WO2022079777A1 - 分析装置、分析システム、分析方法、およびプログラムが格納された非一時的なコンピュータ可読媒体 - Google Patents
分析装置、分析システム、分析方法、およびプログラムが格納された非一時的なコンピュータ可読媒体 Download PDFInfo
- Publication number
- WO2022079777A1 WO2022079777A1 PCT/JP2020/038531 JP2020038531W WO2022079777A1 WO 2022079777 A1 WO2022079777 A1 WO 2022079777A1 JP 2020038531 W JP2020038531 W JP 2020038531W WO 2022079777 A1 WO2022079777 A1 WO 2022079777A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- conference
- image
- analysis
- emotion
- Prior art date
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 231
- 230000008451 emotion Effects 0.000 claims abstract description 197
- 238000000034 method Methods 0.000 claims description 37
- 230000008569 process Effects 0.000 claims description 32
- 230000002996 emotional effect Effects 0.000 claims description 26
- 230000001815 facial effect Effects 0.000 claims description 11
- 230000036651 mood Effects 0.000 abstract 1
- 235000019646 color tone Nutrition 0.000 description 46
- 238000010586 diagram Methods 0.000 description 17
- 230000006870 function Effects 0.000 description 12
- 230000008859 change Effects 0.000 description 10
- 238000004891 communication Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 239000003086 colorant Substances 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/14—Digital output to display device ; Cooperation and interconnection of the display device with other functional units
- G06F3/1454—Digital output to display device ; Cooperation and interconnection of the display device with other functional units involving copying of the display data of a local workstation or window to a remote workstation or window so that an actual copy of the data is displayed simultaneously on two or more displays, e.g. teledisplay
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/14—Digital output to display device ; Cooperation and interconnection of the display device with other functional units
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/26—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/174—Facial expression recognition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/21—Server components or server architectures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/23—Processing of content or additional data; Elementary server operations; Server middleware
- H04N21/24—Monitoring of processes or resources, e.g. monitoring of server load, available bandwidth, upstream requests
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/25—Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
- H04N21/258—Client or end-user data management, e.g. managing client capabilities, user preferences or demographics, processing of multiple end-users preferences to derive collaborative data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/80—Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
- H04N21/83—Generation or processing of protective or descriptive data associated with content; Content structuring
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/01—Indexing scheme relating to G06F3/01
- G06F2203/011—Emotion or mood input determined on the basis of sensed human body parameters such as pulse, heart rate or beat, temperature of skin, facial expressions, iris, voice pitch, brain activity patterns
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30196—Human being; Person
- G06T2207/30201—Face
Definitions
- the present disclosure relates to a non-temporary computer-readable medium in which an analyzer, an analysis system, an analysis method, and a program are stored.
- Patent Document 1 describes a conference support system for the purpose of generating minutes that can know the atmosphere of attendees during a conference and the reactions of each person in more detail than before.
- the conference support system described in Patent Document 1 includes an image input means for inputting images of the faces of a plurality of attendees of the conference, an emotion discrimination means for discriminating emotions of each attendee based on the input images, and attendance. It is provided with a voice input means for inputting a person's voice.
- this conference support system includes a text data generation means for generating text data indicating the content of the attendee's remarks based on the input voice, and a minutes generation means.
- the minutes generation means records the content of the remark and the emotions of each attendee when the remark is made, based on the discrimination result by the emotion discrimination means and the text data generated by the text data generation means. To generate.
- Patent Document 2 describes a conference system for the purpose of more accurately reflecting the status of conference participants in the progress of the conference.
- the conference system described in Patent Document 2 is used as a biometric information acquisition means for acquiring biometric information that is biometric information of a conference participant during a conference and changes depending on the state of the participant, and biometric information of the participant. It is provided with a determination means for determining the psychological state of the participant based on the determination means and a determination means. This determination means determines the content of the proposal to the meeting based on the judgment result regarding the psychological state of the participants.
- the participants are located in different places and communicate with each other via the terminal. Therefore, it is difficult to grasp the atmosphere of the conference and the reaction of the participants in the online conference, and a system capable of such grasping at first glance is desired.
- the present disclosure has been made in view of the above-mentioned problems, and an object of the present disclosure is to provide an analyzer or the like for effectively operating an online conference.
- the analyzer includes emotion data acquisition means, analysis data generation means, storage means, image generation means, and output means.
- the emotion data acquisition means acquires individual emotion data for each participant generated based on the facial image data of the participants during the meeting in the online conference.
- the analysis data generation means generates analysis data indicating the degree of emotion in the online conference based on the individual emotion data for each participant.
- the storage means stores each of the analysis data for each participant in association with the corresponding color tone information.
- the image generation means arranges an image in which an element figure represented by color tone information associated with the analysis data is arranged for each of the plurality of participants who participated in the online conference. Generate.
- the output means outputs the display image.
- the computer acquires the individual emotion data for each participant generated based on the facial image data of the participants during the meeting in the online meeting.
- the computer generates analysis data indicating the degree of emotion in the online conference based on the individual emotion data for each participant, and corresponds to each of the analysis data for each participant. It is stored in association with the color tone information to be used.
- the computer as a display image showing the state of the online conference, the computer represents an element figure represented by color tone information associated with the analysis data for each of the plurality of participants who participated in the online conference. Generate the placed image.
- the computer outputs the display image.
- the non-temporary computer-readable medium is a non-temporary computer-readable medium in which an analysis program for causing a computer to execute the following first to fifth processes is stored.
- the first process is a process of acquiring individual emotion data for each participant, which is generated based on the face image data of the participants in the online conference.
- the second process is a process of generating analytical data indicating the degree of emotion in the online conference based on the individual emotion data for each participant.
- the third process is a process of storing each of the analysis data for each participant in association with the corresponding color tone information.
- the fourth process as a display image showing the state of the online conference, an image in which element figures represented by color tone information associated with the analysis data are arranged for each of the plurality of participants who participated in the online conference. Is the process of generating.
- the fifth process is a process of outputting the display image.
- FIG. It is a block diagram which shows the structural example of the analyzer which concerns on Embodiment 1.
- FIG. It is a flowchart which shows the analysis method which concerns on Embodiment 1.
- FIG. It is a block diagram which shows the structure of the analysis system which concerns on Embodiment 2.
- FIG. It is a figure which shows the example of the data which the analysis data generation part processes.
- FIG. It is a flowchart which shows the analysis method which concerns on Embodiment 2.
- FIG. 1 is a block diagram showing a configuration example of the analyzer according to the first embodiment.
- the analysis device 100 generates analysis data for an online conference, and generates and outputs a display image based on the analysis data.
- the processing in the analyzer 100 may be executed in real time during the conference, or may be executed after the conference (in other words, offline).
- the analyzer 100 includes an emotion data acquisition unit (emotion data acquisition means) 111 and an analysis data generation unit (analysis data generation means) 112. Further, the analyzer 100 includes a storage unit (storage means) 113, an image generation unit (image generation means) 114, and an output unit (output means) 115.
- the online conference means a conference held by using a plurality of conference terminals connected to each other so as to be able to communicate with each other via a communication line.
- Online meetings can be held remotely, for example as webinar events, education / corporate training, small group meetings, etc.
- the conference terminal connected to the online conference is, for example, a PC (Personal Computer), a smartphone, a tablet terminal, a camera-equipped mobile phone, or the like.
- the conference terminal is not limited to the above as long as it is a device having a camera for photographing a participant, a microphone for picking up a participant's utterance, and a communication function for transmitting and receiving image data and voice data.
- an online conference may be simply referred to as a "meeting".
- the participants of the online conference indicate a person who is connected to the online conference through the conference terminal, and includes the organizer of the conference, the presenter of the conference, the presenter, and the listeners of the conference. For example, when a plurality of persons are participating in a conference through one conference terminal, each of the plurality of persons is a participant.
- the participants shall participate in the conference in a state where the face image can be taken by the camera built in the conference terminal or connected to the conference terminal.
- the emotion data acquisition unit 111 acquires individual emotion data for each participant generated based on the face image data of the participants during the conference in the online conference.
- the analyzer 100 can be communicably connected to the emotion data generator that generates the individual emotion data of the participants in the online conference.
- the analyzer 100 can be communicably connected to the conference management device that operates the online conference.
- the analyzer 100 can be communicably connected to a terminal (user terminal) owned by a user who uses the analyzer 100, and the user terminal can be the final output destination of the display image described later.
- the emotion data generation device is communicably connected to the conference management device, receives facial image data of conference participants in an online conference, generates individual emotion data from the facial image data, and analyzes the generated individual emotion data. It can be configured to supply the device 100.
- the emotion data acquisition unit 111 can acquire individual emotion data from the emotion data generation device.
- the individual emotion data can be made into individual emotion data by specifying the participants with respect to the emotion data created without specifying the participants.
- individual emotional data for each participant can be acquired as emotional data that summarizes them.
- Individual emotion data is data that is an index showing the emotions of each participant in the conference. It can be said that the emotion data that does not specify the participants is basically the same kind of data as the individual emotion data except that it is not the data for each participant (data that specifies the participants).
- the individual emotion data includes a plurality of items (multiple types of items) such as attention, confusion, happiness, and surprise.
- the data of each item is a numerical value of an index indicating the type of each emotion. That is, the individual emotion data shows how much the participants feel these emotions for each of the above items.
- the emotional data is a numerical value indicating each of a plurality of types of emotional states, in other words, a plurality of indicators indicating the emotional state are numerically indicated. It should be noted that this individual emotion data can be said to be expression data indicating the reaction (behavior) expressed by the participants during the online conference, and even if it is generated by adding voice data in addition to the face image data. good.
- the individual emotion data acquired by the emotion data acquisition unit 111 can be accompanied by time data.
- the emotion data generation device can generate emotion data for each first period.
- the first period can refer to a predetermined time such as 1 second or 1 minute.
- the emotion data acquisition unit 111 can acquire emotion data for each first period according to the progress time of the meeting sequentially or collectively.
- the emotion data acquisition unit 111 supplies the acquired emotion data to the analysis data generation unit 112.
- the analysis data generation unit 112 generates analysis data indicating the degree of emotion in the online conference based on individual emotion data for each participant.
- the generated analysis data can be, for example, statistically processed data of individual emotion data.
- the storage unit 113 stores each of the analysis data for each participant in association with the corresponding color tone information.
- the color tone information stored in association with the analysis data may be a number arbitrarily attached to the color tone, as long as the number is associated with the color tone.
- the storage unit 113 can be a storage device including a flash memory or a non-volatile memory such as an SSD (Solid State Drive).
- the image generation unit 114 generates an image in which element figures represented by color tone information associated with the analysis data are arranged for each of the plurality of participants who participated in the online conference as a display image showing the state of the online conference.
- the element figures corresponding to each participant are arranged, and each element figure is expressed in the color tone corresponding to the analysis data.
- the output unit 115 outputs the display image generated by the image generation unit 114 in this way.
- the output unit 115 can output the display image to the user terminal.
- the output unit 115 sequentially outputs the display image to the system that provides the online conference being held so that the output unit 115 can be superimposed on the screen of the online conference being held.
- a system that provides an online conference can include the conference management device described above, and if this conference management device is set as an output destination of analysis data, it can be superimposed on the screen of the online conference.
- the output unit 115 may be configured to output the display image so that it can be superimposed on the display image of the user terminal.
- the user directly uses the analyzer 100.
- the display image may be a signal in a format to be superimposed on the conference screen in the conference management device, or the display image may be simply an OSD (On Screen Display) signal. It can be adopted.
- OSD On Screen Display
- the user who uses the analyzer 100 perceives the display based on the display image received by the user terminal, so that a plurality of participants who are participating in or have participated in the conference respond to the content of the conference or the remarks of the presenter. You can recognize what kind of feelings you had. Therefore, the user can perceive matters to be noted for the conference to be held after that (in the case of real-time processing, the conference to be continued) from the visually displayed display image.
- the plurality of participants may include the user himself / herself, but may not be included.
- FIG. 2 is a flowchart showing the analysis method according to the first embodiment.
- the flowchart shown in FIG. 2 can be started by the analyzer 100 receiving, for example, a signal indicating the start of a conference from the conference management device, or an equivalent signal from the emotion data generation device. Further, in the case of offline processing, the analyzer 100 can also start by receiving an operation signal for starting the analysis based on the user operation.
- the emotion data acquisition unit 111 acquires individual emotion data for each participant from the emotion data generation device (step S11).
- the emotion data acquisition unit 111 may acquire the generated individual emotion data each time the emotion data generation device generates the individual emotion data, or may collectively acquire the individual emotion data at a plurality of different times. ..
- the analysis data generation unit 112 generates analysis data indicating the degree of emotion in the online conference for each participant based on the individual emotion data received from the emotion data acquisition unit 111 (step S12). Then, the storage unit 113 stores each of the generated analysis data for each participant in association with the corresponding color tone information (step S13).
- the image generation unit 114 arranges an image in which element figures represented by color tone information associated with the analysis data are arranged for each of the plurality of participants who participated in the online conference as a display image showing the state of the online conference. Generate (step S14). After that, the output unit 115 outputs the generated display image (step S15).
- the processing performed by the analyzer 100 has been described above.
- the analyzer 100 outputs a display image in which the element figures corresponding to each participant are arranged and each element figure is expressed in a color tone corresponding to the analysis data.
- a display image makes it possible to grasp at a glance the atmosphere of the conference and the reaction of the participants in the online conference. Therefore, the user who uses the analyzer 100 can easily perceive the display based on the display image received by the user terminal, and a plurality of participants who are participating in or have participated in the conference can use the content of the conference or the remarks of the presenter. You can recognize what kind of feelings you had. As a result, the user who uses the analyzer 100 can communicate according to the emotional tendency of the participants in the online conference. Therefore, according to the present embodiment, the online conference can be effectively operated.
- the analyzer 100 has a processor as a configuration (not shown).
- the storage unit 113 can store a computer program (hereinafter, also simply referred to as a program) for executing the analysis method according to the present embodiment. Further, the processor reads a computer program from the storage unit 113 into the memory and executes the program.
- Each configuration of the analyzer 100 may be realized by dedicated hardware. Further, a part or all of each component may be realized by a general-purpose or dedicated circuitry, a processor, or a combination thereof. These may be composed of a single chip or may be composed of a plurality of chips connected via a bus. A part or all of each component of each device may be realized by the combination of the circuit or the like and the program described above. Further, as a processor, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an FPGA (field-programmable gate array), or the like can be used.
- a CPU Central Processing Unit
- GPU Graphics Processing Unit
- FPGA field-programmable gate array
- each component of the analyzer 100 when a part or all of each component of the analyzer 100 is realized by a plurality of arithmetic units, circuits, etc., the plurality of arithmetic units, circuits, etc. may be centrally arranged or distributed. You may.
- the arithmetic unit, the circuit, and the like may be realized as a form in which each is connected via a communication network, such as a client-server system and a cloud computing system.
- the function of the analyzer 100 may be provided in the SaaS (Software as a Service) format.
- FIG. 3 is a block diagram showing a configuration example of the analysis system according to the second embodiment.
- the analysis system 10 can include an analysis device 200 and an emotion data generation device 300 that generates emotion data and provides individual emotion data to the analysis device 200. ..
- the analyzer 200 and the emotion data generation device 300 are communicably connected to each other via the network N.
- the analysis system 10 is communicably connected to the conference management device 400 via the network N.
- the conference management device 400 connects to the conference terminal group 90 via the network N to operate an online conference.
