WO2022077944A1 - 热管理系统和车辆 - Google Patents

热管理系统和车辆 Download PDF

Info

Publication number
WO2022077944A1
WO2022077944A1 PCT/CN2021/100670 CN2021100670W WO2022077944A1 WO 2022077944 A1 WO2022077944 A1 WO 2022077944A1 CN 2021100670 W CN2021100670 W CN 2021100670W WO 2022077944 A1 WO2022077944 A1 WO 2022077944A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
circuit
exchange device
heat
valve port
Prior art date
Application number
PCT/CN2021/100670
Other languages
English (en)
French (fr)
Inventor
张东斌
聂欢欢
杨廷宇
裴建权
Original Assignee
广州小鹏汽车科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州小鹏汽车科技有限公司 filed Critical 广州小鹏汽车科技有限公司
Publication of WO2022077944A1 publication Critical patent/WO2022077944A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • H01M10/6564Gases with forced flow, e.g. by blowers using compressed gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the technical field of vehicles, and more particularly, to a thermal management system and a vehicle.
  • Embodiments of the present application provide a thermal management system and a vehicle.
  • a second pump and a first heat exchange device are both arranged on the second loop, the first heat exchange device is connected to the first loop, and the second pump can exchange heat to the first through the second loop
  • the device transports the liquid
  • the compressor and the second heat exchange device are both arranged on the refrigerant circuit, the second heat exchange device is connected to the second circuit, and the second pump can send the second heat exchange device to the second heat exchange device through the second circuit. transport liquid;
  • the second pump delivers liquid to the second heat exchange device through the second circuit to be stored in the second heat exchange device Perform heat exchange with the refrigerant in the refrigerant circuit, thereby heating the liquid in the second circuit, so that the heated liquid in the second circuit flows through the first heat exchange device with the first heat exchange device.
  • the liquid in the circuit exchanges heat to heat the liquid in the first circuit, thereby heating the battery.
  • the first heat exchange device on the second circuit is connected to the first circuit
  • the second circuit is connected to the second heat exchange device on the refrigerant circuit
  • the gaseous refrigerant delivered from the compressor can be stored in the second circuit. Cooling and exothermic heat is performed in the heat exchange device to heat the liquid in the second circuit, and the heated liquid is exothermic in the first heat exchange device to heat the liquid in the first circuit, so that the battery in the first circuit can be heated. to heat.
  • the heat released when the gaseous refrigerant in the refrigerant circuit is cooled can be used to heat the battery, thereby preventing the battery from reducing the discharge capacity under low temperature conditions and improving the cruising range.
  • the thermal management system further comprises a heater core body and a first regulating device arranged on the second circuit, the outlet of the second pump is connected to the second heat exchange device, so The second heat exchange device is connected to the first adjustment device, one end of the first heat exchange device is connected to the first adjustment device, and the other end is connected between the heater core and the inlet of the second pump.
  • the first adjusting device is used to adjust the flow rate of the liquid flowing through the warm air core and the first heat exchanging device after passing through the second heat exchanging device, wherein the second loop flow The liquid passing through the heater core is used to heat the air in the vehicle.
  • the thermal management system further includes a four-way valve, a third heat exchange device, and a fourth heat exchange device disposed on the refrigerant circuit, the four-way valve including a first valve port, a third heat exchange device, and a fourth heat exchange device.
  • the outlet of the second heat exchange device is connected to the first valve port, the two ends of the third heat exchange device are respectively connected to the second valve port and the fourth valve port, and the fourth heat exchange device
  • the inlet of the compressor is also connected to the second valve port, the outlet of the fourth heat exchange device is connected to the inlet of the compressor, and the inlet of the compressor is connected to the third valve port;
  • the third valve port and the fourth valve port are in communication, and both the second pump and the compressor are started, the The gaseous refrigerant flowing out of the compressor exchanges heat with the liquid in the second circuit in the second heat exchange device to heat the liquid in the second circuit, and after cooling in the second heat exchange device
  • the obtained liquid refrigerant can flow through the third heat exchange device and/or the fourth heat exchange device, so as to evaporate and absorb heat in the third heat exchange device and flow back to the compressor and/or in the third heat exchange device.
