WO2022095914A1 - 导频序列生成方法及装置 - Google Patents

导频序列生成方法及装置 Download PDF

Info

Publication number
WO2022095914A1
WO2022095914A1 PCT/CN2021/128551 CN2021128551W WO2022095914A1 WO 2022095914 A1 WO2022095914 A1 WO 2022095914A1 CN 2021128551 W CN2021128551 W CN 2021128551W WO 2022095914 A1 WO2022095914 A1 WO 2022095914A1
Authority
WO
WIPO (PCT)
Prior art keywords
pilot
stream
pilot sequence
data
transmitting end
Prior art date
Application number
PCT/CN2021/128551
Other languages
English (en)
French (fr)
Inventor
刘晴
曹明伟
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Priority to US18/251,441 priority Critical patent/US20240022344A1/en
Publication of WO2022095914A1 publication Critical patent/WO2022095914A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation
    • H04J13/12Generation of orthogonal codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits

Definitions

  • the present invention relates to the technical field of wireless communication, and in particular, to a method and device for generating a multi-stream pilot sequence applied to a Wi-Fi (Wireless Internet Access) communication system.
  • Wi-Fi Wireless Internet Access
  • signals are usually transmitted independently in frames, and the duration of a frame of signal is designed to be less than the channel coherence time, so channel estimation can simply be done by sending a TS (training sequence) sequence at the frame header. to estimate, after which time the channel is considered to remain unchanged.
  • TS training sequence
  • MIMO Multiple Input Multiple Output
  • high-order modulation is also a means to improve spectral efficiency.
  • Wi-Fi6 has used 1024QAM (orthogonal Amplitude modulation) modulation.
  • pilots are added to the data OFDM symbols in the Wi-Fi protocol to help estimate the phase rotation. Due to the use of 1024QAM, the more accurate the phase rotation is estimated, the higher the demodulation SNR (Signal to Noise Ratio).
  • the TS sequence is sent by stream. For example, if 4 streams are sent simultaneously, 4 TSs will be sent to estimate the channel of the stream. Since the signals are superimposed, the receiving end needs to use orthogonal codes in order to obtain the channel estimation of the four streams. When the receiving end receives 4 TSs, the channel estimation of 4 streams can be obtained by removing the orthogonal codes.
  • the solution is to insert pilots in the TS, and 4 TSs have the same pilot, so that the pilot can be used to compensate the phase rotation of each TS during reception, and then the orthogonal code is removed to obtain 4 Stream channel estimation.
  • the same pilots are inserted to account for the phase rotation of the data portion.
  • the technical problem to be solved by the present invention is to provide a method and device for generating a pilot sequence in order to overcome the defect that the pilot generation method in the prior art cannot obtain accurate phase tracking, which leads to the inability to be applied to high-order modulation well.
  • a method for generating a pilot sequence comprising:
  • a data pilot generator at the transmitting end generates data pilots, and generates a multi-stream data pilot sequence through a multi-stream data pilot sequence mapper at the transmitting end;
  • the orthogonal code generator at the transmitting end generates an orthogonal code, and generates the extracted orthogonal codeword through the column cyclic decimator at the transmitting end;
  • the transmitting end multiplies the multi-stream data pilot sequence of each symbol by the corresponding orthogonal codeword to obtain the data pilot transmission value and send it to the receiving end.
  • the TS pilot generator at the transmitting end generates pilot TS pilots, and generates a multi-stream TS pilot sequence through the multi-stream TS pilot sequence mapper at the transmitting end to obtain the TS pilot transmission value and send it to the receiving end .
  • the OFDM symbol generator at the transmitting end generates multi-stream TS OFDM symbols and multi-stream data OFDM symbols, inserts multi-stream TS pilot sequences between the multi-stream TS OFDM symbols, and inserts multi-stream data OFDM symbols between the multi-stream data OFDM symbols data pilot sequence.
  • the receiving end obtains a TS phase estimate and performs compensation in response to receiving the TS pilot transmission value and the data pilot transmission value from the transmitting end;
  • the receiving end obtains the channel estimation of the TS pilot points by de-orthogonal matrix for the TS non-pilot positions and performing channel estimation, and performing interpolation;
  • the receiving end estimates and updates the phase offset according to the channel estimation and the current pilot frequency, so as to perform phase offset compensation.
  • the step of obtaining the TS phase estimate and performing compensation includes:
  • the pilot sequence generation method is applied to a Wi-Fi communication system.
  • a device for generating a pilot sequence comprising a transmitter and a receiver
  • the transmitting end is configured to generate a data pilot through a data pilot generator, and generate a multi-stream data pilot sequence through a multi-stream data pilot sequence mapper;
  • the transmitting end is further configured to generate an orthogonal code through an orthogonal code generator, and generate an decimated orthogonal codeword through a column cyclic decimator;
  • the transmitting end is further configured to multiply the multi-stream data pilot sequence of each symbol by the corresponding orthogonal codeword to obtain the data pilot transmission value and send it to the receiving end.
  • the transmitting end is further configured to generate a pilot TS pilot through a TS pilot generator, and generate a multi-stream TS pilot sequence through a multi-stream TS pilot sequence mapper to obtain the TS pilot transmission value. and sent to the receiver.
  • the transmitting end is further configured to generate a multi-stream TS OFDM symbol and a multi-stream data OFDM symbol by using an OFDM symbol generator, insert a multi-stream TS pilot sequence between the multi-stream TS OFDM symbols, and insert a multi-stream TS pilot sequence between the multi-stream TS OFDM symbols.
  • Multi-stream data pilot sequences are inserted between multi-stream data OFDM symbols.
  • the receiving end is configured to obtain a TS phase estimate and perform compensation in response to receiving the TS pilot transmission value and the data pilot transmission value from the transmitting end;
  • the receiving end is further configured to perform channel estimation by de-orthogonal matrix of the TS non-pilot positions, and perform interpolation to obtain the channel estimation of the TS pilot points;
  • the receiving end is further configured to estimate and update the phase offset according to the channel estimation and the current pilot frequency, so as to perform phase offset compensation.
  • the receiving end is configured to conjugate the adjacent symbols of the TS to obtain the product of the sum square and the phase rotation, so as to estimate the TS phase rotation and compensate it.
  • the device for generating a pilot sequence is applied to a Wi-Fi communication system.
  • An electronic device includes a memory, a processor, and a computer program stored in the memory and executable on the processor, and the processor implements the steps of the above-mentioned method for generating a pilot sequence when the processor executes the computer program.
  • a computer-readable medium having computer instructions stored thereon that, when executed by a processor, implement the steps of the pilot sequence generation method as described above.
  • the pilot of the data part is multiplied by an orthogonal code, so that the pilot between the streams is kept orthogonal, which effectively improves the accuracy of phase tracking obtained by the receiving end, thereby effectively
  • the ground should cope with high-order modulation such as 1024QAM.
  • FIG. 1 is a schematic flowchart of a method for generating a pilot sequence according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the formation process of TS i in the time domain.