- the conference terminal group 90 includes a plurality of conference terminals (900A, 900B, ..., 900N) and a user terminal 990.
- the user terminal described in the first embodiment can be a conference terminal 900A or the like, but even if it is another user terminal 990 that is not used as a conference terminal, the user can use it together with the conference terminal in a total of two terminals. .. In that case, the display image can be output to the user terminal 990 side, and the user can check the display image on the user terminal 990 while participating in the conference on the conference terminal.
- FIG. 4 is a block diagram showing a configuration example of the analyzer 200 according to the second embodiment.
- the analyzer 200 according to the second embodiment is different from the analyzer 100 according to the first embodiment in that it has a conference data acquisition unit 116 and a chapter generation unit 117.
- each configuration of the analyzer 200 will be described including differences from the analyzer 100.
- the emotion data acquisition unit 111 acquires individual emotion data for each participant, which numerically indicates a plurality of indexes indicating the emotional state.
- the individual emotion data of the participants can be data showing statistical values in the first period (for example, values averaged in the first period for each of the above-mentioned plurality of indicators for the participants).
- the analysis data generation unit 112 can generate analysis data, for example, by calculating statistical values of individual emotion data in the second period. That is, the analysis data generation unit 112 can generate analysis data indicating the degree of emotion in the online conference for each participant based on the individual emotion data for each second period.
- the generated analytical data can be statistical values in the second period of the individual emotional data.
- the storage unit 113, the image generation unit 114, and the output unit 115 in the subsequent stage can also execute the process every second period and output the display image for each second period.
- the second period is, for example, from the start to the end of the target online conference, and from the start to the present (actually, the time when individual emotion data can be obtained) for the online conference being held.
- Can refer to a period.
- the second period refers to a period from a predetermined time before, such as 1 second or 1 minute, to the present time, that is, a fixed time until the time when individual emotion data can be acquired in the online conference being held. Can be done. In this case, it is possible to generate analysis data from a certain period of time before to the present time. It is possible to determine in advance what kind of period will be adopted as the second period.
- the individual emotion data used to generate the analysis data can include attribute data indicating the attributes (type) of the target online conference.
- the meeting attribute data may include information indicating the type of meeting, such as webinar, regular meeting, or brainstorming.
- the attribute data of the conference may include information on the type of business and occupation of the company to which the participants of the conference belong.
- the attribute data of the conference may include information regarding the agenda of the conference, the purpose of the conference, the name of the conference body, and the like.
- the analysis data generation unit 112 can be configured to generate analysis data according to the attribute data. For example, different analysis values may be calculated for different attributes. Further, the analysis data generation unit 112 may generate analysis data by selecting a method for calculating analysis data based on the attribute data of the conference. With such a configuration, the analyzer 200 can generate analysis data according to the attributes of the conference.
- the analysis data generation unit 112 may generate analysis data by relatively comparing a plurality of different conferences. That is, the analysis data generation unit 112 may generate analysis data including the relative comparison result of the conference corresponding to the attribute data based on the attribute data of the conference and the analysis history data. In this case, the analysis data generation unit 112 reads the analysis history data stored in the storage unit 113, and compares the data related to the conference to be newly analyzed with the past data that can be compared.
- the analysis history data can also be data in a state in which the color tone information is linked, whereby the display image of the result of the analysis in the past can be output in the same manner. However, if it is only used for analysis, it can be saved as historical data without the association of color tone information.
- the analysis data generation unit 112 determines whether or not the two data are the targets of analysis by comparing the attribute data of the conference.
- the analysis history data of each attribute can be used with different weights for the same attribute, similar attributes, completely different attributes, and the like.
- the conference data acquisition unit 116 acquires conference data related to an online conference accompanied by time data from the conference management device 400.
- the conference management device 400 is, for example, a server device to which each of the participants of the conference can communicate with each other.
- the conference management device 400 may be included in the conference terminal 900A or the like used by the participants of the conference.
- the conference data is data related to the conference accompanied by the time data, and can include the facial image data of the participants taken during the conference. More specifically, the conference data includes the start time and end time of the conference.
- the meeting data also includes the time of breaks taken during the meeting.
- the above-mentioned attribute data can be included in the conference data, and in that case, the conference data (including the attribute data) and the individual emotion data can be associated with the time data. That is, regarding the attribute data, the conference data acquisition unit 116 may be configured to acquire the conference data including the attribute data of the conference from the conference management device 400 that operates the conference.
- the conference data acquisition unit 116 may acquire conference data including data related to screen sharing in the conference.
- the conference data may include, for example, a switching time of the authority to operate the shared screen shared by the participants (owner of the shared screen) and a switching time of the utterances of the participants.
- the conference data acquisition unit 116 may acquire conference data including screen data shared in the conference.
- the conference data may include times such as page turning and changes in the displayed image in the shared screen. Further, the conference data may include what each of the above-mentioned times indicates.
- the conference data acquisition unit 116 supplies the acquired conference data to the chapter generation unit 117 and the analysis data generation unit 112, which will be described later.
- the chapter generation unit 117 generates chapters for the online conference based on the conference data received from the conference data acquisition unit 116.
- the chapter generation unit 117 supplies data indicating the generated chapters to the analysis data generation unit 112. This makes it possible to use chapters to determine the second period, which will be described later.
- the chapter generation unit 117 detects, for example, the time from the start of the conference to the present time, further detects the time that matches the preset conditions, and generates data indicating the chapter with each time as a delimiter.
- this condition it may be possible that a multiple of a predetermined time has elapsed from the start time, but the present invention is not limited to this.
- the chapters of the conference in the present disclosure can be defined by whether the condition in which the predetermined conditions are met is maintained or the predetermined conditions are changed in the conference.
- the chapter generation unit 117 may generate chapters based on, for example, data related to screen sharing. More specifically, the chapter generation unit 117 may generate chapters according to the switching timing of screen sharing. Further, the chapter generation unit 117 may generate chapters according to the switching time of the owner of the shared screen related to screen sharing.
- the analysis data generation unit 112 generates analysis data for each second period from the received individual emotion data and data indicating chapters.
- the second period can be defined as the period from the start time to the end time for a chapter group consisting of one chapter or a plurality of consecutive chapters generated by the chapter generation unit 117. That is, the analysis data generation unit 112 can generate analysis data for the conference for each chapter or group of chapters based on the individual emotion data for each of the participants.
- the individual emotional data can represent each of a plurality of types of emotional states numerically. That is, the emotion data acquisition unit 111 can be configured to acquire individual emotion data in which a plurality of indexes indicating the emotional state are numerically indicated.
- the analysis data is data derived from such individual emotion data, and can be data extracted or calculated from the numerical values of indicators indicating a plurality of types of emotions.
- the analysis data generation unit 112 can generate analysis data indicating one analysis value by calculating the statistical value of the emotion data.
- the analytical data generated is preferably an indicator that is useful for running the conference.
- the analytical data may include attention to the conference, empathy, and comprehension, or the reactivity to the conference calculated from them.
- the analytical data may include the degree of emotional communication of the speaker to the listeners of the conference.
- the analysis data generation unit 112 supplies the generated analysis data to the storage unit 113 and stores it.
- the storage unit 113 stores each of the analysis data for each participant in association with the corresponding color tone information. Although this process can be executed mainly by the image generation unit 114 in cooperation with the storage unit 113, it will be described as a process in the storage unit 113 for convenience.
- the storage unit 113 can perform the following associated storage. That is, as the color tone information corresponding to the analysis data, the storage unit 113 links the color tone information associated with the emotion having significance or superiority among the numerical values for the plurality of types of emotion states to the analysis data. It can also be attached and memorized.
- the analysis data is a numerical value indicating the degree of attention
- a numerical value indicating empathy a numerical value indicating the degree of comprehension
- the numerical value indicating the degree of attention is significant or superior to others.
- FIG. 5 is a diagram showing an example of data processed by the analysis data generation unit 112.
- FIG. 5 shows an input data group received by the analysis data generation unit 112 and an output data group output by the analysis data generation unit 112.
- the analysis data generation unit 112 receives emotion data as an input data group from the emotion data generation device 300.
- the input data group includes, for example, indicators of attention, confusion, contempt, disgust, fear, happiness, empathy, surprise, and presence. These indicators are, for example, indicated by numerical values from 0 to 100 for each indicator.
- the emotional data of the input data group may be acquired from the facial image data by using an existing video processing technique, or may be generated and acquired by another method.
- the analysis data generation unit 112 When the analysis data generation unit 112 receives the above-mentioned input data group, it performs a preset process and generates an output data group using the input data group.
- the output data group is data that the user who uses the analysis system 10 refers to in order to efficiently hold the conference.
- the output data group includes, for example, attention, empathy and comprehension.
- the analysis data generation unit 112 extracts a preset index from the input data group. Further, the analysis data generation unit 112 performs a preset arithmetic processing on the value related to the extracted index. Then, the analysis data generation unit 112 generates the above-mentioned output data group.
- the degree of attention shown as the output data group may be the same as or different from the degree of attention included in the input data group.
- the sympathy shown as the output data group may be the same as or different from the sympathy included in the input data group.
- the image generation unit 114 is an element representing each of the plurality of participants who participated in the online conference as a display image showing the state of the online conference by the color tone information associated with the analysis data. Generate an image in which figures are placed. After that, the output unit 115 outputs the generated display image.
- the output unit 115 is generated in a system (including a conference management device) that provides the online conference being held so that it can be superimposed on the screen of the online conference being held. It is preferable to output the display images sequentially.
- the user terminal of each individual can output the display image of the individual to the online conference screen of the corresponding user terminal. Can be done.
- the output unit 115 can be configured to output the generated display image to the user terminal as, for example, an OSD signal. The user will use the analyzer 100.
- FIG. 6 is a block diagram showing the configuration of the emotion data generation device according to the second embodiment.
- the emotion data generation device 300 has a participant data acquisition unit 311, an emotion data generation unit 312, and an emotion data output unit 313 as main configurations.
- Participant data acquisition unit 311 acquires data about participants from the conference management device 400 via the network N.
- the data about the participants is the face image data of the participants taken by the conference terminal during the conference.
- the conference management device 400 can extract the face image data from the conference data and transmit it to the emotion data generation device 300.
- the emotion data generation unit 312 generates individual emotion data from the face image data received by the emotion data generation device 300.
- the emotion data output unit 313 outputs the individual emotion data generated by the emotion data generation unit 312 to the analyzer 200 via the network N.
- the emotion data generation device 300 generates emotion data by performing predetermined image processing on the face image data of the participants. Predetermined image processing includes, for example, extraction of feature points (or feature quantities), matching with reference data for the extracted feature points, convolution processing of image data, processing using machine-learned teacher data, and teacher data by deep learning. It is a process that utilizes. However, the method by which the emotion data generation device 300 generates emotion data is not limited to the above-mentioned processing.
- the emotional data may be a numerical value indicating emotions, or may include image data used when generating emotional data.
- the emotion data generation device 300 has a processor and a storage device as a configuration (not shown).
- the storage device included in the emotion data generation device 300 stores a program for executing individual emotion data generation according to the present embodiment.
- the processor also reads the program from the storage device into the memory and executes the program.
- Each configuration of the emotion data generation device 300 may be realized by dedicated hardware. Further, a part or all of each component may be realized by a general-purpose or dedicated circuit, a processor, or a combination thereof. These may be composed of a single chip or may be composed of a plurality of chips connected via a bus. A part or all of each component of each device may be realized by the combination of the circuit or the like and the program described above. Further, as a processor, a CPU, GPU, FPGA or the like can be used.
- each component of the emotion data generation device 300 when a part or all of each component of the emotion data generation device 300 is realized by a plurality of arithmetic units, circuits, etc., the plurality of arithmetic units, circuits, etc. may be centrally arranged or distributed. It may be arranged.
- the arithmetic unit, the circuit, and the like may be realized as a form in which each is connected via a communication network, such as a client-server system and a cloud computing system.
- the function of the emotion data generation device 300 may be provided in the SaaS format.
- FIG. 7 is a flowchart showing the analysis method according to the second embodiment.
- the process shown in FIG. 7 differs from the process according to the first embodiment in that the second period is a chapter period in the ongoing conference, that is, a display image is output each time a new chapter is generated. ..
- the analyzer 200 determines whether or not the online conference has been started (step S21).
- the analyzer 200 determines the start of the conference by receiving a signal from the conference management device 400 indicating that the conference has started. If it is not determined that the online conference has started (step S21: NO), the analyzer 200 repeats step S21. If it is determined that the online conference has started (step S21: YES), the analyzer 200 proceeds to step S22.
- step S22 the emotion data acquisition unit 111 starts acquiring individual emotion data for each participant from the emotion data generation device (step S22).
- the emotion data acquisition unit 111 may acquire the generated individual emotion data each time the emotion data generation device generates the individual emotion data, or may collectively acquire the individual emotion data at a plurality of different times. ..
- the conference data acquisition unit 116 acquires conference data related to the conference accompanied by time data from the conference management device (step S23).
- the conference data acquisition unit 116 may receive such conference data every first period, or may sequentially receive such conference data when there is information to be updated in the conference data. Further, step S22 and step S23 can be started at the same time.
- step S24 determines whether or not a new chapter can be generated from the received conference data. If it is not determined that a new chapter can be generated (step S24: NO), the analyzer 200 returns to step S22. On the other hand, when it is determined that a new chapter can be generated (step S24: YES), the analyzer 200 proceeds to step S25. In step S25, the chapter generation unit 117 generates a chapter from the conference data received from the conference data acquisition unit 116 (step S25).
- the analysis data generation unit 112 generates analysis data indicating the degree of emotion in the online conference for each participant based on the individual emotion data received from the emotion data acquisition unit 111 (step S26).
- the analysis data can also be generated by adding the conference data.
- the storage unit 113 stores each of the generated analysis data for each participant in association with the corresponding color tone information (step S27).
- the image generation unit 114 arranges an image in which element figures represented by color tone information associated with the analysis data are arranged for each of the plurality of participants who participated in the online conference as a display image showing the state of the online conference. Generate (step S28).
- the output unit 115 outputs the generated display image to the user terminal 990 (step S29). This allows the user to check the generated display image in real time. Further, the analyzer 200 determines whether or not the conference has ended (step S30). The analyzer 200 determines the end of the conference by receiving a signal from the conference management device 400 indicating that the conference has ended. If it is not determined that the meeting has ended (step S30: NO), the analyzer 200 returns to step S22 and continues the process. On the other hand, when it is determined that the online conference has ended (step S30: YES), the analyzer 200 ends a series of processes.
- the analyzer 200 can output a display image for the generated chapter (or a group of chapters) each time a new chapter is generated in the ongoing conference.
- the user who uses the analysis system 10 can effectively advance the conference by using the display image provided every time a new chapter is generated in the conference being held. For example, at an ongoing meeting, the user can use the display image provided each time a new chapter is generated to change the degree of communication so as to facilitate smooth communication.
- FIG. 8 is a diagram showing a first example of analysis data.
- FIG. 8 shows a graph G11 showing the analysis data in chronological order in the upper part. Further, the conference data G12 corresponding to the above time series is shown in the middle row. Further, in the lower part, the analysis data G13 for each chapter corresponding to the conference data is shown.
- the horizontal axis shows the time and the vertical axis shows the score of the analysis data.
- the left end is the time T10
- the right end is the time T15.
- Time T10 is the start time of the conference
- time T15 is the end time of the conference.
- Times T11, T12, T13 and T14 between time T10 and time T15 indicate times corresponding to chapters described later.
