WO2022078139A1 - 光学成像系统 - Google Patents

光学成像系统 Download PDF

Info

Publication number
WO2022078139A1
WO2022078139A1 PCT/CN2021/117948 CN2021117948W WO2022078139A1 WO 2022078139 A1 WO2022078139 A1 WO 2022078139A1 CN 2021117948 W CN2021117948 W CN 2021117948W WO 2022078139 A1 WO2022078139 A1 WO 2022078139A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging system
optical imaging
lens
prism
focal length
Prior art date
Application number
PCT/CN2021/117948
Other languages
English (en)
French (fr)
Inventor
胡亚斌
戴付建
赵烈烽
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2022078139A1 publication Critical patent/WO2022078139A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present application relates to the field of optical elements, in particular, to an optical imaging system.
  • miniaturized electronic product terminals such as smart phones
  • the hardware conditions of electro-coupled devices or complementary metal oxide semiconductor image sensors and the optical performance of imaging lenses are also proposed in the market. higher requirements.
  • miniaturized electronic product terminals such as smartphones tend to pursue higher optical zoom ratios.
  • the optical zoom factor is increased, the magnification of the optical imaging system will increase, which can be more clearly visible when shooting distant scenes.
  • the optical imaging system includes: a first lens, a second lens, a third lens and a first prism arranged in sequence from the object side along a first direction, wherein the first prism will incident light to the first prism along the first direction The reflection is emitted from the first prism along the second direction; and the second prism arranged along the second direction reflects the light emitted from the first prism and incident to the second prism along the second direction as the light emitted from the second prism along the third direction The prism exits, wherein the first direction, the second direction and the third direction are perpendicular to each other.
  • the total effective focal length f of the optical imaging system can satisfy: f>20mm.
  • the total effective focal length f of the optical imaging system and the horizontal distance Tx of the optical imaging system in the third direction may satisfy: 2.0 ⁇ f/Tx ⁇ 4.0.
  • the total effective focal length f of the optical imaging system and the horizontal distance Tz of the optical imaging system in the first direction may satisfy: 2.0 ⁇ f/Tz ⁇ 3.0.
  • the total effective focal length f of the optical imaging system and the half ImgH of the diagonal length of the effective pixel area on the imaging plane of the optical imaging system may satisfy: f/ImgH ⁇ 10.
  • the total effective focal length f of the optical imaging system and the entrance pupil diameter EPD of the optical imaging system may satisfy: 3.0 ⁇ f/EPD ⁇ 4.0.
  • At least one of the first lens, the second lens and the third lens can be a lens made of plastic material, and at least one mirror surface of the lens made of plastic material can be an aspherical mirror surface.
  • the refractive index N1 of the first lens and the refractive index N3 of the third lens may satisfy: 0 ⁇ N3-N1 ⁇ 0.3.
  • the dispersion coefficient V1 of the first lens and the dispersion coefficient V3 of the third lens may satisfy: 0 ⁇ V1-V3 ⁇ 5.0.
  • the first lens has positive power; the second lens has negative power; and the third lens has positive power.
  • the total effective focal length f of the optical imaging system and the effective focal length f1 of the first lens may satisfy: 0.8 ⁇ f/f1 ⁇ 1.2.
  • the total effective focal length f of the optical imaging system and the effective focal length f2 of the second lens may satisfy: -2.0 ⁇ f/f2 ⁇ -1.0.
  • the total effective focal length f of the optical imaging system and the effective focal length f3 of the third lens may satisfy: 1.0 ⁇ f/f3 ⁇ 2.0.
  • the total effective focal length f of the optical imaging system and the curvature radius R1 of the object side surface of the first lens may satisfy: 3.0 ⁇ f/R1 ⁇ 5.0.
  • the center thickness CT1 of the first lens, the center thickness CT2 of the second lens, and the center thickness CT3 of the third lens may satisfy: 1.0mm ⁇ (CT1+CT2+CT3)/3 ⁇ 1.5mm.
  • the optical imaging system has at least one beneficial effect such as miniaturization, long focal length, and good imaging quality by rationally distributing the power, surface shape, center thickness of each lens, and horizontal distance on each optical axis of each lens.
  • FIG. 1A shows a schematic structural diagram of an optical imaging system on the Y-Z plane according to Embodiment 1 of the present application
  • FIG. 1B shows a schematic structural diagram of the optical imaging system on the Y-X plane according to Embodiment 1 of the present application
  • 2A to 2D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve and magnification chromatic aberration curve of the optical imaging system of Embodiment 1;
  • FIG. 3A shows a schematic structural diagram of the optical imaging system on the Y-Z plane according to Embodiment 2 of the present application;
  • 3B shows a schematic structural diagram of the optical imaging system on the Y-X plane according to Embodiment 2 of the present application;
  • 4A to 4D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve and magnification chromatic aberration curve of the optical imaging system of Embodiment 2;
  • FIG. 5A shows a schematic structural diagram of the optical imaging system on the Y-Z plane according to Embodiment 3 of the present application
  • 5B shows a schematic structural diagram of the optical imaging system on the Y-X plane according to Embodiment 3 of the present application
  • 6A to 6D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve and magnification chromatic aberration curve of the optical imaging system of Embodiment 3;
  • FIG. 7A shows a schematic structural diagram of the optical imaging system on the Y-Z plane according to Embodiment 4 of the present application.
  • FIG. 7B shows a schematic structural diagram of the optical imaging system on the Y-X plane according to Embodiment 4 of the present application.
  • 8A to 8D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve and magnification chromatic aberration curve of the optical imaging system of Embodiment 4;
  • FIG. 9A shows a schematic structural diagram of the optical imaging system on the Y-Z plane according to Embodiment 5 of the present application.
  • FIG. 9B shows a schematic structural diagram of the optical imaging system on the Y-X plane according to Embodiment 5 of the present application.
  • 10A to 10D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve and magnification chromatic aberration curve of the optical imaging system of Example 5.
  • first, second, third etc. are only used to distinguish one feature from another feature and do not imply any limitation on the feature. Accordingly, the first lens discussed below may also be referred to as a second lens or a third lens without departing from the teachings of the present application.
  • the thickness, size and shape of the lenses have been slightly exaggerated for convenience of explanation.
  • the spherical or aspherical shapes shown in the figures are shown by way of example. That is, the shape of the spherical or aspherical surface is not limited to the shape of the spherical or aspherical surface shown in the drawings.
  • the drawings are examples only and are not drawn strictly to scale.
  • the paraxial region refers to the region near the optical axis. If the lens surface is convex and the convex position is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the concave position is not defined, it means that the lens surface is at least in the paraxial region. Concave.
  • the surface of each lens closest to the object is called the object side of the lens, and the surface of each lens closest to the imaging surface is called the image side of the lens.
  • An optical imaging system may include a first lens, a second lens, a third lens, a first prism, and a second prism.
  • the optical imaging system may sequentially include a first lens, a second lens, a third lens, and a first prism from the object side along the first direction.
  • the three lenses and the first prism are sequentially arranged from the object side along the first direction. Any two adjacent lenses among the first lens to the first prism may have a separation distance.
  • the first prism is disposed on one side of the image side surface of the third lens, and can reflect the light incident to the first prism along the first direction into the light emitted from the first prism along the second direction.
  • the incident light passes through the first lens, the second lens and the third lens from the object side in sequence from the first direction to the first prism, and the incident light is reflected by the reflective surface of the first prism to exit from the first prism in the second direction the first ray of light.
  • the second prism may be disposed in the second direction.
  • the first light rays may be incident on the second prism along the second direction.
  • the first light rays are reflected by the reflecting surfaces of the second prisms as second light rays emitted from the second prisms in the third direction.
  • the first direction, the second direction and the third direction are perpendicular to each other.
  • Using the first prism to turn the light path from the first direction to the second direction can shorten the total length of the optical imaging system in the first direction.
  • Using the second prism to divert the turned optical path to the third direction for a second time can shorten the total length of the optical imaging system in the second direction to meet the miniaturization of the volume.
  • the optical imaging system according to the present application may satisfy: f>20 mm, where f is the total effective focal length of the optical imaging system. More specifically, f may further satisfy: f>23 mm. Satisfy f>20mm, can meet the system optical zoom factor requirements.
  • the optical imaging system according to the present application may satisfy: 2.0 ⁇ f/Tx ⁇ 4.0, where f is the total effective focal length of the optical imaging system, and Tx is the horizontal distance of the optical imaging system in the third direction. As shown in FIG. 1B , Tx is the projection distance of the entire optical imaging system in the third direction. More specifically, f and Tx may further satisfy: 2.0 ⁇ f/Tx ⁇ 3.7. Satisfying 2.0 ⁇ f/Tx ⁇ 4.0, it can meet the requirements of the volume limit of the lens module.
  • the optical imaging system according to the present application may satisfy: 2.0 ⁇ f/Tz ⁇ 3.0, where f is the total effective focal length of the optical imaging system, and Tz is the horizontal distance of the optical imaging system in the first direction . As shown in FIG. 1A , Tz is the projection distance of the entire optical imaging system in the first direction. More specifically, f and Tz may further satisfy: 2.1 ⁇ f/Tz ⁇ 2.6. Satisfying 2.0 ⁇ f/Tz ⁇ 3.0, it can meet the requirements of the volume limit of the lens module.
  • the optical imaging system according to the present application may satisfy: f/ImgH ⁇ 10, where f is the total effective focal length of the optical imaging system, and ImgH is the diagonal angle of the effective pixel area on the imaging surface of the optical imaging system half the length of the line. Satisfying f/ImgH ⁇ 10 can meet the requirement of equivalent focal length, which is beneficial to realize the required optical zoom ratio.
  • the optical imaging system according to the present application may satisfy: 3.0 ⁇ f/EPD ⁇ 4.0, where f is the total effective focal length of the optical imaging system, and EPD is the entrance pupil diameter of the optical imaging system. More specifically, f and EPD may further satisfy: 3.4 ⁇ f/EPD ⁇ 4.0. Satisfying 3.0 ⁇ f/EPD ⁇ 4.0 can make enough effective light pass through the system and improve the signal-to-noise ratio.
  • At least one of the first lens, the second lens and the third lens may be a lens made of plastic material, and at least one mirror surface of the lens made of plastic material may be an aspherical mirror surface.