  • FIG. 3 is a schematic diagram of transmission values of a certain pilot point of different symbols.
  • FIG. 4 is a schematic structural diagram of a transmitting end of an apparatus for generating a pilot sequence according to another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an electronic device implementing a method for generating a pilot sequence according to another embodiment of the present invention.
  • this embodiment provides a method for generating a pilot sequence, including: a data pilot generator at the transmitting end generates data pilots, and a multi-stream data pilot sequence mapper at the transmitting end generates multi-stream data Pilot sequence; the orthogonal code generator at the transmitting end generates the orthogonal code, and the column cyclic decimator at the transmitting end generates the extracted orthogonal codeword; the transmitting end associates the multi-stream data pilot sequence of each symbol with the corresponding positive signal.
  • the interleaved code words are multiplied together to obtain the data pilot transmission value and send it to the receiver.
  • the pilot sequence generation method provided in this embodiment is applied to a Wi-Fi communication system, and can effectively improve the accuracy and efficiency of phase tracking when performing MIMO spatial multiplexing and high-QAM modulation.
  • the method for generating a pilot sequence mainly includes the following steps:
  • Step 101 The transmitting end generates multi-stream TS and data pilot sequences and orthogonal codewords.
  • the transmitter generates a pilot TS pilot P through a TS pilot generator, generates a multi-stream identical TS pilot sequence through a multi-stream TS pilot sequence mapper, and generates a multi-stream TS pilot sequence through a multi-stream TS pilot sequence mapper.
  • the sequence is [PP P P].
  • the transmitter also generates the pilot P through the data pilot generator, and the multi-stream data pilot sequence mapper generates the multi-stream identical data pilot sequence, and the multi-stream data pilot sequence is [P P P P].
  • the transmitting end also generates an orthogonal code C through the orthogonal code generator, and the C sequence is expressed as
  • Each value in the C sequence is C j,i , where j represents the jth stream, 1 ⁇ j ⁇ 4, and i is the ith symbol 1 ⁇ i ⁇ 4.
  • each symbol extracts a column of C. Assuming the n-th symbol, the extracted orthogonal codeword is C 1:4,n mod(4) .
  • Step 102 The transmitting end multiplies the pilot frequency of the data part by the orthogonal codeword.
  • the multi-stream data pilot sequence of each symbol is multiplied by the corresponding orthogonal codeword C 1:4,n mod(4) to obtain the final data pilot transmission value, with the first symbol
  • the generated multi-stream pilot is and Multiply the corresponding bits to get for each of the four streams.
  • the transmitter generates multi-stream TS OFDM symbols and multi-stream data OFDM symbols through an OFDM symbol generator, inserts multi-stream TS pilot sequences between multi-stream TS OFDM symbols, and inserts multi-stream data pilot sequences between multi-stream data OFDM symbols sequence.
  • Step 103 The transmitting end sends the TS and data pilot transmission values to the receiving end.
  • the transmitting end sends the TS pilot transmission value obtained based on the multi-stream TS pilot sequence and the above-mentioned data pilot transmission value to the receiving end.
  • pilots are inserted between multi-stream TS and data OFDM symbols, and all pilot values are the same (same for each stream). Because whether it is a TS or a data symbol, in the frequency domain, the pilot is not only affected by channel fading, but also affected by phase rotation. Therefore, if the pilot value is not considered (usually both are 1 or both are -1), the received frequency domain signal is a linear combination of each stream channel. Since all pilots are of the same pattern, no matter whether it is a TS or a data symbol, the received signals in the frequency domain of the pilot points are the same linear combination, so it is easy to obtain phase rotation through conjugate multiplication.
  • pilot value may be +1 or -1.
  • the received frequency domain signal of the pilot point in the l+1th OFDM symbol is
  • R i is the signal received by the antenna i
  • N is the noise matrix
  • H is the channel matrix
  • H ji is the channel between the transmitting antenna i and the receiving antenna j.
  • is the phase rotation of the second TS relative to the first TS.
  • the channel of the pilot point stream can be obtained, that is, at a certain pilot point, the received signal of the antenna 1 can be obtained as:
  • Rx 1 (l+1) [H 11 , H 12 , H 13 , H 14 ]*exp(1j*l ⁇ )*p+N 1
  • the TS sequence is mainly composed of 4 TSs, and the time domain of the TS is as follows, where TS i represents the TS of the ith symbol.
  • Figure 2 shows the TS i formation process in the time domain.
  • the frequency domain training sequence is TS_F, the length is 53, the carrier range is [-26:26], and the pilot position is located at [-21, -7, 7, 21].
  • the data at the non-pilot position is denoted as TS_F_D, and the data at the pilot position is denoted as TS_F_P.
  • the orthogonal matrix is C.
  • the TS_F_D of different streams is multiplied by the i-th column of C, and the TS_F_P of different streams are multiplied by C 0i .
  • the pilot of the data part is also processed in the same way.
  • the pilot pattern of the TS part is unchanged, so the phase tracking performance of the TS part is also unchanged.
  • the phase estimation accuracy of the data part can be improved, as described below. Multiply the pilot of the data part by the orthogonal code to keep the pilots orthogonal between the streams. Taking 4 streams as an example, the transmission value of a certain pilot point of different symbols is shown in Figure 3, and P is the pilot value.
  • the 5th symbol starts to repeat the cycle of the first 4 symbols.
  • the TS part of the pilot is a stream-insensitive pilot, which is the same as the existing protocol. Then the receiver can obtain the phase estimate based on the sum of squares in the following manner. Taking 4 streams as an example, the implementation process is as follows.
  • Step 104 the receiving end obtains the TS phase estimate and performs compensation.
  • the receiving end in response to receiving the TS pilot transmission value and the data pilot transmission value from the transmitting end, the receiving end obtains a TS phase estimate and performs compensation.
  • the pilot frequencies between the TS streams are the same, and the adjacent symbols are conjugated to obtain the product of the sum square (such as
  • Step 105 The receiver performs TS channel estimation, and obtains TS pilot channel estimation by interpolation.
  • the receiving end obtains the channel estimation of the TS pilot points by de-orthogonal matrix for the TS non-pilot positions, performing channel estimation, and performing interpolation.
  • the channel estimation of the pilot position cannot be directly obtained, but the channel estimation H interp of the pilot point is obtained by de-orthogonal matrix of the TS non-pilot position and channel estimation, and then interpolated.
  • H interp [H interp (1) H interp (2) H interp (3) H interp (4)...].
  • 1, 2, 3, 4 represent the labels of the streams.
  • Step 106 The receiving end judges whether it is the first 4 data symbols, if yes, executes step 107, if not, executes step 108.
  • Step 107 The receiving end uses the channel estimation and the current pilot to estimate the phase offset and update it. After executing step 107, return to executing step 106.
  • Step 108 The receiving end compensates the symbol according to the estimated phase offset.
  • Step 109 The receiving end uses the symbol and the first three symbols to remove the orthogonal code to obtain a channel estimate of the stream, and updates the phase offset ⁇ . After executing step 109, return to executing step 106.
  • taking 4 streams as an example it takes 4 symbols to obtain the channel estimation of the same pilot position of the 4 streams.
