WO2022079790A1 - Flow rate control valve - Google Patents

Flow rate control valve Download PDF

Info

Publication number
WO2022079790A1
WO2022079790A1 PCT/JP2020/038598 JP2020038598W WO2022079790A1 WO 2022079790 A1 WO2022079790 A1 WO 2022079790A1 JP 2020038598 W JP2020038598 W JP 2020038598W WO 2022079790 A1 WO2022079790 A1 WO 2022079790A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
plug
flow rate
port
control valve
Prior art date
Application number
PCT/JP2020/038598
Other languages
French (fr)
Japanese (ja)
Inventor
実 菱川
正和 今西
Original Assignee
タイム技研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タイム技研株式会社 filed Critical タイム技研株式会社
Priority to PCT/JP2020/038598 priority Critical patent/WO2022079790A1/en
Priority to JP2022556714A priority patent/JP7305237B2/en
Publication of WO2022079790A1 publication Critical patent/WO2022079790A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/42Valve seats

Definitions

  • the technique disclosed in this application mainly relates to a flow rate control valve that controls the flow rate of air, fuel gas, etc.
  • Patent Document 1 Conventionally, a flow rate control valve using a needle valve is disclosed in Patent Document 1 and the like.
  • Patent Document 1 describes a valve body having a primary port and a secondary port communicating with the valve chamber and having a valve seat at the communication valve port of the partition wall on the secondary port side, and a valve opening valve seat of the valve body.
  • a stepping motor provided with a needle valve that can move the position in the valve opening / closing direction that is rotated by energization of the stator coil, and a valve operating mechanism that opens / closes the needle valve by the screw feed action of the rotation of the stepping motor.
  • An electric flow control valve comprising the above is disclosed.
  • the technique disclosed in the present application has been proposed in view of the above problems, and is a flow control valve that enables control of an extremely small flow rate, which was not possible with a conventional needle valve, and realizes a large turndown.
  • the purpose is to provide.
  • the flow control valve according to claim 1 includes a valve chamber, a primary port and a secondary port communicating with the valve chamber, a valve seat provided at the valve port of the secondary port, and a valve seat. It consists of a valve body that sits down and a drive unit that connects to the valve body and allows the valve body to move its position in the valve opening / closing direction.
  • the valve body is provided with a plug that can be inserted into the valve port of the secondary port in the center, and between the valve body and the valve seat, a hole that sits on the valve seat is porous. It is characterized in that it is provided with a quality elastic body intervening.
  • the flow rate control valve according to claim 2 is the flow rate control valve according to claim 1, wherein the elastic body has a cylindrical shape whose inner diameter is larger than the maximum diameter of the plug, and is around the plug between the valve body and the valve seat. The upper end surface of the elastic body is provided so as to be fixed to the plug.
  • the flow rate control valve according to claim 3 is the flow rate control valve according to claim 1, wherein the elastic body has a cylindrical shape whose inner diameter is larger than the maximum diameter of the plug, and is plugged between the plug of the valve body and the valve seat.
  • the lower end surface of the elastic body is provided so as to surround the periphery of the valve seat so as to be fixed to the upper surface of the valve seat.
  • the flow control valve according to claim 4 is the flow control valve according to claim 1, wherein the valve port has an upper valve port into which a plug can be inserted and slidable, and a valve seat on which an elastic body is seated.
  • the elastic body has a columnar shape or a polygonal column shape having an outer diameter smaller than the opening diameter of the upper valve opening and larger than the opening diameter of the lower valve opening, and is under the plug of the valve body. It is characterized in that the upper end surface of the elastic body is provided so as to be fixed to the lower end surface of the plug so as to be interposed between the end surface and the valve seat.
  • the flow rate control valve according to claim 5 is the flow rate control valve according to any one of claims 1 to 4, wherein the elastic body is a sponge made of a synthetic rubber material.
  • the flow rate control valve according to claim 6 is the flow rate control valve according to any one of claims 1 to 5, wherein the drive unit moves and controls the valve body to a position in the valve opening / closing direction by a stepping motor. do.
  • a valve body having a plug that can be inserted into the valve port of the secondary port at the center is moved in the direction of the valve seat by the drive unit, and is interposed between the valve body and the valve seat.
  • the valve opening can be closed by the elastic body by seating the elastic body on the valve seat and further compressing the elastic body completely to make the volume of the pores of the elastic body zero. Then, with the lower end surface of the elastic body in contact with the valve seat, the valve body is moved up and down with respect to the valve seat to compress / release the elastic member to increase or decrease the volume of the holes in the elastic body.
  • the plug of the valve body is inserted / isolated from the valve opening, and the plug is completely isolated from the valve opening, so that the flow rate is equivalent to that of the conventional needle valve.
  • Flow rate control is also possible. As a result, the difference between the minimum flow rate and the maximum flow rate whose flow rate can be controlled becomes large, and a large turndown can be realized.
  • the elastic body has a cylindrical shape whose inner diameter is larger than the maximum diameter of the plug, and is interposed between the valve body and the valve seat so as to surround the plug and under the plug.
  • the elastic body is completely compressed when the valve is closed, the volume of the pores of the elastic body is reduced to zero, and the valve opening is securely closed by the elastic body. Can be done.
  • the valve body is moved up and down with respect to the valve seat to compress / release the elastic member, and the volume of the holes in the elastic body is increased or decreased to make it extremely small. Allows control of flow rate.
  • the elastic body intervenes so as to surround the plug, the relationship between the amount of movement of the valve body and the flow rate of the fluid passing through the valve port becomes substantially constant, and control of an extremely small flow rate is easy and stable. It will be possible.
  • the flow control valve according to claim 4 is provided with an upper valve port in which a plug is inserted and slidable, and a lower valve port in which a valve seat on which an elastic body is seated is provided at an upper end portion.
  • the elastic body has a cylindrical shape or a polygonal column shape whose outer diameter is smaller than the opening diameter of the upper valve opening and is larger than the opening diameter of the lower valve opening, and is interposed between the lower end surface of the plug of the valve body and the valve seat.
  • the upper end surface of the elastic body is fixed to the lower end surface of the plug. Therefore, by moving the valve body up and down, the elastic body is seated on the valve seat provided at the upper end of the lower valve port and is in contact with the valve seat.
  • the plug When the plug is separated from the valve seat provided at the upper end portion, the plug moves the upper valve port up and down or separates it from the upper valve port to control an extremely small flow rate as in the flow control valve according to claims 1 to 3. At the same time, it is possible to control the flow rate equivalent to that of a conventional needle valve.
  • the cost of parts can be reduced by forming the elastic body with a sponge made of a synthetic rubber material.
  • the flow rate control valve since the movement of the valve body can be finely controlled by using a stepping motor for the drive unit, the flow rate of the fluid passing through the valve opening can be finely controlled. ..
  • FIG. 6 is a diagram illustrating a state of movement of the valve body in the embodiment according to FIG. It is sectional drawing in the opened state of the flow rate control valve which is another embodiment (the 2) which concerns on this invention.
  • FIG. 8 is a diagram illustrating a state of movement of the valve body in the embodiment according to FIG. It is a figure explaining the flow rate control valve which is another Embodiment (3), (4) and (5) which concerns on this invention.
  • FIG. 1 and 2 show a flow rate control valve 1 according to an embodiment of the present invention, which is interposed in a gas supply path to a burner or the like, and FIG. 1 is a cross-sectional view in a closed state. , FIG. 2 is a cross-sectional view in a valve open state.
  • the flow rate control valve 1 is incorporated in a body 10 that forms a flow path for a fluid such as gas.
  • the body 10 is provided with a valve chamber 22 in which the valve body 25 of the flow control valve 1 is housed, and a primary port 20 and a secondary port 21 communicating with the valve chamber 22.
  • a valve port 19 is provided between the valve chamber 22 and the secondary port 21, and a valve seat 18 on which the valve body 25 of the flow control valve 1 is seated is provided on the upper end surface of the valve port 19.
  • the lower surface of the body 10 is supported by the lower plate 11 via the packing 24 which is an elastic material, and the sealed state between the body 10 and the lower plate 11 is maintained.
  • the flow control valve 1 includes a drive unit 13 composed of a stepping motor, gears, etc. (not shown), a shaft 15 that moves in the vertical direction with respect to the drawing by the stepping motor, gears, etc. in the drive unit 13. It is composed of a valve body 25 connected to the lower end of the shaft 15 and a coil spring 17 for urging the valve body 25 downward in the drawing (valve closing direction).
  • the valve body 25 has a plug 14 having a truncated cone-shaped protrusion that protrudes toward the lower part of the drawing and can penetrate the valve opening 19, and a cylindrical shape that surrounds the outer peripheral surface of the protrusion of the plug 14. It is composed of a sponge 16 of the above.
  • the drive unit 13 is assembled while maintaining a sealed state with respect to the body 10 via an O-ring 23 interposed between the upper plate 12 and the body 10.
  • the plug 14 of the valve body 25 is provided so as to be insertable into the valve opening 19, and the lower end portion of the sponge 16 is seated on the valve seat 18.
  • a stepping motor is used for the drive unit 13, but the drive unit 13 only needs to be able to control the movement of the shaft 15 up and down with respect to the drawing, and a DC motor, a geared motor, an actuator, and the like are also used. It is possible.
  • FIG. 3A is a top view of the plug 14, and FIG. 3B is a front view of the plug 14.
  • the plug 14 is directed from the upper part of the drawing toward the columnar plug connecting portion 14a connected to the shaft 15, the cylindrical plug supporting portion 14b supporting the coil spring 17, and the lower part of the drawing. It is composed of a plug body 14d having a substantially truncated cone shape whose diameter gradually decreases. Further, a screw hole 14c for attaching to the shaft 15 is provided at the upper end portion of the plug connecting portion 14a.
  • the maximum diameter of the plug body 14d is set to be slightly smaller than the opening diameter of the valve port 19, so that the plug body 14d can be inserted / isolated from the valve port 19.
  • FIG. 4A is a top view of the sponge 16, and FIG. 4B is a front view of the sponge 16.
  • the sponge 16 is formed in a cylindrical shape having an inner peripheral surface 16a.
  • the outer diameter of the cylindrical portion of the sponge 16 is substantially the same as the outer diameter of the plug support portion 14b of the plug 14, and the inner diameter of the inner peripheral surface 16a of the sponge 16 is slightly larger than the maximum diameter of the plug body 14d of the plug 14. It is set.
  • the sponge 16 is fixed to the lower surface of the plug support portion 14b of the plug 14 so as to surround the outer periphery of the plug body 14d of the plug 14.
  • the sponge 16 is formed of a porous elastic member made of a synthetic rubber material, but the material is not limited to the synthetic rubber material, and the compression / release of the sponge 16 causes porous pores. Other materials can be used as long as the sum of the volumes can be increased or decreased.
  • valve body 25 including the plug 14 of the flow rate control valve 1 and the sponge 16 according to the present invention will be described with reference to FIG.
  • FIGS. 5 (A) to 5 (E) the flow control valve 1 is moved upward by the drive unit 13 from the closed state ((A) in FIG. 5), and the plug 14 (valve body 25) is moved upward. Is illustrated in a state in which is gradually moved upward (valve opening direction).
  • FIG. 5 (F) shows a fluid that opens and flows through the valve opening 19 due to the stroke (distance in which the plug 14 moves upward from the state of FIG. 5 (A)) and the movement of the plug 14 (upward). It is a graph which showed the relationship with the flow rate of.
  • the black circles (“ ⁇ ”) in the graph of FIG. 5 (F) are the strokes (S (A), S (B), S (C), in each state of FIGS. 5 (A) to (E). It is a point showing the flow rate (F (A), F (B), F (C), F (D), F (E)) with respect to S (D), S (E)).
  • the sponge 16 is compressed / released with the lower end surface of the sponge 16 in contact with the valve seat 18.
  • the flow rate of the fluid flowing through the valve port 19 is substantially proportional to the sum of the volumes of the porous pores of the sponge 16, so that the stroke is along the line (1) of FIG. Change.
  • the stroke is substantially proportional to the stroke size of the plug 14 as in the conventional needle valve.
  • it changes along the line (2) of FIG. 5 (F). This makes it possible to control the flow rate equivalent to that of a conventional needle valve.
  • the flow rate of the fluid flowing through the valve port 19 is as shown in FIG. 5 with respect to the stroke when the lower end surface of the sponge 16 is in contact with the valve seat 18. Since it changes along the line (1) of F), it is possible to control an extremely small flow rate as compared with the conventional needle valve (line (2) of (F) in FIG. 5), and the lower end surface of the sponge 16 is a valve.
  • the flow rate of the fluid flowing through the valve port 19 changes with respect to the stroke along the line (2) of FIG. 5 (F) like the conventional needle valve, and thus the conventional needle valve. It is possible to control up to a large flow rate equivalent to that of the above, and as a result, the difference between the minimum flow rate and the maximum flow rate that can be controlled by the flow rate becomes large, and a large turndown can be realized.
  • the flow rate control valve 1 is an example of a flow rate control valve
  • the valve chamber 22 is an example of a valve chamber
  • the primary port 20 is an example of a primary port
  • the secondary port 21 is an example of a secondary port.
  • the valve seat 18 is an example of a valve seat
  • the valve body 25 is an example of a valve body
  • the valve port 19 is an example of a valve port
  • the drive unit 13 is an example of a drive unit
  • the plug 14 is an example of a plug.
  • the sponge 16 is an example of a porous elastic body.
  • FIG. 6 shows a cross-sectional view of the flow rate control valve 100 according to another embodiment (No. 1) of the present invention in a valve open state.
  • the sponge 16 is fixed to the plug 14 constituting the valve body 25, but the arrangement of the sponge is not limited to this, as in the flow rate control valve 100 shown in FIG. ,
  • the sponge 116 may be fixedly arranged on the upper surface of the valve seat 118.
  • the sponge 116 has a cylindrical shape whose inner diameter is larger than the maximum diameter of the plug body 114a of the plug 114, and the valve seat 118 surrounds the outer peripheral surface of the plug body 114a of the plug 114. Placed on the top surface.
  • FIG. 7 is a diagram illustrating a state of movement of the plug 114 of the valve body over the flow control valve 100.
  • the sponge 116 is completely compressed by the plug 114, the volume of the pores of the sponge 116 is set to zero, and the valve is closed.
  • the flow rate of the fluid flowing through the valve port 119 is that of the porous sponge 116, as in the case of the flow control valve 1. Since it is substantially proportional to the sum of the volumes of the vacancies, it changes with respect to the stroke, for example, as shown in the line (1) of FIG. 5 (F) above, and the sponge 116 is isolated from the plug 114 (FIG. 7). In (C) to (E), the stroke changes, for example, as shown in the line (2) of FIG. 5 (F).
  • FIG. 8 shows a cross-sectional view of the flow rate control valve 200 according to another embodiment (No. 2) of the present invention in a valve open state.
  • the sponge 216 which is a feature of the present invention, is fixedly provided on the lower end surface of the plug 214, and the valve body 225 is composed of the plug 214 and the sponge 216.
  • the valve port includes an upper valve port 226 into which the plug 214 can be inserted and slidable, and a lower valve port 219 having a valve seat 218 on which the lower end surface of the sponge 216 is seated.
  • the sponge 216 adopts a cylindrical sponge having an outer diameter smaller than the opening diameter of the upper valve port 226 and larger than the opening diameter of the lower valve port 216.
  • the shape of the sponge 216 is not limited to the cylindrical shape, but may be a polygonal prism shape.
  • FIG. 9 is a diagram illustrating a state of movement of the plug 214 of the valve body pertaining to the flow control valve 200.
  • FIG. 9A shows a state in which the sponge 216 is completely compressed by the plug 214 and the volume of the pores of the sponge 216 is set to zero to close the valve, as in the case of FIG. 5A.
  • the flow rate of the fluid flowing through the valve port 219 is the sponge 216, as in the case of the flow rate control valve 1. Since it is substantially proportional to the sum of the volumes of the porous pores of the above, the sponge 216 changes with respect to the stroke, for example, as shown in the line (1) of FIG. 5 (F) above, and the sponge 216 is separated from the valve seat 218.
  • the plug 214 moves the upper valve port 226 and further separates from the upper valve port 226. It changes like the line (2) of (F).
  • the flow rate control valve 200 as in the flow rate control valve 1, it is possible to control an extremely small flow rate, so that the difference between the minimum flow rate and the maximum flow rate in which the flow rate can be controlled becomes large, and a large turndown can be realized. It will be possible.
  • the sponge (16, 116, 216) was compressed to seal and close the valve port (19, 119, 219), but the sponge was compressed depending on the material of the sponge. Even if it is made, the valve opening may not be completely sealed. In that case, a sealing member made of an elastic member may be added separately from the sponge.
  • FIG. 10 is a diagram showing another embodiment (No. 3), (No. 4), and (No. 5) to which a seal member is added.
  • 10 (A) and 10 (B) are cross sections of the flow control valve 300 (the third embodiment) in which a seal member is added to the flow control valve 1 of the above embodiment when the valve is closed and the valve is opened. It is a figure, (C) and (D) of FIG. It is sectional drawing at the time of a valve.
  • Each of the sealing members 330 and 430 has a cylindrical shape whose inner diameter is larger than the outer peripheral diameter of each of the plugs 314 and 414, and when the valve is closed, as shown in FIGS. 10A and 10C, the respective valves are formed. It sits on seats 318 and 418 so that each valve can be completely sealed.
  • the flow rate control valve 300 and the flow rate control valve 400 are provided with a sponge 316 and a sponge 416.
  • the seal member is not limited to the cylindrical seal member such as the seal members 330 and 430, and is, for example, the flow rate control valve 500 (embodiment (No. 5)) shown in FIG. 10 (E).
  • the O-ring 530 may be adopted.
  • a concave groove 514a that fits into the O-ring 530 is provided on the outer peripheral portion of the upper end of the plug 514, the O-ring 530 can be mounted, and the valve opening can be sealed by the O-ring 530.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lift Valve (AREA)

