WO2022078501A1 - 测量配置方法、测量方法、网络设备及终端 - Google Patents

测量配置方法、测量方法、网络设备及终端 Download PDF

Info

Publication number
WO2022078501A1
WO2022078501A1 PCT/CN2021/124125 CN2021124125W WO2022078501A1 WO 2022078501 A1 WO2022078501 A1 WO 2022078501A1 CN 2021124125 W CN2021124125 W CN 2021124125W WO 2022078501 A1 WO2022078501 A1 WO 2022078501A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink
prs
measurement gap
semi
terminal
Prior art date
Application number
PCT/CN2021/124125
Other languages
English (en)
French (fr)
Inventor
任斌
达人
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US18/249,236 priority Critical patent/US20230397184A1/en
Priority to EP21879542.5A priority patent/EP4231694A4/en
Publication of WO2022078501A1 publication Critical patent/WO2022078501A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/11Semi-persistent scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a measurement configuration method, a measurement method, a network device, and a terminal.
  • the present disclosure provides a measurement configuration method, a measurement method, a network device and a terminal, and solves the problem that the current processing method for aperiodic downlink PRS or semi-persistent downlink PRS in the measurement gap has no solution.
  • an embodiment of the present disclosure provides a measurement configuration method, which is applied to a network device, and the method includes:
  • a target measurement interval Gap of aperiodic downlink positioning reference signal PRS or semi-persistent downlink PRS is configured for the terminal; wherein, the target measurement Gap is aperiodic measurement Gap or semi-persistent measurement Gap.
  • the method further includes:
  • the target measurement Gap is determined; wherein, the target information is the terminal positioning measurement capability information reported by the terminal or the history information of the data reported by the terminal.
  • the time unit of the target measurement Gap is related to the terminal positioning measurement capability information reported by the terminal;
  • the time unit of the target measurement Gap is: subframe, time slot or OFDM symbol.
  • configuring the target measurement interval Gap of the aperiodic downlink positioning reference signal PRS or the semi-persistent downlink PRS for the terminal includes:
  • the target measurement Gap is configured in a manner of configuring the target duration.
  • the sending the configuration parameters of the target measurement Gap to the terminal includes:
  • the configuration parameters of the target measurement Gap are sent to the terminal through the first signaling; wherein, the first signaling is the Long Term Evolution Positioning Protocol (LPP) signaling, the radio resource control (RRC) signaling, and the control unit of the medium access control.
  • LPP Long Term Evolution Positioning Protocol
  • RRC radio resource control
  • MAC-CE downlink control information
  • DCI downlink control information
  • the sending the configuration parameters of the target measurement gap to the terminal includes:
  • the first configuration parameter includes: any two of the first start time, the first end time, and a first duration, and the first duration is from the first start time to the first time. Describe the duration of the first end time.
  • the sending the configuration parameters of the target measurement gap to the terminal includes:
  • the semi-persistent downlink PRS period determine the maximum value of the end time of the semi-persistent downlink PRS resource set of all downlink cells as the second end time of the semi-persistent measurement Gap;
  • the second configuration parameter includes: a repetition period of the semi-continuous measurement Gap and a configuration parameter of a semi-continuous measurement Gap;
  • the configuration parameters of the one semi-continuous measurement Gap include: any two of the second start time, the second end time, and a second duration, and the second duration is from the second The duration from the start time to the second end time.
  • the method further includes:
  • the third signaling is used to instruct activation of the semi-persistent downlink PRS and activation of the semi-persistent measurement Gap.
  • the terminal positioning measurement capability information includes at least one of the following:
  • the terminal In the downlink active bandwidth part, whether the terminal can perform positioning measurement and downlink processing at the same time;
  • the terminal can perform positioning measurement and downlink processing at the same time in different bandwidth parts of the same frequency band;
  • the terminal can perform positioning measurement and downlink processing at the same time in different frequency bands;
  • the downlink processing includes downlink channel processing or downlink signal processing except downlink PRS.
  • an embodiment of the present disclosure provides a network device, including: a transceiver, a memory, a processor, and a program stored in the memory and executable on the processor, where the processor implements the following when executing the program step:
  • a target measurement interval Gap of aperiodic downlink positioning reference signal PRS or semi-persistent downlink PRS is configured for the terminal; wherein, the target measurement Gap is aperiodic measurement Gap or semi-persistent measurement Gap.
  • the processor implements the following steps when executing the program:
  • the target measurement Gap is determined; wherein, the target information is the terminal positioning measurement capability information reported by the terminal or the history information of the data reported by the terminal.
  • the time unit of the target measurement Gap is related to the terminal positioning measurement capability information reported by the terminal;
  • the time unit of the target measurement Gap is: subframe, time slot or OFDM symbol.
  • the processor implements the following steps when executing the program:
  • the target measurement Gap is configured in a manner of configuring the target duration.
  • the processor implements the following steps when executing the program:
  • the configuration parameters of the target measurement Gap are sent to the terminal through the first signaling; wherein, the first signaling is the Long Term Evolution Positioning Protocol (LPP) signaling, the radio resource control (RRC) signaling, and the control unit of the medium access control.
  • LPP Long Term Evolution Positioning Protocol
  • RRC radio resource control
  • MAC-CE downlink control information
  • DCI downlink control information
  • the processor implements the following steps when executing the program:
  • the first configuration parameter includes: any two of the first start time, the first end time, and a first duration, and the first duration is from the first start time to the first time. Describe the duration of the first end time.
  • the processor implements the following steps when executing the program:
  • the semi-persistent downlink PRS period determine the maximum value of the end time of the semi-persistent downlink PRS resource set of all downlink cells as the second end time of the semi-persistent measurement Gap;
  • the second configuration parameter includes: a repetition period of the semi-continuous measurement Gap and a configuration parameter of a semi-continuous measurement Gap;
  • the configuration parameters of the one semi-continuous measurement Gap include: any two of the second start time, the second end time, and a second duration, and the second duration is from the second The duration from the start time to the second end time.
  • the processor implements the following steps when executing the program:
  • the third signaling is used to instruct activation of the semi-persistent downlink PRS and activation of the semi-persistent measurement Gap.
  • the terminal positioning measurement capability information includes at least one of the following:
  • the terminal In the downlink active bandwidth part, whether the terminal can perform positioning measurement and downlink processing at the same time;
  • the terminal can perform positioning measurement and downlink processing at the same time in different bandwidth parts of the same frequency band;
  • the terminal can perform positioning measurement and downlink processing at the same time in different frequency bands;
  • the downlink processing includes downlink channel processing or downlink signal processing except downlink PRS.
  • an embodiment of the present disclosure provides a network device, including:
  • the configuration module is configured to configure the target measurement interval Gap of the aperiodic downlink positioning reference signal PRS or the semi-persistent downlink PRS for the terminal; wherein, the target measurement Gap is the aperiodic measurement Gap or the semi-persistent measurement Gap.
  • an embodiment of the present disclosure provides a readable storage medium on which a program is stored, and when the program is executed by a processor, implements the steps of the above-mentioned measurement configuration method.
  • an embodiment of the present disclosure provides a measurement method, which is applied to a terminal, and the method includes:
  • the target measurement Gap is the aperiodic measurement Gap or the semi-persistent measurement Gap;
  • the downlink PRS is received and measured.
  • the acquiring the target measurement Gap of the aperiodic downlink positioning reference signal PRS or the semi-persistent downlink PRS configured by the network device for the terminal includes:
  • the target duration is the subframe or time slot where the aperiodic downlink PRS or semi-persistent downlink PRS is located Or Orthogonal Frequency Division Multiplexing OFDM symbols, the target measurement Gap is configured by configuring the target duration.
  • receiving the configuration parameters of the target measurement gap sent by the network device including:
  • the first signaling is Long Term Evolution Positioning Protocol LPP signaling, radio resource control RRC signaling, medium access control control element MAC-CE signaling or downlink control information DCI signaling.
  • the receiving the configuration parameters of the target measurement Gap sent by the network device includes:
  • the first configuration parameter includes: any two of the first start time of the aperiodic measurement Gap, the first end time of the aperiodic measurement gap, and a first duration, the first duration is the duration from the first start time to the first end time.
  • the receiving the configuration parameters of the target measurement Gap sent by the network device includes:
  • the second configuration parameter includes: a repetition period of the semi-continuous measurement Gap and a configuration parameter of a semi-continuous measurement Gap;
  • the configuration parameters of the one semi-persistent measurement gap include: any two of the second start time of the semi-continuous measurement gap, the second end time of the semi-persistent measurement gap, and the second duration.
  • the second duration is the duration from the second start time to the second end time.
  • the method further includes:
  • the second signaling is used to activate the semi-persistent measurement Gap
  • the third signaling is used to activate the semi-persistent downlink PRS and activate the semi-persistent measurement Gap.
  • the measurement Gap is performed according to the target, and the downlink PRS is received and measured, include:
  • the terminal positioning measurement capability information it is determined that the downlink PRS is received and measured within the target duration, and the downlink channel or the first downlink signal is not received and processed;
  • the terminal positioning measurement capability information it is determined that the downlink PRS is received and measured within the target duration, and the downlink channel or the first downlink signal is received and processed;
  • the first downlink signal is a downlink signal other than the downlink PRS.
  • the method further includes:
  • the measurement of Gap according to the target, and performing the reception and measurement of the downlink PRS include:
  • downlink PRS reception and measurement are performed.
  • the positioning measurement capability information includes: in the same subframe or time slot, whether the terminal can perform positioning measurement and downlink processing at the same time, the target is determined according to the terminal positioning measurement capability information.
  • Measure Gap including:
  • the terminal when the terminal cannot perform positioning measurement and downlink processing at the same time, determine the target measurement Gap according to the correspondence between the terminal positioning measurement capability information and the configuration parameters of the measurement gap;
  • the target is determined according to the correspondence between the terminal positioning measurement capability information and the configuration parameters of the measurement gap and the valid conditions.
  • the downlink processing includes downlink channel processing or downlink signal processing except downlink PRS.
  • the valid conditions include:
  • the first valid time slot of the subframe where the aperiodic downlink PRS or the semi-persistent downlink PRS is located is determined as the target measurement Gap; wherein, the first valid time slot is: Aperiodic downlink PRS or semi-persistent downlink PRS in a time slot, and a time slot of N1 OFDM symbols is reserved between the downlink channel or the first downlink signal;
  • the second valid time slot of the time slot where the aperiodic downlink PRS or the semi-persistent downlink PRS is located is determined as the target measurement Gap; wherein, the second valid time slot is: aperiodic downlink downlink
  • the downlink time slot of N1 OFDM symbols is reserved between the PRS or semi-persistent downlink PRS and the downlink channel or the first downlink signal, or N2 OFDM symbols are reserved between the uplink OFDM symbols before the start of each downlink PRS resource , and reserve flexible time slots of N2 OFDM symbols between the uplink OFDM symbols after each downlink PRS resource ends;
  • N1 and N2 are positive integers greater than 1.
  • the terminal positioning measurement capability information includes: whether the terminal can perform positioning measurement and downlink processing at the same time in the downlink active bandwidth part, in different bandwidth parts in the same frequency band, and in different frequency bands, the according to The target measures Gap, and performs downlink positioning reference signal PRS reception and measurement, including:
  • the terminal positioning measurement capability information receive and measure the downlink positioning reference signal PRS in the downlink active bandwidth part, in different bandwidth parts of the same frequency band or in different frequency bands;
  • the downlink processing includes downlink channel processing or downlink signal processing other than downlink PRS.
  • an embodiment of the present disclosure provides a terminal, including: a transceiver, a memory, a processor, and a program stored in the memory and executable on the processor, where the processor implements the following steps when executing the program:
  • the target measurement Gap is the aperiodic measurement Gap or the semi-persistent measurement Gap;
  • the downlink PRS is received and measured.
  • the processor implements the following steps when executing the program:
  • the target duration is the subframe or time slot where the aperiodic downlink PRS or semi-persistent downlink PRS is located Or Orthogonal Frequency Division Multiplexing OFDM symbols, the target measurement Gap is configured by configuring the target duration.
  • the processor implements the following steps when executing the program:
  • the first signaling is Long Term Evolution Positioning Protocol LPP signaling, radio resource control RRC signaling, medium access control control element MAC-CE signaling or downlink control information DCI signaling.
  • the processor implements the following steps when executing the program:
  • the first configuration parameter includes: any two of the first start time of the aperiodic measurement Gap, the first end time of the aperiodic measurement gap, and a first duration, the first duration is the duration from the first start time to the first end time.
  • the processor implements the following steps when executing the program:
  • the second configuration parameter includes: a repetition period of the semi-continuous measurement Gap and a configuration parameter of a semi-continuous measurement Gap;
  • the configuration parameters of the one semi-persistent measurement gap include: any two of the second start time of the semi-continuous measurement gap, the second end time of the semi-persistent measurement gap, and the second duration.
  • the second duration is the duration from the second start time to the second end time.
  • the processor implements the following steps when executing the program:
  • the second signaling is used to activate the semi-persistent measurement Gap
  • the third signaling is used to activate the semi-persistent downlink PRS and activate the semi-persistent measurement Gap.
  • the processor implements the following steps when executing the program:
  • the terminal positioning measurement capability information it is determined that the downlink PRS is received and measured within the target duration, and the downlink channel or the first downlink signal is not received and processed;
  • the terminal positioning measurement capability information it is determined that the downlink PRS is received and measured within the target duration, and the downlink channel or the first downlink signal is received and processed;
  • the first downlink signal is a downlink signal other than the downlink PRS.
  • the processor implements the following steps when executing the program:
  • the processor implements the following steps when executing the program:
  • downlink PRS reception and measurement are performed.
  • the processor implements the following steps when executing the program:
  • the terminal when the terminal cannot perform positioning measurement and downlink processing at the same time, determine the target measurement Gap according to the correspondence between the terminal positioning measurement capability information and the configuration parameters of the measurement gap;
  • the target is determined according to the correspondence between the terminal positioning measurement capability information and the configuration parameters of the measurement gap and the valid conditions.
  • the downlink processing includes downlink channel processing or downlink signal processing except downlink PRS.
  • the valid conditions include:
  • the first valid time slot of the subframe where the aperiodic downlink PRS or the semi-persistent downlink PRS is located is determined as the target measurement Gap; wherein, the first valid time slot is: Aperiodic downlink PRS or semi-persistent downlink PRS in a time slot, and a time slot of N1 OFDM symbols is reserved between the downlink channel or the first downlink signal;
  • the second valid time slot of the time slot where the aperiodic downlink PRS or the semi-persistent downlink PRS is located is determined as the target measurement Gap; wherein, the second valid time slot is: aperiodic downlink downlink
  • the downlink time slot of N1 OFDM symbols is reserved between the PRS or semi-persistent downlink PRS and the downlink channel or the first downlink signal, or N2 OFDM symbols are reserved between the uplink OFDM symbols before the start of each downlink PRS resource , and reserve flexible time slots of N2 OFDM symbols between the uplink OFDM symbols after each downlink PRS resource ends;
  • N1 and N2 are positive integers greater than 1.
  • the terminal positioning measurement capability information includes: whether the terminal can perform positioning measurement and downlink processing at the same time in the downlink active bandwidth part, in different bandwidth parts in the same frequency band, and in different frequency bands, the processing is performed.
  • the processing is performed. The following steps are implemented when the computer executes the program:
  • the terminal positioning measurement capability information receive and measure the downlink positioning reference signal PRS in the downlink active bandwidth part, in different bandwidth parts of the same frequency band, or in different frequency bands;
  • the downlink processing includes downlink channel processing or downlink signal processing except downlink PRS.
  • an embodiment of the present disclosure provides a terminal, including:
  • an acquisition module configured to acquire the target measurement Gap of the aperiodic downlink positioning reference signal PRS or the semi-persistent downlink PRS configured by the network device for the terminal; wherein, the target measurement Gap is the aperiodic measurement Gap or the semi-persistent measurement Gap;
  • the processing module is configured to measure the Gap according to the target, and receive and measure the downlink PRS.
  • an embodiment of the present disclosure provides a readable storage medium on which a program is stored, and when the program is executed by a processor, implements the steps of the above-mentioned measurement method.
  • the target measurement interval Gap of the aperiodic downlink PRS or the semi-persistent downlink PRS is configured for the terminal by the network device, which solves the problem of the current measurement gap for the aperiodic downlink PRS or the semi-persistent downlink PRS in the measurement Gap.
  • the processing method There is no solution for the processing method; and it can avoid the problem that when the aperiodic downlink PRS or semi-persistent downlink PRS is processed within the periodic measurement gap, it may not be processed, or the index of low positioning delay cannot be satisfied. , that is, the timing delay can be reduced.
  • FIG. 1 shows a flowchart of a measurement configuration method according to an embodiment of the present disclosure
  • FIG. 2 shows a schematic diagram of configuration parameters of aperiodic measurement Gap according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram showing the configuration parameters of the semi-persistent Gap measurement according to an embodiment of the present disclosure
  • FIG. 4 shows one of the block diagrams of the network device according to the embodiment of the present disclosure
  • FIG. 5 shows the second block diagram of the network device according to the embodiment of the present disclosure
  • FIG. 6 shows a flowchart of a measurement method according to an embodiment of the present disclosure
  • FIG. 7 shows one of the block diagrams of the terminal according to the embodiment of the present disclosure.
  • FIG. 8 shows the second block diagram of the terminal according to the embodiment of the present disclosure.
  • system and “network” are often used interchangeably herein.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean that B is only determined according to A, and B may also be determined according to A and/or other information.
  • the form of the access network is not limited, and may include a macro base station (Macro Base Station), a micro base station (Pico Base Station), a Node B (3G mobile base station), an enhanced base station (eNB), and a 5G mobile base station.
  • Base station gNB
  • home enhanced base station Femto eNB or Home eNode B or Home eNB or HeNB
  • relay station access point
  • RRU Remote Radio Unit, remote radio frequency module
  • RRH Remote Radio Head, radio frequency remote
  • the user terminal may be a mobile phone (or cell phone), or other device capable of sending or receiving wireless signals, including user equipment, personal digital assistants (PDAs), wireless modems, wireless communication devices, handheld devices, laptop computers, cordless phones , Wireless Local Loop (WLL) station, CPE (Customer Premise Equipment) that can convert mobile signals into WiFi signals, or mobile smart hotspots, smart home appliances, or others that can communicate with mobile communication networks spontaneously without human operation equipment, etc.
  • PDAs personal digital assistants
  • WLL Wireless Local Loop
  • CPE Customer Premise Equipment
  • the PRS may represent all reference signals that can be used to measure the time of arrival (Time of Arrival, TOA).
  • TDOA Time of Arrival
  • CSI-RS channel state information reference signal
  • the downlink PRS resource is defined as a set of resource elements (Resource Element, RE) used for downlink PRS transmission.
  • RE resource elements
  • the RE set may contain one or more consecutive symbols in one slot.
  • the downlink PRS resource set is a set of a group of downlink PRS resources of the same TRP.
  • Each downlink PRS resource in the downlink PRS resource set is associated with a single spatial transmit filter (ie, transmit beam) transmitted by a single TRP.
  • One TRP can be configured with one or two downlink PRS resource sets. Whether the UE supports the configuration of two downlink PRS resource sets depends on the UE capability.
  • the downlink PRS positioning frequency layer is a set of downlink PRS resource sets that span one or multiple TRPs and have the same SCS, CP type, Point A, PRS bandwidth and starting PRB position.
  • the NR PRS configuration and the bandwidth part (BandWidth Part, BWP) configuration are independent of each other, that is, the NR PRS configuration is not constrained by the BWP configuration bandwidth.
  • All downlink PRS resource sets in the same downlink PRS positioning frequency layer have the same downlink PRS bandwidth and initial PRB value.
  • the granularity of the downlink PRS starting PRB parameter is 1, the minimum value is 0, and the maximum value is 2176.
  • the granularity of downlink PRS bandwidth configuration is 4PRB, and the maximum value depends on the UE's ability to handle downlink PRS bandwidth reported to the network, and the downlink PRS bandwidth is not less than 24PRB.
  • the UE when the UE is not configured to measure the Gap, the UE does not expect to perform the processing of PRS reception and measurement.
  • the UE can measure the PRS resources within the activated downlink BWP with the same or different subcarrier intervals as the activated downlink BWP, or measure the PRS resources outside the activated downlink BWP (including the same frequency) within the configured measurement gap. or inter-frequency) downlink PRS resources.
  • the UE applies for the measurement gap Gap through RRC signaling as required.
  • the UE does not process other downlink physical channels and signals.
  • UE Per-UE
  • Frequency Range Frequency Range
  • FR Frequency Range
  • MGRP Measurement Gap Repetition Period
  • the embodiments of the present disclosure provide a measurement configuration method, which solves the problem that the current processing method for aperiodic downlink PRS or semi-persistent downlink PRS in the measurement gap has no solution.
  • an embodiment of the present disclosure provides a measurement configuration method, which specifically includes the following steps:
  • Step 11 Configure a target measurement interval Gap of aperiodic downlink PRS or semi-persistent downlink PRS for the terminal.
  • the target measurement Gap is aperiodic measurement Gap or semi-continuous measurement Gap.
  • the target measurement Gap for the aperiodic downlink PRS is the aperiodic measurement Gap
  • the target measurement Gap for the semi-persistent measurement Gap is the semi-persistent measurement Gap
  • the measurement Gap for the aperiodic downlink PRS or the semi-persistent downlink PRS may be a measurement Gap dedicated to positioning, that is, it occupies different time resources from the current measurement Gap used for other purposes; it may also be the same as the current measurement Gap. Gap reuses the same time resources.
  • the target measurement interval Gap of the aperiodic downlink PRS or the semi-persistent downlink PRS is configured for the terminal by the network device, which solves the current processing method for the aperiodic downlink PRS or the semi-persistent downlink PRS in the measurement Gap. It can also avoid the problem that when aperiodic downlink PRS or semi-persistent downlink PRS is processed within the periodic measurement gap, there may be problems that cannot be processed or cannot meet the indicators of lower positioning delay, that is, it can reduce Timing delay.
  • the network device may configure the target measurement gap for the terminal according to target message information, where the target message information is terminal positioning measurement capability information reported by the terminal or historical information of data reported by the terminal. That is, the network device can select/autonomously select and configure the target measurement Gap of the aperiodic downlink PRS or the semi-persistent downlink PRS.
  • the network device can choose to configure the target measurement gap of aperiodic downlink PRS or semi-persistent downlink PRS in an explicit and/or implicit way.
