WO2022079765A1 - 光学素子、撮像素子及び撮像装置 - Google Patents

光学素子、撮像素子及び撮像装置 Download PDF

Info

Publication number
WO2022079765A1
WO2022079765A1 PCT/JP2020/038499 JP2020038499W WO2022079765A1 WO 2022079765 A1 WO2022079765 A1 WO 2022079765A1 JP 2020038499 W JP2020038499 W JP 2020038499W WO 2022079765 A1 WO2022079765 A1 WO 2022079765A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
light
columnar structures
columnar structure
photoelectric conversion
Prior art date
Application number
PCT/JP2020/038499
Other languages
English (en)
French (fr)
Inventor
将司 宮田
成 根本
光雅 中島
俊和 橋本
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to EP20957594.3A priority Critical patent/EP4227715A1/en
Priority to US18/031,157 priority patent/US20230378211A1/en
Priority to PCT/JP2020/038499 priority patent/WO2022079765A1/ja
Priority to CN202080106082.1A priority patent/CN116368406A/zh
Priority to JP2022557237A priority patent/JPWO2022079765A1/ja
Publication of WO2022079765A1 publication Critical patent/WO2022079765A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors

Definitions

  • the present invention relates to an optical element, an image pickup device, and an image pickup device.
  • a general image pickup device uses a lens optical system and a two-dimensional image pickup element such as a CCD (Charge Coupled Device) sensor or a CMOS (Complementary Metal Oxide Semiconductor) sensor to provide light intensity information and color information from an image pickup target. Acquires a two-dimensional image consisting of.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • 25 and 26 are plan views of the on-chip lens. As shown in FIGS. 25 and 26, an on-chip lens 220 or an on-chip lens 320 is formed on each of the pixels 200R, 200G, and 200B of the pixel array 210, respectively. However, there are gaps 220E, 320E, etc. between the on-chip lenses 220 and between the on-chip lenses 320. Since the light incident on the outside of the lens aperture region such as the gap 220E and 320E between the lenses cannot be effectively focused on the photoelectric conversion element, the conventional on-chip lenses 220 and 320 cannot receive all the incident light. Light receiving efficiency is limited.
  • the present invention has been made in view of the above, and an object of the present invention is to provide an optical element, an image pickup device, and an image pickup device capable of improving the light receiving efficiency as compared with the conventional one.
  • the image pickup device is characterized by having the above-mentioned optical element and a plurality of pixels each including a photoelectric conversion element.
  • the image pickup device is characterized by having the above-mentioned image pickup element and a signal processing unit that processes an electric signal output by the image pickup element and generates an image.
  • FIG. 1 is a side view showing a schematic configuration of an image pickup apparatus according to an embodiment.
  • FIG. 2 is a diagram schematically showing a part of a cross section of a pixel array and a polarization wavelength separation lens array of an image pickup device according to an embodiment.
  • FIG. 3 is a diagram schematically showing a part of a cross section of a pixel array and an optical element array in the central portion of the image pickup device according to the embodiment.
  • FIG. 4 is a diagram schematically showing a part of a cross section of a pixel array and an optical element array in the outer peripheral portion of the image pickup device according to the embodiment.
  • FIG. 5 is a top view of the optical element array in the central portion of the image pickup element according to the embodiment.
  • FIG. 15 is a diagram showing the light collection intensity of the optical element unit and its wavelength dependence.
  • FIG. 16 is a diagram showing the light collection intensity of the optical element unit and its wavelength dependence.
  • FIG. 17 is a diagram showing the light collection intensity of the optical element unit and its wavelength dependence.
  • FIG. 24 is a diagram schematically showing another example of a part of the cross section of the pixel array and the optical element array in the image pickup device according to the embodiment.
  • FIG. 25 is a plan view of the on-chip lens.
  • FIG. 26 is a plan view of the on-chip lens.
  • FIG. 1 is a side view showing a schematic configuration of an image pickup apparatus according to an embodiment.
  • the image pickup device 10 includes a lens optical system 11, an image pickup element 12, and a signal processing unit 13.
  • the image pickup element 12 has a photoelectric conversion element such as a CCD or CMOS.
  • the signal processing unit 13 processes the photoelectric conversion signal output from the image pickup device 12 to generate an image signal.
  • the lens optical system 11 is composed of a lens group composed of a plurality of lenses arranged along an optical axis in order to correct various optical aberrations.
  • the drawing is simplified to form a single lens. Shows.
  • the signal processing unit 13 has an image signal output for transmitting the generated image signal to the outside.
  • the image pickup apparatus 10 may include known components such as an optical filter for cutting infrared light, an electronic shutter, a viewfinder, a power supply (battery), and a flashlight, but the description thereof is particularly useful for understanding the present invention. Omitted because it is not necessary. Further, the above configuration is merely an example, and in the embodiment, known elements can be appropriately combined and used as the components excluding the lens optical system 11, the image pickup device 12, and the signal processing unit 13.
  • FIG. 2 is a diagram schematically showing a cross section of a main part of the lens optical system 11 and the image pickup device 12 according to the embodiment.
  • a part of the image pickup device 12 will be described as the image pickup device 100.
  • the image pickup element 100 has an optical element array (optical element) having an optical element composed of a plurality of columnar structures for guiding incident light to the photoelectric conversion element of the pixel array formed on the entire surface of the color filter. Further, in the image sensor 100, as shown in FIG.
  • the columnar structure is set to a size that gives phase characteristics for guiding to the photoelectric conversion element directly underneath according to the incident angle of the incident light.
  • FIG. 3 is a diagram schematically showing a part of a cross section of a pixel array and an optical element array in the central portion of the image pickup device according to the embodiment.
  • FIG. 4 is a diagram schematically showing a part of a cross section of a pixel array and an optical element array in the outer peripheral portion of the image pickup device according to the embodiment.
  • FIG. 5 is a top view of the optical element array in the central portion of the image pickup element according to the embodiment.
  • the image pickup device 100 has a pixel array 110 and an optical element array 120 arranged to face the pixel array 110.
  • the optical element array 120 is arranged on the side where the light from the lens optical system 11 is incident.
  • the optical element array 120 is formed on the upper surface of the transparent layer 150 formed on the pixel array 110.
  • a color filter 170 corresponding to each pixel is provided on the pixel array 110.
  • the pixel array 110 has a wiring layer 180 and pixels 130 including photoelectric conversion elements arranged in a two-dimensional array.
  • the pixel 130 of the pixel unit 140L receives G light
  • the pixel 130 of the pixel unit 140R receives R light.
  • optical elements composed of a plurality of columnar structures 160 that guide incident light to the photoelectric conversion element of the corresponding pixel 130 directly below are arranged in a two-dimensional array.
  • FIG. 5 shows a case where the wavelength regions separated by the color filter 170 are red (R), green (G), and blue (B).
  • the R pixel unit that receives R light, the two G pixel units that receive G light, and the B pixel unit that receives B light are located directly below the pixel array 110, respectively.
  • Optical element unit 120R (optical element) corresponding to the R pixel unit, two optical element units 120G (optical element) corresponding to the G pixel unit, and optical element unit 120B (optical element) corresponding to the B pixel unit arranged in ) Is formed as a set on the two-dimensional array.
  • the plurality of columnar structures 160 are formed by using a material having a refractive index higher than that of the surrounding material (transparent layer 150, air). As a result, the columnar structure 160 strongly traps light inside the columnar structure and prevents optical coupling with the adjacent columnar structure.
  • the plurality of columnar structures 160 are formed at the same height when viewed from the side.
  • the plurality of columnar structures 160 are formed on the entire surface of the optical element array 120 at intervals shorter than the wavelength of the incident light.
  • a plurality of columnar structures 160 are formed in a grid pattern when viewed in a plan view.
  • the plurality of columnar structures 160 are prisms.
  • the example of FIG. 5 is an example, and the columnar structure may adopt a structure that is subject to four rotations such as a hollow square, a circle, a hollow circle, or a cross when viewed in a plan view. ..
  • the plurality of columnar structures 160 have a phase characteristic for guiding the incident light to the photoelectric conversion element of the corresponding pixel 130 immediately below, depending on the incident angle of the incident light of each columnar structure when viewed in a plan view. It is formed in each width w. Each of the plurality of columnar structures 160 gives an amount of optical phase delay according to the width of the columnar structure 160 to the incident light when viewed in a plan view.
  • each of the plurality of columnar structures 160 constituting the optical element units 120R, 120G, 120B emits incident light to the corresponding R pixel unit, G pixel unit, and B pixel unit. It has a width that gives an optical phase delay amount distribution for guiding to each photoelectric conversion element.
  • the width of each of the plurality of columnar structures 160 forming the optical element units 120R, 120G, 120B when viewed in plan is the incident light according to the incident angle of the incident light.
  • the optical phase delay amount distribution is an optical phase delay amount for condensing light.
  • the image sensor 100 realizes a lens function by forming a columnar structure 160 having the same height and gradually changing the width on the entire surface of the optical element array 120. Since each columnar structure 160 behaves like a columnar optical waveguide, the image pickup element 100 changes the effective refractive index of the columnar structure 160 by changing the width of the columnar structure 160 to transmit light. The phase of can be freely controlled.
  • each columnar structure 160 behaves as an optical waveguide of a sub-wavelength size, and since there is almost no optical coupling with the adjacent columnar structure 160 due to light confinement, the width of the columnar structure 160 when viewed in a plan view.
  • w for each columnar structure 160, it is possible to provide different optical characteristics (for example, phase delay characteristics) for each of the plurality of columnar structures 160.
  • the lens function can be imparted to the columnar structure 160.
  • Non-Patent Document 1 describes that a structure made of a low refraction material such as SiO 2 functions as a lens.
  • Non-Patent Document 1 describes an approximation that when the structure is very small compared to the wavelength, the effective refractive index of the structure can be expressed by an approximately average value between the refractive index of the structural lens and the refractive index of the surrounding material. ..
  • the difference between the refractive index of the structure and the refractive index of the surroundings is large and the size of the structure is about the sub-wavelength, light is confined inside the structure and excites the optical waveguide mode and resonance mode. This approximation is no longer applicable. Therefore, the structure described in Non-Patent Document 1 is limited to a combination of materials having a small difference in refractive index, in which the material is SiO 2 and the surrounding material is air or the like, so that the aspect ratio of the structure becomes large.
  • each columnar structure 160 is formed by using a high refractive index material such as SiN or TiO 2 . Therefore, the height of the minimum columnar structure 160 required to realize the phase change amount of 0 to 2 ⁇ is higher than that of the structure made of a low refraction material such as SiO 2 (see Non-Patent Document 1). low. Therefore, the image sensor 100 can realize the lens function with the columnar structure 160 having a low aspect ratio, which has a relatively small minimum structure height required for phase control of 0 to 2 ⁇ and is easy to manufacture.
  • each columnar structure 160 has a four-fold rotationally symmetric structure such as a square when viewed in a plane, so that the characteristics are independent of polarization. It is clear that the structure described in Non-Patent Document 1 has a polarization dependence on the effective refractive index according to the theoretical formula.
  • Non-Patent Document 1 describes a structure having a curved surface and a step.