  • Using a plastic lens with an aspherical mirror surface can further reduce the on-axis spherical aberration and off-axis meridional coma aberration of the system while improving the degree of freedom of design.
  • the optical imaging system according to the present application may satisfy: 0 ⁇ N3-N1 ⁇ 0.3, wherein N1 is the refractive index of the first lens, and N3 is the refractive index of the third lens. More specifically, N3 and N1 may further satisfy: 0.1 ⁇ N3-N1 ⁇ 0.3. Satisfying 0 ⁇ N3-N1 ⁇ 0.3 is beneficial to correct the magnification chromatic aberration of the system.
  • the optical imaging system according to the present application may satisfy: 0 ⁇ V1-V3 ⁇ 5.0, where V1 is the dispersion coefficient of the first lens, and V3 is the dispersion coefficient of the third lens. More specifically, V1 and V3 may further satisfy: 3.3 ⁇ V1-V3 ⁇ 3.6. Satisfying 0 ⁇ V1-V3 ⁇ 5.0 is beneficial to reduce the axial chromatic aberration of the system.
  • the first lens may have positive power; the second lens may have negative power; and the third lens may have positive power.
  • Reasonable distribution of the power distribution of the three lenses can ensure that the chromatic aberration of magnification is within the size of two pixels of the sensor while meeting the requirements of the effective focal length.
  • the optical imaging system according to the present application may satisfy: 0.8 ⁇ f/f1 ⁇ 1.2, where f is the total effective focal length of the optical imaging system, and f1 is the effective focal length of the first lens. Satisfying 0.8 ⁇ f/f1 ⁇ 1.2, the on-axis spherical aberration of the system can be corrected.
  • the optical imaging system may satisfy: -2.0 ⁇ f/f2 ⁇ -1.0, where f is the total effective focal length of the optical imaging system, and f2 is the effective focal length of the second lens. More specifically, f and f2 may further satisfy: -1.6 ⁇ f/f2 ⁇ -1.3. Satisfying -2.0 ⁇ f/f2 ⁇ -1.0, the second lens can correct the meridional coma aberration of the system while taking on the negative refractive power.
  • the optical imaging system according to the present application may satisfy: 1.0 ⁇ f/f3 ⁇ 2.0, where f is the total effective focal length of the optical imaging system, and f3 is the effective focal length of the third lens. More specifically, f and f3 may further satisfy: 1.3 ⁇ f/f3 ⁇ 1.8. Satisfying 1.0 ⁇ f/f3 ⁇ 2.0, the off-axis Pittsval field curvature and the amount of meridional astigmatism can be corrected.
  • the optical imaging system according to the present application may satisfy: 3.0 ⁇ f/R1 ⁇ 5.0, where f is the total effective focal length of the optical imaging system, and R1 is the curvature radius of the object side of the first lens. More specifically, f and R1 may further satisfy: 3.3 ⁇ f/R1 ⁇ 4.5. Satisfying 3.0 ⁇ f/R1 ⁇ 5.0, for a large-diameter lens, it can ensure the manufacturability of the molding surface of the object side of the lens, and also help to reduce the amount of arc asymmetry of the system.
  • the optical imaging system may satisfy: 1.0mm ⁇ (CT1+CT2+CT3)/3 ⁇ 1.5mm, wherein CT1 is the center thickness of the first lens and CT2 is the thickness of the second lens Center thickness, CT3 is the center thickness of the third lens. More specifically, CT1, CT2, and CT3 may further satisfy: 1.1 mm ⁇ (CT1+CT2+CT3)/3 ⁇ 1.4 mm. Satisfying 1.0mm ⁇ (CT1+CT2+CT3)/3 ⁇ 1.5mm, the central thickness of the three lenses can be constrained within a reasonable range, which is beneficial to reduce the amount of surface error after the lens is formed and improve the manufacturability of the lens.
  • the optical imaging system further includes a diaphragm provided between the object side and the first lens.
  • the above-mentioned optical imaging system may further include a filter for correcting color deviation and/or a protective glass for protecting the photosensitive element located on the imaging surface.
  • the optical imaging system according to the above-mentioned embodiments of the present application may employ multiple lenses, such as the three lenses described above.
  • the incident light can be effectively collected, the overall length of the optical imaging system can be reduced, and the processability of the optical imaging system can be improved. Therefore, the structure of each lens is more compact, the optical imaging system is more conducive to production and processing, and has higher practicability.
  • the optical imaging system according to the exemplary embodiment of the present application can have characteristics such as long focal length, good imaging quality, and the like.
  • At least one mirror surface from the object side surface of the first lens to the image side surface of the third lens is an aspherical mirror surface.
  • the characteristic of aspheric lenses is that the curvature changes continuously from the center of the lens to the periphery of the lens.
  • aspheric lenses have better curvature radius characteristics, and have the advantages of improving distortion and astigmatism. After the aspherical lens is used, the aberration that occurs during imaging can be eliminated as much as possible, thereby improving the imaging quality.
  • the object side and the image side of each of the first lens and the second lens are aspherical mirror surfaces.
  • the optical imaging system can be changed to obtain various results and advantages described in this specification without departing from the technical solutions claimed in the present application.
  • the optical imaging system is not limited to including three lenses.
  • the optical imaging system may also include other numbers of lenses if desired.
  • FIG. 1A shows a schematic structural diagram of the optical imaging system on the Y-Z plane according to Embodiment 1 of the present application.
  • FIG. 1B shows a schematic structural diagram of the optical imaging system on the Y-X plane according to Embodiment 1 of the present application.
  • the optical imaging system sequentially includes from the object side along the first direction Z: a diaphragm STO, a first lens E1 , a second lens E2 , a third lens E3 and a first prism P1 .
  • the incident light rays sequentially pass through the aperture STO, the first lens E1, the second lens E2 and the third lens E3 from the object side from the first direction Z to the first prism P1.
  • the optical imaging system sequentially includes a first prism P1 and a second prism P2 along the second direction Y.
  • the incident light is reflected by the first prism P1 to form a first light.
  • the first light rays are directed in the second direction Y.
  • the optical imaging system sequentially includes a second prism P2, a filter E4 and an imaging surface S15 along the third direction X.
  • the first light rays are incident on the second prism P2 along the second direction Y.
  • the first light rays are reflected by the second prism P2 to form second light rays.
  • the second ray is directed in the third direction X.
  • the first lens E1 has positive refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens E2 has negative refractive power, the object side S3 is convex, and the image side S4 is concave.
  • the third lens E3 has positive refractive power, the object side S5 is convex, and the image side S6 is convex.
  • the first prism P1 has an object side surface S7 parallel to the first direction Z, an image side surface S8 parallel to the second direction Y, and a reflection surface S9 parallel to the Y-Z plane.
  • the second prism P2 has an object side surface S10 parallel to the third direction X, a reflection surface S11 parallel to the Y-X plane, and an image side surface S12 parallel to the second direction Y.
  • the filter E4 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 1 shows the basic parameter table of the optical imaging system of Example 1, wherein the units of curvature radius, thickness/distance, and focal length are all millimeters (mm).
  • the total effective focal length f of the optical imaging system is 24.11 mm, and the maximum field of view FOV of the optical imaging system is 10.5°.
  • the object side and the image side of any one of the first lens E1 to the second lens E2 are aspherical, and the surface type x of each aspherical lens can be defined by, but not limited to, the following aspherical formula :
  • x is the distance vector height of the aspheric surface from the vertex of the aspheric surface when the height is h along the optical axis;
  • k is the conic coefficient;
  • Ai is the correction coefficient of the i-th order of the aspheric surface.
  • Table 2 below shows the higher order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 that can be used for each of the aspheric mirror surfaces S1 to S4 in Example 1.
  • FIG. 2A shows the on-axis chromatic aberration curve of the optical imaging system of Embodiment 1, which represents the deviation of the confocal point of light of different wavelengths after passing through the lens.
  • 2B shows astigmatism curves of the optical imaging system of Example 1, which represent the meridional curvature of the image plane and the sagittal image plane curvature.
  • FIG. 2C shows a distortion curve of the optical imaging system of Example 1, which represents the distortion magnitude values corresponding to different image heights.
  • FIG. 2D shows the magnification chromatic aberration curve of the optical imaging system of Example 1, which represents the deviation of different image heights on the imaging plane after light passes through the lens. It can be seen from FIG. 2A to FIG. 2D that the optical imaging system provided in Embodiment 1 can achieve good imaging quality.
  • FIG. 3A shows a schematic structural diagram of the optical imaging system on the Y-Z plane according to Embodiment 2 of the present application.
  • FIG. 3B shows a schematic structural diagram of the optical imaging system on the Y-X plane according to Embodiment 2 of the present application.
  • the optical imaging system sequentially includes from the object side along the first direction Z: a diaphragm STO, a first lens E1 , a second lens E2 , a third lens E3 and a first prism P1 .
  • the incident light rays sequentially pass through the aperture STO, the first lens E1, the second lens E2 and the third lens E3 from the object side from the first direction Z to the first prism P1.
  • the optical imaging system sequentially includes a first prism P1 and a second prism P2 along the second direction Y.
  • the incident light is reflected by the first prism P1 to form a first light.
  • the first light rays are directed in the second direction Y.
  • the optical imaging system sequentially includes a second prism P2, a filter E4 and an imaging surface S15 along the third direction X.
  • the first light rays are incident on the second prism P2 along the second direction Y.
  • the first light rays are reflected by the second prism P2 to form second light rays.
  • the second ray is directed in the third direction X.
  • the first lens E1 has positive refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens E2 has negative refractive power, the object side S3 is convex, and the image side S4 is concave.
  • the third lens E3 has positive refractive power, the object side S5 is convex, and the image side S6 is convex.
  • the first prism P1 has an object side surface S7 parallel to the first direction Z, an image side surface S8 parallel to the second direction Y, and a reflection surface S9 parallel to the Y-Z plane.
  • the second prism P2 has an object side surface S10 parallel to the third direction X, a reflection surface S11 parallel to the Y-X plane, and an image side surface S12 parallel to the second direction Y.
  • the filter E4 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the total effective focal length f of the optical imaging system is 23.99mm, and the maximum field of view FOV of the optical imaging system is 10.5°.
  • Table 3 shows the basic parameter table of the optical imaging system of Example 2, wherein the units of curvature radius, thickness/distance, and focal length are all millimeters (mm).