  • the method configures the target measurement Gap of aperiodic downlink PRS or semi-persistent downlink PRS.
  • the time unit of the target measurement gap is related to the terminal positioning measurement capability information reported by the terminal; the time unit of the target measurement gap is: a subframe, a time slot or an orthogonal frequency division multiplexing (Orthogonal frequency division multiplexing). division multiplex, OFDM) symbols.
  • the time unit of the target measurement gap corresponding to the terminal positioning measurement capability level reported by the terminal is determined.
  • the terminal positioning measurement capability information includes at least one of the following:
  • the terminal In the downlink active bandwidth part, whether the terminal can perform positioning measurement and downlink processing at the same time;
  • the terminal can perform positioning measurement and downlink processing at the same time in different bandwidth parts of the same frequency band;
  • the terminal can perform positioning measurement and downlink processing at the same time in different frequency bands;
  • the downlink processing includes downlink channel processing or downlink signal processing except downlink PRS.
  • the corresponding relationship between the terminal positioning measurement capability level and the time unit of the target measurement gap refer to the corresponding relationship between the terminal positioning measurement capability information and the configuration parameters in the embodiment of implicitly configuring the target measurement gap.
  • the network device can independently choose to display and/or implicitly configure the target measurement Gap of aperiodic downlink PRS or semi-persistent downlink PRS.
  • the target measurement Gap of the aperiodic downlink PRS or semi-persistent downlink PRS is configured using the formula method.
  • the step 11 may specifically include: sending the configuration parameter of the target measurement interval Gap to the terminal; and/or configuring the target duration of aperiodic downlink PRS or semi-persistent downlink PRS for the terminal;
  • the target duration is the subframe, time slot or OFDM symbol where the aperiodic downlink PRS or semi-persistent downlink PRS is located, and the target measurement Gap is configured by configuring the target duration.
  • the network device may explicitly configure the target measurement Gap of aperiodic downlink PRS or semi-persistent downlink PRS, and send the configuration parameter of the target measurement interval Gap to the terminal to notify the UE of the aperiodic downlink PRS or semi-persistent downlink PRS.
  • Target measurement gap for continuous downlink PRS may be explicitly configured.
  • the step of sending the configuration parameters of the target measurement gap to the terminal may specifically include: sending the configuration parameters of the target measurement gap to the terminal through first signaling.
  • the first signaling may be: Long Term Evolution Positioning Protocol (LTE Positioning Protocol, LPP) signaling, Radio Resource Control (Radio Resource Control, RRC) signaling, and a medium access control control unit (Medium Access Control Control) Element, MAC-CE) signaling or Downlink Control Information (Downlink Control Information, DCI) signaling.
  • LTE Positioning Protocol LPP
  • RRC Radio Resource Control
  • MAC-CE Medium Access Control Control unit
  • DCI Downlink Control Information
  • the sending the configuration parameters of the target measurement gap to the terminal includes:
  • the first configuration parameter includes: any two of the first start time, the first end time, and a first duration, and the first duration is from the first start time to the first time.
  • a network device is configured with N Transmit and Receive Points (TRPs) in total, and each TRP can include at least one downlink PRS resource set; T1 represents the start time of the aperiodic measurement Gap, and T2 represents the aperiodic measurement Gap At the end time, L1 represents the duration of the aperiodic measurement Gap.
  • TRPs Transmit and Receive Points
  • the network device may notify any two values of T1, T2 and L1 through explicit signaling.
  • the explicit signaling may be LPP signaling, RRC signaling, MAC-CE signaling or DCI signaling.
  • T1 min ⁇ T1(TRP#1), T1(TRP#2),...,T1(TRP#N) ⁇ ; that is, T1 is the minimum value of the start time of the aperiodic downlink PRS resource set of all downlink cells .
  • T2 max ⁇ T2(TRP#1), T2(TRP#2),...,T2(TRP#N) ⁇ ; that is, T2 is the maximum value of the end time of the aperiodic downlink PRS resource set of all downlink cells.
  • the time units of T1, T2 and L may be subframes, time slots or OFDM symbols.
  • the advantage of subframes is absolute time. Since the unit of the PRS cycle is subframes, consistency can be guaranteed; the advantage of time slots is that the time domain mapping of PRS resources and PRS resource sets is based on time slots; the advantage of OFDM symbols is that the particle size The degree is small, and the time-frequency resource overhead occupied is small.
  • each TRP contains 1 downlink PRS resource set
  • each downlink PRS resource set contains 4 downlink PRS resources
  • each downlink PRS resource contains 6
  • OFDM orthogonal frequency division multiplexing
  • the step of sending the configuration parameters of the target measurement gap to the terminal may include:
  • the minimum value of the starting time of the semi-persistent downlink PRS resource set of all downlink cells is determined as the second starting time of the semi-persistent measurement Gap;
  • the semi-persistent downlink PRS period determine the maximum value of the end time of the semi-persistent downlink PRS resource set of all downlink cells as the second end time of the semi-persistent measurement Gap;
  • the second configuration parameter includes: a repetition period of the semi-persistent measurement Gap and a configuration parameter of a semi-continuous measurement Gap;
  • the repetition period of the semi-persistent measurement Gap of the semi-persistent downlink PRS is equal to or greater than the repetition period of the semi-persistent downlink PRS.
  • the method further includes:
  • the semi-persistent downlink PRS when the semi-persistent downlink PRS is deactivated, it is automatically disabled.
  • T1 represents the start time of the semi-persistent measurement gap
  • T2 represents the end time of the semi-persistent measurement gap
  • L2 represents the semi-persistent measurement gap. Duration within a period, P denotes the repetition period of the semi-continuous measurement Gap.
  • the network device may notify any two among T1, T2 and L2, and P through explicit signaling.
  • the explicit signaling may be LPP signaling, RRC signaling, MAC-CE signaling or DCI signaling.
  • T1 min ⁇ T1(TRP#1), T1(TRP#2),...,T1(TRP#N) ⁇ ; that is, T1 is the semi-persistent downlink PRS of all downlink cells in a semi-persistent downlink PRS period The minimum value of the start time of the resource set.
  • T2 max ⁇ T2(TRP#1), T2(TRP#2),...,T2(TRP#N) ⁇ ; that is, T2 is the semi-persistent downlink PRS resources of all downlink cells within the semi-persistent downlink PRS period The maximum value of the end time of the set.
  • T3 is the start time of the semi-continuous measurement Gap of the next repetition period
  • T4 is the end time of the semi-continuous measurement of the Gap of the next repetition period.
  • the time units of T1, T2, T3, T4, L2, and P may be subframes, time slots, or OFDM symbols (specifically, it may be determined according to the terminal positioning measurement capability information).
  • each TRP contains 1 downlink PRS resource set
  • each downlink PRS resource set contains 4 downlink PRS resources
  • each downlink PRS resource contains 6
  • OFDM symbols OFDM symbols
  • continuous time slot allocation is adopted between the downlink PRS resource sets of all TRPs, that is, TDM multiplexing. Therefore, each downlink PRS resource set occupies 2 consecutive time slots.
  • the network device may configure the target measurement Gap of aperiodic downlink PRS or semi-persistent downlink PRS for the terminal by means of implicit configuration. That is, the network device does not configure the UE's positioning measurement Gap through explicit signaling, but configures the time domain resources (or the target duration, such as aperiodic downlink PRS or semi-persistent downlink PRS) where the aperiodic downlink PRS or semi-persistent downlink PRS is located.
  • the subframe, time slot or OFDM symbol where the downlink PRS is located) the terminal performs downlink positioning signal reception and measurement processing by default in a way predefined by the protocol.
  • the UE may select one of the following two methods for processing within the positioning measurement gap determined by the implicit configuration method according to the terminal positioning measurement capability information reported to the network device:
  • Mode 1 The UE can only perform positioning measurement operations, and cannot receive and process the downlink channel and the first downlink signal.
  • the UE can perform a positioning measurement operation, and can also receive and process the downlink physical channel and the first downlink signal.
  • the first downlink information number is a downlink signal other than the downlink PRS.
  • the foregoing manners 1 and 2 may be pre-defined by a protocol or notified by high-level signaling.
  • the UE positioning measurement capability level is the difference between the UE positioning measurement capability (such as whether the UE can perform positioning measurement and downlink processing in the same subframe/slot) and the start time T1, duration L and end time T2.
  • the corresponding relationship between them is shown in Table 2 below, where N represents the number of configured TRPs.
  • N1 and N2 are positive integers greater than or equal to 1.
  • the foregoing Table 2 and Table 3 may be predefined by a protocol or notified by high-level signaling.
  • the terminal positioning measurement capability information includes: whether the terminal can perform positioning measurement and downlink processing at the same time in the downlink active bandwidth part, in different bandwidth parts in the same frequency band, and in different frequency bands
  • the terminal can Table 4 shows the correspondence between the UE positioning measurement capability level and the UE positioning measurement capability for the bandwidth.
  • the downlink positioning reference signal PRS is received and measured.
  • the network device may configure the target measurement Gap of aperiodic downlink PRS or semi-persistent downlink PRS for the terminal by means of explicit configuration and implicit configuration.
  • the target measurement Gap determined by the explicit configuration can be used, or the target measurement Gap determined by the implicit configuration can also be used; it can be determined by the protocol convention.
  • the explicit configuration has a higher priority, that is, when the target measurement Gap determined by the explicit configuration and the implicit configuration are inconsistent, the target measurement Gap determined by the explicit configuration is: allow.
  • the network device 400 in the embodiment of the present disclosure includes:
  • the configuration module 410 is configured to configure the target measurement interval Gap of the aperiodic downlink positioning reference signal PRS or the semi-persistent downlink PRS for the terminal, wherein the target measurement Gap is the aperiodic measurement Gap or the semi-persistent measurement Gap.
  • the network device 400 further includes:
  • the determining module is configured to determine the target measurement Gap according to target information; wherein, the target information is terminal positioning measurement capability information reported by the terminal or historical information of data reported by the terminal.
  • the time unit of the target measurement Gap is related to the terminal positioning measurement capability information reported by the terminal;
  • the time unit of the target measurement Gap is: subframe, time slot or OFDM symbol.
  • the configuration module 410 includes:
  • a sending submodule configured to send the configuration parameters of the target measurement interval Gap to the terminal
  • the configuration sub-module is used to configure the target duration of the aperiodic downlink PRS or the semi-persistent downlink PRS for the terminal; wherein, the target duration is the subframe, time, and time where the aperiodic downlink PRS or the semi-persistent downlink PRS is located. Slots or OFDM symbols, the target measurement Gap is configured by configuring the target duration.
  • the sending submodule includes:
  • a sending unit configured to send the configuration parameters of the target measurement Gap to the terminal through first signaling; wherein, the first signaling is Long Term Evolution Positioning Protocol LPP signaling, radio resource control RRC signaling, media interface Incoming control control unit MAC-CE signaling or downlink control information DCI signaling.
  • LPP Long Term Evolution Positioning Protocol
  • RRC radio resource control
  • MAC-CE media interface Incoming control control unit
  • the sending submodule includes:
  • a first determining unit configured to determine the minimum value of the start moments of the aperiodic downlink PRS resource sets of all downlink cells as the first start moment of the aperiodic measurement Gap;
  • a second determining unit configured to determine the maximum value of the end moments of the aperiodic downlink PRS resource sets of all downlink cells as the first end moment of the aperiodic measurement Gap;
  • a first sending unit configured to send the first configuration parameter of the aperiodic measurement Gap to the terminal
  • the first configuration parameter includes: any two of the first start time, the first end time, and a first duration, and the first duration is from the first start time to the first time. Describe the duration of the first end time.
  • the sending submodule includes:
  • a third determining unit configured to determine, within a semi-persistent downlink PRS cycle, the minimum value of the start times of the semi-persistent downlink PRS resource sets of all downlink cells as the second start time of the semi-persistent measurement Gap;
  • a fourth determining unit configured to determine, within the semi-persistent downlink PRS period, the maximum value of the end time of the semi-persistent downlink PRS resource set of all downlink cells as the second end time of the semi-persistent measurement Gap;
  • a second sending unit configured to send the second configuration parameter of the semi-persistent measurement Gap to the terminal
  • the second configuration parameter includes: a repetition period of the semi-continuous measurement Gap and a configuration parameter of a semi-continuous measurement Gap;
  • the configuration parameters of the one semi-continuous measurement Gap include: any two of the second start time, the second end time, and a second duration, and the second duration is from the second The duration from the start time to the second end time.
  • the network device 400 further includes:
  • a first sending module configured to send a second signaling to the terminal; wherein, the second signaling is used to activate the semi-persistent measurement Gap;
  • the second sending module is configured to send third signaling to the terminal; wherein, the third signaling is used to instruct activation of the semi-persistent downlink PRS and activation of the semi-persistent measurement Gap.
  • the terminal positioning measurement capability information includes at least one of the following:
  • the terminal In the downlink active bandwidth part, whether the terminal can perform positioning measurement and downlink processing at the same time;
  • the terminal can perform positioning measurement and downlink processing at the same time in different bandwidth parts of the same frequency band;
  • the terminal can perform positioning measurement and downlink processing at the same time in different frequency bands;
  • the downlink processing includes downlink channel processing or downlink signal processing except downlink PRS.
  • the network device embodiments of the present disclosure correspond to the foregoing method embodiments, and all implementation means in the foregoing method embodiments are applicable to the network device embodiments, and can also achieve the same technical effects.
  • the network device 400 in the above scheme through the network device configuring the target measurement interval Gap of the aperiodic downlink PRS or the semi-persistent downlink PRS for the terminal, solves the current processing method for the aperiodic downlink PRS or the semi-persistent downlink PRS in the measurement Gap, There is no solution yet; and it can avoid the problem that when aperiodic downlink PRS or semi-persistent downlink PRS is processed within the periodic measurement gap, there may be problems that cannot be processed or cannot meet the indicators of low positioning delay, that is, The timing delay can be reduced.
  • an embodiment of the present disclosure further provides a network device, including: a processor 500, a memory 520 connected to the processor 500 through a bus interface, and a A transceiver 510 connected to the processor 500 by a bus interface; the memory 520 is used to store programs and data used by the processor when performing operations; data information or pilot frequencies are sent through the transceiver 510, and also through the transceiver 510.
  • the transceiver 510 receives the uplink control channel; when the processor 500 calls and executes the programs and data stored in the memory 520, the following functions are implemented.
  • the processor 500 is configured to read the program in the memory 520, and perform the following processes:
  • a target measurement interval Gap of aperiodic downlink positioning reference signal PRS or semi-persistent downlink PRS is configured for the terminal; wherein, the target measurement Gap is aperiodic measurement Gap or semi-persistent measurement Gap.
  • the processor 500 implements the following steps when executing the program:
  • the target measurement Gap is determined; wherein, the target information is the terminal positioning measurement capability information reported by the terminal or the history information of the data reported by the terminal.
  • the time unit of the target measurement Gap is related to the terminal positioning measurement capability information reported by the terminal;
  • the time unit of the target measurement Gap is: subframe, time slot or OFDM symbol.
  • the processor 500 implements the following steps when executing the program:
  • the target measurement Gap is configured in a manner of configuring the target duration.
  • the processor 500 implements the following steps when executing the program:
  • the configuration parameters of the target measurement Gap are sent to the terminal through the first signaling; wherein, the first signaling is the Long Term Evolution Positioning Protocol (LPP) signaling, the radio resource control (RRC) signaling, and the control unit of the medium access control.
  • LPP Long Term Evolution Positioning Protocol
  • RRC radio resource control
  • MAC-CE downlink control information
  • DCI downlink control information
  • the processor 500 implements the following steps when executing the program:
  • the first configuration parameter includes: any two of the first start time, the first end time, and a first duration, and the first duration is from the first start time to the first time. Describe the duration of the first end time.
  • the processor 500 implements the following steps when executing the program:
  • the semi-persistent downlink PRS period determine the maximum value of the end time of the semi-persistent downlink PRS resource set of all downlink cells as the second end time of the semi-persistent measurement Gap;
  • the second configuration parameter includes: a repetition period of the semi-continuous measurement Gap and a configuration parameter of a semi-continuous measurement Gap;
  • the configuration parameters of the one semi-continuous measurement Gap include: any two of the second start time, the second end time, and a second duration, and the second duration is from the second The duration from the start time to the second end time.
  • the processor 500 implements the following steps when executing the program:
  • the third signaling is used to instruct activation of the semi-persistent downlink PRS and activation of the semi-persistent measurement Gap.
  • the terminal positioning measurement capability information includes at least one of the following:
  • the terminal In the downlink active bandwidth part, whether the terminal can perform positioning measurement and downlink processing at the same time;
  • the terminal can perform positioning measurement and downlink processing at the same time in different bandwidth parts of the same frequency band;
  • the terminal can perform positioning measurement and downlink processing at the same time in different frequency bands;
  • the downlink processing includes downlink channel processing or downlink signal processing except downlink PRS.
  • the transceiver 510 is used for receiving and transmitting data under the control of the processor 500 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 500 and various circuits of memory represented by memory 520 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 510 may be a number of elements, including a transmitter and a transceiver, providing a means for communicating with various other devices over a transmission medium.
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 may store data used by the processor 500 in performing operations.
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium.
  • a program or an instruction is stored on the readable storage medium.
  • the processor is the processor in the electronic device described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • an embodiment of the present disclosure provides a measurement method, including:
  • Step 61 Obtain the target measurement Gap of the aperiodic downlink positioning reference signal PRS or the semi-persistent downlink PRS configured by the network device for the terminal.
  • the target measurement Gap is aperiodic measurement Gap or semi-continuous measurement Gap.
  • the target measurement Gap for the aperiodic downlink PRS is the aperiodic measurement Gap
  • the target measurement Gap for the semi-persistent measurement Gap is the semi-persistent measurement Gap
  • the measurement Gap for the aperiodic downlink PRS or the semi-persistent downlink PRS may be a measurement Gap dedicated to positioning, that is, it occupies different time resources from the current measurement Gap used for other purposes; it may also be the same as the current measurement Gap. Gap reuses the same time resources.
  • Step 62 Perform downlink PRS reception and measurement according to the target measurement Gap.
  • the target measurement interval Gap of aperiodic downlink PRS or semi-persistent downlink PRS is configured for the terminal through the network device, so that the terminal can perform aperiodic downlink according to the aperiodic measurement Gap or semi-persistent measurement Gap configured by the network device.
  • the reception and processing of PRS or semi-persistent downlink PRS solves the problem that the current processing method for aperiodic downlink PRS or semi-persistent downlink PRS in the measurement gap has no solution;
  • the continuous downlink PRS is processed within the periodic measurement gap, there may be problems that it cannot be processed or cannot meet the index of low positioning delay, that is, the timing delay can be reduced.
  • the step of acquiring the target measurement Gap of the aperiodic downlink positioning reference signal PRS or the semi-persistent downlink PRS configured by the network device for the terminal may include:
  • the target measurement Gap Receives the configuration parameters of the target measurement Gap sent by the network device; and/or obtain the target duration for configuring the aperiodic downlink PRS or semi-persistent downlink PRS for the terminal by the network device; wherein the target duration is For the subframe, time slot or OFDM symbol where the aperiodic downlink PRS or semi-persistent downlink PRS is located, the target measurement Gap is configured by configuring the target duration.
  • receiving the configuration parameters of the target measurement Gap sent by the network device that is, receiving the target measurement Gap configured by the network device for the terminal in an explicit configuration manner.
  • the configuration method for configuring the target measurement gap for the terminal by the network device by displaying the configuration reference may be made to the embodiment on the network device side, which is not repeated here to avoid repetition.
  • the step of receiving the configuration parameters of the target measurement gap sent by the network device may include:
  • the configuration parameters of the target measurement Gap sent by the network device are received through first signaling; wherein, the first signaling may be LPP signaling, RRC signaling, MAC-CE signaling or DCI signaling.
  • the step of receiving the configuration parameters of the target measurement gap sent by the network device may include:
  • the first configuration parameter includes: the first start time of the aperiodic measurement Gap, the aperiodic measurement Gap Any two of the first end time and the first duration of , where the first duration is the duration from the first start time to the first end time.
  • the step of receiving the configuration parameters of the target measurement Gap sent by the network device may include:
  • the second configuration parameter includes: a repetition period of the semi-persistent measurement Gap and a semi-persistent measurement Gap Configuration parameters;
  • the configuration parameters of the one semi-persistent measurement Gap include: any two of the second start time of the semi-persistent measurement Gap, the second end time of the semi-persistent measurement Gap, and the second duration,
  • the second duration is the duration from the second start time to the second end time.
  • the method further includes:
  • the second signaling is used to activate the semi-persistent measurement Gap; or, receiving the third signaling sent by the network device; wherein the third signaling The signaling is used to activate the semi-persistent downlink PRS and activate the semi-persistent measurement Gap.
  • the reception and measurement of downlink PRS are performed, including one of the following ways:
  • Mode 1 According to the terminal positioning measurement capability information, it is determined that the downlink PRS is received and measured within the target duration, and the downlink channel or the first downlink signal is not received and processed;
  • Mode 2 According to the terminal positioning and measurement capability information, it is determined that the downlink PRS is received and measured within the target duration, and the downlink channel or the first downlink signal is received and processed;
  • the first downlink signal is a downlink signal other than the downlink PRS.
  • the method may further include: sending terminal positioning capability information to the network device.
  • the terminal positioning measurement capability information includes at least one of the following:
  • the terminal In the downlink active bandwidth part, whether the terminal can perform positioning measurement and downlink processing at the same time;
  • the terminal can perform positioning measurement and downlink processing at the same time in different bandwidth parts of the same frequency band;
  • the terminal can perform positioning measurement and downlink processing at the same time in different frequency bands;
  • the downlink processing includes downlink channel processing or downlink signal processing except downlink PRS.
  • the terminal may directly send the terminal location measurement capability information to the serving base station, or the terminal may first send the terminal location measurement capability information to a local management function (Location Management Function, LMF), and then the LMF forwards it to the serving base station.
  • LMF Local Management Function
  • the serving base station also needs to acquire downlink PRS configuration information of all non-serving base stations.
  • the serving base station acquires downlink PRS configuration information of all non-serving base stations, including:
  • the non-serving base station sends the downlink PRS configuration information of the cell to the LMF, and the LMF then forwards it to the serving base station;
  • the downlink PRS configuration information is directly exchanged between the non-serving base station and the serving base station through the Xn interface.
  • the terminal selects the above method 1 and method 2 within the determined target measurement gap according to the terminal positioning measurement capability information reported to the network device by the terminal. processed in one of the ways.