  • each columnar structure 160 in the present embodiment is a square columnar binary pattern without steps. Therefore, since the image pickup element 100 can exclude the curved surface and the step from the cross section of the columnar structure, it is relatively easy to create the columnar structure 160 as compared with the structure described in Non-Patent Document 1.
  • the image pickup element 100 can receive all the incident light incident and maximize the lens aperture. Can be done.
  • each columnar structure 160 is formed in a width w having a phase characteristic that leads to a photoelectric conversion element of the pixel 130 directly under the columnar structure 160 according to the incident angle of the incident light of each columnar structure 160 when viewed in a plan view.
  • the shape pattern of the columnar structure 160 when viewed in a plan view is optimized according to the incident angle ⁇ of the light incident on each columnar structure 160.
  • the columnar structure 160 is formed in both the outer peripheral portion (see FIG. 4) where the light is incident at a large incident angle ⁇ and the central portion (see FIG. 3) where the light is vertically incident.
  • the light can be focused on the photoelectric conversion element of the pixel 130 directly below. Therefore, the image pickup device 100 can concentrate a large amount of light on the photoelectric conversion element directly underneath, and can generate an image signal having uniform brightness in the entire image pickup device 100.
  • the phase delay amount ⁇ due to the columnar structure 160 is ⁇ for the wavelength of light in vacuum, h for the height of the columnar structure 160, n eff of the effective refractive index of the columnar structure 160, and n 0 for the refractive index of the surrounding material. Then, it is expressed by the equation (1).
  • the formula (1) is applied to both the columnar structure 160 in the image sensor 100 and the structure described in Non-Patent Document 1 (hereinafter referred to as an effective medium approximate structure).
  • the height of the structure needs to be set to the equation (2).
  • FIG. 6 is a diagram showing the minimum structural height and the maximum aspect ratio of the medium-sized approximate structure in the prior art and the columnar structure 160 in the embodiment.
  • the maximum aspect ratio is obtained with the minimum structural width as 100 nm when the wavelength of light is 635 nm.
  • the larger n 1 is desirable from the viewpoint of light confinement, so that the value of n 1 ⁇ n 0 is larger than that of the effective medium approximation structure.
  • the required structural height is relatively lower than that of the effective medium approximation structure, and as shown in FIG. 6, it is generally one wavelength or less.
  • the aspect ratio of the columnar structure 160 is lower than that of the effective medium approximation structure.
  • FIG. 7 is a side view of the columnar structure 160.
  • FIG. 8 is a plan view of the columnar structure 160.
  • the columnar structure 160 is formed on the upper surface of the transparent layer 150u formed of quartz.
  • the width w of the columnar structure 160 is set corresponding to the phase to be controlled of 0 to 2 ⁇ .
  • FIG. 9 is a diagram showing the relationship between the width w of the columnar structure 160 and the light transmittance.
  • FIG. 10 is a diagram showing the relationship between the width w of the columnar structure 160 and the phase characteristics of light of the columnar structure 160.
  • the phase distribution of the columnar structure 160 that functions as a lens is designed so as to focus on the center of the pixel 130 below the optical element array 120 according to the incident angle. Then, in the image sensor 100, the width w of the columnar structure 160 is set for each columnar structure 160 with reference to the phase characteristics of FIG. 10 so as to obtain the designed phase distribution, which is ideal for the design target. Achieve a phase distribution.
  • Size of one photoelectric conversion element lens area: 3.2 ⁇ m ⁇ 3.2 ⁇ m
  • FIG. 11 is a diagram illustrating the definition of the incident angle. As shown in FIG. 11, a case where light is incident at an incident angle of ( ⁇ , ⁇ ) will be described.
  • the phase distribution ⁇ of the lens that focuses light at a certain incident angle ( ⁇ , ⁇ ) at the point directly below the center of the lens (columnar structure 160) at the focal length f is expressed by the following equation (3). ..
  • is converted so that it falls within the range of 0 to 2 ⁇ .
  • is ⁇ 0.5 ⁇
  • is converted to 1.5 ⁇
  • is 2.5 ⁇
  • the phase distribution of the design target of the lens is the phase distribution of the lens focused on the light at a certain incident angle at the point directly below the center of the lens at the focal length f.
  • (2) of FIG. 12, (2) of FIG. 13, and (2) of FIG. 14 are columnar columns capable of realizing the phase distributions of (1) of FIG. 12, (1) of FIG. 13, and (1) of FIG. 14, respectively.
  • It is a plan view of the structure 160, and is a shape pattern of the columnar structure 160 designed per pixel.
  • the columnar structure 160 is a prism having a square bottom surface.
  • the width w of the columnar structure 160 is based on the relationship between the width w of the columnar structure 160 and the phase characteristic of the light of the columnar structure 160 shown in FIG. Of the phase distributions 1) and 14 (1) in FIG. 14, the width is set so that the phase at the corresponding position can be realized.
  • each column of the optical element units 120R, 120G, 120B corresponds to the design wavelength of the photoelectric conversion element of the corresponding pixel unit directly underneath. Design the pattern of the structure 160.
  • the width w of each of the plurality of columnar structures 160 forming the optical element unit when viewed in plan is the light in the wavelength range received by the photoelectric conversion element corresponding to the optical element unit. The width is set to give an optical phase delay amount distribution for the optical element unit to guide to the corresponding photoelectric conversion element. Therefore, the wavelength dependence of the light collection intensity by the optical element array 120 will be described.
  • FIGS. 15 to 17 are diagrams showing the light collection intensity of the optical element unit and its wavelength dependence.
  • 15 (2), 16 (2), 17 (2) are the optical element units 120-4 of FIG. 15 (1), FIG. 16 (1), and FIG. 17 (1). It is a figure which shows the light-collecting intensity by 120-5, 120-6.
  • the light collection intensity is the total intensity within the light collection spot width ( ⁇ / NA, NA is the numerical aperture of the lens) on the photoelectric conversion element surface of the pixel 130.
  • 15 (3), 16 (3), and 17 (3) are diagrams showing the wavelength dependence of the light collection intensity by the optical element units 120-4, 120-5, 120-6.
  • any of the optical element units 120-4, 120-5, 120-6 96% or more of the light is emitted in any of the optical element units 120-4, 120-5, 120-6. It can be seen that the structure is transmitted and light can be received by the pixel 130. Further, the light-collecting intensity of the optical element units 120-4, 120-5, 120-6 shows the maximum light-collecting intensity around the design wavelength.
  • the columnar structure 160 such as the optical element units 120-4, 120-5, 120-6 corresponds to each color band (transmission band of the color filter of R, G, B).
  • the design wavelength of each pixel 130 is determined according to the color filter on the pixel 130, and the optical element units 120-4, 120-5, 120-6 are matched with the design wavelength of the pixel 130 directly below. , Each should be accumulated.
  • each columnar structure 160 of the optical element unit is designed according to the incident angle of the incident light.
  • the width w of each of the plurality of columnar structures 160 forming the optical element unit when viewed in plan is the photoelectric light directly under the optical element unit, depending on the incident angle of the incident light.
  • the width is set to give an optical phase delay amount distribution for guiding to the conversion element. Therefore, a design example of the optical element unit corresponding to the incident angle of the incident light on the optical element array 120 will be described.
  • 18 (2), 19 (2), 20 (2) are the optical element units 120-7, FIG. 18 (1), FIG. 19 (1), and FIG. 20 (1). It is a figure which shows the light-collecting intensity by 120-8, 120-9. 18 (3), 19 (3), and 20 (3) are diagrams showing the incident angle dependence of the light-collecting intensity by the optical element units 120-7, 120-8, and 120-9. ..
  • the maximum is around the design incident angle. Shows the light-collecting intensity of.
  • 21 (2), 22 (2), and 23 (2) are the optical element units 120-10 of FIG. 21 (1), FIG. 22 (1), and FIG. 23 (1). It is a figure which shows the light-collecting intensity by 120-111, 120-12.
  • 21 (3), 22 (3), and 23 (3) are diagrams showing the incident angle dependence of the light-collecting intensity by the optical element units 120-10, 120-11, 120-12. ..
  • the maximum is around the design incident angle. Shows the light-collecting intensity of.
  • the above-mentioned optical element units 120-7 to 120-12 are arranged according to the incident angle ( ⁇ , ⁇ ) of the incident light, so that the optical element units 120-7 to 120-12 are collected with high intensity on the photoelectric conversion element of the pixel 130 directly below. Light is possible.
  • the plurality of columnar structures have a width having a phase characteristic for guiding to the photoelectric conversion element directly underneath, depending on the incident angle of the incident light of each columnar structure when viewed in a plan view. As well as being formed, they are formed at the same height when viewed from the side.
  • the lens characteristics corresponding to the incident angle can be realized for each pixel 130 by the plurality of columnar structures 160, it is possible to generate an image signal having uniform brightness in the entire image pickup element 100.
  • a plurality of columnar structures 160 having a square columnar binary pattern made of a material having a refractive index higher than that of the surrounding material are used as a lens. Therefore, the plurality of columnar structures 160 used by the image pickup element 100 as lenses have a lower aspect ratio and a simpler configuration than the structures described in Non-Patent Document 1, and thus are easy to create. be.
  • the optical element unit is not limited to the above configuration, and may take various forms in terms of number, spacing, structural shape, and arrangement pattern. Further, the columnar structures 160 may be connected to each other, or may be embedded in a transparent material.
  • FIG. 24 is a diagram schematically showing another example of a part of the cross section of the pixel array and the optical element array in the image pickup device according to the embodiment. As shown in the image pickup device 100A of FIG. 24, the optical element array 120A is formed on the bottom surface of the independent transparent substrate 190. As described above, the plurality of columnar structures 160 may be formed inside the transparent layer 150A (for example, air).
  • the present invention is not limited thereto.
  • the material of the columnar structure 160 may be SiC, SiC, TiO 2 , GaN or the like. Is suitable because of its high refractive index and low absorption loss.
  • a polyimide such as fluorinated polyimide, BCB (benzocyclobutene), a photocurable resin, a UV epoxy resin, an acrylic resin such as PMMA, etc.
  • a polyimide such as fluorinated polyimide, BCB (benzocyclobutene), a photocurable resin, a UV epoxy resin, an acrylic resin such as PMMA, etc.
  • the material include polymers such as general resists.
  • the present invention is not limited thereto.
  • the material of the transparent layers 150 and 150A has a refractive index lower than that of the material of the columnar structure 160 such as a general glass material, SiO 2 , and an air layer, and has a low loss with respect to the wavelength of incident light. It's enough.
  • the transparent layers 150 and 150A may be transparent layers having a laminated structure made of a plurality of materials.
  • the plurality of columnar structures 160 have a refraction such that they have a phase characteristic for guiding to the photoelectric conversion element directly underneath, depending on the incident angle of the incident light of each columnar structure. It may have a rate.
  • the lens characteristics corresponding to the incident angle and the wavelength range in the photoelectric conversion element can be obtained for each pixel 130. It can also be realized.
  • the incident angle and photoelectric conversion are changed for each pixel 130. It is also possible to realize lens characteristics corresponding to the wavelength range of the element.
  • the optical element arrays 120 and 120A in the present embodiment are, for example, metasurfaces.
  • the metasurface is an element composed of a plurality of fine structures having a width equal to or less than the wavelength of light, and may be a two-dimensional structure or a three-dimensional structure.
  • a metasurface as an optical element array, it is possible to control the phase and light intensity according to the characteristics of light (wavelength, polarization, incident angle) simply by changing the parameters of the fine structure.
  • the metasurface has a three-dimensional structure, the above-mentioned degree of freedom in design increases.
  • Object 10 Image pickup device 11 Lens optical system 12, 100, 100A Image sensor 13
  • Signal processing unit 110 pixel array 120, 120A Optical element array 120R, 120G, 120B, 120-1 to 120-12
  • Columnar structure 170 Color filter 180 Wiring layer 190 Transparent substrate