Abstract

Provided is a flow rate control valve that enables high turndown by achieving extremely low flow rate control that conventional needle valves are not capable of. A flow rate control valve 1 includes: a valve chamber 22; a first port 20 and a second port 21 that communicate with the valve chamber 22; a valve seat 18 provided in a valve opening 19 of the second port 21; a valve body 25 that is seated on the valve seat 18; and a driving unit 13 that connects to the valve body 25 and allows the position of the valve body 25 to move in the valve opening/closing direction, wherein the valve body 25 is provided with a plug 14 insertable into the valve opening 19 at the center and with a sponge 16 being interposed between the valve body 25 and the valve seat 18 so as to be seated on the valve seat 18 while surrounding the circumference of the plug 14.

Description

流量制御弁Flow control valve
 本願に開示の技術は、主に空気や燃料ガスなどの流量を制御する流量制御弁に関する。 The technique disclosed in this application mainly relates to a flow rate control valve that controls the flow rate of air, fuel gas, etc.
 従来、ニードル弁を用いた流量制御弁が特許文献1などに開示されている。 Conventionally, a flow rate control valve using a needle valve is disclosed in Patent Document 1 and the like.
 特許文献1には、弁室に連通する一次口及び二次口を有し該二次口側隔壁の連通弁口に弁座を設けた弁本体と該弁本体の弁口弁座に接離するニードル弁と、ステータコイルの通電励磁によって回転される弁開閉方向に位置移動可能なロータを設けたステッピングモータと、該ステッピングモータの回転によるねじ送り作用で前記ニードル弁を開閉作動させる弁作動機構とを具備する電動流量制御弁が開示されている。 Patent Document 1 describes a valve body having a primary port and a secondary port communicating with the valve chamber and having a valve seat at the communication valve port of the partition wall on the secondary port side, and a valve opening valve seat of the valve body. A stepping motor provided with a needle valve that can move the position in the valve opening / closing direction that is rotated by energization of the stator coil, and a valve operating mechanism that opens / closes the needle valve by the screw feed action of the rotation of the stepping motor. An electric flow control valve comprising the above is disclosed.
特許第3181118号公報Japanese Patent No. 3181118
 特許文献1などに開示されたニードル弁を用いた流量制御弁では、ニードルを長くすることや傾斜するテーパ面の傾斜角度を小さくすることで、低流量の流量制御を可能にしている。 In the flow rate control valve using the needle valve disclosed in Patent Document 1 and the like, low flow rate control is possible by lengthening the needle and reducing the inclination angle of the inclined tapered surface.
 しかしながら、これら従来のニードル弁を用いた流量制御弁では、流量制御できる下限の流量には限度があり、さらに小さい極微の流量を安定して流量制御することは困難であるという問題がある。そのため、制御できる最大流量と最小流量との差であるターンダウンの大きさには限界があった。 However, in the flow rate control valve using these conventional needle valves, there is a limit to the lower limit flow rate at which the flow rate can be controlled, and there is a problem that it is difficult to stably control the flow rate even at a smaller minute flow rate. Therefore, there is a limit to the amount of turndown, which is the difference between the maximum and minimum flow rates that can be controlled.
 本願に開示される技術は、上記の課題に鑑み提案されたものであって、従来のニードル弁では不可能であった極めて小さな流量の制御を可能にし、大きなターンダウンを実現する流量制御弁を提供することを目的とする。 The technique disclosed in the present application has been proposed in view of the above problems, and is a flow control valve that enables control of an extremely small flow rate, which was not possible with a conventional needle valve, and realizes a large turndown. The purpose is to provide.
 前記目的を達成するため請求項1に係る流量制御弁は、弁室と、弁室に連通する一次口及び二次口と、二次口の弁口に設けられた弁座と、弁座に着座する弁体と、弁体に接続し、弁体を弁開閉方向に位置移動可能にする駆動部とからなり、弁体と二次口の弁口の開度を増減制御して弁口を通過する流体の流量を制御する流量制御弁において、弁体は、中心に二次口の弁口に挿入可能なプラグを備え、弁体と弁座との間には、弁座に着座する多孔質の弾性体が介在して設けられることを特徴とする。 In order to achieve the above object, the flow control valve according to claim 1 includes a valve chamber, a primary port and a secondary port communicating with the valve chamber, a valve seat provided at the valve port of the secondary port, and a valve seat. It consists of a valve body that sits down and a drive unit that connects to the valve body and allows the valve body to move its position in the valve opening / closing direction. In a flow control valve that controls the flow rate of passing fluid, the valve body is provided with a plug that can be inserted into the valve port of the secondary port in the center, and between the valve body and the valve seat, a hole that sits on the valve seat is porous. It is characterized in that it is provided with a quality elastic body intervening.
 請求項2に係る流量制御弁は、請求項1に記載の流量制御弁において、弾性体は、内径がプラグの最大径より大きい円筒形状であり、弁体と弁座との間においてプラグの周囲を囲うように介在し、弾性体の上端面は、プラグに固着して設けられることを特徴とする。 The flow rate control valve according to claim 2 is the flow rate control valve according to claim 1, wherein the elastic body has a cylindrical shape whose inner diameter is larger than the maximum diameter of the plug, and is around the plug between the valve body and the valve seat. The upper end surface of the elastic body is provided so as to be fixed to the plug.
 請求項3に係る流量制御弁は、請求項1に記載の流量制御弁において、弾性体は、内径がプラグの最大径より大きい円筒形状であり、弁体のプラグと弁座との間においてプラグの周囲を囲うように介在し、弾性体の下端面は、弁座の上面に固着して設けられることを特徴とする。 The flow rate control valve according to claim 3 is the flow rate control valve according to claim 1, wherein the elastic body has a cylindrical shape whose inner diameter is larger than the maximum diameter of the plug, and is plugged between the plug of the valve body and the valve seat. The lower end surface of the elastic body is provided so as to surround the periphery of the valve seat so as to be fixed to the upper surface of the valve seat.
 請求項4に係る流量制御弁は、請求項1に記載の流量制御弁において、弁口は、プラグが挿入、かつ、摺動可能な上部弁口と、弾性体が着座する弁座を上端部に備える下部弁口とを備え、弾性体は、外径が上部弁口の開口径より小さく、かつ、下部弁口の開口径より大きい円柱形状或いは多角柱形状であり、弁体のプラグの下端面と弁座との間に介在し、弾性体の上端面は、プラグの下端面に固着して設けられることを特徴とする。 The flow control valve according to claim 4 is the flow control valve according to claim 1, wherein the valve port has an upper valve port into which a plug can be inserted and slidable, and a valve seat on which an elastic body is seated. The elastic body has a columnar shape or a polygonal column shape having an outer diameter smaller than the opening diameter of the upper valve opening and larger than the opening diameter of the lower valve opening, and is under the plug of the valve body. It is characterized in that the upper end surface of the elastic body is provided so as to be fixed to the lower end surface of the plug so as to be interposed between the end surface and the valve seat.
 請求項5に係る流量制御弁は、請求項1乃至4のいずれか1項に記載の流量制御弁において、弾性体は合成ゴム素材のスポンジであることを特徴とする。 The flow rate control valve according to claim 5 is the flow rate control valve according to any one of claims 1 to 4, wherein the elastic body is a sponge made of a synthetic rubber material.
 請求項6に係る流量制御弁は、請求項1乃至5のいずれか1項に記載の流量制御弁において、駆動部はステッピングモータにより弁体を弁開閉方向に位置に移動制御することを特徴とする。 The flow rate control valve according to claim 6 is the flow rate control valve according to any one of claims 1 to 5, wherein the drive unit moves and controls the valve body to a position in the valve opening / closing direction by a stepping motor. do.