  • H i (1) H i (2) H i (3) H i (4)] is multiplied by the corresponding bit conjugate of H interp and summed, since the channel remains unchanged from TS, the sum squared value will be obtained With the product value of the phase rotation, the residual phase offset is estimated, and then the phase offset ⁇ is updated for the phase offset compensation of the next symbol, and so on for the following symbols.
  • the channel estimation H interp is used to perform a linear combination of the same pattern as the pilot of the current symbol for the first 4 symbols, and then the phase offset ⁇ is estimated by multiplying it with the conjugate of the pilot of the current symbol.
  • the pilot sequence generation method provided in this embodiment multiplies the pilots of the data part by the orthogonal codes, so that the pilots between streams are kept orthogonal, which effectively improves the accuracy of phase tracking obtained by the receiving end, thereby effectively Cope with higher order modulations.
  • this embodiment further provides a pilot sequence generation apparatus, which uses the above-mentioned pilot sequence generation method, and the pilot sequence generation apparatus is applied to a Wi-Fi communication system.
  • the pilot sequence generation device mainly includes a transmitter 2 and a receiver, and the transmitter 2 mainly includes a TS pilot generator 21 , a multi-stream TS pilot sequence mapper 22 , and a data pilot generator 23.
  • the transmitter 2 is configured to generate a pilot TS pilot through a TS pilot generator 21, and generate a multi-stream TS pilot sequence through a multi-stream TS pilot sequence mapper 22 to obtain the TS pilot transmission value and send it to the receiver. end.
  • the transmitting end 2 is further configured to generate data pilots through the data pilot generator 23 and generate multi-stream data pilot sequences through the multi-stream data pilot sequence mapper 24 .
  • the transmitting end 2 is further configured to generate an orthogonal code through an orthogonal code generator 25, and generate a decimated orthogonal codeword through a column cyclic decimator 26.
  • the transmitter 2 is further configured to multiply the multi-stream data pilot sequence of each symbol by the corresponding orthogonal codeword to obtain the data pilot transmission value and send it to the receiver.
  • the transmitting end 2 is further configured to generate multi-stream TS OFDM symbols and multi-stream data OFDM symbols through the OFDM symbol generator 27, insert multi-stream TS pilot sequences between multi-stream TS OFDM symbols, and insert multi-stream data OFDM symbols between multi-stream data OFDM symbols.
  • Stream data pilot sequence is further configured to generate multi-stream TS OFDM symbols and multi-stream data OFDM symbols through the OFDM symbol generator 27, insert multi-stream TS pilot sequences between multi-stream TS OFDM symbols, and insert multi-stream data OFDM symbols between multi-stream data OFDM symbols.
  • the receiving end is configured to obtain and compensate the TS phase estimate in response to receiving the TS pilot transmission value and the data pilot transmission value from the transmitting end 2 .
  • the receiving end is configured to conjugate the adjacent symbols of the TS to obtain the product of the sum square and the phase rotation, so as to estimate the TS phase rotation and compensate it.
  • the receiving end is further configured to obtain channel estimates of the TS pilot points by de-orthogonal matrix and performing channel estimation on the TS non-pilot positions, and performing interpolation.
  • the receiving end is further configured to estimate and update the phase offset according to the channel estimation and the current pilot frequency, so as to perform phase offset compensation.
  • the device for generating a pilot sequence multiplies the pilot of the data part by an orthogonal code, so that the pilots between streams are kept orthogonal, which effectively improves the accuracy of phase tracking at the receiving end, thereby effectively Cope with higher order modulations.
  • FIG. 5 is a schematic structural diagram of an electronic device according to another embodiment of the present invention.
  • the electronic device includes a memory, a processor, and a computer program stored in the memory and running on the processor. When the processor executes the program, the method for generating a pilot sequence in the above embodiment is implemented.
  • the electronic device 30 shown in FIG. 5 is only an example, and should not impose any limitation on the function and scope of use of the embodiments of the present invention.
  • the electronic device 30 may take the form of a general-purpose computing device, for example, it may be a server device.
  • Components of the electronic device 30 may include, but are not limited to, the above-mentioned at least one processor 31 , the above-mentioned at least one memory 32 , and a bus 33 connecting different system components (including the memory 32 and the processor 31 ).
  • the bus 33 includes a data bus, an address bus and a control bus.
  • Memory 32 may include volatile memory, such as random access memory (RAM) 321 and/or cache memory 322 , and may further include read only memory (ROM) 323 .
  • RAM random access memory
  • ROM read only memory
  • the memory 32 may also include a program/utility 325 having a set (at least one) of program modules 324 including, but not limited to, an operating system, one or more application programs, other program modules, and program data, which An implementation of a network environment may be included in each or some combination of the examples.
  • the processor 31 executes various functional applications and data processing by running the computer program stored in the memory 32, such as the pilot sequence generation method in the above embodiment of the present invention.
  • the electronic device 30 may also communicate with one or more external devices 34 (eg, keyboards, pointing devices, etc.). Such communication may take place through input/output (I/O) interface 35 .
  • the model-generating device 30 may also communicate with one or more networks (eg, a local area network (LAN), a wide area network (WAN), and/or a public network such as the Internet) through a network adapter 36 . As shown in FIG. 5 , the network adapter 36 communicates with the other modules of the model generation device 30 via the bus 33 .
  • networks eg, a local area network (LAN), a wide area network (WAN), and/or a public network such as the Internet
  • model-generated device 30 may be used in conjunction with the model-generated device 30, including but not limited to: microcode, device drivers, redundant processors, external disk drive arrays, RAID (disk) array) systems, tape drives, and data backup storage systems.
  • This embodiment also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps in the method for generating a pilot sequence in the above embodiment are implemented.
  • the readable storage media may include, but are not limited to, portable disks, hard disks, random access memories, read-only memories, erasable programmable read-only memories, optical storage devices, magnetic storage devices, or any of the above suitable combination.
  • the present invention can also be implemented in the form of a program product, which includes program codes.
  • the program product runs on a terminal device, the program code is used to cause the terminal device to execute the instructions in the above embodiments. steps in a method for generating frequency sequences.
  • the program code for executing the present invention can be written in any combination of one or more programming languages, and the program code can be completely executed on the user equipment, partially executed on the user equipment, as an independent software
  • the package executes, partly on the user device, partly on the remote device, or entirely on the remote device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明公开了一种导频序列生成方法及装置,所述方法包括:发射端的数据导频生成器生成数据导频,并且经过所述发射端的多流数据导频序列映射器生成多流数据导频序列;所述发射端的正交码生成器生成正交码,并且经过所述发射端的列循环抽取器生成抽取后的正交码字;所述发射端将每个符号的多流数据导频序列与对应的正交码字相乘,以获取数据导频发送值并发送至接收端。本发明将数据部分的导频乘以正交码,使流之间的导频保持正交,有效地提升了接收端获得相位跟踪的精确性,从而有效地应对1024QAM等高阶调制。