- the first analysis data L11 shown by the solid line, the second analysis data L12 shown by the dotted line, and the third analysis data L13 shown by the two-dot chain line are plotted.
- the first analysis data L11 indicates the degree of attention in the analysis data.
- the second analysis data L12 shows the sympathy in the analysis data.
- the third analysis data L13 shows the degree of understanding in the analysis data.
- the data related to the shared screen of the conference and the data related to the presenter are shown in chronological order. That is, the data relating to the display screen indicates that the shared screen from the time T10 to the time T11 was the screen D1. Further, the data related to the display screen indicates that the shared screen from the time T11 to the time T12 was the screen D2.
- the shared screen in the conference is screen D3 from time T12 to time T13, screen D4 from time T13 to time T14, and screen D5 from time T14 to time T15. It is shown that.
- the display screen is basically synonymous with a display image to be displayed on the whole or a part of the screen of the display unit.
- the data regarding the presenter indicates that the presenter W1 was from time T10 to time T12.
- the data about the presenter shows that the presenter W2 was from time T12 to time T14, and the presenter W1 was again from time T14 to time T15.
- the relationship between the shared screen and the presenter in the above-mentioned conference data G12 will be explained in chronological order.
- the presenter W1 is proceeding with the conference from the time T10 to the time T12 when the conference is started, and the presenter W1 displays the screen D1 as a shared screen from the time T10 to the time T11. (That is, the screen D1 is shared).
- the presenter W1 continued the presentation by switching the front screen from the screen D1 to the screen D2 from the time T11 to the time T12.
- the presenter changed from presenter W1 to presenter W2.
- the presenter W2 shared the screen D3 from the time T12 to the time T13, and shared the screen D4 from the time T13 to the time T14. From time T14 to time T15, the presenter W1 who was replaced by the presenter W2 shared the screen D5.
- the conference data shown in FIG. 8 includes data on the period during which the screen data on the shared screen was displayed and data on who the presenter was.
- the chapter generation unit 117 can generate chapters according to the data related to the shared screen among the above-mentioned conference data.
- the data indicating the chapter corresponding to the above-mentioned conference data and the analysis data corresponding to the chapter are shown in chronological order.
- the data indicating the chapter corresponds to the data related to the shared screen in the conference data. That is, the first chapter C11 is from the time T10 to the time T11 when the screen D1 was shared. Similarly, the second chapter C12 is from the time T11 to the time T12 when the screen D2 was shared. The third chapter C13 is from the time T12 to the time T13 when the screen D3 was shared. The fourth chapter C14 is from the time T13 to the time T14 when the screen D4 was shared. The fifth chapter C15 is from the time T14 to the time T15 when the screen D5 was shared.
- the analysis data G13 includes analysis data corresponding to each chapter.
- the analytical data shows attention, empathy, comprehension and the total score.
- the degree of attention is 65
- the sympathy is 50
- the degree of understanding is 43
- the total score is shown as 158 as a total of these.
- attention is shown as 61
- empathy is 45
- comprehension is 32
- overall score is 138.
- the above analysis data corresponds to the data plotted in the graph G11. That is, the analysis data shown as the analysis data G13 is an average value of the analysis data calculated for each predetermined period (for example, 1 minute) in the corresponding chapter period.
- the chapter generation unit 117 sets the timing at which the shared screen is switched among the conference data to the chapter switching timing. Then, the analysis data generation unit 112 calculates the analysis data from the start of the conference to the end of the conference for each of the above-mentioned chapters. Thereby, the analysis system 10 can provide the analysis data for each displayed shared screen.
- the analysis system 10 calculates and plots the analysis data at predetermined intervals as shown in the graph G11 described above. This allows the analysis system 10 to show detailed changes in the analysis data at the conference. However, instead of calculating as shown in the graph G11, the analysis data generation unit 112 first calculates the statistical value (for example, the average value) of the emotion data in the chapter after the chapter is completed, and then the analysis data. May be calculated. With such a configuration, the analysis system 10 can improve the processing speed of the analysis data.
- the statistical value for example, the average value
- FIG. 9 is a diagram showing a second example of analysis data.
- the first analysis data L11, the second analysis data L12, and the third analysis data L13 shown in the graph G11 shown in the upper row are the same as those shown in FIG.
- the conference data G12 shown in the middle row is the same as that shown in FIG.
- the analysis data G23 shown in the lower part of FIG. 9 is different from the analysis data shown in FIG. 8 in that the data for generating chapters is the data related to the presenter. That is, in the example shown in FIG. 9, the chapter generation unit 117 sets the first chapter C21 between the time T10 and the time T12 when the presenter W1 was the presenter. Similarly, the chapter generation unit 117 sets the second chapter C22 between the time T12 and the time T14 when the presenter W2 was the presenter. Further, the chapter generation unit 117 sets the third chapter C23 from the time T14 to the time T15 when the presenter W1 was the presenter.
- the analysis data is shown corresponding to the above-mentioned chapters C21 to C23. That is, the analysis data corresponding to chapter C21 is shown to have an attention level of 62, an empathy level of 47, a comprehension level of 35, and a total score of 144.
- the analytical data corresponding to chapter C22 are shown to have 78 attention, 46 empathy, 48 comprehension and a total score of 172.
- the analytical data corresponding to chapter C23 is shown to have a focus of 58, empathy of 43, comprehension of 51 and an overall score of 152.
- the second example of analysis data has been explained above.
- the chapter generation unit 117 sets the timing at which the presenter is switched in the conference data to the chapter switching timing. Then, the analysis data generation unit 112 calculates the analysis data from the start of the conference to the end of the conference for each of the above-mentioned chapters. Thereby, the analysis system 10 can provide the analysis data for each presenter.
- FIG. 10 is a diagram showing a display example of a display image
- FIG. 11 is a diagram showing an example of a color space corresponding to a graphic element.
- the output unit 115 of FIG. 4 can output the display image 902 to the conference terminal 900A or the like in real time so as to superimpose the display image 902 on the conference image 901 as shown in FIG.
- the participants are indicated by circles, which are basically indicated by one circle per person, but may also be indicated by, for example, one circle in the group to which they belong. In the latter case, the participants included in the group to which they belong may be treated as one person at a time to generate analysis data and display images.
- circles indicating participants are arranged, and circles representing participants with different analysis results are given different color tones.
- the arrangement of the participants is not limited to this, and may be an arrangement based on, for example, the address of the access source to the online conference. It can also be arranged based on.
- the display image 902 gives an example in which the outer frame is rectangular, but the present invention is not limited to this.
- the position on the display image 902 may be determined in advance for each participant like an address, but each time participation is made in order from the end or analysis data with high accuracy is obtained, participation is performed. You may fill in the circle of the person.
- the circle mark is only an example of the element figure, and it goes without saying that the element figure of another shape can be adopted, and the shape can be changed according to the classification of the participants, for example. That is, the image generation unit 114 can also generate an image in which the element figures corresponding to the participants are arranged as element figures having different shapes for each division data as the display image. For example, it is possible to adopt element figures having different shapes depending on gender and age.
- the classification of the participants is, for example, by gender, by age group, the corporation to which the participant belongs, the department within the corporation, or the occupation of the participant. Data indicating the classification of participants (classification data) may be included in the individual emotion data.
- the analysis data generation unit 112 generates analysis data for each participant based on the individual emotion data and the division data (that is, adding the division) (as a result).
- the color tone information may be different depending on the classification).
- the color tone corresponding to the most dominant or significant value can be given as described above.
- nine emotion data output by the emotion data generation device 300 are arranged radially on the La * b * color space.
- the La * b * color space is a color space in which the circumferential direction represents hue and the radial direction represents color saturation.
- yellow can be given as a color tone and the circle can be expressed in yellow.
- the analysis source data is shown in the La * b * color space in FIG. 11, it may correspond to another color space.
- the analysis system 10 can make the analysis data correspond to the "Prutic emotional circle".
- the analysis system 10 plots significant or predominant analysis data on the emotional circle of Plutik and displays the analysis data by the color tone at the plotted position.
- the user who uses the analysis data including the color tone can intuitively grasp the emotional tendency in the meeting from the analysis data.
- FIG. 12 is a diagram showing an example of changing the display of the displayed image.
- the display image 902 can be changed to a display image in which the color tones are summarized as in the display image 903 by changing the setting. That is, the image generation unit 114 can also generate an image in which the element figures corresponding to the participants are arranged in a group according to the color tone information as the display image.
- FIG. 13 is a diagram showing another display change example of the display image.
- the image generation unit 114 can generate an image in which the element figures corresponding to the participants are arranged based on the division data.
- the image generation unit 114 can also generate an image in which element figures corresponding to the participants are arranged in a group for each division data as a display image. That is, the display image can be an image in which grouping is performed according to the classification data.
- participants having different divisions are arranged separated by a broken line.
- the individual emotion data may include the segmented data to which the participants belong.
- the classification of the participants can be generated from, for example, the person attribute data.
- This person attribute data is data in which the face feature information of the person is associated with the information on the classification and attributes of the person, and can be stored in advance in the emotion data generation device 300 or a device accessible from the emotion data generation device 300. good.
- Information on the classification and attributes of a person is, for example, the person's name, gender, age, occupation, corporation to which the person belongs, or department to which the person belongs, but is not limited thereto.
- the classification of the participants can be estimated according to the extracted information by extracting the facial feature information (information of the feature points) of the person related to the face image from the face image data.
- a display change button (not shown) is displayed on the display image 902 so that the user can select it, and when the button is selected by the user, for example, from the display image 902 to the display image 903 (or the display image 904) or the like thereof. You can also change the display in the opposite direction.
- the former change means sorting into a grouped state.
- a transition button (not shown) is displayed so that the user can select it on the display image 902, and when the transition button is selected by the user, for example, FIG. 8 or FIG. 9 shows a case where the user becomes a participant. It is possible to transition to a screen showing information as shown by.
- FIG. 14 is a diagram showing another display change example of the display image.
- a face image (which may be an illustration) of the corresponding participant, for example, a face image.
- 905a is displayed, and the operator can extract personal information.
- the face image 905a or the like can be displayed by using the face image data that is the source of the individual emotion data, or by using the face image data registered in advance for each participant.
- the face images 905a, 905b, and 905c are unfavorable system environments from the viewpoint of privacy, it is preferable to enable the display / non-display of the face images to be set.
- An icon can be used instead of the face image.
- display frames 906a, 906b, and 906c having different colors, line types, background colors, and the like are displayed for the face images 905a, 905b, and 905c, respectively. These display frames can be used as an example of an element figure.
- the image generation unit 114 represents, as a display image, an element figure represented by color tone information associated with the analysis data for each of the plurality of participants who participated in the online conference. Or you can generate an image placed with an icon image.
- FIG. 14 an example in which participants are basically indicated by circles is given, but the participants may be represented by a face image or an icon and a display frame from the beginning, that is, the element figure may include a display frame. can.
- an online conference is a continuous online conference.
- an online conference treated as one can consist of multiple online conferences held at intervals, which can be combined into one online conference. Can be processed as.
- the above-mentioned one online conference can be defined as a plurality of online conferences when the break is long, for example, one day or more.
- the above-mentioned multiple online meetings can be those that have a common agenda, or those in which one or more common participants participate, and they can be distinguished by attribute data. be. However, it is not limited to these.
- the analysis system 10 may include a conference management device 400.
- the analyzer 200, the emotion data generation device 300, and the conference management device 400 may exist separately, or a part or all of them may be integrated.
- the function of the emotion data generation device 300 is configured as a program and may be included in the analysis device 200 or the conference management device 400.
- the analyzer 200 can also perform identification of a person and generation of individual emotion data.
- the conference management device 400 can also be configured to generate chapters.
- each device according to each embodiment can have, for example, the following hardware configuration.
- FIG. 15 is a diagram showing an example of a hardware configuration of a part of each device according to each embodiment.
- the device 1000 shown in FIG. 15 has a processor 1001, a memory 1002, and an interface (I / F) 1003.
- the I / F 1003 includes a communication I / F for communicating with another device.
- the I / F 1003 can include an I / F with a display device and an operation unit or an operation unit for inputting a user operation.
- the function of each device described in each embodiment is realized by the processor 1001 reading the program stored in the memory 1002 and executing the program in cooperation with the I / F 1003.
- Non-temporary computer-readable media include various types of tangible storage mediums.
- Examples of non-temporary computer-readable media include magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks).
- this example includes a CD-ROM (Read Only Memory), a CD-R, and a CD-R / W.
- semiconductor memory for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (RandomAccessMemory)).
- the program may also be supplied to the computer by various types of temporary computer readable medium.
- temporary computer readable media include electrical, optical, and electromagnetic waves.
- the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
- An emotional data acquisition means for acquiring individual emotional data for each participant, which is generated based on facial image data of a participant in an online conference.
- An analytical data generation means for generating analytical data indicating the degree of emotion in the online conference based on the individual emotion data for each participant.
- a storage means for storing each of the analysis data for each participant in association with the corresponding color tone information.
- an image generation means for generating an image in which element figures represented by color tone information associated with the analysis data are arranged for each of the plurality of participants who participated in the online conference.
- An output means for outputting the display image and An analyzer equipped with.
- the individual emotional data shows numerical values of each of a plurality of types of emotional states.
- the analyzer according to Appendix 1. As the color tone information corresponding to the analysis data, the storage means links the color tone information associated with the emotion having significance or superiority among the numerical values for the plurality of types of emotion states to the analysis data. Attach and memorize The analyzer according to Appendix 2.
- the image generation means generates an image in which the element figures corresponding to the participants are arranged in a group according to the color tone information as the display image.
- the analyzer according to any one of Supplementary note 1 to 3.
- the individual emotion data includes the divisional data to which the participant belongs, and the individual emotion data includes.
- the image generation means generates an image in which the element figures corresponding to the participants are arranged as the display image based on the division data.
- the analyzer according to any one of Supplementary note 1 to 3.
- the image generation means generates an image in which the element figures corresponding to the participants are arranged in a group according to the division data as the display image.
- the image generation means generates an image in which the element figure corresponding to the participant is arranged as an element figure having a different shape for each of the division data as the display image.
- the image generation means represents the element figure represented by the color tone information associated with the analysis data for each of the plurality of participants who participated in the online conference as a face image or an icon of the participant. Generate an image placed with the image, The analyzer according to any one of Supplementary Provisions 1 to 7. (Appendix 9)
- the individual emotion data includes attribute data indicating the attributes of the online conference to be targeted.
- the analysis data generation means generates the analysis data according to the attribute data for the online conference.
- the analyzer according to any one of Supplementary Provisions 1 to 8. (Appendix 10)
- the individual emotion data is data showing statistical values in the first period.
- the analysis data generation means generates the analysis data for each participant based on the individual emotion data for the second period of the individual emotion data acquired by the emotion data acquisition means.
- the analyzer according to any one of Supplementary Provisions 1 to 10.
- a conference data acquisition means for acquiring conference data related to the online conference accompanied by time data
- a chapter generation means for generating a chapter for the online conference based on the conference data
- the second period is a period from a start time point to an end time point for a chapter group consisting of one chapter or a plurality of consecutive chapters generated by the chapter generation means.
- the analyzer according to Appendix 11.
- the conference data includes data related to screen sharing in the online conference.
- the chapter generation means generates the chapter based on the data related to the screen sharing.
- the analyzer according to Appendix 12. (Appendix 14) The chapter generation means generates the chapter according to the switching timing of the screen sharing.
- the analyzer according to Appendix 13. (Appendix 15) The chapter generation means generates the chapter according to the switching time of the owner of the shared screen related to the screen sharing.
