WO2022078271A1 - 用于信息传输的配置方法、电子设备和存储介质 - Google Patents

用于信息传输的配置方法、电子设备和存储介质 Download PDF

Info

Publication number
WO2022078271A1
WO2022078271A1 PCT/CN2021/122950 CN2021122950W WO2022078271A1 WO 2022078271 A1 WO2022078271 A1 WO 2022078271A1 CN 2021122950 W CN2021122950 W CN 2021122950W WO 2022078271 A1 WO2022078271 A1 WO 2022078271A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
trp
timing advance
downlink
target
Prior art date
Application number
PCT/CN2021/122950
Other languages
English (en)
French (fr)
Inventor
邵诗佳
蒋创新
张阳
张淑娟
鲁照华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP21879316.4A priority Critical patent/EP4231570A1/en
Publication of WO2022078271A1 publication Critical patent/WO2022078271A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation

Definitions

  • the present application relates to the field of wireless communication, for example, to a configuration method, electronic device and storage medium for information transmission.
  • the Transmission and Reception Point (TRP) transmission is applied to enhanced mobile broadband (enhanced Mobile Broadband, eMBB) scenarios.
  • Long Term Evolution Long Term Evolution-Advanced
  • LTE-A Long Term Evolution-Advanced
  • NR New Radio Access Technology
  • Another technology of NR is multi-panel (Multi-Panel) transmission, which utilizes multiple antenna panels for transmission to achieve higher spectral efficiency. At the same time, the transmission reliability of the communication system must also be guaranteed.
  • Multi-TRP or Multi panel can effectively reduce the probability of information blocking, thereby effectively improving the reliability of ultra-reliable and low-latency communication (Ultra Transmission reliability in -reliable and Low Latency Communications (URLLC) scenarios.
  • URLLC Ultra-reliable and Low Latency Communications
  • UE User Equipment
  • FIG. 1 When two TRPs send data separately, there will be a delay in UE reception due to the problem of the propagation path.
  • the data received by the UE may overlap, as shown in Figure 2a Show.
  • the UE since the propagation distance of TRP0 is relatively long, the UE receives a relatively large delay, while the propagation distance of TRP1 is relatively short, resulting in a relatively small time delay.
  • the data of TRP0 and the data of TRP1 overlap in the time domain received by the UE, thereby affecting the reception of the UE.
  • the UE When the UE sends data to two TRPs respectively, due to the different Timing Advance (TA) of different TRPs, the UE sends information to different TRPs with different advance times, which will cause overlap during uplink transmission of the UE, as shown in Figure 2b shown.
  • TA Timing Advance
  • the UE since the TA0 corresponding to TRP0 is small, the information sent by the UE to TRP0 needs to be advanced in a relatively short time, while the TA1 corresponding to TRP1 is relatively large, and the information sent by the UE to TRP1 needs to be advanced in time. For two pieces of information that are adjacent to each other on the TRP receiving side, there is a problem of overlapping in the time domain on the UE transmitting side.
  • the present application provides a configuration method, electronic device and storage medium for information transmission, aiming at realizing a configuration method for information transmission with a low repetition rate in a Multi-TRP scenario, and improving the quality of network communication.
  • An embodiment of the present application provides a configuration method for information transmission, which is applied to a first transmission node.
  • the method includes: in the case of continuously transmitting downlink information at least twice, configuring a transmission interval K between each downlink transmission.
  • the embodiment of the present application further provides a configuration method for information transmission, which is applied to a second transmission node, the method includes: in the case of continuously transmitting uplink information at least twice, configuring a transmission interval K between each uplink transmission .
  • An embodiment of the present application further provides an electronic device, the electronic device includes one or more processors; a memory for storing one or more programs; when the one or more programs are processed by the one or more programs The processor executes, so that the one or more processors implement the configuration method for information transmission according to any one of the embodiments of this application.
  • An embodiment of the present application further provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, implements the configuration method for information transmission described in any one of the embodiments of the present application .
  • the transmission interval K between each uplink or downlink transmission is configured, and the data during multiple transmissions in the Multi-TRP scenario is reduced according to the transmission interval.
  • Overlap probability reduce communication interference, can enhance the network quality of wireless communication.
  • FIG. 1 is an exemplary diagram of a data propagation path in an embodiment of the present application
  • Fig. 2a is an example diagram of a kind of data overlap in the embodiment of the present application.
  • Fig. 2b is an example diagram of a data overlap in the embodiment of the present application.
  • FIG. 3 is a flowchart of a configuration method for information transmission in an embodiment of the present application.
  • FIG. 4 is an exemplary diagram of a configuration method for information transmission in an embodiment of the present application.
  • FIG. 5 is an exemplary diagram of another configuration method for information transmission in an embodiment of the present application.
  • FIG. 6 is an exemplary diagram of another configuration method for information transmission in an embodiment of the present application.
  • FIG. 7 is an exemplary diagram of another configuration method for information transmission in an embodiment of the present application.
  • FIG. 8 is an exemplary diagram of another configuration method for information transmission in an embodiment of the present application.
  • FIG. 9 is an exemplary diagram of another configuration method for information transmission in an embodiment of the present application.
  • FIG. 10 is an example diagram of a transmission interval K in an embodiment of the present application.
  • FIG. 11 is an exemplary diagram of a shortened information length in an embodiment of the present application.
  • FIG. 12 is another exemplary diagram of shortening the length of information in the embodiment of the present application.
  • FIG. 13 is another exemplary diagram of shortening the length of information in the embodiment of the present application.
  • FIG. 15 is an exemplary diagram of another configuration method for information transmission in an embodiment of the present application.
  • 16 is an exemplary diagram of another configuration method for information transmission in an embodiment of the present application.
  • 17 is an exemplary diagram of another configuration method for information transmission in an embodiment of the present application.
  • FIG. 19 is an exemplary diagram of another configuration method for information transmission in an embodiment of the present application.
  • FIG. 20 is an exemplary diagram of another configuration method for information transmission in an embodiment of the present application.
  • Fig. 21 is another example diagram of shortening the length of information in the embodiment of the present application.
  • Fig. 22 is another exemplary diagram of shortening the length of information in the embodiment of the present application.
  • FIG. 23 is a schematic structural diagram of a configuration method apparatus for information transmission in an embodiment of the present application.
  • 24 is a schematic structural diagram of another configuration method device for information transmission in an embodiment of the present application.
  • FIG. 25 is a schematic structural diagram of an electronic device in an embodiment of the present application.
  • FIG. 3 is a flowchart of a configuration method for information transmission in an embodiment of the present application.
  • the embodiment of the present application can be applied to the case of multiple transmissions of downlink data.
  • the configuration device can be implemented by means of software and/or hardware, and is generally integrated in a first transmission node, for example, a base station.
  • the method provided by the embodiment of the present application includes the following steps:
  • Step 110 In the case of continuously transmitting downlink information at least twice, configure a transmission interval K between downlink transmissions.
  • the downlink information may be data or control information sent by the first transmission node to the second transmission node, for example, data or indication information sent by the base station to the user terminal in the NR.
  • the transmission interval K may be a transmission interval between downlink transmissions, and the transmission interval may include symbols or time.
  • a transmission interval when performing multiple downlink transmissions, may be configured so that the downlink data transmitted multiple times do not overlap each other during transmission.
  • the transmission interval K may be a preset fixed value or may It is an interval value determined according to the network state.
  • the transmission interval K for transmitting the downlink data is configured, so that the transmission is performed according to the transmission interval K during downlink transmission, and the transmission interval in the Multi-TRP scenario is reduced according to the transmission interval.
  • Overlap probability reduce communication interference, can enhance the network quality of wireless communication.
  • the NR scenario includes two application scenarios: a single downlink control information (Single-Downlink Control Information, S-DCI) scenario and a multi-downlink control information (Multi-Downlink Control Information, M-DCI) scenario.
  • S-DCI Single-Downlink Control Information
  • M-DCI Multi-Downlink Control Information
  • the configuring the transmission interval K between each downlink transmission includes: in the scenario of single downlink control information, the transmission interval K is configured between every two downlink transmissions.
  • the transmission interval K may be configured between every two downlink transmissions.
  • FIG. 4 is an example diagram of a configuration method for information transmission in an embodiment of the present application.
  • K is an orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbol
  • the length of the data sent by the two TRPs is 4 OFDM symbols, and the cycle is repeated four times.
  • the transmission delay of TRP0 is smaller than the transmission delay of TRP1.
  • the transmission starts from TRP1, and the first transmission comes from TRP1 occupying 0 ⁇ 3 of slot 0. symbols; the second transmission is from symbols 5 to 8 that occupy slot 0 from TRP1; the third transmission is from symbols 10 to 13 that occupy slot 0 from TRP0; the fourth transmission is from symbols 1 to 4 that occupy slot 1 from TRP0.
  • the configuring the transmission interval K between each downlink transmission includes: in the scenario of single downlink control information, configuring the transmission interval K when the transmission receiving node TRP or the transmission configuration indication TCI occurs Between two downlink transmissions of a state switch.
  • the transmission interval K is only configured between two downlink transmissions when TRP switching or TCI state switching occurs. For example, after downlink transmission a is performed, TRP or TCI switching occurs, and then downlink transmission b is performed, and between downlink transmission a and downlink transmission b. The transmission interval K is configured between.
  • FIG. 5 is an exemplary diagram of another configuration method for information transmission in an embodiment of the present application.
  • the base station configures the downlink transmission A transmission interval K is used in the middle of two transmissions when TRP/TCI switching occurs.
  • K is an OFDM symbol
  • the length of the data sent by the two TRPs is 4 OFDM symbols, and the transmission is repeated four times.
  • the transmission of TRP0 If the delay is less than the transmission delay of TRP1, the transmission starts from TRP1.
  • the first transmission is from symbols 0 to 3 that occupy slot 0 by TRP1; the second transmission is from symbols 4 to 7 that occupy slot 0 from TRP1; the third transmission is from symbols 9 to 12 that occupy slot 0 by TRP0; the fourth transmission is from TRP0 occupies 13 symbols of slot 0 and 0 to 2 symbols of slot 1.
  • the configuring the transmission interval K between each downlink transmission includes: in the scenario of single downlink control information, the transmission interval K is configured after the downlink transmission sent by the target TRP, And between two downlink transmissions when TRP or TCI state switching occurs.
  • the target TRP may be a selected TRP, a TRP selected according to a configuration parameter, or a TRP that satisfies the transmission delay condition.
  • the transmission interval K may be configured between two downlink transmissions when TRP or TCI state switching occurs, and is only configured after the downlink transmission of the target TRP, for example, the next time after determining the downlink transmission of the target TRP Whether TRP or TCI state switching occurs in the transmission, if so, configure the transmission interval K after the downlink transmission, if not, do not configure it.
  • the target TRP is the TRP with the largest transmission delay among the multiple TRPs
  • the value of the transmission interval K is associated with at least one of the following information: the TCI state of the target TRP and the target timing advance
  • the target timing advance is the timing advance corresponding to the maximum timing advance value in each TRP.
  • the timing advance may be information used to indicate downlink data transmission time.
  • FIG. 6 is an exemplary diagram of another configuration method for information transmission in an embodiment of the present application.
  • K is an OFDM symbol
  • the data lengths of the two TRPs are equal to each other. It is 4 OFDM symbols, and the transmission is repeated four times alternately.
  • the transmission delay of TRP0 is less than the transmission delay of TRP1.
  • the transmission starts from TRP1.
  • the first transmission comes from symbols 0 to 4 that occupy slot 0 from TRP1, and symbol 4 is configured as Transmission interval; the second transmission is from symbols 5 to 8 in slot 0 from TRP0; the third transmission is from symbols 9 to 13 in slot 0 from TRP1, and symbol 13 is configured as the transmission interval; the fourth transmission is from TRP0 in slot 1 0 to 3 symbols.
  • the configuring the transmission interval K between each downlink transmission includes: in the scenario of a single downlink control information, the transmission interval K is configured before the downlink transmission sent by the target TRP, and is set before the downlink transmission sent by the target TRP. Between two downstream transmissions where a TRP or TCI state switch occurs.
  • the transmission interval K may be configured between two downlink transmissions when TRP or TCI state switching occurs, and is only configured before the downlink transmission of the target TRP. Whether TRP or TCI state switching occurs in downlink transmission, if so, configure the transmission interval K before the downlink transmission, if not, do not configure it.
  • the target TRP is the TRP with the smallest transmission delay among the TRPs
  • the transmission interval K is associated with at least one of the following information: the TCI state of the target TRP and the target timing advance, the target TRP
  • the timing advance is the timing advance corresponding to the minimum timing advance value in each TRP.
  • FIG. 6 is an example diagram of another configuration method for information transmission in an embodiment of the present application.
  • the data lengths of the two TRPs are both 4 OFDM symbols.
  • the transmission delay of TRP0 is less than the transmission delay of TRP1
  • TRP1 starts to send, the first transmission is from 0 ⁇ 3 symbols that TRP1 occupies slot 0; the second transmission is from TRP0 occupying slot 0. 4 to 8 symbols, symbol 4 is configured as a transmission interval;
  • the third transmission is from TRP1 occupying slot 0 of 9 to 12 symbols;
  • symbols 13 is configured as the transmission interval.
  • the configuring the transmission interval K between each downlink transmission includes: in the scenario of a single downlink control information, when two downlink transmissions are performed, configuring the downlink transmission with a smaller transmission delay It is sent before the downlink transmission with larger transmission delay.
  • the information of the two downlink transmissions may be the same or different.
  • the downlink transmission with a smaller transmission delay is sent before the downlink transmission with a larger transmission delay.
  • the transmission interval K does not need to be configured.
  • FIG. 7 is an example diagram of another configuration method for information transmission in this embodiment of the present application.
  • the data lengths of two TRPs are both 4 OFDM symbols, and the transmission contents are the same or different.
  • TRP0 The transmission delay of TRP1 is less than the transmission delay of TRP1, and the transmission starts from TRP0.
  • the data of TRP0 occupies symbols 0 to 3 of slot 0; the data of TRP1 occupies symbols 4 to 7 of slot 0.
  • the Overlap will occur.
  • Multi-TRP with multiple downlink control information DCI (Multi-DCI, M-DCI).
  • the configuring the transmission interval K between each downlink transmission includes: in the scenario of multiple downlink control information, the transmission interval K is configured before the downlink transmission of the target TRP, and the transmission interval K is configured before the downlink transmission of the target TRP occurs. Between two downlink transmissions of TRP or TCI state switching.
  • the transmission interval K may be configured between two downlink transmissions when TRP or TCI state switching occurs, and is only configured before the downlink transmission of the target TRP. Whether TRP or TCI state switching occurs in the transmission, if so, configure the transmission interval K before the downlink transmission, if not, do not configure it.
  • the target TRP is the TRP with the smallest transmission delay among the TRPs
  • the value of the transmission interval K is associated with at least one of the following information: the TCI state of the target TRP, the target timing advance value and the target high-level parameter Control Resource Set Pool Index (Control Resource Set Pool Index, CORESPoolIndex), wherein, the target timing advance is the timing advance corresponding to the minimum timing advance value in each TRP, and the target high-level parameter is the transmission time in each TRP Extend the CORESPoolIndex value corresponding to the smallest TRP.
  • Control Resource Set Pool Index Control Resource Set Pool Index
  • FIG. 8 is an exemplary diagram of another configuration method for information transmission in an embodiment of the present application.
  • the data length of TRP1 is 4 OFDM symbol
  • the data length of TRP0 is 2 OFDM symbols
  • the transmission delay of TRP0 is less than the transmission delay of TRP1
  • the data of TRP1 occupies symbols 0 to 3 of slot 0
  • the data of TRP1 occupies 4 of slot 0 ⁇ 6 symbols
  • symbol 4 is configured as a transmission interval.