Abstract

光学素子アレイ(120)は、光電変換素子を含む画素(130)を覆うための透明層(150)と、透明層(150)上または透明層(150)内において透明層(150)の面方向に配置され、入射光を、対応する前記光電変換素子に導く複数の柱状構造体(160)と、を有し、複数の柱状構造体(160)は、入射光の波長よりも短い間隔で、透明層(150)の全面に形成される。

Description

光学素子、撮像素子及び撮像装置
 本発明は、光学素子、撮像素子及び撮像装置に関する。
 一般的な撮像装置は、レンズ光学系と、CCD(Charge Coupled Device)センサやCMOS(Complementary Metal Oxide Semiconductor)センサなどの2次元撮像素子とを用いて、撮像対象からの光の強度情報と色情報からなる2次元画像を取得する。
 撮像装置では、光電変換素子を含む各画素上で入射光の色分離を行うため、2次元アレイ状に配列された光電変換素子を含む画素を有する画素アレイ上に、各画素に対応したカラーフィルタが設けられる。そして、撮像装置では、感度特性の向上のために、カラーフィルタ上にオンチップマイクロレンズ(以降、オンチップレンズとする。)を形成し、入射したオンチップレンズにより光電変換素子に集光させている。
特開2012-084608号公報
 図25及び図26は、オンチップレンズの平面図である。図25及び図26に示すように、画素アレイ210の各画素200R,200G,200B上には、オンチップレンズ220またはオンチップレンズ320がそれぞれ形成される。しかしながら、オンチップレンズ220間、オンチップレンズ320間には、隙間220E,320E等がある。このレンズ間の隙間220E,320E等のレンズ開口領域外に入射した光は光電変換素子に効果的に集光できないため、従来のオンチップレンズ220,320では、すべての入射光を受光できず、受光効率が制限される。
 本発明は、上記に鑑みてなされたものであって、従来と比して、受光効率を向上させることができる光学素子、撮像素子及び撮像装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る光学素子は、光電変換素子を含む画素を覆うための透明層と、透明層上または透明層内において透明層の面方向に配置され、入射光を、対応する光電変換素子に導く複数の柱状構造体と、を有し、複数の柱状構造体は、入射光の波長よりも短い間隔で、透明層の全面に形成されることを特徴とする。
 また、本発明に係る撮像素子は、上記記載の光学素子と、各々が光電変換素子を含む複数の画素と、を有することを特徴とする。
 また、本発明に係る撮像装置は、上記記載の撮像素子と、撮像素子が出力する電気信号を処理し、画像を生成する信号処理部と、を有することを特徴とする。
 本発明によれば、従来と比して、受光効率を向上させることができる撮像素子及び撮像装置を提供することができる。
図1は、実施の形態に係る撮像装置の概略構成を示した側面図である。 図2は、実施の形態に係る撮像素子の画素アレイ及び偏光波長分離レンズアレイの断面の一部を模式的に示す図である。 図3は、実施の形態に係る撮像素子の中央部における画素アレイ及び光学素子アレイの断面の一部を模式的に示す図である。 図4は、実施の形態に係る撮像素子の外周部における画素アレイ及び光学素子アレイの断面の一部を模式的に示す図である。 図5は、実施の形態に係る撮像素子の中央部における光学素子アレイの上面図である。 図6は、従来技術における有媒質近似構造体と実施の形態における柱状構造体との最小構造高さ及び最大アスペクト比を示す図である。 図7は、柱状構造体の側面図である。 図8は、柱状構造体の平面図である。 図9は、柱状構造体の幅と光の透過率との関係を示す図である。 図10は、柱状構造体の幅と、柱状構造体の光の位相特性との関係を示す図である。 図11は、入射角の定義を説明する図である。 図12は、θ=0°,φ=0°の入射角で光が入射した場合のレンズの設計目標の位相分布と、該位相分布を実現するレンズパターンを示す図である。 図13は、θ=45°,φ=0°の入射角で光が入射した場合のレンズの設計目標の位相分布と、該位相分布を実現するレンズパターンを示す図である。 図14は、θ=45°,φ=45°の入射角で光が入射した場合のレンズの設計目標の位相分布と、該位相分布を実現するレンズパターンを示す図である。 図15は、光学素子ユニットによる集光強度とその波長依存性を示す図である。 図16は、光学素子ユニットによる集光強度とその波長依存性を示す図である。 図17は、光学素子ユニットによる集光強度とその波長依存性を示す図である。 図18は、φ=0°の平行光(λ=520nm)入射時の光学素子ユニットによる集光強度と入射光の入射角度依存性を示す図である。 図19は、φ=0°の平行光(λ=520nm)入射時の光学素子ユニットによる集光強度と入射光の入射角度依存性を示す図である。 図20は、φ=0°の平行光(λ=520nm)入射時の光学素子ユニットによる集光強度と入射光の入射角度依存性を示す図である。 図21は、φ=45°の平行光(λ=520nm)入射時の光学素子ユニットによる集光強度と入射光の入射角度依存性を示す図である。 図22は、φ=45°の平行光(λ=520nm)入射時の光学素子ユニットによる集光強度と入射光の入射角度依存性を示す図である。 図23は、φ=45°の平行光(λ=520nm)入射時の光学素子ユニットによる集光強度と入射光の入射角度依存性を示す図である。 図24は、実施の形態に係る撮像素子における画素アレイ及び光学素子アレイの断面の一部の他の例を模式的に示す図である。 図25は、オンチップレンズの平面図である。 図26は、オンチップレンズの平面図である。
 以下、本発明を実施するための最良の形態を図面とともに詳細に説明する。なお、以下の説明において、各図は本発明の内容を理解でき得る程度に形状、大きさ、及び位置関係を概略的に示してあるに過ぎず、したがって、本発明は各図で例示された形状、大きさ、及び位置関係のみに限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。
[実施の形態]
[撮像装置]
 まず、本発明の実施の形態に係る撮像装置について説明する。図1は、実施の形態に係る撮像装置の概略構成を示した側面図である。
 図1に示すように、実施の形態に係る撮像装置10は、レンズ光学系11、撮像素子12及び信号処理部13を有する。撮像素子12は、CCDやCMOS等の光電変換素子を有する。信号処理部13は、撮像素子12から出力される光電変換信号を処理して画像信号を生成する。
 自然光や照明光等の光が物体1に照射され、物体1により透過/反射/散乱した光、または、物体1から発する光は、レンズ光学系11により撮像素子12上に光学像を形成する。一般に、レンズ光学系11は、様々な光学収差を補正するため、光軸に沿って並んだ複数のレンズからなるレンズ群により構成されるが、図1では図面を簡略化して単一のレンズとして示している。信号処理部13は、生成した画像信号を外部に送出する画像信号出力を有する。
 なお、撮像装置10は、赤外光カットの光学フィルタ、電子シャッタ、ビューファインダ、電源(電池)、フラッシュライトなどの公知の構成要素を備え得るが、それらの説明は、本発明の理解に特に必要でないため省略する。また、以上の構成はあくまでも一例であり、実施の形態では、レンズ光学系11、撮像素子12、信号処理部13を除く構成要素として、公知の要素を適切に組み合わせて用いることができる。
[撮像素子]
 続いて、実施の形態に係る撮像素子12の概略を説明する。図2は、実施の形態に係るレンズ光学系11と、撮像素子12の要部の断面を模式的に示す図である。図2以降では、撮像素子12の一部を、撮像素子100として説明する。撮像素子100は、カラーフィルタ上に、画素アレイの光電変換素子に入射光を導く複数の柱状構造体からなる光学素子を全面に形成した光学素子アレイ(光学素子)を有する。また、撮像素子100では、図2に示すように、レンズ光学系11から撮像素子100に入射する光の入射角度θが、中央部と外周部とで異なるため、光学素子アレイに形成した複数の柱状構造体を、入射光の入射角度に応じて、直下の光電変換素子に導くための位相特性を与える大きさに設定している。以降、図3~図5を用いて、撮像素子100の構造について説明する。
 図3は、実施の形態に係る撮像素子の中央部における画素アレイ及び光学素子アレイの断面の一部を模式的に示す図である。図4は、実施の形態に係る撮像素子の外周部における画素アレイ及び光学素子アレイの断面の一部を模式的に示す図である。図5は、実施の形態に係る撮像素子の中央部における光学素子アレイの上面図である。