- the analyzer according to Appendix 13 or 14. (Appendix 16)
- the online conference consists of multiple online conferences held at intervals.
- the analyzer according to any one of Supplementary note 1 to 15. (Appendix 17) The analyzer according to any one of Supplementary note 1 to 16 and the analyzer.
- An emotion data generation device that generates the individual emotion data and provides the individual emotion data to the analyzer. Analytical system with.
- the computer Acquire the individual emotion data for each participant generated based on the face image data of the participants in the online meeting during the meeting. For each participant, based on the individual emotion data, analytical data showing the degree of emotion in the online conference is generated. Each of the analysis data for each participant is stored in association with the corresponding color tone information. As a display image showing the state of the online conference, an image in which element figures represented by color tone information associated with the analysis data are arranged for each of the plurality of participants who participated in the online conference is generated. Output the display image, Analytical method. (Appendix 19) A process for acquiring individual emotion data for each participant, which is generated based on the face image data of a participant in an online meeting during the meeting.
- As a display image showing the state of the online conference a process of generating an image in which element figures represented by color tone information associated with the analysis data are arranged for each of the plurality of participants who participated in the online conference, and , The process of outputting the display image A non-temporary computer-readable medium that contains analytical programs that you want your computer to run.
- Analysis system 90 Conference terminal group 100 Analyzer 111 Emotion data acquisition unit 112 Analysis data generation unit 113 Storage unit 114 Image generation unit 115 Output unit 116 Conference data acquisition unit 117 Chapter generation unit 1200 Analysis device 300 Emotion data generation unit 311 Participants Data acquisition unit 312 Emotion data generation unit 313 Emotion data output unit 400 Conference management device 900A, 900B, 900N Conference terminal 901 Conference image 902, 903, 904 Display image 905a, 905b, 905c Face image 906a, 906b, 906c Display frame 990 User Terminal N network
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Multimedia (AREA)
- General Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Signal Processing (AREA)
- Databases & Information Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computer Graphics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Information Transfer Between Computers (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
分析装置(100)は、感情データ取得部(111)、分析データ生成部(112)、記憶部(113)、画像生成部(114)、および出力部(115)を備える。感情データ取得部(111)は、オンライン会議における参加者の会議中の顔画像データに基づき生成された、参加者ごとの個別感情データを取得する。分析データ生成部(112)は、参加者ごとに、個別感情データに基づいてオンライン会議における感情の度合いを示す分析データを生成する。記憶部(113)は、参加者ごとの分析データのそれぞれを、対応する色調情報と紐付けて記憶する。画像生成部(114)は、オンライン会議の状態を示す表示画像として、オンライン会議に参加した複数の参加者のそれぞれについて、分析データに紐付けられた色調情報により表す要素図形を配置した画像を生成する。出力部(115)は、生成された表示画像を出力する。
Description
本開示は、分析装置、分析システム、分析方法、およびプログラムが格納された非一時的なコンピュータ可読媒体に関する。
オンライン会議における参加者の感情などを知るための技術が提案されている。
特許文献1には、会議中の出席者の雰囲気および各人の反応を従来よりも詳しく知ることができる議事録を生成することを目的とした会議支援システムが記載されている。特許文献1に記載の会議支援システムは、会議の複数の出席者の顔の画像を入力する画像入力手段と、入力された画像に基づいて出席者ごとの感情を判別する感情判別手段と、出席者の音声を入力する音声入力手段と、を備える。さらに、この会議支援システムは、入力された音声に基づいて、出席者の発言の内容を示すテキストデータを生成するテキストデータ生成手段と、議事録生成手段と、を備える。この議事録生成手段は、感情判別手段による判別結果およびテキストデータ生成手段によって生成されたテキストデータに基づいて、発言の内容と当該発言があったときの各出席者の感情とを記録した議事録を生成する。
特許文献2には、会議参加者の状態をより的確に会議の進行に反映させることを目的とした会議システムが記載されている。特許文献2に記載の会議システムは、会議中における会議の参加者の生体情報であって参加者の状態を反映して変化する生体情報を取得する生体情報取得手段と、参加者の生体情報に基づいて参加者の心理状態を判定する判定手段と、決定手段と、を備える。この決定手段は、参加者の心理状態に関する判定結果に基づいて会議への提案内容を決定する。
オンライン会議においては参加者がそれぞれ離れた場所に存在しており、端末を介してコミュニケーションをとる。そのため、オンライン会議において会議の雰囲気や参加者の反応を把握することが難しく、一見してこのような把握を行うことが可能なシステムが望まれる。
本開示は、上記の課題を鑑みてなされたものであり、オンライン会議を効果的に運営するための分析装置等を提供することを目的とする。
本開示の第1の態様にかかる分析装置は、感情データ取得手段、分析データ生成手段、記憶手段、画像生成手段、および出力手段を備える。感情データ取得手段は、オンライン会議における参加者の会議中の顔画像データに基づき生成された、前記参加者ごとの個別感情データを取得する。分析データ生成手段は、前記参加者ごとに、前記個別感情データに基づいて前記オンライン会議における感情の度合いを示す分析データを生成する。記憶手段は、前記参加者ごとの前記分析データのそれぞれを、対応する色調情報と紐付けて記憶する。画像生成手段は、前記オンライン会議の状態を示す表示画像として、前記オンライン会議に参加した複数の前記参加者のそれぞれについて、前記分析データに紐付けられた色調情報により表す要素図形を配置した画像を生成する。出力手段は、前記表示画像を出力する。
本開示の第2の態様にかかる分析方法は、コンピュータが、オンライン会議における参加者の会議中の顔画像データに基づき生成された、前記参加者ごとの個別感情データを取得する。本分析方法は、前記コンピュータが、前記参加者ごとに、前記個別感情データに基づいて前記オンライン会議における感情の度合いを示す分析データを生成し、前記参加者ごとの前記分析データのそれぞれを、対応する色調情報と紐付けて記憶する。本分析方法は、前記コンピュータが、前記オンライン会議の状態を示す表示画像として、前記オンライン会議に参加した複数の前記参加者のそれぞれについて、前記分析データに紐付けられた色調情報により表す要素図形を配置した画像を生成する。本分析方法は、前記コンピュータが、前記表示画像を出力する。
本開示の第3の態様にかかる非一時的なコンピュータ可読媒体は、次の第1~第5の処理をコンピュータに実行させる分析プログラムが格納された非一時的なコンピュータ可読媒体である。上記第1の処理は、オンライン会議における参加者の会議中の顔画像データに基づき生成された、前記参加者ごとの個別感情データを取得する処理である。第2の処理は、前記参加者ごとに、前記個別感情データに基づいて前記オンライン会議における感情の度合いを示す分析データを生成する処理である。第3の処理は、前記参加者ごとの前記分析データのそれぞれを、対応する色調情報と紐付けて記憶する処理である。第4の処理は、前記オンライン会議の状態を示す表示画像として、前記オンライン会議に参加した複数の前記参加者のそれぞれについて、前記分析データに紐付けられた色調情報により表す要素図形を配置した画像を生成する処理である。第5の処理は、前記表示画像を出力する処理である。
本開示によれば、オンライン会議を効果的に運営するための分析装置等を提供することができる。
以下では、本開示の実施形態について、図面を参照しながら詳細に説明する。各図面において、同一または対応する要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略される。
<実施形態1>
図1および図2を参照して実施形態1について説明する。図1は、実施形態1にかかる分析装置の構成例を示すブロック図である。
図1および図2を参照して実施形態1について説明する。図1は、実施形態1にかかる分析装置の構成例を示すブロック図である。
本実施形態にかかる分析装置100は、オンライン会議についての分析データを生成し、それに基づく表示画像を生成、出力する。分析装置100での処理は会議中にリアルタイムで実行されてもよいし、会議後に(換言すればオフラインで)実行されてもよい。
図1に示すように、この分析装置100は、感情データ取得部(感情データ取得手段)111および分析データ生成部(分析データ生成手段)112を備える。さらに、分析装置100は、記憶部(記憶手段)113、画像生成部(画像生成手段)114、および出力部(出力手段)115を備える。
なお、本実施形態において、オンライン会議とは、通信回線を介して互いに通信可能に接続された複数の会議端末を利用して開催される会議をいう。オンライン会議は、例えばウェビナー・イベント、教育・企業研修、少人数会議などとして遠隔で開催されることができる。オンライン会議に接続する会議端末は、例えばPC(Personal Computer)、スマートフォン、タブレット端末、カメラ付き携帯電話等である。また会議端末は、参加者を撮影するカメラ、参加者の発話を収音するマイクおよび画像データや音声データを送受信する通信機能を有する装置であれば上記のものに限られない。また以降の説明においてオンライン会議を、単に「会議」と称する場合がある。
本実施形態においてオンライン会議の参加者とは、会議端末を通じてオンライン会議に接続している人物を示すものであって、会議の主催者、会議の発表者、プレゼンタおよび会議の傍聴者を含む。例えば1つの会議端末を通じて複数の人物が会議に参加している場合には複数の人物それぞれが参加者である。本実施形態において参加者は会議端末が内蔵するまたは会議端末に接続されたカメラにより顔画像が撮影可能な状態で会議に参加するものとする。
感情データ取得部111は、オンライン会議における参加者の会議中の顔画像データに基づき生成された、参加者ごとの個別感情データを取得する。このような個別感情データの取得のために、分析装置100は、オンライン会議における参加者の個別感情データを生成する感情データ生成装置と通信可能に接続しておくことができる。また分析装置100は、オンライン会議を運営する会議運営装置にも通信可能に接続しておくことができる。また分析装置100は、分析装置100を利用するユーザが有する端末(ユーザ端末)と通信可能に接続することができ、ユーザ端末は、後述する表示画像の最終的な出力先とすることができる。
感情データ生成装置は、会議運営装置に通信可能に接続され、オンライン会議における会議の参加者の顔画像データを受信し、その顔画像データから個別感情データを生成し、生成した個別感情データを分析装置100に供給するように構成することができる。これにより、感情データ取得部111は、感情データ生成装置から個別感情データを取得することができる。個別感情データは参加者を特定せずに作成した感情データに対し、参加者を特定することで個別感情データとすることもできる。また、参加者ごとの個別感情データはそれらをまとめた感情データとして取得することができる。
個別感情データは、会議の参加者がそれぞれ有する感情を示す指標となるデータである。なお、参加者を特定しない感情データは参加者ごとのデータ(参加者を特定したデータ)でないこと以外は基本的に個別感情データと同種のデータであると言える。個別感情データは、例えば、注目度、困惑度、幸福度、および驚きなど複数の項目(複数種類の項目)を含む。各項目のデータはそれぞれの感情の種類を示す指標の数値となる。すなわち個別感情データは、上述のそれぞれの項目ごとに、参加者がどの程度これらの感情を感じているかを示すものである。このように、感情データは、複数種類の感情の状態をそれぞれ数値で示したものであり、換言すれば感情の状態を示す複数の指標をそれぞれ数値で示したものである。なお、この個別感情データは、参加者がオンライン会議中に表出した反応(行動)を示す表出データとも言え、顔画像データの他に音声データも加味して生成されたものであってもよい。
感情データ取得部111が取得する個別感情データは、時刻データを伴うものとすることができる。感情データ生成装置は、第1期間ごとの感情データを生成することができる。第1期間とは、例えば1秒間や1分間などの所定時間を指すことができる。感情データ取得部111は、会議の進行時刻に沿った第1期間ごとの感情データを、逐次またはまとめて取得することができる。感情データ取得部111は、感情データを取得すると、取得した感情データを分析データ生成部112に供給する。
分析データ生成部112は、参加者ごとに、個別感情データに基づいてオンライン会議における感情の度合いを示す分析データを生成する。生成される分析データは、例えば、個別感情データを統計処理したデータとすることができる。
記憶部113は、参加者ごとの分析データのそれぞれを、対応する色調情報と紐付けて記憶する。なお、分析データと紐付けて記憶される色調情報は、色調に任意に付した番号であっても、その番号が色調と紐付けられていればよい。記憶部113は、フラッシュメモリやSSD(Solid State Drive)などの不揮発性メモリを含む記憶装置とすることができる。
画像生成部114は、オンライン会議の状態を示す表示画像として、オンライン会議に参加した複数の参加者のそれぞれについて、分析データに紐付けられた色調情報により表す要素図形を配置した画像を生成する。この表示画像では、各参加者に対応する要素図形が並べられることとなり、各要素図形は分析データに対応する色調で表現されることになる。
出力部115は、このようにして画像生成部114で生成された表示画像を出力する。出力部115は、表示画像をユーザ端末に出力することができる。特にリアルタイム処理の場合、出力部115は、開催中のオンライン会議の画面に重畳できるように、開催中のオンライン会議を提供するシステムに、表示画像を逐次に出力することが好ましい。オンライン会議を提供するシステムは、上述した会議運営装置を含むことができ、この会議運営装置を分析データの出力先としておけば、オンライン会議の画面に重畳させるようにすることができる。あるいは、リアルタイム処理かオフライン処理かに拘わらず、出力部115は、表示画像をユーザ端末の表示画像に重畳できるように出力する構成とすることもできる。この場合、ユーザが直接、分析装置100を利用することになる。表示画像を重畳させるように出力させるためには、例えば、表示画像を会議運営装置において会議画面に重畳させるような形式の信号とすることや、あるいは表示画像を単にOSD(On Screen Display)信号とすることなどが採用できる。
