WO2022078349A1 - 基于信号重构的频率偏移值的估计方法及系统 - Google Patents

基于信号重构的频率偏移值的估计方法及系统 Download PDF

Info

Publication number
WO2022078349A1
WO2022078349A1 PCT/CN2021/123365 CN2021123365W WO2022078349A1 WO 2022078349 A1 WO2022078349 A1 WO 2022078349A1 CN 2021123365 W CN2021123365 W CN 2021123365W WO 2022078349 A1 WO2022078349 A1 WO 2022078349A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
pbch
dmrs
perform
signals
Prior art date
Application number
PCT/CN2021/123365
Other languages
English (en)
French (fr)
Inventor
张洋
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Publication of WO2022078349A1 publication Critical patent/WO2022078349A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the technical field of wireless communication, and in particular, to a method and system for estimating a frequency offset value based on signal reconstruction.
  • the SSB Synchronization Signal and PBCH block, synchronization signal and PBCH (Physical Broadcast Channel) block
  • the terminal which not only Contains necessary scheduling information and demodulation reference signals for channel estimation.
  • the terminal needs to adjust the frequency offset (frequency offset), clock offset (time offset), etc. according to the estimated results, so as to receive subsequent signals and information. . Since the signal strength and redundancy of other signals and channels are much lower than that of SSB when the system is designed, higher channel quality is required to receive and demodulate these signals and information.
  • the frequency offset estimation is generally performed directly by using the DMRS (demodulation reference signal) signal of the PBCH, and the terminal frequency offset is adjusted accordingly.
  • the existing estimation schemes mainly have the following defects: (1) the only signal used for frequency offset estimation is the PBCH DMRS signal, resulting in limited resources and limited frequency offset accuracy; (2) there is no additional frequency offset adjustment.
  • the limitation is that when the PBCH is demodulated incorrectly, the obtained signal is generally very poor, resulting in very inaccurate frequency offset estimates based on the SSB DMRS, which in turn affects the demodulation success rate and efficiency.
  • the technical problem to be solved by the present invention is to provide a method and system for estimating frequency offset value based on signal reconstruction in order to overcome the defects of low frequency offset estimation accuracy in the prior art, resulting in low signal demodulation success rate and efficiency.
  • a method for estimating a frequency offset value based on signal reconstruction comprising:
  • the calculation is performed according to the channel response information to obtain the frequency offset value of the PBCH signal.
  • the estimation method before the step of responding to receiving the demodulated PBCH signal, the estimation method further includes:
  • channel estimation is performed using the DMRS signals to obtain a channel estimation result
  • the estimation method before the step of extracting the DMRS and PBCH signals from the signal sampling data, the estimation method further includes:
  • PSS primary synchronization signal
  • the DMRS and PBCH signals are extracted from the signal sampling data captured for the second time according to the relative positions of the PBCH and DMRS.
  • the step of performing signal reconstruction using the demodulated PBCH and DMRS signals to obtain the reconstructed PBCH signal includes:
  • QPSK Quadrature Phase Shift Keying
  • RE (Resource Element) mapping is performed on the modulated symbols to obtain a reconstructed PBCH signal.
  • the estimation method is applied to the initial network search phase of the NR device.
  • a system for estimating frequency offset values based on signal reconstruction comprising:
  • a signal reconstruction module configured to perform signal reconstruction using the demodulated PBCH and DMRS signals in response to receiving the demodulated PBCH signal to obtain the reconstructed PBCH signal;
  • a frequency offset estimation module configured to perform a correlation operation using the reconstructed PBCH signal and the signal in the buffer to obtain channel response information
  • the frequency offset estimation module is further configured to perform calculation according to the channel response information to obtain the frequency offset value of the PBCH signal.
  • it also includes a signal demodulation module
  • the signal demodulation module is configured to:
  • channel estimation is performed using the DMRS signals to obtain a channel estimation result
  • the PBCH signal after the successful demodulation is output as a signal reconstructed by the signal reconstruction module.
  • it also includes a signal sampling module
  • the signal sampling module is configured to:
  • the DMRS and PBCH signals are extracted from the signal sampling data captured for the second time according to the relative positions of the PBCH and DMRS.
  • the signal reconstruction module is configured to:
  • QPSK modulation is performed on the matched sequence
  • the estimation system is applied to the initial network search phase of the NR device.
  • An electronic device comprising a memory, a processor, and a computer program stored in the memory and running on the processor, when the processor executes the computer program, the above-mentioned method for estimating a frequency offset value based on signal reconstruction is implemented A step of.
  • a computer-readable medium having stored thereon computer instructions that, when executed by a processor, implement the steps of the method for estimating a signal-reconstructed-based frequency offset value as described above.
  • the method and system for estimating frequency offset value based on signal reconstruction provided by the present invention increase the RE resources used for channel estimation by reconstructing the PBCH signal, and improve the precision and accuracy of frequency offset value estimation in the initial network search stage Therefore, the signal-to-noise ratio of the subsequent received signal is effectively improved, thereby effectively improving the demodulation success rate and demodulation efficiency of the SSB signal.
  • the present invention also estimates and adjusts the frequency offset value only when the PBCH demodulation is successful, thereby effectively avoiding the possibility of deteriorating the received signal quality by adjusting according to the wrong frequency offset result when the signal is very poor.