  • the fourth heat exchange device absorbs heat by evaporation to cool the air in the vehicle and then flows back to the compressor.
  • the thermal management system further includes a second adjustment device connected between the second valve port and the fourth heat exchange device, the second adjustment device It is used to adjust the flow rate of the refrigerant entering the fourth heat exchange device.
  • the thermal management system further includes a third adjustment device connected between the second valve port and the third heat exchange device, the third adjustment device It is used to adjust the flow rate of the refrigerant entering the third heat exchange device.
  • the gaseous refrigerant flowing out of the compressor first cools and releases heat in the third heat exchange device, and then evaporates and absorbs heat in the fourth heat exchange device to cool the air in the vehicle, and flows through the fourth heat exchange device.
  • the refrigerant after the hot device flows back to the compressor.
  • the thermal management system further includes a fifth heat exchange device disposed on the first circuit, one end of the fifth heat exchange device is connected to the second valve port, and the other end is connected to the second valve port. between the third valve port and the compressor;
  • the second valve port and the third valve port are both disconnected, and the second pump is stopped, from the compression
  • the gaseous refrigerant flowing out of the machine first cools and releases heat in the third heat exchange device, and then evaporates and absorbs heat in the fifth heat exchange device to cool the liquid in the first circuit, thereby cooling the battery .
  • the thermal management system includes a fifth heat exchange device disposed on the first circuit, one end of the fifth heat exchange device is connected to the second valve port, and the other end is connected to the first valve port. between the three valve ports and the compressor;
  • the thermal management system further includes a driving part, a third pump and a reversing valve, all disposed in the third circuit, the third pump is used to make the liquid in the third circuit flow through the driving part to control all the components.
  • the temperature of the driving component is lowered, the reversing valve is further connected to the first circuit, and the reversing valve is used to selectively connect the first circuit and the third circuit;
  • the heated liquid in the third circuit can flow into the first circuit and flow through the fifth heat exchange device after flowing through the driving component;
  • the gaseous refrigerant flowing out of the compressor exchanges heat with the liquid in the second circuit in the second heat exchange device to heat the liquid in the second circuit, and the cooled refrigerant can also be stored in the fifth circuit.
  • the heat exchange device exchanges heat with the liquid entering the first circuit from the third circuit, and then flows back to the compressor.
  • the thermal management system further includes a fourth adjustment device, the fourth adjustment device is connected between the fifth heat exchange device and the second valve port, the fourth adjustment device It is used to adjust the flow rate of the refrigerant entering the fifth heat exchange device.
  • the thermal management system further includes a heat sink disposed on the third circuit and a fifth adjustment device disposed between the drive member and the heat sink , two ends of the radiator are respectively connected to the fifth adjusting device and the reversing valve;
  • the thermal management system further includes a connecting pipe, one end of the connecting pipe is connected to the fifth adjusting device, and the other end is connected between the reversing valve and the radiator, and the fifth adjusting device is used for adjusting The flow of liquid to the radiator and the connecting pipe, the radiator being used to cool the liquid in the third circuit.
  • the thermal management system further includes a liquid heater disposed on the second circuit for heating the liquid in the second circuit.
  • a vehicle according to an embodiment of the present application includes a vehicle body and the thermal management system according to any one of the above-described embodiments, wherein the thermal management system is mounted on the vehicle body.
  • the first heat exchange device on the second circuit is connected to the first circuit
  • the second circuit is connected to the second heat exchange device on the refrigerant circuit
  • the gaseous refrigerant delivered from the compressor can be exchanged in the second heat exchanger. Cooling and exothermic heat is performed in the device to heat the liquid in the second circuit, and the heated liquid is exothermic in the first heat exchange device to heat the liquid in the first circuit, thereby heating the battery in the first circuit. .
  • the heat released when the gaseous refrigerant in the refrigerant circuit is cooled can be used to heat the battery, thereby preventing the battery from decaying in discharge capacity under low temperature conditions and improving the cruising range.