分析装置100を利用するユーザは、ユーザ端末が受け取った表示画像に基づく表示を知覚することにより、会議に参加中または参加していた複数の参加者が会議の内容またはプレゼンタの発言等に対してどのような感情を抱いていたかを認識できる。そのため、ユーザは、視認した表示画像からその後に開催される会議(リアルタイム処理の場合には継続される会議)に対して、留意すべき事項等を知覚し得る。なお、上記複数の参加者には上記ユーザ自身が含まれることがあるが、含まれないこともある。
次に、図2を参照して、実施形態1にかかる分析装置100の処理について説明する。図2は、実施形態1にかかる分析方法を示すフローチャートである。図2に示すフローチャートは、分析装置100が例えば、会議運営装置から会議の開始を示す信号を受け取ることにより、あるいは感情データ生成装置から同等の信号を受け取ることにより開始することができる。また、オフライン処理である場合には、分析装置100がユーザ操作に基づく分析を開始する操作信号を受け取ることで開始することもできる。
まず、感情データ取得部111は、感情データ生成装置から参加者ごとの個別感情データを取得する(ステップS11)。感情データ取得部111は、感情データ生成装置が個別感情データを生成する都度、生成された個別感情データを取得してもよいし、複数の異なる時刻における個別感情データをまとめて取得してもよい。
次に、分析データ生成部112は、感情データ取得部111から受け取った個別感情データに基づいて、参加者ごとにオンライン会議における感情の度合いを示す分析データを生成する(ステップS12)。そして、記憶部113は、生成された参加者ごとの分析データのそれぞれを、対応する色調情報と紐付けて記憶する(ステップS13)。
次に、画像生成部114は、オンライン会議の状態を示す表示画像として、オンライン会議に参加した複数の参加者のそれぞれについて、分析データに紐付けられた色調情報により表す要素図形を配置した画像を生成する(ステップS14)。その後、出力部115は、生成された表示画像を出力する(ステップS15)。以上、分析装置100が行う処理について説明した。
以上、実施形態1について説明した。上述のとおり、実施形態1にかかる分析装置100は、各参加者に対応する要素図形が配置され且つ各要素図形が分析データに対応する色調で表現されるような表示画像を出力する。特に、本実施形態では、このような表示画像により、オンライン会議において会議の雰囲気や参加者の反応を、一見して把握することができる。よって、分析装置100を利用するユーザは、ユーザ端末が受け取った表示画像に基づく表示を容易に知覚でき、会議に参加中または参加していた複数の参加者が会議の内容またはプレゼンタの発言等に対してどのような感情を抱いていたかを認識できる。これにより分析装置100を利用するユーザは、オンライン会議において、参加者の感情の傾向に応じたコミュニケーションをとることができる。よって、本実施形態によれば、オンライン会議を効果的に運営することができる。
なお、分析装置100は、図示しない構成としてプロセッサを有するものである。記憶部113には、本実施形態に係る分析方法を実行するためのコンピュータプログラム(以降、単にプログラムとも称する)を記憶させておくことができる。またプロセッサは、記憶部113からコンピュータプログラムをメモリへ読み込ませ、当該プログラムを実行する。
分析装置100が有する各構成は、それぞれが専用のハードウェアで実現されていてもよい。また、各構成要素の一部または全部は、汎用または専用の回路(circuitry)、プロセッサ等やこれらの組合せによって実現されてもよい。これらは、単一のチップによって構成されてもよいし、バスを介して接続される複数のチップによって構成されてもよい。各装置の各構成要素の一部または全部は、上述した回路等とプログラムとの組合せによって実現されてもよい。また、プロセッサとして、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、FPGA(field-programmable gate array)等を用いることができる。
また、分析装置100の各構成要素の一部または全部が複数の演算装置や回路等により実現される場合には、複数の演算装置や回路等は、集中配置されてもよいし、分散配置されてもよい。例えば、演算装置や回路等は、クライアントサーバシステム、クラウドコンピューティングシステム等、各々が通信ネットワークを介して接続される形態として実現されてもよい。また、分析装置100の機能がSaaS(Software as a Service)形式で提供されてもよい。
<実施形態2>
実施形態2について実施形態1との相違点を中心に説明するが、実施形態1で説明した様々な例が適用できる。図3は、実施形態2にかかる分析システムの構成例を示すブロック図である。
実施形態2について実施形態1との相違点を中心に説明するが、実施形態1で説明した様々な例が適用できる。図3は、実施形態2にかかる分析システムの構成例を示すブロック図である。
図3に示すように、本実施形態にかかる分析システム10は、分析装置200と、感情データを生成して分析装置200に個別感情データを提供する感情データ生成装置300と、を備えることができる。分析装置200と感情データ生成装置300とは、ネットワークNを介して互いに通信可能に接続している。また分析システム10は、ネットワークNを介して会議運営装置400と通信可能に接続している。会議運営装置400は、ネットワークNを介して会議端末群90に接続してオンライン会議を運営する。会議端末群90は、複数の会議端末(900A、900B、・・・、900N)およびユーザ端末990を含む。
実施形態1で説明したユーザ端末は、会議端末900A等とすることができるが、会議端末として用いない他のユーザ端末990であっても、ユーザが会議端末とともに合計2台で使用することができる。その場合、ユーザ端末990側に表示画像を出力するように構成することができ、ユーザは会議端末で会議に参加しながらユーザ端末990で表示画像を確認することができる。
次に、図4を参照して実施形態2にかかる分析装置について説明する。図4は、実施形態2にかかる分析装置200の構成例を示すブロック図である。実施形態2にかかる分析装置200は、会議データ取得部116およびチャプタ生成部117を有する点が、実施形態1にかかる分析装置100と異なる。以下に、分析装置200の各構成について、分析装置100と異なる点を含めて説明する。
本実施形態にかかる感情データ取得部111は、感情の状態を示す複数の指標を数値により示した、参加者ごとの個別感情データを取得する。参加者の個別感情データは、第1期間における統計値(例えばその参加者についての上記複数の指標それぞれに対して第1期間で平均した値など)を示すデータとすることができる。
分析データ生成部112は、例えば、個別感情データの第2期間における統計値を算出することにより、分析データを生成することができる。つまり、分析データ生成部112は、参加者ごとに、第2期間ごとの個別感情データに基づいてオンライン会議における感情の度合いを示す分析データを生成することができる。生成される分析データは個別感情データの第2期間における統計値とすることができる。この場合、後段の記憶部113、画像生成部114、出力部115も第2期間ごとに処理を実行し、第2期間ごとの表示画像を出力することができる。
第2期間とは、例えば、対象となるオンライン会議が開始された時点から終了した時点、開催中のオンライン会議については開始時点から現時点(実際には個別感情データが取得できている時点)までの期間を指すことができる。あるいは、第2期間とは、例えば1秒間や1分間などの所定時間前から現時点までの期間、つまり開催中のオンライン会議における個別感情データが取得できている時点に至るまでの一定時間を指すことができる。この場合、一定期間前から現時点までの分析データを生成することができる。第2期間としてどのような期間を採用するかは、予め定めておくことができる。
また、分析データの生成に用いる個別感情データは、対象となるオンライン会議の属性(種類)を示す属性データを含むことができる。会議の属性データとは、例えば、ウェビナー、定例ミーティング、またはブレーンストーミングなどの、会議の種別を示す情報を含み得る。また会議の属性データとは、会議の参加者が所属する会社の業種や職種に関する情報を含み得る。また会議の属性データは、会議の議題、会議の目的または会議体の名称等に関する情報を含み得る。
そして、分析データ生成部112は、属性データに応じて分析データを生成するように構成することができる。例えば、属性が異なれば異なる分析値が算出されるようにしておけばよい。また、分析データ生成部112は、会議の属性データに基づいて分析データの算出方法を選択して分析データを生成するものであってもよい。このような構成により、分析装置200は、会議の属性に応じて分析データを生成できる。
分析データ生成部112は、異なる複数の会議を相対比較することにより分析データを生成するものであってもよい。すなわち分析データ生成部112は、会議の属性データと、分析履歴データとに基づいて属性データに対応した会議の相対比較結果を含む分析データを生成するものであってもよい。この場合、分析データ生成部112は、記憶部113が記憶する分析履歴データを読み取り、新たに分析の対象となる会議に関するデータと、比較の対象となり得る過去のデータと比較する。なお、分析履歴データは色調情報の紐付けがなされた状態のデータとすることもでき、それにより過去に分析した結果の表示画像も同様に出力することができる。但し、分析に用いるだけであれば、色調情報の紐付けを外した履歴データとして保存しておくこともできる。
分析データ生成部112はこのとき、会議の属性データを対比することにより2つのデータが分析の対象となるか否かを判断する。このように、分析履歴データを用いた分析データの生成を行う例では、分析データ生成対象のオンライン会議と同じ属性についての分析履歴データのみを用いることができる。あるいは、同じ属性、似た属性、全く異なる属性などで重み付けを異ならせて各属性の分析履歴データを用いることもできる。
会議データ取得部116は、会議運営装置400から、時刻データを伴うオンライン会議に関する会議データを取得する。会議運営装置400は、例えば会議の参加者のそれぞれが通信可能に接続するサーバ装置である。会議運営装置400は、会議の参加者が利用する会議端末900A等に含まれるものであってもよい。会議データは、時刻データを伴う会議に関するデータであり、会議中に撮影された参加者の顔画像データを含むことができる。より具体的には、会議データは、会議の開始時刻および終了時刻を含む。また会議データは、会議中に取られた休憩の時刻を含む。上述した属性データは、この会議データに含めておくことができ、その場合、会議データ(属性データを含む)と個別感情データとは時刻データで紐付けることができる。つまり、属性データについては、会議データ取得部116が、会議を運営する会議運営装置400から会議の属性データを含む会議データを取得するように構成しておいてもよい。
会議データ取得部116は、会議における画面共有に関するデータを含む会議データを取得するものであってもよい。この場合、会議データは、例えば参加者に共有される共有画面を操作する権限(共有画面のオーナー)の切替え時刻や、参加者の発話の切替え時刻を含み得る。会議データ取得部116は、会議において共有された画面データを含む会議データを取得するものであってもよい。この場合、会議データは、共有画面中のページ送りや表示画像の変化などの時刻を含み得る。さらに会議データは、上述した時刻が、それぞれ何を示すものであるかを含み得る。会議データ取得部116は、取得した会議データを、後述のチャプタ生成部117および分析データ生成部112に供給する。
チャプタ生成部117は、会議データ取得部116から受け取った会議データに基づいてそのオンライン会議に対するチャプタを生成する。チャプタ生成部117は、生成したチャプタを示すデータを、分析データ生成部112に供給する。これにより、後述するが、第2期間の決定にチャプタを用いることができるようになる。
チャプタ生成部117は、例えば会議の開始から現時点までの時刻を検出し、さらに、予め設定された条件に合致する時刻を検出して、それぞれの時刻を区切りとして、チャプタを示すデータを生成する。この条件の単純な例としては、開始時点から所定時間の倍数経過したかなどとすることができるが、これに限らない。本開示における会議のチャプタは、会議において所定の条件に合致する状態が維持されているか、あるいは所定の条件が変化したかにより定義されることができる。
また、チャプタ生成部117は、例えば画面共有に関するデータに基づいてチャプタを生成してもよい。より具体的には、チャプタ生成部117は、画面共有の切替えタイミングに応じてチャプタを生成してもよい。またチャプタ生成部117は、画面共有にかかる共有画面のオーナーの切替え時刻に応じてチャプタを生成してもよい。
分析データ生成部112は、受け取った個別感情データおよびチャプタを示すデータから、第2期間ごとに分析データを生成する。この例において第2期間は、チャプタ生成部117で生成された1つのチャプタまたは連続する複数のチャプタでなるチャプタ群についての、開始時点から終了時点までの期間として定めることができる。つまり、分析データ生成部112は、参加者のそれぞれについて、個別感情データに基づいて会議に対する分析データをチャプタごとにまたはチャプタ群ごとに生成することができる。
実施形態1で説明したように、個別感情データは、複数種類の感情の状態をそれぞれ数値で示したものとすることができる。つまり、感情データ取得部111は、感情の状態を示す複数の指標を数値により示した個別感情データを取得するように構成することができる。
この場合、分析データは、このような個別感情データから導出されるデータであって、複数種類の感情を示す指標の数値から抽出または算出されるデータとすることができる。分析データ生成部112は、感情データの統計値を算出することにより、1つの分析値を示す分析データを生成することができる。生成される分析データは、会議の運営に役立つような指標であることが好ましい。例えば分析データは、会議に対する注目度、共感度、および理解度、あるいはそれらから算出された会議への反応度を含むものであってもよい。あるいは分析データは、会議の傍聴者に対する発言者の感情伝達度を含むものであってもよい。分析データ生成部112は、チャプタごとの分析データを生成すると、生成した分析データを記憶部113に供給して記憶させる。
記憶部113は、参加者ごとの分析データのそれぞれを、対応する色調情報と紐付けて記憶する。なお、この処理は画像生成部114が主体となって記憶部113と協働して実行することができるが、便宜上、記憶部113での処理として説明する。分析データを複数種類の感情を示す指標の数値に基づき生成した場合、記憶部113では、次のような紐付け記憶を行うことができる。すなわち、記憶部113は、分析データに対応する色調情報として、上記複数種類の感情の状態についての数値の間で有意性または優位性を有する感情に対応付けられた色調情報を、分析データに紐付けて記憶することもできる。例えば、分析データが、注目度を示す数値、共感度を示す数値、および理解度を示す数値であった場合で、且つ、注目度を示す数値が他に比べて有意または優性であった場合には、注目度に対応付けられた色調情報を分析データに紐付けて記憶することができる。
図5を参照して、分析データ生成部112についてさらに説明する。図5は、分析データ生成部112が処理するデータの例を示す図である。図5は、分析データ生成部112が受け取る入力データ群と、分析データ生成部112が出力する出力データ群とが示されている。分析データ生成部112は、感情データ生成装置300から、入力データ群としての感情データを受け取る。入力データ群は例えば、注目度、困惑度、軽蔑度、嫌悪感、恐怖感、幸福度、共感度、驚き、および存在感に関するそれぞれの指標を含む。これらの指標は例えばそれぞれの指標が0から100までの数値により示される。入力データ群の感情データは、顔画像データから既存の映像処理技術を用いて生成されたものが取得されてもよく、その他の方法により生成、取得されてもよい。
分析データ生成部112は、上述の入力データ群を受け取ると、予め設定された処理を行い、入力データ群を用いて出力データ群を生成する。出力データ群は、分析システム10を利用するユーザが会議を効率良く行うために参照するデータである。出力データ群は例えば、注目度、共感度および理解度を含む。分析データ生成部112は、入力データ群から予め設定された指標を抽出する。また分析データ生成部112は、抽出した指標にかかる値に対して予め設定された演算処理を行う。そして分析データ生成部112は、上述の出力データ群を生成する。なお、出力データ群として示す注目度は、入力データ群に含まれる注目度と同じものであってもよいし、異なるものであってもよい。同様に、出力データ群として示す共感度は、入力データ群に含まれる共感度と同じものであってもよいし、異なるものであってもよい。
実施形態1で説明したように、画像生成部114は、オンライン会議の状態を示す表示画像として、オンライン会議に参加した複数の参加者のそれぞれについて、分析データに紐付けられた色調情報により表す要素図形を配置した画像を生成する。その後、出力部115は、生成された表示画像を出力する。
ここで、リアルタイム処理である場合には、出力部115は、開催中のオンライン会議の画面に重畳できるように、開催中のオンライン会議を提供するシステム(会議運営装置を含む)に、生成された表示画像を逐次に出力することが好ましい。ここでの例の場合も、個人を特定する情報を会議運営装置に提供しておけば、各個人のユーザ端末にその個人についての表示画像を対応するユーザ端末のオンライン会議の画面に出力させることができる。また、上述したように、出力部115は、生成された表示画像を例えばOSD信号などとしてユーザ端末に出力するように構成することもできる。ユーザは分析装置100を利用することになる。
次に、図6を参照して感情データ生成装置300について説明する。図6は、実施形態2にかかる感情データ生成装置の構成を示すブロック図である。感情データ生成装置300は、主な構成として、参加者データ取得部311、感情データ生成部312、および感情データ出力部313を有している。
