WO2022079855A1 - 分布型位置検知ロープおよび分布型位置検知システム - Google Patents

分布型位置検知ロープおよび分布型位置検知システム Download PDF

Info

Publication number
WO2022079855A1
WO2022079855A1 PCT/JP2020/038936 JP2020038936W WO2022079855A1 WO 2022079855 A1 WO2022079855 A1 WO 2022079855A1 JP 2020038936 W JP2020038936 W JP 2020038936W WO 2022079855 A1 WO2022079855 A1 WO 2022079855A1
Authority
WO
WIPO (PCT)
Prior art keywords
position detection
distributed position
detection rope
distributed
rope
Prior art date
Application number
PCT/JP2020/038936
Other languages
English (en)
French (fr)
Inventor
欣増 岸田
良昭 山内
淳一 川端
昭治 瀬尾
英基 永谷
道男 今井
行洋 浜田
一光 渡邊
Original Assignee
ニューブレクス株式会社
鹿島建設株式会社
西日本電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニューブレクス株式会社, 鹿島建設株式会社, 西日本電線株式会社 filed Critical ニューブレクス株式会社
Priority to US18/044,165 priority Critical patent/US20230332931A1/en
Priority to JP2022556773A priority patent/JP7450240B2/ja
Priority to PCT/JP2020/038936 priority patent/WO2022079855A1/ja
Priority to EP20957684.2A priority patent/EP4230954A4/en
Publication of WO2022079855A1 publication Critical patent/WO2022079855A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/18Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/14Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable
    • D07B1/145Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable comprising elements for indicating or detecting the rope or cable status
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2301/00Controls
    • D07B2301/55Sensors
    • D07B2301/5531Sensors using electric means or elements
    • D07B2301/5577Sensors using electric means or elements using light guides