  • FIG. 1 is a schematic block diagram of a thermal management system according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of another module of the thermal management system according to an embodiment of the present application.
  • Fig. 3 is the state schematic diagram of the thermal management system in Fig. 2;
  • Fig. 4 is another state schematic diagram of the thermal management system in Fig. 2;
  • FIG. 5 is a schematic diagram of another module of the thermal management system according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another module of the thermal management system according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another module of the thermal management system according to the embodiment of the present application.
  • FIG. 8 is a schematic diagram of another module of the thermal management system according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another module of the thermal management system according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a vehicle according to an embodiment of the present application.
  • Thermal management system 100 first circuit 102, battery 104, first pump 106, second circuit 108, second pump 110, first heat exchange device 112, refrigerant circuit 114, compressor 116, second heat exchange device 118,
  • Vehicle 1000 body 200 .
  • first and second are only used for description purposes, and cannot be understood as indicating or implying relative importance or implying the number of indicated technical features. Thus, features defined as “first”, “second” may expressly or implicitly include one or more of said features.
  • “plurality” means two or more, unless otherwise expressly and specifically defined.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a It is a detachable connection, or an integral connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, and it can be the internal communication of two elements or the interaction relationship between the two elements.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a It is a detachable connection, or an integral connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, and it can be the internal communication of two elements or the interaction relationship between the two elements.
  • thermal management system 100 of the embodiment of the present application can be applied to the vehicle 1000 of the embodiment of the present application (see FIG. 10 ).
  • Thermal management system 100 includes battery 104 , first pump 106 , second pump 110 , first heat exchange device 112 , and compressor 116 and second heat exchange device 118 . Both the battery 104 and the first pump 106 are provided on the first circuit 102 , and the first pump 106 is used to deliver liquid to the battery 104 through the first circuit 102 .
  • the second pump 110 and the first heat exchange device 112 are both disposed on the second circuit 108 , the first heat exchange device 112 is also connected to the first circuit 102 , and the second pump 110 can send the first heat exchange device to the first heat exchange device through the second circuit 108 .
  • 112 delivers liquid.
  • the compressor 116 and the second heat exchange device 118 are both arranged on the refrigerant circuit 114 , the second heat exchange device 118 is also connected to the second circuit 108 , and the second pump 110 can also send the second heat exchange device 118 to the second heat exchange device 118 through the second circuit 108 . transfer liquid.
  • the second pump 110 when the second pump 110 and the compressor 116 are activated, the second pump 110 sends liquid to the second heat exchange device 118 through the second circuit 108 to communicate with the refrigerant circuit 114 in the second heat exchange device 118 .
  • the refrigerant performs heat exchange, thereby heating the liquid in the second circuit 108, so that the heated liquid in the second circuit 108 flows through the first heat exchange device 112 and exchanges heat with the liquid in the first circuit 102 to heat the first circuit 102.
  • the liquid in the circuit 102 thereby heating the battery 104.
  • the arrows on the first circuit 102 and the second circuit 108 in FIG. 1 indicate the flow paths of the liquids in the first circuit 102 and the second circuit 108
  • the arrows on the refrigerant circuit 114 indicate the flow paths of the refrigerant.
  • the vehicle 1000 of the embodiment of the present application may be a hybrid vehicle 1000 or an electric vehicle 1000 , that is, the thermal management system 100 of the embodiment of the present application may be used for the hybrid vehicle 1000 or the electric vehicle 1000 .
  • the battery 104 may be used to provide power to the hybrid vehicle 1000 or the electric vehicle 1000 .
  • the first heat exchange device 112 on the second circuit 108 is connected to the first circuit 102
  • the second circuit 108 is connected to the second heat exchange device 118 on the refrigerant circuit 114
  • the compressor The gaseous refrigerant delivered from 116 can be cooled and released in the second heat exchange device 118 to heat the liquid in the second circuit 108, and the heated liquid can be released in the first heat exchange device 112 to heat the first circuit.
  • the liquid in 102 can thereby heat the battery 104 in the first circuit 102.