 図3及び図4に示すように、撮像素子100は、画素アレイ110と、画素アレイ110と対向して配置された光学素子アレイ120とを有する。光学素子アレイ120は、レンズ光学系11からの光が入射する側に配置されている。光学素子アレイ120は、画素アレイ110上に形成された透明層150の上面に形成される。画素アレイ110上には、各画素に対応したカラーフィルタ170が設けられる。なお、透明層150は、SiO(屈折率n=1.45)等の材料からなる低屈折率の透明層である。
 画素アレイ110は、配線層180と、2次元アレイ状に配列された光電変換素子を含む画素130とを有する。画素ユニット140Lの画素130は、例えば、G光を受光し、画素ユニット140Rの画素130は、R光を受光する。
 光学素子アレイ120は、入射光を、対応する直下の画素130の光電変換素子に導く複数の柱状構造体160からなる光学素子が2次元アレイ状に配列される。例えば、図5では、カラーフィルタ170が分離する波長領域が赤(R)、緑(G)、青(B)である場合について示す。図5の光学素子アレイ120では、画素アレイ110上の、R光を受光するR画素ユニット、G光を受光する2つのG画素ユニット及びB光を受光するB画素ユニットがそれぞれ直下に位置するように配置された、R画素ユニットに対応する光学素子ユニット120R(光学素子)、G画素ユニットに対応する2つの光学素子ユニット120G(光学素子)、B画素ユニットに対応する光学素子ユニット120B(光学素子)を1組とした光学素子ユニットが2次元アレイ上に形成される。
 複数の柱状構造体160は、周囲材料(透明層150、空気)の屈折率よりも高い屈折率を有する材料を用いて形成される。これによって、柱状構造体160は、柱状構造体内部に光を強く閉じ込めて隣接する柱状構造体との光結合を防ぐ。柱状構造体160は、例えば、SiN(屈折率n=2.05)、TiO(屈折率n=2.4)を用いて形成される。
 複数の柱状構造体160は、図3及び図4に示すように、側面視したときに、同じ高さに形成される。複数の柱状構造体160は、入射光の波長よりも短い間隔で、光学素子アレイ120全面に形成される。図5に示すように、光学素子ユニット120R,120G,120Bは、平面視したときに、複数の柱状構造体160が格子状に形成される。複数の柱状構造体160は、角柱である。なお、図5の例は一例であり、柱状構造体は、平面視したときに、中空正方形、円形、中空円形または十字形上のような4回回転対象となる構造体を採用してもよい。
 複数の柱状構造体160は、平面視したときに、各柱状構造体の入射光の入射角度に応じて、入射光を、対応する直下の画素130の光電変換素子に導くための位相特性を有する幅wにそれぞれ形成される。複数の柱状構造体160の各々は、入射光に対して、平面視したときに当該柱状構造体160が有する幅に応じた光位相遅延量を与える。
 光学素子ユニット120R,120G,120Bでは、該光学素子ユニット120R,120G,120Bを構成する複数の柱状構造体160の各々が、入射光を、対応するR画素ユニット、G画素ユニット、B画素ユニットの各光電変換素子に導くための光位相遅延量分布を与える幅を有する。光学素子ユニット120R,120G,120Bでは、該光学素子ユニット120R,120G,120Bを形成する複数の柱状構造体160の各々の平面視したときの幅が、入射光の入射角度に応じて、入射光を該光学素子ユニット120R,120G,120Bの直下の光電変換素子に導くための光位相遅延量分布を与える幅に設定されている。なお、光位相遅延量分布は、光を集光するための光位相遅延量である。
 撮像素子100は、高さが同一で、幅が徐々に変換する柱状構造体160を、光学素子アレイ120全面に形成することで、レンズ機能を実現する。各柱状構造体160は、柱状の光導波路のように振る舞うため、撮像素子100では、柱状構造体160の幅を変化させることで、柱状構造体160の有効屈折率を変化させて、透過する光の位相を自由に制御することができる。
 言い換えると、各柱状構造体160は、サブ波長サイズの光導波路として振る舞い、かつ、光閉じ込めにより隣接する柱状構造体160との光結合がほとんどないため、柱状構造体160の平面視した際の幅wをそれぞれ柱状構造体160ごとに設計することで、複数の柱状構造体160毎に異なる光学特性(例えば位相遅延特性)を与えることが可能である。この位相遅延量の空間分布を(フレネル)レンズと同等のものにすることで、柱状構造体160にレンズ機能を付与することができる。
 ここで、非特許文献1には、SiO等の低屈折材料からなる構造体をレンズとして機能させることが記載されている。
 非特許文献1では、構造体が波長に比べて非常に小さい場合、構造体の有効屈折率が構造レンズと周囲材料の屈折率とのほぼ平均値で表すことができるという近似が記載されている。しかしながら、構造体の屈折率と周囲の屈折率の差が大きくかつ構造体の大きさがサブ波長程度の場合、光が構造内部に閉じ込められて光導波路モードや共振モードを励起してしまうため、この近似は適用できなくなる。このため、非特許文献1記載の構造体は、材料をSiOとし、周囲材料を空気などとする、屈折率差が小さい材料の組み合わせに限定されるため、構造体のアスペクト比が大きくなる。
 これに対し、撮像素子100では、各柱状構造体160を、SiNやTiOなどの高屈折率材料を用いて形成している。このため、位相変化量0~2πを実現するために必要な最小の柱状構造体160の高さが、SiO等の低屈折材料からなる構造体(非特許文献1参照)と比して、低い。したがって、撮像素子100は、0~2πの位相制御に必要な最小構造高さが比較的小さく、作製しやすい低アスペクト比の柱状構造体160でレンズ機能を実現できる。
 そして、複数の柱状構造体160は、底面が正方形の角柱である。このように、撮像素子100では、各柱状構造体160を、平面視したときに、正方形などの4回回転対称構造にすることで、偏光に対して無依存な特性とする。なお、非特許文献1記載の構造体は、理論式により有効屈折率に偏光依存性を有することが明らかである。
 また、非特許文献1には、曲面及びステップを有する構造体が記載されている。これに対し、本実施の形態における各柱状構造体160は、段差のない角柱状のバイナリパターンである。したがって、撮像素子100は、柱状構造体の断面から曲面及びステップを排除できるため、非特許文献1に記載の構造体と比して、柱状構造体160の作成が比較的容易である。
 また、撮像素子100は、複数の柱状構造体160を、光学素子アレイ120全面に形成することで、レンズ機能を実現するため、入射するすべての入射光を受光でき、レンズ開口を最大化することができる。
 また、各柱状構造体160は、平面視したときに、各柱状構造体160の入射光の入射角度に応じて、直下の画素130の光電変換素子に導く位相特性を有する幅wにそれぞれ形成される。すなわち、撮像素子100では、主入射角に応じて、画素毎に柱状構造体160の構造パターンを受光効率向上に向けて最適化することが可能である。言い換えると、撮像素子100では、柱状構造体160の平面視した際の形状パターンを、各柱状構造体160に入射する光の入射角度θに応じて最適化している。
 これによって、撮像素子100では、大きな入射角度θで光が入射する外周部(図4参照)と、垂直に光が入射する中央部(図3参照)とのいずれにおいても、柱状構造体160が直下の画素130の光電変換素子に集光できるようになる。したがって、撮像素子100は、多くの光を直下の光電変換素子に集光することができ、撮像素子100全体で均一な輝度をもつ画像信号を生成できる。
[柱状構造体の高さ]
 次に、柱状構造体160を側面視したときの高さについて説明する。以降、柱状構造体160を側面視したときの高さを、柱状構造体160の高さと記載する。そして、柱状構造体160の平面視したときの幅を、柱状構造体160の幅と記載する。ここでは、0~2πの位相制御に必要な柱状構造体160の最小高さについて説明する。
 柱状構造体160による位相遅延量φは、光の真空中での波長をλ、柱状構造体160の高さをh、柱状構造体160の有効屈折率neff、周囲材料の屈折率をnとすると、式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 撮像素子100における柱状構造体160においても、非特許文献1に記載の構造体(以降、有効媒体近似構造体とする。)においても、式(1)が適用される。
 有効媒質近似構造体の場合、有効屈折率neffは、構造体と周囲材料との面積比で決まることが知られている。有効媒質近似構造体の場合には、偏光によってもneffの値が変動する。そして、柱状構造体160の場合は、光導波路モードが柱状構造体160の幅に大きく依存するため、有効屈折率neffは、柱状構造体160の幅wの関数で表されることが知られている。有効媒質近似構造体、柱状構造体160のいずれの場合でも、n<neff<nの値をとる。なお、nは、構造体を組成する材料の屈折率である。
