by connecting to a non-grounded high voltage battery whose connection state with a load having a terminating resistor is switched by the main relay. And
A detection capacitor that operates as a flying capacitor,
Insulation of the high voltage battery, the positive electrode measurement path including the insulation resistance between the positive electrode and the ground of the high voltage battery, and the detection capacitor, the high voltage battery, and the negative electrode and the ground of the high voltage battery. A group of switches for switching between a resistor and a negative electrode measurement path including the detection capacitor, and
For each of the positive electrode measurement path and the negative electrode measurement path, the on-time voltage, which is the charging voltage of the detection capacitor when the main relay is switched on, and the main relay are switched off and controlled. When the off voltage, which is the charging voltage of the detection capacitor, is compared with the off voltage, and the off voltage is larger than the on voltage in any of the measurement paths, the main relay is fixed on. And the control unit that determines that
A ground fault detection device characterized by being equipped with.
前記制御部は、前記オフ時電圧が前記オン時電圧よりも大きい極側に配置されたメインリレーでオン固着が発生したと判定することを特徴とする請求項1に記載の地絡検出装置。 The ground fault detecting device according to claim 1, wherein the control unit determines that on-sticking has occurred in a main relay arranged on the pole side where the off voltage is larger than the on voltage. 前記スイッチ群は、さらに、前記高電圧バッテリと、前記検出用コンデンサとを含み、絶縁抵抗を含まない電源測定経路に切り換え可能であり、
前記制御部は、前記電源測定経路について、前記メインリレーがオンに切換制御されているときの前記検出用コンデンサの充電電圧であるオン時電源電圧と、前記メインリレーがオフに切換制御されているときの、前記検出用コンデンサの充電電圧であるオフ時電源電圧とで所定の基準を超える変動があった場合には、前記比較を行なわないことを特徴とする請求項1または2に記載の地絡検出装置。
The switch group can be switched to a power supply measurement path that further includes the high voltage battery and the detection capacitor and does not include an insulation resistor.
The control unit switches and controls the on power supply voltage, which is the charging voltage of the detection capacitor when the main relay is switched on, with respect to the power supply measurement path, and the main relay is switched off. The place according to claim 1 or 2, wherein if the off-time power supply voltage, which is the charging voltage of the detection capacitor, fluctuates beyond a predetermined reference, the comparison is not performed. Entanglement detector.
前記制御部は、前記メインリレーの切換制御情報を上位装置である外部制御装置から取得することを特徴とする請求項1〜3のいずれか1項に記載の地絡検出装置。 The ground fault detection device according to any one of claims 1 to 3, wherein the control unit acquires switching control information of the main relay from an external control device which is a higher-level device. 非接地の高電圧バッテリと、
接地との間に終端抵抗を有する負荷と、
前記高電圧バッテリと前記負荷との接続状態を切り換えるメインリレーと、
前記メインリレーの切換制御を行なう外部制御装置と、
前記高電圧バッテリと接続し、前記高電圧バッテリが設けられた系の地絡を検出する地絡検出装置とを備えた電源システムであって、
前記地絡検出装置は、
フライングキャパシタとして動作する検出用コンデンサと、
前記高電圧バッテリと、前記高電圧バッテリの正極と接地との絶縁抵抗と、前記検出用コンデンサとを含んだ正極測定経路と、前記高電圧バッテリと、前記高電圧バッテリの負極と接地との絶縁抵抗と、前記検出用コンデンサとを含んだ負極測定経路と、を切り換えるスイッチ群と、
前記正極測定経路および前記負極測定経路のそれぞれについて、前記メインリレーがオンに切換制御されているときの、前記検出用コンデンサの充電電圧であるオン時電圧と、前記メインリレーがオフに切換制御されているときの、前記検出用コンデンサの充電電圧であるオフ時電圧とを比較し、いずれかの測定経路において、前記オフ時電圧が前記オン時電圧よりも大きい場合に、前記メインリレーでオン固着が発生したと判定する制御部と、
を備えたことを特徴とする電源システム。
With a non-grounded high voltage battery,
With a load that has a terminating resistor between ground and
A main relay that switches the connection state between the high-voltage battery and the load,
An external control device that controls switching of the main relay and
A power supply system including a ground fault detection device that is connected to the high voltage battery and detects a ground fault in a system provided with the high voltage battery.
The ground fault detection device,
A detection capacitor that operates as a flying capacitor,
Insulation of the high voltage battery, the positive electrode measurement path including the insulation resistance between the positive electrode and the ground of the high voltage battery, and the detection capacitor, the high voltage battery, and the negative electrode and the ground of the high voltage battery. A group of switches for switching between a resistor and a negative electrode measurement path including the detection capacitor, and
For each of the positive electrode measurement path and the negative electrode measurement path, the on-time voltage, which is the charging voltage of the detection capacitor when the main relay is switched on, and the main relay are switched off and controlled. When the off voltage, which is the charging voltage of the detection capacitor, is compared with the off voltage, and the off voltage is larger than the on voltage in any of the measurement paths, the main relay is fixed on. And the control unit that determines that
A power supply system characterized by being equipped with.
JP2017021276A 2017-02-08 2017-02-08 Ground fault detector, power supply system Active JP6836411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017021276A JP6836411B2 (en) 2017-02-08 2017-02-08 Ground fault detector, power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017021276A JP6836411B2 (en) 2017-02-08 2017-02-08 Ground fault detector, power supply system