  • the configuring the transmission interval K between each downlink transmission includes: in the scenario of multiple downlink control information, the transmission interval K is configured after the downlink transmission of the target TRP, and after the occurrence of Between two downlink transmissions of TRP or TCI state switching.
  • the transmission interval K may be configured between two downlink transmissions when TRP or TCI state switching occurs, and is only configured after the downlink transmission of the target TRP, for example, the next time after determining the downlink transmission of the target TRP Whether TRP or TCI state switching occurs in the transmission, if so, configure the transmission interval K after the downlink transmission, if not, do not configure it.
  • the target TRP is the TRP with the largest transmission delay among the TRPs
  • the value of the transmission interval K is associated with at least one of the following information: the TCI state of the target TRP, the target timing advance, and the target higher layer
  • the parameter CORESPoolIndex wherein the target timing advance is the timing advance corresponding to the maximum timing advance value in each TRP, and the target high-level parameter is the CORESPoolIndex value corresponding to the TRP with the largest transmission delay in each TRP.
  • FIG. 8 is an exemplary diagram of another configuration method for information transmission in an embodiment of the present application.
  • the data length of TRP1 is 4 OFDM symbol
  • the data length of TRP0 is 2 OFDM symbols
  • the transmission delay of TRP0 is greater than the transmission delay of TRP1
  • the data of TRP1 occupies symbols 0 to 4 of slot 0, and symbol 4 is configured as the transmission interval;
  • the data of TRP0 occupies symbols 5 to 6 of slot 0.
  • the configuring the transmission interval K between each downlink transmission includes: in the scenario of multiple downlink control information, when two downlink transmissions are performed, configuring a downlink transmission with a smaller transmission delay It is sent before the downlink transmission with larger transmission delay.
  • the downlink information of the two downlink transmissions can be the same or different.
  • the downlink transmission with a smaller transmission delay is sent before the downlink transmission with a larger transmission delay. There is no need to configure the transmission interval K.
  • the data length of TRP1 is 4 OFDM symbols
  • the data length of TRP0 is 2 OFDM symbols
  • the transmission delay of TRP0 is less than that of TRP1, which is determined by TRP0
  • the data of TRP0 occupies symbols 0 to 1 of slot 0
  • the data of TRP1 occupies symbols 2 to 5 of slot 0
  • the transmission interval K is not set between TRP0 and TRP1, and the data of two TRPs will not occur when the UE receives overlapping.
  • the configuring the transmission interval K between each downlink transmission includes: in the scenario of multiple downlink control information, when performing at least two downlink transmissions, not configuring the downlink from the two TRPs The transmission comes immediately after the send.
  • an interval is configured between downlink transmissions from different TRPs, and they are not sent immediately.
  • the transmission interval K is an interval time or the number of interval symbols determined according to a timing advance value or a transmission delay.
  • the unit of the transmission interval K may be the interval time or the transmission symbol, and the value of the transmission interval K may be determined by the timing advance value.
  • FIG. 10 is an example diagram of a transmission interval K in an embodiment of the present application.
  • according to the timing advance value, And indicate the time interval K T.
  • the UE maintains two time axes corresponding to TRP0 and TRP1 at the same time.
  • TRP0 with a small transmission delay is switched to TRP1 with a large transmission delay
  • the transmission start symbol corresponding to TRP1 is:
  • the ending symbol +T corresponds to the nearest symbol on the TRP1 timeline.
  • Time axis 1 (the time axis corresponding to the UE sent to TRP0) completes the first transmission in symbols 0 to 3, and the symbol 3+T corresponds to the symbol 4 of the time axis 2 (the time axis corresponding to the UE sent to TRP1).
  • the secondary transmitted symbol starts at symbol 5 of time axis 2.
  • K is the upward rounding of the time interval T to the symbol duration.
  • the transmission interval K is not configured, and if it is determined that the second transmission node overlaps when receiving, the downlink transmission time of the first transmission node in the overlapping part is shortened. message length.
  • the first transmission node When the first transmission node performs at least two consecutive downlink transmissions, if the transmission interval K is not configured in the first transmission node, the first transmission node can determine whether the received uplink transmission overlaps at the second transmission node. When the uplink transmission overlaps, the information length of the downlink transmission of the first transmission node serving as the sender at the overlapping part is shortened.
  • the information length of one of the downlink transmissions in the overlapping part can be shortened randomly, and the information length of the other downlink transmission can be reserved.
  • shortening the information length of the downlink transmission in the overlapping part includes at least one of the following: shortening the information length of the downlink transmission of the latter transmission in the two transmissions with the overlapping part; shortening the information length of the downlink transmission in the overlapping part;
  • the information length of the downlink transmission of the previous transmission in the two transmissions is shortened;
  • the information length of the downlink transmission with lower priority in the two transmissions with overlapping parts is shortened;
  • the information length of the downlink transmission in which different TRPs have overlapping parts is shortened in turn .
  • FIG. 11 is an example diagram of a shortened information length in the embodiment of the present application 11, TRP1 sends the downlink transmission before TRP0, and shortens the information length of the downlink transmission of TRP0; the information length of the downlink transmission of the previous transmission in the overlapping two transmissions can also be shortened, and FIG.
  • TRP1 sends downlink transmission before TRP0, and shortens the information length of the downlink transmission of TRP1; it can also be shortened according to the priority, for example: the main TRP is TRP0, TRP0
  • the priority of the downlink information sent is relatively high.
  • FIG. 14 is a flowchart of another configuration method for information transmission in the embodiment of the present application.
  • the embodiment of the present application can be applied to the case of multiple transmissions of uplink data, and the method can be used for information transmission in the embodiment of the present application.
  • the configuration device can be implemented by the device, and the device can be implemented by software and/or hardware, and is generally integrated in the second transmission node, for example, a user terminal UE.
  • the method provided by the embodiment of the present application includes the following steps:
  • Step 210 In the case of continuously transmitting uplink information at least twice, configure a transmission interval K between each uplink transmission.
  • the uplink information may be data or control information sent by the second transmission node to the first transmission node, for example, data or indication information sent by the user terminal to the base station in the NR.
  • the transmission interval K may be a transmission interval between uplink transmissions, and the transmission interval may include symbols or time.
  • a transmission interval when performing multiple uplink transmissions, may be configured, so that the uplink data transmitted each time do not overlap each other during transmission, and the transmission interval K may be a preset fixed value or It is an interval value determined according to the network state.
  • a transmission interval K for transmitting uplink data is configured, and the transmission interval K is used for multiple uplink transmissions, and multiple data transmissions in a Multi-TRP scenario are reduced according to the transmission interval.
  • the overlap probability can be reduced, the communication interference can be reduced, and the network quality of wireless communication can be enhanced.
  • the NR scenario includes two application scenarios: a single downlink control information (Single-Downlink Control Information, S-DCI) scenario and a multi-downlink control information (Multi-Downlink Control Information, M-DCI) scenario.
  • S-DCI Single-Downlink Control Information
  • M-DCI Multi-Downlink Control Information
  • the configuring the transmission interval K between each uplink transmission includes: in the scenario of a single downlink control information, the transmission interval K is configured between every two uplink transmissions.
  • the transmission interval K may be configured between every two uplink transmissions.
  • FIG. 15 is an example diagram of another configuration method for information transmission in this embodiment of the present application.
  • K is an OFDM symbol
  • the length of the uplink data sent to the two TRPs is both 4. OFDM symbols are repeated for four times, and the TA0 corresponding to TRP0 is smaller than the TA1 corresponding to TRP1.
  • the first uplink transmission is sent to TRP0 occupying the 0 ⁇ 3 symbols of slot 0; the second uplink transmission is sent to TRP0 occupying the slot 0 symbols. 5 to 8 symbols; the third uplink transmission is sent to TRP1 to occupy the 10 to 13 symbols of slot 0; the fourth uplink transmission is sent to TRP1 to occupy the 1 to 4 symbols of slot 1.
  • configuring the transmission interval K between each uplink transmission includes: in the scenario of single downlink control information, configuring the transmission interval K at two times when receiving TRP or sending beam switching occurs. between upstream transmissions.
  • the transmission interval K is only configured between two uplink transmissions of receiving TRP switching or transmitting beam switching. For example, after uplink transmission a is performed, receive TRP or transmit beam switching occurs, and then perform uplink transmission b, and perform uplink transmission a and uplink transmission.
  • a transmission interval K is configured between b.
  • FIG. 16 is an exemplary diagram of a configuration method for information transmission in an embodiment of the present application.
  • K is an OFDM symbol
  • the length is 4 OFDM symbols, and the transmission is repeated four times in sequence.
  • the TA0 corresponding to TRP0 is smaller than the TA1 corresponding to TRP1.
  • the first uplink transmission is sent to TRP0 to occupy symbols 0 to 3 of slot 0; the second uplink transmission is sent to TRP0 Occupy symbols 4 to 7 of slot 0; the third upstream transmission is sent to TRP1 to occupy symbols 9 to 12 of slot 0; the fourth upstream transmission is sent to TRP1 to occupy 13 symbols of slot 0 and symbols 0 to 2 of slot 1.
  • the configuring the transmission interval K between each uplink transmission includes: in the scenario of single downlink control information, configuring the transmission interval K after the uplink transmission sent to the target TRP , and between two uplink transmissions where receive TRP or transmit beam switching occurs.
  • the target TRP may be a selected TRP, a TRP selected according to a configuration parameter, or a TRP that satisfies the transmission delay condition.
  • the transmission interval K may be configured between two uplink transmissions when receiving TRP or sending beam switching occurs, and is only configured after the uplink transmission sent to the target TRP, for example, judging the uplink transmission sent to the target TRP Whether receiving TRP or sending beam switching occurs in the next transmission after transmission, if so, configure the transmission interval K after the uplink transmission, if not, do not configure it.
  • the target TRP is the TRP with the smallest timing advance among the TRPs
  • the value of the transmission interval K is associated with at least one of the following information: the transmission beam of the target TRP and the target timing advance, so
  • the target timing advance is the timing advance corresponding to the minimum timing advance value in each TRP.
  • the length of the data sent to the two TRPs is 4 OFDM symbols, and the transmission is repeated four times alternately, and the TA0 corresponding to TRP0 is smaller than the TA1 corresponding to TRP1, such as As shown in Figure 17, the first uplink transmission is sent to TRP0 to occupy symbols 0 to 4 of slot 0, where symbol 4 is configured as a transmission interval and is not used for data transmission; the second uplink transmission is sent to TRP1 to occupy 5 to 5 of slot 0 8 symbols; the third uplink transmission is sent to TRP0 to occupy the 9-13 symbols of slot 0, of which symbol 13 is configured as a transmission interval and is not used for data transmission; the fourth uplink transmission is sent to TRP1 to occupy the 0-3 symbols of slot 1 .
  • the configuring the transmission interval K between each uplink transmission includes: in the scenario of single downlink control information, configuring the transmission interval K before the uplink transmission sent to the target TRP , and between two uplink transmissions where receive TRP or transmit beam switching occurs.
  • the transmission interval K may be configured between two uplink transmissions of receiving TRP or sending beam switching, and configured only before the uplink transmission sent to the target TRP, for example, judging the uplink transmission sent to the target TRP With respect to whether receiving TRP or sending beam switching occurred in the last transmission, if yes, configure the transmission interval K before the uplink transmission; if not, do not configure it.
  • the target TRP is the TRP with the largest timing advance among the TRPs
  • the value of the transmission interval K is associated with at least one of the following information: the transmission beam of the target TRP and the target timing advance, so
  • the target timing advance is the timing advance corresponding to the maximum timing advance value in each TRP.
  • FIG. 17 is an exemplary diagram of another configuration method for information transmission in this embodiment of the present application.
  • K is an OFDM symbol
  • the length is 4 OFDM symbols, and the transmission is repeated four times alternately.
  • the TA0 corresponding to TRP0 is smaller than the TA1 corresponding to TRP1.
  • the first uplink transmission is sent to TRP0 to occupy symbols 0 to 3 of slot 0; the second uplink transmission is sent to TRP1 Occupy symbols 4 to 8 of slot 0, where symbol 4 is configured as a transmission interval and is not used for data transmission; the third uplink transmission is sent to TRP0 to occupy symbols 9 to 12 of slot 0; the fourth uplink transmission is sent to TRP1 to occupy slot0 13 symbols and 0-3 symbols of slot 1, where symbol 13 is configured as a transmission interval and is not used for data transmission.
  • the configuring the transmission interval K between each uplink transmission includes: in the scenario of a single downlink control information, when two uplink transmissions are performed, configuring the uplink transmission with a larger timing advance first. Sent on upstream transmissions with smaller timing advance.
  • the uplink data of the two uplink transmissions can be the same or different.
  • the first uplink transmission with a larger timing advance is sent before the second uplink transmission with a smaller timing advance.
  • the uplink data of the two uplink transmissions are different, the data with a larger timing advance is sent first, and the data with a smaller timing advance is sent later. In this case, the transmission interval K does not need to be configured.
  • FIG. 18 is an example diagram of another configuration method for information transmission in this embodiment of the present application.
  • the length of data sent to two TRPs is both 4 OFDM symbols, and the transmission content is the same or different.
  • the TA0 corresponding to TRP0 is smaller than the TA1 corresponding to TRP1
  • the data of TRP1 is first, the data sent to TRP1 occupies symbols 0 to 3 of slot 0; the data sent to TRP0 occupies symbols 4 to 7 of slot 0, when the UE sends
  • the data of the two TRPs do not overlap.
  • the configuring the transmission interval K between each uplink transmission includes: in the scenario of multiple downlink control information, the transmission interval K is configured before the uplink transmission sent to the target TRP, and Between two uplink transmissions where receive TRP or transmit beam switching occurs.
  • the transmission interval K may be configured between two uplink transmissions when receiving TRP or sending beam switching occurs, and is only configured before the uplink transmission sent to the target TRP, for example, judging the uplink transmission sent to the target TRP Whether the reception TRP or the transmission beam switch occurs in the transmission relative to the previous transmission, if so, configure the transmission interval K before the uplink transmission, if not, do not configure it.
  • the target TRP is the TRP with the largest timing advance among the TRPs
  • the value of the transmission interval K is associated with at least one of the following information: the TCI state of the target TRP, the target timing advance value, and the The target high-level parameter CORESTPoolIndex
  • the target timing advance is the timing advance corresponding to the maximum timing advance value in each TRP
  • the target high-level parameter is the CORESPoolIndex value corresponding to the TRP with the largest transmission delay among the multiple receiving TRPs.
  • FIG. 19 is an example diagram of another configuration method for information transmission in an embodiment of the present application.
  • the length of data sent to TRP0 is 4 OFDM symbols
  • the length of the data sent to TRP1 is 2 OFDM symbols
  • the TA0 corresponding to TRP0 is smaller than the TA1 corresponding to TRP1
  • the first uplink transmission is sent to TRP0 to occupy the 0-3 symbols of slot 0
  • the second uplink transmission is sent to TRP1 to occupy slot 0 4 to 6 symbols
  • symbol 4 is configured as the transmission interval.
  • the configuring the transmission interval K between each uplink transmission includes: in the scenario of multiple downlink control information, the transmission interval K is configured after the uplink transmission sent to the target TRP, and Between two uplink transmissions where receive TRP or transmit beam switching occurs.
  • the transmission interval K may be configured between two uplink transmissions when receiving TRP or sending beam switching occurs, and is only configured after the uplink transmission sent to the target TRP, for example, judging the uplink transmission sent to the target TRP Whether receiving TRP or sending beam switching occurs in the next transmission after transmission, if so, configure the transmission interval K after the uplink transmission, if not, do not configure it.
  • the target TRP is the TRP with the smallest timing advance among the TRPs
  • the value of the transmission interval K is associated with at least one of the following information: the TCI state of the target TRP, the target timing advance, and the target high-level parameters CORESTPoolIndex
  • the target timing advance is the timing advance corresponding to the minimum timing advance value in each TRP
  • the target high-level parameter is the CORESTPoolIndex value corresponding to the TRP with the smallest transmission delay in each TRP.