Description

导频序列生成方法及装置
本申请要求申请日为2020年11月4日的中国专利申请202011217195.7的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及无线通信技术领域,特别涉及一种应用于Wi-Fi(无线上网)通信系统的多流导频序列生成方法及装置。
背景技术
对于Wi-Fi这种低速移动的通信系统,信号通常是分帧独立传输的,一帧信号的时长设计为小于信道相干时间,因此信道估计可以简单地通过在帧头发送TS(训练序列)序列来估计,之后时间的信道认为保持不变。
由于频谱带宽有限,无线通信需要高频谱效率的通信技术。MIMO(多输入多输出)技术应运而生,其能够通过使用多天线技术进行空间复用,提升了频谱效率;另外高阶调制也是提升频谱效率的手段,例如Wi-Fi6已经使用1024QAM(正交幅度调制)调制。
高频谱的MIMO技术和1024QAM技术都对载波频偏估计和信道估计提出了挑战。当载波频偏估计有误差时,会迭加在信道上,形成相位旋转,并且随着OFDM(正交频分复用)符号数的增长,旋转值成线性增长。而TS序列只在帧头有,只能估计出帧头的信道估计,而对后续数据OFDM符号,迭加于信道的相位旋转无法得知。调制阶数越高,相位旋转对解调的影响则越大。
因此,Wi-Fi协议中在数据OFDM符号中添加了导频,帮助估计相位旋转。由于1024QAM的使用,相位旋转估计的越精确,解调SNR(信噪比)就越高。对于多流同时发的MIMO帧,TS序列是按流发送的,例如,4个 流同时发,就会发送4个TS用于估计流的信道。由于信号是迭加在一起的,接收端为了得到4个流的信道估计,需要使用正交码。当接收端接收到4个TS后,去除正交码可得到4个流的信道估计。
在去除正交码时,需要假定4个TS的信道完全一致,由于低移动性,这一点是没问题的,但载波不会完全同频,因此会有频率误差,导致4个TS间有不同的相位旋转。此时,解决方案是在TS中插入导频,4个TS拥有同样的导频,这样接收时可先用导频对每个TS的相位旋转进行补偿,然后再去除正交码,获得4个流的信道估计。同样,对数据OFDM符号,也插入同样的导频,来解决数据部分的相位旋转。
但是,目前这种导频不能区分出各导频点流的信道估计(迭加相位旋转),所以只能用各流的线性组合作为一个接收量,和之前各流的线性组合接收量,进行共轭相乘,得到一个理想时为和平方量(如|a+b+c|^2)与相位旋转的乘积,可估计出相位旋转。但是这样的估计不是最理想的,最理想的是希望得到一个理想时为平方和量(如(|a|^2+|b|^2+|c|^2))与相位旋转的乘积,这样可更精确地估计出相位旋转。
发明内容
本发明要解决的技术问题是为了克服现有技术中导频生成方式无法获得精确的相位跟踪,导致无法较好地应用于高阶调制的缺陷,提供一种导频序列生成方法及装置。
本发明是通过下述技术方案来解决上述技术问题:
一种导频序列生成方法,包括:
发射端的数据导频生成器生成数据导频,并且经过所述发射端的多流数据导频序列映射器生成多流数据导频序列;
所述发射端的正交码生成器生成正交码,并且经过所述发射端的列循环抽取器生成抽取后的正交码字;
所述发射端将每个符号的多流数据导频序列与对应的正交码字相乘,以获取数据导频发送值并发送至接收端。
可选地,还包括:
所述发射端的TS导频生成器生成导频TS导频,并且经过所述发射端的多流TS导频序列映射器生成多流TS导频序列,以获取TS导频发送值并发送至接收端。
可选地,还包括:
所述发射端的OFDM符号生成器生成多流TS OFDM符号及多流数据OFDM符号,在所述多流TS OFDM符号间插入多流TS导频序列,在所述多流数据OFDM符号间插入多流数据导频序列。
可选地,还包括:
所述接收端响应于从所述发射端接收到所述TS导频发送值及所述数据导频发送值,获取TS相位估计并进行补偿;
所述接收端通过对TS非导频位置去正交阵并进行信道估计,并且进行插值以获取TS导频点的信道估计;
所述接收端根据信道估计和当前导频估计出相偏并进行更新,以进行相偏补偿。
可选地,所述获取TS相位估计并进行补偿的步骤包括:
使TS相邻符号共轭相乘,得到和平方与相位旋转的乘积,以估计出TS相位旋转并对其进行补偿。
可选地,所述导频序列生成方法应用于Wi-Fi通信系统。
一种导频序列生成装置,包括发射端及接收端;
所述发射端被配置为通过数据导频生成器生成数据导频,并且经过多流数据导频序列映射器生成多流数据导频序列;
所述发射端还被配置为通过正交码生成器生成正交码,并且经过列循环抽取器生成抽取后的正交码字;
所述发射端还被配置为将每个符号的多流数据导频序列与对应的正交码字相乘,以获取数据导频发送值并发送至接收端。
可选地,所述发射端还被配置为通过TS导频生成器生成导频TS导频,并且经过多流TS导频序列映射器生成多流TS导频序列,以获取TS导频发送值并发送至接收端。
可选地,所述发射端还被配置为通过OFDM符号生成器生成多流TS OFDM符号及多流数据OFDM符号,在所述多流TS OFDM符号间插入多流TS导频序列,在所述多流数据OFDM符号间插入多流数据导频序列。
可选地,所述接收端被配置为响应于从所述发射端接收到所述TS导频发送值及所述数据导频发送值,获取TS相位估计并进行补偿;
所述接收端还被配置为通过对TS非导频位置去正交阵并进行信道估计,并且进行插值以获取TS导频点的信道估计;
所述接收端还被配置为根据信道估计和当前导频估计出相偏并进行更新,以进行相偏补偿。
可选地,所述接收端被配置为使TS相邻符号共轭相乘,得到和平方与相位旋转的乘积,以估计出TS相位旋转并对其进行补偿。
可选地,所述导频序列生成装置应用于Wi-Fi通信系统。
一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行计算机程序时实现如上述的导频序列生成方法的步骤。
一种计算机可读介质,其上存储有计算机指令,所述计算机指令在由处理器执行时实现如上述的导频序列生成方法的步骤。
在符合本领域常识的基础上,所述各优选条件,可任意组合,即得本发明各较佳实施例。
本发明的积极进步效果在于:
本发明提供的导频序列生成方法及装置,将数据部分的导频乘以正交码, 使流之间的导频保持正交,有效地提升了接收端获得相位跟踪的精确性,从而有效地应对1024QAM等高阶调制。
附图说明
在结合以下附图阅读本公开的实施例的详细描述之后,能够更好地理解本发明的所述特征和优点。在附图中,各组件不一定是按比例绘制,并且具有类似的相关特性或特征的组件可能具有相同或相近的附图标记。
图1为根据本发明的一实施例的导频序列生成方法的流程示意图。
图2为时域的TS i形成过程示意图。
图3为不同符号的某一导频点的发送值的示意图。
图4为根据本发明的另一实施例的导频序列生成装置的发射端的结构示意图。