 したがって、位相変化量を0~2πの間で制御するためには、構造体の高さは、式(2)とする必要がある。
Figure JPOXMLDOC01-appb-M000002
 図6は、従来技術における有媒質近似構造体と実施の形態における柱状構造体160との最小構造高さ及び最大アスペクト比を示す図である。図6では、光の波長が635nmである際の最小構造幅を100nmとして、最大アスペクト比を求めている。
 有効媒質近似を適用するには、n-nを小さくする必要がある。このため、有効媒質近似構造体の場合、必要な構造体の高さは、図6のように1411nmと必然的に高くなり、数波長程度必要となる。
 これに対し、柱状構造体160の場合、nが大きい方が光閉じ込めの観点で望ましいため、有効媒質近似構造体よりもn-nの値が大きくなる。例えば、柱状構造体160を形成する材料は、SiN(n=2.05)、TiO(n=2.4)であり、n-n≧0.7となる。
 これによって、柱状構造体160では、必要な構造高さは、有効媒質近似構造体よりも比較的低くなり、図6に示すように、一般的に1波長以下である。このように、柱状構造体160のアスペクト比は、有効媒質近似構造体よりも、低くなる。
[柱状構造体の構造]
 柱状構造体160の構造の一例について説明する。図7は、柱状構造体160の側面図である。図8は、柱状構造体160の平面図である。図7及び図8に示すように、例えば、柱状構造体160は、石英によって形成される透明層150uの上面に形成される。そして、柱状構造体160の高さ(z軸方向の長さ)は、h=1000nmとし、柱状構造体160の配置周期は、320nmとする。柱状構造体160の幅wは、0~2πの制御すべき位相に対応させて設定される。
 図9は、柱状構造体160の幅wと光の透過率との関係を示す図である。図10は、柱状構造体160の幅wと、柱状構造体160の光の位相特性との関係を示す図である。
 図9に示すように、柱状構造体160の幅wを100~240nmの間で変更した場合であっても、高い透過率を保持することができる。そして、柱状構造体160の幅wを100~240nmの間で調整することで、柱状構造体160を透過する光の位相を、0~2πの間の所望の位相に制御することができる。なお、図9及び図10では、柱状構造体160の幅を100nmまで小さくした場合であっても、柱状構造体160のアスペクト比の最大値を10に抑えることができる。
[レンズの設計]
 本実施の形態に係る撮像素子100では、入射角に対応して、光学素子アレイ120下方の画素130の中心に集光するように、レンズとして機能する柱状構造体160の位相分布を設計する。そして、撮像素子100では、設計した位相分布となるように、図10の位相特性を参照しながら柱状構造体160の幅wを柱状構造体160ごとに設定することで、設計目標の理想的な位相分布を実現する。
 例えば、以下に設計例のパラメータを示す。
1つの光電変換素子の大きさ=レンズの面積:3.2μm×3.2μm
焦点距離:3.2μm
設計波長:520nm
 図11は、入射角の定義を説明する図である。図11に示すように、(θ,φ)の入射角で光が入射する場合について説明する。ある入射角(θ,φ)の光に対してレンズ(柱状構造体160)中心の直下の点に焦点距離fで集光するレンズの位相分布φは、以下の式(3)で表される。
Figure JPOXMLDOC01-appb-M000003
 式(3)において、λは、設計波長であり、fは、焦点距離であり、ninは、入射側の材料の屈折率であり、noutは出射側の材料の屈折率であり、Cは、任意定数である。
 例えば、f=3.2μm、nin=1.0(空気)、nout=1.445(石英ガラス)とする。φは、0~2πの範囲に収まるように変換する。例えば、φが-0.5πの場合には1.5πに変換し、2.5πの場合には0.5に変換する。この設定において、任意の入射角で光が入射した場合のレンズの設計目標の位相分布と、該位相分布を実現できるレンズ(柱状構造体160)パターンについて、図12~図14を参照して説明する。レンズの設計目標の位相分布とは、ある入射角の光に対してレンズ中心の直下の点に焦点距離fで集光されるレンズの位相分布である。
 図12は、θ=0°,φ=0°の入射角で光が入射した場合のレンズの設計目標の位相分布と、該位相分布を実現するレンズ(柱状構造体160)パターンを示す図である。図13は、θ=45°,φ=0°の入射角で光が入射した場合のレンズの設計目標の位相分布と、該位相分布を実現するレンズパターンを示す図である。図14は、θ=45°,φ=45°の入射角で光が入射した場合のレンズの設計目標の位相分布と、該位相分布を実現するレンズパターンを示す図である。図12の(1)、図13の(1)、図14の(1)は、各条件の入射角で光が入射した場合のレンズの設計目標の位相分布である。図12の(2)、図13の(2)、図14の(2)は、図12の(1)、図13の(1)、図14の(1)のそれぞれ位相分布を実現できる柱状構造体160の平面図であり、1画素あたりに設計される柱状構造体160の形状パターンである。
 図12の(2)、図13の(2)、図14の(2)に示すように、柱状構造体160は、底面が正方形の角柱である。そして柱状構造体160の幅wは、図10に示す、柱状構造体160の幅wと柱状構造体160の光の位相特性との関係を基に、図12の(1)、図13の(1)、図14の(1)の位相分布のうち、それぞれ対応する位置の位相を実現できる幅に設定される。
 例えば、図12の(2)に示す光学素子ユニット120-1は、θ=0°,φ=0°の入射角で光が入射した場合のレンズの設計目標の位相分布を実現する柱状構造体160の形状パターンである。図13の(2)に示す光学素子ユニット120-2は、θ=45°,φ=0°の入射角で光が入射した場合のレンズの設計目標の位相分布を実現する柱状構造体160の形状パターンである。図14の(2)に示す光学素子ユニット120-3は、θ=45°,φ=45°の入射角で光が入射した場合のレンズの設計目標の位相分布を実現する柱状構造体160の形状パターンである。
[集光強度の波長依存性]
 実施の形態では、図5に示す光学素子ユニット120R,120G,120Bのように、対応する直下の画素ユニットの光電変換素子の設計波長に対応させて、光学素子ユニット120R,120G,120Bの各柱状構造体160のパターンを設計する。光学素子ユニットでは、該光学素子ユニットを形成する複数の柱状構造体160の各々の平面視したときの幅wが、該光学素子ユニットが対応する光電変換素子が受光する波長範囲の光を、該光学素子ユニットが対応する光電変換素子に導くための光位相遅延量分布を与える幅に設定されている。そこで、光学素子アレイ120による集光強度の波長依存性について説明する。
 図15~図17は、光学素子ユニットによる集光強度とその波長依存性を示す図である。図15は、波長λ=450nmのB光に対応し、図16は、波長λ=520nmのG光に対応し、図17は、波長λ=635nmのR光に対応する。
 図15の(1)、図16の(1)、図17の(1)は、垂直入射光(θ=0°,φ=0°)に最適設計されたレンズ(柱状構造体160)のパターンであり、両偏光の平均をとる。図15の(2)、図16の(2)、図17の(2)は、図15の(1)、図16の(1)、図17の(1)の光学素子ユニット120-4,120-5,120-6による集光強度を示す図である。集光強度は、画素130の光電変換素子面上の集光スポット幅内(λ/NA、NAはレンズのnumerical apertureである。)の全強度である。図15の(3)、図16の(3)、図17の(3)は、光学素子ユニット120-4,120-5,120-6による集光強度の波長依存性を示す図である。
 図15の(3)、図16の(3)、図17の(3)に示すように、いずれの光学素子ユニット120-4,120-5,120-6においても、96%以上の光が構造を透過し画素130において受光可能であることがわかる。また、光学素子ユニット120-4,120-5,120-6の集光強度は、設計波長周辺で、最大の集光強度を示す。
 したがって、撮像素子100では、色バンド(R、G、Bのカラーフィルタの透過バンド)毎に対応させて、光学素子ユニット120-4,120-5,120-6のように柱状構造体160のパターンを変化させるのみで、それぞれ設計波長に合わせた集光を設計可能である。撮像素子100では、画素130上のカラーフィルタに合わせて、各画素130の設計波長を決め、光学素子ユニット120-4,120-5,120-6を、直下の画素130の設計波長に合わせて、それぞれ集積すればよい。
[入射角に対応した光学素子ユニットの設計例]