  • the foregoing Manners 1 and 2 may be predefined through a protocol, or notified through higher layer signaling.
  • the step of receiving and measuring the downlink PRS according to the target measurement Gap which can include:
  • downlink PRS reception and measurement are performed.
  • the terminal when the network device configures the target measurement gap for the terminal by means of implicit configuration, the terminal can configure the target duration of the aperiodic downlink PRS or semi-persistent downlink PRS for the terminal according to the protocol agreement.
  • the target measurement Gap is determined within the system to receive and process the downlink PRS.
  • the positioning measurement capability information includes: in the same subframe or time slot, whether the terminal can perform positioning measurement and downlink processing at the same time, the target is determined according to the terminal positioning measurement capability information.
  • the steps for measuring Gap can include:
  • the terminal when the terminal cannot perform positioning measurement and downlink processing at the same time, determine the target measurement Gap according to the correspondence between the terminal positioning measurement capability information and the configuration parameters of the measurement gap;
  • the target is determined according to the correspondence between the terminal positioning measurement capability information and the configuration parameters of the measurement gap and the valid conditions.
  • the downlink processing includes downlink channel processing or downlink signal processing except downlink PRS.
  • the valid conditions include:
  • the first valid time slot of the subframe where the aperiodic downlink PRS or the semi-persistent downlink PRS is located is determined as the target measurement Gap; wherein, the first valid time slot is: at the same time Aperiodic downlink PRS or semi-persistent downlink PRS in one time slot, and a time slot of N1 OFDM symbols is reserved between the downlink channel or the first downlink signal;
  • the second valid time slot of the time slot where the aperiodic downlink PRS or the semi-persistent downlink PRS is located is determined as the target measurement Gap; wherein, the second valid time slot is: aperiodic downlink downlink A downlink time slot of N1 OFDM symbols is reserved between the PRS or semi-persistent downlink PRS and the downlink channel or the first downlink signal, or N2 OFDM symbols are reserved between the uplink OFDM symbols before the start of each downlink PRS resource , and reserve flexible time slots of N2 OFDM symbols between the uplink OFDM symbols after the end of each downlink PRS resource;
  • N1 and N2 are positive integers greater than 1.
  • the terminal side determines the target measurement Gap rule within the target duration when the network device configures the aperiodic downlink PRS or semi-persistent downlink PRS for the terminal, see Table 2 and Table 3 above. In order to avoid repetition, I won't go into details here.
  • the terminal positioning measurement capability information includes: whether the terminal can perform positioning measurement and downlink processing at the same time in the downlink active bandwidth part, in different bandwidth parts in the same frequency band, and in different frequency bands, the according to The target measures Gap, and performs downlink positioning reference signal PRS reception and measurement, including:
  • the terminal positioning measurement capability information receive and measure the downlink positioning reference signal PRS in the downlink active bandwidth part, in different bandwidth parts of the same frequency band, or in different frequency bands;
  • the downlink processing includes downlink channel processing or downlink signal processing except downlink PRS.
  • the rules for receiving and processing downlink PRS can be found in Table 4 above. In order to avoid repetition, I won't go into details here.
  • an embodiment of the present disclosure provides a terminal 700, including:
  • the obtaining module 710 is configured to obtain the target measurement Gap of the aperiodic downlink positioning reference signal PRS or the semi-persistent downlink PRS configured by the network device for the terminal; wherein, the target measurement Gap is the aperiodic measurement Gap or the semi-persistent measurement Gap;
  • the processing module 720 is configured to measure the Gap according to the target, and receive and measure the downlink PRS.
  • the obtaining module 710 includes:
  • a receiving submodule configured to receive the configuration parameters of the target measurement Gap sent by the network device
  • an acquisition submodule configured to acquire the target duration of the aperiodic downlink PRS or semi-persistent downlink PRS configured by the network device for the terminal; wherein, the target duration is where the aperiodic downlink PRS or semi-persistent downlink PRS is located
  • the target measurement Gap is configured by configuring the target duration.
  • the receiving submodule includes:
  • a first receiving unit configured to receive, through first signaling, the configuration parameters of the target measurement gap sent by the network device
  • the first signaling is Long Term Evolution Positioning Protocol LPP signaling, radio resource control RRC signaling, medium access control control element MAC-CE signaling or downlink control information DCI signaling.
  • the receiving submodule includes:
  • a second receiving unit configured to receive the first configuration parameter of the aperiodic measurement Gap of the aperiodic downlink PRS sent by the network device;
  • the first configuration parameter includes: any two of the first start time of the aperiodic measurement Gap, the first end time of the aperiodic measurement gap, and a first duration, the first duration is the duration from the first start time to the first end time.
  • the receiving submodule includes:
  • a third receiving unit configured to receive the second configuration parameter of the semi-persistent measurement Gap of the semi-persistent downlink PRS sent by the network device;
  • the second configuration parameter includes: a repetition period of the semi-continuous measurement Gap and a configuration parameter of a semi-continuous measurement Gap;
  • the configuration parameters of the one semi-persistent measurement gap include: any two of the second start time of the semi-continuous measurement gap, the second end time of the semi-persistent measurement gap, and the second duration.
  • the second duration is the duration from the second start time to the second end time.
  • the terminal 700 further includes:
  • a first receiving module configured to receive the second signaling sent by the network device; wherein, the second signaling is used to activate the semi-persistent measurement Gap;
  • the second receiving module is configured to receive the third signaling sent by the network device; wherein, the third signaling is used to activate the semi-persistent downlink PRS and activate the semi-persistent measurement Gap.
  • the processing module 720 includes:
  • a first determination submodule configured to determine, according to the terminal positioning measurement capability information, to perform downlink PRS reception and measurement within the target duration, and not to receive and process downlink channels or the first downlink signal;
  • a second determination submodule configured to determine, according to the terminal positioning measurement capability information, to perform downlink PRS reception and measurement within the target duration, and to receive and process downlink channels or first downlink signals;
  • the first downlink signal is a downlink signal other than the downlink PRS.
  • the terminal 700 further includes:
  • a sending module configured to send terminal positioning capability information to the network device
  • the processing module 720 includes:
  • a third determination submodule configured to determine the target measurement Gap according to the terminal positioning measurement capability information
  • the first processing submodule is used for receiving and measuring downlink PRS in the target measurement Gap.
  • the third determining submodule includes:
  • the first determining unit is used for, in the same subframe or time slot, when the terminal cannot perform positioning measurement and downlink processing at the same time, according to the corresponding relationship between the terminal positioning measurement capability information and the configuration parameter of the measurement Gap, determining the target measurement Gap;
  • the second determining unit is configured to, in the case that the terminal can perform positioning measurement and downlink processing at the same time in the same subframe or time slot, according to the corresponding relationship between the terminal positioning measurement capability information and the configuration parameters of the measurement Gap and Effective conditions, determine the target measurement Gap;
  • the downlink processing includes downlink channel processing or downlink signal processing except downlink PRS.
  • the valid conditions include:
  • the first valid time slot of the subframe where the aperiodic downlink PRS or the semi-persistent downlink PRS is located is determined as the target measurement Gap; wherein, the first valid time slot is: Aperiodic downlink PRS or semi-persistent downlink PRS in a time slot, and a time slot of N1 OFDM symbols is reserved between the downlink channel or the first downlink signal;
  • the second valid time slot of the time slot where the aperiodic downlink PRS or the semi-persistent downlink PRS is located is determined as the target measurement Gap; wherein, the second valid time slot is: aperiodic downlink downlink
  • the downlink time slot of N1 OFDM symbols is reserved between the PRS or semi-persistent downlink PRS and the downlink channel or the first downlink signal, or N2 OFDM symbols are reserved between the uplink OFDM symbols before the start of each downlink PRS resource , and reserve flexible time slots of N2 OFDM symbols between the uplink OFDM symbols after each downlink PRS resource ends;
  • N1 and N2 are positive integers greater than 1.
  • Module 720 includes:
  • the second processing submodule is configured to receive and measure the downlink positioning reference signal PRS in the downlink active bandwidth part, in different bandwidth parts of the same frequency band, or in different frequency bands according to the terminal positioning measurement capability information;
  • the downlink processing includes downlink channel processing or downlink signal processing except downlink PRS.
  • terminal embodiments of the present disclosure correspond to the foregoing method embodiments, and all implementation means in the foregoing method embodiments are applicable to the terminal embodiments, and can also achieve the same technical effects.
  • the terminal 700 in the embodiment of the present disclosure configures the target measurement interval Gap of the aperiodic downlink PRS or the semi-persistent downlink PRS for the terminal through the network device, so that the terminal can perform the measurement according to the aperiodic measurement Gap or the semi-persistent measurement Gap configured by the network device.
  • the reception and processing of aperiodic downlink PRS or semi-persistent downlink PRS solves the problem that the current processing method for aperiodic downlink PRS or semi-persistent downlink PRS in the measurement gap has no solution;
  • the PRS or the semi-persistent downlink PRS is processed in the periodic measurement gap, there may be problems that it cannot be processed or cannot meet the index of low positioning delay, that is, the timing delay can be reduced.
  • this embodiment provides a terminal, including: a processor 81 , and a memory 83 connected to the processor 81 through a bus interface 82 , and the memory 83 is used to store the data stored in the processor 81 in Programs and data used in performing operations, when the processor 81 calls and executes the programs and data stored in the memory 83, the following processes are performed.
  • the processor 81 implements the following steps when executing the program:
  • the target measurement Gap is the aperiodic measurement Gap or the semi-persistent measurement Gap;
  • the downlink PRS is received and measured.
  • the processor 81 implements the following steps when executing the program:
  • the target duration is the subframe or time slot where the aperiodic downlink PRS or semi-persistent downlink PRS is located Or Orthogonal Frequency Division Multiplexing OFDM symbols, the target measurement Gap is configured by configuring the target duration.
  • the processor 81 implements the following steps when executing the program:
  • the first signaling is Long Term Evolution Positioning Protocol LPP signaling, radio resource control RRC signaling, medium access control control element MAC-CE signaling or downlink control information DCI signaling.
  • the processor 81 implements the following steps when executing the program:
  • the first configuration parameter includes: any two of the first start time of the aperiodic measurement Gap, the first end time of the aperiodic measurement gap, and a first duration, the first duration is the duration from the first start time to the first end time.
  • the processor 81 implements the following steps when executing the program:
  • the second configuration parameter includes: a repetition period of the semi-continuous measurement Gap and a configuration parameter of a semi-continuous measurement Gap;
  • the configuration parameters of the one semi-persistent measurement gap include: any two of the second start time of the semi-continuous measurement gap, the second end time of the semi-persistent measurement gap, and the second duration.
  • the second duration is the duration from the second start time to the second end time.
  • the processor 81 implements the following steps when executing the program:
  • the second signaling is used to activate the semi-persistent measurement Gap
  • the third signaling is used to activate the semi-persistent downlink PRS and activate the semi-persistent measurement Gap.
  • the processor 81 implements the following steps when executing the program:
  • the terminal positioning measurement capability information it is determined that the downlink PRS is received and measured within the target duration, and the downlink channel or the first downlink signal is not received and processed;
  • the terminal positioning measurement capability information it is determined that the downlink PRS is received and measured within the target duration, and the downlink channel or the first downlink signal is received and processed;
  • the first downlink signal is a downlink signal other than the downlink PRS.
  • the processor 81 implements the following steps when executing the program:
  • the processor implements the following steps when executing the program:
  • downlink PRS reception and measurement are performed.
  • the processor 81 implements the following steps when executing the program :
  • the terminal when the terminal cannot perform positioning measurement and downlink processing at the same time, determine the target measurement Gap according to the correspondence between the terminal positioning measurement capability information and the configuration parameters of the measurement gap;
  • the target is determined according to the correspondence between the terminal positioning measurement capability information and the configuration parameters of the measurement gap and the valid conditions.
  • the downlink processing includes downlink channel processing or downlink signal processing except downlink PRS.
  • the valid conditions include:
  • the first valid time slot of the subframe where the aperiodic downlink PRS or the semi-persistent downlink PRS is located is determined as the target measurement Gap; wherein, the first valid time slot is: Aperiodic downlink PRS or semi-persistent downlink PRS in a time slot, and a time slot of N1 OFDM symbols is reserved between the downlink channel or the first downlink signal;
  • the second valid time slot of the time slot where the aperiodic downlink PRS or the semi-persistent downlink PRS is located is determined as the target measurement Gap; wherein, the second valid time slot is: aperiodic downlink downlink
  • the downlink time slot of N1 OFDM symbols is reserved between the PRS or semi-persistent downlink PRS and the downlink channel or the first downlink signal, or N2 OFDM symbols are reserved between the uplink OFDM symbols before the start of each downlink PRS resource , and reserve flexible time slots of N2 OFDM symbols between the uplink OFDM symbols after each downlink PRS resource ends;
  • N1 and N2 are positive integers greater than 1.
  • the terminal positioning measurement capability information includes: whether the terminal can perform positioning measurement and downlink processing at the same time in the downlink active bandwidth part, in different bandwidth parts in the same frequency band, and in different frequency bands, the processing is performed.
  • the controller 81 executes the program:
  • the terminal positioning measurement capability information receive and measure the downlink positioning reference signal PRS in the downlink active bandwidth part, in different bandwidth parts of the same frequency band, or in different frequency bands;
  • the downlink processing includes downlink channel processing or downlink signal processing except downlink PRS.
  • the transceiver 84 is connected to the bus interface 82 for receiving and transmitting data under the control of the processor 81 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically, one or more processors represented by the processor 81 and various circuits of the memory represented by the memory 83 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 84 may be a number of elements, including a transmitter and a transceiver, providing a means for communicating with various other devices over a transmission medium.
  • the user interface 85 may also be an interface capable of externally connecting a required device, and the connected devices include but are not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 81 is responsible for managing the bus architecture and general processing, and the memory 83 may store data used by the processor 81 in performing operations.
  • the embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium.
  • a program or an instruction is stored on the readable storage medium.
  • the processor is the processor in the electronic device described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • Embodiment 1 The network device (the serving base station is taken as an example hereinafter) notifies the terminal of the positioning measurement Gap of the aperiodic or semi-persistent downlink PRS by means of explicit signaling.
  • N 8.
  • the execution process for the UE side is as follows:
  • Step 1 the UE reports the UE positioning measurement capability information to the serving base station.
  • Step 2 The UE receives the explicit configuration parameters of the aperiodic/semi-persistent positioning measurement Gap sent by the serving base station.
  • Step 3 The UE performs corresponding processing according to the explicit configuration parameters obtained in the above step 2, respectively.
  • the UE performs downlink PRS reception and measurement processing at the positioning measurement gap indicated by the explicitly configured parameters to obtain the positioning measurement amount.
  • Step 4 The UE reports the positioning measurement to the network, or performs UE position calculation based on the positioning measurement.
  • the execution steps for the serving base station side are as follows:
  • Step 1 The serving base station selects an explicit method to configure the aperiodic/semi-persistent positioning measurement gap according to the UE positioning measurement capability information reported by the UE.
  • the positioning measurement Gap is aperiodic, and the configuration parameters can be defined in the following manner.
  • T1 represents the start time of the aperiodic positioning measurement gap
  • T2 represents the end time of the aperiodic positioning measurement gap
  • L1 represents the duration of the aperiodic positioning measurement gap
  • the serving base station notifies any two values between T1, T2 and L1 through explicit signaling.
  • Explicit signaling may be LPP signaling, RRC signaling, MAC-CE or DCI signaling.
  • time units of T1, T2 and L1 may be subframes, time slots or OFDM symbols.
  • the repetition period of the semi-persistent positioning measurement Gap is equal to or greater than the repetition period of the semi-persistent downlink PRS.
  • the repetition period of the semi-persistent positioning measurement Gap mentioned in the embodiments of the present disclosure is equal to the repetition period of the semi-persistent downlink PRS, which may refer to the repetition period of the semi-persistent positioning measurement Gap and the repetition period of the semi-persistent downlink PRS. the same, or the two are integer multiples.
  • T1 indicates the start time of the semi-persistent positioning measurement gap
  • T2 indicates the end time of the semi-persistent positioning measurement gap
  • L2 indicates the semi-persistent positioning measurement gap.
  • the duration of the positioning measurement Gap in one cycle, and P represents the repetition period of the semi-persistent positioning measurement Gap.
  • the network device may notify any two values between T1, T2 and L2, and P through explicit signaling.
  • Explicit signaling may be LPP signaling, RRC signaling, MAC-CE or DCI signaling.
  • each TRP contains 1 downlink PRS resource set
  • each downlink PRS resource set contains 4 downlink PRS resources
  • each downlink PRS resource contains There are 6 OFDM symbols, and continuous time slot allocation is adopted between the downlink PRS resource sets of all TRPs, that is, TDM multiplexing. Therefore, each downlink PRS resource set occupies 2 consecutive time slots.
  • Step 2 The serving base station notifies the UE of the configuration parameters of the aperiodic/semi-persistent positioning measurement Gap through signaling.
  • the signaling may be RRC signaling, MAC-CE signaling or DCI signaling.
  • the semi-persistent positioning PRS when the semi-persistent positioning PRS is deactivated, it will automatically fail.
  • Step 3 The serving base station sends the aperiodic/semi-persistent downlink PRS to the UE.
  • Embodiment 2 The network device (such as the serving base station) notifies the terminal of the positioning measurement Gap of the aperiodic or semi-persistent downlink PRS in an explicit and implicit signaling manner.
  • Step 1 the UE reports the UE positioning measurement capability information to the serving base station.
  • Step 2 The UE receives the explicit configuration parameters of the aperiodic/semi-persistent positioning measurement Gap sent by the serving base station, and the UE obtains the implicit configuration parameters of the aperiodic positioning measurement Gap through a protocol predefined manner.
  • Step 3 the UE performs processing according to the configuration parameters obtained in the above step 2.
  • the UE performs downlink PRS reception and measurement processing at the positioning measurement gap indicated by the explicitly configured parameters to obtain the positioning measurement amount.
  • the UE performs downlink positioning signal reception and measurement processing by default in the subframe, time slot or OFDM symbol where the aperiodic downlink PRS is configured according to predefined rules, and obtains the positioning measurement quantity.
  • some of the parameters may be explicitly configured, and some other parameters may be predefined by the protocol (ie, implicit configuration).
  • Step 4 The UE reports the positioning measurement to the network, or performs UE position calculation based on the positioning measurement.
  • the execution steps for the serving base station side are as follows:
  • Step 1 The serving base station configures the aperiodic positioning measurement Gap according to the UE positioning capability reported by the UE or independently selects the display and implicit methods.
  • step 1.2 For example, for the method of explicit and implicit configuration, go to step 1.2 first, then go to step 1.1. If the parameters of the implicit configuration method conflict with the parameters of the explicit configuration method, the parameters of the explicit configuration shall prevail.
  • Step 1.1 Explicit configuration method: refer to the above-mentioned Embodiment 1. In order to avoid repetition, details are not repeated here.
  • Step 1.2. Implicit configuration method implicitly configure the positioning measurement Gap, that is, the protocol does not notify the UE of the positioning measurement Gap through explicit signaling, but configures the subframe, time slot or OFDM where the aperiodic/semi-persistent downlink PRS is located. symbol, the downlink positioning signal reception and measurement processing are performed by default in a predefined manner in the protocol.
  • the UE selects the implicit positioning measurement gap, and selects the following method 1 for processing.
  • Mode 1 The UE can only perform positioning measurement operations, and cannot receive and process other downlink channels/signals.
  • Table 4 shows the correspondence between the UE positioning measurement capability level and the UE positioning measurement capability for bandwidth.
  • the above manner and table may be predefined by a protocol or notified by high-level signaling.
  • Step 2 The serving base station notifies the UE of the configuration parameters of the aperiodic positioning measurement Gap through signaling.
  • the signaling may be RRC signaling, MAC-CE signaling or DCI signaling.
  • Step 3 The serving base station sends the aperiodic/semi-persistent downlink PRS to the UE.
  • the target measurement interval Gap of the aperiodic downlink PRS or the semi-persistent downlink PRS is configured for the terminal by the network device, which solves the current processing method for the aperiodic downlink PRS or the semi-persistent downlink PRS in the measurement Gap. It can also avoid the problem that when aperiodic downlink PRS or semi-persistent downlink PRS is processed within the periodic measurement gap, there may be problems that cannot be processed or cannot meet the indicators of lower positioning delay, that is, it can reduce Timing delay.
  • each component or each step can be decomposed and/or recombined. These disaggregations and/or recombinations should be considered equivalents of the present disclosure.
  • the steps of performing the above-mentioned series of processes can naturally be performed in chronological order in the order described, but need not necessarily be performed in chronological order, and some steps can be performed in parallel or independently of each other.
  • Those of ordinary skill in the art can understand all or any steps or components of the method and device of the present disclosure. , software, or a combination thereof, which can be implemented by those of ordinary skill in the art using their basic programming skills after reading the description of the present disclosure.
  • the objects of the present disclosure can also be achieved by running a program or set of programs on any computing device.
  • the computing device may be a known general purpose device. Therefore, the objects of the present disclosure can also be achieved merely by providing a program product containing program code for implementing the method or apparatus. That is, such a program product also constitutes the present disclosure, and a storage medium in which such a program product is stored also constitutes the present disclosure.
  • the storage medium can be any known storage medium or any storage medium developed in the future.
  • each component or each step can be decomposed and/or recombined. These disaggregations and/or recombinations should be considered equivalents of the present disclosure.
  • the steps of executing the above-described series of processes can naturally be executed in chronological order in the order described, but need not necessarily be executed in chronological order. Certain steps may be performed in parallel or independently of each other.
  • modules, units, sub-modules, sub-units, etc. can be implemented in one or more Application Specific Integrated Circuits (ASIC), Digital Signal Processing (DSP), digital signal processing equipment ( DSP Device, DSPD), Programmable Logic Device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processor, controller, microcontroller, microprocessor, for in other electronic units or combinations thereof that perform the functions described herein.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD Programmable Logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种测量配置方法、测量方法、网络设备及终端,其中,所述方法包括:为终端配置非周期下行定位参考信号PRS或半持续下行PRS的目标测量间隔Gap;其中,所述目标测量Gap为非周期测量Gap或者半持续测量Gap。