 請求項1に係る流量制御弁では、中心に二次口の弁口に挿入可能なプラグを備えた弁体が駆動部により弁座の方向に移動し、弁体と弁座との間に介在する弾性体を弁座に着座させ、さらに弁体が弾性体を完全に圧縮して、弾性体の空孔の体積をゼロにすることにより、弾性体により弁口を閉弁することができる。そして、弾性体の下端面が弁座に当接した状態で、弁体を弁座に対して上下に移動させて、弾性部材を圧縮/解放して弾性体の空孔の体積を増減させることにより、従来のニードル弁では不可能であった極めて小さな流量の制御を可能にする。また、弾性体が弁座から隔離した状態で、弁体のプラグを弁口に対して挿入/隔離し、さらに、プラグを弁口から完全に隔離することにより、従来のニードル弁と同等な流量の流量制御も可能となる。これにより、流量制御可能な最小流量と最大流量との差が大きくなり、大きなターンダウンの実現が可能になる。 In the flow control valve according to claim 1, a valve body having a plug that can be inserted into the valve port of the secondary port at the center is moved in the direction of the valve seat by the drive unit, and is interposed between the valve body and the valve seat. The valve opening can be closed by the elastic body by seating the elastic body on the valve seat and further compressing the elastic body completely to make the volume of the pores of the elastic body zero. Then, with the lower end surface of the elastic body in contact with the valve seat, the valve body is moved up and down with respect to the valve seat to compress / release the elastic member to increase or decrease the volume of the holes in the elastic body. This makes it possible to control an extremely small flow rate, which was not possible with conventional needle valves. In addition, with the elastic body isolated from the valve seat, the plug of the valve body is inserted / isolated from the valve opening, and the plug is completely isolated from the valve opening, so that the flow rate is equivalent to that of the conventional needle valve. Flow rate control is also possible. As a result, the difference between the minimum flow rate and the maximum flow rate whose flow rate can be controlled becomes large, and a large turndown can be realized.
 請求項2および3に係る流量制御弁では、弾性体を内径がプラグの最大径より大きい円筒形状とし、弁体と弁座との間においてプラグの周囲を囲うように介在させて、プラグの下端面或いは弁座の上面に固着して設けることにより、閉弁時において弾性体を完全に圧縮して、弾性体の空孔の体積をゼロにして、弾性体により確実に弁口を閉止することができる。さらに、弾性体が弁座に当接した状態で、弁体を弁座に対して上下に移動させて弾性部材を圧縮/解放し、弾性体の空孔の体積を増減させることにより、極めて小さな流量の制御を可能にする。また、弾性体がプラグの周囲を囲うように介在させるため、弁体の移動量と弁口を通過する流体の流量との関係が略一定となり、極めて小さな流量の制御が容易に、かつ、安定して可能になる。 In the flow control valve according to claims 2 and 3, the elastic body has a cylindrical shape whose inner diameter is larger than the maximum diameter of the plug, and is interposed between the valve body and the valve seat so as to surround the plug and under the plug. By fixing it to the end face or the upper surface of the valve seat, the elastic body is completely compressed when the valve is closed, the volume of the pores of the elastic body is reduced to zero, and the valve opening is securely closed by the elastic body. Can be done. Further, with the elastic body in contact with the valve seat, the valve body is moved up and down with respect to the valve seat to compress / release the elastic member, and the volume of the holes in the elastic body is increased or decreased to make it extremely small. Allows control of flow rate. In addition, since the elastic body intervenes so as to surround the plug, the relationship between the amount of movement of the valve body and the flow rate of the fluid passing through the valve port becomes substantially constant, and control of an extremely small flow rate is easy and stable. It will be possible.
 請求項4に係る流量制御弁では、弁口をプラグが挿入し摺動可能な上部弁口と、弾性体が着座する弁座を上端部に備える下部弁口とを備える。そして、弾性体を外径が上部弁口の開口径より小さく、かつ、下部弁口の開口径より大きい円柱形状或いは多角柱形状とし、弁体のプラグの下端面と弁座との間に介在し、弾性体の上端面をプラグの下端面に固着して設けている。そのため、弁体を上下に移動させることにより、弾性体が下部弁口の上端部に設けた弁座に着座して当接した状態では弾性部材の圧縮/解放により、弾性体が下部弁口の上端部に設けた弁座から離隔した状態ではプラグが上部弁口を上下移動或いは上部弁口から離隔することにより、上記請求項1から3に記載した流量制御弁と同様、極めて小さな流量の制御を可能にするとともに、従来のニードル弁と同等な流量の流量制御も可能になる。 The flow control valve according to claim 4 is provided with an upper valve port in which a plug is inserted and slidable, and a lower valve port in which a valve seat on which an elastic body is seated is provided at an upper end portion. Then, the elastic body has a cylindrical shape or a polygonal column shape whose outer diameter is smaller than the opening diameter of the upper valve opening and is larger than the opening diameter of the lower valve opening, and is interposed between the lower end surface of the plug of the valve body and the valve seat. However, the upper end surface of the elastic body is fixed to the lower end surface of the plug. Therefore, by moving the valve body up and down, the elastic body is seated on the valve seat provided at the upper end of the lower valve port and is in contact with the valve seat. When the plug is separated from the valve seat provided at the upper end portion, the plug moves the upper valve port up and down or separates it from the upper valve port to control an extremely small flow rate as in the flow control valve according to claims 1 to 3. At the same time, it is possible to control the flow rate equivalent to that of a conventional needle valve.
 請求項5に係る流量制御弁では、弾性体を合成ゴム素材のスポンジで形成することにより、部品コストを低減できる。 In the flow control valve according to claim 5, the cost of parts can be reduced by forming the elastic body with a sponge made of a synthetic rubber material.
 請求項6に係る流量制御弁では、駆動部にステッピングモータを用いることにより、弁体の移動を微細に制御することができることから、弁口を通過する流体の流量を微細に制御することができる。 In the flow rate control valve according to claim 6, since the movement of the valve body can be finely controlled by using a stepping motor for the drive unit, the flow rate of the fluid passing through the valve opening can be finely controlled. ..
本発明にかかる一実施形態である流量制御弁の閉弁状態での断面図である。It is sectional drawing in the closed state of the flow rate control valve which is one Embodiment which concerns on this invention. 本発明にかかる一実施形態である流量制御弁の開弁状態での断面図である。It is sectional drawing in the opened state of the flow rate control valve which is one Embodiment which concerns on this invention. 本発明にかかる弁体を構成するプラグ(ニードルに相当)の(A)上面図、(B)正面図である。(A) top view and (B) front view of a plug (corresponding to a needle) constituting a valve body according to the present invention. 本発明にかかる弁体を構成するスポンジ(弾性体に相当)の(A)上面図、(B)正面図である。(A) top view and (B) front view of a sponge (corresponding to an elastic body) constituting a valve body according to the present invention. 弁体の移動量(ストローク)と流量との関係を説明する図である。It is a figure explaining the relationship between the movement amount (stroke) of a valve body, and a flow rate. 本発明にかかる他の実施形態(その1)である流量制御弁の開弁状態での断面図である。It is sectional drawing in the opened state of the flow rate control valve which is another embodiment (the 1) which concerns on this invention. 図6にかかる実施形態における弁体の移動の状態を説明する図である。FIG. 6 is a diagram illustrating a state of movement of the valve body in the embodiment according to FIG. 本発明にかかる他の実施形態(その2)である流量制御弁の開弁状態での断面図である。It is sectional drawing in the opened state of the flow rate control valve which is another embodiment (the 2) which concerns on this invention. 図8にかかる実施形態における弁体の移動の状態を説明する図である。FIG. 8 is a diagram illustrating a state of movement of the valve body in the embodiment according to FIG. 本発明にかかる他の実施形態(その3)、(その4)および(その5)である流量制御弁を説明する図である。It is a figure explaining the flow rate control valve which is another Embodiment (3), (4) and (5) which concerns on this invention.
 まず、本発明にかかる一実施形態である流量制御弁1について図面を参照して説明する。 First, the flow rate control valve 1, which is an embodiment of the present invention, will be described with reference to the drawings.
 図1および図2は、バーナなどへのガス供給路に介設する本発明にかかる一実施形態である流量制御弁1を示したものであり、図1は閉弁状態での断面図であり、図2は開弁状態での断面図である。 1 and 2 show a flow rate control valve 1 according to an embodiment of the present invention, which is interposed in a gas supply path to a burner or the like, and FIG. 1 is a cross-sectional view in a closed state. , FIG. 2 is a cross-sectional view in a valve open state.