  • FIG. 1 is a schematic flowchart of a method for estimating a frequency offset value based on signal reconstruction according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of reconstructing a PBCH signal according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a system for estimating a frequency offset value based on signal reconstruction according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an electronic device implementing a method for estimating a frequency offset value based on signal reconstruction according to another embodiment of the present invention.
  • the present embodiment provides a method for estimating a frequency offset value based on signal reconstruction.
  • the estimation method includes: in response to receiving a demodulated PBCH signal, using the demodulated PBCH signal Perform signal reconstruction with the DMRS signal to obtain the reconstructed PBCH signal; perform a correlation operation with the reconstructed PBCH signal and the signal in the buffer to obtain channel response information; perform calculation according to the channel response information to obtain Obtain the frequency offset value of the PBCH signal.
  • the estimation method is applied to the initial network search stage of the NR device, but its application scenario is not specifically limited, and corresponding selection and adjustment can be made according to actual needs.
  • an accurate frequency offset value is effectively estimated in the initial network search phase, so as to improve the reception quality of the subsequent downlink signals, thereby effectively improving the SSB signal demodulation success rate and demodulation efficiency.
  • the estimation method mainly includes the following steps:
  • Step 101 Obtain sampling data.
  • Step 102 Obtain the PSS peak position.
  • a locally generated PSS sequence is used to perform a sliding correlation operation with the signal sampling data to obtain the PSS peak position.
  • Step 103 Obtain the starting position of the PSS signal in the next cycle and use it as the starting position of grabbing the signal sampling data for the second time.
  • Step 104 Extract the DMRS and PBCH signals, and demodulate the PBCH signals.
  • the DMRS and PBCH signals are extracted from the signal sampling data captured for the second time according to the relative positions of the PBCH and the DMRS, and the channel estimation results are obtained by using the DMRS signals for channel estimation.
  • the PBCH signal is also demodulated according to the channel estimation result.
  • Step 105 determine whether the demodulation is successful, if yes, go to step 106, if not, go to step 109.
  • step 106 it is judged whether the demodulation of the PBCH signal is successful, if so, the PBCH signal after the successful demodulation is output, and step 106 is executed, if not, step 109 is executed.
  • Step 106 performing signal reconstruction.
  • signal reconstruction is performed using the demodulated PBCH payload and the DMRS signal to obtain the reconstructed PBCH signal.
  • the step of performing signal reconstruction mainly includes the following steps:
  • Step 1061 Scrambling the information bits after demodulating the PBCH signal.
  • the information bits after demodulating the PBCH signal are scrambled to generate a scrambled sequence according to the protocol specification, and the initial value is the cellid configured on the network side.
  • Step 1062 Add CRC to the scrambled sequence.
  • CRC is a channel coding technology that generates a short fixed-digit check code according to data such as network data packets or computer files, and is mainly used to detect or check errors that may occur after data transmission or storage. .
  • Step 1063 Perform polar code encoding on the sequence after adding the CRC.
  • Step 1064 Perform rate matching on the encoded sequence.
  • Step 1065 Perform QPSK modulation on the matched sequence.
  • Step 1066 Perform RE mapping on the modulated symbols to obtain a reconstructed PBCH signal.
  • all relevant configuration parameters can be specified in NR protocols 38.211 and 38.212.
  • Step 107 Acquire signal response information.
  • a cross-correlation operation is performed using the reconstructed PBCH signal and the signal in the buffer to obtain the channel response information H.
  • Step 108 Calculate to obtain an accurate frequency offset value.
  • calculation is performed according to the channel response information H to obtain an accurate frequency offset value of the PBCH signal.
  • Step 109 Return to the upper layer if the network search fails.
  • the failure to find the network is returned to the upper-layer unit to re-execute the demodulation.
  • the method for estimating the frequency offset value based on signal reconstruction increases the RE resources used for channel estimation by reconstructing the PBCH signal, and improves the precision and accuracy of the frequency offset value estimation in the initial network search stage , thereby effectively improving the signal-to-noise ratio of subsequent received signals, thereby effectively improving the SSB signal demodulation success rate and demodulation efficiency.
  • the estimation and adjustment of the frequency offset value are performed only when the PBCH demodulation is successful, thereby effectively avoiding the possibility of deteriorating the quality of the received signal by adjusting according to the wrong frequency offset result when the signal is very poor.
  • the present embodiment also provides an estimation system based on a reconstructed frequency offset value of a signal, and the estimation system uses the estimation method as described above.
  • the estimation system is applied to the initial network search stage of the NR device, but its application scenario is not specifically limited, and corresponding selection and adjustment can be made according to actual needs.
  • the estimation system mainly includes a signal sampling module 21 , a signal demodulation module 22 , a signal reconstruction module 23 and a frequency offset estimation module 24 .
  • the signal sampling module 21 is configured to: obtain signal sampling data; use the PSS sequence to perform sliding correlation operation with the signal sampling data to obtain the PSS peak position; calculate according to the PSS peak position and the SSB cycle to obtain the next cycle PSS signal