  • the heat released when the gaseous refrigerant in the refrigerant circuit 114 is cooled can be used to heat the battery 104 , thereby preventing the discharge capacity of the battery 104 from decaying under low temperature conditions and improving the cruising range.
  • the battery 104 by arranging the first circuit 102 and the second circuit 108, the battery 104 can be heated directly by the heat of the refrigerant in the refrigerant circuit 114 of the vehicle 1000 itself, without using an external electric heating element The battery 104 is heated in such a manner as to improve the utilization rate of energy.
  • the liquid in the first circuit 102 and the liquid in the second circuit 108 may be water or other cooling liquids for cooling.
  • the first pump 106 and the second pump 110 may both be water pumps or other electric pumps.
  • the first pump 106 is used to deliver liquid to the battery 104 through the first circuit 102 ” can be understood as the battery 104 itself has a cooling pipeline, and the first pump 106 can directly deliver the liquid to the cooling pipeline of the battery 104 The liquid, or the battery 104 itself does not have a cooling pipeline, but a cooling pipeline is wound or laid on the surface or other parts of the battery 104.
  • the first pump 106 is used to transport the liquid to the cooling pipeline.
  • the specific setting method is here. No restrictions apply.
  • the first heat exchange device 112 may be a water-water heat exchanger or other forms of heat exchange elements
  • the second heat exchange device 118 may be a water-cooled condenser disposed on the refrigerant circuit 114 , which is not particularly limited.
  • the first heat exchange device 112 when the first heat exchange device 112 is provided in the second circuit 108 and is also connected to the first circuit 102, it can be understood that there are in the first heat exchange device 112 connected to the first circuit 102 and the first circuit 102 respectively.
  • the two pipes on the secondary circuit 108 are independent of each other but can exchange heat.
  • the liquid in the second loop 108 can exchange heat with the liquid in the first loop 102 within the first heat exchange device 112 to heat the liquid in the first loop 102 so that the heated liquid can heat the battery 104 .
  • the fact that the second heat exchange device 118 is installed in the refrigerant circuit 114 and also connected to the second circuit 108 can be understood as the existence of two pipes in the second heat exchange device 118 that are respectively connected to the first circuit 102 and the refrigerant circuit 114, The two are independent of each other but can exchange heat.
  • the gaseous refrigerant in the refrigerant circuit 114 can condense in the second heat exchange device 118 to heat the liquid in the second circuit 108, the first The second pump 110 transports the heated liquid to the first heat exchange device 112 to heat the liquid in the first circuit 102 to heat the battery 104 , and then flows back to the second heat exchange device 118 for circulation. It should be noted that, when a similar description of a heat exchange device being connected to two circuits at the same time occurs hereinafter, it can also be understood by referring to this.
  • the battery 104 may be integrated with the function of detecting the temperature of the liquid in the first circuit 102 , the battery 104 can implement the detection of the temperature of the liquid in the first circuit 102 and report it to the controller of the vehicle 1000 , and the controller may According to the temperature information, it is determined whether the battery 104 needs to be heated, and then it is determined whether the compressor 116 and the second pump 110 need to be turned on. It can be understood that, in other embodiments, the battery 104 may not have a temperature acquisition function, and a temperature sensor may be provided on the first circuit 102 to detect the temperature of the liquid in the first circuit 102, so as to detect the temperature of the battery 104. .
  • the thermal management system 100 further includes a heater core 126 and a first regulating device 128 , the outlet of the second pump 110 is connected to a second heat exchanging device 118 , and the second heat exchanging device 118
  • the device 118 is connected to the first regulating device 128, one end of the first heat exchange device 112 is also connected to the first regulating device 128, and the other end is connected between the heater core 126 and the inlet of the second pump 110.
  • the first regulating device 128 uses After adjusting the flow rate of the liquid flowing through the heater core 126 and the first heat exchange device 112 after passing through the second heat exchange device 118 , the liquid flowing through the heater core 126 in the second circuit 108 is used to heat the interior of the vehicle Air.
  • the arrows on the first circuit 102 and the second circuit 108 in FIG. 2 represent the flow paths of the liquids in the first circuit 102 and the second circuit 108
  • the arrows on the refrigerant circuit 114 represent the flow paths of the refrigerant.