参加者データ取得部311は、ネットワークNを介して会議運営装置400から参加者に関するデータを取得する。参加者に関するデータとは、会議端末が会議中に撮影した参加者の顔画像データである。顔画像データが会議データに含まれる場合、例えば会議運営装置400が会議データから顔画像データを抽出して感情データ生成装置300に送信することができる。
感情データ生成部312は、感情データ生成装置300が受け取った顔画像データから個別感情データを生成する。感情データ出力部313は、感情データ生成部312が生成した個別感情データを、ネットワークNを介して分析装置200に出力する。なお、感情データ生成装置300は、参加者の顔画像データに対して所定の画像処理を施すことにより感情データを生成する。所定の画像処理とは例えば、特徴点(または特徴量)の抽出、抽出した特徴点に対する参照データとの照合、画像データの畳み込み処理および機械学習した教師データを利用した処理、ディープラーニングによる教師データを活用した処理等である。ただし、感情データ生成装置300が感情データを生成する手法は、上述の処理に限られない。感情データは、感情を示す指標である数値であってもよいし、感情データを生成する際に利用した画像データを含むものであってもよい。
個別感情データの生成について補足説明を行う。会議端末で会議中に撮影された参加者の顔画像データを参加者に関するデータとして受信しておき、事前に登録しておいた顔画像データに基づく顔認証処理を実行すれば参加者個人を特定でき、各参加者の顔画像データから個別感情データを生成できる。また、個人を特定しない場合であっても、会議中に撮影された参加者の顔画像データから同じ人物であることは特定できるため、個別感情データの生成は可能である。なお、会議端末1台につき1ユーザの例では、会議に参加する際のログイン情報だけで個人を特定させることができ、その会議端末で撮影された顔画像データからその個人の個別感情データを生成することができる。
なお、感情データ生成装置300は、図示しない構成としてプロセッサおよび記憶装置を有するものである。感情データ生成装置300が有する記憶装置には、本実施形態に係る個別感情データ生成を実行するためのプログラムが記憶されている。またプロセッサは、記憶装置からプログラムをメモリへ読み込ませ、当該プログラムを実行する。
感情データ生成装置300が有する各構成は、それぞれが専用のハードウェアで実現されていてもよい。また、各構成要素の一部または全部は、汎用または専用の回路、プロセッサ等やこれらの組合せによって実現されてもよい。これらは、単一のチップによって構成されてもよいし、バスを介して接続される複数のチップによって構成されてもよい。各装置の各構成要素の一部または全部は、上述した回路等とプログラムとの組合せによって実現されてもよい。また、プロセッサとして、CPU、GPU、FPGA等を用いることができる。
また、感情データ生成装置300の各構成要素の一部または全部が複数の演算装置や回路等により実現される場合には、複数の演算装置や回路等は、集中配置されてもよいし、分散配置されてもよい。例えば、演算装置や回路等は、クライアントサーバシステム、クラウドコンピューティングシステム等、各々が通信ネットワークを介して接続される形態として実現されてもよい。また、感情データ生成装置300の機能がSaaS形式で提供されてもよい。
次に、図7を参照して分析装置200が実行する処理例について説明する。図7は、実施形態2にかかる分析方法を示すフローチャートである。図7に示す処理は、開催中の会議において、第2期間がチャプタの期間とする点、つまり新たなチャプタが生成される度に表示画像を出力する点において、実施形態1にかかる処理と異なる。
まず、分析装置200は、オンライン会議が開始されたか否かを判定する(ステップS21)。分析装置200は、会議運営装置400から会議が開始されたことを示す信号を受け取ることにより、会議の開始を判定する。オンライン会議が開始されたと判定しない場合(ステップS21:NO)、分析装置200は、ステップS21を繰り返す。オンライン会議が開始されたと判定した場合(ステップS21:YES)、分析装置200は、ステップS22に進む。
ステップS22において、感情データ取得部111は、感情データ生成装置から各参加者についての個別感情データの取得を開始する(ステップS22)。感情データ取得部111は、感情データ生成装置が個別感情データを生成する都度、生成された個別感情データを取得してもよいし、複数の異なる時刻における個別感情データをまとめて取得してもよい。
次に、会議データ取得部116は、会議運営装置から時刻データを伴う会議に関する会議データを取得する(ステップS23)。会議データ取得部116はかかる会議データを、第1期間毎に受け取ってもよいし、会議データに更新すべき情報がある場合に逐次受け取ってもよい。また、ステップS22とステップS23は同時に開始されることができる。
次に、分析装置200は、受け取った会議データから新しいチャプタを生成可能か否かについて判定する(ステップS24)。新しいチャプタを生成可能と判定しない場合(ステップS24:NO)、分析装置200は、ステップS22に戻る。一方、新しいチャプタを生成可能と判定した場合(ステップS24:YES)、分析装置200は、ステップS25に進む。ステップS25において、チャプタ生成部117は、会議データ取得部116から受け取った会議データからチャプタを生成する(ステップS25)。
次に、分析データ生成部112は、感情データ取得部111から受け取った個別感情データに基づいて、参加者ごとにオンライン会議における感情の度合いを示す分析データを生成する(ステップS26)。なお、分析データは、会議データも加味して生成することもできる。そして、記憶部113は、生成された参加者ごとの分析データのそれぞれを、対応する色調情報と紐付けて記憶する(ステップS27)。
次に、画像生成部114は、オンライン会議の状態を示す表示画像として、オンライン会議に参加した複数の参加者のそれぞれについて、分析データに紐付けられた色調情報により表す要素図形を配置した画像を生成する(ステップS28)。
次に、出力部115は、生成した表示画像をユーザ端末990に出力する(ステップS29)。これにより、ユーザはリアルタイムに、生成された表示画像を確認することができる。さらに分析装置200は、会議が終了したか否かを判定する(ステップS30)。分析装置200は、会議運営装置400から会議が終了したことを示す信号を受け取ることにより、会議の終了を判定する。会議が終了したと判定しない場合(ステップS30:NO)、分析装置200は、ステップS22に戻り、処理を続ける。一方、オンライン会議が終了したと判定した場合(ステップS30:YES)、分析装置200は、一連の処理を終了する。
以上、実施形態2にかかる分析装置200の処理について説明した。上述のフローチャートによれば、分析装置200は、開催中の会議において、新しいチャプタが生成される度に生成されたチャプタ(またはチャプタ群)に対する表示画像を出力できる。これにより、分析システム10を利用するユーザは、開催中の会議において、新しいチャプタが生成される度などに提供される表示画像を利用して会議を効果的に進めることができる。例えば、ユーザは、開催中の会議において、新しいチャプタが生成される度に提供される表示画像を利用して、円滑なコミュニケーションを図るようにコミュニケーションの度合いを変えることができる。
次に、図8を参照して、ある参加者についての分析データの例について説明する。図8は、分析データの第1例を示す図である。図8は、上段において分析データを時系列に沿って示したグラフG11が示されている。また中段において上記時系列に対応した会議データG12が示されている。さらに、下段において、上記会議データに対応したチャプタごとの分析データG13が示されている。
グラフG11は、横軸が時間を示し、縦軸が分析データのスコアを示している。横軸は左端が時刻T10であり、右に進むほど時間が経過し、右端が時刻T15となっている。時刻T10は、会議の開始時刻であり、時刻T15は会議の終了時刻である。時刻T10と時刻T15の間の時刻T11、T12、T13およびT14は、後述するチャプタに対応する時刻を示している。
またグラフG11は、実線により示された第1分析データL11と、点線により示された第2分析データL12と、二点鎖線により示された第3分析データL13とがプロットされている。第1分析データL11は、分析データの内の、注目度を示している。第2分析データL12は、分析データの内の共感度を示している。第3分析データL13は、分析データの内の理解度を示している。
会議データG12は、会議の共有画面に関するデータと、発表者(プレゼンタ)に関するデータとが時系列に沿って示されている。すなわち、表示画面に関するデータには、時刻T10から時刻T11までの共有画面が画面D1であったことが示されている。また表示画面に関するデータには、時刻T11から時刻T12までの共有画面が画面D2であったことが示されている。以下同様に、会議データG12によれば、会議における共有画面は、時刻T12から時刻T13までが画面D3、時刻T13から時刻T14までが画面D4、そして時刻T14から時刻T15までが画面D5であったことが示されている。なお、ここで表示画面は、基本的に表示部の画面の全体または一部分に表示させる表示画像と同義であるものとする。
また会議データG12において、発表者に関するデータには、時刻T10から時刻T12までが発表者W1であったことが示されている。同様に、発表者に関するデータには、時刻T12から時刻T14までが発表者W2、そして時刻T14から時刻T15までが再び発表者W1であったことが示されている。
上述の会議データG12における共有画面と発表者との関係について、時系列に沿って説明する。会議が開始された時刻T10から時刻T12までの間は、発表者W1が会議の進行を行っており、時刻T10から時刻T11までの間、発表者W1は共有画面として画面D1を共有画面として表示(すなわち画面D1を共有)させていた。次に発表者W1は、時刻T11から時刻T12までの間、表有画面を画面D1から画面D2に切り替えて発表を続けた。次に、時刻T12に、発表者が発表者W1から発表者W2に交代した。発表者W2は、時刻T12から時刻T13までの間、画面D3を共有させ、時刻T13から時刻T14までの間は、画面D4を共有させた。時刻T14から時刻T15までの間は、発表者W2から交代した発表者W1が、画面D5を共有させていた。
以上、会議データG12における共有画面と発表者との関係について、時系列に沿って説明した。上述のように、図8に示す会議データは、共有画面における画面データが表示されていた期間についてのデータと、発表者が誰であったかについてのデータが含まれる。チャプタ生成部117は、上述の会議データの内、共有画面に関するデータに応じてチャプタを生成できる。
分析データG13は、上述の会議データに対応するチャプタを示すデータと、チャプタに対応する分析データとが時系列に沿って示されている。図8に示す例において、チャプタを示すデータは、会議データの内の共有画面に関するデータに対応している。すなわち、第1チャプタC11は、画面D1が共有されていた時刻T10から時刻T11である。同様に、第2チャプタC12は、画面D2が共有されていた時刻T11から時刻T12である。第3チャプタC13は、画面D3が共有されていた時刻T12から時刻T13である。第4チャプタC14は、画面D4が共有されていた時刻T13から時刻T14である。第5チャプタC15は、画面D5が共有されていた時刻T14から時刻T15である。
図8に示すように、分析データG13には、それぞれのチャプタに対応する分析データが含まれる。分析データは、注目度、共感度、理解度およびこれらを合計した総合スコアが示されている。分析データG13において、例えば、チャプタC11に対応する分析データとして、注目度が65、共感度が50、理解度が43と示されている。また総合スコアはこれらの合計として158と示されている。同様に、例えばチャプタC12に対応する分析データとして、注目度が61、共感度が45、理解度が32そして総合スコアが138と示されている。
上記分析データは、グラフG11においてそれぞれプロットされているデータに対応したものである。すなわち、分析データG13として示されている分析データは、対応するチャプタの期間において所定期間(例えば1分間)毎に算出された分析データの平均値である。
以上、分析データの例について説明した。図8に示す例において、チャプタ生成部117は、会議データのうち共有画面が切り替わるタイミングを、チャプタの切替えタイミングに設定している。そして分析データ生成部112は、会議の開始から会議の終了までの間の分析データを、上述のチャプタごとに算出する。これにより、分析システム10は、表示されている共有画面ごとの分析データを提供できる。
図8に示した例において、分析システム10は、上述のグラフG11に示すように、分析データを所定期間毎に算出してプロットしている。これことにより、分析システム10は、会議における分析データの詳細な変化を示すことができる。ただし、分析データ生成部112は、グラフG11に示すように算出するのに代えて、チャプタが終了した後に、まず当該チャプタにおける感情データの統計値(例えば平均値)を算出し、その後に分析データを算出してもよい。このような構成により、分析システム10は、分析データの処理速度を向上させることができる
次に、図9を参照して、ある参加者についての分析データの例についてさらに説明する。図9は、分析データの第2例を示す図である。図9において、上段に示すグラフG11に示す第1分析データL11、第2分析データL12および第3分析データL13は、図8に示すものと同じである。また中段に示す会議データG12は、図8に示すものと同じである。
図9において下段に示す分析データG23は、チャプタを生成するためのデータが、発表者に関するデータである点が、図8に示す分析データと異なる。すなわち、図9に示す例において、チャプタ生成部117は、発表者W1が発表者であった時刻T10から時刻T12までの間を第1チャプタC21に設定している。同様に、チャプタ生成部117は、発表者W2が発表者であった時刻T12から時刻T14までの間を第2チャプタC22に設定している。またチャプタ生成部117は、発表者W1が発表者であった時刻T14から時刻T15までの間を第3チャプタC23に設定している。
図9において、分析データは、上述のチャプタC21~C23に対応して示されている。すなわち、チャプタC21に対応する分析データは、注目度が62、共感度が47、理解度が35そして総合スコアが144と示されている。チャプタC22に対応する分析データは、注目度が78、共感度が46、理解度が48そして総合スコアが172と示されている。チャプタC23に対応する分析データは、注目度が58、共感度が43、理解度が51そして総合スコアが152と示されている。
以上、分析データの第2の例について説明した。図9に示す例において、チャプタ生成部117は、会議データのうち発表者が切り替わるタイミングを、チャプタの切替えタイミングに設定している。そして分析データ生成部112は、会議の開始から会議の終了までの間の分析データを、上述のチャプタごとに算出する。これにより、分析システム10は、発表者ごとの分析データを提供できる。
次に、本実施形態の主たる特徴の一つである、表示画像の表示例について説明する。図10は、表示画像の表示例を示す図で、図11は図形要素に対応させる色空間の例を示す図である。
図4の出力部115は、会議端末900A等に対し、図10に示すような会議画像901に表示画像902を重畳させるように表示画像902をリアルタイムに出力することができる。表示画像902において、参加者は丸印で示されており、基本的に1人につき1つの丸印で示されているが、例えば所属グループで1つの丸印で示されることもできる。後者の場合には所属グループに含まれる参加者について一括して1人として取り扱って分析データの生成及び表示画像の生成を行えばよい。
図10に示すように、参加者を示す丸印が配列されるとともに、分析結果が異なる参加者を表現する丸印には異なる色調が付与されている。参加者の配列は、これに限ったものではなく、例えばオンライン会議へのアクセス元のアドレスなどに基づく配列であってもよいし、例えば日本地図上に参加者の丸印をアドレスまたは実住所に基づき配置させることもできる。このように表示画像902は外枠が矩形である例を挙げているが、これに限らない。また、アドレスのように予め各参加者に対して表示画像902上での位置を決めておいてもよいが、端から順に参加がなされる度や確度の高い分析データが得られる度に、参加者の丸印を埋めていってもよい。
また、丸印は要素図形の一例に過ぎず、他の形状の要素図形を採用することもできることは言うまでもなく、例えば参加者の区分に応じて形状を異ならせることもできる。つまり、画像生成部114は、表示画像として、参加者に対応する要素図形を、区分データごとに異なる形状をもつ要素図形として配置した画像を生成することもできる。例えば男女別、年代別で異なる形状の要素図形を採用することもできる。ここで参加者の区分は、例えば男女別、年代別のほか、参加者の所属する法人、当該法人内の部署または参加者の職種などである。参加者の区分を示すデータ(区分データ)は個別感情データに含めておけばよい。また、形状を異ならせるだけでなく、分析データ生成部112が、参加者ごとに、個別感情データと区分データとに基づいて(つまり区分を加味して)分析データを生成するように(結果的に区分に応じて色調情報が異なるように)構成してもよい。
色調に関し、例えば、分析データが複数種類の値である場合には、上述したように最も優位または有意な値に対応する色調を付与することができる。図11に示す色空間では、感情データ生成装置300が出力する9つの感情データをLa*b*色空間上に放射状に配したものとなっている。なお、La*b*色空間は、円周方向が色相を表し、半径方向が色の彩度を表す色空間である。例えば注目度が他の項目に比べて最も高い値を示す分析データに対しては、色調として黄色を付与し、丸印を黄色で表現することができる。
なお、図11では、分析元データをLa*b*色空間により示したが、他の色空間に対応させてもよい。例えば、分析システム10は、分析データを、「プルチックの感情の輪」に対応させることができる。この場合、分析システム10は、有意または優位な分析データをプルチックの感情の輪にプロットし、プロットした位置における色調により分析データを表示する。これにより、色調を含む分析データを利用するユーザは、分析データから会議における感情の傾向を直観的に把握できる。