Definitions

  • This application relates to a distributed position detection rope and a distributed position detection system.
  • DFOS Distributed Fiber Optic Sensing
  • optical fiber monitoring technology has great expectations from the viewpoint of long distance and long life.
  • deformation measurement using an optical fiber the basic technique in the civil engineering industry dealing with the above equipment is one-dimensional strain on a line that can be directly measured.
  • what is needed in the field is a three-dimensional displacement and there is a gap.
  • the distributed optical fiber sensor there is a strain measurement example for the steel girder of the Tadeusz Mazowiecki bridge on the Wislok river, which is one of the largest suspension bridges in Tru.
  • This bridge has the second highest height as a guide tower in Poland, and is fixed to an A-shaped guide tower with a height of 108 m with 64 iron cables with a total cable length of 482 m.
  • the distributed optical fiber sensor is used for measuring the test strain of a steel girder, which is installed on the north side within a river width of 150 m and has a total measurement length of 600 m (see, for example, Non-Patent Document 3). ..
  • a shape sensing method using strain data of optical fibers provided around the cable evaluates the shape by solving the equation of a moving frame having a coefficient including the curvature and the torsion rate obtained from the strain measurement.
  • the evaluation error is formulated by an established differential equation (see, for example, Non-Patent Document 4).
  • the plurality of optical fibers spirally embedded in the tubular mounting layer on the outer periphery of the shape having a circular cross section are bent and twisted by the external pressure applied to the shape. Or, it is deformed by elongation deformation, but at this time, after the deformation of the shape by utilizing the frequency change or phase change of Brillouin scattering or Rayleigh scattering, which is the backward scattered light of the pulsed laser light incident on the optical fiber.
  • a method for measuring the three-dimensional position of the above has been proposed, its application to mass-produced products is not mentioned (see, for example, Patent Document 1).
  • the fiber core is a mode coupling between the fiber cores.
  • the above optical fiber is physically associated with the object, and the strain of a portion of the optical fiber associated with the object is OFDR using one or more Rayleigh scattering patterns for that portion. Determined by (Optical Frequency Domain Reflectometry). Then, the position or shape of the object is determined by the determined strain (see, for example, Patent Document 2).
  • the optical length is detected at any core in the multi-core fiber, down to a point on the multi-core fiber. Its location or / and direction indication is determined by a point on the multi-core fiber based on the detected change in optical length. The accuracy of the determination is 0.5% or less of the multi-core fiber length (see, for example, Patent Document 3).
  • Non-Patent Document 1 or Non-Patent Document 2 Since the optical fiber sensor used in Non-Patent Document 1 or Non-Patent Document 2 is not modularized and is manufactured on-site, there is a problem in response to a request for widespread use. Moreover, since it is not an industrial product, its reliability as a device has not been established.
  • Non-Patent Document 3 has a problem that torsion measurement cannot be performed in the case of a mass-produced product. There is also a problem that the three-dimensional displacement of the object to be measured cannot be measured.
  • optical fiber sensor used in Patent Documents 2 and 3 has a problem that the measurement accuracy at a short distance has been confirmed, but the application to a long scale has not been possible.
  • the present application has been made to solve the above-mentioned problems, and it is possible to measure an object to be measured even if the object is a long scale, and to measure a three-dimensional displacement. Further, it is possible to modularize the optical fiber sensor, and further, it is an object of the present invention to provide a distributed position detection rope capable of twist measurement even in the case of mass-produced products.
  • the distributed position detection rope disclosed in the present application is a distributed position detection rope.
  • An optical fiber for measuring a physical quantity a plurality of tensile strength bodies arranged so as to sandwich the optical fiber, and the optical fiber and the tensile strength body surrounding the optical fiber and the tensile strength body.
  • a sheath material that integrates, and has a basic optical element, Central axis In a cross section that is spirally wound in the axial direction of the central axis at a predetermined pitch and orthogonal to the axis of the central axis, it has the basic optical elements arranged on the first diameter at predetermined intervals.
  • a cylindrical internal sheath layer having a first optical element and provided coaxially with the central shaft body on the outside of the central shaft body.
  • a cylindrical outer sheath layer provided coaxially with the central shaft body, It is equipped with.
  • the distributed position detection rope disclosed in the present application it is possible to measure an object to be measured even if the object is a long scale, and it is possible to measure a three-dimensional displacement, and an optical fiber. It is possible to provide a distributed position detection rope that can modularize the sensor and also enables twist measurement even in the case of mass-produced products.
  • FIG. It is a figure for demonstrating an example of the optical element of the distributed position detection rope which concerns on Embodiment 1.
  • FIG. It is sectional drawing for demonstrating an example of the distributed position detection rope which concerns on Embodiment 1.
  • FIG. It is sectional drawing for demonstrating an example of the distributed position detection rope which concerns on Embodiment 2.
  • FIG. It is a conceptual diagram for demonstrating an example of the distributed position detection system which concerns on Embodiment 3.
  • FIG. It is a conceptual diagram for demonstrating the structure of the skid drum of the distributed position detection system which concerns on Embodiment 3.
  • FIG. It is a figure for demonstrating the initial posture measurement method of the distributed position detection system which concerns on Embodiment 3.
  • FIG. 1 It is a figure for demonstrating an example of the strain data of the measured object measured by the distributed position detection system which concerns on Embodiment 3.
  • FIG. It is a figure which showed an example of the torsional data of the measured object measured by the distributed position detection system which concerns on Embodiment 3.
  • FIG. 1
  • Embodiment 1 The distributed position detection rope of the first embodiment will be described with reference to the following figures.
  • the distributed position detection rope of the first embodiment was developed with one of the purposes of using a system using an optical fiber for monitoring bridges, tunnels, roads, etc., which are social infrastructures. be. Therefore, the structure of this distributed position detection rope will be described below.
  • a basic optical element 5 which is a main component having a sensing function of the distributed position detection rope 100 of the first embodiment and is a structure including an optical fiber 1, will be described with reference to FIG. 1.
  • the elliptical surface shown in the foreground shows a cross section orthogonal to the longitudinal direction of the basic optical element 5.
  • a V-shaped notch is formed at the upper and lower ends of the central portion of this elliptical surface in consideration of taking out the optical fiber, and is shown by a cross-sectional shape orthogonal to the longitudinal direction of the elliptical columnar shape.
  • the feature is that the outer shape is like a spectacle frame.
  • a single-mode optical fiber 1 having an increased bending strength is arranged at the center position thereof for measuring physical quantities such as strain of the object to be measured.
  • a tensile strength body 2 made of Kevlar fiber (KFRP: Kevlar Fiber Reinforced Plastics) is arranged substantially line-symmetrically at positions on both the left and right sides of the optical fiber 1 at a distance from the optical fiber 1.
  • the optical fiber 1 is pretensioned in advance by the tensile strength body 2.
  • the parts other than the optical fiber 1 and the tensile strength body 2 are sheath materials for the basic optical element using FRPE (here, FRPE is an abbreviation for Frame Retardant PE (polyethylene)) which is a flame retardant material. Covered by 3.
  • FRPE is an abbreviation for Frame Retardant PE (polyethylene)
  • the surface of the sheath of the basic optical element 5 has an uneven shape portion 4 at intervals of substantially equal pitch. (In FIG. 1, the portion is shown on the upper outer surface portion).
  • FIG. 2 shows an example of the distributed position detection rope 100 of the first embodiment.
  • a hollow pipe 7 is provided at the center of the axis of the distributed position detection rope 100.
  • the inside of the tubular inner sheath layer 8a which is the outer layer of the pipe 7 arranged on the outer periphery thereof, is made of steel in order to protect the optical fiber from tension applied at the time of laying or expansion / contraction due to temperature change.
  • the tension member 6 made of stranded wire is installed linearly along the axial direction, and as shown in FIG. 2, in the cross section orthogonal to the axis of the distributed position detection rope 100, it faces the center.
  • the tension members 6 are arranged in pairs (two) so as to face each other at positions separated by an angle of 180 degrees from the central angle.
  • the tension member 6 does not necessarily have to have a stranded wire structure, and may have a non-twisted structure.
  • this tension member 6 By devising the material of this tension member 6 (for example, using KFRP), there is an effect that elastic deformation can be maintained even if some elongation is applied. Further, if the Young's modulus of the tension member can be reduced, the optical fiber 1 is likely to be distorted due to the deformation of the distributed position detection rope 100, which has the effect of increasing the sensitivity of the optical sensor. be.
  • tubular inner sheath layer 8b which is an outer layer of the inner sheath layer 8a, which is arranged on the outer periphery of the inner sheath layer 8a
  • the structure is exactly the same as that of the basic optical element 5.
  • three 5s are spirally wound and installed in the axial direction (these three basic optical elements are collectively referred to as the first optical element 5a).
  • they are arranged on the same diameter at predetermined predetermined intervals.
  • the basic optical element 5 having exactly the same structure as the basic optical element 5 is described.
  • these three basic optical elements are collectively referred to as the second optical element 5b), and are distributed as shown in FIG.
  • the cross section orthogonal to the axis of the mold position detection rope 100 they are arranged on the same diameter at predetermined predetermined intervals.
  • the materials of the inner sheath layers 8a and 8b and the outer sheath layer 9 are PVC or the like, for example, black ones are used.
  • the spiral winding direction of the second optical element 5b is opposite to the spiral winding direction of the first optical element 5a. It is installed so that it becomes.
  • the winding pitches of the first optical element and the second optical element are the same.
  • These optical elements are supported by a support (sheath) (not shown) so that the set position does not change.