  • Table 4 shows the high-order term coefficients that can be used for each aspherical mirror surface in Example 2, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 4A shows the on-axis chromatic aberration curve of the optical imaging system of Embodiment 2, which represents the deviation of the converging point of light of different wavelengths after passing through the lens.
  • FIG. 4B shows astigmatism curves of the optical imaging system of Example 2, which represent the meridional curvature of the image plane and the sagittal image plane curvature.
  • FIG. 4C shows a distortion curve of the optical imaging system of Example 2, which represents the distortion magnitude values corresponding to different image heights.
  • FIG. 4D shows the magnification chromatic aberration curve of the optical imaging system of Example 2, which represents the deviation of different image heights on the imaging plane after light passes through the lens. According to FIG. 4A to FIG. 4D , it can be seen that the optical imaging system provided in Embodiment 2 can achieve good imaging quality.
  • FIG. 5A shows a schematic structural diagram of the optical imaging system on the Y-Z plane according to Embodiment 3 of the present application.
  • FIG. 5B shows a schematic structural diagram of the optical imaging system on the Y-X plane according to Embodiment 3 of the present application.
  • the optical imaging system sequentially includes a stop STO, a first lens E1 , a second lens E2 , a third lens E3 and a first prism P1 along the first direction Z from the object side.
  • the incident light rays sequentially pass through the aperture STO, the first lens E1, the second lens E2 and the third lens E3 from the object side from the first direction Z to the first prism P1.
  • the optical imaging system sequentially includes a first prism P1 and a second prism P2 along the second direction Y.
  • the incident light is reflected by the first prism P1 to form a first light.
  • the first light rays are directed in the second direction Y.
  • the optical imaging system sequentially includes a second prism P2, a filter E4 and an imaging surface S15 along the third direction X.
  • the first light rays are incident on the second prism P2 along the second direction Y.
  • the first light rays are reflected by the second prism P2 to form second light rays.
  • the second ray is directed in the third direction X.
  • the first lens E1 has positive refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens E2 has negative refractive power, the object side S3 is convex, and the image side S4 is concave.
  • the third lens E3 has positive refractive power, the object side S5 is convex, and the image side S6 is convex.
  • the first prism P1 has an object side surface S7 parallel to the first direction Z, an image side surface S8 parallel to the second direction Y, and a reflection surface S9 parallel to the Y-Z plane.
  • the second prism P2 has an object side surface S10 parallel to the third direction X, a reflection surface S11 parallel to the Y-X plane, and an image side surface S12 parallel to the second direction Y.
  • the filter E4 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the total effective focal length f of the optical imaging system is 29.50mm, and the maximum field of view FOV of the optical imaging system is 10.0°.
  • Table 5 shows the basic parameter table of the optical imaging system of Example 3, wherein the units of curvature radius, thickness/distance, and focal length are all millimeters (mm).
  • Table 6 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Example 3, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 6A shows the on-axis chromatic aberration curve of the optical imaging system of Embodiment 3, which represents the deviation of the converging point of light of different wavelengths after passing through the lens.
  • 6B shows astigmatism curves of the optical imaging system of Example 3, which represent the meridional curvature of the image plane and the sagittal image plane curvature.
  • FIG. 6C shows the distortion curve of the optical imaging system of Example 3, which represents the distortion magnitude values corresponding to different image heights.
  • FIG. 6D shows the magnification chromatic aberration curve of the optical imaging system of Example 3, which represents the deviation of different image heights on the imaging plane after light passes through the lens. It can be seen from FIG. 6A to FIG. 6D that the optical imaging system provided in Embodiment 3 can achieve good imaging quality.
  • FIG. 7A shows a schematic structural diagram of the optical imaging system on the Y-Z plane according to Embodiment 4 of the present application.
  • FIG. 7B shows a schematic structural diagram of the optical imaging system on the Y-X plane according to Embodiment 4 of the present application.
  • the optical imaging system sequentially includes from the object side along the first direction Z: a diaphragm STO, a first lens E1 , a second lens E2 , a third lens E3 and a first prism P1 .
  • the incident light rays sequentially pass through the aperture STO, the first lens E1, the second lens E2 and the third lens E3 from the object side from the first direction Z to the first prism P1.
  • the optical imaging system sequentially includes a first prism P1 and a second prism P2 along the second direction Y.
  • the incident light is reflected by the first prism P1 to form a first light.
  • the first light rays are directed in the second direction Y.
  • the optical imaging system sequentially includes a second prism P2, a filter E4 and an imaging surface S15 along the third direction X.
  • the first light rays are incident on the second prism P2 along the second direction Y.
  • the first light rays are reflected by the second prism P2 to form second light rays.
  • the second ray is directed in the third direction X.
  • the first lens E1 has positive refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens E2 has negative refractive power, the object side S3 is convex, and the image side S4 is concave.
  • the third lens E3 has positive refractive power, the object side S5 is convex, and the image side S6 is convex.
  • the first prism P1 has an object side surface S7 parallel to the first direction Z, an image side surface S8 parallel to the second direction Y, and a reflection surface S9 parallel to the Y-Z plane.
  • the second prism P2 has an object side surface S10 parallel to the third direction X, a reflection surface S11 parallel to the Y-X plane, and an image side surface S12 parallel to the second direction Y.
  • the filter E4 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the total effective focal length f of the optical imaging system is 30.46mm, and the maximum field of view FOV of the optical imaging system is 7.7°.
  • Table 7 shows the basic parameter table of the optical imaging system of Example 4, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
  • Table 8 shows the coefficients of higher-order terms that can be used for each aspherical mirror surface in Example 4, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 8A shows the on-axis chromatic aberration curve of the optical imaging system of Example 4, which represents the deviation of the confocal point of light of different wavelengths after passing through the lens.
  • 8B shows astigmatism curves of the optical imaging system of Example 4, which represent the meridional curvature of the image plane and the sagittal image plane curvature.
  • FIG. 8C shows the distortion curve of the optical imaging system of Example 4, which represents the distortion magnitude values corresponding to different image heights.
  • FIG. 8D shows the magnification chromatic aberration curve of the optical imaging system of Example 4, which represents the deviation of different image heights on the imaging plane after light passes through the lens. It can be seen from FIG. 8A to FIG. 8D that the optical imaging system provided in Embodiment 4 can achieve good imaging quality.
  • FIG. 9A shows a schematic structural diagram of the optical imaging system on the Y-Z plane according to Embodiment 5 of the present application.
  • FIG. 9B shows a schematic structural diagram of the optical imaging system on the Y-X plane according to Embodiment 5 of the present application.
  • the optical imaging system sequentially includes a stop STO, a first lens E1 , a second lens E2 , a third lens E3 and a first prism P1 along the first direction Z from the object side.
  • the incident light rays sequentially pass through the aperture STO, the first lens E1, the second lens E2 and the third lens E3 from the object side from the first direction Z to the first prism P1.
  • the optical imaging system sequentially includes a first prism P1 and a second prism P2 along the second direction Y.
  • the incident light is reflected by the first prism P1 to form a first light.
  • the first light rays are directed in the second direction Y.
  • the optical imaging system sequentially includes a second prism P2, a filter E4 and an imaging surface S15 along the third direction X.
  • the first light rays are incident on the second prism P2 along the second direction Y.
  • the first light rays are reflected by the second prism P2 to form second light rays.
  • the second ray is directed in the third direction X.
  • the first lens E1 has positive refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens E2 has negative refractive power, the object side S3 is convex, and the image side S4 is concave.
  • the third lens E3 has positive refractive power, the object side S5 is convex, and the image side S6 is convex.
  • the first prism P1 has an object side surface S7 parallel to the first direction Z, an image side surface S8 parallel to the second direction Y, and a reflection surface S9 parallel to the Y-Z plane.
  • the second prism P2 has an object side surface S10 parallel to the third direction X, a reflection surface S11 parallel to the Y-X plane, and an image side surface S12 parallel to the second direction Y.
  • the filter E4 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the total effective focal length f of the optical imaging system is 24.48 mm, and the maximum field of view FOV of the optical imaging system is 10.0°.
  • Table 9 shows the basic parameter table of the optical imaging system of Example 5, wherein the units of curvature radius, thickness/distance, and focal length are all millimeters (mm).
  • Table 10 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Example 5, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 10A shows the on-axis chromatic aberration curve of the optical imaging system of Embodiment 5, which represents the deviation of the confocal point of light of different wavelengths after passing through the lens.
  • 10B shows astigmatism curves of the optical imaging system of Example 5, which represent the meridional curvature of the image plane and the sagittal image plane curvature.
  • FIG. 10C shows a distortion curve of the optical imaging system of Example 5, which represents the distortion magnitude values corresponding to different image heights.
  • FIG. 10D shows the magnification chromatic aberration curve of the optical imaging system of Example 5, which represents the deviation of different image heights on the imaging plane after light passes through the lens. It can be seen from FIGS. 10A to 10D that the optical imaging system provided in Embodiment 5 can achieve good imaging quality.
  • the present application also provides an imaging device whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the imaging device may be an independent imaging device such as a digital camera, or an imaging module integrated on a mobile electronic device such as a mobile phone.
  • the imaging device is equipped with the optical imaging system described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本申请公开了一种光学成像系统,光学成像系统包括:沿第一方向由物侧依序设置的第一透镜、第二透镜、第三透镜以及第一棱镜,其中,第一棱镜将沿第一方向入射至第一棱镜的光线的反射为沿第二方向从第一棱镜出射;以及沿第二方向设置的第二棱镜,将从第一棱镜出射并沿第二方向入射至第二棱镜的光线反射为沿第三方向从第二棱镜出射,其中,第一方向、第二方向和第三方向两两垂直;光学成像系统的总有效焦距f满足:f>20mm。