 図1に示すように、流量制御弁1はガスなどの流体の流路を形成するボディ10に組み込まれている。ボディ10には、流量制御弁1の弁体25が収納される弁室22と、弁室22に連通する一次口20および二次口21とが設けられている。弁室22と二次口21との間には弁口19が設けられ、弁口19の上端面は、流量制御弁1の弁体25が着座する弁座18が設けられている。ボディ10の下面は弾性材であるパッキン24を介して下部プレート11で支持され、ボディ10と下部プレート11との間のシール状態を保持されている。 As shown in FIG. 1, the flow rate control valve 1 is incorporated in a body 10 that forms a flow path for a fluid such as gas. The body 10 is provided with a valve chamber 22 in which the valve body 25 of the flow control valve 1 is housed, and a primary port 20 and a secondary port 21 communicating with the valve chamber 22. A valve port 19 is provided between the valve chamber 22 and the secondary port 21, and a valve seat 18 on which the valve body 25 of the flow control valve 1 is seated is provided on the upper end surface of the valve port 19. The lower surface of the body 10 is supported by the lower plate 11 via the packing 24 which is an elastic material, and the sealed state between the body 10 and the lower plate 11 is maintained.
 流量制御弁1は、(図示しない)ステッピングモータやギアなどで構成されている駆動部13と、駆動部13内のステッピングモータやギアなどにより、図面に対して上下方向に移動するシャフト15と、シャフト15の下端部に接続する弁体25と、弁体25を図面下方(閉弁方向)に付勢するコイルバネ17とから構成される。本実施形態では、弁体25は、中心に図面下方に向けて突出し弁口19を貫通可能な円錐台形状の突出部を設けたプラグ14と、プラグ14の突出部の外周面を囲む円筒形状のスポンジ16とから構成される。駆動部13は上部プレート12とボディ10との間に介設するOリング23を介してボディ10に対してシール状態を保持して組み付けられている。尚、弁体25のプラグ14は、弁口19に挿入可能に設けられ、スポンジ16は、下端部が弁座18に着座するようになっている。尚、本実施形態では駆動部13にステッピングモータを採用しているが、駆動部13はシャフト15を図面に対して上下に移動制御できればいいのであって、DCモータやギヤードモータ、アクチュエータなども採用可能である。 The flow control valve 1 includes a drive unit 13 composed of a stepping motor, gears, etc. (not shown), a shaft 15 that moves in the vertical direction with respect to the drawing by the stepping motor, gears, etc. in the drive unit 13. It is composed of a valve body 25 connected to the lower end of the shaft 15 and a coil spring 17 for urging the valve body 25 downward in the drawing (valve closing direction). In the present embodiment, the valve body 25 has a plug 14 having a truncated cone-shaped protrusion that protrudes toward the lower part of the drawing and can penetrate the valve opening 19, and a cylindrical shape that surrounds the outer peripheral surface of the protrusion of the plug 14. It is composed of a sponge 16 of the above. The drive unit 13 is assembled while maintaining a sealed state with respect to the body 10 via an O-ring 23 interposed between the upper plate 12 and the body 10. The plug 14 of the valve body 25 is provided so as to be insertable into the valve opening 19, and the lower end portion of the sponge 16 is seated on the valve seat 18. In this embodiment, a stepping motor is used for the drive unit 13, but the drive unit 13 only needs to be able to control the movement of the shaft 15 up and down with respect to the drawing, and a DC motor, a geared motor, an actuator, and the like are also used. It is possible.
 ここで、本発明の特徴である弁体25を構成するプラグ14およびスポンジ16について図3および図4を参照して説明する。 Here, the plug 14 and the sponge 16 constituting the valve body 25, which is a feature of the present invention, will be described with reference to FIGS. 3 and 4.
 図3の(A)は、プラグ14の上面図であり、図3の(B)は、プラグ14の正面図である。図3の(B)に示すように、プラグ14は、図面上方から、シャフト15と接続する円柱状のプラグ接続部14a、コイルバネ17を支持する円柱状のプラグ支持部14bおよび図面下方に向けて徐々に径が小さくなる略円錐台形状のプラグ本体14dから構成されている。また、プラグ接続部14aの上端部にはシャフト15に取り付けるためのネジ穴14cが設けられている。プラグ本体14dの最大径は弁口19の開口径よりやや小さく設定されており、これにより、プラグ本体14dは弁口19対して挿入/隔離可能になっている。 FIG. 3A is a top view of the plug 14, and FIG. 3B is a front view of the plug 14. As shown in FIG. 3B, the plug 14 is directed from the upper part of the drawing toward the columnar plug connecting portion 14a connected to the shaft 15, the cylindrical plug supporting portion 14b supporting the coil spring 17, and the lower part of the drawing. It is composed of a plug body 14d having a substantially truncated cone shape whose diameter gradually decreases. Further, a screw hole 14c for attaching to the shaft 15 is provided at the upper end portion of the plug connecting portion 14a. The maximum diameter of the plug body 14d is set to be slightly smaller than the opening diameter of the valve port 19, so that the plug body 14d can be inserted / isolated from the valve port 19.
 図4の(A)は、スポンジ16の上面図であり、図4の(B)は、スポンジ16の正面図である。図4に示すように、スポンジ16は内周面16aを有する円筒形状に形成されている。スポンジ16の円筒部の外径は、プラグ14のプラグ支持部14bの外径と略同一に、また、スポンジ16の内周面16aの内径は、プラグ14のプラグ本体14dの最大径よりやや大きく設定されている。これにより、スポンジ16は、プラグ14のプラグ本体14dの外周を囲うようにプラグ14のプラグ支持部14bの下面に固着される。本実施形態では、スポンジ16は合成ゴム素材の多孔質の弾性部材で形成されているが、素材は合成ゴム素材に限定されるものではなく、スポンジ16の圧縮/解放により多孔質の空孔の体積の和が増減可能であれば、他の素材も採用可能である。 FIG. 4A is a top view of the sponge 16, and FIG. 4B is a front view of the sponge 16. As shown in FIG. 4, the sponge 16 is formed in a cylindrical shape having an inner peripheral surface 16a. The outer diameter of the cylindrical portion of the sponge 16 is substantially the same as the outer diameter of the plug support portion 14b of the plug 14, and the inner diameter of the inner peripheral surface 16a of the sponge 16 is slightly larger than the maximum diameter of the plug body 14d of the plug 14. It is set. As a result, the sponge 16 is fixed to the lower surface of the plug support portion 14b of the plug 14 so as to surround the outer periphery of the plug body 14d of the plug 14. In the present embodiment, the sponge 16 is formed of a porous elastic member made of a synthetic rubber material, but the material is not limited to the synthetic rubber material, and the compression / release of the sponge 16 causes porous pores. Other materials can be used as long as the sum of the volumes can be increased or decreased.
 次に、流量制御弁1の閉弁状態および開弁状態について説明する。 Next, the closed state and the open state of the flow rate control valve 1 will be described.
 図1に示すように、流量制御弁1の閉弁状態では、駆動部13によりシャフト15が図面下方に移動する。これにより、弁体25のスポンジ16が弁座18に着座するとともに、弁体25のプラグ14(詳細にはプラグ本体14d)は弁口19に挿入する。そして、さらにシャフト15を下方に移動させて、スポンジ16の多孔質の空孔の体積の和がゼロになるまでスポンジ16を圧縮すると、弁口19がスポンジ16によりシールされて、閉弁状態になる。 As shown in FIG. 1, in the closed state of the flow control valve 1, the shaft 15 is moved to the lower side of the drawing by the drive unit 13. As a result, the sponge 16 of the valve body 25 is seated on the valve seat 18, and the plug 14 of the valve body 25 (specifically, the plug body 14d) is inserted into the valve opening 19. Then, when the shaft 15 is further moved downward and the sponge 16 is compressed until the sum of the volumes of the porous pores of the sponge 16 becomes zero, the valve opening 19 is sealed by the sponge 16 and the valve is closed. Become.
 また、図2に示すように、流量制御弁1の開弁状態では、駆動部13によりシャフト15が矢印(1)に示すように図面上方に移動する。これにより、弁体25がコイルバネ17の付勢力に抗して上方に移動し、弁体25のスポンジ16が弁座18から隔離するとともに、弁体25のプラグ14(詳細ではプラグ本体14d)も弁口19から隔離して、流量制御弁1は開弁状態になり、弁室22および弁口19を介して一次口20と二次口21とが連通する。 Further, as shown in FIG. 2, in the valve open state of the flow control valve 1, the shaft 15 is moved upward in the drawing by the drive unit 13 as shown by the arrow (1). As a result, the valve body 25 moves upward against the urging force of the coil spring 17, the sponge 16 of the valve body 25 is isolated from the valve seat 18, and the plug 14 of the valve body 25 (specifically, the plug body 14d) is also. Separated from the valve port 19, the flow control valve 1 is opened, and the primary port 20 and the secondary port 21 communicate with each other via the valve chamber 22 and the valve port 19.
 次に、本発明にかかる流量制御弁1のプラグ14とスポンジ16とからなる弁体25の効果について図5を参照して説明する。 Next, the effect of the valve body 25 including the plug 14 of the flow rate control valve 1 and the sponge 16 according to the present invention will be described with reference to FIG.