  • the target TRP can be the TRP with the smallest timing advance among the multiple TRPs for uplink transmission, and the value of the transmission interval K can be associated with the transmission beam of the target TRP, the target timing advance association, and the target high-level parameter CORESTPoolIndex.
  • the target timing advance may be the timing advance corresponding to the smallest timing advance value among the multiple TRPs, and the target high layer parameter is the CORESTPoolIndex value corresponding to the TRP with the smallest transmission delay among the multiple TRPs.
  • FIG. 19 is an exemplary diagram of another configuration method for information transmission in this embodiment of the present application.
  • K is an OFDM symbol
  • the length of data sent to TRP0 is 4 OFDM symbols
  • the length of the data sent to TRP1 is 2 OFDM symbols
  • the TA0 corresponding to TRP0 is smaller than the TA1 corresponding to TRP1
  • the first uplink transmission is sent to TRP0 to occupy symbols 0 to 4 of slot
  • symbol 4 is configured for transmission interval
  • the second uplink transmission is sent to TRP1 occupying the 5-6 symbols of slot 0.
  • the configuring the transmission interval K between each uplink transmission includes: in the scenario of multiple downlink control information, when performing two uplink transmissions, configuring the uplink transmission with a larger timing advance first. Sent on upstream transmissions with smaller timing advance.
  • the uplink data of the two uplink transmissions may be the same or different.
  • the uplink transmission with a larger timing advance is sent before the uplink transmission with a smaller timing advance.
  • the uplink data of the two uplink transmissions are different, the data with a larger timing advance is sent first, and the data with a smaller timing advance is sent later. In this case, the transmission interval K does not need to be configured.
  • FIG. 20 is an exemplary diagram of another configuration method for information transmission in this embodiment of the present application.
  • the length of data sent to TRP0 is 4 OFDM symbols, and sent to TRP1
  • the length of the data is 2 OFDM symbols
  • TA0 corresponding to TRP0 is smaller than TA1 corresponding to TRP1
  • the data of TRP1 corresponding to TA1 is sent first.
  • the data sent to TRP0 occupies symbols 2 to 5 of slot 0; the data sent to TRP1 occupies symbols 0 to 1 of slot 0, and the data of the two TRPs will not overlap when sent by the UE.
  • configuring the transmission interval K between each uplink transmission includes: in the scenario of multiple downlink control information, when performing at least two uplink transmissions, not configuring the transmission interval K sent to the two TRPs. Upstream transmissions are immediately sent.
  • the transmission interval K is the interval time or the number of interval symbols determined according to the timing advance value.
  • the transmission interval K is not configured, if it is determined that the transmission of uplink transmissions overlaps, the information length of the overlapping uplink transmissions is shortened.
  • the second transmission node When the second transmission node performs at least two consecutive uplink transmissions, if the transmission interval K is not configured when the second transmission node sends the uplink transmission, and if it is judged that the uplink transmission may overlap at the transmitting end, the second transmission as the transmitting end is shortened.
  • the message length of the upstream transmission of the overlapping part of the node is shortened.
  • shortening the information length of the uplink transmission in which the overlapping part occurs includes at least one of the following: shortening the information length of the uplink transmission in the latter transmission of the two transmissions in which the overlapping part exists; The information length of the upstream transmission of the previous transmission in the two transmissions; shorten the information length of the upstream transmission with lower priority in the two transmissions with overlapping parts; take turns to shorten the information sent to different TRPs with overlapping parts of the upstream transmission length.
  • FIG. 21 is another example of shortening the information length in the embodiment of the present application.
  • the information sent to TRP0 is sent before TRP1, and the information length of the upstream transmission of TRP1 is shortened; the information length of the upstream transmission of the previous transmission in the overlapping two transmissions can also be shortened
  • Figure 22 is this For another example diagram of shortening the information length in the application embodiment, see FIG. 22 , the information sent to TRP0 is sent before TRP1, and the information length of the uplink transmission of TRP0 is shortened.
  • FIG. 23 is a schematic structural diagram of an apparatus for a configuration method for information transmission in an embodiment of the present application, which can execute the configuration method for information transmission provided by any embodiment of the present application, and has functional modules and effects corresponding to the execution method.
  • the apparatus may be implemented by software and/or hardware, including: a downlink interval module 301 .
  • the downlink interval module 301 is configured to configure a transmission interval K between downlink transmissions when the downlink data is continuously transmitted at least twice.
  • the downlink interval module 301 configures a transmission interval K for transmitting downlink data when the downlink data is transmitted multiple times.
  • the overlapping probability of multiple data transmissions reduces communication interference and enhances the network quality of wireless communication.
  • the transmission interval K is configured between every two downlink transmissions.
  • the transmission interval K is configured between two downlink transmissions in which the TRP of the transmission receiving node or the TCI state switch is indicated by the transmission configuration. between.
  • the transmission interval K is configured after the downlink transmission sent by the target TRP, and is configured after the TRP or TCI state switching occurs at two times. between downstream transmissions.
  • the target TRP in the downlink interval module 301 is the TRP with the largest transmission delay among the TRPs, and the value of the transmission interval K is associated with at least one of the following information: TCI of the target TRP Status and target timing advance, wherein the target timing advance is the timing advance corresponding to the maximum timing advance value in each TRP.
  • the transmission interval K is configured before the downlink transmission sent by the target TRP, and is configured at two times when TRP or TCI state switching occurs. between downstream transmissions.
  • the target TRP in the downlink interval module 301 is the TRP with the smallest transmission delay among the TRPs, and the value of the transmission interval K is associated with at least one of the following information: TCI of the target TRP Status and target timing advance, where the target timing advance is the timing advance corresponding to the minimum timing advance value in each TRP.
  • the downlink transmission corresponding to the TRP with a smaller transmission delay is configured to be earlier than the transmission delay
  • the downlink transmission corresponding to the larger TRP is sent.
  • the transmission interval K is configured before the downlink transmission of the target TRP, and two times when TRP or TCI state switching occurs between downstream transmissions.
  • the target TRP in the downlink interval module 301 is the TRP with the smallest transmission delay among the TRPs, and the value of the transmission interval K is associated with at least one of the following information: TCI of the target TRP Status, target timing advance, and target high-level parameter CORESPoolIndex, where the target timing advance is the timing advance corresponding to the minimum timing advance value in each TRP, and the target high-level parameter is the CORESPoolIndex value corresponding to the TRP with the smallest transmission delay in each TRP .
  • the transmission interval K is configured after the downlink transmission sent by the target TRP, and after the TRP or TCI state switching occurs two times between downstream transmissions.
  • the target TRP in the downlink interval module 301 is the TRP with the largest transmission delay among the TRPs
  • the value of the transmission interval K is associated with at least one of the following information: TCI of the target TRP Status, target timing advance, and target high-level parameter CORESPoolIndex, wherein the target timing advance is the timing advance corresponding to the maximum timing advance value in each TRP, and the target high-level parameter is the CORESPoolIndex corresponding to the TRP with the largest transmission delay among the multiple TRPs value.
  • the downlink transmission with the smaller transmission delay is configured to be earlier than the downlink transmission with the larger transmission delay. Downlink transmission is sent.
  • the downlink transmissions from two TRPs are not configured to be sent next to each other.
  • the transmission interval K in the downlink interval module 301 is an interval time or the number of interval symbols determined according to a timing advance value.
  • the method further includes: a shortening module, configured to perform at least two downlink transmissions without configuring the transmission interval K, and if it is determined that the second transmission node overlaps when receiving, shortening the overlapped part The length of the downlink transmission information.
  • a shortening module configured to perform at least two downlink transmissions without configuring the transmission interval K, and if it is determined that the second transmission node overlaps when receiving, shortening the overlapped part The length of the downlink transmission information.
  • the shortening module includes:
  • the first shortening unit is used to shorten the information length of the downlink transmission of the latter transmission among the two transmissions with overlapping parts.
  • the second shortening unit is used for shortening the information length of the downlink transmission of the previous transmission among the two transmissions with overlapping parts.
  • the third shortening unit is used for shortening the information length of the downlink transmission with lower priority among the two transmissions with overlapping parts.
  • the fourth shortening unit is used to shorten the information length of downlink transmission in which overlapping parts of different TRPs exist in turn.
  • FIG. 24 is a schematic structural diagram of another configuration device for information transmission in an embodiment of the present application, which can execute the configuration method for information transmission provided by any embodiment of the present application, and has functional modules and effects corresponding to the execution method.
  • the apparatus may be implemented by software and/or hardware, including: an uplink interval module 401 .
  • the uplink interval module 401 is configured to configure a transmission interval K between each uplink transmission in the case of continuously transmitting uplink information at least twice.
  • the transmission interval K for transmitting the uplink data is configured, and the transmission interval K is used for multiple uplink transmissions.
  • the overlapping probability of multiple data transmissions reduces communication interference and enhances the network quality of wireless communication.
  • the transmission interval K is configured between every two uplink transmissions.
  • the transmission interval K is configured between two uplink transmissions in which receiving TRP or sending beam switching occurs.
  • the transmission interval K is configured after the uplink transmission of the target TRP, and after the two events of receiving TRP or transmitting beam switching occur between subsequent upstream transmissions.
  • the target TRP in the uplink interval module 401 is the TRP with the smallest timing advance among the TRPs, and the value of the transmission interval K is associated with at least one of the following information: the transmission beam of the target TRP and target timing advance, where the target timing advance is the timing advance corresponding to the minimum timing advance value in each TRP.
  • the transmission interval K is configured before the uplink transmission sent to the target TRP, and when receiving TRP or sending beam switching occurs between two upstream transmissions.
  • the target TRP in the uplink interval module 401 is the TRP with the largest timing advance among the TRPs, and the value of the transmission interval K is associated with at least one of the following information: the transmission beam of the target TRP and target timing advance, where the target timing advance is the timing advance corresponding to the maximum timing advance value in each TRP.
  • the uplink interval module 401 when performing two uplink transmissions, configure the uplink transmission with a larger timing advance before the uplink transmission with a smaller timing advance send.
  • the transmission interval K is configured before the uplink transmission sent to the target TRP, and when receiving TRP or sending beam switching occurs between two upstream transmissions.
  • the target TRP in the uplink interval module 401 is the TRP with the largest timing advance among the TRPs
  • the value of the transmission interval K is associated with at least one of the following information: the transmission beam of the target TRP , target timing advance and target high-level parameter CORESPoolIndex
  • the target timing advance is the timing advance corresponding to the maximum timing advance value in each TRP
  • the target high-level parameter is the CORESPoolIndex value corresponding to the TRP with the largest timing advance among the TRPs.
  • the transmission interval K is configured after the uplink transmission sent to the target TRP, and when receiving TRP or sending beam switching occurs between two upstream transmissions.
  • the target TRP in the uplink interval module 401 is the TRP with the smallest timing advance among the TRPs
  • the value of the transmission interval K is associated with at least one of the following information: the transmission beam of the target TRP , target timing advance and target high-level parameter CORESPoolIndex
  • the target timing advance is the timing advance corresponding to the minimum timing advance value in each TRP
  • the target high-level parameter is the CORESPoolIndex value corresponding to the TRP with the smallest timing advance among the TRPs.
  • the uplink interval module 401 when performing two uplink transmissions, configure the uplink transmission with a larger timing advance before the uplink transmission with a smaller timing advance send.
  • the uplink transmissions from the two TRPs are not configured to be sent next to each other.
  • the transmission interval K in the uplink interval module 401 is the interval time or the interval symbol number determined according to the timing advance value.
  • the method further includes: a shortening module, for at least two uplink transmissions, if the transmission interval K is not configured, if it is judged that the transmission of uplink transmissions overlaps, shortening the overlapping part of uplink transmissions. message length.
  • the shortening module further includes:
  • the first shortening unit is used for shortening the information length of the uplink transmission of the latter transmission among the two transmissions with overlapping parts.
  • the second shortening unit is used for shortening the information length of the upstream transmission of the previous transmission among the two transmissions with overlapping parts.
  • the third shortening unit is used for shortening the information length of the uplink transmission with lower priority among the two transmissions with overlapping parts.
  • the fourth shortening unit is used to shorten in turn the length of the information sent to the uplink transmission with overlapping parts of different TRPs.
  • FIG. 25 is a schematic structural diagram of an electronic device in an embodiment of the present application.
  • the device includes a processor 50, a memory 51, an input device 52, and an output device 53; the number of processors 50 in the electronic device may be One or more, a processor 50 is taken as an example in FIG. 25 ; the device processor 50, memory 51, input device 52 and output device 53 can be connected by a bus or in other ways.
  • the memory 51 can be used to store software programs, computer-executable programs and modules, such as the modules corresponding to the configuration method device for information transmission in the embodiments of the present application (the downlink interval module 301 or the uplink interval module 301). interval module 401).
  • the processor 50 executes various functional applications and data processing of the device by running the software programs, instructions and modules stored in the memory 51 , that is, to implement the above-mentioned configuration method for information transmission.
  • the memory 51 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the terminal, and the like.
  • the memory 51 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • memory 51 may include memory located remotely from processor 50, which may be connected to the device through a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input device 52 may be used to receive input numerical or character information and to generate key signal input related to user settings and function control of the device.
  • the output device 53 may include a display device such as a display screen.
  • Embodiments of the present application further provide a storage medium containing computer-executable instructions, where the computer-executable instructions are used to execute a configuration method for information transmission when executed by a computer processor, and the method includes:
  • the transmission interval K between each downlink transmission is configured.
  • a transmission interval K between each uplink transmission is configured.
  • a storage medium containing computer-executable instructions provided by an embodiment of the present application the computer-executable instructions of which are not limited to the above-mentioned method operations, and can also execute the configuration method for information transmission provided by any embodiment of the present application related operations in .
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of multiple Physical components execute cooperatively.
  • Some or all of the physical components may be implemented as software executed by a processor, such as a central processing unit, digital signal processor or microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit.
  • Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes volatile and nonvolatile, removable and non-removable implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data medium.
  • Computer storage media include but are not limited to random access memory (Random Access Memory, RAM), read-only memory (Read-Only Memory, ROM), electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, EEPROM) , Flash memory or other memory technology, Compact Disc Read-Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical disk storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic A storage device, or any other medium that can be used to store desired information and that can be accessed by a computer.
  • Communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开了一种用于信息传输的配置方法、电子设备和存储介质。该用于信息传输的配置方法包括:在连续传输至少两次下行信息的情况下,配置各下行传输之间的传输间隔K。