Description

光学成像系统
相关申请的交叉引用
本申请要求于2020年10月12日提交于中国国家知识产权局(CNIPA)的、专利申请号为202011084129.7的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本申请涉及光学元件领域,具体地,涉及一种光学成像系统。
背景技术
随着智能手机等小型化电子产品终端对智能手机等小型化电子产品成像功能要求的提高,市场上对电耦合器件或互补式金属氧化物半导体图像传感器的硬件条件及成像镜头的光学性能也提出了更高的要求。目前,智能手机等小型化电子产品终端趋于追求较高的光学变焦倍数。光学变焦倍数值增大后光学成像系统的放大倍率将会增大,在拍摄远处的景物时能更清晰可见。
但是,当系统焦距在增大的同时光学总长也会随之增加,对智能手机等小型化电子产品的小型化将会带来不利的影响。
发明内容
本申请一方面提供了这样一种光学成像系统。该光学成像系统包括:沿第一方向由物侧依序设置的第一透镜、第二透镜、第三透镜以及第一棱镜,其中,第一棱镜将沿第一方向入射至第一棱镜的光线反射为沿第二方向从第一棱镜出射;以及沿第二方向设置的第二棱镜,将从第一棱镜出射并沿第二方向入射至第二棱镜的光线反射为沿第三方向从第二棱镜出射,其中,第一方向、第二方向和第三方向两两垂直。光学成像系统的总有效焦距f可满足:f>20mm。
在一个实施方式中,光学成像系统的总有效焦距f与光学成像系统在第三方向上的水平距离Tx可满足:2.0<f/Tx<4.0。
在一个实施方式中,光学成像系统的总有效焦距f与光学成像系统在第一方向上的水平距离Tz可满足:2.0<f/Tz<3.0。
在一个实施方式中,光学成像系统的总有效焦距f与光学成像系统的成像面上有效像素区域的对角线长的一半ImgH可满足:f/ImgH≥10。
在一个实施方式中,光学成像系统的总有效焦距f与光学成像系统的入瞳直径EPD可满足:3.0<f/EPD≤4.0。
在一个实施方式中,第一透镜、第二透镜和第三透镜中至少一个可为塑料材质的透镜,且该塑料材质的透镜至少有一个镜面可为非球面镜面。
在一个实施方式中,第一透镜的折射率N1与第三透镜的折射率N3可满足:0<N3-N1<0.3。
在一个实施方式中,第一透镜的色散系数V1与第三透镜的色散系数V3可满足:0<V1-V3<5.0。
在一个实施方式中,第一透镜具有正光焦度;第二透镜具有负光焦度;以及第三透镜具有正光焦度。
在一个实施方式中,光学成像系统的总有效焦距f与第一透镜的有效焦距f1可满足:0.8≤f/f1<1.2。
在一个实施方式中,光学成像系统的总有效焦距f与第二透镜的有效焦距f2可满足:-2.0≤f/f2≤-1.0。
在一个实施方式中,光学成像系统的总有效焦距f与第三透镜的有效焦距f3可满足:1.0<f/f3<2.0。
在一个实施方式中,光学成像系统的总有效焦距f与第一透镜的物侧面的曲率半径R1可满足:3.0<f/R1<5.0。
在一个实施方式中,第一透镜的中心厚度CT1、第二透镜的中心厚度CT2和第三透镜的中心厚度CT3可满足:1.0mm<(CT1+CT2+CT3)/3<1.5mm。
通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各光轴上的水平距离等,使得上述光学成像系统具有小型化、长焦距、良好的成像品质等至少一个有益效果。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1A示出了根据本申请实施例1的光学成像系统在Y-Z平面上的结构示意图;
图1B示出了根据本申请实施例1的光学成像系统在Y-X平面上的结构示意图;
图2A至图2D分别示出了实施例1的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3A示出了根据本申请实施例2的光学成像系统在Y-Z平面上的结构示意图;
图3B示出了根据本申请实施例2的光学成像系统在Y-X平面上的结构示意图;
图4A至图4D分别示出了实施例2的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5A示出了根据本申请实施例3的光学成像系统在Y-Z平面上的结构示意图;
图5B示出了根据本申请实施例3的光学成像系统在Y-X平面上的结构示意图;
图6A至图6D分别示出了实施例3的光学成像系统的轴上色差曲线、象散曲线、畸 变曲线以及倍率色差曲线;
图7A示出了根据本申请实施例4的光学成像系统在Y-Z平面上的结构示意图;
图7B示出了根据本申请实施例4的光学成像系统在Y-X平面上的结构示意图;
图8A至图8D分别示出了实施例4的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9A示出了根据本申请实施例5的光学成像系统在Y-Z平面上的结构示意图;
图9B示出了根据本申请实施例5的光学成像系统在Y-X平面上的结构示意图;以及
图10A至图10D分别示出了实施例5的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物体的表面称为该透镜的物侧面,每个透镜最靠近成像面的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义, 并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像系统可包括第一透镜、第二透镜、第三透镜、第一棱镜以及第二棱镜。
根据本申请示例性实施方式的光学成像系统沿着第一方向由物侧可依序包括:第一透镜、第二透镜、第三透镜以及第一棱镜。这三片透镜和第一棱镜沿着第一方向从物侧依序排列。第一透镜至第一棱镜中的任意相邻两镜片之间均可具有间隔距离。第一棱镜设置于第三透镜的像侧面的一侧,可以将沿第一方向入射至第一棱镜的光线反射为从第一棱镜沿第二方向出射的光线。即入射光线从第一方向由物侧依序经过第一透镜、第二透镜和第三透镜至第一棱镜,入射光线经第一棱镜的反射面被反射为从第一棱镜沿第二方向出射的第一光线。第二棱镜可设置在第二方向上。第一光线可沿着第二方向入射至第二棱镜。第一光线经第二棱镜的反射面被反射为从第二棱镜沿第三方向出射的第二光线。
根据本申请示例性实施方式,第一方向、第二方向和第三方向两两垂直。利用第一棱镜将光路从第一方向转向第二方向,可以缩短光学成像系统在第一方向上的总长度。利用第二棱镜将转向后的光路二次转向第三方向,可以缩短光学成像系统在第二方向上的总长度,以满足体积小型化。
在示例性实施方式中,根据本申请的光学成像系统可满足:f>20mm,其中,f是光学成像系统的总有效焦距。更具体地,f进一步可满足:f>23mm。满足f>20mm,可以满足系统光学变焦倍数要求。
在示例性实施方式中,根据本申请的光学成像系统可满足:2.0<f/Tx<4.0,其中,f是光学成像系统的总有效焦距,Tx是光学成像系统在第三方向上的水平距离。如图1B所示的,Tx为光学成像系统整体在第三方向上的投影距离。更具体地,f和Tx进一步可满足:2.0<f/Tx<3.7。满足2.0<f/Tx<4.0,可以满足镜头模组体积限制的要求。
在示例性实施方式中,根据本申请的光学成像系统可满足:2.0<f/Tz<3.0,其中,f是光学成像系统的总有效焦距,Tz是光学成像系统在第一方向上的水平距离。如图1A所示的,Tz为光学成像系统整体在第一方向上的投影距离。更具体地,f和Tz进一步可满足:2.1<f/Tz<2.6。满足2.0<f/Tz<3.0,可以满足镜头模组体积限制的要求。
在示例性实施方式中,根据本申请的光学成像系统可满足:f/ImgH≥10,其中,f是光学成像系统的总有效焦距,ImgH是光学成像系统的成像面上有效像素区域的对角线长的一半。满足f/ImgH≥10,可以满足等效焦距的要求,从而有利于实现所需光学变焦倍数。
在示例性实施方式中,根据本申请的光学成像系统可满足:3.0<f/EPD≤4.0,其中, f是光学成像系统的总有效焦距,EPD是光学成像系统的入瞳直径。更具体地,f和EPD进一步可满足:3.4<f/EPD≤4.0。满足3.0<f/EPD≤4.0,可以使足够的有效通光量通过系统,提高信噪比。
在示例性实施方式中,第一透镜、第二透镜和第三透镜中至少一个可为塑料材质的透镜,且该塑料材质的透镜至少有一个镜面可为非球面镜面。采用塑料材质的透镜且该透镜具有非球面镜面,可以在提升设计自由度的同时进一步减小系统轴上球差和轴外的子午彗差。
在示例性实施方式中,根据本申请的光学成像系统可满足:0<N3-N1<0.3,其中,N1是第一透镜的折射率,N3是第三透镜的折射率。更具体地,N3和N1进一步可满足:0.1<N3-N1<0.3。满足0<N3-N1<0.3,有利于矫正系统的倍率色差。
在示例性实施方式中,根据本申请的光学成像系统可满足:0<V1-V3<5.0,其中,V1是第一透镜的色散系数,V3是第三透镜的色散系数。更具体地,V1和V3进一步可满足:3.3<V1-V3<3.6。满足0<V1-V3<5.0,有利于减小系统的轴向色差。
在示例性实施方式中,第一透镜可具有正光焦度;第二透镜可具有负光焦度;以及第三透镜可具有正光焦度。合理分配这三个透镜的光焦度分布,可以在达到有效焦距要求的同时保证倍率色差在传感器的两个像元大小内。
在示例性实施方式中,根据本申请的光学成像系统可满足:0.8≤f/f1<1.2,其中,f是光学成像系统的总有效焦距,f1是第一透镜的有效焦距。满足0.8≤f/f1<1.2,可以矫正系统的轴上球差。
在示例性实施方式中,根据本申请的光学成像系统可满足:-2.0≤f/f2≤-1.0,其中,f是光学成像系统的总有效焦距,f2是第二透镜的有效焦距。更具体地,f和f2进一步可满足:-1.6≤f/f2≤-1.3。满足-2.0≤f/f2≤-1.0,可以使第二透镜在承担负光焦度的同时能够矫正系统的子午彗差量。
在示例性实施方式中,根据本申请的光学成像系统可满足:1.0<f/f3<2.0,其中,f是光学成像系统的总有效焦距,f3是第三透镜的有效焦距。更具体地,f和f3进一步可满足:1.3<f/f3<1.8。满足1.0<f/f3<2.0,可以矫正轴外匹兹伐场曲和子午像散量。