 図5の(A)から(E)は、流量制御弁1が閉弁状態(図5の(A))から、駆動部13によりシャフト15を上方に移動して、プラグ14(弁体25)を徐々に上方(開弁方向)に移動させた状態を図示したものである。図5の(A)の状態をストロークゼロ(S(A)=0)とし、図5の(B)から(E)は、図5の(A)に対して、それぞれ、図5の(B)ではストロークS(B)、図5の(C)ではストロークS(C)、図5の(D)ではストロークS(D)、図5の(E)ではストロークS(E)と、プラグ14を徐々に上方に移動した状態を示した図である。 In FIGS. 5 (A) to 5 (E), the flow control valve 1 is moved upward by the drive unit 13 from the closed state ((A) in FIG. 5), and the plug 14 (valve body 25) is moved upward. Is illustrated in a state in which is gradually moved upward (valve opening direction). The state of (A) in FIG. 5 is set to zero stroke (S (A) = 0), and (B) to (E) of FIG. 5 are (B) of FIG. 5, respectively, with respect to (A) of FIG. ) Is the stroke S (B), FIG. 5 (C) is the stroke S (C), FIG. 5 (D) is the stroke S (D), FIG. 5 (E) is the stroke S (E), and the plug 14. It is a figure which showed the state which moved upward gradually.
 図5の(F)は、ストローク(プラグ14が図5の(A)の状態から上方に移動した距離)と、プラグ14の(上方への)移動により開弁して弁口19を流れる流体の流量との関係を示したグラフである。図5の(F)のグラフの中の黒丸(「●」)は、図5の(A)から(E)の各状態におけるストローク(S(A)、S(B)、S(C)、S(D)、S(E))に対する流量(F(A)、F(B)、F(C)、F(D)、F(E))を示した点である。図5の(A)から(C)の状態では、スポンジ16の下端面が弁座18に当接した状態で、スポンジ16が圧縮/解放される。この状態では、弁口19を流れる流体の流量は、スポンジ16の多孔質の空孔の体積の和に略比例するため、ストロークに対して図5の(F)のライン(1)に沿って変化する。これにより、従来のニードル弁に対して極めて小さな流量の制御が可能になる。そして、スポンジ16の下端面が弁座18から隔離すると(図5の(C)から(E)の状態)、従来のニードル弁のようにプラグ14のストロークの大きさに略比例するため、ストロークに対して、図5の(F)のライン(2)に沿って変化する。これにより、従来のニードル弁と同等な流量の制御が可能になる。 FIG. 5 (F) shows a fluid that opens and flows through the valve opening 19 due to the stroke (distance in which the plug 14 moves upward from the state of FIG. 5 (A)) and the movement of the plug 14 (upward). It is a graph which showed the relationship with the flow rate of. The black circles (“●”) in the graph of FIG. 5 (F) are the strokes (S (A), S (B), S (C), in each state of FIGS. 5 (A) to (E). It is a point showing the flow rate (F (A), F (B), F (C), F (D), F (E)) with respect to S (D), S (E)). In the states (A) to (C) of FIG. 5, the sponge 16 is compressed / released with the lower end surface of the sponge 16 in contact with the valve seat 18. In this state, the flow rate of the fluid flowing through the valve port 19 is substantially proportional to the sum of the volumes of the porous pores of the sponge 16, so that the stroke is along the line (1) of FIG. Change. This makes it possible to control an extremely small flow rate compared to the conventional needle valve. When the lower end surface of the sponge 16 is isolated from the valve seat 18 (states (C) to (E) in FIG. 5), the stroke is substantially proportional to the stroke size of the plug 14 as in the conventional needle valve. On the other hand, it changes along the line (2) of FIG. 5 (F). This makes it possible to control the flow rate equivalent to that of a conventional needle valve.
 上記のように、本発明にかかる流量制御弁1では、弁口19を流れる流体の流量は、スポンジ16の下端面が弁座18に当接した状態では、ストロークに対して、図5の(F)のライン(1)に沿って変化するため、従来のニードル弁(図5の(F)のライン(2))に比べて極めて小さな流量の制御が可能となり、スポンジ16の下端面が弁座18から隔離すると、弁口19を流れる流体の流量は、ストロークに対して、従来のニードル弁のように図5の(F)のライン(2)に沿って変化するため、従来のニードル弁と同等な大きな流量まで制御可能となり、結果として流量制御可能な最小流量と最大流量との差が大きくなり、大きなターンダウンの実現が可能になるのである。 As described above, in the flow rate control valve 1 according to the present invention, the flow rate of the fluid flowing through the valve port 19 is as shown in FIG. 5 with respect to the stroke when the lower end surface of the sponge 16 is in contact with the valve seat 18. Since it changes along the line (1) of F), it is possible to control an extremely small flow rate as compared with the conventional needle valve (line (2) of (F) in FIG. 5), and the lower end surface of the sponge 16 is a valve. When isolated from the seat 18, the flow rate of the fluid flowing through the valve port 19 changes with respect to the stroke along the line (2) of FIG. 5 (F) like the conventional needle valve, and thus the conventional needle valve. It is possible to control up to a large flow rate equivalent to that of the above, and as a result, the difference between the minimum flow rate and the maximum flow rate that can be controlled by the flow rate becomes large, and a large turndown can be realized.
 ここで、流量制御弁1は流量制御弁の一例であり、弁室22は弁室の一例であり、一次口20は一次口の一例であり、二次口21は二次口の一例であり、弁座18は弁座の一例であり、弁体25は弁体の一例であり、弁口19は弁口の一例であり、駆動部13は駆動部の一例であり、プラグ14はプラグの一例であり、スポンジ16は多孔質の弾性体の一例である。 Here, the flow rate control valve 1 is an example of a flow rate control valve, the valve chamber 22 is an example of a valve chamber, the primary port 20 is an example of a primary port, and the secondary port 21 is an example of a secondary port. , The valve seat 18 is an example of a valve seat, the valve body 25 is an example of a valve body, the valve port 19 is an example of a valve port, the drive unit 13 is an example of a drive unit, and the plug 14 is an example of a plug. As an example, the sponge 16 is an example of a porous elastic body.
 以上、本発明の実施形態について詳述してきたが、これらはあくまでも例示であって、本発明はかかる実施形態における具体的な記載によって、何等、限定的に解釈されるものでなく、当業者の知識に基づいて種々なる変更、修正、改良等を加えた態様において実施され得るものであり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることが、理解されるべきである。 Although the embodiments of the present invention have been described in detail above, these are merely examples, and the present invention is not to be interpreted in a limited manner by the specific description in the embodiment, and those skilled in the art are skilled in the art. It can be carried out in an embodiment in which various changes, modifications, improvements, etc. are added based on knowledge, and all of them are within the scope of the present invention as long as such embodiments do not deviate from the gist of the present invention. It should be understood that it is contained in.
 図6は、本発明にかかる他の実施形態(その1)である流量制御弁100の開弁状態での断面図を示す。上記実施形態の流量制御弁1では、スポンジ16は弁体25を構成するプラグ14に固着したが、スポンジの配置は、これに限定するものではなく、図6に示す流量制御弁100のように、スポンジ116を弁座118の上面に固着して配置してもよい。スポンジ116は、流量制御弁1にかかるスポンジ16と同様、内径がプラグ114のプラグ本体114aの最大径より大きい円筒形状であり、プラグ114のプラグ本体114aの外周面を囲うように弁座118の上面に配置される。 FIG. 6 shows a cross-sectional view of the flow rate control valve 100 according to another embodiment (No. 1) of the present invention in a valve open state. In the flow rate control valve 1 of the above embodiment, the sponge 16 is fixed to the plug 14 constituting the valve body 25, but the arrangement of the sponge is not limited to this, as in the flow rate control valve 100 shown in FIG. , The sponge 116 may be fixedly arranged on the upper surface of the valve seat 118. Like the sponge 16 on the flow control valve 1, the sponge 116 has a cylindrical shape whose inner diameter is larger than the maximum diameter of the plug body 114a of the plug 114, and the valve seat 118 surrounds the outer peripheral surface of the plug body 114a of the plug 114. Placed on the top surface.
 図7は、流量制御弁100にかかる弁体のプラグ114の移動の状態を説明する図である。図7の(A)は、上記、図5の(A)と同様、プラグ114によりスポンジ116を完全に圧縮し、スポンジ116の空孔の体積をゼロにして閉弁した状態で、この場合のプラグ114のストロークをゼロ(S1(A)=0)とし、図7の(B)から(E)は、徐々にプラグ114を上方(開弁方向)に移動した各状態(ストロークS1(B)、ストロークS1(C)、ストロークS1(D)、ストロークS1(E))を示した図である。スポンジ116がプラグ114と当接している間(図7の(A)から(C))では、流量制御弁1の場合と同様、弁口119を流れる流体の流量は、スポンジ116の多孔質の空孔の体積の和に略比例するため、ストロークに対して、例えば、上記の図5の(F)のライン(1)のように変化し、スポンジ116がプラグ114と隔離する状態(図7の(C)から(E))では、ストロークに対して、例えば、上記の図5の(F)のライン(2)のように変化する。よって、スポンジ116を弁座118の上面に固着した流量制御弁100でも、流量制御弁1と同様、極めて小さな流量の制御も可能になることから、流量制御可能な最小流量と最大流量との差が大きくなり、大きなターンダウンの実現が可能になる。 FIG. 7 is a diagram illustrating a state of movement of the plug 114 of the valve body over the flow control valve 100. In FIG. 7A, as in the case of FIG. 5A, the sponge 116 is completely compressed by the plug 114, the volume of the pores of the sponge 116 is set to zero, and the valve is closed. The stroke of the plug 114 is set to zero (S1 (A) = 0), and (B) to (E) in FIG. 7 indicate each state in which the plug 114 is gradually moved upward (valve opening direction) (stroke S1 (B)). , Stroke S1 (C), Stroke S1 (D), Stroke S1 (E)). While the sponge 116 is in contact with the plug 114 ((A) to (C) in FIG. 7), the flow rate of the fluid flowing through the valve port 119 is that of the porous sponge 116, as in the case of the flow control valve 1. Since it is substantially proportional to the sum of the volumes of the vacancies, it changes with respect to the stroke, for example, as shown in the line (1) of FIG. 5 (F) above, and the sponge 116 is isolated from the plug 114 (FIG. 7). In (C) to (E), the stroke changes, for example, as shown in the line (2) of FIG. 5 (F). Therefore, even with the flow rate control valve 100 in which the sponge 116 is fixed to the upper surface of the valve seat 118, it is possible to control an extremely small flow rate as in the flow rate control valve 1, so that the difference between the minimum flow rate and the maximum flow rate that can be controlled by the flow rate. Becomes larger, and a large turndown can be realized.