图5为根据本发明的另一实施例的实现导频序列生成方法的电子设备的结构示意图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。
为了克服目前存在的上述缺陷,本实施例提供一种导频序列生成方法,包括:发射端的数据导频生成器生成数据导频,并且经过发射端的多流数据导频序列映射器生成多流数据导频序列;发射端的正交码生成器生成正交码,并且经过发射端的列循环抽取器生成抽取后的正交码字;发射端将每个符号的多流数据导频序列与对应的正交码字相乘,以获取数据导频发送值并发送至接收端。
本实施例提供的导频序列生成方法,应用于Wi-Fi通信系统,主要在进行MIMO空间复用及高QAM调制时,可以有效地提升相位跟踪的精确性及 效率。
具体地,作为一实施例,如图1所示,本实施例提供的导频序列生成方法,主要包括以下步骤:
步骤101、发射端生成多流TS和数据导频序列及正交码字。
在本步骤中,以4流为例,发射端通过TS导频生成器生成导频TS导频P,经过多流TS导频序列映射器生成多流相同TS导频序列,多流TS导频序列为[P P P P]。
在本步骤中,发射端还通过数据导频生成器生成导频P,多流数据导频序列映射器生成多流相同数据导频序列,多流数据导频序列为[P P P P]。
在本步骤中,发射端还通过正交码生成器生成正交码为C,C序列表示为
Figure PCTCN2021128551-appb-000001
C序列中的每个值为C j,i,j表示第j个流,1≤j≤4,i为第i个符号1≤i≤4。经过列循环抽取器,每个符号抽取C的一列,假设第n个符号,则抽取后的正交码字为C 1:4,n mod(4)
步骤102、发射端将数据部分的导频乘以正交码字。
在本步骤中,将每个符号的多流数据导频序列与对应的正交码字C 1:4,n mod(4)相乘,得到最终的数据导频发送值,以第一个符号为例,生成的多流导频为
Figure PCTCN2021128551-appb-000002
Figure PCTCN2021128551-appb-000003
对应位相乘,得到
Figure PCTCN2021128551-appb-000004
分别用于四个流。
其中,发射端通过OFDM符号生成器生成多流TS OFDM符号及多流数据OFDM符号,在多流TS OFDM符号间插入多流TS导频序列,在多流数据OFDM符号间插入多流数据导频序列。
步骤103、发射端将TS和数据导频发送值发送值接收端。
在本步骤中,发射端将基于多流TS导频序列获取到的TS导频发送值和如上述的数据导频发送值发送至接收端。
具体地,为方便接收端估计数据符号的相位旋转。信号在发送时,会在多流TS以及数据OFDM符号间插入导频,所有的导频值是一样的(各流一样)。因为无论是TS还是数据符号,在频域上,导频处除了受信道衰落影响外,还受相位旋转的影响。因此若不考虑导频值(通常均为1或均为-1),接收频域信号为各流信道的线性组合。由于所有的导频是相同模式的,不论是TS还是数据符号,其中导频点的频域接收信号为相同的线性组合,因此很容易通过共轭相乘得到相位旋转。
例如,以一个导频点为例,在TS与数据符号中,其导频值可能为+1或-1。以发送4流导频的4发4收为例,第l+1个OFDM符号中导频点的接收频域信号为
Figure PCTCN2021128551-appb-000005
R i为天线i接收到的信号,N为噪声矩阵,H为信道矩阵,H ji为发送天线i到接收天线j间的信道。θ为第2个TS相对第1个TS的相位旋转。
以接收天线1为例,
Figure PCTCN2021128551-appb-000006
因此,通过与第一个TS相乘,得到
Figure PCTCN2021128551-appb-000007
Figure PCTCN2021128551-appb-000008
为等效噪声。通常p 2值为1,可见
Figure PCTCN2021128551-appb-000009
通过上式能看出,
Figure PCTCN2021128551-appb-000010
决定了估计精度,也就是|H 11+H 12+H 13+H 14| 2决定了精度。
|H 11+H 12+H 13+H 14| 2的值会发生相互抵消,因此,即使在较小的信道衰落下,也可能会得到较小的|H 11+H 12+H 13+H 14| 2,导致估计不准,影响解调。
而在本实施例中,通过改进后的导频序列,可以得到导频点流的信道,即在某个导频点,可得到天线1的接收信号为
Rx 1(l+1)=[H 11,H 12,H 13,H 14]*exp(1j*lθ)*p+N 1
可推出
Figure PCTCN2021128551-appb-000011
这样,就是
Figure PCTCN2021128551-appb-000012
决定了估计精度,也就是(|H 11| 2+|H 12| 2+|H 13| 2+|H 14| 2)决定了精度,这样只要一个流的信道衰落较小,(|H 11| 2+|H 12| 2+|H 13| 2+|H 14| 2)的值就较大,可以保证相位估计精度。
以20M带宽,4流为例,TS序列主要由4个TS组成,TS的时域如下,其中TS i表示第i个符号的TS。
CP TS0 CP TS1 CP TS2 CP TS3
图2示出时域的TS i形成过程。
频域训练序列为TS_F,长度为53,载波范围为[-26:26],导频位置位于[-21,-7,7,21]。非导频位置的数据表示为TS_F_D,导频位置的数据表示为TS_F_P。正交矩阵为C。
Figure PCTCN2021128551-appb-000013
第i个符号,不同流的TS_F_D点乘C的第i列,不同流的TS_F_P均乘以C 0i.依原有协议,数据部分导频也同样处理。
在本实施例中,TS部分导频模式不变,因此,TS部分相位跟踪性能也不变。但数据部分的相位估计精度可以提升,具体如下述。将数据部分的导频乘以正交码,使流之间的导频保持正交,以4流为例,不同符号的某一导频点的发送值如图3所示,P为导频值。
从时间上看,第5个符号开始为前4个符号的周期重复。TS部分导频为不区分流的导频,同现有的协议一样。则接收端可以通过以下方式获得以平方和为基准的相位估计。以4流为例,其实现过程如下步骤。
步骤104、接收端获取TS相位估计并进行补偿。
在本步骤中,接收端响应于从所述发射端接收到所述TS导频发送值及所述数据导频发送值,获取TS相位估计并进行补偿。
其中,TS各流之间的导频相同,相邻符号共轭相乘,得到和平方(如|a+b+c|^2)与相位旋转的乘积,这样可估计出相位旋转,再对其进行补偿。
步骤105、接收端进行TS信道估计,并插值获得TS导频信道估计。
在本步骤中,接收端通过对TS非导频位置去正交阵并进行信道估计,并且进行插值以获取TS导频点的信道估计。
因导频没有按流区分,无法直接获得导频位置的信道估计,但通过对TS非导频位置去正交阵并作信道估计,然后插值得到导频点的信道估计H interp