在示例性实施方式中,根据本申请的光学成像系统可满足:3.0<f/R1<5.0,其中,f是光学成像系统的总有效焦距,R1是第一透镜的物侧面的曲率半径。更具体地,f和R1进一步可满足:3.3<f/R1<4.5。满足3.0<f/R1<5.0,对于大口径镜片可以保证该镜片物侧面的成型面型工艺性,同时也有助于减小系统的弧失像散量。
在示例性实施方式中,根据本申请的光学成像系统可满足:1.0mm<(CT1+CT2+CT3)/3<1.5mm,其中,CT1是第一透镜的中心厚度,CT2是第二透镜的中心厚度,CT3是第三透镜的中心厚度。更具体地,CT1、CT2和CT3进一步可满足:1.1mm<(CT1+CT2+CT3)/3<1.4mm。满足1.0mm<(CT1+CT2+CT3)/3<1.5mm,可以将这三个透镜的中心厚度约束在合理范围内,有利于减小镜片成型后的面型误差量,提升 镜片工艺性。
在示例性实施方式中,根据本申请的光学成像系统还包括设置在物侧与第一透镜之间的光阑。可选地,上述光学成像系统还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的光学成像系统可采用多片镜片,例如上文所述的三片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地汇聚入射光线、降低光学成像系统的总长并提高光学成像系统的可加工性,使得各透镜的结构更紧凑,光学成像系统更有利于生产加工,具有更高的实用性。通过以上配置,根据本申请示例性实施方式的光学成像系统可具有例如长焦距、良好的成像质量等特性。
在本申请的实施方式中,第一透镜的物侧面至第三透镜的像侧面中的至少一个镜面为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。可选地,第一透镜和第二透镜中的每个透镜的物侧面和像侧面均为非球面镜面。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像系统的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以三个透镜为例进行了描述,但是该光学成像系统不限于包括三个透镜。如果需要,该光学成像系统还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像系统的具体实施例。
实施例1
以下参照图1A至图2D描述根据本申请实施例1的光学成像系统。图1A示出了根据本申请实施例1的光学成像系统在Y-Z平面上的结构示意图。图1B示出了根据本申请实施例1的光学成像系统在Y-X平面上的结构示意图。
如图1A和图1B所示,光学成像系统沿着第一方向Z由物侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3和第一棱镜P1。入射光线从第一方向Z由物侧依序经过光阑STO、第一透镜E1、第二透镜E2和第三透镜E3至第一棱镜P1。光学成像系统沿着第二方向Y依序包括第一棱镜P1和第二棱镜P2。入射光线经第一棱镜P1反射形成第一光线。第一光线被定向至第二方向Y上。光学成像系统沿着第三方向X依序包括第二棱镜P2、滤光片E4和成像面S15。第一光线沿着第二方向Y入射至第二棱镜P2。第一光线经第二棱镜P2反射形成第二光线。第二光线被定向至第三方向X上。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第一棱镜P1具有平行于第一方向Z的物侧面S7, 平行于第二方向Y的像侧面S8,以及平行于Y-Z平面的反射面S9。第二棱镜P2具有平行于第三方向X的物侧面S10,平行于Y-X平面的反射面S11,以及平行于第二方向Y的像侧面S12。滤光片E4具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表1示出了实施例1的光学成像系统的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
Figure PCTCN2021117948-appb-000001
表1
在本示例中,光学成像系统的总有效焦距f为24.11mm,光学成像系统的最大视场角FOV为10.5°。
在实施例1中,第一透镜E1至第二透镜E2中的任意一个透镜的物侧面和像侧面均为非球面,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2021117948-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S4的高次项系数A 4、A 6、A 8、A 10、A 12、A 14和A 16
面号 A4 A6 A8 A10 A12 A14 A16
S1 6.5297E-02 -8.0546E-03 -5.1662E-04 -9.8374E-05 2.3295E-05 -1.6732E-05 -9.1015E-06
S2 1.6210E-01 -4.4820E-02 -1.2864E-03 -1.6890E-03 -1.1554E-03 -1.1222E-03 -2.5654E-04
S3 -2.7407E-01 3.0958E-02 1.0465E-03 -5.3436E-03 -5.1781E-03 -2.8149E-03 -5.7826E-04
S4 -4.6483E-01 3.1326E-02 -4.2333E-04 1.2031E-03 8.3996E-05 -3.5857E-05 -5.7552E-05
表2
图2A示出了实施例1的光学成像系统的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像系统的畸变曲线,其表示不同像高对应的畸变大小值。图2D示出了实施例1的光学成像系统的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像系统能够实现良好的成像品质。
实施例2
以下参照图3A至图4D描述根据本申请实施例2的光学成像系统。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3A示出了根据本申请实施例2的光学成像系统在Y-Z平面上的结构示意图。图3B示出了根据本申请实施例2的光学成像系统在Y-X平面上的结构示意图。
如图3A和图3B所示,光学成像系统沿着第一方向Z由物侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3和第一棱镜P1。入射光线从第一方向Z由物侧依序经过光阑STO、第一透镜E1、第二透镜E2和第三透镜E3至第一棱镜P1。光学成像系统沿着第二方向Y依序包括第一棱镜P1和第二棱镜P2。入射光线经第一棱镜P1反射形成第一光线。第一光线被定向至第二方向Y上。光学成像系统沿着第三方向X依序包括第二棱镜P2、滤光片E4和成像面S15。第一光线沿着第二方向Y入射至第二棱镜P2。第一光线经第二棱镜P2反射形成第二光线。第二光线被定向至第三方向X上。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第一棱镜P1具有平行于第一方向Z的物侧面S7,平行于第二方向Y的像侧面S8,以及平行于Y-Z平面的反射面S9。第二棱镜P2具有平行于第三方向X的物侧面S10,平行于Y-X平面的反射面S11,以及平行于第二方向Y的像侧面S12。滤光片E4具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
在本示例中,光学成像系统的总有效焦距f为23.99mm,光学成像系统的最大视场角FOV为10.5°。
表3示出了实施例2的光学成像系统的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表4示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021117948-appb-000003
Figure PCTCN2021117948-appb-000004
表3
面号 A4 A6 A8 A10 A12 A14 A16
S1 6.6043E-02 -7.8491E-03 -5.3950E-04 -1.0126E-04 1.6495E-05 -1.7002E-05 -5.1282E-06
S2 1.6162E-01 -4.4118E-02 -1.4435E-03 -1.3062E-03 -1.1831E-03 -9.8481E-04 -2.3654E-04
S3 -2.7266E-01 3.1717E-02 4.9444E-04 -5.3585E-03 -5.3033E-03 -2.6805E-03 -5.8399E-04
S4 -4.6160E-01 3.0748E-02 -8.0557E-04 8.7550E-04 -8.0402E-05 -9.1352E-05 -6.5150E-05
表4
图4A示出了实施例2的光学成像系统的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像系统的畸变曲线,其表示不同像高对应的畸变大小值。图4D示出了实施例2的光学成像系统的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像系统能够实现良好的成像品质。
实施例3
以下参照图5A至图6D描述了根据本申请实施例3的光学成像系统。图5A示出了根据本申请实施例3的光学成像系统在Y-Z平面上的结构示意图。图5B示出了根据本申请实施例3的光学成像系统在Y-X平面上的结构示意图。
如图5A和图5B所示,光学成像系统沿着第一方向Z由物侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3和第一棱镜P1。入射光线从第一方向Z由物侧依序经过光阑STO、第一透镜E1、第二透镜E2和第三透镜E3至第一棱镜P1。光学成像系统沿着第二方向Y依序包括第一棱镜P1和第二棱镜P2。入射光线经第一棱镜P1反射形成第一光线。第一光线被定向至第二方向Y上。光学成像系统沿着 第三方向X依序包括第二棱镜P2、滤光片E4和成像面S15。第一光线沿着第二方向Y入射至第二棱镜P2。第一光线经第二棱镜P2反射形成第二光线。第二光线被定向至第三方向X上。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第一棱镜P1具有平行于第一方向Z的物侧面S7,平行于第二方向Y的像侧面S8,以及平行于Y-Z平面的反射面S9。第二棱镜P2具有平行于第三方向X的物侧面S10,平行于Y-X平面的反射面S11,以及平行于第二方向Y的像侧面S12。滤光片E4具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