 図8は、本発明にかかる他の実施形態(その2)である流量制御弁200の開弁状態での断面図を示す。図8に示すように、流量制御弁200では、本発明に特徴であるスポンジ216はプラグ214の下端面に固着して設けられ、プラグ214とスポンジ216とで弁体225が構成される。また、弁口は、プラグ214が挿入し摺動可能な上部弁口226と、スポンジ216の下端面が着座する弁座218を上端部に設けた下部弁口219とを備える。そして、スポンジ216は、外径が上部弁口226の開口径より小さく、かつ、下部弁口216の開口径より大きい円柱形状のスポンジを採用したものである。ここで、スポンジ216の形状は、円柱形状に限定されるものではなく、多角柱形状であってもよい。 FIG. 8 shows a cross-sectional view of the flow rate control valve 200 according to another embodiment (No. 2) of the present invention in a valve open state. As shown in FIG. 8, in the flow control valve 200, the sponge 216, which is a feature of the present invention, is fixedly provided on the lower end surface of the plug 214, and the valve body 225 is composed of the plug 214 and the sponge 216. Further, the valve port includes an upper valve port 226 into which the plug 214 can be inserted and slidable, and a lower valve port 219 having a valve seat 218 on which the lower end surface of the sponge 216 is seated. The sponge 216 adopts a cylindrical sponge having an outer diameter smaller than the opening diameter of the upper valve port 226 and larger than the opening diameter of the lower valve port 216. Here, the shape of the sponge 216 is not limited to the cylindrical shape, but may be a polygonal prism shape.
 図9は、流量制御弁200にかかる弁体のプラグ214の移動の状態を説明する図である。図9の(A)は、上記、図5の(A)と同様、プラグ214によりスポンジ216を完全に圧縮し、スポンジ216の空孔の体積をゼロにして閉弁した状態であり、この場合のプラグ214のストロークをゼロ(S2(A)=0)とし、図9の(B)から(E)は、徐々にプラグ214を上方(開弁方向)に移動した各状態(ストロークS2(B)、ストロークS2(C)、ストロークS2(D)、ストロークS2(E))を示した図である。スポンジ216の下端面が弁座218と当接している間(図9の(A)から(C))では、流量制御弁1の場合と同様、弁口219を流れる流体の流量は、スポンジ216の多孔質の空孔の体積の和に略比例するため、ストロークに対して、例えば、上記の図5の(F)のライン(1)のように変化し、スポンジ216が弁座218と隔離する状態(図9の(C)から(E))では、プラグ214が上部弁口226を移動し、さらに、上部弁口226から離隔するため、ストロークに対して、例えば、上記の図5の(F)のライン(2)のように変化する。よって、流量制御弁200においても、流量制御弁1と同様、極めて小さな流量の制御も可能になることから、流量制御可能な最小流量と最大流量との差が大きくなり、大きなターンダウンの実現が可能になる。 FIG. 9 is a diagram illustrating a state of movement of the plug 214 of the valve body pertaining to the flow control valve 200. FIG. 9A shows a state in which the sponge 216 is completely compressed by the plug 214 and the volume of the pores of the sponge 216 is set to zero to close the valve, as in the case of FIG. 5A. The stroke of the plug 214 is set to zero (S2 (A) = 0), and (B) to (E) in FIG. 9 indicate each state in which the plug 214 is gradually moved upward (valve opening direction) (stroke S2 (B). ), Stroke S2 (C), Stroke S2 (D), Stroke S2 (E)). While the lower end surface of the sponge 216 is in contact with the valve seat 218 ((A) to (C) in FIG. 9), the flow rate of the fluid flowing through the valve port 219 is the sponge 216, as in the case of the flow rate control valve 1. Since it is substantially proportional to the sum of the volumes of the porous pores of the above, the sponge 216 changes with respect to the stroke, for example, as shown in the line (1) of FIG. 5 (F) above, and the sponge 216 is separated from the valve seat 218. In the state ((C) to (E) of FIG. 9), the plug 214 moves the upper valve port 226 and further separates from the upper valve port 226. It changes like the line (2) of (F). Therefore, in the flow rate control valve 200, as in the flow rate control valve 1, it is possible to control an extremely small flow rate, so that the difference between the minimum flow rate and the maximum flow rate in which the flow rate can be controlled becomes large, and a large turndown can be realized. It will be possible.
 流量制御弁1および100、200では、スポンジ(16、116、216)を圧縮させて、弁口(19、119、219)をシールして閉弁したが、スポンジの材質によっては、スポンジを圧縮させても弁口を完全にシールできない場合がある。その場合、スポンジとは別に弾性部材からなるシール部材を追加してもよい。 In the flow control valves 1 and 100, 200, the sponge (16, 116, 216) was compressed to seal and close the valve port (19, 119, 219), but the sponge was compressed depending on the material of the sponge. Even if it is made, the valve opening may not be completely sealed. In that case, a sealing member made of an elastic member may be added separately from the sponge.
 図10にはシール部材を追加した他の実施形態(その3)、(その4)および(その5)を示した図である。図10の(A)および(B)は、一例として上記実施形態の流量制御弁1にシール部材を追加した流量制御弁300(実施形態(その3))の閉弁時および開弁時の断面図であり、図10の(C)および(D)は、一例として上記実施形態の流量制御弁200にシール部材を追加した流量制御弁400(実施形態(その4))の閉弁時および開弁時の断面図である。シール部材330および430は、いずれも内径が各々のプラグ314および414の外周径より大きい円筒形状であり、閉弁時において、図10の(A)および(C)に示すように、各々の弁座318および418に着座して各々の弁口を完全にシールすることができるようにしたものである。尚、流量制御弁300および流量制御弁400には、図10に示すように、スポンジ316およびスポンジ416が設けられている。 FIG. 10 is a diagram showing another embodiment (No. 3), (No. 4), and (No. 5) to which a seal member is added. 10 (A) and 10 (B) are cross sections of the flow control valve 300 (the third embodiment) in which a seal member is added to the flow control valve 1 of the above embodiment when the valve is closed and the valve is opened. It is a figure, (C) and (D) of FIG. It is sectional drawing at the time of a valve. Each of the sealing members 330 and 430 has a cylindrical shape whose inner diameter is larger than the outer peripheral diameter of each of the plugs 314 and 414, and when the valve is closed, as shown in FIGS. 10A and 10C, the respective valves are formed. It sits on seats 318 and 418 so that each valve can be completely sealed. As shown in FIG. 10, the flow rate control valve 300 and the flow rate control valve 400 are provided with a sponge 316 and a sponge 416.
 また、シール部材は、シール部材330および430のような円筒形状のシール部材に限定するものではなく、例えば、図10の(E)に示す流量制御弁500(実施形態(その5))のように、Oリング530を採用してもよい。プラグ514の上端外周部にOリング530に嵌合する凹溝514aを設けてOリング530を装着して、Oリング530により弁口をシールすることができる。 Further, the seal member is not limited to the cylindrical seal member such as the seal members 330 and 430, and is, for example, the flow rate control valve 500 (embodiment (No. 5)) shown in FIG. 10 (E). The O-ring 530 may be adopted. A concave groove 514a that fits into the O-ring 530 is provided on the outer peripheral portion of the upper end of the plug 514, the O-ring 530 can be mounted, and the valve opening can be sealed by the O-ring 530.
1、100、200、300、400、500・・流量制御弁
10、110、210・・ボディ
11・・下部プレート
12・・上部プレート
13・・駆動部
14、114、214、314、414、514・・プラグ
15・・シャフト
16、116、216、316、416・・スポンジ
17・・コイルバネ
18、118、218、318、418・・弁座
19、119、219、226・・弁口
20・・一次口
21・・二次口
22・・弁室
23・・Oリング
24・・パッキン
25、225・・弁体
1,100,200,300,400,500 ... Flow control valve 10, 110, 210 ... Body 11 ... Lower plate 12 ... Upper plate 13 ... Drive unit 14, 114, 214, 314, 414, 514・ ・ Plug 15 ・ ・ Shaft 16, 116, 216, 316, 416 ・ ・ Sponge 17 ・ ・ Coil spring 18, 118, 218, 318, 418 ・ ・ Valve seat 19, 119, 219, 226 ・ ・ Valve port 20 ・ ・Primary port 21 ... Secondary port 22 ... Valve chamber 23 ... O-ring 24 ... Packing 25, 225 ... Valve body