 本実施の形態では、入射光の入射角度に応じて、光学素子ユニットの各柱状構造体160のパターンを設計する。光学素子ユニットでは、該光学素子ユニットを形成する複数の柱状構造体160の各々の平面視したときの幅wが、入射光の入射角度に応じて、入射光を該光学素子ユニットの直下の光電変換素子に導くための光位相遅延量分布を与える幅に設定されている。そこで、光学素子アレイ120への入射光の入射角度に対応した光学素子ユニットの設計例について説明する。
 図18~図20は、φ=0°の平行光(λ=520nm)入射時の光学素子ユニットによる集光強度と入射光の入射角度依存性を示す図である。図18の(1)は、θ=15°,φ=0°の入射光に最適設計された柱状構造体160のパターンであり、図19の(1)は、θ=30°,φ=0°の入射光に最適設計された柱状構造体160のパターンであり、図20の(1)は、θ=45°,φ=0°の入射光に最適設計された柱状構造体160のパターンであり、両偏光の平均をとる。図18の(2)、図19の(2)、図20の(2)は、図18の(1)、図19の(1)、図20の(1)の光学素子ユニット120-7,120-8,120-9による集光強度を示す図である。図18の(3)、図19の(3)、図20の(3)は、光学素子ユニット120-7,120-8,120-9による集光強度の入射角度依存性を示す図である。
 図18の(3)、図19の(3)、図20の(3)に示すように、いずれの光学素子ユニット120-7,120-8,120-9においても、設計入射角周辺で最大の集光強度を示す。
 図21~図23は、φ=45°の平行光(λ=520nm)入射時の光学素子ユニットによる集光強度と入射光の入射角度依存性を示す図である。図21の(1)は、θ=15°,φ=45°の入射光に最適設計された柱状構造体160のパターンであり、図22の(1)は、θ=30°,φ=45°の入射光に最適設計された柱状構造体160のパターンであり、図23の(1)は、θ=45°,φ=45°の入射光に最適設計された柱状構造体160のパターンであり、両偏光の平均をとる。図21の(2)、図22の(2)、図23の(2)は、図21の(1)、図22の(1)、図23の(1)の光学素子ユニット120-10,120-11,120-12による集光強度を示す図である。図21の(3)、図22の(3)、図23の(3)は、光学素子ユニット120-10,120-11,120-12による集光強度の入射角度依存性を示す図である。
 図21の(3)、図22の(3)、図23の(3)に示すように、いずれの光学素子ユニット120-10,120-11,120-12においても、設計入射角周辺で最大の集光強度を示す。
 撮像素子100では、上述した光学素子ユニット120-7~120-12を、入射光の入射角(θ,φ)に合わせて配列することによって、直下の画素130の光電変換素子に高い強度で集光が可能となる。
[実施の形態の効果]
 このように、実施の形態に係る撮像素子100では、複数の柱状構造体160を、入射光の波長よりも短い間隔で、光学素子アレイ120全面に形成することでレンズ機能を実現するため、入射するすべての入射光を受光でき、受光効率の向上を図ることができる。
 また、撮像素子100では、複数の柱状構造体は、平面視したときに、各柱状構造体の入射光の入射角度に応じて、直下の光電変換素子に導くための位相特性を有する幅にそれぞれ形成されるとともに、側面視したときに、同じ高さに形成される。撮像素子100では、この複数の柱状構造体160によって、画素130ごとに入射角に対応したレンズ特性を実現できるため、撮像素子100全体で均一な輝度をもつ画像信号を生成できる。
 また、撮像素子100では、周囲材料の屈折率よりも高い屈折率を有する材料からなる四角柱状のバイナリパターンによる複数の柱状構造体160をレンズとして用いる。このため、撮像素子100がレンズとして用いる複数の柱状構造体160は、非特許文献1に記載された構造体と比して、低アスペクト比であるとともに簡易な構成であるため、作成が容易である。
 なお、光学素子ユニットは、上記の構成に制限されることはなく、数や間隔、構造形状、配列パターンにおいて様々な形態をとり得る。また、柱状構造体160は、それぞれが接続されていてもよく、また透明材料内に埋め込まれた形態でもよい。
 また、図3及び図4では、光学素子アレイ120が透明層150の上面に形成されているがこれに限らない。図24は、実施の形態に係る撮像素子における画素アレイ及び光学素子アレイの断面の一部の他の例を模式的に示す図である。図24の撮像素子100Aに示すように、光学素子アレイ120Aは、独立した透明基板190の底面に形成される。このように、複数の柱状構造体160は、透明層150A(例えば、空気)内部に形成されていてもよい。
 また、上記では、1つの光学素子ユニットの直下に4つの画素が位置する例について説明したが、これに限定されない。
 また、実施の形態では、柱状構造体160の材料としてSiN、TiOを用いた例を示したが、これに限定されない。例えば、撮像素子100,100Aを、光の波長が380nm~1000nmの範囲の可視光~近赤外光領域で用いる場合は、柱状構造体160の材料には、SiN、SiC、TiO、GaN等の材料が、屈折率が高く、吸収損失が少ないため適している。また、撮像素子100,100Aを、波長が800~1000nmの範囲の近赤外光領域で用いる場合は、これらの光に対し低損失な柱状構造体160の材料として、Si、SiC、SiN、TiO、GaAs、GaN等の材料が適している。さらに、長波長帯の近赤外領域(通信波長である1.3μmや1.55μm等)では、上述の材料に加えて、InP等を柱状構造体160の材料として用いることができる。
 そして、貼り付け、塗布して柱状構造体160の微小分光素子を形成する場合、フッ素化ポリイミド等のポリイミド、BCB(ベンゾシクロブテン)、光硬化性樹脂、UVエポキシ樹脂、PMMA等のアクリル樹脂、レジスト全般などのポリマー等が材料として挙げられる。
 同様に、実施の形態では、透明層150,150Aの材料としてSiO及び空気層を想定した例を示したが、これに限定されない。透明層150,150Aの材料は、一般的なガラス材料、SiO、空気層等、屈折率が柱状構造体160の材料の屈折率より低く、入射光の波長に対して低損失なものであれば足りる。また、透明層150,150Aは、複数の材料からなる積層構造を有する透明層であってもよい。
 実施の形態では、柱状構造体160が対応する波長域の光が、R、G、Bの3原色の光である場合を例に説明したが、3波長域のうちの少なくとも1つが3原色以外の波長の光(例えば、赤外光や紫外光)であってもよい。
 また、光学素子アレイ120,120Aでは、図10に例示する柱状構造体160の幅と光の位相特性との関係に基づいて、複数の柱状構造体160のうちの少なくとも一部の平面視した際の幅を、入射光を、対応する直下の光電変換素子に導くための光位相遅延量分布を与える幅に設定する。これによって、光学素子アレイ120,120Aでは、画素130ごとに入射角や光電変換素子における波長範囲に対応したレンズ特性を実現する。これに限らず、本実施の形態では、複数の柱状構造体160は、各柱状構造体の入射光の入射角度に応じて、直下の前記光電変換素子に導くための位相特性を有するような屈折率を有していてもよい。言い換えると、本実施の形態では、複数の柱状構造体160が、互いに異なる屈折率を有するように設定することで、画素130ごとに、入射角や光電変換素子における波長範囲に対応したレンズ特性を実現することもできる。また、本実施の形態では、柱状構造体160の平面視した際の幅と、柱状構造値160の屈折率とを、柱状構造体ごとに変えることで、画素130ごとに、入射角や光電変換素子における波長範囲に対応したレンズ特性を実現することもできる。
 また、本実施の形態における光学素子アレイ120,120Aは、例えば、メタサーフェスである。上述したように、メタサーフェスは、光の波長以下の幅を持った複数の微細構造からなる素子であり、2次元構造でもよいし、3次元構造であってもいい。光学素子アレイとしてメタサーフェスを用いることによって、微細構造のパラメータを変えるだけで、光の特性(波長・偏波・入射角)に応じて位相と光強度を制御することができる。また、メタサーフェスが3次元構造の場合には、上記の設計自由度が上がる。
 以上、本発明を具体的な実施の形態に基づいて説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
 1 物体
 10 撮像装置
 11 レンズ光学系
 12,100,100A 撮像素子
 13 信号処理部
 110 画素アレイ
 120,120A 光学素子アレイ
 120R,120G,120B,120-1~120-12 光学素子ユニット
 130 画素
 140L,140R 画素ユニット
 150,150A 透明層
 160 柱状構造体
 170 カラーフィルタ
 180 配線層
 190 透明基板