在本示例中,光学成像系统的总有效焦距f为29.50mm,光学成像系统的最大视场角FOV为10.0°。
表5示出了实施例3的光学成像系统的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表6示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021117948-appb-000005
表5
面号 A4 A6 A8 A10 A12 A14 A16
S1 8.0833E-02 -9.3551E-03 -7.3716E-04 -1.9345E-04 3.6297E-06 1.1534E-05 -1.1427E-05
S2 1.9579E-01 -5.3230E-02 -1.8760E-03 -1.5786E-03 -1.3265E-03 -1.3057E-03 -4.7124E-04
S3 -3.3501E-01 4.3039E-02 5.6491E-04 -6.2847E-03 -6.1387E-03 -3.2378E-03 -7.8874E-04
S4 -5.4251E-01 4.0017E-02 -2.0157E-03 6.6949E-04 -8.3860E-05 5.1700E-05 1.0025E-05
表6
图6A示出了实施例3的光学成像系统的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像系统的畸变曲线,其表示不同像高对应的畸变大小值。图6D示出了实施例3的光学成像系统的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像系统能够实现良好的成像品质。
实施例4
以下参照图7A至图8D描述了根据本申请实施例4的光学成像系统。图7A示出了根据本申请实施例4的光学成像系统在Y-Z平面上的结构示意图。图7B示出了根据本申请实施例4的光学成像系统在Y-X平面上的结构示意图。
如图7A和图7B所示,光学成像系统沿着第一方向Z由物侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3和第一棱镜P1。入射光线从第一方向Z由物侧依序经过光阑STO、第一透镜E1、第二透镜E2和第三透镜E3至第一棱镜P1。光学成像系统沿着第二方向Y依序包括第一棱镜P1和第二棱镜P2。入射光线经第一棱镜P1反射形成第一光线。第一光线被定向至第二方向Y上。光学成像系统沿着第三方向X依序包括第二棱镜P2、滤光片E4和成像面S15。第一光线沿着第二方向Y入射至第二棱镜P2。第一光线经第二棱镜P2反射形成第二光线。第二光线被定向至第三方向X上。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第一棱镜P1具有平行于第一方向Z的物侧面S7,平行于第二方向Y的像侧面S8,以及平行于Y-Z平面的反射面S9。第二棱镜P2具有平行于第三方向X的物侧面S10,平行于Y-X平面的反射面S11,以及平行于第二方向Y的像侧面S12。滤光片E4具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
在本示例中,光学成像系统的总有效焦距f为30.46mm,光学成像系统的最大视场角FOV为7.7°。
表7示出了实施例4的光学成像系统的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表8示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021117948-appb-000006
Figure PCTCN2021117948-appb-000007
表7
面号 A4 A6 A8 A10 A12 A14 A16
S1 6.2905E-02 -9.0382E-03 -2.9032E-03 7.5816E-04 -3.4000E-04 1.5536E-04 -3.4162E-05
S2 1.5807E-01 -5.5029E-02 -2.0859E-03 1.5950E-04 -1.0671E-03 3.6984E-04 -3.8290E-04
S3 -2.8596E-01 2.3487E-02 1.7364E-03 -2.9479E-03 -1.2391E-03 -6.6240E-04 -4.7552E-04
S4 -4.5618E-01 3.3071E-02 -1.2431E-03 -6.3517E-04 2.6987E-04 -1.7892E-04 3.2553E-05
表8
图8A示出了实施例4的光学成像系统的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像系统的畸变曲线,其表示不同像高对应的畸变大小值。图8D示出了实施例4的光学成像系统的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像系统能够实现良好的成像品质。
实施例5
以下参照图9A至图10D描述了根据本申请实施例5的光学成像系统。图9A示出了根据本申请实施例5的光学成像系统在Y-Z平面上的结构示意图。图9B示出了根据本申请实施例5的光学成像系统在Y-X平面上的结构示意图。
如图9A和图9B所示,光学成像系统沿着第一方向Z由物侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3和第一棱镜P1。入射光线从第一方向Z由物侧依序经过光阑STO、第一透镜E1、第二透镜E2和第三透镜E3至第一棱镜P1。光学成像系统沿着第二方向Y依序包括第一棱镜P1和第二棱镜P2。入射光线经第一棱镜P1反射形成第一光线。第一光线被定向至第二方向Y上。光学成像系统沿着第三方向X依序包括第二棱镜P2、滤光片E4和成像面S15。第一光线沿着第二方向Y入射至第二棱镜P2。第一光线经第二棱镜P2反射形成第二光线。第二光线被定向至第三方向X上。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第一棱镜P1具有平行于第一方向Z的物侧面S7,平行于第二方向Y的像侧面S8,以及平行于Y-Z平面的反射面S9。第二棱镜P2具有平行于第三方向X的物侧面S10,平行于Y-X平面的反射面S11,以及平行于第二方向Y的像侧面S12。滤光片E4具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
在本示例中,光学成像系统的总有效焦距f为24.48mm,光学成像系统的最大视场角FOV为10.0°。
表9示出了实施例5的光学成像系统的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表10示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021117948-appb-000008
表9
面号 A4 A6 A8 A10 A12 A14 A16
S1 4.8041E-02 -8.6367E-03 -3.4425E-04 -1.1684E-04 -4.7874E-05 -8.8333E-06 -2.2084E-05
S2 1.6274E-01 -3.5786E-02 -3.3781E-03 -2.5559E-03 -1.2350E-03 -2.6050E-04 8.0233E-06
S3 -2.5660E-01 9.0797E-03 -2.7057E-03 -1.1967E-03 -5.7609E-04 1.8752E-04 2.0950E-04
S4 -4.6761E-01 1.7295E-02 -1.9065E-03 7.1592E-04 2.4345E-04 2.1210E-04 1.0774E-04
表10
图10A示出了实施例5的光学成像系统的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的光学成像系统的象散曲线, 其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像系统的畸变曲线,其表示不同像高对应的畸变大小值。图10D示出了实施例5的光学成像系统的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像系统能够实现良好的成像品质。
综上,实施例1至实施例5分别满足表11中所示的关系。
条件式/实施例 1 2 3 4 5
f/Tx 2.74 2.77 2.56 2.10 3.65
f/Tz 2.31 2.30 2.41 2.54 2.15
f/ImgH 10.91 10.91 11.43 14.93 11.39
f/EPD 3.80 3.82 3.97 3.81 3.43
N3-N1 0.20 0.20 0.20 0.20 0.20
V1-V3 3.46 3.46 3.46 3.46 3.46
f/f1 0.86 0.86 0.90 1.09 0.84
f/f2 -1.39 -1.38 -1.34 -1.50 -1.47
f/f3 1.57 1.56 1.47 1.38 1.66
f/R1 3.60 3.58 3.72 4.44 3.33
(CT1+CT2+CT3)/3(mm) 1.19 1.20 1.35 1.12 1.28
表11
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像系统。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (14)