Description

测量配置方法、测量方法、网络设备及终端
相关申请的交叉引用
本申请主张在2020年10月16日在中国提交的中国专利申请号No.202011112946.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种测量配置方法、测量方法、网络设备及终端。
背景技术
目前,针对下行定位参考信号(Positioning Reference Signal,PRS),只允许用户设备(UE,或者称为终端),在测量间隔(Gap)内处理周期PRS。而针对非周期下行PRS或半持续下行PRS在测量Gap内的处理方法,还没有解决方案。假如在周期性配置的测量Gap内,测量非周期下行PRS或半持续下行PRS,可能存在以下问题:当非周期下行PRS或半持续下行PRS没有落在周期测量Gap时间范围内时,UE无法处理下行PRS;或者由于当前的测量Gap周期性出现并且最小周期为20ms,UE需要等待测量Gap,导致定位时延受限于测量Gap的周期,无法满足较低定位时延的指标。
发明内容
本公开提供一种测量配置方法、测量方法、网络设备及终端,解决了目前针对非周期下行PRS或半持续下行PRS在测量Gap内的处理方法,还没有解决方案的问题。
为了达到上述目的,本公开实施例是这样实现的:
第一方面,本公开的实施例提供一种测量配置方法,应用于网络设备,所述方法包括:
为终端配置非周期下行定位参考信号PRS或半持续下行PRS的目标测量间隔Gap;其中,所述目标测量Gap为非周期测量Gap或者半持续测量Gap。
可选地,所述方法还包括:
根据目标信息,确定所述目标测量Gap;其中,所述目标信息为终端上报的终端定位测量能力信息或终端已上报数据的历史信息。
可选地,所述目标测量Gap的时间单位与所述终端上报的终端定位测量能力信息相关;
所述目标测量Gap的时间单位为:子帧、时隙或正交频分复用OFDM符号。
可选地,所述为终端配置非周期下行定位参考信号PRS或半持续下行PRS的目标测量间隔Gap,包括:
发送所述目标测量间隔Gap的配置参数至所述终端;
和/或,
为所述终端配置非周期下行PRS或半持续下行PRS的目标持续时间;其中,所述目标持续时间为所述非周期下行PRS或半持续下行PRS所在的子帧、时隙或OFDM符号,通过配置所述目标持续时间的方式来配置所述目标测量Gap。
可选地,所述发送所述目标测量Gap的配置参数至所述终端,包括:
通过第一信令发送所述目标测量Gap的配置参数至所述终端;其中,所述第一信令为长期演进定位协议LPP信令、无线资源控制RRC信令、媒体接入控制的控制单元MAC-CE信令或者下行控制信息DCI信令。
可选地,在所述目标测量Gap为非周期下行PRS的非周期测量Gap的情况下,所述发送所述目标测量Gap的配置参数至所述终端,包括:
将所有下行小区的非周期下行PRS资源集的起始时刻的最小值,确定为所述非周期测量Gap的第一起始时刻;
将所有下行小区的非周期下行PRS资源集的结束时刻的最大值,确定为所述非周期测量Gap的第一结束时刻;
发送所述非周期测量Gap的第一配置参数至所述终端;
其中,所述第一配置参数包括:所述第一起始时刻、所述第一结束时刻和第一持续时间中的任意两个,所述第一持续时间是从所述第一起始时刻到所述第一结束时刻的持续时间长度。
可选地,所述目标测量Gap为半持续下行PRS的半持续测量Gap的情况下,所述发送所述目标测量Gap的配置参数至所述终端,包括:
在一个半持续下行PRS周期内,将所有下行小区的半持续下行PRS资源集的起始时刻的最小值,确定为所述半持续测量Gap的第二起始时刻;
在所述半持续下行PRS周期内,将所有下行小区的半持续下行PRS资源集的结束时刻的最大值,确定为所述半持续测量Gap的第二结束时刻;
发送所述半持续测量Gap的第二配置参数至所述终端;
其中,所述第二配置参数包括:所述半持续测量Gap的重复周期和一个半持续测量Gap的配置参数;
所述一个半持续测量Gap的配置参数包括:所述第二起始时刻、所述第二结束时刻和第二持续时间中的任意两个,所述第二持续时间是从所述第二起始时刻到所述第二结束时刻的持续时间长度。
可选地,所述方法还包括:
发送第二信令至所述终端;其中,所述第二信令用于激活所述半持续测量Gap;
或者,
发送第三信令至所述终端;其中,所述第三信令用于指示激活半持续下行PRS以及激活所述半持续测量Gap。
可选地,所述终端定位测量能力信息包括以下至少一项:
在相同的子帧或时隙内,终端能否同时进行定位测量和下行处理;
在下行激活带宽部分,终端能否同时进行定位测量和下行处理;
在相同频段的不同带宽部分,终端能否同时进行定位测量和下行处理;
在不同频段内,终端能否同时进行定位测量和下行处理;
其中,所述下行处理包括下行信道处理或除了下行PRS之外的下行信号的处理。
第二方面,本公开实施例提供了一种网络设备,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现以下步骤:
为终端配置非周期下行定位参考信号PRS或半持续下行PRS的目标测量 间隔Gap;其中,所述目标测量Gap为非周期测量Gap或者半持续测量Gap。
可选地,所述处理器执行所述程序时实现以下步骤:
根据目标信息,确定所述目标测量Gap;其中,所述目标信息为终端上报的终端定位测量能力信息或终端已上报数据的历史信息。
可选地,所述目标测量Gap的时间单位与所述终端上报的终端定位测量能力信息相关;
所述目标测量Gap的时间单位为:子帧、时隙或正交频分复用OFDM符号。
可选地,所述处理器执行所述程序时实现以下步骤:
发送所述目标测量间隔Gap的配置参数至所述终端;
和/或,
为所述终端配置非周期下行PRS或半持续下行PRS的目标持续时间;其中,所述目标持续时间为所述非周期下行PRS或半持续下行PRS所在的子帧、时隙或OFDM符号,通过配置所述目标持续时间的方式来配置所述目标测量Gap。
可选地,所述处理器执行所述程序时实现以下步骤:
通过第一信令发送所述目标测量Gap的配置参数至所述终端;其中,所述第一信令为长期演进定位协议LPP信令、无线资源控制RRC信令、媒体接入控制的控制单元MAC-CE信令或者下行控制信息DCI信令。
可选地,在所述目标测量Gap为非周期下行PRS的非周期测量Gap的情况下,所述处理器执行所述程序时实现以下步骤:
将所有下行小区的非周期下行PRS资源集的起始时刻的最小值,确定为所述非周期测量Gap的第一起始时刻;
将所有下行小区的非周期下行PRS资源集的结束时刻的最大值,确定为所述非周期测量Gap的第一结束时刻;
发送所述非周期测量Gap的第一配置参数至所述终端;
其中,所述第一配置参数包括:所述第一起始时刻、所述第一结束时刻和第一持续时间中的任意两个,所述第一持续时间是从所述第一起始时刻到所述第一结束时刻的持续时间长度。
可选地,所述目标测量Gap为半持续下行PRS的半持续测量Gap的情况下,所述处理器执行所述程序时实现以下步骤:
在一个半持续下行PRS周期内,将所有下行小区的半持续下行PRS资源集的起始时刻的最小值,确定为所述半持续测量Gap的第二起始时刻;
在所述半持续下行PRS周期内,将所有下行小区的半持续下行PRS资源集的结束时刻的最大值,确定为所述半持续测量Gap的第二结束时刻;
发送所述半持续测量Gap的第二配置参数至所述终端;
其中,所述第二配置参数包括:所述半持续测量Gap的重复周期和一个半持续测量Gap的配置参数;
所述一个半持续测量Gap的配置参数包括:所述第二起始时刻、所述第二结束时刻和第二持续时间中的任意两个,所述第二持续时间是从所述第二起始时刻到所述第二结束时刻的持续时间长度。
可选地,所述处理器执行所述程序时实现以下步骤:
发送第二信令至所述终端;其中,所述第二信令用于激活所述半持续测量Gap;
或者,
发送第三信令至所述终端;其中,所述第三信令用于指示激活半持续下行PRS以及激活所述半持续测量Gap。
可选地,所述终端定位测量能力信息包括以下至少一项:
在相同的子帧或时隙内,终端能否同时进行定位测量和下行处理;
在下行激活带宽部分,终端能否同时进行定位测量和下行处理;
在相同频段的不同带宽部分,终端能否同时进行定位测量和下行处理;
在不同频段内,终端能否同时进行定位测量和下行处理;
其中,所述下行处理包括下行信道处理或除了下行PRS之外的下行信号的处理。
第三方面,本公开实施例提供一种网络设备,包括:
配置模块,用于为终端配置非周期下行定位参考信号PRS或半持续下行PRS的目标测量间隔Gap;其中,所述目标测量Gap为非周期测量Gap或者半持续测量Gap。
第四方面,本公开实施例提供一种可读存储介质,其上存储有程序,该程序被处理器执行时实现如上所述测量配置方法的步骤。
第五方面,本公开实施例提供一种测量方法,应用于终端,所述方法包括:
获取网络设备为所述终端配置的非周期下行定位参考信号PRS或半持续下行PRS的目标测量Gap;其中,所述目标测量Gap为非周期测量Gap或者半持续测量Gap;
根据所述目标测量Gap,进行下行PRS的接收和测量。
可选地,所述获取网络设备为所述终端配置的非周期下行定位参考信号PRS或半持续下行PRS的目标测量Gap,包括:
接收所述网络设备发送的目标测量Gap的配置参数;
和/或,
获取所述网络设备为所述终端配置非周期下行PRS或半持续下行PRS的目标持续时间;其中,所述目标持续时间为所述非周期下行PRS或半持续下行PRS所在的子帧、时隙或正交频分复用OFDM符号,通过配置所述目标持续时间的方式来配置所述目标测量Gap。
可选地,接收所述网络设备发送的目标测量Gap的配置参数,包括:
通过第一信令接收所述网络设备发送的目标测量Gap的配置参数;
其中,所述第一信令为长期演进定位协议LPP信令、无线资源控制RRC信令、媒体接入控制的控制单元MAC-CE信令或者下行控制信息DCI信令。
可选地,所述接收所述网络设备发送的所述目标测量Gap的配置参数,包括:
接收所述网络设备发送的非周期下行PRS的非周期测量Gap的第一配置参数;
其中,所述第一配置参数包括:所述非周期测量Gap的第一起始时刻、所述非周期测量Gap的第一结束时刻和第一持续时间中的任意两个,所述第一持续时间是从所述第一起始时刻到所述第一结束时刻的持续时间长度。
可选地,所述接收所述网络设备发送的所述目标测量Gap的配置参数,包括:
接收所述网络设备发送的所述半持续下行PRS的半持续测量Gap的第二配置参数;
其中,所述第二配置参数包括:所述半持续测量Gap的重复周期和一个半持续测量Gap的配置参数;
所述一个半持续测量Gap的配置参数包括:所述半持续测量Gap的第二起始时刻、所述半持续测量Gap的第二结束时刻和第二持续时间中的任意两个,所述第二持续时间是从所述第二起始时刻到所述第二结束时刻的持续时间长度。
可选地,所述方法还包括:
接收所述网络设备发送的第二信令;其中,所述第二信令用于激活所述半持续测量Gap;
或者,
接收所述网络设备发送的第三信令;其中,所述第三信令用于激活半持续下行PRS以及激活半持续测量Gap。
可选地,在获取所述网络设备为所述终端配置的非周期下行PRS或半持续下行PRS的目标持续时间的情况下,所述根据所述目标测量Gap,进行下行PRS的接收和测量,包括:
根据终端定位测量能力信息,确定在所述目标持续时间内,进行下行PRS的接收和测量,且不接收处理下行信道或第一下行信号;
或者,
根据所述终端定位测量能力信息,确定在所述目标持续时间内,进行下行PRS的接收和测量,且接收处理下行信道或第一下行信号;
其中,所述第一下行信号是除了下行PRS之外的下行信号。
可选地,所述方法还包括:
发送终端定位能力信息至所述网络设备;
在获取所述网络设备为所述终端配置非周期下行PRS或半持续下行PRS的目标持续时间的情况下,所述根据所述目标测量Gap,进行下行PRS的接收和测量,包括:
根据终端定位测量能力信息,确定所述目标测量Gap;
在所述目标测量Gap内,进行下行PRS的接收和测量。
可选地,在所述定位测量能力信息包括:在相同的子帧或时隙内,终端能否同时进行定位测量和下行处理的情况下,所述根据终端定位测量能力信息,确定所述目标测量Gap,包括:
在相同的子帧或时隙内,终端不能同时进行定位测量和下行处理的情况下,根据所述终端定位测量能力信息与测量Gap的配置参数之间的对应关系,确定所述目标测量Gap;
在相同的子帧或时隙内,终端能同时进行定位测量和下行处理的情况下,根据所述终端定位测量能力信息与测量Gap的配置参数之间的对应关系以及有效条件,确定所述目标测量Gap;
其中,所述下行处理包括下行信道处理或除了下行PRS之外的下行信号的处理。
可选地,所述有效条件包括:
在频分双工模式下,确定所述非周期下行PRS或半持续下行PRS所在子帧的第一有效时隙,作为所述目标测量Gap;其中,所述第一有效时隙是:在同一个时隙内非周期下行PRS或半持续下行PRS,与下行信道或第一下行信号之间预留N1个OFDM符号的时隙;
在时分双工模式下,确定所述非周期下行PRS或半持续下行PRS所在时隙的第二有效时隙,作为所述目标测量Gap;其中,所述第二有效时隙是:非周期下行PRS或半持续下行PRS,与下行信道或第一下行信号之间预留N1个OFDM符号的下行时隙,或者在每个下行PRS资源开始之前的上行OFDM符号之间预留N2个OFDM符号,且每个下行PRS资源结束之后的上行OFDM符号之间预留N2个OFDM符号的灵活时隙;
其中,N1、N2为大于1的正整数。
可选地,在所述终端定位测量能力信息包括:在下行激活带宽部分、在相同频段的不同带宽部分、在不同频段内,终端能否同时进行定位测量和下行处理的情况下,所述根据所述目标测量Gap,进行下行定位参考信号PRS接收和测量,包括:
根据所述终端定位测量能力信息,在下行激活带宽部分、在相同频段的 不同带宽部分或者在不同频段中,进行下行定位参考信号PRS接收和测量;
其中,所述下行处理包括下行信道处理或除了下行PRS之外的下行信号的处理。
第六方面,本公开实施例提供一种终端,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现以下步骤:
获取网络设备为所述终端配置的非周期下行定位参考信号PRS或半持续下行PRS的目标测量Gap;其中,所述目标测量Gap为非周期测量Gap或者半持续测量Gap;
根据所述目标测量Gap,进行下行PRS的接收和测量。
可选地,所述处理器执行所述程序时实现以下步骤:
接收所述网络设备发送的目标测量Gap的配置参数;
和/或,
获取所述网络设备为所述终端配置非周期下行PRS或半持续下行PRS的目标持续时间;其中,所述目标持续时间为所述非周期下行PRS或半持续下行PRS所在的子帧、时隙或正交频分复用OFDM符号,通过配置所述目标持续时间的方式来配置所述目标测量Gap。
可选地,所述处理器执行所述程序时实现以下步骤:
通过第一信令接收所述网络设备发送的目标测量Gap的配置参数;
其中,所述第一信令为长期演进定位协议LPP信令、无线资源控制RRC信令、媒体接入控制的控制单元MAC-CE信令或者下行控制信息DCI信令。
可选地,所述处理器执行所述程序时实现以下步骤:
接收所述网络设备发送的非周期下行PRS的非周期测量Gap的第一配置参数;
其中,所述第一配置参数包括:所述非周期测量Gap的第一起始时刻、所述非周期测量Gap的第一结束时刻和第一持续时间中的任意两个,所述第一持续时间是从所述第一起始时刻到所述第一结束时刻的持续时间长度。
可选地,所述处理器执行所述程序时实现以下步骤:
接收所述网络设备发送的所述半持续下行PRS的半持续测量Gap的第二 配置参数;
其中,所述第二配置参数包括:所述半持续测量Gap的重复周期和一个半持续测量Gap的配置参数;
所述一个半持续测量Gap的配置参数包括:所述半持续测量Gap的第二起始时刻、所述半持续测量Gap的第二结束时刻和第二持续时间中的任意两个,所述第二持续时间是从所述第二起始时刻到所述第二结束时刻的持续时间长度。
可选地,所述处理器执行所述程序时实现以下步骤:
接收所述网络设备发送的第二信令;其中,所述第二信令用于激活所述半持续测量Gap;
或者,
接收所述网络设备发送的第三信令;其中,所述第三信令用于激活半持续下行PRS以及激活半持续测量Gap。
可选地,在获取所述网络设备为所述终端配置的非周期下行PRS或半持续下行PRS的目标持续时间的情况下,所述处理器执行所述程序时实现以下步骤:
根据终端定位测量能力信息,确定在所述目标持续时间内,进行下行PRS的接收和测量,且不接收处理下行信道或第一下行信号;
或者,
根据所述终端定位测量能力信息,确定在所述目标持续时间内,进行下行PRS的接收和测量,且接收处理下行信道或第一下行信号;
其中,所述第一下行信号是除了下行PRS之外的下行信号。
可选地,所述处理器执行所述程序时实现以下步骤:
发送终端定位能力信息至所述网络设备;
在获取所述网络设备为所述终端配置非周期下行PRS或半持续下行PRS的目标持续时间的情况下,所述处理器执行所述程序时实现以下步骤:
根据终端定位测量能力信息,确定所述目标测量Gap;
在所述目标测量Gap内,进行下行PRS的接收和测量。
可选地,在所述定位测量能力信息包括:在相同的子帧或时隙内,终端 能否同时进行定位测量和下行处理的情况下,所述处理器执行所述程序时实现以下步骤:
在相同的子帧或时隙内,终端不能同时进行定位测量和下行处理的情况下,根据所述终端定位测量能力信息与测量Gap的配置参数之间的对应关系,确定所述目标测量Gap;
在相同的子帧或时隙内,终端能同时进行定位测量和下行处理的情况下,根据所述终端定位测量能力信息与测量Gap的配置参数之间的对应关系以及有效条件,确定所述目标测量Gap;
其中,所述下行处理包括下行信道处理或除了下行PRS之外的下行信号的处理。
可选地,所述有效条件包括:
在频分双工模式下,确定所述非周期下行PRS或半持续下行PRS所在子帧的第一有效时隙,作为所述目标测量Gap;其中,所述第一有效时隙是:在同一个时隙内非周期下行PRS或半持续下行PRS,与下行信道或第一下行信号之间预留N1个OFDM符号的时隙;
在时分双工模式下,确定所述非周期下行PRS或半持续下行PRS所在时隙的第二有效时隙,作为所述目标测量Gap;其中,所述第二有效时隙是:非周期下行PRS或半持续下行PRS,与下行信道或第一下行信号之间预留N1个OFDM符号的下行时隙,或者在每个下行PRS资源开始之前的上行OFDM符号之间预留N2个OFDM符号,且每个下行PRS资源结束之后的上行OFDM符号之间预留N2个OFDM符号的灵活时隙;
其中,N1、N2为大于1的正整数。
可选地,在所述终端定位测量能力信息包括:在下行激活带宽部分、在相同频段的不同带宽部分、在不同频段内,终端能否同时进行定位测量和下行处理的情况下,所述处理器执行所述程序时实现以下步骤:
根据所述终端定位测量能力信息,在下行激活带宽部分、在相同频段的不同带宽部分或者在不同频段中,进行下行定位参考信号PRS接收和测量;
其中,所述下行处理包括下行信道处理或除了下行PRS之外的下行信号的处理。
第七方面,本公开实施例提供一种终端,包括:
获取模块,用于获取网络设备为所述终端配置的非周期下行定位参考信号PRS或半持续下行PRS的目标测量Gap;其中,所述目标测量Gap为非周期测量Gap或者半持续测量Gap;
处理模块,用于根据所述目标测量Gap,进行下行PRS的接收和测量。
第八方面,本公开实施例提供一种可读存储介质,其上存储有程序,该程序被处理器执行时实现如上所述的测量方法的步骤。
本公开的上述技术方案的有益效果是:通过网络设备为终端配置非周期下行PRS或半持续下行PRS的目标测量间隔Gap,解决了目前针对非周期下行PRS或半持续下行PRS在测量Gap内的处理方法,还没有解决方案的问题;并且能够避免针对对非周期下行PRS或半持续下行PRS在周期测量Gap内进行处理时,可能存在无法处理,或无法满足较低定位时延的指标的问题,也即能够降低定时时延。
附图说明
图1表示本公开实施例的测量配置方法的流程图;
图2表示本公开实施例非周期测量Gap的配置参数示意图;
图3表示本公开实施例半持续测量Gap的配置参数示意图;
图4表示本公开实施例的网络设备的框图之一;
图5表示本公开实施例的网络设备的框图之二;
图6表示本公开实施例的测量方法的流程图;
图7表示本公开实施例的终端的框图之一;
图8表示本公开实施例的终端的框图之二。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。在下面的描述中,提供诸如具体的配置和组件的特定细节仅仅是为了帮助全面理解本公开的实施例。因此,本领域技术人员应该清楚,可以对这里描述的实施例进行各种改变和修改而不脱离本 公开的范围和精神。另外,为了清楚和简洁,省略了对已知功能和构造的描述。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本公开的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
在本公开的各种实施例中,应理解,下述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常可互换使用。
在本申请所提供的实施例中,应理解,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本公开实施例中,接入网的形式不限,可以是包括宏基站(Macro Base Station)、微基站(Pico Base Station)、Node B(3G移动基站)、增强型基站(eNB)、5G移动基站(gNB)、家庭增强型基站(Femto eNB或Home eNode B或Home eNB或HeNB)、中继站、接入点、RRU(Remote Radio Unit,远端射频模块)、RRH(Remote Radio Head,射频拉远头)等的接入网。用户终端可以是移动电话(或手机),或者其他能够发送或接收无线信号的设备,包括用户设备、个人数字助理(PDA)、无线调制解调器、无线通信装置、手持装置、膝上型计算机、无绳电话、无线本地回路(WLL)站、能够将移动信号转换为WiFi信号的CPE(Customer Premise Equipment,客户终端)或移动智能热点、智能家电、或其他不通过人的操作就能自发与移动通信网络通信的设备等。
可选地,在本公开实施例中PRS可以表示所有可用于测量到达时间(Time of Arrival,TOA)的参考信号,例如:PRS可以包括用于传统下行到达时间差(Downlink Time Difference Of Arrival,DL-TDOA)定位的PRS,信道状态信息参考信号(Channel state indication reference signal,CSI-RS)等。
以下针对申请中的技术术语的含义进行说明:
下行PRS资源定义为一个用于下行PRS传输的资源单元(Resource Element,RE)集合。在时域上,该RE集合可以包含一个时隙中1个或多个连续符号。
下行PRS资源集是同一个TRP的一组下行PRS资源的集合。下行PRS资源集中的每个下行PRS资源关联到单个TRP发送的单个空间发送滤波器(即发送波束)。一个TRP可配置一个或2个下行PRS资源集。UE是否支持2个下行PRS资源集的配置取决于UE能力。
下行PRS定位频率层是一个或跨多个TRP的,具有相同SCS、CP类型、Point A、PRS带宽和起始PRB位置的下行PRS资源集的集合。
可选地,针对周期性下行PRS,下行PRS资源周期的取值范围为:{4,8,16,32,64,5,10,20,40,80,160,320,640,1280,2560,5120,10240}2 μ时隙,其中,μ={0,1,2,3}分别对应于PRS子载波间隔{15,30,60,120}kHz。
其中,NR PRS配置和带宽部分(BandWidth Part,BWP)配置相互独立,即NR PRS的配置不受BWP配置带宽的约束。同一个下行PRS定位频率层的所有下行PRS资源集具有相同的下行PRS带宽和起始PRB值。下行PRS起始PRB参数的颗粒度为1,最小值为0,最大值为2176。下行PRS带宽配置的颗粒度是4PRB,最大值取决于UE向网络上报的UE处理下行PRS带宽能力,且下行PRS带宽不小于24PRB。
其中,当UE没有配置测量Gap时,UE不期望进行PRS接收和测量的处理。当配置了测量Gap时,UE可在配置的测量Gap内,测量已激活下行BWP内、与激活下行BWP子载波间隔相同或不相同的PRS资源,或测量已激活下行BWP之外(包括同频或异频)的下行PRS资源。UE根据需要,通过RRC信令申请测量间隙Gap。在测量间隙内,UE不处理其他下行物理信道和信号。
其中,针对周期性下行PRS,定义了两种类型的测量Gap:基于UE(Per-UE)的测量Gap和基于频率范围(Freqeuncy Range,FR)(Per-FR)的测量Gap,并且给出了24种测量Gap图样的测量Gap长度(Measurement Gap Length,MGL)和测量Gap重复周期(Measurement Gap Repetition Period,MGRP), 如下表1所示。其中,所有的测量Gap都是周期性配置的。
表1:
Figure PCTCN2021124125-appb-000001
具体地,本公开的实施例提供了一种测量配置方法,解决了目前针对非周期下行PRS或半持续下行PRS在测量Gap内的处理方法,还没有解决方案的问题。