Description

用于信息传输的配置方法、电子设备和存储介质 技术领域
本申请涉及无线通信领域,例如涉及一种用于信息传输的配置方法、电子设备和存储介质。
背景技术
在多传输接收节点(Multiple Transmission and Reception Point,Multi-TRP)联合传输技术中,将多传输接收节点(Transmission and Reception Point,TRP)传输应用于增强移动宽带(enhanced Mobile Broadband,eMBB)场景下的长期演进(Long Term Evolution,LTE),使得长期演进增强(Long Term Evolution-Advanced,LTE-A)和新无线接入技术(New Radio Access Technology,NR)中的传输吞吐量实现了有效的提升。NR的另一个技术是多面板(Multi-Panel)传输,它利用多个天线面板进行传输以获得更高的频谱效率。与此同时,通信系统的传输可靠性也必须要得到保证,利用Multi-TRP或Multi panel的发送或接收能够有效地降低信息阻塞的概率,从而有效地提高在超可靠度和低延迟通讯(Ultra-reliable and Low Latency Communications,URLLC)场景下的传输可靠性。但是在相关技术中,Multi-TRP或Multi panel中的多次传输还存在一些问题待解决。在Multi-TRP的场景下,由于不同TRP相对于终端(User Equipment,UE)的位置不同,会导致传播路径不同,示意图见图1。当两个TRP分别发送数据时,由于传播路径的问题会导致UE接收存在时延,当TRP0到UE的传输时间大于TRP1到UE的传输时间时,可能会出现UE接收数据重叠,如图2a所示。在图2a中由于TRP0的传播距离较远导致UE接收的时延较大,而TRP1的传播距离较近,产生的时延较小。这时TRP0的数据和TRP1的数据在UE接收的时域产生重叠,从而对UE的接收产生影响。当UE向两个TRP分别发送数据时,由于不同TRP的定时提前(Timing Advance,TA)不同,导致UE对不同TRP发送信息的提前时间不同,会导致在UE上行传输时产生重叠,如图2b所示。在图2b中由于TRP0对应的TA0较小,UE发送给TRP0的信息需要提前的时间较小,而TRP1对应的TA1较大,UE发送给TRP1的信息需要提前的时间较大。对于在TRP接收侧紧邻的两个信息,在UE发送端会存在时域产生重叠的问题。
发明内容
本申请提供一种用于信息传输的配置方法、电子设备和存储介质,旨在Multi-TRP场景下实现低重复率的用于信息传输的配置方法,提高网络通信质量。
本申请实施例提供了一种用于信息传输的配置方法,应用于第一传输节点,该方法包括:在连续传输至少两次下行信息的情况下,配置各下行传输之间的传输间隔K。
本申请实施例还提供了一种用于信息传输的配置方法,应用于第二传输节点,该方法包括:在连续传输至少两次上行信息的情况下,配置各上行传输之间的传输间隔K。
本申请实施例还提供了一种电子设备,该电子设备包括一个或多个处理器;存储器,用于存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如本申请实施例中任一所述的用于信息传输的配置方法。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如本申请实施例中任一所述的用于信息传输的配置方法。
本申请,在下行数据进行多次传输时,在传输至少两次信息的情况下,配置各上行或下行传输之间的传输间隔K,根据传输间隔降低Multi-TRP场景下多次传输时的数据重叠机率,降低通信干扰,可增强无线通信的网络质量。
附图说明
图1是本申请实施例中一种数据传播路径的示例图;
图2a是本申请实施例中一种数据重叠的示例图;
图2b是本申请实施例中一种数据重叠的示例图;
图3是本申请实施例中一种用于信息传输的配置方法的流程图;
图4是本申请实施例中一种用于信息传输的配置方法的示例图;
图5是本申请实施例中另一种用于信息传输的配置方法的示例图;
图6是本申请实施例中另一种用于信息传输的配置方法的示例图;
图7是本申请实施例中另一种用于信息传输的配置方法的示例图;
图8是本申请实施例中另一种用于信息传输的配置方法的示例图;
图9是本申请实施例中另一种用于信息传输的配置方法的示例图;
图10是本申请实施例中一种传输间隔K的示例图;
图11是本申请实施例中一种信息长度缩短的示例图;
图12是本申请实施例中另一种信息长度缩短的示例图;
图13是本申请实施例中另一种信息长度缩短的示例图;
图14是本申请实施例中另一种用于信息传输的配置方法的流程图;
图15是本申请实施例中另一种用于信息传输的配置方法的示例图;
图16是本申请实施例中另一种用于信息传输的配置方法的示例图;
图17是本申请实施例中另一种用于信息传输的配置方法的示例图;
图18是本申请实施例中另一种用于信息传输的配置方法的示例图;
图19是本申请实施例中另一种用于信息传输的配置方法的示例图;
图20是本申请实施例中另一种用于信息传输的配置方法的示例图;
图21是本申请实施例中另一种信息长度缩短的示例图;
图22是本申请实施例中另一种信息长度缩短的示例图;
图23是本申请实施例中一种用于信息传输的配置方法装置的结构示意图;
图24是本申请实施例中另一种用于信息传输的配置方法装置的结构示意图;
图25是本申请实施例中一种电子设备的结构示意图。
具体实施方式
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本申请的说明,其本身没有特有的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
图3是本申请实施例中一种用于信息传输的配置方法的流程图,本申请实施例可以适用于下行数据多次传输的情况,该方法可以由本申请实施例中的用于信息传输的配置装置来执行,该装置可以由软件和/或硬件的方式实现,一般集成在第一传输节点,例如,基站。参见图3,本申请实施例提供的方法包括如下步骤:
步骤110、在连续传输至少两次下行信息的情况下,配置各下行传输之间的传输间隔K。
下行信息可以是第一传输节点向第二传输节点发送的数据或者控制信息,例如,NR中基站向用户端发送的数据或指示信息。传输间隔K可以是下行传输之间的传输间隔,传输间隔可以包括符号或者时间等。
在本申请实施例中,在进行多次下行传输时,可以配置一个传输间隔,使得多次传输的下行数据在传输时彼此之间不重叠,传输间隔K可以是预设的一个固定值也可以是根据网络状态确定出的一个间隔值。
本申请实施例,通过在下行数据进行多次传输时,对传输下行数据的传输间隔K进行配置,使得下行传输时按照传输间隔K进行发送,根据传输间隔降低Multi-TRP场景下多次传输的重叠机率,降低通信干扰,可增强无线通信的网络质量。
在NR场景下包括两种应用场景:单下行控制信息(Single-Downlink Control Information,S-DCI)场景和多下行控制信息(Multi-Downlink Control Information,M-DCI)的场景。
在上述申请实施例的基础上,所述配置各下行传输之间的传输间隔K,包括:在单下行控制信息的场景下,所述传输间隔K配置在每两次下行传输之间。
在本申请实施例中,传输间隔K可以配置在每两次的下行传输之间。
示例性的,图4是本申请实施例中一种用于信息传输的配置方法的示例图,参见图4,当K为一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号时,两个TRP发送的数据长度均为4个OFDM符号,并且循环重复四次,TRP0的传输时延小于TRP1的传输时延,由TRP1开始发送,第一次传输来自TRP1占据slot 0的0~3符号;第二次传输来自TRP1占据slot 0的5~8符号;第三次传输来自TRP0占据slot 0的10~13符号;第四次传输来自TRP0占据slot 1的1~4符号。
在上述申请实施例的基础上,所述配置各下行传输之间的传输间隔K,包括:在单下行控制信息的场景下,所述传输间隔K配置在发生传输接收节点TRP或传输配置指示TCI状态切换的两次下行传输之间。
传输间隔K仅配置在发生TRP切换或者TCI状态切换的两次下行传输之间,例如,下行传输a执行后,发生TRP或者TCI切换,然后执行下行传输b,在下行传输a和下行传输b之间配置传输间隔K。
在一个示例性的实施方式中,图5是本申请实施例中另一种用于信息传输的配置方法的示例图,参见图5,在下行数据进行多次重复发送时,基站为下行传输配置一个传输间隔K,用于发生TRP/TCI切换的两次传输中间,当K为一个OFDM符号时,两个TRP发送的数据长度均为4个OFDM符号,并且循环重复传输四次,TRP0的传输时延小于TRP1的传输时延,由TRP1开始发送。第一次传输来自TRP1占据slot 0的0~3符号;第二次传输来自TRP1占据slot 0的4~7符号;第三次传输来自TRP0占据slot 0的9~12符号;第四次传输来自 TRP0占据slot 0的13符号和slot 1的0~2符号。
在上述申请实施例的基础上,所述配置各下行传输之间的传输间隔K,包括:所述在单下行控制信息的场景下,所述传输间隔K配置在目标TRP发送的下行传输之后,且在发生TRP或TCI状态切换的两次下行传输之间。
目标TRP可以是被选择的TRP,可以是按照配置参数选择的TRP,也可以是满足传输延时条件的TRP。
在本申请实施例中,传输间隔K可以配置在发生TRP或TCI状态切换的两次下行传输之间,并且只配置在目标TRP的下行传输之后,例如,判断目标TRP的下行传输后的下一次传输是否发生TRP或TCI状态切换,若是,则在该下行传输之后配置传输间隔K,若否,则不进行配置。
在上申请实施例的基础上,所述目标TRP为多个TRP中传输时延最大的TRP,所述传输间隔K的取值与以下至少一种信息关联:目标TRP的TCI状态和目标定时提前,所述目标定时提前为各TRP中最大定时提前值对应的定时提前。
定时提前可以是用于指示下行数据发送时间的信息。
在一个示例性的实施方式中,图6是本申请实施例中另一种用于信息传输的配置方法的示例图,参见图6,当K为一个OFDM符号时,两个TRP的数据长度均为4个OFDM符号,并且交替重复传输四次,TRP0的传输时延小于TRP1的传输时延,由TRP1开始发送,第一次传输来自TRP1占据slot 0的0~4符号,符号4被配置为传输间隔;第二次传输来自TRP0占据slot 0的5~8符号;第三次传输来自TRP1占据slot 0的9~13符号,符号13被配置为传输间隔;第四次传输来自TRP0占据slot 1的0~3符号。
在上述申请实施例的基础上,所述配置各下行传输之间的传输间隔K,包括:在单下行控制信息的场景下,所述传输间隔K配置在目标TRP发送的下行传输之前,且在发生TRP或TCI状态切换的两次下行传输之间。
在本申请实施例中,传输间隔K可以配置在发生TRP或TCI状态切换的两次下行传输之间,并且只配置在目标TRP的下行传输之前,例如,判断目标TRP的下行传输相对于上一次下行传输是否发生TRP或TCI状态切换,若是,则在该下行传输之前配置传输间隔K,若否,则不进行配置。
在上述申请实施例的基础上,所述目标TRP为各TRP中传输时延最小的TRP,所述传输间隔K与以下至少一种信息关联:目标TRP的TCI状态和目标定时提前,所述目标定时提前为各TRP中最小定时提前值对应的定时提前。
示例性的,图6是本申请实施例中另一种用于信息传输的配置方法的示例 图,参见图6,当K为一个OFDM符号时,两个TRP的数据长度均为4个OFDM符号,并且交替重复传输四次,TRP0的传输时延小于TRP1的传输时延,由TRP1开始发送,第一次传输来自TRP1占据slot 0的0~3符号;第二次传输来自TRP0占据slot 0的4~8符号,符号4被配置为传输间隔;第三次传输来自TRP1占据slot 0的9~12符号;第四次传输来自TRP0占据slot 0的13符号和slot 1的0~3符号,符号13被配置为传输间隔。
在上述申请实施例的基础上,所述配置各下行传输之间的传输间隔K,包括:在单下行控制信息的场景下,在进行两次下行传输时,配置传输时延较小的下行传输先于传输时延较大的下行传输发送。
进行两次下行传输时,两次下行传输的信息可以相同也可以不同,在配置下行传输的传输顺序时,传输时延较小的下行传输先于传输时延较大的下行传输发送。当两次下行传输的下行信息不同时,传输时延较小的数据在前发送,传输时延较大的数据在后发送,此时不需要配置传输间隔K。
示例性的,图7是本申请实施例中另一种用于信息传输的配置方法的示例图,参见图7,两个TRP的数据长度均为4个OFDM符号,传输内容相同或不同,TRP0的传输时延小于TRP1的传输时延,由TRP0开始发送,TRP0的数据占据slot 0的0~3符号;TRP1的数据占据slot 0的4~7符号,在UE接收时两个TRP的数据不会发生重叠。
当协作TRP之间的回传不够理想,协作TRP之间的回传延时稍大。由于2个TRP的交互可能具有延时,共享一个物理下行控制信道(Physical Downlink Control Channel,PDCCH)比较困难,所以2个TRP的调度可以比较独立的进行调度。两个TRP独立调度,各自发送DCI去调度数据,这种方式称之为多下行控制信息DCI(Multi-DCI,M-DCI)的Multi-TRP。
在上述申请实施例的基础上,所述配置各下行传输之间的传输间隔K,包括:在多下行控制信息的场景下,所述传输间隔K配置在目标TRP的下行传输之前,且在发生TRP或TCI状态切换的两次下行传输之间。
在本申请实施例中,传输间隔K可以配置在发生TRP或TCI状态切换的两次下行传输之间,并且只配置在目标TRP的下行传输之前,例如,判断目标TRP的下行传输相对于上一次传输是否发生TRP或TCI状态切换,若是,则在该下行传输之前配置传输间隔K,若否,则不进行配置。
在上述申请实施例的基础上,所述目标TRP为各TRP中传输时延最小的TRP,所述传输间隔K的取值与以下至少一种信息关联:目标TRP的TCI状态、目标定时提前值和目标高层参数控制资源集合池索引(Control Resource Set Pool  Index,CORESTPoolIndex),其中,所述目标定时提前为各TRP中最小定时提前值对应的定时提前,所述目标高层参数为各TRP中传输时延最小的TRP对应的CORESTPoolIndex值。
在一个示例性的实施方式中,图8是本申请实施例中另一种用于信息传输的配置方法的示例图,参见图8,当K为一个OFDM符号时,TRP1的数据长度为4个OFDM符号,TRP0的数据长度为2个OFDM符号,TRP0的传输时延小于TRP1的传输时延,由TRP1开始发送,TRP1的数据占据slot 0的0~3符号;TRP1的数据占据slot 0的4~6符号,符号4被配置为传输间隔。
在上述申请实施例的基础上,所述配置各下行传输之间的传输间隔K,包括:在多下行控制信息的场景下,所述传输间隔K配置在目标TRP的下行传输之后,且在发生TRP或TCI状态切换的两次下行传输之间。