  • the starting position is taken as the starting position of the second grabbing signal sampling data; DMRS and PBCH signals are extracted from the second grabbing signal sampling data according to the relative positions of PBCH and DMRS.
  • the signal demodulation module 22 is configured to: in response to extracting the DMRS and PBCH signals from the signal sampling data captured for the second time, perform channel estimation by using the DMRS signal to obtain a channel estimation result; demodulate the PBCH signal; judge whether the demodulation of the PBCH signal is successful, if so, output the PBCH signal after the successful demodulation and use it as the signal reconstructed by the signal reconstruction module, if not, return the network search failure to upper unit.
  • the signal reconstruction module 23 is configured to perform signal reconstruction using the demodulated PBCH and DMRS signals in response to receiving the demodulated PBCH signal to obtain the reconstructed PBCH signal
  • the signal reconstruction module 23 is configured to: scramble the information bits after demodulating the PBCH signal to generate a scrambled sequence; add CRC to the scrambled sequence; Perform rate matching on the encoded sequence; perform QPSK modulation on the matched sequence; perform RE mapping on the modulated symbol to obtain the reconstructed PBCH signal.
  • the frequency offset estimation module 24 is configured to: perform correlation operation with the reconstructed PBCH signal and the signal in the buffer to obtain channel response information; perform calculation according to the channel response information to obtain the frequency offset value of the PBCH signal .
  • the system for estimating frequency offset values based on signal reconstruction increases the RE resources used for channel estimation by reconstructing PBCH signals, and improves the precision and accuracy of frequency offset value estimation in the initial network search stage , thereby effectively improving the signal-to-noise ratio of subsequent received signals, thereby effectively improving the SSB signal demodulation success rate and demodulation efficiency.
  • the estimation and adjustment of the frequency offset value are performed only when the PBCH demodulation is successful, thereby effectively avoiding the possibility of deteriorating the quality of the received signal by adjusting according to the wrong frequency offset result when the signal is very poor.
  • FIG. 4 is a schematic structural diagram of an electronic device according to another embodiment of the present invention.
  • the electronic device includes a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the program, the method for estimating the frequency offset value based on signal reconstruction in the above embodiment is implemented.
  • the electronic device 30 shown in FIG. 4 is only an example, and should not impose any limitation on the function and scope of use of the embodiments of the present invention.
  • the electronic device 30 may take the form of a general-purpose computing device, which may be, for example, a server device.
  • Components of the electronic device 30 may include, but are not limited to, the above-mentioned at least one processor 31 , the above-mentioned at least one memory 32 , and a bus 33 connecting different system components (including the memory 32 and the processor 31 ).
  • the bus 33 includes a data bus, an address bus and a control bus.
  • Memory 32 may include volatile memory, such as random access memory (RAM) 321 and/or cache memory 322 , and may further include read only memory (ROM) 323 .
  • RAM random access memory
  • ROM read only memory
  • the memory 32 may also include a program/utility 325 having a set (at least one) of program modules 324 including, but not limited to, an operating system, one or more application programs, other program modules, and program data, which An implementation of a network environment may be included in each or some combination of the examples.
  • the processor 31 executes various functional applications and data processing by running the computer program stored in the memory 32, such as the method for estimating the frequency offset value based on signal reconstruction in the above embodiment of the present invention.
  • the electronic device 30 may also communicate with one or more external devices 34 (eg, keyboards, pointing devices, etc.). Such communication may take place through input/output (I/O) interface 35 .
  • the model-generating device 30 may also communicate with one or more networks (eg, a local area network (LAN), a wide area network (WAN), and/or a public network such as the Internet) through a network adapter 36 . As shown in FIG. 4 , the network adapter 36 communicates with other modules of the model generation device 30 via the bus 33 .
  • networks eg, a local area network (LAN), a wide area network (WAN), and/or a public network such as the Internet
  • model-generated device 30 may be used in conjunction with the model-generated device 30, including but not limited to: microcode, device drivers, redundant processors, external disk drive arrays, RAID (disk) array) systems, tape drives, and data backup storage systems.
  • This embodiment also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the steps in the method for estimating a frequency offset value based on signal reconstruction in the above embodiment.
  • the readable storage medium may include, but is not limited to, a portable disk, a hard disk, a random access memory, a read-only memory, an erasable programmable read-only memory, an optical storage device, a magnetic storage device, or any of the above suitable combination.
  • the present invention can also be implemented in the form of a program product, which includes program code, and when the program product runs on a terminal device, the program code is used to make the terminal device execute the implementation of the above-mentioned Steps in a method for estimating frequency offset values for signal reconstruction.
  • the program code for executing the present invention can be written in any combination of one or more programming languages, and the program code can be completely executed on the user equipment, partially executed on the user equipment, as an independent software
  • the package executes, partly on the user device, partly on the remote device, or entirely on the remote device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Noise Elimination (AREA)