  • the material of the sheath material 3 for the element of the basic optical element 5 and the materials of the inner sheath layers 8a and 8b and the outer sheath layer 9 of the distributed position detection rope 100 are different from each other.
  • the basic optical element 5 can be easily taken out.
  • a color band 10 colored in a color different from the color of the outer sheath layer (for example, yellow) is provided on a part of the outer peripheral surface of the cable along the longitudinal direction (axial direction) of the distributed position detection rope 100. There is. Thereby, when the distributed position detection rope is installed at the site, the installation direction (installation state) of the distributed position detection rope 100 can be easily confirmed.
  • the basic optical element is configured as described above, the optical fiber as a sensor can be modularized in the form of the basic optical element, which enables mass production of the distributed position detection rope.
  • Embodiment 2 The distributed position detection rope 101 of the second embodiment will be described below with reference to FIG.
  • the distributed position detection rope 101 of the second embodiment has a solid structure at the center of the shaft and a larger outer diameter than the distributed position detection rope 100 of the first embodiment. I'm making it smaller. This has the effect that fiber breakage during cable bending is less likely to occur.
  • the central portion of the shaft has a solid structure made of a multi-layered steel wire, the tension member described in the first embodiment is not used in the second embodiment.
  • the basic optical element 5, which is the main component, is almost the same as the first embodiment except for the material of the tensile strength body (using steel wire) and the size of the outer diameter (reducing the diameter). Explanation is omitted.
  • the central axis core 11 is composed of a multi-layered steel wire including a T fiber 12 for temperature measurement.
  • the first optical element 5a detects the distributed position in the inner sheath layer 8b as in the first embodiment.
  • the second optical element 5b is spirally arranged in the axial direction of the rope 101, and the second optical element 5b is spirally arranged in the outer sheath layer 9 in the axial direction of the distributed position detection rope 101 and the first optical element.
  • the point that the 5a and the second optical element 5b are wound in opposite directions to each other is the same as that of the first embodiment.
  • the optical fiber for measurement is the basic optical element 5 together with the two tensile strength bodies provided on both sides thereof. Since it is arranged in the basic optical element 5 as a main component, mass production is easy.
  • Embodiment 3 Next, with respect to the distributed position detection system 200 when the distributed position detection rope 100 of the first embodiment or the distributed position detection rope 101 of the second embodiment is used in an actual field, FIGS. 4, 5, etc. Will be described using.
  • FIG. 4 is a model diagram for explaining the distributed position detection system 200 when used in the field, using the distributed position detection rope 100 of the first embodiment as an example.
  • the measurement data due to the backward scattered light due to the strain generated in the object to be measured measured by the distributed position detection rope 100 is transferred to the drum skid 14 for winding the distributed position detection rope 100.
  • the measured object After being transmitted to the 8-core connection cable 13 that transmits eight types of signals via the two optical connection boxes (not shown) provided, which will be described later, the measured object is the connection destination of the connection cable 13. It is sent to a measuring instrument 30 for measuring the strain of the body, and is subjected to arithmetic processing by the measuring instrument 30 to obtain the strain of the object to be measured.
  • the eight cores include those for the basic optical element described in the first embodiment, those for the T fiber described in the second embodiment, and those for the gyro sensor described later.
  • the distributed position detection rope 100 is lowered into the well by the handle 15 installed near the entrance of the well in conjunction with the rotation of the drum skid 14. , Installed in place.
  • an inclinometer 31 is installed at the entrance of the well in order to accurately install the distributed position detection rope 100 on the ground.
  • the distributed position detection rope 100 is sequentially lowered from the rope end 100a, which is the tip of the distributed position detection rope, into the inside of the well by using the weight 100b connected to the rope end 100a, and is predetermined. It is installed at the position of.
  • FIG. 4B is a side view of the drum skid 14, and as shown in the figure, the distributed position detection rope 100 and the connection cable 13 are provided in the axial direction around the rotation axis portion of the drum skid 14. It is being wound.
  • FIG. 5 is an explanatory diagram for explaining the detailed structure of the drum skid 14.
  • the drum skid 14 is a cylinder 14a for winding a distributed position detection rope 100, and a plurality of plates configured to intersect at a shaft portion for rotating the cylinder around an axis.
  • the drum skid 14 is composed of two optical junction boxes (termination box 50 and termination box 51) for relaying the signal measured by the distributed position detection rope 100 to the connection cable 13 for signal transmission.
  • FIG. 5B shows a side view of the drum skid 14 described above. As shown in FIG. 5B, a pair of plate-shaped supports 14b are provided on the left and right sides of the cylindrical body 14a. Note that FIG. 5B does not show components other than the drum skid 14, such as an optical junction box.
  • the distributed position detection rope 100 wound around the drum skid 14 is installed at the site, and the initial configuration required for measuring desired (predetermined, in other words, predetermined) data.
  • desired desired
  • the tip portion of the distributed position detection rope 100 pulled out from the upper portion of the drum skid 14 is located on the outer periphery of the arc stand 20 including an arc-shaped structure corresponding to a quarter of a circle.
  • it is moved to a predetermined position in the well through a wedge 22 for fixing a distributed position detection rope provided at the entrance portion of the well to be measured.
  • the distributed position detection rope 100 is provided with the plurality of rope retainers 21 provided in the arcuate portion and the distribution type position detection rope fixing wedge so that the position after the movement does not change.
  • the position is fixed.
  • a gyro sensor 32 for more accurate position detection at the time of position measurement is arranged inside the arcuate portion.
  • a distributed position detection rope posture adjuster 23 for position adjustment provided at the entrance portion of the well is used.
  • the installation position (direction with respect to the ground surface) of the distributed position detection rope 100 at the entrance of the well is finely adjusted.
  • the distributed position detection rope 100 is smoothly moved and quickly installed at a desired (predetermined, in other words, predetermined) measurement position.
  • a weight 100b is connected to the rope end 100a of the position detection rope 100.
  • the measurement position corresponding to the measured physical data such as the strain and temperature of the object to be measured measured by the optical element can be identified more accurately. It becomes possible to do.
  • FIG. 7A shows the measurement result of the amount of strain generated in the distributed position detection rope when the central portion of the distributed position detection rope for evaluation of 5 m is displaced.
  • the horizontal axis shows the distance (unit: m) from the reference position of the distributed position detection rope
  • the vertical axis shows the strain amount (unit: ⁇ ) generated in the distributed position detection rope.
  • the four curves shown in FIG. 7A are measurement data corresponding to the basic optical elements 5a-1, 5b-4, 5b-5, and 5b-6 of FIG. 7B, respectively.
  • the curve shown by the solid line in FIG. 7A is the measurement data of the basic optical element 5a-1 (arranged in the inner sheath layer 8b), and the curve shown by the broken line in FIG. 7A is (in the outer sheath layer 9). It is the measurement data of the basic optical element 5b-4 (arranged), and the curve shown by the dotted line in FIG. 7A is the measurement data of the basic optical element 5b-5 (arranged in the outer sheath layer 9) in FIG. 7A.
  • the curve shown by the alternate long and short dash line corresponds to the measurement data of the basic optical element 5b-6 (arranged in the outer sheath layer 9), respectively.
  • FIG. 7A three data of the basic optical elements 5b-4, 5b-5, and 5b-6 in the outer sheath layer in the first half section from the distance 0.4 m to the distance 2 m and the second half section from the distance 3 m to the distance 4.6 m.
  • Each shows a strain distribution of almost the same value, while the strain value of the basic optical element 5a-1 arranged in the inner sheath layer 8b in the above two sections and the basic placed in the outer sheath layer.
  • the relationship between the strain values of the optical elements 5b-4, 5b-5, and 5b-6 is opposite to each other. That is, it is shown that "twisting" occurs between the first half section and the second half section of the distributed position detection rope for evaluation.
  • FIG. 8 shows the relationship between the “rope position (indicated by the distance)” and the “torsion angle” generated in the evaluation distributed position detection rope obtained by using the measuring instrument 30 of the distributed position detection system. It is a figure which shows.
  • fixed support points at both ends of the distributed position detection rope for evaluation points having a distance of 0.4 m and a distance of 4.6 m.
  • the helix angle values are zero at these points. It can be seen that the helix angle of the distributed position detection rope roughly changes in a chevron shape.
  • the "twist" generated in the object to be measured can be measured through the strain measurement generated in the object to be measured. It turned out that it was possible to measure.
  • one basic optical element of the internal sheath layer is used to measure "twist", but the present invention is not limited to this, and two basic optical elements of the internal sheath layer are not used. If (at least one of them) is used, more accurate "torsion" measurement is possible.
  • a specific cross section of the distributed position detection rope (the coordinates of the cross section are x and y). Then, it is possible to evaluate the amount of bending occurring in each cross section along the longitudinal direction of the distributed position detection rope), that is, the surface determined in the x direction and the y direction). From the above, it can be seen that the distributed position detection system can measure the three-dimensional deformation of the object to be measured.
  • 1 Optical fiber 2 Tensile body, 3 Sheath material, 4 Concavo-convex shape part, 5, 5a-1, 5b-4, 5b-5, 5b-6 Basic optical element, 5a 1st optical element, 5b 2nd optical Element, 6 tension member, 7 pipe, 8a, 8b internal sheath layer, 9 external sheath layer, 10 color band, 11 central axis core, 12 T fiber, 13 connection cable, 14 drum skid, 14a cylindrical body, 14b plate-shaped support Body, 15 handles, 16 stoppers, 17 jumper wires, 20 arc stands, 21 rope holders, 22 distributed position detection rope fixing wedges, 23 distributed position detection rope attitude adjusters, 30 measuring instruments, 31 tilt meters, 32 gyro sensors , 40 Drum skid support, 41 wheels, 50, 51 termination box, 100, 101 distributed position detection rope, 100a rope end, 100b weight, 200 distributed position detection system