Claims (12)

  1.  光電変換素子を含む画素を覆うための透明層と、
     前記透明層上または前記透明層内において前記透明層の面方向に配置され、入射光を、対応する前記光電変換素子に導く複数の柱状構造体と、
     を有し、
     前記複数の柱状構造体は、前記入射光の波長よりも短い間隔で、前記透明層の全面に形成されることを特徴とする光学素子。
  2.  当該光学素子は、平面視したときに、前記複数の柱状構造体が格子状に形成されることを特徴とする請求項1に記載の光学素子。
  3.  前記複数の柱状構造体は、
     前記複数の柱状構造体の周囲材料の屈折率よりも高い屈折率を有し、
     平面視したときに、前記複数の柱状構造体のうちの少なくとも一部の柱状構造体は、互いに異なる幅を有し、
     側面視したときに、同じ高さを有することを特徴とする請求項1または2に記載の光学素子。
  4.  前記複数の柱状構造体は、
     前記複数の柱状構造体の周囲材料の屈折率よりも高い屈折率を有し、
     前記複数の柱状構造体のうちの少なくとも一部の柱状構造体は、互いに異なる屈折率を有し、
     側面視したときに、同じ高さを有することを特徴とする請求項1または2に記載の光学素子。
  5.  前記複数の柱状構造体の各々は、前記入射光に対して、平面視したときに当該柱状構造体が有する幅に応じた光位相遅延量を与え、
     当該光学素子は、当該光学素子を構成する前記複数の柱状構造体の各々が、前記入射光を、対応する前記光電変換素子に導くための光位相遅延量分布を与える幅を有することを特徴とする請求項1~3のいずれか一つに記載の光学素子。
  6.  当該光学素子は、当該光学素子を構成する複数の柱状構造体の各々の平面視したときの幅が、該光学素子が対応する前記光電変換素子が受光する波長範囲の光を、当該光学素子が対応する光電変換素子に導くための光位相遅延量分布を与える幅に設定されていることを特徴とする請求項5に記載の光学素子。
  7.  前記複数の柱状構造体は、各々の平面視したときの幅が、前記対応する光電変換素子における波長範囲ごとに異なる値に設定されていることを特徴とする請求項6に記載の光学素子。
  8.  前記光位相遅延量分布は、光を集光するための光位相遅延量であることを特徴とする請求項6または7に記載の光学素子。
  9.  前記複数の柱状構造体は、前記透明層の屈折率よりも高い屈折率を有する材料を用いて形成されることを特徴とする請求項1~7のいずれか一つに記載の光学素子。
  10.  前記複数の柱状構造体は、平面視したときに、4回回転対称構造であることを特徴とする請求項1~9のいずれか一つに記載の光学素子。
  11.  請求項1~10のいずれか一つに記載の光学素子と、
     各々が前記光電変換素子を含む複数の画素と、
     を有することを特徴とする撮像素子。
  12.  請求項11に記載の撮像素子と、
     前記撮像素子が出力する電気信号を処理し、画像を生成する信号処理部と、
     を有することを特徴とする撮像装置。
PCT/JP2020/038499 2020-10-12 2020-10-12 光学素子、撮像素子及び撮像装置 WO2022079765A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20957594.3A EP4227715A1 (en) 2020-10-12 2020-10-12 Optical element, imaging element, and imaging device
US18/031,157 US20230378211A1 (en) 2020-10-12 2020-10-12 Optical element, image sensor and imaging device
PCT/JP2020/038499 WO2022079765A1 (ja) 2020-10-12 2020-10-12 光学素子、撮像素子及び撮像装置
CN202080106082.1A CN116368406A (zh) 2020-10-12 2020-10-12 光学元件、摄像元件以及摄像装置
JP2022557237A JPWO2022079765A1 (ja) 2020-10-12 2020-10-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/038499 WO2022079765A1 (ja) 2020-10-12 2020-10-12 光学素子、撮像素子及び撮像装置