在本申请实施例中,传输间隔K可以配置在发生TRP或TCI状态切换的两次下行传输之间,并且只配置在目标TRP的下行传输之后,例如,判断目标TRP的下行传输后的下一次传输是否发生TRP或TCI状态切换,若是,则在该下行传输之后配置传输间隔K,若否,则不进行配置。
在上述申请实施例的基础上,目标TRP为各TRP中传输时延最大的TRP,所述传输间隔K的取值与以下至少一种信息关联:目标TRP的TCI状态、目标定时提前和目标高层参数CORESTPoolIndex,其中,所述目标定时提前为各TRP中最大定时提前值对应的定时提前,所述目标高层参数为为各TRP中传输时延最大的TRP对应的CORESTPoolIndex值。
在一个示例性的实施方式中,图8是本申请实施例中另一种用于信息传输的配置方法的示例图,参见图8,当K为一个OFDM符号时,TRP1的数据长度为4个OFDM符号,TRP0的数据长度为2个OFDM符号,TRP0的传输时延大于TRP1的传输时延,由TRP1开始发送,TRP1的数据占据slot 0的0~4符号,符号4被配置为传输间隔;TRP0的数据占据slot 0的5~6符号。
在上述申请实施例的基础上,所述配置各下行传输之间的传输间隔K,包括:在多下行控制信息的场景下,在进行两次下行传输时,配置传输时延较小的下行传输先于传输时延较大的下行传输发送。
进行两次下行传输时,两次下行传输的下行信息可以相同也可以不同,在配置下行传输的传输顺序时,传输时延较小的下行传输先于传输时延较大的下行传输发送,此时不需要配置传输间隔K。
示例性的,参见图9,当K为一个OFDM符号时,TRP1的数据长度为4个OFDM符号,TRP0的数据长度为2个OFDM符号,TRP0的传输时延小于 TRP1的传输时延,由TRP0开始发送,TRP0的数据占据slot 0的0~1符号;TRP1的数据占据slot 0的2~5符号,TRP0和TRP1之间不设置传输间隔K,在UE接收时两个TRP的数据不会发生重叠。
在上述申请实施例的基础上,所述配置各下行传输之间的传输间隔K,包括:在多下行控制信息的场景下,在进行至少两次下行传输时,不配置来自两个TRP的下行传输紧邻发送。
在本申请实施例中,当来自两个TRP进行下行传输时,配置来自不同TRP的下行传输之间存在间隔,不紧邻发送。
在上述申请实施例的基础上,所述传输间隔K为根据定时提前值或传输时延确定的间隔时间或者间隔符号数。
传输间隔K的单位可以为间隔时间或者传输符号,传输间隔K的取值可以由定时提前值确定。
示例性的,图10是本申请实施例中一种传输间隔K的示例图,参见图10,当传输间隔K为间隔时间时,基站根据定时提前值计算间隔时间T=|TA1-TA0|,并指示该时间间隔K=T。如图10所示,UE同时维护两个对应于TRP0和TRP1的时间轴,在小传输时延的TRP0切换到大传输时延的TRP1时,TRP1对应的发送起始符号为:上一次TRP0的结束符号+T后对应于TRP1时间轴上最近的符号。时间轴1(UE发送给TRP0对应的时间轴)在符号0~3完成第一次发送,符号3+T对应于时间轴2(UE发送给TRP1对应的时间轴)的符号4,因此,第二次的发送符号起始于时间轴2的符号5。
而在另一个示例性的实施方式中,基站根据定时提前值计算间隔时间T=|TA1-TA0|,根据该时间间隔T判断所需间隔OFDM符号数量K,并向UE指示该间隔符号K。其中,K为时间间隔T对符号持续时间的向上取整。
在上述申请实施例的基础上,在进行至少两次下行传输时,未配置传输间隔K,若判断第二传输节点在接收时发生重叠,则缩短第一传输节点在发生重叠部分的下行传输的信息长度。
第一传输节点在进行连续的至少两次下行传输时,若第一传输节点内未配置传输间隔K,第一传输节点可以判断第二传输节点处是否会发生接收的上行传输重叠,若判断会发生上行传输重叠,则缩短作为发送端的第一传输节点在发生重叠部分的下行传输的信息长度。
在本申请实施例中,当由于不同传输路径的第一传输节点内发送的数据存在重叠时,可以考虑缩短重叠部分的数据长度。例如,可以随机缩短重叠部分其中一个下行传输的信息长度,保留另外一个下行传输的信息长度。
在上述申请实施例的基础上,缩短在发生重叠部分的下行传输的信息长度包括以下至少一种:缩短存在重叠部分的两次传输中的后一次传输的下行传输的信息长度;缩短存在重叠部分的两次传输中的前一次传输的下行传输的信息长度;缩短存在重叠部分的两次传输中的优先级较低的下行传输的信息长度;轮流缩短不同TRP存在重叠部分的下行传输的信息长度。
在本申请实施例中,可以缩短重叠的两次传输中后一次传输的下行传输的信息长度,先发送的下行传输不改变长度,图11是本申请实施例中一种信息长度缩短的示例图,参见图11,TRP1先于TRP0发送下行传输,对TRP0的下行传输的信息长度进行缩短;还可以缩短重叠的两次传输中前一次传输的下行传输的信息长度,图12是本申请实施例中另一种信息长度缩短的示例图,参见图12,TRP1先于TRP0发送下行传输,对TRP1的下行传输的信息长度进行缩短;还可以根据优先级进行缩短,例如:主TRP为TRP0,TRP0发送的下行信息优先级相对较高,可以考虑缩短辅TRP(TRP1)对应的下行传输的信息长度,对TRP1对应的重叠符号进行缩短,参见图12;还可以轮流缩短不同TRP存在重叠部分的下行传输的信息长度,TRP1与TRP0存在重叠,第一次发生重叠时,缩短TRP1的下行传输的信息长度,TRP0正常传输,在第二次重复发生重叠时,TRP1正常传输,缩短TRP0的下行传输的信息长度,参见图13。
图14是本申请实施例中另一种用于信息传输的配置方法的流程图,本申请实施例可以适用于上行数据多次传输的情况,该方法可以由本申请实施例中的用于信息传输的配置装置来执行,该装置可以由软件和/或硬件的方式实现,一般集成在第二传输节点,例如,用户终端UE。参见图14,本申请实施例提供的方法包括如下步骤:
步骤210、在连续传输至少两次上行信息的情况下,配置各上行传输之间的传输间隔K。
上行信息可以是第二传输节点向第一传输节点发送的数据或者控制信息,例如,NR中用户端向基站发送的数据或指示信息。传输间隔K可以是上行传输之间的传输间隔,传输间隔可以包括符号或者时间等。
在本申请实施例中,在进行多次上行传输时,可以配置一个传输间隔,使得每次传输的上行数据在传输时彼此之间不重叠,传输间隔K可以是预设的一个固定值也可以是根据网络状态确定出的一个间隔值。
本申请实施例,通过在上行数据进行多次传输时,对传输上行数据的传输间隔K进行配置,该传输间隔K用于多次上行传输,根据传输间隔降低Multi-TRP场景下多次数据传输的重叠机率,降低通信干扰,可增强无线通信的网络质量。
在NR场景下包括两种应用场景:单下行控制信息(Single-Downlink Control Information,S-DCI)场景和多下行控制信息(Multi-Downlink Control Information,M-DCI)的场景。
在上述申请实施例的基础上,所述配置各上行传输之间的传输间隔K,包括:在单下行控制信息的场景下,所述传输间隔K配置在每两次上行传输之间。
在本申请实施例中,传输间隔K可以配置在每两次的上行传输之间。
示例性的,图15是本申请实施例中另一种用于信息传输的配置方法的示例图,参见图15,当K为一个OFDM符号时,发送给两个TRP的上行数据长度均为4个OFDM符号,并且循环重复传输四次,TRP0对应的TA0小于TRP1对应的TA1,第一次上行传输发送给TRP0占据slot 0的0~3符号;第二次上行传输发送给TRP0占据slot 0的5~8符号;第三次上行传输发送给TRP1占据slot0的10~13符号;第四次上行传输发送给TRP1占据slot 1的1~4符号。
在上述申请实施例的基础上,所述配置各上行传输之间的传输间隔K,包括:在单下行控制信息的场景下,所述传输间隔K配置在发生接收TRP或发送波束切换的两次上行传输之间。
传输间隔K仅配置在接收TRP切换或者发送波束切换的两次上行传输之间,例如,上行传输a执行后,发生接收TRP或者发送波束切换,然后执行上行传输b,在上行传输a和上行传输b之间配置传输间隔K。
在一个示例性的实施方式中,图16是本申请实施例中一种用于信息传输的配置方法的示例图,参见图16,当K为一个OFDM符号时,发送给两个TRP的上行数据长度均为4个OFDM符号,并且顺序重复传输四次,TRP0对应的TA0小于TRP1对应的TA1,第一次上行传输发送给TRP0占据slot 0的0~3符号;第二次上行传输发送给TRP0占据slot 0的4~7符号;第三次上行传输发送给TRP1占据slot 0的9~12符号;第四次上行传输发送给TRP1占据slot0的13符号和slot 1的0~2符号。
在上述申请实施例的基础上,所述配置各上行传输之间的传输间隔K,包括:所述在单下行控制信息的场景下,所述传输间隔K配置在发送给目标TRP的上行传输之后,且在发生接收TRP或发送波束切换的两次上行传输之间。
目标TRP可以是被选择的TRP,可以是按照配置参数选择的TRP,也可以是满足传输延时条件的TRP。
在本申请实施例中,传输间隔K可以配置在发生接收TRP或发送波束切换的两次上行传输之间,并且只配置在发送给目标TRP的上行传输之后,例如,判断发送给目标TRP的上行传输后的下一次传输是否发生接收TRP或发送波束 切换,若是,则在该上行传输之后配置传输间隔K,若否,则不进行配置。
在上申请实施例的基础上,所述目标TRP为各TRP中定时提前最小的TRP,所述传输间隔K的取值与以下至少一种信息关联:目标TRP的发送波束和目标定时提前,所述目标定时提前为各TRP中最小定时提前值对应的定时提前。
在一个示例性的实施方式中,当K为一个OFDM符号时,发送给两个TRP的数据长度均为4个OFDM符号,并且交替重复传输四次,TRP0对应的TA0小于TRP1对应的TA1,如图17所示,第一次上行传输发送给TRP0占据slot 0的0~4符号,其中符号4被配置为传输间隔,不用于数据传输;第二次上行传输发送给TRP1占据slot 0的5~8符号;第三次上行传输发送给TRP0占据slot 0的9~13符号,其中符号13被配置为传输间隔,不用于数据传输;第四次上行传输发送给TRP1占据slot 1的0~3符号。
在上述申请实施例的基础上,所述配置各上行传输之间的传输间隔K,包括:所述在单下行控制信息的场景下,所述传输间隔K配置在发送给目标TRP的上行传输之前,且在发生接收TRP或发送波束切换的两次上行传输之间。
在本申请实施例中,传输间隔K可以配置在接收TRP或发送波束切换的两次上行传输之间,并且只配置在发送给目标TRP的上行传输之前,例如,判断发送给目标TRP的上行传输相对于上一次传输是否发生接收TRP或发送波束切换,若是,则在该上行传输之前配置传输间隔K,若否,则不进行配置。
在上述申请实施例的基础上,所述目标TRP为各TRP中定时提前最大的TRP,所述传输间隔K的取值与以下至少一种信息关联:目标TRP的发送波束和目标定时提前,所述目标定时提前为各TRP中最大定时提前值对应的定时提前。
在一个示例性的实施方式中,图17是本申请实施例中另一种用于信息传输的配置方法的示例图,参见图17,当K为一个OFDM符号时,发送给两个TRP的数据长度均为4个OFDM符号,并且交替重复传输四次,TRP0对应的TA0小于TRP1对应的TA1,第一次上行传输发送给TRP0占据slot 0的0~3符号;第二次上行传输发送给TRP1占据slot 0的4~8符号,其中符号4被配置为传输间隔,不用于数据传输;第三次上行传输发送给TRP0占据slot 0的9~12符号;第四次上行传输发送给TRP1占据slot0的13符号和slot 1的0~3符号,其中符号13被配置为传输间隔,不用于数据传输。
在上述申请实施例的基础上,所述配置各上行传输之间的传输间隔K,包括:在单下行控制信息的场景下,在进行两次上行传输时,配置定时提前较大的上行传输先于定时提前较小的上行传输发送。
进行两次上行传输时,两次上行传输的上行数据可以相同也可以不同,在配置上行传输的传输顺序时,定时提前较大的第一上行传输先于定时提前较小的第二上行传输发送。当两次上行传输的上行数据不同时,定时提前较大的数据在前发送,定时提前较小的数据在后发送,此时不需要配置传输间隔K。
示例性的,图18是本申请实施例中另一种用于信息传输的配置方法的示例图,参见图18,发送给两个TRP的数据长度均为4个OFDM符号,传输内容相同或不同,TRP0对应的TA0小于TRP1对应的TA1,由TRP1的数据在前,发送给TRP1的数据占据slot 0的0~3符号;发送给TRP0的数据占据slot 0的4~7符号,在UE发送时两个TRP的数据不会发生重叠。
在上述申请实施例的基础上,所述配置各上行传输之间的传输间隔K,包括:在多下行控制信息的场景下,所述传输间隔K配置在发送给目标TRP的上行传输之前,且在发生接收TRP或发送波束切换的两次上行传输之间。
在本申请实施例中,传输间隔K可以配置在发生接收TRP或发送波束切换的两次上行传输之间,并且只配置在发送给目标TRP的上行传输之前,例如,判断发送给目标TRP的上行传输相对于上一次传输是否发生接收TRP或发送波束切换,若是,则在该上行传输之前配置传输间隔K,若否,则不进行配置。
在上述申请实施例的基础上,所述目标TRP为各TRP中定时提前最大的TRP,所述传输间隔K的取值与以下至少一种信息关联:目标TRP的TCI状态、目标定时提前值和目标高层参数CORESTPoolIndex,所述目标定时提前为各TRP中最大定时提前值对应的定时提前,所述目标高层参数为多个接收TRP中传输时延最大的TRP对应的CORESTPoolIndex值。
示例性的,图19是本申请实施例中另一种用于信息传输的配置方法的示例图,参见图19,当K为一个OFDM符号时,发送给TRP0的数据长度为4个OFDM符号,发送给TRP1的数据长度为2个OFDM符号,TRP0对应的TA0小于TRP1对应的TA1,第一次上行传输发送给TRP0占据slot 0的0~3符号;第二次上行传输发送给TRP1占据slot 0的4~6符号,符号4被配置为传输间隔。
在上述申请实施例的基础上,所述配置各上行传输之间的传输间隔K,包括:在多下行控制信息的场景下,所述传输间隔K配置在发送给目标TRP的上行传输之后,且在发生接收TRP或发送波束切换的两次上行传输之间。
在本申请实施例中,传输间隔K可以配置在发生接收TRP或发送波束切换的两次上行传输之间,并且只配置在发送给目标TRP的上行传输之后,例如,判断发送给目标TRP的上行传输后的下一次传输是否发生接收TRP或发送波束切换,若是,则在该上行传输之后配置传输间隔K,若否,则不进行配置。
在上述申请实施例的基础上,目标TRP为各TRP中定时提前最小的TRP,所述传输间隔K的取值与以下至少一种信息关联:目标TRP的TCI状态、目标定时提前和目标高层参数CORESTPoolIndex,所述目标定时提前为各TRP中最小定时提前值对应的定时提前,所述目标高层参数为为各TRP中传输时延最小的T RP对应的CORESTPoolIndex值。