Abstract

本发明公开了一种基于信号重构的频率偏移值的估计方法及系统,所述估计方法包括:响应于接收到解调后的PBCH信号,利用解调后的PBCH和DMRS信号进行信号重构,以获取重构后的PBCH信号;利用重构后的PBCH信号和缓冲器中的信号进行相关运算,以获取信道响应信息;根据所述信道响应信息进行计算,以获取PBCH信号的频率偏移值。本发明通过重构PBCH信号,增加了用于信道估计的RE资源,提高了初始找网阶段频率偏移值估计的精度和准确度,从而有效地提升了后续接收信号的信噪比,进而有效地提升了SSB信号解调成功率和解调效率。

Description

基于信号重构的频率偏移值的估计方法及系统 技术领域
本发明涉及无线通信技术领域,特别涉及一种基于信号重构的频率偏移值的估计方法及系统。
背景技术
在5G NR(New Radio)系统(第五代通信技术系统)中,SSB(Synchronization Signal and PBCH block,同步信号和PBCH(物理广播信道)块)信号是终端要接收的第一信号,该信号不仅包含必要的调度信息,还有解调参考信号用于信道估计,终端需要根据估计的结果对频率偏移(频偏)、时钟偏移(时偏)等进行调整,以便于接收后续信号及信息。由于系统设计时其他信号和信道的信号强度和冗余度要远低于SSB,因此接收并解调这些信号和信息需要更高的信道质量。
目前,在现有的频偏估计方案中,一般是直接利用PBCH的DMRS(解调参考信号)信号进行频偏估计,并且据此调整终端频偏。但是,现有的估计方案主要存在以下缺陷:(1)用于频偏估计的信号仅有PBCH DMRS信号,导致资源有限,评估得到的频偏精度也有限;(2)没有增加频偏调整的限制条件,当PBCH解调错误时,由于得到的信号一般会很差,导致根据SSB DMRS估计的频偏很不准确,进而影响解调成功率和效率。
发明内容
本发明要解决的技术问题是为了克服现有技术中频偏估计精度较低,导致信号解调成功率和效率低的缺陷,提供一种基于信号重构的频率偏移值的估计方法及系统。
本发明是通过下述技术方案来解决上述技术问题:
一种基于信号重构的频率偏移值的估计方法,包括:
响应于接收到解调后的PBCH信号,利用解调后的PBCH和DMRS信号进行 信号重构,以获取重构后的PBCH信号;
利用重构后的PBCH信号和缓冲器中的信号进行相关运算,以获取信道响应信息;
根据所述信道响应信息进行计算,以获取PBCH信号的频率偏移值。
可选地,所述响应于接收到解调后的PBCH信号的步骤之前,所述估计方法还包括:
响应于从信号采样数据中提取出DMRS和PBCH信号,利用DMRS信号进行信道估计,以获取信道估计结果;
根据所述信道估计结果对所述PBCH信号进行解调;
判断对所述PBCH信号的解调是否成功,若是,输出解调成功后的PBCH信号并作为重构的信号。
可选地,所述从信号采样数据中提取出DMRS和PBCH信号的步骤之前,所述估计方法还包括:
获取信号采样数据;
利用PSS(主同步信号)序列与所述信号采样数据进行滑动相关运算,以获取PSS峰值位置;
根据PSS峰值位置和SSB周期进行计算,以获取下一个周期PSS信号的起始位置并作为第二次抓取信号采样数据的起始位置;
根据PBCH和DMRS的相对位置从第二次抓取的信号采样数据中提取出DMRS和PBCH信号。
可选地,所述利用解调后的PBCH和DMRS信号进行信号重构,以获取重构后的PBCH信号的步骤包括:
对解调PBCH信号后的信息比特进行加扰,以生成加扰后的序列;
对加扰后的序列添加CRC(循环冗余校验);
对添加CRC后的序列进行极化码编码;
对编码后的序列进行速率匹配;
对匹配后的序列进行QPSK(正交相移键控)调制;
对调制后的符号进行RE(资源元素)映射,以获取重构后的PBCH信号。
可选地,所述估计方法应用于NR设备的初始找网阶段。
一种基于信号重构的频率偏移值的估计系统,包括:
信号重构模块,被配置为响应于接收到解调后的PBCH信号,利用解调后的PBCH和DMRS信号进行信号重构,以获取重构后的PBCH信号;
频偏估计模块,被配置为利用重构后的PBCH信号和缓冲器中的信号进行相关运算,以获取信道响应信息,
频偏估计模块还被配置为根据所述信道响应信息进行计算,以获取PBCH信号的频率偏移值。
可选地,还包括信号解调模块;
所述信号解调模块被配置为:
响应于从信号采样数据中提取出DMRS和PBCH信号,利用DMRS信号进行信道估计,以获取信道估计结果;
根据所述信道估计结果对所述PBCH信号进行解调;
判断对所述PBCH信号的解调是否成功,若是,输出解调成功后的PBCH信号并作为所述信号重构模块重构的信号。
可选地,还包括信号采样模块;
所述信号采样模块被配置为:
获取信号采样数据;
利用PSS序列与所述信号采样数据进行滑动相关运算,以获取PSS峰值位置;
根据PSS峰值位置和SSB周期进行计算,以获取下一个周期PSS信号的起始位置并作为第二次抓取信号采样数据的起始位置;
根据PBCH和DMRS的相对位置从第二次抓取的信号采样数据中提取出DMRS和PBCH信号。
可选地,所述信号重构模块被配置为:
对解调PBCH信号后的信息比特进行加扰,以生成加扰后的序列;
对加扰后的序列添加CRC;
对添加CRC后的序列进行极化码编码;
对编码后的序列进行速率匹配;
对匹配后的序列进行QPSK调制;
对调制后的符号进行RE映射,以获取重构后的PBCH信号。
可选地,所述估计系统应用于NR设备的初始找网阶段。
一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行计算机程序时实现如上述的基于信号重构的频率偏移值的估计方法的步骤。