H interp=[H interp(1) H interp(2) H interp(3) H interp(4)...]。
1,2,3,4表示流的标号。
步骤106、接收端判断是否为前4个数据符号,若是,执行步骤107,若否,执行步骤108。
步骤107、接收端用信道估计及当前导频估计出相偏并进行更新。执行步骤107之后,返回执行步骤106。
步骤108、接收端根据已估的相偏对该符号进行补偿。
步骤109、接收端利用该符号及前3个符号去除正交码得到流的信道估计,并更新相偏θ。执行步骤109之后,返回执行步骤106。
具体地,在本实施例中,以4流为例,需要4个符号才可获得4个流同一导频位置信道估计,从第5个符号开始,先用已估的相偏进行补偿,再利用该符号及前3个符号去正交码,得到流的信道估计[H i(1) H i(2) H i(3) H i(4)],i表示符号索引,例如,当前为第5个符号,则i=5。[H i(1) H i(2) H i(3) H i(4)]与H interp对应位共轭相乘并求和,因为从TS开始信道保持不变,故会得到和平方值与相位旋转的乘积值,估计出残余相偏,再更新相偏θ用于下一符号的相偏补偿,后面的符号以此类推。特殊地,对前4个符号利用信道估计H interp去进行与当前符号导频相同模式的线性组合,再与当前符号导频共轭相乘估计出相偏θ。
本实施例提供的导频序列生成方法,将数据部分的导频乘以正交码,使流之间的导频保持正交,有效地提升了接收端获得相位跟踪的精确性,从而有效地应对高阶调制。
为了克服目前存在的上述缺陷,本实施例还提供一种导频序列生成装置, 导频序列生成装置利用如上述的导频序列生成方法,导频序列生成装置应用于Wi-Fi通信系统。
具体地,如图4所示,导频序列生成装置主要包括发射端2及接收端,发射端2主要包括TS导频生成器21、多流TS导频序列映射器22、数据导频生成器23、多流数据导频序列映射器24、正交码生成器25、列循环抽取器26及OFDM符号生成器27。
发射端2被配置为通过TS导频生成器21生成导频TS导频,并且经过多流TS导频序列映射器22生成多流TS导频序列,以获取TS导频发送值并发送至接收端。
发射端2还被配置为通过数据导频生成器23生成数据导频,并且经过多流数据导频序列映射器24生成多流数据导频序列。
发射端2还被配置为通过正交码生成器25生成正交码,并且经过列循环抽取器26生成抽取后的正交码字。
发射端2还被配置为将每个符号的多流数据导频序列与对应的正交码字相乘,以获取数据导频发送值并发送至接收端。
发射端2还被配置为通过OFDM符号生成器27生成多流TS OFDM符号及多流数据OFDM符号,在多流TS OFDM符号间插入多流TS导频序列,在多流数据OFDM符号间插入多流数据导频序列。
接收端被配置为响应于从发射端2接收到TS导频发送值及数据导频发送值,获取TS相位估计并进行补偿。
其中,接收端被配置为使TS相邻符号共轭相乘,得到和平方与相位旋转的乘积,以估计出TS相位旋转并对其进行补偿。
接收端还被配置为通过对TS非导频位置去正交阵并进行信道估计,并且进行插值以获取TS导频点的信道估计。
接收端还被配置为根据信道估计和当前导频估计出相偏并进行更新,以进行相偏补偿。
本实施例提供的导频序列生成装置,将数据部分的导频乘以正交码,使流之间的导频保持正交,有效地提升了接收端获得相位跟踪的精确性,从而有效地应对高阶调制。
图5为根据本发明另一实施例提供的一种电子设备的结构示意图。电子设备包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行程序时实现如上实施例中的导频序列生成方法。图5显示的电子设备30仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。
如图5所示,电子设备30可以以通用计算设备的形式表现,例如其可以为服务器设备。电子设备30的组件可以包括但不限于:上述至少一个处理器31、上述至少一个存储器32、连接不同系统组件(包括存储器32和处理器31)的总线33。
总线33包括数据总线、地址总线和控制总线。
存储器32可以包括易失性存储器,例如随机存取存储器(RAM)321和/或高速缓存存储器322,还可以进一步包括只读存储器(ROM)323。
存储器32还可以包括具有一组(至少一个)程序模块324的程序/实用工具325,这样的程序模块324包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
处理器31通过运行存储在存储器32中的计算机程序,从而执行各种功能应用以及数据处理,例如本发明如上实施例中的导频序列生成方法。
电子设备30也可以与一个或多个外部设备34(例如键盘、指向设备等)通信。这种通信可以通过输入/输出(I/O)接口35进行。并且,模型生成的设备30还可以通过网络适配器36与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图5所示,网络适配器36通过总线33与模型生成的设备30的其它模块通信。应当明白,尽管图中未 示出,可以结合模型生成的设备30使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理器、外部磁盘驱动阵列、RAID(磁盘阵列)系统、磁带驱动器以及数据备份存储系统等。
应当注意,尽管在上文详细描述中提及了电子设备的若干单元/模块或子单元/模块,但是这种划分仅仅是示例性的并非强制性的。实际上,根据本发明的实施方式,上文描述的两个或更多单元/模块的特征和功能可以在一个单元/模块中具体化。反之,上文描述的一个单元/模块的特征和功能可以进一步划分为由多个单元/模块来具体化。
本实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,程序被处理器执行时实现如上实施例中的导频序列生成方法中的步骤。
其中,可读存储介质可以采用的更具体可以包括但不限于:便携式盘、硬盘、随机存取存储器、只读存储器、可擦拭可编程只读存储器、光存储器件、磁存储器件或上述的任意合适的组合。
在可能的实施方式中,本发明还可以实现为一种程序产品的形式,其包括程序代码,当程序产品在终端设备上运行时,程序代码用于使终端设备执行实现如上实施例中的导频序列生成方法中的步骤。
其中,可以以一种或多种程序设计语言的任意组合来编写用于执行本发明的程序代码,程序代码可以完全地在用户设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户设备上部分在远程设备上执行或完全在远程设备上执行。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (14)