目标TRP可以为进行上行传输的多个TRP中定时提前最小的TRP,传输间隔K的取值可以与目标TRP的发送波束、目标定时提前关联以及目标高层参数CORESTPoolIndex相关联,可以通过其中至少一种进行设置,目标定时提前可以是多个TRP中最小定时提前值对应的定时提前,目标高层参数为多个TRP中传输时延最小的TRP对应的CORESTPoolIndex值。
在一个示例性的实施方式中,图19是本申请实施例中另一种用于信息传输的配置方法的示例图,参见图19,当K为一个OFDM符号时,发送给TRP0的数据长度为4个OFDM符号,发送给TRP1的数据长度为2个OFDM符号,TRP0对应的TA0小于TRP1对应的TA1,第一次上行传输发送给TRP0占据slot 0的0~4符号,符号4被配置为传输间隔;第二次上行传输发送给TRP1占据slot 0的5~6符号。
在上述申请实施例的基础上,所述配置各上行传输之间的传输间隔K,包括:在多下行控制信息的场景下,在进行两次上行传输时,配置定时提前较大的上行传输先于定时提前较小的上行传输发送。
进行两次上行传输时,两次上行传输的上行数据可以相同也可以不同,在配置上行传输的传输顺序时,定时提前较大的上行传输先于定时提前较小的上行传输发送。当两次上行传输的上行数据不同时,定时提前较大的数据在前发送,定时提前较小的数据在后发送,此时不需要配置传输间隔K。
在一个示例性的实施方式中,图20是本申请实施例中另一种用于信息传输的配置方法的示例图,参见图20,发送给TRP0的数据长度为4个OFDM符号,发送给TRP1的数据长度为2个OFDM符号,TRP0对应的TA0小于TRP1对应的TA1,先发送TA1对应的TRP1的数据。发送给TRP0的数据占据slot 0的2~5符号;发送给TRP1的数据占据slot 0的0~1符号,在UE发送时两个TRP的数据不会发生重叠。
在上述申请实施例的基础上,所述配置各上行传输之间的传输间隔K,包括:在多下行控制信息的场景下,在进行至少两次上行传输时,不配置发送给两个TRP的上行传输紧邻发送。
在上述申请实施例的基础上,所述传输间隔K为根据定时提前值确定的间 隔时间或者间隔符号数。
在上述申请实施例的基础上,在进行至少两次上行传输时,若未配置传输间隔K,若判断发送上行传输发生重叠,则缩短发生重叠部分的上行传输的信息长度。
第二传输节点在进行连续的至少两次上行传输时,若第二传输节点发送上行传输时没有配置传输间隔K,并且,如果判断发送端可能出现上行传输重叠,则缩短作为发送端的第二传输节点的发生重叠部分的上行传输的信息长度。
在上述申请实施例的基础上,缩短发生重叠部分的上行传输的信息长度包括以下至少一种:缩短存在重叠部分的两次传输中的后一次传输的上行传输的信息长度;缩短存在重叠部分的两次传输中的前一次传输的上行传输的信息长度;缩短存在重叠部分的两次传输中的优先级较低的上行传输的信息长度;轮流缩短发送给不同TRP存在重叠部分的上行传输的信息长度。
在本申请实施例中,可以缩短重叠的两次传输中后一次传输的上行传输的信息长度,先发送的上行传输不改变长度,图21是本申请实施例中另一种信息长度缩短的示例图,参见图21,发送给TRP0的信息先于TRP1发送,对TRP1的上行传输的信息长度进行缩短;还可以缩短重叠的两次传输中前一次传输的上行传输的信息长度,图22是本申请实施例中另一种信息长度缩短的示例图,参见图22,发送给TRP0的信息先于TRP1发送,对TRP0的上行传输的信息长度进行缩短。
图23是本申请实施例中一种用于信息传输的配置方法装置的结构示意图,可执行本申请任意实施例所提供的用于信息传输的配置方法,具备执行方法相应的功能模块和效果。该装置可以由软件和/或硬件实现,包括:下行间隔模块301。
下行间隔模块301,用于在连续传输至少两次下行数据的情况下,配置各下行传输之间的传输间隔K。
本申请实施例,通过下行间隔模块301在下行数据进行多次传输时,对传输下行数据的传输间隔K进行配置,该传输间隔K用于多次下行传输,根据传输间隔降低Multi-TRP场景下多次数据传输的重叠机率,降低通信干扰,可增强无线通信的网络质量。
在上述申请实施例的基础上,所述下行间隔模块301中在单下行控制信息的场景下,所述传输间隔K配置在每两次下行传输之间。
在上述申请实施例的基础上,所述下行间隔模块301中在单下行控制信息的场景下,所述传输间隔K配置在发生传输接收节点TRP或传输配置指示TCI 状态切换的两次下行传输之间。
在上述申请实施例的基础上,所述下行间隔模块301中在单下行控制信息的场景下,所述传输间隔K配置在目标TRP发送的下行传输之后,且在发生TRP或TCI状态切换的两次下行传输之间。
在上述申请实施例的基础上,所述下行间隔模块301中的目标TRP为各TRP中传输时延最大的TRP,所述传输间隔K的取值与以下至少一种信息关联:目标TRP的TCI状态和目标定时提前,其中,所述目标定时提前为各TRP中最大定时提前值对应的定时提前。
在上述申请实施例的基础上,所述下行间隔模块301中在单下行控制信息的场景下,所述传输间隔K配置在目标TRP发送的下行传输之前,且在发生TRP或TCI状态切换的两次下行传输之间。
在上述申请实施例的基础上,所述下行间隔模块301中的目标TRP为各TRP中传输时延最小的TRP,所述传输间隔K的取值与以下至少一种信息关联:目标TRP的TCI状态和目标定时提前,所述目标定时提前为各TRP中最小定时提前值对应的定时提前。
在上述申请实施例的基础上,所述下行间隔模块301中在单下行控制信息的场景下,在进行两次下行传输时,配置传输时延较小的TRP对应的下行传输先于传输时延较大的TRP对应的下行传输发送。
在上述申请实施例的基础上,所述下行间隔模块301中在多下行控制信息的场景下,所述传输间隔K配置在目标TRP的下行传输之前,且在发生TRP或TCI状态切换的两次下行传输之间。
在上述申请实施例的基础上,所述下行间隔模块301中的目标TRP为各TRP中传输时延最小的TRP,所述传输间隔K的取值与以下至少一种信息关联:目标TRP的TCI状态、目标定时提前和目标高层参数CORESTPoolIndex,其中,所述目标定时提前为各TRP中最小定时提前值对应的定时提前,所述目标高层参数为各TRP中传输时延最小的TRP对应的CORESTPoolIndex值。
在上述申请实施例的基础上,所述下行间隔模块301中在多下行控制信息的场景下,所述传输间隔K配置在目标TRP发送的下行传输之后,且在发生TRP或TCI状态切换的两次下行传输之间。
在上述申请实施例的基础上,所述下行间隔模块301中的目标TRP为各TRP中传输时延最大的TRP,所述传输间隔K的取值与以下至少一种信息关联:目标TRP的TCI状态、目标定时提前和目标高层参数CORESTPoolIndex,其中,所述目标定时提前为各TRP中最大定时提前值对应的定时提前,所述目标高层 参数为多个TRP中传输时延最大的TRP对应的CORESTPoolIndex值。
在上述申请实施例的基础上,所述下行间隔模块301中在多下行控制信息的场景下,在进行两次下行传输时,配置传输时延较小的下行传输先于传输时延较大的下行传输发送。
在上述申请实施例的基础上,所述下行间隔模块301中在多下行控制信息的场景下,进行至少两次下行传输时,不配置来自两个TRP的下行传输紧邻发送。
在上述申请实施例的基础上,所述下行间隔模块301中的所述传输间隔K为根据定时提前值确定的间隔时间或者间隔符号数。
在上述申请实施例的基础上,还包括:缩短模块,用于在进行至少两次下行传输时,未配置传输间隔K,若判断第二传输节点在接收时发生重叠,则缩短在发生重叠部分的下行传输的信息长度。
在上述申请实施例的基础上,所述缩短模块,包括:
第一缩短单元,用于缩短存在重叠部分的两次传输中的后一次传输的下行传输的信息长度。第二缩短单元,用于缩短存在重叠部分的两次传输中的前一次传输的下行传输的信息长度。第三缩短单元,用于缩短存在重叠部分的两次传输中的优先级较低的下行传输的信息长度。第四缩短单元,用于轮流缩短不同TRP存在重叠部分的下行传输的信息长度。
图24是本申请实施例中另一种用于信息传输的配置装置的结构示意图,可执行本申请任意实施例所提供的用于信息传输的配置方法,具备执行方法相应的功能模块和效果。该装置可以由软件和/或硬件实现,包括:上行间隔模块401。
上行间隔模块401,用于在连续传输至少两次上行信息的情况下,配置各上行传输之间的传输间隔K。
本申请实施例,通过上行间隔模块401在上行数据进行多次传输时,对传输上行数据的传输间隔K进行配置,传输间隔K用于进行多次上行传输,根据传输间隔降低Multi-TRP场景下多次数据传输的重叠机率,降低通信干扰,可增强无线通信的网络质量。
在上述申请实施例的基础上,所述上行间隔模块401中在单下行控制信息的场景下,所述传输间隔K配置在每两次上行传输之间。
在上述申请实施例的基础上,所述上行间隔模块401中在单下行控制信息的场景下,所述传输间隔K配置在发生接收TRP或发送波束切换的两次上行传输之间。
在上述申请实施例的基础上,所述上行间隔模块401中在单下行控制信息的场景下,所述传输间隔K配置在目标TRP的上行传输之后,且在发生接收TRP或发送波束切换的两次上行传输之间。
在上述申请实施例的基础上,所述上行间隔模块401中的目标TRP为各TRP中定时提前最小的TRP,所述传输间隔K的取值于以下至少一种信息关联:目标TRP的发送波束和目标定时提前,所述目标定时提前为各TRP中的最小定时提前值对应的定时提前。
在上述申请实施例的基础上,所述上行间隔模块401中在单下行控制信息的场景下,所述传输间隔K配置在发送给目标TRP的上行传输之前,且在发生接收TRP或发送波束切换的两次上行传输之间。
在上述申请实施例的基础上,所述上行间隔模块401中的目标TRP为各TRP中定时提前最大的TRP,所述传输间隔K的取值与以下至少一种信息关联:目标TRP的发送波束和目标定时提前,所述目标定时提前为各TRP中的最大定时提前值对应的定时提前。
在上述申请实施例的基础上,所述上行间隔模块401中在单下行控制信息的场景下,在进行两次上行传输时,配置定时提前较大的上行传输先于定时提前较小的上行传输发送。
在上述申请实施例的基础上,所述上行间隔模块401中在多下行控制信息的场景下,所述传输间隔K配置在发送给目标TRP的上行传输之前,且在发生接收TRP或发送波束切换的两次上行传输之间。
在上述申请实施例的基础上,所述上行间隔模块401中的目标TRP为各TRP中定时提前最大的TRP,所述传输间隔K的取值与以下至少一种信息关联:目标TRP的发送波束、目标定时提前和目标高层参数CORESTPoolIndex,所述目标定时提前为各TRP中最大定时提前值对应的定时提前,所述目标高层参数为各TRP中定时提前最大的TRP对应的CORESTPoolIndex值。
在上述申请实施例的基础上,所述上行间隔模块401中在多下行控制信息的场景下,所述传输间隔K配置在发送给目标TRP的上行传输之后,且在发生接收TRP或发送波束切换的两次上行传输之间。
在上述申请实施例的基础上,所述上行间隔模块401中的目标TRP为各TRP中定时提前最小的TRP,所述传输间隔K的取值与以下至少一种信息关联:目标TRP的发送波束、目标定时提前和目标高层参数CORESTPoolIndex,所述目标定时提前为各TRP中最小定时提前值对应的定时提前,所述目标高层参数为各TRP中定时提前最小的TRP对应的CORESTPoolIndex值。
在上述申请实施例的基础上,所述上行间隔模块401中在多下行控制信息的场景下,在进行两次上行传输时,配置定时提前较大的上行传输先于定时提前较小的上行传输发送。
在上述申请实施例的基础上,所述上行间隔模块401中在多下行控制信息的场景下,进行至少两次上行传输时,不配置来自两个TRP的上行传输紧邻发送。
在上述申请实施例的基础上,所述上行间隔模块401中的传输间隔K为根据定时提前值确定的间隔时间或间隔符号数。
在上述申请实施例的基础上,还包括:缩短模块,用于在进行至少两次上行传输时,若未配置传输间隔K,若判断发送上行传输发生重叠,则缩短发生重叠部分的上行传输的信息长度。
在上述申请实施例的基础上,所述缩短模块还包括:
第一缩短单元,用于缩短存在重叠部分的两次传输中的后一次传输的上行传输的信息长度。第二缩短单元,用于缩短存在重叠部分的两次传输中的前一次传输的上行传输的信息长度。第三缩短单元,用于缩短存在重叠部分的两次传输中的优先级较低的上行传输的信息长度。第四缩短单元,用于轮流缩短发送给不同TRP存在重叠部分的上行传输的信息长度。
图25是本申请实施例中一种电子设备的结构示意图,如图25所示,该设备包括处理器50、存储器51、输入装置52和输出装置53;电子设备中处理器50的数量可以是一个或多个,图25中以一个处理器50为例;设备处理器50、存储器51、输入装置52和输出装置53可以通过总线或其他方式连接,图25中以通过总线连接为例。
存储器51作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请实施例中的用于信息传输的配置方法装置对应的模块(下行间隔模块301或,上行间隔模块401)。处理器50通过运行存储在存储器51中的软件程序、指令以及模块,从而执行设备的各种功能应用以及数据处理,即实现上述的用于信息传输的配置方法。
存储器51可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器51可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器51可包括相对于处理器50远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限 于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置52可用于接收输入的数字或字符信息,以及产生与设备的用户设置以及功能控制有关的键信号输入。输出装置53可包括显示屏等显示设备。
本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种用于信息传输的配置方法,该方法包括:
在传输至少两次下行信息的情况下,配置各下行传输之间的传输间隔K。或者,在传输至少两次上行信息的情况下,配置各上行传输之间的传输间隔K。
本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的用于信息传输的配置方法中的相关操作。
上文中所公开方法中的全部或一些步骤、系统、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由多个物理组件合作执行。一些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、带电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、闪存或其他存储器技术、光盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、数字多功能盘(Digital Versatile Disc,DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (36)