Claims (6)

  1.  弁室と、
     前記弁室に連通する一次口及び二次口と、
     前記二次口の弁口に設けられた弁座と、
     前記弁座に着座する弁体と、
     前記弁体に接続し、前記弁体を弁開閉方向に位置移動可能にする駆動部とからなり、
     前記弁体と前記二次口の弁口の開度を増減制御して前記弁口を通過する流体の流量を制御する流量制御弁において、
     前記弁体は、中心に前記二次口の弁口に挿入可能なプラグを備え、
     前記弁体と前記弁座との間には、前記弁座に着座する多孔質の弾性体が介在して設けられることを特徴とする流量制御弁。
    Valve room and
    The primary and secondary ports that communicate with the valve chamber,
    The valve seat provided at the valve opening of the secondary port and
    The valve body that sits on the valve seat and
    It consists of a drive unit that is connected to the valve body and allows the valve body to move its position in the valve opening / closing direction.
    In a flow rate control valve that controls the flow rate of a fluid passing through the valve port by controlling the increase / decrease in the opening degree of the valve body and the valve port of the secondary port.
    The valve body is provided with a plug that can be inserted into the valve port of the secondary port in the center.
    A flow control valve characterized in that a porous elastic body seated on the valve seat is interposed between the valve body and the valve seat.
  2.  前記弾性体は、内径が前記プラグの最大径より大きい円筒形状であり、前記弁体と前記弁座との間において前記プラグの周囲を囲うように介在し、前記弾性体の上端面は、前記プラグに固着して設けられることを特徴とする請求項1に記載の流量制御弁。 The elastic body has a cylindrical shape having an inner diameter larger than the maximum diameter of the plug, is interposed between the valve body and the valve seat so as to surround the plug, and the upper end surface of the elastic body is the above-mentioned elastic body. The flow rate control valve according to claim 1, wherein the flow control valve is provided by being fixed to a plug.
  3.  前記弾性体は、内径が前記プラグの最大径より大きい円筒形状であり、前記弁体の前記プラグと前記弁座との間において前記プラグの周囲を囲うように介在し、前記弾性体の下端面は、前記弁座の上面に固着して設けられることを特徴とする請求項1に記載の流量制御弁。 The elastic body has a cylindrical shape having an inner diameter larger than the maximum diameter of the plug, and is interposed between the plug and the valve seat of the valve body so as to surround the plug, and the lower end surface of the elastic body. The flow rate control valve according to claim 1, wherein the valve seat is fixedly provided on the upper surface of the valve seat.
  4.  前記弁口は、前記プラグが挿入、かつ、摺動可能な上部弁口と、前記弾性体が着座する弁座を上端部に備える下部弁口とを備え、
     前記弾性体は、外径が前記上部弁口の開口径より小さく、かつ、前記下部弁口の開口径より大きい円柱形状或いは多角柱形状であり、前記弁体の前記プラグの下端面と前記弁座との間に介在し、前記弾性体の上端面は、前記プラグの下端面に固着して設けられることを特徴とする請求項1に記載の流量制御弁。
    The valve port includes an upper valve port into which the plug can be inserted and slidable, and a lower valve port having a valve seat on which the elastic body is seated at an upper end portion.
    The elastic body has a cylindrical shape or a polygonal column shape having an outer diameter smaller than the opening diameter of the upper valve port and larger than the opening diameter of the lower valve port, and the lower end surface of the plug of the valve body and the valve. The flow control valve according to claim 1, wherein the upper end surface of the elastic body is interposed between the seat and fixed to the lower end surface of the plug.
  5.  前記弾性体は合成ゴム素材のスポンジであることを特徴とする請求項1乃至4のいずれか1項に記載の流量制御弁。 The flow rate control valve according to any one of claims 1 to 4, wherein the elastic body is a sponge made of a synthetic rubber material.
  6.  前記駆動部はステッピングモータにより前記弁体を弁開閉方向に位置に移動制御することを特徴とする請求項1乃至5のいずれか1項に記載の流量制御弁。 The flow rate control valve according to any one of claims 1 to 5, wherein the drive unit moves and controls the valve body to a position in the valve opening / closing direction by a stepping motor.
PCT/JP2020/038598 2020-10-13 2020-10-13 Flow rate control valve WO2022079790A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/038598 WO2022079790A1 (en) 2020-10-13 2020-10-13 Flow rate control valve
JP2022556714A JP7305237B2 (en) 2020-10-13 2020-10-13 flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/038598 WO2022079790A1 (en) 2020-10-13 2020-10-13 Flow rate control valve