如图1所示,本公开的实施例提供了一种测量配置方法,具体包括以下步骤:
步骤11:为终端配置非周期下行PRS或半持续下行PRS的目标测量间隔Gap。
其中,所述目标测量Gap为非周期测量Gap或者半持续测量Gap。
可选地,针对非周期下行PRS的目标测量Gap为非周期测量Gap,针对 半持续测量Gap的目标测量Gap为半持续测量Gap。
可选地,对非周期下行PRS或半持续下行PRS的测量Gap可以是专用于定位的测量Gap,即与用于其它用途的当前的测量Gap占用不同的时间资源;也可以是和当前的测量Gap复用相同的时间资源。
本公开实施例中,通过网络设备为终端配置非周期下行PRS或半持续下行PRS的目标测量间隔Gap,解决了目前针对非周期下行PRS或半持续下行PRS在测量Gap内的处理方法,还没有解决方案的问题;并且能够避免针对对非周期下行PRS或半持续下行PRS在周期测量Gap内进行处理时,可能存在无法处理,或无法满足较低定位时延的指标的问题,也即能够降低定时时延。
可选地,网络设备可以根据目标消息信息,为所述终端配置所述目标测量Gap;其中,所述目标消息信息为终端上报的终端定位测量能力信息或终端已上报数据的历史信息。也即网络设备可以选择/自主选择配置非周期下行PRS或半持续下行PRS的目标测量Gap。
例如:网络设备可以选择显示和/或隐式的方法配置非周期下行PRS或半持续下行PRS的目标测量Gap,如网络设备根据终端上报的终端定位测量能力信息,选择显示和/或隐式的方法配置非周期下行PRS或半持续下行PRS的目标测量Gap。
可选地,所述目标测量Gap的时间单位与所述终端上报的终端定位测量能力信息相关;所述目标测量Gap的时间单位为:子帧、时隙或正交频分复用(Orthogonal frequency division multiplex,OFDM)符号。例如:根据终端定位测量能力等级与目标测量Gap的时间单位的对应关系,确定终端上报的终端定位测量能力等级对应的目标测量Gap的时间单位。
可选地,所述终端定位测量能力信息包括以下至少一项:
在相同的子帧或时隙内,终端能否同时进行定位测量和下行处理;
在下行激活带宽部分,终端能否同时进行定位测量和下行处理;
在相同频段的不同带宽部分,终端能否同时进行定位测量和下行处理;
在不同频段内,终端能否同时进行定位测量和下行处理;
其中,所述下行处理包括下行信道处理或除了下行PRS之外的下行信号 的处理。
可选地,终端定位测量能力等级与目标测量Gap的时间单位的对应关系也可以参见隐式配置目标测量Gap的实施例中,终端定位测量能力信息与配置参数的对应关系。
又例如:网络设备可以自主选择显示和/或隐式的方法配置非周期下行PRS或半持续下行PRS的目标测量Gap,如网络设备根据终端已上报数据的历史信息,自主选择显示和/或隐式的方法配置非周期下行PRS或半持续下行PRS的目标测量Gap。
可选地,所述步骤11可以具体包括:发送所述目标测量间隔Gap的配置参数至所述终端;和/或,为所述终端配置非周期下行PRS或半持续下行PRS的目标持续时间;其中,所述目标持续时间为所述非周期下行PRS或半持续下行PRS所在的子帧、时隙或OFDM符号,通过配置所述目标持续时间的方式来配置所述目标测量Gap。
例如:网络设备可以通过显式的方式配置非周期下行PRS或半持续下行PRS的目标测量Gap,并发送所述目标测量间隔Gap的配置参数至所述终端,以通知UE非周期下行PRS或半持续下行PRS的目标测量Gap。
可选地,所述发送所述目标测量Gap的配置参数至所述终端的步骤,可以具体包括:通过第一信令发送所述目标测量Gap的配置参数至所述终端。
其中,所述第一信令可以为:长期演进定位协议(LTE Positioning Protocol,LPP)信令、无线资源控制(Radio Resource Control,RRC)信令、媒体接入控制的控制单元(Medium Access Control Control Element,MAC-CE)信令或者下行控制信息(Downlink Control Information,DCI)信令。
可选地,在所述目标测量Gap为非周期下行PRS的非周期测量Gap的情况下,所述发送所述目标测量Gap的配置参数至所述终端,包括:
将所有下行小区的非周期下行定位参考信号PRS资源集的起始时刻的最小值,确定为所述非周期测量Gap的第一起始时刻;
将所有下行小区的非周期下行PRS资源集的结束时刻的最大值,确定为所述非周期测量Gap的第一结束时刻;
发送所述非周期测量Gap的第一配置参数至所述终端;
其中,所述第一配置参数包括:所述第一起始时刻、所述第一结束时刻和第一持续时间中的任意两个,所述第一持续时间是从所述第一起始时刻到所述第一结束时刻的持续时间长度,如第一持续时间L1=T2-T1;其中,T2为第一起始时刻,T1为第一起始时刻。
例如:网络设备一共配置了N个发送和接收点(Transmit and Receive Point,TRP),每个TRP可以包括至少一个下行PRS资源集;T1表示非周期测量Gap起始时刻,T2表示非周期测量Gap结束时刻,L1表示非周期测量Gap的持续时间。
其中,网络设备可以通过显式信令通知T1、T2和L1中的任意两个值。可选地,显式信令可以是LPP信令、RRC信令、MAC-CE信令或者DCI信令。
其中,T1=min{T1(TRP#1),T1(TRP#2),…,T1(TRP#N)};即T1为所有下行小区的非周期下行PRS资源集的起始时刻的最小值。
T2=max{T2(TRP#1),T2(TRP#2),…,T2(TRP#N)};即T2为所有下行小区的非周期下行PRS资源集的结束时刻的最大值。
L=T2-T1。
其中,T1、T2和L的时间单位可以是子帧或者时隙或者OFDM符号。子帧的优点在于绝对时间,由于PRS周期的单位是子帧,可以保证一致;时隙的优点在于PRS资源和PRS资源集的时域映射是以时隙为基本单位;OFDM符号的优点在于颗粒度较小,占用的时频资源开销较小。
如图2所示,采用时隙为单位,一共配置了N个TRP,每个TRP包含1个下行PRS资源集,每个下行PRS资源集包含4个下行PRS资源,每个下行PRS资源包含6个OFDM符号,所有TRP的下行PRS资源集之间采用连续的时隙分配,即时分复用(Time division multiplexing,TDM)方式。因此,每个下行PRS资源集占用2个连续的时隙。N个TRP一共占用2N个连续的下行时隙,即L1=2N。
可选地,所述目标测量Gap为半持续下行PRS的半持续测量Gap的情况下,所述发送所述目标测量Gap的配置参数至所述终端的步骤,可以包括:
在一个半持续下行PRS周期内,将所有下行小区的半持续下行PRS资源 集的起始时刻的最小值,确定为所述半持续测量Gap的第二起始时刻;
在所述半持续下行PRS周期内,将所有下行小区的半持续下行PRS资源集的结束时刻的最大值,确定为所述半持续测量Gap的第二结束时刻;
发送所述半持续测量Gap的第二配置参数至所述终端;
其中,所述第二配置参数包括:所述半持续测量Gap的重复周期和一个半持续测量Gap的配置参数;所述一个半持续测量Gap的配置参数包括:所述第二起始时刻、所述第二结束时刻和第二持续时间中的任意两个,所述第二持续时间是从所述第二起始时刻到所述第二结束时刻的持续时间长度,如第二持续时间L2=T2-T1;其中,T1为第二起始时刻,T2为第一起始时刻。
其中,所述半持续下行PRS的半持续测量Gap的重复周期等于或者大于半持续下行PRS的重复周期。
可选地,在所述目标测量Gap为半持续下行PRS的半持续测量Gap的情况下,所述方法还包括:
发送第二信令至所述终端;其中,所述第二信令用于激活所述半持续测量Gap;或者,发送第三信令至所述终端;其中,所述第三信令用于指示激活半持续下行PRS以及激活所述半持续测量Gap。
可选地,针对半持续测量Gap,当半持续下行PRS去激活时,自动失效。
例如:一共配置了N个TRP,不同TRP的下行PRS资源集之间采用TDM复用方式,T1表示半持续测量Gap起始时刻,T2表示半持续测量Gap的结束时刻,L2表示半持续测量Gap在一个周期内的持续时间,P表示半持续测量Gap的重复周期。
其中,网络设备可以通过显式信令通知T1、T2和L2之间的任意两个,以及P。可选地,显式信令可以是LPP信令、RRC信令、MAC-CE信令或者DCI信令。
其中,T1=min{T1(TRP#1),T1(TRP#2),…,T1(TRP#N)};即T1是在一个半持续下行PRS周期内,所有下行小区的半持续下行PRS资源集的起始时刻的最小值。
T2=max{T2(TRP#1),T2(TRP#2),…,T2(TRP#N)};即T2是在所述半持续下行PRS周期内,所有下行小区的半持续下行PRS资源集的结束时刻的最大 值。
L2=T2-T1;T3=T1+P;T4=T2+P。
其中,T3为下一个重复周期的半持续测量Gap的起始时刻,T4为下一个重复周期的半持续测量Gap的结束时刻。T1、T2、T3、T4、L2和P的时间单位可以是子帧或者时隙或者OFDM符号(具体可以根据终端定位测量能力信息确定)。
如图3所示,采用时隙为单位,一共配置了N个TRP,每个TRP包含1个下行PRS资源集,每个下行PRS资源集包含4个下行PRS资源,每个下行PRS资源包含6个OFDM符号,所有TRP的下行PRS资源集之间采用连续的时隙分配,即TDM复用方式。因此,每个下行PRS资源集占用2个连续的时隙。N个TRP一共占用2N个连续的下行时隙,即L=2N。半持续下行PRS重复两次,P=8N。
又例如:网络设备可以通过隐式配置的方式,为终端配置非周期下行PRS或半持续下行PRS的目标测量Gap。即网络设备不通过显式信令配置UE的定位测量Gap,而是在配置非周期下行PRS或者半持续下行PRS所在的时域资源(或者称为目标持续时间,如非周期下行PRS或者半持续下行PRS所在的子帧、时隙或者OFDM符号),终端通过协议预定义方式,默认进行下行定位信号接收和测量处理。
可选地,UE可以根据其向网络设备上报的终端定位测量能力信息,选择在隐式的配置方式确定的定位测量Gap内,选择下面两种方式之一进行处理:
方式1:UE只能进行定位测量操作,不能接收处理下行信道和第一下行信号。
方式2:UE既可以进行定位测量操作,也可以接收处理下行物理信道和第一下行信号。
其中,第一下行信息号是除了下行PRS之外的下行信号。
可选地,上述方式1和方式2可以通过协议预定义,或者高层信令通知。
其中,UE定位测量能力等级与UE定位测量能力(如在相同的子帧/时隙内,UE能否进行定位测量和下行处理的能力)和起始时刻T1、持续时间L和结束时刻T2之间的对应关系,如下表2所示,其中,N表示配置的TRP 个数。
表2:
Figure PCTCN2021124125-appb-000002
可选地,针对上述UE定位测量能力等级为等级4和等级5的有效时隙和有效条件判断规则如表3所示。其中,N1和N2为大于等于1的正整数。
表3:
Figure PCTCN2021124125-appb-000003
Figure PCTCN2021124125-appb-000004
可选地,上述表2和表3可以通过协议预定义,或者高层信令通知。
可选地,在所述终端定位测量能力信息包括:在下行激活带宽部分、在相同频段的不同带宽部分、在不同频段内,终端能否同时进行定位测量和下行处理的情况下,终端可以根据表4所示的UE定位测量能力等级与针对带宽的UE定位测量能力之间的对应关系,在目标测量Gap内,进行下行定位参考信号PRS接收和测量。
表4:
Figure PCTCN2021124125-appb-000005
又例如:网络设备可以通过显式配置和隐式配置的方式,为终端配置非周期下行PRS或者半持续下行PRS的目标测量Gap。
当通过显式配置和隐式配置的方式确定的目标测量Gap不一致时,可以采用显式配置的方式确定的目标测量Gap,或者也可以采用隐式配置的方式确定的目标测量Gap;其可由协议约定。
可选地,可以约定显式配置的方式具有较高的优先级,即当通过显式配置和隐式配置的方式确定的目标测量Gap不一致时,以显式配置的方式确定的目标测量Gap为准。
以上就本公开的测量配置方法做出介绍,下面本实施例将结合附图对其对应的网络设备做进一步说明。
具体地,如图4所示,本公开实施例的网络设备400,包括:
配置模块410,用于为终端配置非周期下行定位参考信号PRS或半持续下行PRS的目标测量间隔Gap;其中,所述目标测量Gap为非周期测量Gap或者半持续测量Gap。
可选地,所述网络设备400还包括:
确定模块,用于根据目标信息,确定所述目标测量Gap;其中,所述目标信息为终端上报的终端定位测量能力信息或终端已上报数据的历史信息。
可选地,所述目标测量Gap的时间单位与所述终端上报的终端定位测量能力信息相关;
所述目标测量Gap的时间单位为:子帧、时隙或正交频分复用OFDM符号。
可选地,所述配置模块410包括:
发送子模块,用于发送所述目标测量间隔Gap的配置参数至所述终端;
和/或,
配置子模块,用于为所述终端配置非周期下行PRS或半持续下行PRS的目标持续时间;其中,所述目标持续时间为所述非周期下行PRS或半持续下行PRS所在的子帧、时隙或OFDM符号,通过配置所述目标持续时间的方式来配置所述目标测量Gap。
可选地,所述发送子模块包括:
发送单元,用于通过第一信令发送所述目标测量Gap的配置参数至所述终端;其中,所述第一信令为长期演进定位协议LPP信令、无线资源控制RRC信令、媒体接入控制的控制单元MAC-CE信令或者下行控制信息DCI信令。
可选地,在所述目标测量Gap为非周期下行PRS的非周期测量Gap的情况下,所述发送子模块包括:
第一确定单元,用于将所有下行小区的非周期下行PRS资源集的起始时刻的最小值,确定为所述非周期测量Gap的第一起始时刻;
第二确定单元,用于将所有下行小区的非周期下行PRS资源集的结束时刻的最大值,确定为所述非周期测量Gap的第一结束时刻;
第一发送单元,用于发送所述非周期测量Gap的第一配置参数至所述终端;
其中,所述第一配置参数包括:所述第一起始时刻、所述第一结束时刻和第一持续时间中的任意两个,所述第一持续时间是从所述第一起始时刻到所述第一结束时刻的持续时间长度。
可选地,所述目标测量Gap为半持续下行PRS的半持续测量Gap的情况下,所述发送子模块包括:
第三确定单元,用于在一个半持续下行PRS周期内,将所有下行小区的半持续下行PRS资源集的起始时刻的最小值,确定为所述半持续测量Gap的第二起始时刻;
第四确定单元,用于在所述半持续下行PRS周期内,将所有下行小区的半持续下行PRS资源集的结束时刻的最大值,确定为所述半持续测量Gap的第二结束时刻;
第二发送单元,用于发送所述半持续测量Gap的第二配置参数至所述终端;
其中,所述第二配置参数包括:所述半持续测量Gap的重复周期和一个半持续测量Gap的配置参数;
所述一个半持续测量Gap的配置参数包括:所述第二起始时刻、所述第二结束时刻和第二持续时间中的任意两个,所述第二持续时间是从所述第二起始时刻到所述第二结束时刻的持续时间长度。
可选地,所述网络设备400还包括:
第一发送模块,用于发送第二信令至所述终端;其中,所述第二信令用于激活所述半持续测量Gap;
或者,
第二发送模块,用于发送第三信令至所述终端;其中,所述第三信令用于指示激活半持续下行PRS以及激活所述半持续测量Gap。
可选地,所述终端定位测量能力信息包括以下至少一项:
在相同的子帧或时隙内,终端能否同时进行定位测量和下行处理;
在下行激活带宽部分,终端能否同时进行定位测量和下行处理;
在相同频段的不同带宽部分,终端能否同时进行定位测量和下行处理;
在不同频段内,终端能否同时进行定位测量和下行处理;
其中,所述下行处理包括下行信道处理或除了下行PRS之外的下行信号的处理。
本公开的网络设备实施例是与上述方法的实施例对应的,上述方法实施例中的所有实现手段均适用于该网络设备的实施例中,也能达到相同的技术效果。
上述方案中的网络设备400,通过网络设备为终端配置非周期下行PRS或半持续下行PRS的目标测量间隔Gap,解决了目前针对非周期下行PRS或半持续下行PRS在测量Gap内的处理方法,还没有解决方案的问题;并且能够避免针对对非周期下行PRS或半持续下行PRS在周期测量Gap内进行处理时,可能存在无法处理,或无法满足较低定位时延的指标的问题,也即能够降低定时时延。
为了更好的实现上述目的,如图5所示,本公开的实施例还提供了一种网络设备,包括:处理器500,通过总线接口与所述处理器500相连接的存储器520,以及通过总线接口与处理器500相连接的收发机510;所述存储器520用于存储所述处理器在执行操作时所使用的程序和数据;通过所述收发机510发送数据信息或者导频,还通过所述收发机510接收上行控制信道;当处理器500调用并执行所述存储器520中所存储的程序和数据时,实现如下的功能。
可选地,处理器500用于读取存储器520中的程序,执行下列过程:
为终端配置非周期下行定位参考信号PRS或半持续下行PRS的目标测量间隔Gap;其中,所述目标测量Gap为非周期测量Gap或者半持续测量Gap。
可选地,所述处理器500执行所述程序时实现以下步骤:
根据目标信息,确定所述目标测量Gap;其中,所述目标信息为终端上报的终端定位测量能力信息或终端已上报数据的历史信息。
可选地,所述目标测量Gap的时间单位与所述终端上报的终端定位测量能力信息相关;
所述目标测量Gap的时间单位为:子帧、时隙或正交频分复用OFDM符号。
可选地,所述处理器500执行所述程序时实现以下步骤:
发送所述目标测量间隔Gap的配置参数至所述终端;
和/或,
为所述终端配置非周期下行PRS或半持续下行PRS的目标持续时间;其中,所述目标持续时间为所述非周期下行PRS或半持续下行PRS所在的子帧、时隙或OFDM符号,通过配置所述目标持续时间的方式来配置所述目标测量Gap。
可选地,所述处理器500执行所述程序时实现以下步骤:
通过第一信令发送所述目标测量Gap的配置参数至所述终端;其中,所述第一信令为长期演进定位协议LPP信令、无线资源控制RRC信令、媒体接入控制的控制单元MAC-CE信令或者下行控制信息DCI信令。
可选地,在所述目标测量Gap为非周期下行PRS的非周期测量Gap的情况下,所述处理器500执行所述程序时实现以下步骤:
将所有下行小区的非周期下行PRS资源集的起始时刻的最小值,确定为所述非周期测量Gap的第一起始时刻;
将所有下行小区的非周期下行PRS资源集的结束时刻的最大值,确定为所述非周期测量Gap的第一结束时刻;
发送所述非周期测量Gap的第一配置参数至所述终端;
其中,所述第一配置参数包括:所述第一起始时刻、所述第一结束时刻和第一持续时间中的任意两个,所述第一持续时间是从所述第一起始时刻到所述第一结束时刻的持续时间长度。
可选地,所述目标测量Gap为半持续下行PRS的半持续测量Gap的情况下,所述处理器500执行所述程序时实现以下步骤:
在一个半持续下行PRS周期内,将所有下行小区的半持续下行PRS资源集的起始时刻的最小值,确定为所述半持续测量Gap的第二起始时刻;
在所述半持续下行PRS周期内,将所有下行小区的半持续下行PRS资源集的结束时刻的最大值,确定为所述半持续测量Gap的第二结束时刻;
发送所述半持续测量Gap的第二配置参数至所述终端;
其中,所述第二配置参数包括:所述半持续测量Gap的重复周期和一个半持续测量Gap的配置参数;
所述一个半持续测量Gap的配置参数包括:所述第二起始时刻、所述第二结束时刻和第二持续时间中的任意两个,所述第二持续时间是从所述第二起始时刻到所述第二结束时刻的持续时间长度。
可选地,所述处理器500执行所述程序时实现以下步骤:
发送第二信令至所述终端;其中,所述第二信令用于激活所述半持续测量Gap;
或者,
发送第三信令至所述终端;其中,所述第三信令用于指示激活半持续下行PRS以及激活所述半持续测量Gap。
可选地,所述终端定位测量能力信息包括以下至少一项:
在相同的子帧或时隙内,终端能否同时进行定位测量和下行处理;
在下行激活带宽部分,终端能否同时进行定位测量和下行处理;
在相同频段的不同带宽部分,终端能否同时进行定位测量和下行处理;
在不同频段内,终端能否同时进行定位测量和下行处理;
其中,所述下行处理包括下行信道处理或除了下行PRS之外的下行信号的处理。
收发机510,用于在处理器500的控制下接收和发送数据。
其中,在图5中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机510可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器500负责管理总线架构和通常的处理,存储器520可以存储处理器500在执行操作时所使用的数据。
本领域技术人员可以理解,实现上述实施例的全部或者部分步骤可以通过硬件来完成,也可以通过程序来指示相关的硬件来完成,所述程序包括执行上述方法的部分或者全部步骤的指令;且该程序可以存储于一可读存储介质中,存储介质可以是任何形式的存储介质。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述测量配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
以上从网络设备侧介绍了本公开实施例的测量配置方法,下面将结合附图对终端侧的测量方法做进一步说明。
如图6所示,本公开实施例提供了一种测量方法,包括:
步骤61:获取网络设备为所述终端配置的非周期下行定位参考信号PRS或半持续下行PRS的目标测量Gap。
其中,所述目标测量Gap为非周期测量Gap或者半持续测量Gap。
可选地,针对非周期下行PRS的目标测量Gap为非周期测量Gap,针对半持续测量Gap的目标测量Gap为半持续测量Gap。
可选地,对非周期下行PRS或半持续下行PRS的测量Gap可以是专用于定位的测量Gap,即与用于其它用途的当前的测量Gap占用不同的时间资源;也可以是和当前的测量Gap复用相同的时间资源。
步骤62:根据所述目标测量Gap,进行下行PRS的接收和测量。
本公开实施例中,通过网络设备为终端配置非周期下行PRS或半持续下行PRS的目标测量间隔Gap,从而终端可以根据网络设备配置的非周期测量Gap或半持续测量Gap内,进行非周期下行PRS或半持续下行PRS的接收和处理,解决了目前针对非周期下行PRS或半持续下行PRS在测量Gap内的处理方法,还没有解决方案的问题;并且能够避免针对对非周期下行PRS或半持续下行PRS在周期测量Gap内进行处理时,可能存在无法处理,或无法满足较低定位时延的指标的问题,也即能够降低定时时延。
可选地,所述获取网络设备为所述终端配置的非周期下行定位参考信号PRS或半持续下行PRS的目标测量Gap的步骤,可以包括:
接收所述网络设备发送的目标测量Gap的配置参数;和/或,获取所述网 络设备为所述终端配置非周期下行PRS或半持续下行PRS的目标持续时间;其中,所述目标持续时间为所述非周期下行PRS或半持续下行PRS所在的子帧、时隙或OFDM符号,通过配置所述目标持续时间的方式来配置所述目标测量Gap。
其中,接收所述网络设备发送的目标测量Gap的配置参数,即接收网络设备通过显式配置的方式,为终端配置的目标测量Gap。具体的,网络设备通过显示配置的方式为终端配置目标测量Gap的配置方法可参见网络设备侧的实施例,为避免重复,此处不再赘述。
可选地,接收所述网络设备发送的目标测量Gap的配置参数的步骤,可以包括:
通过第一信令接收所述网络设备发送的目标测量Gap的配置参数;其中,所述第一信令可以为LPP信令、RRC信令、MAC-CE信令或者DCI信令。
例如:针对非周期下行PRS,所述接收所述网络设备发送的所述目标测量Gap的配置参数的步骤,可以包括:
接收所述网络设备发送的非周期下行PRS的非周期测量Gap的第一配置参数;其中,所述第一配置参数包括:所述非周期测量Gap的第一起始时刻、所述非周期测量Gap的第一结束时刻和第一持续时间中的任意两个,所述第一持续时间是从所述第一起始时刻到所述第一结束时刻的持续时间长度。
可选地,针对半持续下行PRS,所述接收所述网络设备发送的所述目标测量Gap的配置参数的步骤,可以包括:
接收所述网络设备发送的所述半持续下行PRS的半持续测量Gap的第二配置参数;其中,所述第二配置参数包括:所述半持续测量Gap的重复周期和一个半持续测量Gap的配置参数;所述一个半持续测量Gap的配置参数包括:所述半持续测量Gap的第二起始时刻、所述半持续测量Gap的第二结束时刻和第二持续时间中的任意两个,所述第二持续时间是从所述第二起始时刻到所述第二结束时刻的持续时间长度。
可选地,针对半持续下行PRS,所述方法还包括:
接收所述网络设备发送的第二信令;其中,所述第二信令用于激活所述半持续测量Gap;或者,接收所述网络设备发送的第三信令;其中,所述第 三信令用于激活半持续下行PRS以及激活半持续测量Gap。
可选地,在获取所述网络设备为所述终端配置的非周期下行PRS或半持续下行PRS的目标持续时间,即网络设备通过隐式配置的方式为终端配置目标测量Gap的情况下,所述根据所述目标测量Gap,进行下行PRS的接收和测量,包括以下方式之一:
方式1:根据终端定位测量能力信息,确定在所述目标持续时间内,进行下行PRS的接收和测量,且不接收处理下行信道或第一下行信号;
方式2:根据所述终端定位测量能力信息,确定在所述目标持续时间内,进行下行PRS的接收和测量,且接收处理下行信道或第一下行信号;