  1. 一种用于信息传输的配置方法,应用于第一传输节点,包括:
    在连续传输至少两次下行信息的情况下,配置所述至少两次下行传输之间的传输间隔K。
  2. 根据权利要求1所述的方法,其中,所述配置所述至少两次下行传输之间的传输间隔K,包括:
    在单下行控制信息的场景下,所述传输间隔K配置在每两次下行传输之间。
  3. 根据权利要求1所述的方法,其中,所述配置所述至少两次下行传输之间的传输间隔K,包括:
    在单下行控制信息的场景下,所述传输间隔K配置在发生传输接收节点TRP或传输配置指示TCI状态切换的两次下行传输之间。
  4. 根据权利要求1所述的方法,其中,所述配置所述至少两次下行传输之间的传输间隔K,包括:
    在单下行控制信息的场景下,所述传输间隔K配置在目标TRP发送的下行传输之后,且在发生TRP或TCI状态切换的两次下行传输之间。
  5. 根据权利要求4所述的方法,其中,所述目标TRP为多个TRP中传输时延最大的TRP,所述传输间隔K的取值与以下至少一种信息关联:所述目标TRP的TCI状态、和目标定时提前,其中,所述目标定时提前为所述多个TRP中最大定时提前值对应的定时提前。
  6. 根据权利要求1所述的方法,其中,所述配置所述至少两次下行传输之间的传输间隔K,包括:
    在单下行控制信息的场景下,所述传输间隔K配置在目标TRP发送的下行传输之前,且在发生TRP或TCI状态切换的两次下行传输之间。
  7. 根据权利要求6所述的方法,其中,所述目标TRP为多个TRP中传输时延最小的TRP,所述传输间隔K的取值与以下至少一种信息关联:所述目标TRP的TCI状态、和目标定时提前,其中,所述目标定时提前为所述多个TRP中最小定时提前值对应的定时提前。
  8. 根据权利要求1所述的方法,其中,所述配置所述至少两次下行传输之间的传输间隔K,包括:
    在单下行控制信息的场景下,在进行两次下行传输的情况下,配置传输时延较小的TRP对应的下行传输先于传输时延较大的TRP对应的下行传输发送。
  9. 根据权利要求1所述的方法,其中,所述配置所述至少两次下行传输之 间的传输间隔K,包括:
    在多下行控制信息的场景下,所述传输间隔K配置在目标TRP发送的下行传输之前,且在发生TRP或TCI状态切换的两次下行传输之间。
  10. 根据权利要求9所述的方法,其中,所述目标TRP为多个TRP中传输时延最小的TRP,所述传输间隔K的取值与以下至少一种信息关联:所述目标TRP的TCI状态、目标定时提前、和目标高层参数控制资源集合池索引CORESTPoolIndex,其中,所述目标定时提前为所述多个TRP中最小定时提前值对应的定时提前,所述目标高层参数为所述多个TRP中传输时延最小的TRP对应的CORESTPoolIndex值。
  11. 根据权利要求1所述的方法,其中,所述配置所述至少两次下行传输之间的传输间隔K,包括:
    在多下行控制信息的场景下,所述传输间隔K配置在目标TRP发送的下行传输之后,且在发生TRP或TCI状态切换的两次下行传输之间。
  12. 根据权利要求11所述的方法,其中,所述目标TRP为多个TRP中传输时延最大的TRP,所述传输间隔K的取值与以下至少一种信息关联:所述目标TRP的TCI状态、目标定时提前、和目标高层参数CORESTPoolIndex,其中,所述目标定时提前为所述多个TRP中最大定时提前值对应的定时提前,所述目标高层参数为所述多个TRP中传输时延最大的TRP对应的CORESTPoolIndex值。
  13. 根据权利要求1所述的方法,其中,所述配置所述至少两次下行传输之间的传输间隔K,包括:
    在多下行控制信息的场景下,在进行两次下行传输的情况下,配置传输时延较小的TRP对应的下行传输先于传输时延较大的TRP对应的下行传输发送。
  14. 根据权利要求1所述的方法,其中,所述配置所述至少两次下行传输之间的传输间隔K,包括:
    在多下行控制信息的场景下,在进行至少两次下行传输的情况下,不配置来自两个TRP的下行传输紧邻发送。
  15. 根据权利要求1所述的方法,其中,所述传输间隔K为根据定时提前值确定的间隔时间或者间隔符号数。
  16. 根据权利要求1所述的方法,还包括:
    在进行至少两次下行传输,未配置所述传输间隔K,且第二传输节点在接收时发生重叠的情况下,缩短所述第一传输节点在发生重叠部分的下行传输的 信息长度。
  17. 根据权利要求16所述的方法,其中,所述缩短所述第一传输节点在发生重叠部分的下行传输的信息长度,包括以下至少一种:
    缩短存在重叠部分的两次传输中的后一次传输的下行传输的信息长度;
    缩短存在重叠部分的两次传输中的前一次传输的下行传输的信息长度;
    缩短存在重叠部分的两次传输中的优先级较低的下行传输的信息长度;
    轮流缩短不同TRP存在重叠部分的下行传输的信息长度。
  18. 一种用于信息传输的配置方法,应用于第二传输节点,包括:
    在连续传输至少两次上行信息的情况下,配置所述至少两次上行传输之间的传输间隔K。
  19. 根据权利要求18所述的方法,其中,所述配置所述至少两次上行传输之间的传输间隔K,包括:
    在单下行控制信息的场景下,所述传输间隔K配置在每两次上行传输之间。
  20. 根据权利要求18所述的方法,其中,所述配置所述至少两次上行传输之间的传输间隔K,包括:
    在单下行控制信息的场景下,所述传输间隔K配置在发生接收传输接收节点TRP或发送波束切换的两次上行传输之间。
  21. 根据权利要求18所述的方法,其中,所述配置所述至少两次上行传输之间的传输间隔K,包括:
    在单下行控制信息的场景下,所述传输间隔K配置在发送给目标TRP的上行传输之后,且在发生接收TRP或发送波束切换的两次上行传输之间。
  22. 根据权利要求21所述的方法,其中,所述目标TRP为多个TRP中定时提前最小的TRP,所述传输间隔K的取值于以下至少一种信息关联:所述目标TRP的发送波束、和目标定时提前,所述目标定时提前为所述多个TRP中的最小定时提前值对应的定时提前。
  23. 根据权利要求18所述的方法,其中,所述配置所述至少两次上行传输之间的传输间隔K,包括:
    在单下行控制信息的场景下,所述传输间隔K配置在发送给目标TRP的上行传输之前,且在发生接收TRP或发送波束切换的两次上行传输之间。
  24. 根据权利要求23所述的方法,其中,所述目标TRP为多个TRP中定时提前最大的TRP,所述传输间隔K的取值与以下至少一种信息关联:所述目 标TRP的发送波束、和目标定时提前,所述目标定时提前为所述多个TRP中的最大定时提前值对应的定时提前。
  25. 根据权利要求18所述的方法,其中,所述配置所述至少两次上行传输之间的传输间隔K,包括:
    在单下行控制信息的场景下,在进行两次上行传输的情况下,配置定时提前较大的上行传输先于定时提前较小的上行传输发送。
  26. 根据权利要求18所述的方法,其中,所述配置所述至少两次上行传输之间的传输间隔K,包括:
    在多下行控制信息的场景下,所述传输间隔K配置在发送给目标TRP的上行传输之前,且在发生接收TRP或发送波束切换的两次上行传输之间。
  27. 根据权利要求26所述的方法,其中,所述目标TRP为多个TRP中定时提前最大的TRP,所述传输间隔K的取值与以下至少一种信息关联:所述目标TRP的发送波束、目标定时提前、和目标高层参数控制资源集合池索引CORESTPoolIndex,所述目标定时提前为所述多个TRP中最大定时提前值对应的定时提前,所述目标高层参数为所述多个TRP中定时提前最大的TRP对应的CORESTPoolIndex值。
  28. 根据权利要求18所述的方法,其中,所述配置所述至少两次上行传输之间的传输间隔K,包括:
    在多下行控制信息的场景下,所述传输间隔K配置在发送给目标TRP的上行传输之后,且在发生接收TRP或发送波束切换的两次上行传输之间。
  29. 根据权利要求28所述的方法,其中,所述目标TRP为多个TRP中定时提前最小的TRP,所述传输间隔K的取值与以下至少一种信息关联:所述目标TRP的发送波束、目标定时提前、和目标高层参数CORESTPoolIndex,所述目标定时提前为所述多个TRP中最小定时提前值对应的定时提前,所述目标高层参数为所述多个TRP中定时提前最小的TRP对应的CORESTPoolIndex值。
  30. 根据权利要求18所述的方法,其中,所述配置所述至少两次上行传输之间的传输间隔K,包括:
    在多下行控制信息的场景下,在进行两次上行传输的情况下,配置定时提前较大的上行传输先于定时提前较小的上行传输发送。
  31. 根据权利要求18所述的方法,其中,所述配置所述至少两次上行传输之间的传输间隔K,包括:
    在多下行控制信息的场景下,在进行至少两次上行传输的情况下,不配置 来自两个TRP的上行传输紧邻发送。
  32. 根据权利要求18所述的方法,其中,所述传输间隔K为根据定时提前值确定的间隔时间或间隔符号数。
  33. 根据权利要求18所述的方法,还包括:
    在进行至少两次上行传输,未配置所述传输间隔K,且发送上行传输发生重叠的情况下,缩短发生重叠部分的上行传输的信息长度。
  34. 根据权利要求33所述的方法,其中,所述缩短发生重叠部分的上行传输的信息长度,包括以下至少一种:
    缩短存在重叠部分的两次传输中的后一次传输的上行传输的信息长度;
    缩短存在重叠部分的两次传输中的前一次传输的上行传输的信息长度;
    缩短存在重叠部分的两次传输中的优先级较低的上行传输的信息长度;
    轮流缩短发送给不同TRP存在重叠部分的上行传输的信息长度。
  35. 一种电子设备,包括:
    至少一个处理器,实现如权利要求1-17或18-34中任一项所述的用于信息传输的配置方法。
  36. 一种计算机可读存储介质,存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1-17或18-34中任一项所述的用于信息传输的配置方法。
PCT/CN2021/122950 2020-10-16 2021-10-11 用于信息传输的配置方法、电子设备和存储介质 WO2022078271A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21879316.4A EP4231570A1 (en) 2020-10-16 2021-10-11 Configuration method for information transmission, and electronic device and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011112555.7 2020-10-16
CN202011112555.7A CN112511281A (zh) 2020-10-16 2020-10-16 用于信息传输的配置方法、电子设备和存储介质