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

分布型位置検知ロープ(100、101)は、光ファイバ(1)と、光ファイバ(1)を挟む抗張力体(2)と、光ファイバ(1)と抗張力体(2)とを覆うシース材(3)と、を持つ基本光エレメント(5)、分布型位置検知ロープ軸の直交断面で、同径位置に配置され、かつ上記軸の軸方向に所定ピッチで螺旋状に巻回された基本光エレメント(5)を複数配置した第1の光エレメント(5a)を持つ同軸状に設けた筒状の内部シース層(8b)、上記軸の直交断面で同径位置に配置され、かつ第1の光エレメント(5a)の基本光エレメント(5)とは異なる敷設角で上記軸方向に螺旋状に巻回された基本光エレメント(5)を複数配置した第2の光エレメント(5b)を持ち、内部シース層(8b)の外側に同軸状に設けた筒状の外部シース層(9)、を備えた。

Description

分布型位置検知ロープおよび分布型位置検知システム
 本願は、分布型位置検知ロープおよび分布型位置検知システムに関わる。
 分布型光ファイバセンシング(DFOS:Distributed Fiber Optic Sensing)技術が実用化に向けて進展しつつある。本技術は、変形、温度、音波、圧力など、多岐に亘って発展しており、本技術の現場への適用についても、実績が積み上げられつつある。
 一方、社会インフラである橋梁、トンネル、道路などの大規模建設物に関わる技術は、数10年前にほぼ完成しているが、これらの社会インフラに関わる設備は、老朽化が進んでおり、これらの老朽化した設備を如何に維持してゆくかは、大きな社会問題となっている。
 このような設備の維持に関しては、光ファイバによる監視技術が、長距離、長寿命の視点から、大きな期待を持たれている。
 特に、光ファイバによる変形計測については、上記設備を扱う土木業界における基礎技術は、直接計測することのできる、線上の1次元歪である。しかしながら、現場で必要とされるのは、3次元の変位であり、ギャップがある。
 これまでに開発された、光ファイバによる監視技術として、以下の技術が挙げられる。
 まず、トンネル掘削に伴う地山および先受け鋼管の挙動を調べるために、PPP-BOTDA(Pulse-PrePump Brillouin Optical Time Domain Analysis)方式による超長尺先受け鋼管の光ファイバひずみ計測手法が開発されている(例えば、非特許文献1参照)。この手法を用いることにより、距離分解能2cmまでの計測が可能となった。
 また、スイスのモンテリ地下研究所で実施中の実スケール実証実験では、母岩と人工バリアシステム(EBS: engineered barrier system)における熱・水・応力の連成挙動(THM:thermo-hydro-mechanical)の調査・検証のために、オパリナス粘土岩中での1:1スケールの多数熱試験が行われているが、数年という長期間にわたるこの連続モニタ試験に、高分解能(空間分解能2cm)の分布型光ファイバモニタシステムが使用されている(例えば、非特許文献2参照)。
 また、分布型光ファイバセンサの適用例として、ポーランドにおける最大の吊り橋の1つであるWislok川のTadeusz Mazowiecki橋の鋼製の桁についてのひずみ計測例がある。この橋は、ポーランドにおける案内塔としては2番目の高さを持ち、108m高さのA形状の案内塔に、ケーブル総延長482mの64本の鉄製ケーブルで固定されている。分布型光ファイバセンサは、川幅150m内の北側に設けられた、全計測長が600mになる、鋼製の桁の試験的なひずみの計測に用いられている(例えば、非特許文献3参照)。
 また、長距離ケーブルの形状計測について、ケーブルの周りに設けられた光ファイバのひずみデータを利用した形状センシング法が提案されている。この方法は、ひずみ計測から得た曲率と捩り率を含む係数をもつ移動フレームの方程式を解くことで、その形状を評価するものである。この手法においては、評価誤差が確立微分方程式によって公式化されている(例えば、非特許文献4参照)。
 また、円形状断面をもつ形状体の外周の筒状取付層に、螺旋状に埋め込まれた複数の光ファイバは、この形状体に負荷される外圧により、この形状体に発生した、曲げ、ねじり、あるいは伸び変形によって変形するが、この際、光ファイバに入射したパルスレーザ光の後方散乱光である、ブリルアン散乱またはレイリー散乱の周波数変化、あるいは位相変化を利用して、前記形状体の変形後の3次元位置を計測する手法が提案されているが、量産品への適用については触れられていない(例えば、特許文献1参照)。
 また、2つ以上の単一コアを持つ光ファイバ、あるいは2以上のコアを持つマルチコア光ファイバによる位置とセンシングの計測器において、いずれの光ファイバも、ファイバコアは、ファイバコア間のモードカップリングを減少させるために、可能な限り最小距離で空間的に分離されているものが提案されている。この計測器において、上記の光ファイバは対象物に対して物理的に関連づけられており、対象物に関連する光ファイバの一部分のひずみは、その部分についての1以上のレイリー散乱パターンを用いたOFDR(Optical Frequency Domain Reflectometry)によって決定される。そして、この決定されたひずみにより、対象物の位置、あるいは形状が決まる(例えば、特許文献2参照)。
 さらに、マルチコアファイバによる形状計測に関する精密測定方法および装置が提案されている。この方法および装置では、光学的長さが、マルチコアファイバ上の一点に至るまで、マルチコアファイバ内のどのコアでも検出される。その場所または/および方向指示は、光学長の検出変化を基にした、マルチコアファイバ上の点で決定される。その決定の正確度は、マルチコアファイバ長の0.5%以下である(例えば、特許文献3参照)。
淡路 他、「PPP-BOTDA方式光ファイバ計測による超長尺先受け鋼管のひずみ挙動」、土木学会第67回年次学術講演会(平成24年9月)、VI-022、pp.43-44 K.Kishida, et al., "High resolution fibre-optic monitoring system for the FE Experiment in Mont Terri", Clay Conference 2015 (6th International conference), Brussel, March 23-26, 2015, P-16-07 R.Sienko, et al.,"SUSPENSION BRIDGE DEFORMATION MEASUREMENTS WITH DISTRIBUTED FIBER OPTIC SENSORS DFOS", Hybrid Bridges, Wroclaw(Poland),29-30 November,2018 K.Nishiguchi, et al., "Error analysis for 3D shape sensing by fiber-optic distributed sensors", Proceedings of the 49th ISCIE International Symposium on Stochastic Systems Theory and Its Applications, Hiroshima, Nov.3-4, 2017
国際公開2014/083989号 米国特許出願公開第2008/0212082号明細書 米国特許出願公開第2011/0109898号明細書
 非特許文献1、あるいは非特許文献2に用いられている光ファイバセンサは、モジュール化されておらず、現場で製作されているため、多用途へ普及させたい要望に対して課題がある。また、工業製品ではないため、装置としての信頼性が確立されているわけではない。
 また、非特許文献3に示された光ファイバセンサは、量産品の場合には、ねじり計測ができないという問題がある。また、被測定対象物について、3次元の変位を計測することができないという問題もある。
 さらに、特許文献2、3に用いられている光ファイバセンサは、短距離での計測精度は確認されているが、長尺度への応用はできていないという問題がある。
 本願は、上記のような問題点を解決するためになされたものであって、被測定対象物について、対象物が長尺度のものであっても測定が可能で3次元の変位を計測することができ、また、光ファイバセンサのモジュール化が可能で、さらに、量産品の場合にも、ねじり計測が可能な分布型位置検知ロープを提供することを目的とする。
 本願に開示される分布型位置検知ロープは、
物理量を計測する光ファイバと、この光ファイバと間隔を置き、前記光ファイバを挟むように配置された複数の抗張力体と、前記光ファイバおよび前記抗張力体を取り囲んで前記光ファイバと前記抗張力体とを一体化させたシース材と、を有する基本光エレメント、
中心軸体、
前記中心軸体の軸方向に所定のピッチで螺旋状に巻回され、前記中心軸体の軸に直交する断面では、第1の径上に所定の間隔で配置された前記基本光エレメントを持つ第1の光エレメントを有し、前記中心軸体の外側に前記中心軸体と同軸状に設けられた筒状の内部シース層、
前記中心軸体の軸方向に、前記第1の光エレメントとは異なる方向で螺旋状に巻回され、前記中心軸体の軸に直交する断面では、第1の径とは異なる第2の径上に所定の間隔で配置され、かつ、前記第1の光エレメントの基本エレメントとは敷設角が異なる前記基本光エレメントを持つ第2の光エレメントを有し、前記内部シース層の外側に配置され前記中心軸体と同軸状に設けられた筒状の外部シース層、
を備えたものである。