  1. 一种导频序列生成方法,其特征在于,包括:
    发射端的数据导频生成器生成数据导频,并且经过所述发射端的多流数据导频序列映射器生成多流数据导频序列;
    所述发射端的正交码生成器生成正交码,并且经过所述发射端的列循环抽取器生成抽取后的正交码字;
    所述发射端将每个符号的多流数据导频序列与对应的正交码字相乘,以获取数据导频发送值并发送至接收端。
  2. 如权利要求1所述的导频序列生成方法,其特征在于,还包括:
    所述发射端的TS导频生成器生成导频TS导频,并且经过所述发射端的多流TS导频序列映射器生成多流TS导频序列,以获取TS导频发送值并发送至接收端。
  3. 如权利要求2所述的导频序列生成方法,其特征在于,还包括:
    所述发射端的OFDM符号生成器生成多流TS OFDM符号及多流数据OFDM符号,在所述多流TS OFDM符号间插入多流TS导频序列,在所述多流数据OFDM符号间插入多流数据导频序列。
  4. 如权利要求2所述的导频序列生成方法,其特征在于,还包括:
    所述接收端响应于从所述发射端接收到所述TS导频发送值及所述数据导频发送值,获取TS相位估计并进行补偿;
    所述接收端通过对TS非导频位置去正交阵并进行信道估计,并且进行插值以获取TS导频点的信道估计;
    所述接收端根据信道估计和当前导频估计出相偏并进行更新,以进行相偏补偿。
  5. 如权利要求4所述的导频序列生成方法,其特征在于,所述获取TS相位估计并进行补偿的步骤包括:
    使TS相邻符号共轭相乘,得到和平方与相位旋转的乘积,以估计出TS相位旋转并对其进行补偿。
  6. 如权利要求1~5中至少一项所述的导频序列生成方法,其特征在于,所述导频序列生成方法应用于Wi-Fi通信系统。
  7. 一种导频序列生成装置,其特征在于,包括发射端及接收端;
    所述发射端被配置为通过数据导频生成器生成数据导频,并且经过多流数据导频序列映射器生成多流数据导频序列;
    所述发射端还被配置为通过正交码生成器生成正交码,并且经过列循环抽取器生成抽取后的正交码字;
    所述发射端还被配置为将每个符号的多流数据导频序列与对应的正交码字相乘,以获取数据导频发送值并发送至接收端。
  8. 如权利要求7所述的导频序列生成装置,其特征在于,所述发射端还被配置为通过TS导频生成器生成导频TS导频,并且经过多流TS导频序列映射器生成多流TS导频序列,以获取TS导频发送值并发送至接收端。
  9. 如权利要求8所述的导频序列生成装置,其特征在于,所述发射端还被配置为通过OFDM符号生成器生成多流TS OFDM符号及多流数据OFDM符号,在所述多流TS OFDM符号间插入多流TS导频序列,在所述多流数据OFDM符号间插入多流数据导频序列。
  10. 如权利要求8所述的导频序列生成装置,其特征在于,所述接收端被配置为响应于从所述发射端接收到所述TS导频发送值及所述数据导频发送值,获取TS相位估计并进行补偿;
    所述接收端还被配置为通过对TS非导频位置去正交阵并进行信道估计,并且进行插值以获取TS导频点的信道估计;
    所述接收端还被配置为根据信道估计和当前导频估计出相偏并进行更新,以进行相偏补偿。
  11. 如权利要求9所述的导频序列生成装置,其特征在于,所述接收端被 配置为使TS相邻符号共轭相乘,得到和平方与相位旋转的乘积,以估计出TS相位旋转并对其进行补偿。
  12. 如权利要求7~11中至少一项所述的导频序列生成装置,其特征在于,所述导频序列生成装置应用于Wi-Fi通信系统。
  13. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行计算机程序时实现如权利要求1~6中任意一项所述的导频序列生成方法的步骤。
  14. 一种计算机可读介质,其上存储有计算机指令,其特征在于,所述计算机指令在由处理器执行时实现如权利要求1~6中任意一项所述的导频序列生成方法的步骤。
PCT/CN2021/128551 2020-11-04 2021-11-04 导频序列生成方法及装置 WO2022095914A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/251,441 US20240022344A1 (en) 2020-11-04 2021-11-04 Pilot frequency sequence generation method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011217195.7 2020-11-04
CN202011217195.7A CN112564874B (zh) 2020-11-04 2020-11-04 导频序列生成方法及装置