一种计算机可读介质,其上存储有计算机指令,所述计算机指令在由处理器执行时实现如上述的基于信号重构的频率偏移值的估计方法的步骤。
在符合本领域常识的基础上,所述各优选条件,可任意组合,即得本发明各较佳实施例。
本发明的积极进步效果在于:
本发明提供的基于信号重构的频率偏移值的估计方法及系统,通过重构PBCH信号,增加了用于信道估计的RE资源,提高了初始找网阶段频率偏移值估计的精度和准确度,从而有效地提升了后续接收信号的信噪比,进而有效地提升了SSB信号解调成功率和解调效率。而且,本发明还在PBCH解调成功时才进行频率偏移值的估计和调整,从而有效地避免了信号很差时根据错误的频偏结果进行调整使接收到的信号质量恶化的可能。
附图说明
在结合以下附图阅读本公开的实施例的详细描述之后,能够更好地理解本发明的所述特征和优点。在附图中,各组件不一定是按比例绘制,并且具有类似的相关特性或特征的组件可能具有相同或相近的附图标记。
图1为根据本发明的一实施例的基于信号重构的频率偏移值的估计方法的流程示意图。
图2为根据本发明的一实施例的重构PBCH信号的流程示意图。
图3为根据本发明的一实施例的基于信号重构的频率偏移值的估计系统的结构示意图。
图4为根据本发明另一实施例的实现基于信号重构的频率偏移值的估计方法的电子设备的结构示意图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。
为了克服目前存在的上述缺陷,本实施例提供一种基于信号重构的频率偏移值的估计方法,所述估计方法包括:响应于接收到解调后的PBCH信号,利用解调后的PBCH和DMRS信号进行信号重构,以获取重构后的PBCH信号;利用重构后的PBCH信号和缓冲器中的信号进行相关运算,以获取信道响应信息;根据所述信道响应信息进行计算,以获取PBCH信号的频率偏移值。
在本实施例中,所述估计方法应用于NR设备的初始找网阶段,但并不具体限定其应用场景,可根据实际需求进行相应的选择及调整。
在本实施例中,通过重构PBCH信号,在初始找网阶段中有效地评估出精确的频率偏移值,以提升后续下行信号的接收质量,从而有效地提升了SSB信号解调成功率和解调效率。
具体地,作为一实施例,如图1所示,所述估计方法主要包括以下步骤:
步骤101、获取采样数据。
在本步骤中,抓取并存储20ms的信号采样数据。
步骤102、获取PSS峰值位置。
在本步骤中,利用本地产生的PSS序列与所述信号采样数据进行滑动相关运算,以获取PSS峰值位置。
步骤103、获取下一个周期PSS信号的起始位置并作为第二次抓取信号采样数据的起始位置。
在本步骤中,根据PSS峰值位置和SSB周期进行计算,以获取下一个周期 PSS信号的起始位置并作为第二次抓取信号采样数据的起始位置,抓取数据长度设置为SSB块(block)的是时间长度,即4个symbol。
步骤104、提取出DMRS和PBCH信号,并且对PBCH信号进行解调。
在本步骤中,根据PBCH和DMRS的相对位置从第二次抓取的信号采样数据中提取出DMRS和PBCH信号,利用DMRS信号进行信道估计,以获取信道估计结果。
在本步骤中,还根据所述信道估计结果对所述PBCH信号进行解调。
步骤105、判断解调是否成功,若是,执行步骤106,若否,执行步骤109。
在本步骤中,判断对所述PBCH信号的解调是否成功,若是,输出解调成功后的PBCH信号,并且执行步骤106,若否,执行步骤109。
步骤106、进行信号重构。
在本步骤中,响应于接收到解调后的PBCH信号,利用解调后的PBCH的payload和DMRS信号进行信号重构,以获取重构后的PBCH信号。
具体地,如图2所示,进行信号重构的步骤主要包括以下步骤:
步骤1061、对解调PBCH信号后的信息比特进行加扰。
在本步骤中,对解调PBCH信号后的信息比特进行加扰,以根据协议规定生成加扰后的序列,初始化值为网侧配置的cellid。
步骤1062、对加扰后的序列添加CRC。
在本实施例中,CRC是一种根据网络数据包或计算机文件等数据产生简短固定位数校验码的一种信道编码技术,主要用来检测或校验数据传输或者保存后可能出现的错误。
步骤1063、对添加CRC后的序列进行极化码编码。
步骤1064、对编码后的序列进行速率匹配。
步骤1065、对匹配后的序列进行QPSK调制。
步骤1066、对调制后的符号进行RE映射,以获取重构后的PBCH信号。
在本步骤中,对调制后得到的符号进行RE映射,映射完毕即得到重构的PBCH信号。
在本实施例中,PBCH信号的重构步骤中,相关配置参数均可在NR协议38.211,38.212中规定。
步骤107、获取信号响应信息。
在本步骤中,利用重构后的PBCH信号和缓冲器(buffer)中的信号进行互相关运算,以获取信道响应信息H。
步骤108、计算得到精确的频率偏移值。
在本步骤中,根据所述信道响应信息H进行计算,以获取PBCH信号的精确的频率偏移值。
步骤109、返回找网失败给上层。
在本步骤中,响应于解调失败,返回找网失败给上层单元,以重新执行解调。
本实施例提供的基于信号重构的频率偏移值的估计方法,通过重构PBCH信号,增加了用于信道估计的RE资源,提高了初始找网阶段频率偏移值估计的精度和准确度,从而有效地提升了后续接收信号的信噪比,进而有效地提升了SSB信号解调成功率和解调效率。而且,本实施例还在PBCH解调成功时才进行频率偏移值的估计和调整,从而有效地避免了信号很差时根据错误的频偏结果进行调整使接收到的信号质量恶化的可能。
为了克服目前存在的上述缺陷,本实施例还提供一种基于信号重构的频率偏移值的估计系统,所述估计系统利用如上述的估计方法。