次に、表示画像の表示変更例について、換言すれば表示画像の他の例について説明する。
図12は、表示画像の表示変更例を示す図である。図12に示すように、表示画像902はその設定変更により表示画像903のような色調をまとめたような表示画像に変更することができる。つまり、画像生成部114は、表示画像として、参加者に対応する要素図形を、色調情報ごとにグループ分けした状態で配置した画像を生成することもできる。
図12は、表示画像の表示変更例を示す図である。図12に示すように、表示画像902はその設定変更により表示画像903のような色調をまとめたような表示画像に変更することができる。つまり、画像生成部114は、表示画像として、参加者に対応する要素図形を、色調情報ごとにグループ分けした状態で配置した画像を生成することもできる。
表示画像902においても或る感情に分析結果が偏っていれば一見してそれが認識できるが、表示画像903では、そのような偏りがなくても、どのような感情を持った参加者がどの程度存在したのかが一見して認識できる。表示画像903のように同じ色調をまとめて表示させる例では、同じ参加者群が参加したオンライン会議であっても、或る人を示す要素図形の配置が分析結果によって異なることになり、例えば参加者Aは分析結果が変わったときに参加者Aを表す丸印の色調だけでなく場所も移動することになる。
図13は、表示画像の他の表示変更例を示す図である。図13に示す表示画像904のように、画像生成部114が、参加者に対応する要素図形を区分データに基づき配置した画像を生成することができる。特に、画像生成部114は、表示画像として、参加者に対応する要素図形を、区分データごとにグループ分けした状態で配置した画像を生成することもできる。つまり表示画像は区分データに応じてグループ分け配置を行った画像とすることもできる。表示画像904では、区分の異なる参加者が破線で区切られて配置されている。この例でも個別感情データに参加者が属する区分データを含んでおけばよい。
なお、個別感情データに参加者が属する区分データを含める場合、参加者の区分は、例えば人物属性データから生成することができる。この人物属性データは、人物の顔特徴情報と、人物の区分や属性に関する情報とが紐づけられたデータであり、事前に感情データ生成装置300またはそこからアクセス可能な装置に記憶させておけばよい。人物の区分や属性に関する情報とは、例えば人物の氏名、性別、年齢、職種、所属する法人または所属する部署であるが、これらに限定されない。また、参加者の区分は、顔画像データから顔画像にかかる人物の顔特徴情報(特徴点の情報)を抽出し、抽出した情報に応じて推定することもできる。
また、例えば、表示画像902に図示しない表示変更ボタンをユーザ選択可能に表示させておき、それがユーザに選択されることにより、例えば表示画像902から表示画像903(あるいは表示画像904)へまたはその逆方向へ表示を変更させることもできる。前者の変更はグルーピングした状態への並べ替えを意味する。また、例えば、表示画像902に図示しない遷移ボタンをユーザ選択可能に表示させておき、それがユーザに選択されることにより、例えば、そのユーザが参加者となった場合についての図8または図9で示されるような情報を示す画面に遷移させることができる。
図14は、表示画像の他の表示変更例を示す図である。図14に示す例では、表示画像902が示された状態で、必要な丸印を選択する操作をユーザが行うと、対応する参加者の顔画像(イラストであってもよい)、例えば顔画像905aが表示され、操作者は個人情報の抽出を行うことができる。顔画像905a等は、個別感情データの生成元となった顔画像データを用いること、あるいは参加者ごとに事前に登録した顔画像のデータを用いることで表示させることができる。
無論、顔画像905a、905b、905cはプライバシーの観点からは好ましくないシステム環境であることも想定されるため、顔画像の表示/非表示は設定可能にしておくとよい。顔画像の代わりにアイコンを採用することもできる。また、図14に示す例では、顔画像905a、905b、905cに対してそれぞれ、色、線種、および背景色の少なくとも1つなどが異なる表示枠906a、906b、906cが表示されている。これらの表示枠は要素図形の一例とすることができる。
図14で例示したように、画像生成部114は、表示画像として、オンライン会議に参加した複数の参加者のそれぞれについて、分析データに紐付けられた色調情報により表す要素図形を参加者の顔画像またはアイコン画像とともに配置した画像を生成できる。
また、図14では基本的に丸印で参加者を示した例を挙げたが、最初から顔画像またはアイコンと表示枠とで参加者を表現すること、つまり要素図形は表示枠を含むこともできる。
以上の説明では、基本的に、オンライン会議とは連続してなされるオンライン会議であることを前提として説明した。但し、会議データに休憩の時間を含める旨を説明したように、1つとして取り扱うオンライン会議は間隔をおいて開催された複数回のオンライン会議で構成されることができ、それらを1つのオンライン会議として処理を行うことができる。例えば1日以上など休憩が長い場合、上記1つのオンライン会議は、複数回のオンライン会議として定義できるためである。上記複数回のオンライン会議は、共通の議題を有しているもの、または共通の参加者が一割合以上参加しているものなどとすることができ、それらは属性データで区別させることも可能である。但し、これらに限ったものではない。
以上、実施形態2について説明したが、実施形態2にかかる分析システム10は、上述の構成に限られない。例えば、分析システム10は、会議運営装置400を含んでもよい。その場合、分析装置200、感情データ生成装置300および会議運営装置400は、それぞれ別個に存在してもよいし、これらのうち一部または全部が一体となった構成であってもよい。また例えば感情データ生成装置300が有する機能は、プログラムとして構成されており、分析装置200または会議運営装置400に含まれるものであってもよい。例えば、人物の特定および個別感情データの生成などは分析装置200が実行することもできる。また、会議運営装置400がチャプタを生成するように構成することもできる。
<他の実施形態>
上述した各実施形態では、分析装置の各部の機能、感情データ生成装置の各部の機能、会議運営装置の機能、会議端末(会議端末装置)の機能、ユーザ端末(ユーザ端末装置)の機能について説明したが、各装置としてこれらの機能が実現できればよい。また、これらの装置間において機能の分担を変更することもできる。また、各実施形態において説明した様々な例は、適宜組み合わせることができる。
上述した各実施形態では、分析装置の各部の機能、感情データ生成装置の各部の機能、会議運営装置の機能、会議端末(会議端末装置)の機能、ユーザ端末(ユーザ端末装置)の機能について説明したが、各装置としてこれらの機能が実現できればよい。また、これらの装置間において機能の分担を変更することもできる。また、各実施形態において説明した様々な例は、適宜組み合わせることができる。
また、各実施形態にかかる各装置は、例えば次のようなハードウェア構成を有することができる。図15は、各実施形態にかかる各装置の一部のハードウェア構成の一例を示す図である。
図15に示す装置1000は、プロセッサ1001、メモリ1002、およびインタフェース(I/F)1003を有する。I/F1003は他の装置との通信を行うための通信I/Fを含む。装置1000がユーザが使用する装置である場合、I/F1003は表示装置とのI/Fやユーザ操作を入力する操作部または操作部とのI/Fを含むことができる。各実施形態で説明した各装置の機能は、プロセッサ1001がメモリ1002に記憶されたプログラムを読み込んで、I/F1003と協働しながら実行することにより実現される。
上述の例において、上記プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)を含む。さらに、この例は、CD-ROM(Read Only Memory)、CD-R、CD-R/Wを含む。さらに、この例は、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、上記プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、および電磁波を含む。一時的なコンピュータ可読媒体は、電線および光ファイバ等の有線通信路、または無線通信路を介して、プログラムをコンピュータに供給できる。
なお、本開示は上述した様々な実施形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。また、本開示は、それぞれの実施形態を適宜組み合わせて実施されてもよい。
上記の実施形態の一部または全部は、以下の付記のようにも記載され得るが、以下には限られない。
(付記1)
オンライン会議における参加者の会議中の顔画像データに基づき生成された、前記参加者ごとの個別感情データを取得する感情データ取得手段と、
前記参加者ごとに、前記個別感情データに基づいて前記オンライン会議における感情の度合いを示す分析データを生成する分析データ生成手段と、
前記参加者ごとの前記分析データのそれぞれを、対応する色調情報と紐付けて記憶する記憶手段と、
前記オンライン会議の状態を示す表示画像として、前記オンライン会議に参加した複数の前記参加者のそれぞれについて、前記分析データに紐付けられた色調情報により表す要素図形を配置した画像を生成する画像生成手段と、
前記表示画像を出力する出力手段と、
を備える分析装置。
(付記2)
前記個別感情データは、複数種類の感情の状態をそれぞれ数値で示したものである、
付記1に記載の分析装置。
(付記3)
前記記憶手段は、前記分析データに対応する色調情報として、前記複数種類の感情の状態についての数値の間で有意性または優位性を有する感情に対応付けられた色調情報を、前記分析データに紐付けて記憶する、
付記2に記載の分析装置。
(付記4)
前記画像生成手段は、前記表示画像として、前記参加者に対応する前記要素図形を、前記色調情報ごとにグループ分けした状態で配置した画像を生成する、
付記1~3のいずれか1項に記載の分析装置。
(付記5)
前記個別感情データは、前記参加者が属する区分データを含み、
前記画像生成手段は、前記表示画像として、前記参加者に対応する前記要素図形を、前記区分データに基づき配置した画像を生成する、
付記1~3のいずれか1項に記載の分析装置。
(付記6)
前記画像生成手段は、前記表示画像として、前記参加者に対応する前記要素図形を、前記区分データごとにグループ分けした状態で配置した画像を生成する、
付記5に記載の分析装置。
(付記7)
前記画像生成手段は、前記表示画像として、前記参加者に対応する前記要素図形を、前記区分データごとに異なる形状をもつ要素図形として配置した画像を生成する、
付記5または6に記載の分析装置。
(付記8)
前記画像生成手段は、前記表示画像として、前記オンライン会議に参加した複数の前記参加者のそれぞれについて、前記分析データに紐付けられた色調情報により表す前記要素図形を前記参加者の顔画像またはアイコン画像とともに配置した画像を生成する、
付記1~7のいずれか1項に記載の分析装置。
(付記9)
前記個別感情データは、対象となる前記オンライン会議の属性を示す属性データを含み、
前記分析データ生成手段は、前記オンライン会議についての前記属性データに応じて前記分析データを生成する、
付記1~8のいずれか1項に記載の分析装置。
(付記10)
前記個別感情データは、第1期間における統計値を示すデータである、
付記1~9のいずれか1項に記載の分析装置。
(付記11)
前記分析データ生成手段は、前記参加者ごとに、前記感情データ取得手段で取得された前記個別感情データのうち第2期間についての前記個別感情データに基づいて、前記分析データを生成する、
付記1~10のいずれか1項に記載の分析装置。
(付記12)
時刻データを伴う前記オンライン会議に関する会議データを取得する会議データ取得手段と、
前記会議データに基づいて前記オンライン会議に対してチャプタを生成するチャプタ生成手段と、
をさらに備え、
前記第2期間は、前記チャプタ生成手段で生成された1つのチャプタまたは連続する複数のチャプタでなるチャプタ群についての、開始時点から終了時点までの期間である、
付記11に記載の分析装置。
(付記13)
前記会議データは、前記オンライン会議における画面共有に関するデータを含み、
前記チャプタ生成手段は、前記画面共有に関するデータに基づいて前記チャプタを生成する、
付記12に記載の分析装置。
(付記14)
前記チャプタ生成手段は、前記画面共有の切替えタイミングに応じて前記チャプタを生成する、
付記13に記載の分析装置。
(付記15)
前記チャプタ生成手段は、前記画面共有にかかる共有画面のオーナーの切替え時刻に応じて前記チャプタを生成する、
付記13または14に記載の分析装置。
(付記16)
前記オンライン会議は、間隔をおいて開催された複数回のオンライン会議で構成される、
付記1~15のいずれか1項に記載の分析装置。
(付記17)
付記1~16のいずれか一項に記載の分析装置と、
前記個別感情データを生成して前記分析装置に前記個別感情データを提供する感情データ生成装置と、
を備える分析システム。
(付記18)
コンピュータが、
オンライン会議における参加者の会議中の顔画像データに基づき生成された、前記参加者ごとの個別感情データを取得し、
前記参加者ごとに、前記個別感情データに基づいて前記オンライン会議における感情の度合いを示す分析データを生成し、
前記参加者ごとの前記分析データのそれぞれを、対応する色調情報と紐付けて記憶し、
前記オンライン会議の状態を示す表示画像として、前記オンライン会議に参加した複数の前記参加者のそれぞれについて、前記分析データに紐付けられた色調情報により表す要素図形を配置した画像を生成し、
前記表示画像を出力する、
分析方法。
(付記19)
オンライン会議における参加者の会議中の顔画像データに基づき生成された、前記参加者ごとの個別感情データを取得する処理、
前記参加者ごとに、前記個別感情データに基づいて前記オンライン会議における感情の度合いを示す分析データを生成する処理、
前記参加者ごとの前記分析データのそれぞれを、対応する色調情報と紐付けて記憶する処理、
前記オンライン会議の状態を示す表示画像として、前記オンライン会議に参加した複数の前記参加者のそれぞれについて、前記分析データに紐付けられた色調情報により表す要素図形を配置した画像を生成する処理、および、
前記表示画像を出力する処理を、
コンピュータに実行させる分析プログラムが格納された非一時的なコンピュータ可読媒体。
(付記1)
オンライン会議における参加者の会議中の顔画像データに基づき生成された、前記参加者ごとの個別感情データを取得する感情データ取得手段と、
前記参加者ごとに、前記個別感情データに基づいて前記オンライン会議における感情の度合いを示す分析データを生成する分析データ生成手段と、
前記参加者ごとの前記分析データのそれぞれを、対応する色調情報と紐付けて記憶する記憶手段と、
前記オンライン会議の状態を示す表示画像として、前記オンライン会議に参加した複数の前記参加者のそれぞれについて、前記分析データに紐付けられた色調情報により表す要素図形を配置した画像を生成する画像生成手段と、
前記表示画像を出力する出力手段と、
を備える分析装置。
(付記2)
前記個別感情データは、複数種類の感情の状態をそれぞれ数値で示したものである、
付記1に記載の分析装置。
(付記3)
前記記憶手段は、前記分析データに対応する色調情報として、前記複数種類の感情の状態についての数値の間で有意性または優位性を有する感情に対応付けられた色調情報を、前記分析データに紐付けて記憶する、
付記2に記載の分析装置。
(付記4)
前記画像生成手段は、前記表示画像として、前記参加者に対応する前記要素図形を、前記色調情報ごとにグループ分けした状態で配置した画像を生成する、
付記1~3のいずれか1項に記載の分析装置。
(付記5)
前記個別感情データは、前記参加者が属する区分データを含み、
前記画像生成手段は、前記表示画像として、前記参加者に対応する前記要素図形を、前記区分データに基づき配置した画像を生成する、
付記1~3のいずれか1項に記載の分析装置。
(付記6)
前記画像生成手段は、前記表示画像として、前記参加者に対応する前記要素図形を、前記区分データごとにグループ分けした状態で配置した画像を生成する、
付記5に記載の分析装置。
(付記7)
前記画像生成手段は、前記表示画像として、前記参加者に対応する前記要素図形を、前記区分データごとに異なる形状をもつ要素図形として配置した画像を生成する、
付記5または6に記載の分析装置。
(付記8)
前記画像生成手段は、前記表示画像として、前記オンライン会議に参加した複数の前記参加者のそれぞれについて、前記分析データに紐付けられた色調情報により表す前記要素図形を前記参加者の顔画像またはアイコン画像とともに配置した画像を生成する、
付記1~7のいずれか1項に記載の分析装置。
(付記9)
前記個別感情データは、対象となる前記オンライン会議の属性を示す属性データを含み、
前記分析データ生成手段は、前記オンライン会議についての前記属性データに応じて前記分析データを生成する、
付記1~8のいずれか1項に記載の分析装置。
(付記10)
前記個別感情データは、第1期間における統計値を示すデータである、
付記1~9のいずれか1項に記載の分析装置。
(付記11)
前記分析データ生成手段は、前記参加者ごとに、前記感情データ取得手段で取得された前記個別感情データのうち第2期間についての前記個別感情データに基づいて、前記分析データを生成する、
付記1~10のいずれか1項に記載の分析装置。
(付記12)
時刻データを伴う前記オンライン会議に関する会議データを取得する会議データ取得手段と、
前記会議データに基づいて前記オンライン会議に対してチャプタを生成するチャプタ生成手段と、
をさらに備え、
前記第2期間は、前記チャプタ生成手段で生成された1つのチャプタまたは連続する複数のチャプタでなるチャプタ群についての、開始時点から終了時点までの期間である、
付記11に記載の分析装置。
(付記13)
前記会議データは、前記オンライン会議における画面共有に関するデータを含み、
前記チャプタ生成手段は、前記画面共有に関するデータに基づいて前記チャプタを生成する、
付記12に記載の分析装置。
(付記14)
前記チャプタ生成手段は、前記画面共有の切替えタイミングに応じて前記チャプタを生成する、
付記13に記載の分析装置。
(付記15)
前記チャプタ生成手段は、前記画面共有にかかる共有画面のオーナーの切替え時刻に応じて前記チャプタを生成する、
付記13または14に記載の分析装置。
(付記16)
前記オンライン会議は、間隔をおいて開催された複数回のオンライン会議で構成される、