Publications (1)

Publication Number Publication Date
WO2022078271A1 true WO2022078271A1 (zh) 2022-04-21

Family

ID=74954151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122950 WO2022078271A1 (zh) 2020-10-16 2021-10-11 用于信息传输的配置方法、电子设备和存储介质

Country Status (3)

Country Link
EP (1) EP4231570A1 (zh)
CN (1) CN112511281A (zh)
WO (1) WO2022078271A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511281A (zh) * 2020-10-16 2021-03-16 中兴通讯股份有限公司 用于信息传输的配置方法、电子设备和存储介质
WO2022233044A1 (zh) * 2021-05-07 2022-11-10 北京小米移动软件有限公司 传输策略的配置方法、装置、设备及存储介质
JPWO2023002625A1 (zh) * 2021-07-21 2023-01-26
CN117641458A (zh) * 2022-08-17 2024-03-01 中国移动通信有限公司研究院 上行传输方法、装置、设备、系统及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190020460A1 (en) * 2016-01-13 2019-01-17 Telefonaktiebolaget Lm Ericsson (Publ) Method and network node for handling signals transmitted from wireless devices
US20190141590A1 (en) * 2016-05-12 2019-05-09 Nokia Solutions And Networks Oy Techniques to support ultra-reliable handover in wireless networks
WO2020120861A1 (fr) * 2018-12-11 2020-06-18 Orange Procédé de gestion d'une transmission de séquences de symboles de données
CN112511281A (zh) * 2020-10-16 2021-03-16 中兴通讯股份有限公司 用于信息传输的配置方法、电子设备和存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190020460A1 (en) * 2016-01-13 2019-01-17 Telefonaktiebolaget Lm Ericsson (Publ) Method and network node for handling signals transmitted from wireless devices
US20190141590A1 (en) * 2016-05-12 2019-05-09 Nokia Solutions And Networks Oy Techniques to support ultra-reliable handover in wireless networks
WO2020120861A1 (fr) * 2018-12-11 2020-06-18 Orange Procédé de gestion d'une transmission de séquences de symboles de données
CN112511281A (zh) * 2020-10-16 2021-03-16 中兴通讯股份有限公司 用于信息传输的配置方法、电子设备和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Enhancements on Multi-TRP/Panel Transmission", 3GPP DRAFT; R1-1907316, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051728755 *

Also Published As

Publication number Publication date
EP4231570A1 (en) 2023-08-23
CN112511281A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
WO2022078271A1 (zh) 用于信息传输的配置方法、电子设备和存储介质
US11218892B2 (en) Method and apparatus for performing communication in a wireless communication system
US9253670B2 (en) Method and apparatus for performing communication in a wireless communication system
EP3432674B1 (en) Data transmission methods
CN112398587B (zh) 混合自动重传请求harq进程反馈的控制方法、终端及设备
KR20220087542A (ko) 전송채널의 구성 방법 및 장치, 전송채널의 송신 방법 및 장치, 설비 및 저장매체
WO2017177451A1 (zh) 用于无线通信的方法和装置
CN117241398A (zh) 一种通信的方法和装置
JP7184154B2 (ja) 情報送受信方法及び装置
US20180295220A1 (en) Information transmission method and apparatus in tdd system
JP2022501917A (ja) Lbt監視失敗の処理方法、装置及びシステム
RU2634697C1 (ru) Полудуплексный способ дуплексной связи с частотным разделением, базовая станция и терминал
JP6880030B2 (ja) アップリンク制御情報を送信するための方法、端末と記憶媒体
JP2021525487A (ja) パワーの確定方法及び装置
US9042280B2 (en) Methods and apparatus for half duplex scheduling
US20220322368A1 (en) Method and terminal for data transmission using unlicensed carrier
US20230078313A1 (en) Control using nr tdd
JP2019517206A (ja) 上りリンク参照信号送信方法、上りリンク参照信号受信方法および装置
US9622256B2 (en) Method and apparatus for receiving fragment as well as method and apparatus for transmitting fragment
CN114557016A (zh) 分组相关逻辑信道限制
JP2022547709A (ja) 伝送方法および装置
WO2020133340A1 (zh) 一种数据传输方法和通信设备
US11191073B2 (en) UL scheduling timing in TDD with 1 MS TTI and reduced processing time
WO2018170881A1 (zh) 通信方法、终端设备和网络设备
US11736985B2 (en) Method for communication between IAB nodes in alternating bidirectional mode, allowing communication multiplexing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021879316

Country of ref document: EP

Effective date: 20230516