在本实施例中,所述估计系统应用于NR设备的初始找网阶段,但并不具体限定其应用场景,可根据实际需求进行相应的选择及调整。
具体地,作为一实施例,如图3所示,所述估计系统主要包括信号采样模块21、信号解调模块22、信号重构模块23及频偏估计模块24。
信号采样模块21被配置为:获取信号采样数据;利用PSS序列与所述信号采样数据进行滑动相关运算,以获取PSS峰值位置;根据PSS峰值位置和SSB周期进行计算,以获取下一个周期PSS信号的起始位置并作为第二次抓取信号采样数据的起始位置;根据PBCH和DMRS的相对位置从第二次抓取的信号采 样数据中提取出DMRS和PBCH信号。
信号解调模块22被配置为:响应于从第二次抓取的信号采样数据中提取出DMRS和PBCH信号,利用DMRS信号进行信道估计,以获取信道估计结果;根据所述信道估计结果对所述PBCH信号进行解调;判断对所述PBCH信号的解调是否成功,若是,输出解调成功后的PBCH信号并作为所述信号重构模块重构的信号,若否,返回找网失败给上层单元。
信号重构模块23被配置为响应于接收到解调后的PBCH信号,利用解调后的PBCH和DMRS信号进行信号重构,以获取重构后的PBCH信号
具体地,信号重构模块23被配置为:对解调PBCH信号后的信息比特进行加扰,以生成加扰后的序列;对加扰后的序列添加CRC;对添加CRC后的序列进行极化码编码;对编码后的序列进行速率匹配;对匹配后的序列进行QPSK调制;对调制后的符号进行RE映射,以获取重构后的PBCH信号。
频偏估计模块24被配置为:利用重构后的PBCH信号和缓冲器中的信号进行相关运算,以获取信道响应信息;根据所述信道响应信息进行计算,以获取PBCH信号的频率偏移值。
本实施例提供的基于信号重构的频率偏移值的估计系统,通过重构PBCH信号,增加了用于信道估计的RE资源,提高了初始找网阶段频率偏移值估计的精度和准确度,从而有效地提升了后续接收信号的信噪比,进而有效地提升了SSB信号解调成功率和解调效率。而且,本实施例还在PBCH解调成功时才进行频率偏移值的估计和调整,从而有效地避免了信号很差时根据错误的频偏结果进行调整使接收到的信号质量恶化的可能。
图4为根据本发明另一实施例提供的一种电子设备的结构示意图。电子设备包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行程序时实现如上实施例中的基于信号重构的频率偏移值的估计方法。图4显示的电子设备30仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。
如图4所示,电子设备30可以以通用计算设备的形式表现,例如其可以为 服务器设备。电子设备30的组件可以包括但不限于:上述至少一个处理器31、上述至少一个存储器32、连接不同系统组件(包括存储器32和处理器31)的总线33。
总线33包括数据总线、地址总线和控制总线。
存储器32可以包括易失性存储器,例如随机存取存储器(RAM)321和/或高速缓存存储器322,还可以进一步包括只读存储器(ROM)323。
存储器32还可以包括具有一组(至少一个)程序模块324的程序/实用工具325,这样的程序模块324包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
处理器31通过运行存储在存储器32中的计算机程序,从而执行各种功能应用以及数据处理,例如本发明如上实施例中的基于信号重构的频率偏移值的估计方法。
电子设备30也可以与一个或多个外部设备34(例如键盘、指向设备等)通信。这种通信可以通过输入/输出(I/O)接口35进行。并且,模型生成的设备30还可以通过网络适配器36与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图4所示,网络适配器36通过总线33与模型生成的设备30的其它模块通信。应当明白,尽管图中未示出,可以结合模型生成的设备30使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理器、外部磁盘驱动阵列、RAID(磁盘阵列)系统、磁带驱动器以及数据备份存储系统等。
应当注意,尽管在上文详细描述中提及了电子设备的若干单元/模块或子单元/模块,但是这种划分仅仅是示例性的并非强制性的。实际上,根据本发明的实施方式,上文描述的两个或更多单元/模块的特征和功能可以在一个单元/模块中具体化。反之,上文描述的一个单元/模块的特征和功能可以进一步划分为由多个单元/模块来具体化。
本实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,程 序被处理器执行时实现如上实施例中的基于信号重构的频率偏移值的估计方法中的步骤。
其中,可读存储介质可以采用的更具体可以包括但不限于:便携式盘、硬盘、随机存取存储器、只读存储器、可擦拭可编程只读存储器、光存储器件、磁存储器件或上述的任意合适的组合。
在可能的实施方式中,本发明还可以实现为一种程序产品的形式,其包括程序代码,当程序产品在终端设备上运行时,程序代码用于使终端设备执行实现如上实施例中的基于信号重构的频率偏移值的估计方法中的步骤。
其中,可以以一种或多种程序设计语言的任意组合来编写用于执行本发明的程序代码,程序代码可以完全地在用户设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户设备上部分在远程设备上执行或完全在远程设备上执行。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (20)