 本願に開示される分布型位置検知ロープによれば、被測定対象物について、対象物が長尺度のものであっても測定が可能で3次元の変位を計測することができ、また、光ファイバセンサのモジュール化が可能で、さらに、量産品の場合にも、ねじり計測が可能となる分布型位置検知ロープを提供することができる。
実施の形態1に係る分布型位置検知ロープの光エレメントの一例を説明するための図である。 実施の形態1に係る分布型位置検知ロープの一例を説明するための断面図である。 実施の形態2に係る分布型位置検知ロープの一例を説明するための断面図である。 実施の形態3に係る分布型位置検知システムの一例を説明するための概念図である。 実施の形態3に係る分布型位置検知システムのスキッドドラムの構成を説明するための概念図である。 実施の形態3に係る分布型位置検知システムの初期姿勢計測手法を説明するための図である。 実施の形態3に係る分布型位置検知システムで計測された被測定体のひずみデータの一例を説明するための図である。 実施の形態3に係る分布型位置検知システムで計測された被測定体のねじりデータの一例を示した図である。
実施の形態1.
 実施の形態1の分布型位置検知ロープについて、以下図を用いて説明する。
本実施の形態1の分布型位置検知ロープは、社会インフラである橋梁、トンネル、道路などの監視に、光ファイバを用いたシステムを使用することを、その目的の1つとして開発されたものである。そこで、以下この分布型位置検知ロープの構造について説明する。
 まず、実施の形態1の分布型位置検知ロープ100のセンシング機能を持つ主構成品であって、光ファイバ1を含む構造体である基本光エレメント5について、図1を用いて説明する。
図1において、手前に示した楕円状の面は、この基本光エレメント5の長手方向に直交する断面を示している。なお、この楕円状の面の中央部の上下端には、光ファイバの取り出しを考慮してV字状の切欠き(凹み)が形成され、楕円柱状の長手方向に直交する断面形状で示される外形が眼鏡枠状となっているのが特徴である。
 この眼鏡枠状の面で見ると、その中央位置には、被測定物のひずみなどの物理量を測定するための、曲げ強度を大きくしたシングルモードの光ファイバ1が配置されている。この光ファイバ1とは間隔を空け、その左右両側位置には、ケブラ繊維(KFRP:Kevlar Fiber Reinforced Plastics)製の抗張力体2が、ほぼ線対称に配置されている。抗張力体2により、予め、光ファイバ1にプレテンションが掛けられている。これにより、光エレメントに予めテンション歪を生じさせることにより、光エレメントに過大な負荷がかかった場合でも断線を防止することができる。また、基本光エレメント5において、光ファイバ1と抗張力体2以外の部分は、難燃材であるFRPE(ここでFRPEはFrame Retardant PE(ポリエチレン)の略)を用いた基本光エレメント用のシース材3によって覆われている。
 なお、以下で詳しく説明する分布型位置検知ロープ100のシースと基本光エレメント5との位置ずれを抑制するため、基本光エレメント5のシース表面には、ほぼ等ピッチの間隔で、凹凸形状部4が設けられている(図1では上側の外面部分に当該部分を示す)。
 次に、分布型位置検知ロープ100について、以下、図2を用いて説明する。
図2に、実施の形態1の分布型位置検知ロープ100の一例を示す。分布型位置検知ロープ100の軸中心部分には、中空のパイプ7が設けられている。その外周に配置された、前記パイプ7の外側の層である筒状の内部シース層8aの内部には、敷設時にかかる張力、あるいは温度変化による伸縮などから光ファイバを保護するため、鋼製の撚り線でできたテンションメンバ6が軸方向に沿って直線状に設置されるとともに、図2に示したように、分布型位置検知ロープ100の軸に直交する断面においては、中心に対して対向した位置に、言い換えると、中心角で180度の角度分だけ離れた位置に、このテンションメンバ6が一対(2個)、互いに向かい合うように配置されている。なお、上記テンションメンバ6は必ずしも撚り線構造である必要はなく、撚っていない構造のものでもよい。
 このテンションメンバ6の材質を工夫する(例えばKFRPにする)ことで、多少の伸びを加えても、弾性変形を維持することができる効果がある。また、このテンションメンバのヤング率を低下させることができる場合には、分布型位置検知ロープ100の変形に対して光ファイバ1のひずみが出やすくなり、光センサとしての感度アップにつながるという効果もある。
 また、上記内部シース層8aの外周に配置された、内部シース層8aの外側の層である筒状の内部シース層8bの内部には、その構造が上記基本光エレメント5と全く同じ基本光エレメント5が3個、軸方向に螺旋状に巻回されて設置される(これら3個分の基本光エレメントを総称して第1の光エレメント5aと呼ぶ)とともに、図2に示したように、分布型位置検知ロープ100の軸に直交する断面においては、同径上に予め定めた所定の間隔で配置されている。
 また、内部シース層8bの外周に配置された、内部シース層8bの外側の層である筒状の外部シース層9の内部には、その構造が上記基本光エレメント5と全く同じ基本光エレメント5が3個、軸方向に螺旋状に巻回されて設置される(これら3個分の基本光エレメントを総称して第2の光エレメント5bと呼ぶ)とともに、図2に示したように、分布型位置検知ロープ100の軸に直交する断面においては、同径上に予め定めた所定の間隔で配置されている。なお、内部シース層8a、8b、および外部シース層9の材質はPVC等で、例えば黒色のものを用いる。
 また、被測定体のねじりによる歪の検出を可能とするため、第2の光エレメント5bの螺旋状の巻回方向は、第1の光エレメント5aの螺旋状の巻回方向と、互いに逆になるように設置されている。ここで、第1の光エレメントと第2の光エレメントの巻き付けピッチは同一である。なお、これらの光エレメントは、その設定位置が変化しないように、(図示しない)支持体(シース)により支持されている。このような構成とすることにより、被測定体のねじれによる歪を精度よく計測することができ、ひいては、曲げによる歪の検出精度も良くなる。なお、原理的には、上記第1の光エレメントと第2の光エレメント同士で、互いに螺旋状の巻回方向が違っていれば、巻き付けピッチPと軸に直交する断面での設置半径rの比、即ちP/rの値が同一な場合を除き、ねじりによる歪の検出が可能である(実際に、ねじりを検出したデータについては、後程、詳しく説明する)。ここで、比P/rは敷設角θ(特許文献1参照)を用いてtanθ=P/(2πr)の関係があるので、この敷設角が同一でなければ、すなわち敷設角が異なれば、螺旋状の巻回方向が違っている限り、被測定体のねじりによる歪の検出が可能であると言え換えることができる。
 なお、基本光エレメント5のエレメント用のシース材3の材質と、分布型位置検知ロープ100の内部シース層8a、8b、および外部シース層9の材質とは、互いに異なったものとすることで、基本光エレメント5の取り出しを容易にした。また、分布型位置検知ロープ100の長手方向(軸方向)に沿うケーブルの外周表面の一部に、外部シース層の色とは異なる色(例えば黄色)で着色された色帯10が設けられている。これにより、分布型位置検知ロープを現場で設置する場合に、分布型位置検知ロープ100の設置方向(設置状態)を容易に確認することができる。
 以上説明したように基本光エレメントを構成したので、センサとしての光ファイバを基本光エレメントの形態でモジュール化することができ、これにより、分布型位置検知ロープの量産が可能となった。
実施の形態2.
 実施の形態2の分布型位置検知ロープ101について、以下図3を用いて説明する。本実施の形態2の分布型位置検知ロープ101は、図3に示すように、実施の形態1の分布型位置検知ロープ100と比較して、軸中心部を中実構造にして外径をより小さくしている。これにより、ケーブル曲げ時のファイバ断線が、さらに生じ難くなる効果がある。なお、軸中心部を多層の鋼線による中実構造としたので、実施の形態1で説明したテンションメンバは、本実施の形態2では使用していない。主構成品である基本光エレメント5については、抗張力体の材質(鋼線を使用)、および外径のサイズ(小径化)を除いては実施の形態1とほぼ同様であるので、ここでは詳細な説明を省略する。
 次に、本実施の形態2の分布型位置検知ロープ101の詳細構造について図3を用いて説明する。図3において、中心軸コア11は、温度計測用のTファイバ12を含む、多層の鋼線で構成されている。なお、ケーブル曲げにより発生するひずみに加え、ケーブルのねじりにより発生するひずみを計測するため、実施の形態1と同様に、第1の光エレメント5aは、内部シース層8b内に、分布型位置検知ロープ101の軸方向に螺旋状に配置され、第2の光エレメント5bは、外部シース層9内に、分布型位置検知ロープ101の軸方向に螺旋状に配置されるとともに、第1の光エレメント5aと第2の光エレメント5bは、互いに逆向きに巻回されている点などは実施の形態1と同様である。
 以上説明したように、実施の形態1および実施の形態2のいずれの分布型位置検知ロープにおいても、計測用の光ファイバは、その両側に設けられた2つの抗張力体とともに、基本光エレメント5の主要な構成要素として、基本光エレメント5内に配置されているため、量産化も容易である。
実施の形態3.
 次に、実施の形態1の分布型位置検知ロープ100、あるいは実施の形態2の分布型位置検知ロープ101を実際の現場で使用する際の分布型位置検知システム200について、図4、図5等を用いて説明する。