Publications (1)

Publication Number Publication Date
WO2022079790A1 true WO2022079790A1 (en) 2022-04-21

Family

ID=81207770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038598 WO2022079790A1 (en) 2020-10-13 2020-10-13 Flow rate control valve

Country Status (2)

Country Link
JP (1) JP7305237B2 (en)
WO (1) WO2022079790A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024016392A1 (en) * 2022-07-22 2024-01-25 苏州仁甬得物联科技有限公司 Valve core having microporous structure, and electromagnetic valve using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235969A (en) * 2001-02-07 2002-08-23 Matsushita Electric Ind Co Ltd Air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235969A (en) * 2001-02-07 2002-08-23 Matsushita Electric Ind Co Ltd Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024016392A1 (en) * 2022-07-22 2024-01-25 苏州仁甬得物联科技有限公司 Valve core having microporous structure, and electromagnetic valve using same

Also Published As

Publication number Publication date
JP7305237B2 (en) 2023-07-10
JPWO2022079790A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
JP6745141B2 (en) Flow control valve
CA2619394C (en) Solenoid isolation valve
KR102473774B1 (en) Electric valve
WO2022079790A1 (en) Flow rate control valve
JP6793945B2 (en) Electrical drive valve
JP2014020398A (en) Actuator for fluid controller
JP2001263507A (en) Flow regulating valve
JP7105489B2 (en) Flow switching valve
JP7315421B2 (en) Flow regulator
JPWO2022079790A5 (en)
KR102406952B1 (en) Flow control valve
JP2002276845A (en) Adjusting valve
JP2800885B2 (en) Flow control method and flow control valve
JP3681463B2 (en) Pressure reducing valve
WO2020095591A1 (en) Flow path switching valve
JP2002295693A (en) Control valve, and manufacturing method of valve element for the control valve
WO2023189013A1 (en) Valve device
JP7378281B2 (en) pressure regulator
WO2019187471A1 (en) Flow rate control valve
JPH04405Y2 (en)
JP6741415B2 (en) Pressure regulator
JP4303168B2 (en) Control valve
US20210164583A1 (en) Flow control valve
JP2003316444A (en) Pressure regulator
JPH0440047Y2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957619

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022556714

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20957619

Country of ref document: EP

Kind code of ref document: A1