  • the flow rate flowing through the first heat exchange device 112 and the heater core 126 can be adjusted by the first regulating device 128, so as to adjust the flow rate of the liquid flowing through the first heat exchange device 112 and the heater core 126 during the heating process.
  • the air in the vehicle can also be heated by the heater core 126 to achieve heating of the passenger compartment in the vehicle.
  • the first regulating device 128 can regulate the flow rate of the heated liquid flowing to the first heat exchange device 112 and the heater core 126 , thereby controlling the temperature of the liquid flowing to the battery 104 to prevent the excessively high temperature liquid from entering the battery 104 . resulting in thermal shock.
  • the heat source for heating the battery 104 and the heat source for heating the interior of the vehicle are the same heat source, and the heat comes from the refrigerant in the refrigerant circuit 114 when the refrigerant is condensed in the second heat exchange device 118 Released when There is no need to set an additional heat source to heat the interior of the car, which reduces the space occupancy rate and saves costs.
  • the first regulating device 128 may be a three-way proportional valve, and the three valve ports of the three-way proportional valve may be respectively connected to the second heat exchange device 118 , the first heat exchange device 112 and the heater core In this way, after the liquid in the second circuit 108 flows through the second heat exchange device 118 to be heated, the opening degree of the three-way proportional valve can be controlled to adjust the flow through the first heat exchange device 112 and the heater core. 126 traffic.
  • the flow through the heater core 126 can be adjusted to zero by the first adjustment device 128 so that the All of the liquid flows through the first heat exchange device 112 to heat the liquid in the first loop 102 .
  • the flow through the first heat exchange device 112 can be adjusted to zero by the first regulating device 128 so that all the liquid flows through
  • the heater core 126 is used to heat the air in the vehicle, and its specific flow path is shown by the arrow on the second circuit 108 in FIG. 2 .
  • the first adjustment device 128 can be used to adjust the flow ratio to the heater core 126 and the first heat exchange device 112,
  • the simultaneous heating of the battery 104 and the passenger compartment is achieved, which is not specifically limited herein.
  • the thermal management system 100 in order to generate warm air in the vehicle, the thermal management system 100 further includes a first fan 124, and the first fan 124 is used to form an air flow through the heater core 126 to The heat of the heater core 126 is brought into the vehicle, thereby heating the air in the vehicle.
  • the thermal management system 100 further includes a four-way valve 130 , a third heat exchange device 120 and a fourth heat exchange device 122 disposed on the refrigerant circuit 114 , and the four-way valve 130 includes The first valve port a, the second valve port b, the third valve port c and the fourth valve port d.
  • the outlet of the second heat exchange device 118 is connected to the first valve port a, both ends of the third heat exchange device 120 are connected to the second valve port b and the fourth valve port d, respectively, and the inlet of the fourth heat exchange device 122 is also connected to the second valve port b and the fourth valve port d.
  • Valve port b, the outlet of the fourth heat exchange device 122 is connected to the inlet of the compressor 116 , and the inlet of the compressor 116 is connected to the third valve port c.
  • the third valve port c and the fourth valve port d are in communication, and the second pump 110 and the compressor 116 are both activated, the water flowing out from the compressor 116
  • the gaseous refrigerant exchanges heat with the liquid in the second circuit 108 in the second heat exchange device 118 to heat the liquid in the second circuit 108, and the liquid refrigerant obtained after cooling in the second heat exchange device 118 can flow through the third heat exchange device 118.
  • the heat exchange device 120 and/or the fourth heat exchange device 122 so that the third heat exchange device 120 evaporates and absorbs heat and then flows back to the compressor 116 and/or evaporates and absorbs heat in the fourth heat exchange device 122 to cool the vehicle The inside air then flows back to the compressor 116 .
  • the gaseous refrigerant flowing out of the compressor 116 condenses and releases heat in the second heat exchange device 118 to heat the liquid in the second circuit 108, and then flows through the third heat exchange device 120 and/or the fourth heat exchange device
  • the device 122 absorbs heat and evaporates in the third heat exchange device 120 and/or the fourth heat exchange device 122 , and then flows back into the compressor 116 for circulation, thereby realizing the continuous heating of the battery 104 .