Publications (1)

Publication Number Publication Date
WO2022095914A1 true WO2022095914A1 (zh) 2022-05-12

Family

ID=75042305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128551 WO2022095914A1 (zh) 2020-11-04 2021-11-04 导频序列生成方法及装置

Country Status (3)

Country Link
US (1) US20240022344A1 (zh)
CN (1) CN112564874B (zh)
WO (1) WO2022095914A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112564874B (zh) * 2020-11-04 2022-09-13 展讯通信(上海)有限公司 导频序列生成方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1613218A (zh) * 2002-01-10 2005-05-04 富士通株式会社 Ofdm系统中的导频复用方法和ofdm接收方法
JP2010074284A (ja) * 2008-09-16 2010-04-02 Nippon Hoso Kyokai <Nhk> Mimo−ofdm受信装置
CN101848183A (zh) * 2010-04-06 2010-09-29 中国人民解放军信息工程大学 多入多出正交频分复用系统中信道估计方法及装置
CN112564874A (zh) * 2020-11-04 2021-03-26 展讯通信(上海)有限公司 导频序列生成方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8488694B2 (en) * 2008-05-06 2013-07-16 Industrial Technology Research Institute System and method for pilot design
CN107453853B (zh) * 2016-05-31 2020-10-16 华为技术有限公司 一种导频传输的方法及设备
CN110050451B (zh) * 2016-12-05 2020-12-15 华为技术有限公司 导频序列发生器及相应的方法和信道估计器及相应的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1613218A (zh) * 2002-01-10 2005-05-04 富士通株式会社 Ofdm系统中的导频复用方法和ofdm接收方法
JP2010074284A (ja) * 2008-09-16 2010-04-02 Nippon Hoso Kyokai <Nhk> Mimo−ofdm受信装置
CN101848183A (zh) * 2010-04-06 2010-09-29 中国人民解放军信息工程大学 多入多出正交频分复用系统中信道估计方法及装置
CN112564874A (zh) * 2020-11-04 2021-03-26 展讯通信(上海)有限公司 导频序列生成方法及装置

Also Published As

Publication number Publication date
CN112564874B (zh) 2022-09-13
CN112564874A (zh) 2021-03-26
US20240022344A1 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
US9219632B2 (en) Highly-spectrally-efficient transmission using orthogonal frequency division multiplexing
CN101505290B (zh) 改进的宽带mimo中频偏估计方法
US9124399B2 (en) Highly-spectrally-efficient reception using orthogonal frequency division multiplexing
JP5475025B2 (ja) 無線通信のためのノイズ評価
EP1157514B1 (en) Kalman equalisation in multicarrier receivers
US9088469B2 (en) Multi-mode orthogonal frequency division multiplexing receiver for highly-spectrally-efficient communications
US10263748B2 (en) Method and apparatus for transmitting uplink data and user equipment
US8259864B2 (en) Methods and systems for fourier-quadratic basis channel estimation in OFDMA systems
CN102624652B (zh) Ldpc解码方法和装置及接收终端
CN102227098B (zh) 一种多模mimo-scfde自适应传输系统频域承载点选取方法
CN101364831B (zh) 信道估计的方法
CN109309542A (zh) 一种基于时域过采样的正交信分复用水声通信方法
WO2022095914A1 (zh) 导频序列生成方法及装置
CN113556306A (zh) 离散傅里叶变换扩展正交时频空调制方法
US9071401B2 (en) Pilot-less noise estimation
US20110051867A1 (en) Methods and apparatus for wireless channel estimation using interpolation elimination in the eigen domain
CN101662441B (zh) 信号估计方法、装置及检测系统
US20060215537A1 (en) Apparatus and method for estimating a clipping parameter of an ofdm system
CN113411108B (zh) 信号调制与解调的方法、装置以及存储介质
CN113630353B (zh) 一种基于扩展加权分数傅里叶变换的信号时频能量完全平均化传输方法
US20140307830A1 (en) Apparatus and method for offset compensation in high-order modulated orthogonal frequency division multiplexing (ofdm) transmission
CN101997805A (zh) 导频符号的处理方法和装置
CN101719816A (zh) 实现自适应mimo-scfde系统低反馈速率的方法
CN114301752B (zh) 一种能量平均化预编码ofdm传输方法
US20220311486A1 (en) Wireless mimo transceiver system in high speed mobility and method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888609

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18251441

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21888609

Country of ref document: EP

Kind code of ref document: A1