其中,所述第一下行信号是除了下行PRS之外的下行信号。
可选地,所述方法还可以包括:发送终端定位能力信息至所述网络设备.
其中,所述终端定位测量能力信息包括以下至少一项:
在相同的子帧或时隙内,终端能否同时进行定位测量和下行处理;
在下行激活带宽部分,终端能否同时进行定位测量和下行处理;
在相同频段的不同带宽部分,终端能否同时进行定位测量和下行处理;
在不同频段内,终端能否同时进行定位测量和下行处理;
其中,所述下行处理包括下行信道处理或除了下行PRS之外的下行信号的处理。
其中,终端可以直接向服务基站发送终端定位测量能力信息,或者终端首先向本地管理功能(Location Management Function,LMF)发送终端定位测量能力信息,然后LMF转发给服务基站。同时,服务基站还需要获取所有非服务基站的下行PRS配置信息。
可选地,服务基站获取所有非服务基站的下行PRS配置信息,包括:
非服务基站把该小区的下行PRS配置信息发送给LMF,LMF再转发给服务基站;
或者,
非服务基站和服务基站之间通过Xn接口直接交互下行PRS配置信息。
例如:在网络设备通过隐式配置的方式为终端配置目标测量Gap的情况下,终端根据其向网络设备上报的终端定位测量能力信息,在确定的目标测 量Gap内,选择上述方式1和方式2中的一个方式进行处理。
可选地,上述方式1和方式2可以通过协议预定义,或者通过高层信令通知。
可选地,在获取所述网络设备为所述终端配置非周期下行PRS或半持续下行PRS的目标持续时间的情况下,所述根据所述目标测量Gap,进行下行PRS的接收和测量的步骤,可以包括:
根据终端定位测量能力信息,确定所述目标测量Gap;
在所述目标测量Gap内,进行下行PRS的接收和测量。
也就是说,在网络设备通过隐式配置的方式为终端配置目标测量Gap的情况下,终端可以根据协议约定,在网络设备为所述终端配置非周期下行PRS或半持续下行PRS的目标持续时间内确定目标测量Gap,以进行下行PRS的接收和处理。
可选地,在所述定位测量能力信息包括:在相同的子帧或时隙内,终端能否同时进行定位测量和下行处理的情况下,所述根据终端定位测量能力信息,确定所述目标测量Gap的步骤,可以包括:
在相同的子帧或时隙内,终端不能同时进行定位测量和下行处理的情况下,根据所述终端定位测量能力信息与测量Gap的配置参数之间的对应关系,确定所述目标测量Gap;
在相同的子帧或时隙内,终端能同时进行定位测量和下行处理的情况下,根据所述终端定位测量能力信息与测量Gap的配置参数之间的对应关系以及有效条件,确定所述目标测量Gap;
其中,所述下行处理包括下行信道处理或除了下行PRS之外的下行信号的处理。
可选地,所述有效条件包括:
在频分双工模式下,确定所述非周期下行PRS或半持续下行PRS所在子帧的第一有效时隙,作为所述目标测量Gap;其中,所述第一有效时隙是:在同一个时隙内非周期下行PRS或半持续下行PRS,与下行信道或第一下行信号之间预留N1个OFDM符号的时隙;
在时分双工模式下,确定所述非周期下行PRS或半持续下行PRS所在时 隙的第二有效时隙,作为所述目标测量Gap;其中,所述第二有效时隙是:非周期下行PRS或半持续下行PRS,与下行信道或第一下行信号之间预留N1个OFDM符号的下行时隙,或者在每个下行PRS资源开始之前的上行OFDM符号之间预留N2个OFDM符号,且每个下行PRS资源结束之后的上行OFDM符号之间预留N2个OFDM符号的灵活时隙;
其中,N1、N2为大于1的正整数。
具体的,终端侧根据协议约定,在网络设备为所述终端配置非周期下行PRS或半持续下行PRS的目标持续时间内确定目标测量Gap的规则可参见上述表2和表3,为避免重复,这里不再赘述。
可选地,在所述终端定位测量能力信息包括:在下行激活带宽部分、在相同频段的不同带宽部分、在不同频段内,终端能否同时进行定位测量和下行处理的情况下,所述根据所述目标测量Gap,进行下行定位参考信号PRS接收和测量,包括:
根据所述终端定位测量能力信息,在下行激活带宽部分、在相同频段的不同带宽部分或者在不同频段中,进行下行定位参考信号PRS接收和测量;
其中,所述下行处理包括下行信道处理或除了下行PRS之外的下行信号的处理。
具体的,终端侧根据协议约定,在网络设备为所述终端配置非周期下行PRS或半持续下行PRS的目标持续时间内,进行下行PRS接收和处理的规则可参见上述表4,为避免重复,这里不再赘述。
以上实施例分别就本公开的测量方法做出介绍,下面本实施例将结合附图对其对应的终端做进一步说明。
如图7所示,本公开实施例提供了一种终端700,包括:
获取模块710,用于获取网络设备为所述终端配置的非周期下行定位参考信号PRS或半持续下行PRS的目标测量Gap;其中,所述目标测量Gap为非周期测量Gap或者半持续测量Gap;
处理模块720,用于根据所述目标测量Gap,进行下行PRS的接收和测量。
可选地,所述获取模块710包括:
接收子模块,用于接收所述网络设备发送的目标测量Gap的配置参数;
和/或,
获取子模块,用于获取所述网络设备为所述终端配置非周期下行PRS或半持续下行PRS的目标持续时间;其中,所述目标持续时间为所述非周期下行PRS或半持续下行PRS所在的子帧、时隙或正交频分复用OFDM符号,通过配置所述目标持续时间的方式来配置所述目标测量Gap。
可选地,所述接收子模块包括:
第一接收单元,用于通过第一信令接收所述网络设备发送的目标测量Gap的配置参数;
其中,所述第一信令为长期演进定位协议LPP信令、无线资源控制RRC信令、媒体接入控制的控制单元MAC-CE信令或者下行控制信息DCI信令。
可选地,所述接收子模块包括:
第二接收单元,用于接收所述网络设备发送的非周期下行PRS的非周期测量Gap的第一配置参数;
其中,所述第一配置参数包括:所述非周期测量Gap的第一起始时刻、所述非周期测量Gap的第一结束时刻和第一持续时间中的任意两个,所述第一持续时间是从所述第一起始时刻到所述第一结束时刻的持续时间长度。
可选地,所述接收子模块包括:
第三接收单元,用于接收所述网络设备发送的所述半持续下行PRS的半持续测量Gap的第二配置参数;
其中,所述第二配置参数包括:所述半持续测量Gap的重复周期和一个半持续测量Gap的配置参数;
所述一个半持续测量Gap的配置参数包括:所述半持续测量Gap的第二起始时刻、所述半持续测量Gap的第二结束时刻和第二持续时间中的任意两个,所述第二持续时间是从所述第二起始时刻到所述第二结束时刻的持续时间长度。
可选地,所述终端700还包括:
第一接收模块,用于接收所述网络设备发送的第二信令;其中,所述第二信令用于激活所述半持续测量Gap;
或者,
第二接收模块,用于接收所述网络设备发送的第三信令;其中,所述第三信令用于激活半持续下行PRS以及激活半持续测量Gap。
可选地,在获取所述网络设备为所述终端配置的非周期下行PRS或半持续下行PRS的目标持续时间的情况下,所述处理模块720包括:
第一确定子模块,用于根据终端定位测量能力信息,确定在所述目标持续时间内,进行下行PRS的接收和测量,且不接收处理下行信道或第一下行信号;
或者,
第二确定子模块,用于根据所述终端定位测量能力信息,确定在所述目标持续时间内,进行下行PRS的接收和测量,且接收处理下行信道或第一下行信号;
其中,所述第一下行信号是除了下行PRS之外的下行信号。
可选地,所述终端700还包括:
发送模块,用于发送终端定位能力信息至所述网络设备;
在获取所述网络设备为所述终端配置非周期下行PRS或半持续下行PRS的目标持续时间的情况下,所述处理模块720包括:
第三确定子模块,用于根据终端定位测量能力信息,确定所述目标测量Gap;
第一处理子模块,用于在所述目标测量Gap内,进行下行PRS的接收和测量。
可选地,在所述定位测量能力信息包括:在相同的子帧或时隙内,终端能否同时进行定位测量和下行处理的情况下,所述第三确定子模块包括:
第一确定单元,用于在相同的子帧或时隙内,终端不能同时进行定位测量和下行处理的情况下,根据所述终端定位测量能力信息与测量Gap的配置参数之间的对应关系,确定所述目标测量Gap;
第二确定单元,用于在相同的子帧或时隙内,终端能同时进行定位测量和下行处理的情况下,根据所述终端定位测量能力信息与测量Gap的配置参数之间的对应关系以及有效条件,确定所述目标测量Gap;
其中,所述下行处理包括下行信道处理或除了下行PRS之外的下行信号的处理。
可选地,所述有效条件包括:
在频分双工模式下,确定所述非周期下行PRS或半持续下行PRS所在子帧的第一有效时隙,作为所述目标测量Gap;其中,所述第一有效时隙是:在同一个时隙内非周期下行PRS或半持续下行PRS,与下行信道或第一下行信号之间预留N1个OFDM符号的时隙;
在时分双工模式下,确定所述非周期下行PRS或半持续下行PRS所在时隙的第二有效时隙,作为所述目标测量Gap;其中,所述第二有效时隙是:非周期下行PRS或半持续下行PRS,与下行信道或第一下行信号之间预留N1个OFDM符号的下行时隙,或者在每个下行PRS资源开始之前的上行OFDM符号之间预留N2个OFDM符号,且每个下行PRS资源结束之后的上行OFDM符号之间预留N2个OFDM符号的灵活时隙;
其中,N1、N2为大于1的正整数。
可选地,在所述终端定位测量能力信息包括:在下行激活带宽部分、在相同频段的不同带宽部分、在不同频段内,终端能否同时进行定位测量和下行处理的情况下,所述处理模块720包括:
第二处理子模块,用于根据所述终端定位测量能力信息,在下行激活带宽部分、在相同频段的不同带宽部分或者在不同频段中,进行下行定位参考信号PRS接收和测量;
其中,所述下行处理包括下行信道处理或除了下行PRS之外的下行信号的处理。
本公开的终端实施例是与上述方法的实施例对应的,上述方法实施例中的所有实现手段均适用于该终端的实施例中,也能达到相同的技术效果。该
本公开实施例中的终端700,通过网络设备为终端配置非周期下行PRS或半持续下行PRS的目标测量间隔Gap,从而终端可以根据网络设备配置的非周期测量Gap或半持续测量Gap内,进行非周期下行PRS或半持续下行PRS的接收和处理,解决了目前针对非周期下行PRS或半持续下行PRS在测量Gap内的处理方法,还没有解决方案的问题;并且能够避免针对对非周期 下行PRS或半持续下行PRS在周期测量Gap内进行处理时,可能存在无法处理,或无法满足较低定位时延的指标的问题,也即能够降低定时时延。
如图8所示,本实施例提供一种终端,包括:处理器81,以及通过总线接口82与所述处理器81相连接的存储器83,所述存储器83用于存储所述处理器81在执行操作时所使用的程序和数据,当处理器81调用并执行所述存储器83中所存储的程序和数据时,执行下列过程。
可选地,所述处理器81执行所述程序时实现以下步骤:
获取网络设备为所述终端配置的非周期下行定位参考信号PRS或半持续下行PRS的目标测量Gap;其中,所述目标测量Gap为非周期测量Gap或者半持续测量Gap;
根据所述目标测量Gap,进行下行PRS的接收和测量。
可选地,所述处理器81执行所述程序时实现以下步骤:
接收所述网络设备发送的目标测量Gap的配置参数;
和/或,
获取所述网络设备为所述终端配置非周期下行PRS或半持续下行PRS的目标持续时间;其中,所述目标持续时间为所述非周期下行PRS或半持续下行PRS所在的子帧、时隙或正交频分复用OFDM符号,通过配置所述目标持续时间的方式来配置所述目标测量Gap。
可选地,所述处理器81执行所述程序时实现以下步骤:
通过第一信令接收所述网络设备发送的目标测量Gap的配置参数;
其中,所述第一信令为长期演进定位协议LPP信令、无线资源控制RRC信令、媒体接入控制的控制单元MAC-CE信令或者下行控制信息DCI信令。
可选地,所述处理器81执行所述程序时实现以下步骤:
接收所述网络设备发送的非周期下行PRS的非周期测量Gap的第一配置参数;
其中,所述第一配置参数包括:所述非周期测量Gap的第一起始时刻、所述非周期测量Gap的第一结束时刻和第一持续时间中的任意两个,所述第一持续时间是从所述第一起始时刻到所述第一结束时刻的持续时间长度。
可选地,所述处理器81执行所述程序时实现以下步骤:
接收所述网络设备发送的所述半持续下行PRS的半持续测量Gap的第二配置参数;
其中,所述第二配置参数包括:所述半持续测量Gap的重复周期和一个半持续测量Gap的配置参数;
所述一个半持续测量Gap的配置参数包括:所述半持续测量Gap的第二起始时刻、所述半持续测量Gap的第二结束时刻和第二持续时间中的任意两个,所述第二持续时间是从所述第二起始时刻到所述第二结束时刻的持续时间长度。
可选地,所述处理器81执行所述程序时实现以下步骤:
接收所述网络设备发送的第二信令;其中,所述第二信令用于激活所述半持续测量Gap;
或者,
接收所述网络设备发送的第三信令;其中,所述第三信令用于激活半持续下行PRS以及激活半持续测量Gap。
可选地,在获取所述网络设备为所述终端配置的非周期下行PRS或半持续下行PRS的目标持续时间的情况下,所述处理器81执行所述程序时实现以下步骤:
根据终端定位测量能力信息,确定在所述目标持续时间内,进行下行PRS的接收和测量,且不接收处理下行信道或第一下行信号;
或者,
根据所述终端定位测量能力信息,确定在所述目标持续时间内,进行下行PRS的接收和测量,且接收处理下行信道或第一下行信号;
其中,所述第一下行信号是除了下行PRS之外的下行信号。
可选地,所述处理器81执行所述程序时实现以下步骤:
发送终端定位能力信息至所述网络设备;
在获取所述网络设备为所述终端配置非周期下行PRS或半持续下行PRS的目标持续时间的情况下,所述处理器执行所述程序时实现以下步骤:
根据终端定位测量能力信息,确定所述目标测量Gap;
在所述目标测量Gap内,进行下行PRS的接收和测量。
可选地,在所述定位测量能力信息包括:在相同的子帧或时隙内,终端能否同时进行定位测量和下行处理的情况下,所述处理器81执行所述程序时实现以下步骤:
在相同的子帧或时隙内,终端不能同时进行定位测量和下行处理的情况下,根据所述终端定位测量能力信息与测量Gap的配置参数之间的对应关系,确定所述目标测量Gap;
在相同的子帧或时隙内,终端能同时进行定位测量和下行处理的情况下,根据所述终端定位测量能力信息与测量Gap的配置参数之间的对应关系以及有效条件,确定所述目标测量Gap;
其中,所述下行处理包括下行信道处理或除了下行PRS之外的下行信号的处理。
可选地,所述有效条件包括:
在频分双工模式下,确定所述非周期下行PRS或半持续下行PRS所在子帧的第一有效时隙,作为所述目标测量Gap;其中,所述第一有效时隙是:在同一个时隙内非周期下行PRS或半持续下行PRS,与下行信道或第一下行信号之间预留N1个OFDM符号的时隙;
在时分双工模式下,确定所述非周期下行PRS或半持续下行PRS所在时隙的第二有效时隙,作为所述目标测量Gap;其中,所述第二有效时隙是:非周期下行PRS或半持续下行PRS,与下行信道或第一下行信号之间预留N1个OFDM符号的下行时隙,或者在每个下行PRS资源开始之前的上行OFDM符号之间预留N2个OFDM符号,且每个下行PRS资源结束之后的上行OFDM符号之间预留N2个OFDM符号的灵活时隙;
其中,N1、N2为大于1的正整数。
可选地,在所述终端定位测量能力信息包括:在下行激活带宽部分、在相同频段的不同带宽部分、在不同频段内,终端能否同时进行定位测量和下行处理的情况下,所述处理器81执行所述程序时实现以下步骤:
根据所述终端定位测量能力信息,在下行激活带宽部分、在相同频段的不同带宽部分或者在不同频段中,进行下行定位参考信号PRS接收和测量;
其中,所述下行处理包括下行信道处理或除了下行PRS之外的下行信号 的处理。
其中,收发机84与总线接口82连接,用于在处理器81的控制下接收和发送数据。
需要说明的是,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器81代表的一个或多个处理器和存储器83代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机84可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的终端,用户接口85还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。处理器81负责管理总线架构和通常的处理,存储器83可以存储处理器81在执行操作时所使用的数据。
本领域技术人员可以理解,实现上述实施例的全部或者部分步骤可以通过硬件来完成,也可以通过程序来指示相关的硬件来完成,所述程序包括执行上述方法的部分或者全部步骤的指令;且该程序可以存储于一可读存储介质中,存储介质可以是任何形式的存储介质。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述测量方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
以下结合具体实施例,基于网络设备侧和终端侧对本公开的上述方法进行说明:
实施例一:网络设备(以下以服务基站为例)采用显式信令方式向终端通知非周期或半持续下行PRS的定位测量Gap。其中,N=8。
针对UE侧的执行过程如下:
步骤1、UE向服务基站上报UE定位测量能力信息。
步骤2、UE接收服务基站发送的非周期/半持续定位测量Gap的显式配置参数。
步骤3、UE根据上述步骤2获得的显式配置参数,分别进行对应处理。
例如:针对显式配置的定位测量Gap,UE在显式配置参数所指示的定位测量Gap,进行下行PRS接收和测量处理,获得定位测量量。
步骤4、UE向网络上报定位测量量,或者基于该定位测量量进行UE位置解算。
针对服务基站侧的执行步骤如下:
步骤1、服务基站根据UE上报的UE定位测量能力信息选择显式方法配置非周期/半持续的定位测量Gap。
例如:针对非周期下行PRS,定位测量Gap是非周期的,并可以采用以下方式定义配置参数。
非周期定位测量Gap的起始时刻T1为网络配置的所有下行小区的非周期下行PRS资源集的起始时刻的最小值;非周期的定位测量Gap的结束时刻T2为网络配置的所有下行小区的非周期下行PRS资源集的结束时刻的最大值;非周期的定位测量Gap的持续时间L1=T2-T1。
例如:一共配置了N=8个TRP,T1表示非周期定位测量Gap起始时刻,T2表示非周期定位测量Gap结束时刻,L1表示非周期定位测量Gap的持续时间。
其中,服务基站通过显式信令通知T1、T2和L1之间的任意两个值。显式信令可以是LPP信令、RRC信令、MAC-CE或者DCI信令。
其中,T1=min{T1(TRP#1),T1(TRP#2),…,T1(TRP#8)}=T1(TRP#1);
T2=max{T2(TRP#1),T2(TRP#2),…,T2(TRP#8)}=T2(TRP#8);
L1=T2-T1=T2(TRP#8)-T1(TRP#1)。
其中,T1、T2和L1的时间单位可以是子帧或者时隙或者OFDM符号。
示例1:针对室内工厂(InF)场景,最大TRP间隔为300米,传输时延为1微秒(us),在OFDM符号的CP范围(针对SCS=15KHz,CP长度为4.6us/5.2us)之内。可参见图2所示,采用时隙为单位,一共配置N=8个TRP, 每个TRP包含1个下行PRS资源集,每个下行PRS资源集包含4个下行PRS资源,每个下行PRS资源包含6个OFDM符号,所有TRP的下行PRS资源集之间采用连续的时隙分配,即TDM复用方式。因此,每个下行PRS资源集占用2个连续的时隙。8个TRP一共占用16个连续的下行时隙,即L=2N=2*8=16。
又例如:针对半持续定位测量Gap,半持续的定位测量Gap的重复周期等于或者大于半持续下行PRS的重复周期。可选地,本公开实施例中所说的半持续的定位测量Gap的重复周期等于半持续下行PRS的重复周期,可以是指半持续的定位测量Gap的重复周期与半持续下行PRS的重复周期相同,或者两者为整数倍关系。
针对半持续下行PRS的定位测量Gap,可以采用以下方式定义配置参数:在一个半持续下行PRS周期内,半持续的定位测量Gap的起始时刻T1为网络配置的所有下行小区的半持续下行PRS资源集的起始时刻的最小值;半持续的定位测量Gap的结束时刻T2为网络配置的所有下行小区的半持续下行PRS资源集的结束时刻的最大值;半持续的定位测量Gap的持续时间L2=T2-T1。
例如:一共配置了8个TRP,不同TRP的下行PRS资源集之间采用TDM复用方式,T1表示半持续定位测量Gap起始时刻,T2表示半持续定位测量Gap的结束时刻,L2表示半持续定位测量Gap在一个周期内的持续时间,P表示半持续定位测量Gap的重复周期。
其中,网络设备可以通过显式信令通知T1、T2和L2之间的任意两个值,以及P。显式信令可以是LPP信令、RRC信令、MAC-CE或者DCI信令。
可参见图3所示,采用时隙为单位,一共配置了8个TRP,每个TRP包含1个下行PRS资源集,每个下行PRS资源集包含4个下行PRS资源,每个下行PRS资源包含6个OFDM符号,所有TRP的下行PRS资源集之间采用连续的时隙分配,即TDM复用方式。因此,每个下行PRS资源集占用2个连续的时隙。N个TRP一共占用2N个连续的下行时隙,即L=2N。半持续下行PRS重复两次,P=8*8=64。
其中,T1=min{T1(TRP#1),T1(TRP#2),…,T1(TRP#8)}=T1(TRP#1);
T2=max{T2(TRP#1),T2(TRP#2),…,T2(TRP#8)}=T1(TRP#1);
L=T2-T1=6;
T3=T1+P=T1+64;
T4=T2+P=T2+64。
步骤2、服务基站把非周期/半持续定位测量Gap的配置参数通过信令通知给UE。该信令可以是RRC信令、MAC-CE信令或者DCI信令。
其中,针对半持续定位测量Gap,当半持续定位PRS去激活时,自动失效。
步骤3、服务基站向UE发送非周期/半持续下行PRS。
实施例二:网络设备(如服务基站)采用显式结合隐式信令方式向终端通知非周期或半持续下行PRS的定位测量Gap。
针对终端侧的执行步骤如下:
步骤1、UE向服务基站上报UE定位测量能力信息。
步骤2、UE接收服务基站发送的非周期/半持续定位测量Gap的显式配置参数,以及UE通过协议预定义方式获得非周期定位测量Gap的隐式配置参数。
步骤3、UE根据上述步骤2获得的配置参数,进行处理。
例如:针对显式配置的定位测量Gap,UE在显式配置参数所指示的定位测量Gap,进行下行PRS接收和测量处理,获得定位测量量。针对隐式配置的定位测量Gap,UE根据预定义规则,在配置非周期下行PRS所在的子帧、时隙或者OFDM符号,默认进行下行定位信号接收和测量处理,获得定位测量量。
可选地,在通过显式结合隐式配置的方式中,可以是其中某些参数显示配置,另外一些参数协议预定义(即隐式配置)。
步骤4、UE向网络上报定位测量量,或者基于该定位测量量进行UE位置解算。
针对服务基站侧的执行步骤如下:
步骤1、服务基站根据UE上报的UE定位能力选择或者自主选择显示和隐式方法配置非周期的定位测量Gap。
例如:针对显式结合隐式配置的方法,首先进入步骤1.2,然后进入步骤1.1,如果隐式配置方法的参数和显式配置方法的参数冲突,则以显示配置的参数为准。
步骤1.1、显式配置方法:可参见上述实施例一,为避免重复,这里不再赘述。
步骤1.2、隐式配置方法:隐式配置定位测量Gap,即协议不通过显式信令通知UE的定位测量Gap,而是在配置非周期/半持续下行PRS所在的子帧、时隙或者OFDM符号,通过协议预定义方式默认进行下行定位信号接收和测量处理。
UE根据自身上报给网络的UE定位测量能力,选择在隐式的定位测量Gap内,选择下面方式1处理。
方式1:UE只能进行定位测量操作,不能接收处理其它下行信道/信号。其中,UE定位测量能力等级,与UE定位测量能力和起始时刻T1、持续时间L和结束时刻T2之间的对应关系如上述表2所示。其中,N=4。
其中,表2中等级4和等级5的有效时隙和有效条件判断规则如表3所示。其中,N1和N2为大于等于1的正整数,例如:N1=2,N2=2。
UE定位测量能力等级与针对带宽的UE定位测量能力之间的对应关系如表4所示。
其中,上述方式和表格可以通过协议预定义,或者高层信令通知。
步骤2、服务基站把非周期定位测量Gap的配置参数通过信令通知给UE。该信令可以是RRC信令、MAC-CE信令或者DCI信令。
步骤3、服务基站向UE发送非周期/半持续下行PRS。
本公开实施例中,通过网络设备为终端配置非周期下行PRS或半持续下行PRS的目标测量间隔Gap,解决了目前针对非周期下行PRS或半持续下行PRS在测量Gap内的处理方法,还没有解决方案的问题;并且能够避免针对对非周期下行PRS或半持续下行PRS在周期测量Gap内进行处理时,可能存在无法处理,或无法满足较低定位时延的指标的问题,也即能够降低定时时延。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步 骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
可以理解的是,本公开描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子模块、子单元等可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (28)