Publications (2)

Publication Number Publication Date
JP2018127086A JP2018127086A (en) 2018-08-16
JP6836411B2 true JP6836411B2 (en) 2021-03-03

Family

ID=63171896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017021276A Active JP6836411B2 (en) 2017-02-08 2017-02-08 Ground fault detector, power supply system

Country Status (1)

Country Link
JP (1) JP6836411B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109116227A (en) * 2018-09-21 2019-01-01 深圳市科列技术股份有限公司 A kind of the main relay detection circuit and detection method of battery management system
JP6676200B1 (en) * 2019-01-30 2020-04-08 マレリ株式会社 RELAY DEVICE AND RELAY DEVICE CONTROL METHOD

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4082676B2 (en) * 2003-05-29 2008-04-30 株式会社デンソー Electric leakage detection device inspection system
JP6518430B2 (en) * 2014-11-26 2019-05-22 矢崎総業株式会社 Insulation status detection device
JP2016130706A (en) * 2015-01-15 2016-07-21 矢崎総業株式会社 Ungrounded power supply insulation detection device
JP6341145B2 (en) * 2015-06-05 2018-06-13 トヨタ自動車株式会社 Power system

Also Published As

Publication number Publication date
JP2018127086A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
CN110018349B (en) Ground fault detection device
JP6633585B2 (en) Ground fault detector
EP3792639B1 (en) Ground fault detection apparatus
JP6625586B2 (en) Ground fault detection device
US9255957B2 (en) Earth fault detection circuit and power source device
JP6698599B2 (en) Ground fault detector
US10180459B2 (en) Monitoring system for detecting occurrence of leakage current and/or relay short-circuit condition in an electrical system
US10330716B2 (en) Earth fault detector with flying capacitor
US10379150B2 (en) Earth fault detector
JP6518430B2 (en) Insulation status detection device
JP7039541B2 (en) Ground fault detector
CN110895312B (en) Ground fault detection device
US10205315B2 (en) Fault detection system
JP6804320B2 (en) Ground fault detector, power supply system
CN112816903A (en) Ground fault detection device
JP6836411B2 (en) Ground fault detector, power supply system
JP2021050963A (en) Insulation resistance detection circuit
JP6918428B2 (en) Ground fault detector
JP6326024B2 (en) Voltage detection circuit and voltage detection method
US20230236254A1 (en) Battery voltage measurement circuit
JP7346004B2 (en) Ground fault detection device
JP2019184388A (en) Ground fault detector
US11764590B2 (en) Battery management system for adjusting cell balancing current
JP7171412B2 (en) Ground fault detector

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180815

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210205

R150 Certificate of patent or registration of utility model

Ref document number: 6836411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150