  1. 一种基于信号重构的频率偏移值的估计方法,其特征在于,包括:
    响应于接收到解调后的PBCH信号,利用解调后的PBCH和DMRS信号进行信号重构,以获取重构后的PBCH信号;
    利用重构后的PBCH信号和缓冲器中的信号进行相关运算,以获取信道响应信息;
    根据所述信道响应信息进行计算,以获取PBCH信号的频率偏移值。
  2. 如权利要求1所述的估计方法,其特征在于,所述响应于接收到解调后的PBCH信号的步骤之前,所述估计方法还包括:
    响应于从信号采样数据中提取出DMRS和PBCH信号,利用DMRS信号进行信道估计,以获取信道估计结果;
    根据所述信道估计结果对所述PBCH信号进行解调;
    判断对所述PBCH信号的解调是否成功,若是,输出解调成功后的PBCH信号并作为重构的信号。
  3. 如权利要求2所述的估计方法,其特征在于,所述从信号采样数据中提取出DMRS和PBCH信号的步骤之前,所述估计方法还包括:
    获取信号采样数据;
    利用PSS序列与所述信号采样数据进行滑动相关运算,以获取PSS峰值位置;
    根据PSS峰值位置和SSB周期进行计算,以获取下一个周期PSS信号的起始位置并作为第二次抓取信号采样数据的起始位置;
    根据PBCH和DMRS的相对位置从第二次抓取的信号采样数据中提取出DMRS和PBCH信号。
  4. 如权利要求1所述的估计方法,其特征在于,所述利用解调后的PBCH和DMRS信号进行信号重构,以获取重构后的PBCH信号的步骤包括:
    对解调PBCH信号后的信息比特进行加扰,以生成加扰后的序列;
    对加扰后的序列添加CRC;
    对添加CRC后的序列进行极化码编码;
    对编码后的序列进行速率匹配;
    对匹配后的序列进行QPSK调制;
    对调制后的符号进行RE映射,以获取重构后的PBCH信号。
  5. 如权利要求1~4中任意一项所述的估计方法,其特征在于,所述估计方法应用于NR设备的初始找网阶段。
  6. 一种基于信号重构的频率偏移值的估计系统,其特征在于,包括:
    信号重构模块,被配置为响应于接收到解调后的PBCH信号,利用解调后的PBCH和DMRS信号进行信号重构,以获取重构后的PBCH信号;
    频偏估计模块,被配置为利用重构后的PBCH信号和缓冲器中的信号进行相关运算,以获取信道响应信息,
    频偏估计模块还被配置为根据所述信道响应信息进行计算,以获取PBCH信号的频率偏移值。
  7. 如权利要求6所述的估计系统,其特征在于,还包括信号解调模块;
    所述信号解调模块被配置为:
    响应于从信号采样数据中提取出DMRS和PBCH信号,利用DMRS信号进行信道估计,以获取信道估计结果;
    根据所述信道估计结果对所述PBCH信号进行解调;
    判断对所述PBCH信号的解调是否成功,若是,输出解调成功后的PBCH信号并作为所述信号重构模块重构的信号。
  8. 如权利要求7所述的估计系统,其特征在于,还包括信号采样模块;
    所述信号采样模块被配置为:
    获取信号采样数据;
    利用PSS序列与所述信号采样数据进行滑动相关运算,以获取PSS峰值位置;
    根据PSS峰值位置和SSB周期进行计算,以获取下一个周期PSS信号的起始位置并作为第二次抓取信号采样数据的起始位置;
    根据PBCH和DMRS的相对位置从第二次抓取的信号采样数据中提取出DMRS和PBCH信号。
  9. 如权利要求6所述的估计系统,其特征在于,所述信号重构模块被配置为:
    对解调PBCH信号后的信息比特进行加扰,以生成加扰后的序列;
    对加扰后的序列添加CRC;
    对添加CRC后的序列进行极化码编码;
    对编码后的序列进行速率匹配;
    对匹配后的序列进行QPSK调制;
    对调制后的符号进行RE映射,以获取重构后的PBCH信号。
  10. 如权利要求6~9中任意一项所述的估计系统,其特征在于,所述估计系统应用于NR设备的初始找网阶段。
  11. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行计算机程序时实现如权利要求1~5中任意一项所述的基于信号重构的频率偏移值的估计方法的步骤。
  12. 一种计算机可读介质,其上存储有计算机指令,其特征在于,所述计算机指令在由处理器执行时实现如权利要求1~5中任意一项所述的基于信号重构的频率偏移值的估计方法的步骤。
  13. 一种芯片,其特征在于,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器用于执行以下步骤:
    响应于接收到解调后的PBCH信号,利用解调后的PBCH和DMRS信号进行信号重构,以获取重构后的PBCH信号;
    利用重构后的PBCH信号和缓冲器中的信号进行相关运算,以获取信道响应信息;
    根据所述信道响应信息进行计算,以获取PBCH信号的频率偏移值。
  14. 如权利要求13所述的芯片,其特征在于,所述处理器还用于在响应于接收到解调后的PBCH信号的步骤之前,执行以下步骤:
    响应于从信号采样数据中提取出DMRS和PBCH信号,利用DMRS信号进行信道估计,以获取信道估计结果;
    根据所述信道估计结果对所述PBCH信号进行解调;
    判断对所述PBCH信号的解调是否成功,若是,输出解调成功后的PBCH信号并作为重构的信号。
  15. 如权利要求14所述的芯片,其特征在于,所述处理器还用于在从信号采样数据中提取出DMRS和PBCH信号之前,执行以下步骤:
    获取信号采样数据;
    利用PSS序列与所述信号采样数据进行滑动相关运算,以获取PSS峰值位置;
    根据PSS峰值位置和SSB周期进行计算,以获取下一个周期PSS信号的起始位置并作为第二次抓取信号采样数据的起始位置;
    根据PBCH和DMRS的相对位置从第二次抓取的信号采样数据中提取出DMRS和PBCH信号。
  16. 如权利要求13所述的估计方法,其特征在于,所述处理器利用解调后的PBCH和DMRS信号进行信号重构,以获取重构后的PBCH信号的步骤包括:
    对解调PBCH信号后的信息比特进行加扰,以生成加扰后的序列;
    对加扰后的序列添加CRC;
    对添加CRC后的序列进行极化码编码;
    对编码后的序列进行速率匹配;
    对匹配后的序列进行QPSK调制;
    对调制后的符号进行RE映射,以获取重构后的PBCH信号。
  17. 如权利要求13~16中任意一项所述的估计方法,其特征在于,所述估计方法应用于NR设备的初始找网阶段。
  18. 一种芯片模组,包括收发组件和芯片,所述芯片包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器用于执行以下步骤:
    响应于接收到解调后的PBCH信号,利用解调后的PBCH和DMRS信号进行 信号重构,以获取重构后的PBCH信号;
    利用重构后的PBCH信号和缓冲器中的信号进行相关运算,以获取信道响应信息;
    根据所述信道响应信息进行计算,以获取PBCH信号的频率偏移值。
  19. 如权利要求18所述的芯片模组,其特征在于,所述处理器还用于在响应于接收到解调后的PBCH信号的步骤之前,执行以下步骤:
    响应于从信号采样数据中提取出DMRS和PBCH信号,利用DMRS信号进行信道估计,以获取信道估计结果;
    根据所述信道估计结果对所述PBCH信号进行解调;
    判断对所述PBCH信号的解调是否成功,若是,输出解调成功后的PBCH信号并作为重构的信号。
  20. 如权利要求19所述的芯片模组,其特征在于,所述处理器还用于在从信号采样数据中提取出DMRS和PBCH信号之前,执行以下步骤:
    获取信号采样数据;
    利用PSS序列与所述信号采样数据进行滑动相关运算,以获取PSS峰值位置;
    根据PSS峰值位置和SSB周期进行计算,以获取下一个周期PSS信号的起始位置并作为第二次抓取信号采样数据的起始位置;
    根据PBCH和DMRS的相对位置从第二次抓取的信号采样数据中提取出DMRS和PBCH信号。
PCT/CN2021/123365 2020-10-12 2021-10-12 基于信号重构的频率偏移值的估计方法及系统 WO2022078349A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011086108.9 2020-10-12
CN202011086108.9A CN112202694B (zh) 2020-10-12 2020-10-12 基于信号重构的频率偏移值的估计方法及系统