  1. 一种测量配置方法,应用于网络设备,包括:
    为终端配置非周期下行定位参考信号PRS或半持续下行PRS的目标测量间隔Gap;其中,所述目标测量Gap为非周期测量Gap或者半持续测量Gap。
  2. 根据权利要求1所述的测量配置方法,在为终端配置非周期下行PRS或半持续PRS的目标测量间隔Gap之前,所述方法还包括:
    根据目标信息,确定所述目标测量Gap;其中,所述目标信息为终端上报的终端定位测量能力信息或终端已上报数据的历史信息。
  3. 根据权利要求2所述的测量配置方法,其中,所述目标测量Gap的时间单位与所述终端上报的终端定位测量能力信息相关;
    所述目标测量Gap的时间单位为:子帧、时隙或正交频分复用OFDM符号。
  4. 根据权利要求1所述的测量配置方法,其中,所述为终端配置非周期下行定位参考信号PRS或半持续下行PRS的目标测量间隔Gap,包括:
    发送所述目标测量间隔Gap的配置参数至所述终端;
    和/或,
    为所述终端配置非周期下行PRS或半持续下行PRS的目标持续时间;其中,所述目标持续时间为所述非周期下行PRS或半持续下行PRS所在的子帧、时隙或OFDM符号,通过配置所述目标持续时间的方式来配置所述目标测量Gap。
  5. 根据权利要求4所述的测量配置方法,其中,在所述目标测量Gap为非周期下行PRS的非周期测量Gap的情况下,所述发送所述目标测量Gap的配置参数至所述终端,包括:
    将所有下行小区的非周期下行PRS资源集的起始时刻的最小值,确定为所述非周期测量Gap的第一起始时刻;
    将所有下行小区的非周期下行PRS资源集的结束时刻的最大值,确定为所述非周期测量Gap的第一结束时刻;
    发送所述非周期测量Gap的第一配置参数至所述终端;
    其中,所述第一配置参数包括:所述第一起始时刻、所述第一结束时刻和第一持续时间中的任意两个,所述第一持续时间是从所述第一起始时刻到所述第一结束时刻的持续时间长度。
  6. 根据权利要求4所述的测量配置方法,其中,在所述目标测量Gap为半持续下行PRS的半持续测量Gap的情况下,所述发送所述目标测量Gap的配置参数至所述终端,包括:
    在一个半持续下行PRS周期内,将所有下行小区的半持续下行PRS资源集的起始时刻的最小值,确定为所述半持续测量Gap的第二起始时刻;
    在所述半持续下行PRS周期内,将所有下行小区的半持续下行PRS资源集的结束时刻的最大值,确定为所述半持续测量Gap的第二结束时刻;
    发送所述半持续测量Gap的第二配置参数至所述终端;
    其中,所述第二配置参数包括:所述半持续测量Gap的重复周期和一个半持续测量Gap的配置参数;
    所述一个半持续测量Gap的配置参数包括:所述第二起始时刻、所述第二结束时刻和第二持续时间中的任意两个,所述第二持续时间是从所述第二起始时刻到所述第二结束时刻的持续时间长度。
  7. 根据权利要求2所述的测量配置方法,其中,所述终端定位测量能力信息包括以下至少一项:
    在相同的子帧或时隙内,终端能否同时进行定位测量和下行处理;
    在下行激活带宽部分,终端能否同时进行定位测量和下行处理;
    在相同频段的不同带宽部分,终端能否同时进行定位测量和下行处理;
    在不同频段内,终端能否同时进行定位测量和下行处理;
    其中,所述下行处理包括下行信道处理或除了下行PRS之外的下行信号的处理。
  8. 一种测量方法,应用于终端,包括:
    获取网络设备为所述终端配置的非周期下行定位参考信号PRS或半持续下行PRS的目标测量Gap;其中,所述目标测量Gap为非周期测量Gap或者半持续测量Gap;
    根据所述目标测量Gap,进行下行PRS的接收和测量。
  9. 根据权利要求8所述的测量方法,其中,所述获取网络设备为所述终端配置的非周期下行定位参考信号PRS或半持续下行PRS的目标测量Gap,包括:
    接收所述网络设备发送的目标测量Gap的配置参数;
    和/或,
    获取所述网络设备为所述终端配置非周期下行PRS或半持续下行PRS的目标持续时间;其中,所述目标持续时间为所述非周期下行PRS或半持续下行PRS所在的子帧、时隙或正交频分复用OFDM符号,通过配置所述目标持续时间的方式来配置所述目标测量Gap。
  10. 根据权利要求9所述的测量方法,其中,所述接收所述网络设备发送的所述目标测量Gap的配置参数,包括:
    接收所述网络设备发送的非周期下行PRS的非周期测量Gap的第一配置参数;
    其中,所述第一配置参数包括:所述非周期测量Gap的第一起始时刻、所述非周期测量Gap的第一结束时刻和第一持续时间中的任意两个,所述第一持续时间是从所述第一起始时刻到所述第一结束时刻的持续时间长度。
  11. 根据权利要求9所述的测量方法,其中,所述接收所述网络设备发送的所述目标测量Gap的配置参数,包括:
    接收所述网络设备发送的所述半持续下行PRS的半持续测量Gap的第二配置参数;
    其中,所述第二配置参数包括:所述半持续测量Gap的重复周期和一个半持续测量Gap的配置参数;
    所述一个半持续测量Gap的配置参数包括:所述半持续测量Gap的第二起始时刻、所述半持续测量Gap的第二结束时刻和第二持续时间中的任意两个,所述第二持续时间是从所述第二起始时刻到所述第二结束时刻的持续时间长度。
  12. 根据权利要求9所述的测量方法,其中,在获取所述网络设备为所述终端配置的非周期下行PRS或半持续下行PRS的目标持续时间的情况下,所述根据所述目标测量Gap,进行下行PRS的接收和测量,包括:
    根据终端定位测量能力信息,确定在所述目标持续时间内,进行下行PRS的接收和测量,且不接收处理下行信道或第一下行信号;
    或者,
    根据所述终端定位测量能力信息,确定在所述目标持续时间内,进行下行PRS的接收和测量,且接收处理下行信道或第一下行信号;
    其中,所述第一下行信号是除了下行PRS之外的下行信号。
  13. 根据权利要求9所述的测量方法,还包括:
    发送终端定位能力信息至所述网络设备;
    在获取所述网络设备为所述终端配置非周期下行PRS或半持续下行PRS的目标持续时间的情况下,所述根据所述目标测量Gap,进行下行PRS的接收和测量,包括:
    根据终端定位测量能力信息,确定所述目标测量Gap;
    在所述目标测量Gap内,进行下行PRS的接收和测量。
  14. 根据权利要求13所述的测量方法,其中,在所述定位测量能力信息包括:在相同的子帧或时隙内,终端能否同时进行定位测量和下行处理的情况下,所述根据终端定位测量能力信息,确定所述目标测量Gap,包括:
    在相同的子帧或时隙内,终端不能同时进行定位测量和下行处理的情况下,根据所述终端定位测量能力信息与测量Gap的配置参数之间的对应关系,确定所述目标测量Gap;
    在相同的子帧或时隙内,终端能同时进行定位测量和下行处理的情况下,根据所述终端定位测量能力信息与测量Gap的配置参数之间的对应关系以及有效条件,确定所述目标测量Gap;
    其中,所述下行处理包括下行信道处理或除了下行PRS之外的下行信号的处理。
  15. 根据权利要求14所述的测量方法,其中,所述有效条件包括:
    在频分双工模式下,确定所述非周期下行PRS或半持续下行PRS所在子帧的第一有效时隙,作为所述目标测量Gap;其中,所述第一有效时隙是:在同一个时隙内非周期下行PRS或半持续下行PRS,与下行信道或第一下行信号之间预留N1个OFDM符号的时隙;
    在时分双工模式下,确定所述非周期下行PRS或半持续下行PRS所在时隙的第二有效时隙,作为所述目标测量Gap;其中,所述第二有效时隙是:非周期下行PRS或半持续下行PRS,与下行信道或第一下行信号之间预留N1个OFDM符号的下行时隙,或者在每个下行PRS资源开始之前的上行OFDM符号之间预留N2个OFDM符号,且每个下行PRS资源结束之后的上行OFDM符号之间预留N2个OFDM符号的灵活时隙;
    其中,N1、N2为大于1的正整数。
  16. 根据权利要求9所述的测量方法,其中,在所述终端定位测量能力信息包括:在下行激活带宽部分、在相同频段的不同带宽部分、在不同频段内,终端能否同时进行定位测量和下行处理的情况下,所述根据所述目标测量Gap,进行下行定位参考信号PRS接收和测量,包括:
    根据所述终端定位测量能力信息,在下行激活带宽部分、在相同频段的不同带宽部分或者在不同频段中,进行下行定位参考信号PRS接收和测量;
    其中,所述下行处理包括下行信道处理或除了下行PRS之外的下行信号的处理。
  17. 一种网络设备,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,其中,所述处理器执行所述程序时实现以下步骤:
    为终端配置非周期下行定位参考信号PRS或半持续下行PRS的目标测量间隔Gap;其中,所述目标测量Gap为非周期测量Gap或者半持续测量Gap。
  18. 根据权利要求17所述的网络设备,其中,所述处理器执行所述程序时实现以下步骤:
    根据目标信息,确定所述目标测量Gap;其中,所述目标信息为终端上报的终端定位测量能力信息或终端已上报数据的历史信息。
  19. 根据权利要求17所述的网络设备,其中,所述处理器执行所述程序时实现以下步骤:
    发送所述目标测量间隔Gap的配置参数至所述终端;
    和/或,
    为所述终端配置非周期下行PRS或半持续下行PRS的目标持续时间;其 中,所述目标持续时间为所述非周期下行PRS或半持续下行PRS所在的子帧、时隙或OFDM符号,通过配置所述目标持续时间的方式来配置所述目标测量Gap。
  20. 一种网络设备,包括:
    配置模块,用于为终端配置非周期下行定位参考信号PRS或半持续下行PRS的目标测量间隔Gap;其中,所述目标测量Gap为非周期测量Gap或者半持续测量Gap。
  21. 一种终端,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,其中,所述处理器执行所述程序时实现以下步骤:
    获取网络设备为所述终端配置的非周期下行定位参考信号PRS或半持续下行PRS的目标测量Gap;其中,所述目标测量Gap为非周期测量Gap或者半持续测量Gap;
    根据所述目标测量Gap,进行下行PRS的接收和测量。
  22. 根据权利要求21所述的终端,其中,所述处理器执行所述程序时实现以下步骤:
    接收所述网络设备发送的目标测量Gap的配置参数;
    和/或,
    获取所述网络设备为所述终端配置非周期下行PRS或半持续下行PRS的目标持续时间;其中,所述目标持续时间为所述非周期下行PRS或半持续下行PRS所在的子帧、时隙或正交频分复用OFDM符号,通过配置所述目标持续时间的方式来配置所述目标测量Gap。
  23. 根据权利要求22所述的终端,其中,在获取所述网络设备为所述终端配置的非周期下行PRS或半持续下行PRS的目标持续时间的情况下,所述处理器执行所述程序时实现以下步骤:
    根据终端定位测量能力信息,确定在所述目标持续时间内,进行下行PRS的接收和测量,且不接收处理下行信道或第一下行信号;
    或者,
    根据所述终端定位测量能力信息,确定在所述目标持续时间内,进行下行PRS的接收和测量,且接收处理下行信道或第一下行信号;
    其中,所述第一下行信号是除了下行PRS之外的下行信号。
  24. 根据权利要求22所述的终端,其中,所述处理器执行所述程序时实现以下步骤:
    发送终端定位能力信息至所述网络设备;
    在获取所述网络设备为所述终端配置非周期下行PRS或半持续下行PRS的目标持续时间的情况下,所述处理器执行所述程序时实现以下步骤:
    根据终端定位测量能力信息,确定所述目标测量Gap;
    在所述目标测量Gap内,进行下行PRS的接收和测量。
  25. 根据权利要求24所述的终端,其中,在所述定位测量能力信息包括:在相同的子帧或时隙内,终端能否同时进行定位测量和下行处理的情况下,所述处理器执行所述程序时实现以下步骤:
    在相同的子帧或时隙内,终端不能同时进行定位测量和下行处理的情况下,根据所述终端定位测量能力信息与测量Gap的配置参数之间的对应关系,确定所述目标测量Gap;
    在相同的子帧或时隙内,终端能同时进行定位测量和下行处理的情况下,根据所述终端定位测量能力信息与测量Gap的配置参数之间的对应关系以及有效条件,确定所述目标测量Gap;
    其中,所述下行处理包括下行信道处理或除了下行PRS之外的下行信号的处理。
  26. 根据权利要求25所述的终端,其中,所述有效条件包括:
    在频分双工模式下,确定所述非周期下行PRS或半持续下行PRS所在子帧的第一有效时隙,作为所述目标测量Gap;其中,所述第一有效时隙是:在同一个时隙内非周期下行PRS或半持续下行PRS,与下行信道或第一下行信号之间预留N1个OFDM符号的时隙;
    在时分双工模式下,确定所述非周期下行PRS或半持续下行PRS所在时隙的第二有效时隙,作为所述目标测量Gap;其中,所述第二有效时隙是:非周期下行PRS或半持续下行PRS,与下行信道或第一下行信号之间预留N1个OFDM符号的下行时隙,或者在每个下行PRS资源开始之前的上行OFDM符号之间预留N2个OFDM符号,且每个下行PRS资源结束之后的上 行OFDM符号之间预留N2个OFDM符号的灵活时隙;
    其中,N1、N2为大于1的正整数。
  27. 一种终端,包括:
    获取模块,用于获取网络设备为所述终端配置的非周期下行定位参考信号PRS或半持续下行PRS的目标测量Gap;其中,所述目标测量Gap为非周期测量Gap或者半持续测量Gap;
    处理模块,用于根据所述目标测量Gap,进行下行PRS的接收和测量。
  28. 一种可读存储介质,其上存储有程序,其中,该程序被处理器执行时实现如权利要求1至7中任一项所述的测量配置方法的步骤,或者实现如权利要求8至16中任一项所述的测量方法的步骤。
PCT/CN2021/124125 2020-10-16 2021-10-15 测量配置方法、测量方法、网络设备及终端 WO2022078501A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/249,236 US20230397184A1 (en) 2020-10-16 2021-10-15 Measurement configuration method, measurement method, network device and terminal
EP21879542.5A EP4231694A4 (en) 2020-10-16 2021-10-15 MEASUREMENT CONFIGURATION METHOD, MEASUREMENT METHOD, NETWORK DEVICE AND TERMINAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011112946.9 2020-10-16
CN202011112946.9A CN114390547A (zh) 2020-10-16 2020-10-16 测量配置方法、测量方法、网络设备及终端