  1. 光学成像系统,其特征在于,所述光学成像系统包括:
    沿第一方向由物侧依序设置的第一透镜、第二透镜、第三透镜以及第一棱镜,其中,所述第一棱镜将沿所述第一方向入射至所述第一棱镜的光线反射为沿第二方向从所述第一棱镜出射;以及
    沿所述第二方向设置的第二棱镜,将从所述第一棱镜出射并沿所述第二方向入射至所述第二棱镜的光线反射为沿第三方向从所述第二棱镜出射,其中,所述第一方向、所述第二方向和所述第三方向两两垂直;
    所述光学成像系统的总有效焦距f满足:f>20mm。
  2. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f与所述光学成像系统在所述第三方向上的水平距离Tx满足:2.0<f/Tx<4.0。
  3. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f与所述光学成像系统在所述第一方向上的水平距离Tz满足:2.0<f/Tz<3.0。
  4. 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜的折射率N1与所述第三透镜的折射率N3满足:0<N3-N1<0.3。
  5. 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜的色散系数V1与所述第三透镜的色散系数V3满足:0<V1-V3<5.0。
  6. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f与所述第一透镜的有效焦距f1满足:0.8≤f/f1<1.2。
  7. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f与所述第二透镜的有效焦距f2满足:-2.0≤f/f2≤-1.0。
  8. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f与所述第三透镜的有效焦距f3满足:1.0<f/f3<2.0。
  9. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f与所述第一透镜的物侧面的曲率半径R1满足:3.0<f/R1<5.0。
  10. 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜的中心厚度CT1、所述第二透镜的中心厚度CT2以及所述第三透镜的中心厚度CT3满足:1.0mm<(CT1+CT2+CT3)/3<1.5mm。
  11. 根据权利要求1-10中任一项所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f与所述光学成像系统的成像面上有效像素区域的对角线长的一半ImgH满足:f/ImgH≥10。
  12. 根据权利要求1-10中任一项所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f与所述光学成像系统的入瞳直径EPD满足:3.0<f/EPD≤4.0。
  13. 根据权利要求1-10中任一项所述的光学成像系统,其特征在于,所述第一透镜、所述第二透镜和所述第三透镜中至少一个为塑料材质的透镜,且所述塑料材质的透镜至少有一个镜面为非球面镜面。
  14. 根据权利要求1-10中任一项所述的光学成像系统,其特征在于,所述第一透镜具有正光焦度;所述第二透镜具有负光焦度;以及所述第三透镜具有正光焦度。
PCT/CN2021/117948 2020-10-12 2021-09-13 光学成像系统 WO2022078139A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011084129.7A CN112034598A (zh) 2020-10-12 2020-10-12 光学成像系统
CN202011084129.7 2020-10-12