 図4は、実施の形態1の分布型位置検知ロープ100を例に、現場で使用する際の分布型位置検知システム200について説明するためのモデル図である。図4Aに示したように、分布型位置検知ロープ100で計測された被測定物で発生したひずみ等による後方散乱光による測定データは、分布型位置検知ロープ100の巻き取り用のドラムスキッド14に設けられた、後述する2つの光接続箱(図示せず)を介して、8種類の信号を伝送する8芯の接続ケーブル13に伝送された後、この接続ケーブル13の接続先である被測定体のひずみを計測するための計測器30に送られ、この計測器30により演算処理され、被測定体のひずみが求められる。なお、上記8芯には、実施の形態1で説明した基本光エレメント用、実施の形態2で説明したTファイバ用、および後述するジャイロセンサ用、のものが含まれる。
 また、被測定体からデータを収集するため、分布型位置検知ロープ100は、坑井の入り口部近くに設置されたハンドル15により、ドラムスキッド14の回転と連動させて、坑井内部に降下され、所定の場所に設置される。この場合において、坑井の入り口部には、分布型位置検知ロープ100を地面に対して正確に設置するため傾斜計31が設置されている。そして、分布型位置検知ロープ100は、分布型位置検知ロープ先端部分であるロープ端部100aから、このロープ端部100aに接続された錘100bを用いて、坑井内部に順次、降下され、所定の位置に設置される。
 なお、図4Bは、ドラムスキッド14を側面から見た図であり、図に示すように、ドラムスキッド14の回転軸部分の周りの軸方向に、分布型位置検知ロープ100、および接続ケーブル13が巻回されている。
 図5は、上記ドラムスキッド14の詳細な構造を説明するための説明図である。図5Aにおいて、ドラムスキッド14は、分布型位置検知ロープ100を巻回するための円筒体14a、この円筒体を軸の周りに回転させるための、軸部分で交叉するよう構成された複数の板状支持体14b、ドラムスキッドが回転しないよう静止させておくためのストッパー16、上記軸部分でドラムスキッドを支持するドラムスキッド支持体40、ドラムスキッド14を移動させる際に利用される車輪41、などで構成され、このドラムスキッド14には、分布型位置検知ロープ100で計測された信号を信号伝送用の接続ケーブル13に中継するための2つの光接続箱(成端箱50及び成端箱51の2つ)、この2つの光接続箱間をつなぐジャンパ線17などが設置されている。なお、図5Bは、上記で説明したドラムスキッド14の側面図を示している。この図5Bに示したように、板状支持体14bは、円筒体14aの左右に一対設けられている。なお、この図5Bには、光接続箱など、ドラムスキッド14以外の構成物は図示していない。
 次に、上記ドラムスキッド14に巻回された分布型位置検知ロープ100を現場に設置して、所望の(所定の、言い換えると、予め定められた)データを計測するために必要となる初期構成について図6を用いて説明する。
 図6Aに示したように、ドラムスキッド14の上方部分から引き出された分布型位置検知ロープ100の先端部分は、円の4分の1に相当する円弧状の構成を含むアークスタンド20の外周に沿って、被測定対象である坑井の入り口部分に設けられた分布型位置検知ロープ固定用楔22を通り、坑井中の所定位置まで移動される。移動が終わると、分布型位置検知ロープ100は、移動後の位置が変動しないように、上記円弧状部分に設けられている複数のロープ押さえ21、および上記分布型位置検知ロープ固定用楔により、その位置が固定される。このとき、円弧状部分の内側には、位置計測の際、より正確な位置検出をするためのジャイロセンサ32が配置されている。
 また、図6Bに示したように、坑井がある地表面との角度位置を微調整するため、坑井の入り口部分に設けられた位置調整のための分布型位置検知ロープ姿勢アジャスター23により、分布型位置検知ロープ100の坑井の入り口部分での設置位置(地表面に対する方向)が微調整される。なお、この図6Bにも示したように、分布型位置検知ロープ100をスムーズに移動させて、所望の(所定の、言い換えると、予め定められた)測定位置に速やかに設置するため、分布型位置検知ロープ100のロープ端部100aには錘100bが接続されている。
 分布型位置検知ロープ100の初期構成を図6に示したように設定することにより、光エレメントで測定した被測定体のひずみ、温度などの測定した物理データに対応する測定位置をより精度よく同定することが可能となる。
 以上説明したような分布型位置検知システム200を用いた際に、加わった外力により発生したひずみ量を評価するため、両端(図中の0.4m位置および4.6m位置)で固定支持した全長5mの評価用の分布型位置検知ロープの中央部分に変位を与えたときの分布型位置検知ロープに発生したひずみ量の測定結果を図7Aに示す。
 図7Aにおいて、横軸は、分布型位置検知ロープの基準位置からの距離(単位:m)を示し、縦軸は、分布型位置検知ロープに発生したひずみ量(単位:με)を示す。また、この図7Aに示された4つの曲線はそれぞれ、図7Bの基本光エレメント5a-1、5b-4、5b-5、5b-6に対応する計測データである。
 すなわち、図7Aの実線で示した曲線は、(内部シース層8bに配置された)基本光エレメント5a-1の計測データであり、図7Aの破線で示した曲線は、(外部シース層9に配置された)基本光エレメント5b-4の計測データであり、図7Aの点線で示した曲線は、(外部シース層9に配置された)基本光エレメント5b-5の計測データであり、図7Aの一点鎖線で示した曲線は、(外部シース層9に配置された)基本光エレメント5b-6の計測データにそれぞれ対応している。
 また、図7Aにおいて、距離0.4mから距離2mの前半区間と、距離3mから距離4.6mの後半区間における外部シース層における基本光エレメント5b-4、5b-5、5b-6の3データは、それぞれ、ほぼ同一の値のひずみ分布を示し、一方で、上記2つの区間における内部シース層8bに配置された基本光エレメント5a-1のひずみの値と、外部シース層に配置された基本光エレメント5b-4、5b-5、5b-6のひずみの値の関係は、互いに逆の関係になっていることがわかる。すなわち、上記評価用分布型位置検知ロープの前半区間と後半区間との間で「ねじり」が生じていることを示している。
 このことは、設置シース層、および螺旋の巻付角が互いに異なる、外部シース層の3個の基本光エレメントと内部シース層の少なくとも1個の基本光エレメントにより、上記評価用分布型位置検知ロープに発生している「ねじり」を検出できることを示している。さらに詳しくは、上記の逆のケースである内部シース層の3個の基本光エレメントと外部シース層の少なくとも1個の基本光エレメントの組み合わせであっても良い。
 そこで、図7Aのこれら4個のデータを基に、分布型位置検知システムの計測器30を用いて、評価用分布型位置検知ロープに生じている「ねじり」を演算で求める。求めた結果を図8に示す。
 図8は、分布型位置検知システムの計測器30を用いて求めた、評価用分布型位置検知ロープに生じた「ロープの位置(距離で示されている)」と「ねじり角」の関係を示す図である。
 図8において、評価用分布型位置検知ロープの両端の固定支持点(距離0.4mと距離4.6mの点。図8に示すように、これらの点では、ねじれ角の値はゼロを示している。)間において、分布型位置検知ロープのねじり角は、概略、山形で変化していることがわかる。
 つまり、設置シース層、および螺旋の巻付角が互いに異なる3個の基本光エレメントと1個の基本光エレメントを組み合わせて用いることにより、分布型位置検知ロープに生じた「ねじり」が計測可能となることがわかる。
 以上のように、本分布型位置検知ロープを使用して、これを被測定体に固定することなどにより、被測定体に生じているひずみ計測を通じて、被測定体に生じている「ねじり」を計測することが可能であることが判った。
 なお、上記においては、内部シース層の基本光エレメントは1個用いて「ねじり」を計測する例をしめしたが、これに限らず、内部シース層の基本光エレメントの使用していない2本の基本光エレメント(のうち少なくとも1本)を使用すれば、さらに精度の良い「ねじり」計測が可能である。
 また、外部シース層に配置された基本光エレメント5b-4、5b-5、5b-6の3個のひずみのデータから、分布型位置検知ロープの特定の断面(断面の座標をx、yとするとx方向とy方向で定まる面)、すなわち、分布型位置検知ロープの長手方向に沿う各断面に生じている曲げの量を評価することができる。
 以上により、本分布型位置検知システムにより、被測定体の3次元の変形の計測が可能であることが判る。
 なお、本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。具体的には、実施の形態1、2で示した色帯10はその一例であり、この色帯が無い場合でも、それぞれの実施の形態において、本願の目的は達成可能である。
 1 光ファイバ、2 抗張力体、3 シース材、4 凹凸形状部、5、5a-1、5b-4、5b-5、5b-6 基本光エレメント、5a 第1の光エレメント、5b 第2の光エレメント、6 テンションメンバ、7 パイプ、8a、8b 内部シース層、9 外部シース層、10 色帯、11 中心軸コア、12 Tファイバ、13 接続ケーブル、14 ドラムスキッド、14a 円筒体、14b 板状支持体、15 ハンドル、16 ストッパー、17 ジャンパ線、20 アークスタンド、21 ロープ押さえ、22 分布型位置検知ロープ固定用楔、23 分布型位置検知ロープ姿勢アジャスター、30 計測器、31 傾斜計、32 ジャイロセンサ、40 ドラムスキッド支持体、41 車輪、50、51 成端箱、100、101 分布型位置検知ロープ、100a ロープ端部、100b 錘、200 分布型位置検知システム