Publications (1)

Publication Number Publication Date
WO2022078501A1 true WO2022078501A1 (zh) 2022-04-21

Family

ID=81194340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124125 WO2022078501A1 (zh) 2020-10-16 2021-10-15 测量配置方法、测量方法、网络设备及终端

Country Status (4)

Country Link
US (1) US20230397184A1 (zh)
EP (1) EP4231694A4 (zh)
CN (1) CN114390547A (zh)
WO (1) WO2022078501A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106664591A (zh) * 2015-03-26 2017-05-10 Lg 电子株式会社 在无线通信系统中报告用于确定位置的测量结果的方法及其设备
WO2020066103A1 (ja) * 2018-09-27 2020-04-02 三菱電機株式会社 基地局、端末装置、測位方法、および無線通信システム
US20200154449A1 (en) * 2018-11-12 2020-05-14 Qualcomm Incorporated Managing an overlap between a set of resources allocated to a positioning reference signal and a set of resources allocated to a physical channel
CN111465101A (zh) * 2019-01-18 2020-07-28 株式会社Kt 在新无线电中执行定位的装置和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9942009B2 (en) * 2015-04-08 2018-04-10 Telefonaktiebolaget Lm Ericsson (Publ) Measurement gap configuration
US11470440B2 (en) * 2017-08-10 2022-10-11 Qualcomm Incorporated Provision and use of gaps for reference signal time difference measurements
CN109788497A (zh) * 2017-11-10 2019-05-21 维沃移动通信有限公司 测量间隔的指示方法、接收方法、终端及网络设备
WO2020191646A1 (en) * 2019-03-27 2020-10-01 Nokia Shanghai Bell Co., Ltd. Wireless positioning measurement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106664591A (zh) * 2015-03-26 2017-05-10 Lg 电子株式会社 在无线通信系统中报告用于确定位置的测量结果的方法及其设备
US20170171857A1 (en) * 2015-03-26 2017-06-15 Lg Electronics Inc. Method for reporting measurement result for determining position in wireless communication system, and device therefor
WO2020066103A1 (ja) * 2018-09-27 2020-04-02 三菱電機株式会社 基地局、端末装置、測位方法、および無線通信システム
US20200154449A1 (en) * 2018-11-12 2020-05-14 Qualcomm Incorporated Managing an overlap between a set of resources allocated to a positioning reference signal and a set of resources allocated to a physical channel
CN111465101A (zh) * 2019-01-18 2020-07-28 株式会社Kt 在新无线电中执行定位的装置和方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion of NR positioning enhancements", 3GPP DRAFT; R1-2007860, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 17 October 2020 (2020-10-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051939940 *
See also references of EP4231694A4 *

Also Published As

Publication number Publication date
CN114390547A (zh) 2022-04-22
EP4231694A4 (en) 2024-04-03
EP4231694A1 (en) 2023-08-23
US20230397184A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
US11153774B2 (en) Signal transmission method and device, and system
CN104813713B (zh) 用于设备对设备通信的ad-hoc/网络辅助的设备发现协议的系统和方法
WO2020221055A1 (zh) 接收数据和发送数据的方法、通信装置
WO2018126952A1 (zh) 通信方法、网络设备、及终端设备
WO2018210243A1 (zh) 一种通信方法和装置
WO2021000872A1 (zh) 信号传输方法及装置
TW201446069A (zh) D2d通信中的資料傳輸方法和設備
AU2020334822B2 (en) Resource multiplexing method and apparatus
JP7222101B2 (ja) 無線ネットワーク通信方法及び端末装置
WO2019029348A1 (zh) 数据传输方法、终端和基站
JP2020519168A (ja) リソース指示方法および装置
TWI787837B (zh) 下行定位參考信號收發方法、終端、基地台、設備及裝置
JP7408688B2 (ja) 上りチャネル伝送方法、端末及び基地局
KR102267183B1 (ko) 다운 링크 리소스 집합을 결정하기 위한 방법 및 장치, 및 리소스 위치 정보를 송신하기 위한 방법 및 장치
CN109756985A (zh) 通信方法、终端设备和网络设备
WO2020221150A1 (zh) Harq-ack的传输方法、用户设备及网络侧设备
CN112106423A (zh) 用于物理下行链路控制信道监测的方法、终端设备和基站
WO2018036437A1 (zh) 资源指示、确定方法、装置、网络侧设备及接收侧设备
CN107710822A (zh) 载波跳转的方法、终端和基站
US11296848B2 (en) Method and device for transmitting information in wireless communication system
WO2019154206A1 (zh) 信息发送方法及终端
WO2022078501A1 (zh) 测量配置方法、测量方法、网络设备及终端
TW202231116A (zh) 信號傳輸方法、裝置、終端設備、網路設備及存儲介質
WO2019041261A1 (zh) 一种通信方法及设备
WO2020038204A1 (en) Method, network device and terminal device for managing a resource in a wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021879542

Country of ref document: EP

Effective date: 20230516