Publications (1)

Publication Number Publication Date
WO2022078139A1 true WO2022078139A1 (zh) 2022-04-21

Family

ID=73572599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117948 WO2022078139A1 (zh) 2020-10-12 2021-09-13 光学成像系统

Country Status (2)

Country Link
CN (1) CN112034598A (zh)
WO (1) WO2022078139A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112034598A (zh) * 2020-10-12 2020-12-04 浙江舜宇光学有限公司 光学成像系统
CN113093366B (zh) * 2021-03-29 2022-11-29 南昌欧菲光电技术有限公司 光学系统、摄像模组和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110109235A (zh) * 2019-06-03 2019-08-09 浙江舜宇光学有限公司 光学成像镜头
CN111308672A (zh) * 2020-04-10 2020-06-19 浙江舜宇光学有限公司 光学成像系统
CN111308688A (zh) * 2020-03-16 2020-06-19 南昌欧菲精密光学制品有限公司 透镜系统、成像模组及电子装置
CN111399186A (zh) * 2020-04-29 2020-07-10 南昌欧菲精密光学制品有限公司 光学系统、摄像模组及电子设备
CN112034598A (zh) * 2020-10-12 2020-12-04 浙江舜宇光学有限公司 光学成像系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110109235A (zh) * 2019-06-03 2019-08-09 浙江舜宇光学有限公司 光学成像镜头
CN111308688A (zh) * 2020-03-16 2020-06-19 南昌欧菲精密光学制品有限公司 透镜系统、成像模组及电子装置
CN111308672A (zh) * 2020-04-10 2020-06-19 浙江舜宇光学有限公司 光学成像系统
CN111399186A (zh) * 2020-04-29 2020-07-10 南昌欧菲精密光学制品有限公司 光学系统、摄像模组及电子设备
CN112034598A (zh) * 2020-10-12 2020-12-04 浙江舜宇光学有限公司 光学成像系统

Also Published As

Publication number Publication date
CN112034598A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
WO2021073275A1 (zh) 光学成像镜头
WO2021082727A1 (zh) 光学成像镜头
CN110554484B (zh) 光学成像系统
WO2020001066A1 (zh) 摄像镜头
WO2020029620A1 (zh) 光学成像镜片组
CN110221402B (zh) 光学成像镜头
WO2020073703A1 (zh) 光学透镜组
WO2019223263A1 (zh) 摄像镜头
WO2020191951A1 (zh) 光学成像镜头
WO2020107936A1 (zh) 光学成像系统
WO2020007081A1 (zh) 光学成像镜头
WO2018192126A1 (zh) 摄像镜头
WO2020024635A1 (zh) 光学成像镜头
WO2020088024A1 (zh) 光学成像镜头
WO2020007068A1 (zh) 光学成像系统
CN110376720B (zh) 光学成像系统
WO2021008232A1 (zh) 光学成像镜头
WO2020019796A1 (zh) 光学成像系统
CN110596865B (zh) 摄像镜头组
WO2020042799A1 (zh) 光学成像镜片组
WO2019237776A1 (zh) 光学成像系统
WO2020098328A1 (zh) 摄像镜头
WO2020164247A1 (zh) 光学成像系统
WO2019233142A1 (zh) 光学成像镜头
WO2019233159A1 (zh) 光学成像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21879185

Country of ref document: EP

Kind code of ref document: A1