Claims (7)

  1. 物理量を計測する光ファイバと、この光ファイバと間隔を置き、前記光ファイバを挟むように配置された複数の抗張力体と、前記光ファイバおよび前記抗張力体を取り囲んで前記光ファイバと前記抗張力体とを一体化させたシース材と、を有する基本光エレメント、
    中心軸体、
    前記中心軸体の軸方向に所定のピッチで螺旋状に巻回され、前記中心軸体の軸に直交する断面では、第1の径上に所定の間隔で配置された前記基本光エレメントを持つ第1の光エレメントを有し、前記中心軸体の外側に前記中心軸体と同軸状に設けられた筒状の内部シース層、
    前記中心軸体の軸方向に、前記第1の光エレメントとは異なる方向で螺旋状に巻回され、前記中心軸体の軸に直交する断面では、第1の径とは異なる第2の径上に所定の間隔で配置され、かつ、前記第1の光エレメントの基本エレメントとは敷設角が異なる前記基本光エレメントを持つ第2の光エレメントを有し、前記内部シース層の外側に配置され前記中心軸体と同軸状に設けられた筒状の外部シース層、
    を備えたことを特徴とする分布型位置検知ロープ。
  2. 前記中心軸体はパイプであり、
    前記中心軸体の軸に直交する断面において、軸中心に対して対向した同径上の位置に配置されたテンションメンバを複数有し、前記中心軸体の外周に配置され、かつ前記内部シース層の内周に配置され、前記中心軸体と同軸状に設けられた筒状の第2の内部シース層を備えた、
    ことを特徴とする請求項1に記載の分布型位置検知ロープ。
  3. 前記中心軸体は複数の鋼線を含んで構成された中実軸である中心軸コアであり、
    前記中心軸体の軸に直交する断面において、前記中心軸体の外周に配置され、かつ前記内部シース層の内周に配置され、前記中心軸体と同軸状に設けられた筒状の第3の内部シース層を備えた、
    ことを特徴とする請求項1に記載の分布型位置検知ロープ。
  4. 前記シース材は、前記内部シース層、前記外部シース層のいずれとも異なる材質で形成されているとともに、軸方向表面に一定間隔で設けられた凹凸形状部を有する、
    ことを特徴とする請求項1から3のいずれか1項に記載の分布型位置検知ロープ。
  5. 請求項1から4のいずれか1項に記載の分布型位置検知ロープと、
    前記分布型位置検知ロープが外周部に巻回され、軸周りに回転するドラムスキッドと、
    前記分布型位置検知ロープの一端に接続される錘と、
    前記分布型位置検知ロープを前記ドラムスキッドの回転に同期させて移動させるハンドルと、
    前記分布型位置検知ロープを所望の計測位置に設置するため、被測定体上に設置された前記分布型位置検知ロープの設置位置調整用の傾斜計と、
    前記光エレメントの光ファイバで計測された信号を演算して被測定体の物理量を計測する計測器と、
    前記分布型位置検知ロープの他端に接続され、前記計測器に信号を伝送する接続ケーブルと、
    を備え、
    前記ドラムスキッドに巻回されている前記分布型位置検知ロープを、前記ドラムスキッドを回転させつつ、前記ハンドルと前記錘により所望の位置に移動させ、前記傾斜計により所望の角度に設置するとともに、前記計測器を用いて、前記所望の位置で被測定体の物理量の計測を行うことを特徴とする分布型位置検知システム。
  6. ジャイロセンサが搭載された円弧状構造部と、分布型位置検知ロープ固定用楔と、分布型位置検知ロープ姿勢アジャスターと、を持ち、前記ドラムスキッドの外側に前記ドラムスキッドの軸と軸並行に設置されたアークスタンドを有するとともに、
    前記ジャイロセンサと前記分布型位置検知ロープ姿勢アジャスターとによって前記分布型位置検知ロープの姿勢を調整しつつ、前記分布型位置検知ロープを前記アークスタンドの円弧状構造部に沿って移動させ、前記分布型位置検知ロープ固定用楔で前記分布型位置検知ロープを所望の位置に固定して被測定体の物理量の計測を行うことを特徴とする請求項5に記載の分布型位置検知システム。
  7. 前記外部シース層に設けられた3個の基本光エレメントと、前記内部シース層に設けられた少なくとも1個の基本光エレメントとによって検出した信号から、前記計測器により、計測した被測定体のひずみを基に前記被測定体のねじりを求めることを特徴とする請求項5または請求項6に記載の分布型位置検知システム。
PCT/JP2020/038936 2020-10-15 2020-10-15 分布型位置検知ロープおよび分布型位置検知システム WO2022079855A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/044,165 US20230332931A1 (en) 2020-10-15 2020-10-15 Distributed position detection rope and distributed position detection system
JP2022556773A JP7450240B2 (ja) 2020-10-15 2020-10-15 分布型位置検知ロープおよび分布型位置検知システム
PCT/JP2020/038936 WO2022079855A1 (ja) 2020-10-15 2020-10-15 分布型位置検知ロープおよび分布型位置検知システム
EP20957684.2A EP4230954A4 (en) 2020-10-15 2020-10-15 DISTRIBUTED POSITIONING ROPE AND DISTRIBUTED POSITIONING SYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/038936 WO2022079855A1 (ja) 2020-10-15 2020-10-15 分布型位置検知ロープおよび分布型位置検知システム