Publications (1)

Publication Number Publication Date
WO2022078349A1 true WO2022078349A1 (zh) 2022-04-21

Family

ID=74013462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123365 WO2022078349A1 (zh) 2020-10-12 2021-10-12 基于信号重构的频率偏移值的估计方法及系统

Country Status (2)

Country Link
CN (1) CN112202694B (zh)
WO (1) WO2022078349A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114978838A (zh) * 2022-05-11 2022-08-30 华中科技大学 一种抗谐波干扰的极化码编码调制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112202694B (zh) * 2020-10-12 2023-05-12 展讯通信(上海)有限公司 基于信号重构的频率偏移值的估计方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110445734A (zh) * 2018-05-03 2019-11-12 展讯通信(上海)有限公司 一种频偏估计方法及装置、存储介质、终端
WO2020041196A1 (en) * 2018-08-20 2020-02-27 Intel Corporation Fast initial acquisition by transmitting non-orthogonal synchronization signal blocks in 5g new radio
CN111010359A (zh) * 2019-12-19 2020-04-14 紫光展锐(重庆)科技有限公司 基于pbch的定时和频偏估计方法、装置及终端设备
CN111245750A (zh) * 2020-01-08 2020-06-05 紫光展锐(重庆)科技有限公司 频偏估计方法、装置及存储介质
US20200220662A1 (en) * 2019-01-04 2020-07-09 GCT Research, Inc. Pbch signal accumulation method and pbch decoder for enhancing performance of 5g nr receiver
CN112202694A (zh) * 2020-10-12 2021-01-08 展讯通信(上海)有限公司 基于信号重构的频率偏移值的估计方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8238482B2 (en) * 2008-10-14 2012-08-07 Apple Inc. Techniques for improving channel estimation and tracking in a wireless communication system
CN102045815B (zh) * 2009-10-10 2013-01-30 中国科学院计算技术研究所 用于lte系统的小区搜索装置和方法
CN102469060B (zh) * 2011-06-30 2013-04-10 重庆重邮信科通信技术有限公司 一种ofdm系统同步估计方法
CN103825847B (zh) * 2012-11-19 2018-03-20 中兴通讯股份有限公司 一种信道干扰对消方法、装置和基站
CN106028436B (zh) * 2016-04-28 2019-10-25 华为技术有限公司 一种时频偏补偿的方法及用户终端
EP3602937A1 (en) * 2017-05-05 2020-02-05 Sony Corporation Communications device, infrastrcuture equipment and methods
CN111064688B (zh) * 2019-12-16 2022-01-28 重庆邮电大学 一种5g系统小区搜索的ss/pbch块完全检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110445734A (zh) * 2018-05-03 2019-11-12 展讯通信(上海)有限公司 一种频偏估计方法及装置、存储介质、终端
WO2020041196A1 (en) * 2018-08-20 2020-02-27 Intel Corporation Fast initial acquisition by transmitting non-orthogonal synchronization signal blocks in 5g new radio
US20200220662A1 (en) * 2019-01-04 2020-07-09 GCT Research, Inc. Pbch signal accumulation method and pbch decoder for enhancing performance of 5g nr receiver
CN111010359A (zh) * 2019-12-19 2020-04-14 紫光展锐(重庆)科技有限公司 基于pbch的定时和频偏估计方法、装置及终端设备
CN111245750A (zh) * 2020-01-08 2020-06-05 紫光展锐(重庆)科技有限公司 频偏估计方法、装置及存储介质
CN112202694A (zh) * 2020-10-12 2021-01-08 展讯通信(上海)有限公司 基于信号重构的频率偏移值的估计方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114978838A (zh) * 2022-05-11 2022-08-30 华中科技大学 一种抗谐波干扰的极化码编码调制方法
CN114978838B (zh) * 2022-05-11 2024-05-14 华中科技大学 一种抗谐波干扰的极化码编码调制方法

Also Published As

Publication number Publication date
CN112202694B (zh) 2023-05-12
CN112202694A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
WO2022078349A1 (zh) 基于信号重构的频率偏移值的估计方法及系统
CN112713912B (zh) 扩频索引调制、解调通信方法、发射机、接收机和存储介质
CN110445734B (zh) 一种频偏估计方法及装置、存储介质、终端
US20200204315A1 (en) Signal processing method and device, apparatus, and computer readable storage medium
WO2021243799A1 (zh) 信号检测与捕获方法、装置、接收机及存储介质
CN112929904B (zh) 一种信息的传输方法、装置、通信设备及存储介质
US20230344685A1 (en) A communication unit for soft-decision demodulation and method therefor
CN112671430B (zh) 码分复用扩频索引调制、解调通信方法、发射机和接收机
CN112713911B (zh) 一种在Chirp调制信号中增加参考信号的方法
TWI722942B (zh) 擴頻訊號發送方法、擴頻訊號接收方法、裝置、設備及介質
KR20190101191A (ko) 데이터 패킷의 버스트의 길이에 기초하여 변복조를 수행하는 변복조기 및 상기 복조기가 수행하는 방법
WO2021051416A1 (zh) 参考信号的发送方法、接收方法、装置及系统
WO2022095914A1 (zh) 导频序列生成方法及装置
CN107317777B (zh) Bpsk解调过程中观测空间的划分方法
CN112788631B (zh) 一种信息的传输方法、装置、通信设备及存储介质
KR102133416B1 (ko) 펄스진폭변조와 직교진폭변조의 대수우도비 생성 장치 및 방법
US20130083872A1 (en) Method for coherent and non coherent demodulation
WO2020135458A1 (zh) 一种正交振幅调制qam信号调制和解调方法及装置
EP2515456B1 (en) Receiving apparatus and method for multi-frame synchronization
CN110933009A (zh) 频偏估计方法、系统、电子设备及存储介质
CN105871505B (zh) 多维码处理方法、发送端、接收端和系统
CN111181889B (zh) 频偏估计样本接收控制方法、系统、设备及存储介质
CN118413278A (zh) 噪声估计方法、装置、设备、介质、芯片及芯片模组
WO2021128159A1 (zh) 同步检测方法及装置
CN118646623A (zh) 频偏校正方法、装置、计算机设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21879393

Country of ref document: EP

Kind code of ref document: A1