Publications (1)

Publication Number Publication Date
WO2022079765A1 true WO2022079765A1 (ja) 2022-04-21

Family

ID=81207794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038499 WO2022079765A1 (ja) 2020-10-12 2020-10-12 光学素子、撮像素子及び撮像装置

Country Status (5)

Country Link
US (1) US20230378211A1 (ja)
EP (1) EP4227715A1 (ja)
JP (1) JPWO2022079765A1 (ja)
CN (1) CN116368406A (ja)
WO (1) WO2022079765A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009157390A (ja) * 2004-09-01 2009-07-16 Panasonic Corp 固体撮像装置
JP2010212625A (ja) * 2009-03-12 2010-09-24 Nikon Corp 固体撮像素子
JP2011040441A (ja) * 2009-08-06 2011-02-24 Panasonic Corp 固体撮像装置
JP2012084608A (ja) 2010-10-07 2012-04-26 Sony Corp 固体撮像装置とその製造方法、並びに電子機器
US20170034500A1 (en) * 2015-07-29 2017-02-02 Samsung Electronics Co., Ltd. Imaging apparatus and image sensor including the same
JP2019184986A (ja) * 2018-04-17 2019-10-24 日本電信電話株式会社 カラー撮像素子および撮像装置
JP2020051868A (ja) * 2018-09-26 2020-04-02 日本電信電話株式会社 偏光イメージング撮像システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009157390A (ja) * 2004-09-01 2009-07-16 Panasonic Corp 固体撮像装置
JP2010212625A (ja) * 2009-03-12 2010-09-24 Nikon Corp 固体撮像素子
JP2011040441A (ja) * 2009-08-06 2011-02-24 Panasonic Corp 固体撮像装置
JP2012084608A (ja) 2010-10-07 2012-04-26 Sony Corp 固体撮像装置とその製造方法、並びに電子機器
US20170034500A1 (en) * 2015-07-29 2017-02-02 Samsung Electronics Co., Ltd. Imaging apparatus and image sensor including the same
JP2019184986A (ja) * 2018-04-17 2019-10-24 日本電信電話株式会社 カラー撮像素子および撮像装置
JP2020051868A (ja) * 2018-09-26 2020-04-02 日本電信電話株式会社 偏光イメージング撮像システム

Also Published As

Publication number Publication date
CN116368406A (zh) 2023-06-30
US20230378211A1 (en) 2023-11-23
EP4227715A1 (en) 2023-08-16
JPWO2022079765A1 (ja) 2022-04-21

Similar Documents

Publication Publication Date Title
KR102389008B1 (ko) 컬러촬상소자 및 촬상장치
CN100492064C (zh) 聚光元件以及固体摄像装置
US8792027B2 (en) Solid-state image pickup device, imaging device, and dispersing element
WO2005059607A1 (ja) 集光素子および固体撮像装置
US20100127156A1 (en) Two dimensional solid-state image pickup device
WO2021070305A1 (ja) 分光素子アレイ、撮像素子および撮像装置
WO2022079766A1 (ja) 撮像素子及び撮像装置
WO2022079765A1 (ja) 光学素子、撮像素子及び撮像装置
WO2021059409A1 (ja) 撮像素子および撮像装置
US20230239552A1 (en) Image sensor and imaging device
JP2005142429A (ja) 固体撮像装置およびその製造方法
US20240006441A1 (en) Optical element, image sensor and imaging device
WO2022113363A1 (ja) 光学素子、撮像素子及び撮像装置
WO2022113362A1 (ja) 光学素子、撮像素子及び撮像装置
JP7265195B2 (ja) カラー撮像素子および撮像装置
WO2023021632A1 (ja) 光学素子、撮像素子及び撮像装置
KR20240049111A (ko) 광-조정 디바이스 및 이를 사용한 솔리드-스테이트 이미지 센서

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957594

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022557237

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020957594

Country of ref document: EP

Effective date: 20230512