Publications (1)

Publication Number Publication Date
WO2022079855A1 true WO2022079855A1 (ja) 2022-04-21

Family

ID=81209010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038936 WO2022079855A1 (ja) 2020-10-15 2020-10-15 分布型位置検知ロープおよび分布型位置検知システム

Country Status (4)

Country Link
US (1) US20230332931A1 (ja)
EP (1) EP4230954A4 (ja)
JP (1) JP7450240B2 (ja)
WO (1) WO2022079855A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11514940A (ja) * 1995-11-02 1999-12-21 レフレクス インストゥルメント アクティエボラーグ 工作機械の工具軸の弾性変形を検出する装置
JP2006003197A (ja) * 2004-06-17 2006-01-05 Hitachi Cable Ltd Fbgセンサ用光ケーブル
WO2007037366A1 (ja) * 2005-09-29 2007-04-05 Sumitomo Electric Industries, Ltd. センサ及びそれを用いた外乱測定方法
JP2009048938A (ja) * 2007-08-22 2009-03-05 Furukawa Electric Co Ltd:The 複合ケーブル
JP2009063357A (ja) * 2007-09-05 2009-03-26 Fujikura Ltd 光ファイバセンサケーブル
WO2014083989A1 (ja) 2012-11-30 2014-06-05 ニューブレクス株式会社 3次元位置計測装置
CN209386023U (zh) * 2019-01-15 2019-09-13 广东聚源管业实业有限公司 一种远端分布式检测管道

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130094798A1 (en) * 2011-10-12 2013-04-18 Baker Hughes Incorporated Monitoring Structural Shape or Deformations with Helical-Core Optical Fiber
JPWO2017191685A1 (ja) * 2016-05-06 2019-02-28 オリンパス株式会社 形状センサシステム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11514940A (ja) * 1995-11-02 1999-12-21 レフレクス インストゥルメント アクティエボラーグ 工作機械の工具軸の弾性変形を検出する装置
JP2006003197A (ja) * 2004-06-17 2006-01-05 Hitachi Cable Ltd Fbgセンサ用光ケーブル
WO2007037366A1 (ja) * 2005-09-29 2007-04-05 Sumitomo Electric Industries, Ltd. センサ及びそれを用いた外乱測定方法
JP2009048938A (ja) * 2007-08-22 2009-03-05 Furukawa Electric Co Ltd:The 複合ケーブル
JP2009063357A (ja) * 2007-09-05 2009-03-26 Fujikura Ltd 光ファイバセンサケーブル
WO2014083989A1 (ja) 2012-11-30 2014-06-05 ニューブレクス株式会社 3次元位置計測装置
CN209386023U (zh) * 2019-01-15 2019-09-13 广东聚源管业实业有限公司 一种远端分布式检测管道

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AWAJI ET AL.: "Strain behavior of extremely long pre-supporting steel pipe based on PPP-BOTDA optical fiber measurement", 67TH JSCE ANNUAL MEETING, September 2012 (2012-09-01), pages 43 - 44
K. KISHIDA ET AL.: "High resolution fibre-optic monitoring system for the FE Experiment in Mont Terri", CLAY CONFERENCE 2015, 23 March 2015 (2015-03-23)
K. NISHIGUCHI ET AL.: "Error analysis for 3D shape sensing by fiber-optic distributed sensors", PROCEEDINGS OF THE 49TH ISCIE INTERNATIONAL SYMPOSIUM ON STOCHASTIC SYSTEMS THEORY AND ITS APPLICATIONS, 3 November 2017 (2017-11-03)

Also Published As

Publication number Publication date
JPWO2022079855A1 (ja) 2022-04-21
JP7450240B2 (ja) 2024-03-15
US20230332931A1 (en) 2023-10-19
EP4230954A1 (en) 2023-08-23
EP4230954A4 (en) 2024-07-10

Similar Documents

Publication Publication Date Title
Mohamad et al. Behaviour of an old masonry tunnel due to tunnelling-induced ground settlement
Hong et al. Application of FBG sensors for geotechnical health monitoring, a review of sensor design, implementation methods and packaging techniques
CN106524936B (zh) 一种隧道管棚变形监测方法
Zheng et al. Review of fiber optic sensors in geotechnical health monitoring
Merzbacher et al. Fiber optic sensors in concrete structures: a review
KR101344722B1 (ko) 광섬유 변형률계를 이용한 교량 처짐 측정 시스템
CN109655007A (zh) 一种特大桥钢管拱内灌注的管内混凝土变形监测方法
US20130094798A1 (en) Monitoring Structural Shape or Deformations with Helical-Core Optical Fiber
US10288455B2 (en) Methods of deploying fibre optics via a coilable member for sensing or communications applications
Guo et al. Development and operation of a fiber Bragg grating based online monitoring strategy for slope deformation
US7200292B2 (en) Optical fiber inclinometer
US7532780B2 (en) Method for locating and measuring deformations in a work of civil engineering
JP2009020016A (ja) 光ファイバセンサケーブル
Li et al. Study on establishing and testing for strain transfer model of distributed optical fiber sensor in concrete structures
CN110726377A (zh) 一种用于隧道表面形貌测量的四纤芯光纤光栅传感器
WO2022079855A1 (ja) 分布型位置検知ロープおよび分布型位置検知システム
Li et al. Deformation monitoring of cracked concrete structures based on distributed optical fiber sensing technology
Howiacki et al. Structural monitoring of concrete, steel, and composite bridges in Poland with distributed fibre optic sensors
KR20210080995A (ko) 광섬유격자센서를 이용한 비탈면 변위 측정장치
Bednarski Sie nko, R.; Grygierek, M.; Howiacki, T. New Distributed Fibre Optic 3DSensor with Thermal Self-Compensation System: Design, Research and Field Proof Application inside Geotechnical Structure
CN115389066A (zh) 一种基于分布式光纤光栅感测的桥梁健康监测系统
JP5618422B2 (ja) Fbg光ファイバセンサ型ひずみセンサ
WO2021246497A1 (ja) 形状測定システム及び形状測定方法
CN102384804B (zh) 一种柱体应力感测装置
AU597937B2 (en) Structural monitoring system using fiber optics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957684

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022556773

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020957684

Country of ref document: EP

Effective date: 20230515