付記1~15のいずれか1項に記載の分析装置。
(付記17)
付記1~16のいずれか一項に記載の分析装置と、
前記個別感情データを生成して前記分析装置に前記個別感情データを提供する感情データ生成装置と、
を備える分析システム。
(付記18)
コンピュータが、
オンライン会議における参加者の会議中の顔画像データに基づき生成された、前記参加者ごとの個別感情データを取得し、
前記参加者ごとに、前記個別感情データに基づいて前記オンライン会議における感情の度合いを示す分析データを生成し、
前記参加者ごとの前記分析データのそれぞれを、対応する色調情報と紐付けて記憶し、
前記オンライン会議の状態を示す表示画像として、前記オンライン会議に参加した複数の前記参加者のそれぞれについて、前記分析データに紐付けられた色調情報により表す要素図形を配置した画像を生成し、
前記表示画像を出力する、
分析方法。
(付記19)
オンライン会議における参加者の会議中の顔画像データに基づき生成された、前記参加者ごとの個別感情データを取得する処理、
前記参加者ごとに、前記個別感情データに基づいて前記オンライン会議における感情の度合いを示す分析データを生成する処理、
前記参加者ごとの前記分析データのそれぞれを、対応する色調情報と紐付けて記憶する処理、
前記オンライン会議の状態を示す表示画像として、前記オンライン会議に参加した複数の前記参加者のそれぞれについて、前記分析データに紐付けられた色調情報により表す要素図形を配置した画像を生成する処理、および、
前記表示画像を出力する処理を、
コンピュータに実行させる分析プログラムが格納された非一時的なコンピュータ可読媒体。
10 分析システム
90 会議端末群
100 分析装置
111 感情データ取得部
112 分析データ生成部
113 記憶部
114 画像生成部
115 出力部
116 会議データ取得部
117 チャプタ生成部
200 分析装置
300 感情データ生成装置
311 参加者データ取得部
312 感情データ生成部
313 感情データ出力部
400 会議運営装置
900A、900B、900N 会議端末
901 会議画像
902、903、904 表示画像
905a、905b、905c 顔画像
906a、906b、906c 表示枠
990 ユーザ端末
N ネットワーク
90 会議端末群
100 分析装置
111 感情データ取得部
112 分析データ生成部
113 記憶部
114 画像生成部
115 出力部
116 会議データ取得部
117 チャプタ生成部
200 分析装置
300 感情データ生成装置
311 参加者データ取得部
312 感情データ生成部
313 感情データ出力部
400 会議運営装置
900A、900B、900N 会議端末
901 会議画像
902、903、904 表示画像
905a、905b、905c 顔画像
906a、906b、906c 表示枠
990 ユーザ端末
N ネットワーク
Claims (19)
- オンライン会議における参加者の会議中の顔画像データに基づき生成された、前記参加者ごとの個別感情データを取得する感情データ取得手段と、
前記参加者ごとに、前記個別感情データに基づいて前記オンライン会議における感情の度合いを示す分析データを生成する分析データ生成手段と、
前記参加者ごとの前記分析データのそれぞれを、対応する色調情報と紐付けて記憶する記憶手段と、
前記オンライン会議の状態を示す表示画像として、前記オンライン会議に参加した複数の前記参加者のそれぞれについて、前記分析データに紐付けられた色調情報により表す要素図形を配置した画像を生成する画像生成手段と、
前記表示画像を出力する出力手段と、
を備える分析装置。 - 前記個別感情データは、複数種類の感情の状態をそれぞれ数値で示したものである、
請求項1に記載の分析装置。 - 前記記憶手段は、前記分析データに対応する色調情報として、前記複数種類の感情の状態についての数値の間で有意性または優位性を有する感情に対応付けられた色調情報を、前記分析データに紐付けて記憶する、
請求項2に記載の分析装置。 - 前記画像生成手段は、前記表示画像として、前記参加者に対応する前記要素図形を、前記色調情報ごとにグループ分けした状態で配置した画像を生成する、
請求項1~3のいずれか1項に記載の分析装置。 - 前記個別感情データは、前記参加者が属する区分データを含み、
前記画像生成手段は、前記表示画像として、前記参加者に対応する前記要素図形を、前記区分データに基づき配置した画像を生成する、
請求項1~3のいずれか1項に記載の分析装置。 - 前記画像生成手段は、前記表示画像として、前記参加者に対応する前記要素図形を、前記区分データごとにグループ分けした状態で配置した画像を生成する、
請求項5に記載の分析装置。 - 前記画像生成手段は、前記表示画像として、前記参加者に対応する前記要素図形を、前記区分データごとに異なる形状をもつ要素図形として配置した画像を生成する、
請求項5または6に記載の分析装置。 - 前記画像生成手段は、前記表示画像として、前記オンライン会議に参加した複数の前記参加者のそれぞれについて、前記分析データに紐付けられた色調情報により表す前記要素図形を前記参加者の顔画像またはアイコン画像とともに配置した画像を生成する、
請求項1~7のいずれか1項に記載の分析装置。 - 前記個別感情データは、対象となる前記オンライン会議の属性を示す属性データを含み、
前記分析データ生成手段は、前記オンライン会議についての前記属性データに応じて前記分析データを生成する、
請求項1~8のいずれか1項に記載の分析装置。 - 前記個別感情データは、第1期間における統計値を示すデータである、
請求項1~9のいずれか1項に記載の分析装置。 - 前記分析データ生成手段は、前記参加者ごとに、前記感情データ取得手段で取得された前記個別感情データのうち第2期間についての前記個別感情データに基づいて、前記分析データを生成する、
請求項1~10のいずれか1項に記載の分析装置。 - 時刻データを伴う前記オンライン会議に関する会議データを取得する会議データ取得手段と、
前記会議データに基づいて前記オンライン会議に対してチャプタを生成するチャプタ生成手段と、
をさらに備え、
前記第2期間は、前記チャプタ生成手段で生成された1つのチャプタまたは連続する複数のチャプタでなるチャプタ群についての、開始時点から終了時点までの期間である、
請求項11に記載の分析装置。 - 前記会議データは、前記オンライン会議における画面共有に関するデータを含み、
前記チャプタ生成手段は、前記画面共有に関するデータに基づいて前記チャプタを生成する、
請求項12に記載の分析装置。 - 前記チャプタ生成手段は、前記画面共有の切替えタイミングに応じて前記チャプタを生成する、
請求項13に記載の分析装置。 - 前記チャプタ生成手段は、前記画面共有にかかる共有画面のオーナーの切替え時刻に応じて前記チャプタを生成する、
請求項13または14に記載の分析装置。 - 前記オンライン会議は、間隔をおいて開催された複数回のオンライン会議で構成される、
請求項1~15のいずれか1項に記載の分析装置。 - 請求項1~16のいずれか一項に記載の分析装置と、
前記個別感情データを生成して前記分析装置に前記個別感情データを提供する感情データ生成装置と、
を備える分析システム。 - コンピュータが、
オンライン会議における参加者の会議中の顔画像データに基づき生成された、前記参加者ごとの個別感情データを取得し、
前記参加者ごとに、前記個別感情データに基づいて前記オンライン会議における感情の度合いを示す分析データを生成し、
前記参加者ごとの前記分析データのそれぞれを、対応する色調情報と紐付けて記憶し、
前記オンライン会議の状態を示す表示画像として、前記オンライン会議に参加した複数の前記参加者のそれぞれについて、前記分析データに紐付けられた色調情報により表す要素図形を配置した画像を生成し、
前記表示画像を出力する、
分析方法。 - オンライン会議における参加者の会議中の顔画像データに基づき生成された、前記参加者ごとの個別感情データを取得する処理、
前記参加者ごとに、前記個別感情データに基づいて前記オンライン会議における感情の度合いを示す分析データを生成する処理、
前記参加者ごとの前記分析データのそれぞれを、対応する色調情報と紐付けて記憶する処理、
前記オンライン会議の状態を示す表示画像として、前記オンライン会議に参加した複数の前記参加者のそれぞれについて、前記分析データに紐付けられた色調情報により表す要素図形を配置した画像を生成する処理、および、
前記表示画像を出力する処理を、
コンピュータに実行させる分析プログラムが格納された非一時的なコンピュータ可読媒体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/038531 WO2022079777A1 (ja) | 2020-10-12 | 2020-10-12 | 分析装置、分析システム、分析方法、およびプログラムが格納された非一時的なコンピュータ可読媒体 |
JP2022557246A JP7468690B2 (ja) | 2020-10-12 | 2020-10-12 | 分析装置、分析方法、および分析プログラム |
US18/029,589 US20230367535A1 (en) | 2020-10-12 | 2020-10-12 | Analysis apparatus, analysis system, analysis method, and non-transitory computer readable medium storing program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/038531 WO2022079777A1 (ja) | 2020-10-12 | 2020-10-12 | 分析装置、分析システム、分析方法、およびプログラムが格納された非一時的なコンピュータ可読媒体 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022079777A1 true WO2022079777A1 (ja) | 2022-04-21 |
Family
ID=81207877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/038531 WO2022079777A1 (ja) | 2020-10-12 | 2020-10-12 | 分析装置、分析システム、分析方法、およびプログラムが格納された非一時的なコンピュータ可読媒体 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230367535A1 (ja) |
JP (1) | JP7468690B2 (ja) |
WO (1) | WO2022079777A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230306782A1 (en) * | 2022-03-24 | 2023-09-28 | Jpmorgan Chase Bank, N.A. | Method and system for detecting online meeting engagement |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014511620A (ja) * | 2011-02-27 | 2014-05-15 | アフェクティヴァ,インコーポレイテッド | 感情に基づく映像推薦 |
US20170098122A1 (en) * | 2010-06-07 | 2017-04-06 | Affectiva, Inc. | Analysis of image content with associated manipulation of expression presentation |
JP2019061594A (ja) * | 2017-09-28 | 2019-04-18 | 株式会社野村総合研究所 | 会議支援システムおよび会議支援プログラム |
JP2020048149A (ja) * | 2018-09-21 | 2020-03-26 | ヤマハ株式会社 | 画像処理装置、カメラ装置、および画像処理方法 |
-
2020
- 2020-10-12 US US18/029,589 patent/US20230367535A1/en active Pending
- 2020-10-12 JP JP2022557246A patent/JP7468690B2/ja active Active
- 2020-10-12 WO PCT/JP2020/038531 patent/WO2022079777A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170098122A1 (en) * | 2010-06-07 | 2017-04-06 | Affectiva, Inc. | Analysis of image content with associated manipulation of expression presentation |
JP2014511620A (ja) * | 2011-02-27 | 2014-05-15 | アフェクティヴァ,インコーポレイテッド | 感情に基づく映像推薦 |
JP2019061594A (ja) * | 2017-09-28 | 2019-04-18 | 株式会社野村総合研究所 | 会議支援システムおよび会議支援プログラム |
JP2020048149A (ja) * | 2018-09-21 | 2020-03-26 | ヤマハ株式会社 | 画像処理装置、カメラ装置、および画像処理方法 |
Also Published As
Publication number | Publication date |
---|---|
US20230367535A1 (en) | 2023-11-16 |
JPWO2022079777A1 (ja) | 2022-04-21 |
JP7468690B2 (ja) | 2024-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10706873B2 (en) | Real-time speaker state analytics platform | |
WO2022079777A1 (ja) | 分析装置、分析システム、分析方法、およびプログラムが格納された非一時的なコンピュータ可読媒体 | |
US20220198293A1 (en) | Systems and methods for evaluation of interpersonal interactions to predict real world performance | |
WO2022079768A1 (ja) | 分析装置、システム、方法及びプログラムが格納された非一時的なコンピュータ可読媒体 | |
WO2019142230A1 (ja) | 音声分析装置、音声分析方法、音声分析プログラム及び音声分析システム | |
US20230093298A1 (en) | Voice conference apparatus, voice conference system and voice conference method | |
US20240105072A1 (en) | Analysis apparatus, analysis method, and non-transitory computer-readable medium | |
WO2022079774A1 (ja) | 分析装置、分析システム、分析方法、およびプログラムが格納された非一時的なコンピュータ可読媒体 | |
WO2022079773A1 (ja) | 分析装置、システム、方法及びプログラムが格納された非一時的なコンピュータ可読媒体 | |
WO2022079767A1 (ja) | 分析装置、システム、方法及びプログラムが格納された非一時的なコンピュータ可読媒体 | |
JP6589040B1 (ja) | 音声分析装置、音声分析方法、音声分析プログラム及び音声分析システム | |
JP2022056108A (ja) | 情報処理装置、情報処理方法、情報処理プログラム及び情報処理システム | |
CN112908362A (zh) | 基于采集机器人终端的系统、机器人终端、方法及介质 | |
CN111698452A (zh) | 在线群体状态反馈方法、系统及装置 | |
JP2020173415A (ja) | 教材提示システム及び教材提示方法 | |
JP7313518B1 (ja) | 評価方法、評価装置、および、評価プログラム | |
US20240029474A1 (en) | Person evaluation information generation method | |
US12107699B2 (en) | Systems and methods for creation and application of interaction analytics | |
JP7465040B1 (ja) | コミュニケーション可視化システム | |
US20230397868A1 (en) | Control Method, Conference System, and Non-Transitory Recording Medium | |
JP7427274B2 (ja) | 音声分析装置、音声分析方法、音声分析プログラム及び音声分析システム | |
JP6589041B1 (ja) | 音声分析装置、音声分析方法、音声分析プログラム及び音声分析システム | |
JP2019159878A (ja) | 応答装置、応答方法、応答プログラム及び応答システム | |
WO2022145038A1 (ja) | ビデオミーティング評価端末、ビデオミーティング評価システム及びビデオミーティング評価プログラム | |
WO2022145039A1 (ja) | ビデオミーティング評価端末、ビデオミーティング評価システム及びビデオミーティング評価プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20957606 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022557246 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20957606 Country of ref document: EP Kind code of ref document: A1 |