  • the refrigerant flowing into the fourth heat exchanging device 122 can evaporate and absorb heat in the fourth heat exchanging device 122 to cool the vehicle air, thereby realizing the cooling or dehumidification of the passenger compartment.
  • the third heat exchange device 120 may be an outdoor heat exchanger of the vehicle 1000
  • the fourth heat exchange device 122 may be an indoor evaporator of the vehicle 1000
  • the refrigerant cooled in the second heat exchange device 118 flows in from the first valve port a of the four-way valve 130, and then flows out from the second valve port b, and may only flow through the third heat exchanger
  • the heat device 120 exchanges heat with the air outside the vehicle to convert it into a gaseous refrigerant, which flows in through the fourth valve port d, then flows out through the third valve port c and returns to the compressor 116 (the flow path of the refrigerant is shown in FIG. 2 ).
  • the heated liquid in the second circuit 108 can be used to heat the liquid in the first circuit 102 through the first heat exchange device 112 to heat the battery 104 or can be used to heat the interior of the vehicle through the heater core 126 Air is supplied to realize the heating of the passenger compartment.
  • the flow of the liquid to the first heat exchange device 112 and the heater core 126 can also be adjusted by the first adjustment device 128 to realize the air flow between the battery 104 and the air in the vehicle. Simultaneously heat.
  • the refrigerant cooled in the second heat exchange device 118 flows into the first valve port a of the four-way valve 130 and then flows out from the second valve port b After that, a part of it flows through the third heat exchange device 120 to exchange heat with the air outside the vehicle to convert it into a gaseous refrigerant, and then flows in through the fourth valve port d, and then flows out through the third valve port c and returns to the compressor 116, The other part flows through the fourth heat exchange device 122 to exchange heat with the air in the vehicle in the fourth heat exchange device 122 to condense the humid air in the vehicle, and then flows back to the compressor 116 (the flow path of the refrigerant is such as: The arrows on the refrigerant circuit in Figure 3), and this cycle.
  • the heated liquid in the second loop 108 can also be used to heat the liquid in the first loop 102 through the first heat exchange device 112 to heat the battery 104 or can be used to pass through the heater core 126 heats the air supply in the vehicle to achieve heating of the passenger compartment to achieve heating and dehumidification in the passenger compartment, or the first regulating device 128 can be used to adjust the flow of the liquid to the first heat exchange device 112 and the heater core 126 to realize the battery 104 and the air in the car are heated at the same time.
  • the refrigerant flowing out from the second valve port b may also all flow through the fourth heat exchange device 122 to heat the air in the vehicle in the fourth heat exchange device 122 It is exchanged to cool the interior of the vehicle, and then flows back into the compressor 116, which is not specifically limited herein.
  • the fourth heat exchange device 122 and the heater core 126 may share a fan, that is, the In other words, the first fan 124 can also be used to form an air flow through the fourth heat exchange device 122 to bring the heat or cold energy of the fourth heat exchange device 122 into the vehicle, so as to provide cool air for the vehicle or to condense the air in the vehicle. moist air.
  • the fourth heat exchange device 122 may also use other fans alone, which is not specifically limited herein.
  • the vehicle-mounted thermal management system 100 further includes a second fan 125 , and the second fan 125 is used to form a The airflow passing through the third heat exchange device 120 can perform sufficient heat exchange with the refrigerant.
  • the thermal management system 100 further includes a second regulating device 132 , and the second regulating device 132 is connected between the second valve port b and the fourth heat exchange device 122 During this time, the second adjusting device 132 is used to adjust the flow rate of the refrigerant entering the fourth heat exchanging device 122 .
  • the flow of the refrigerant entering the fourth heat exchanging device 122 can be adjusted by the second adjusting device 132 to determine whether the fourth heat exchanging device 122 works to cool the vehicle or condense the humid air in the vehicle. For example, when the fourth heat exchange device 122 is not required to work, the pipeline connected to the fourth heat exchange device 122 can be closed through the second regulating device 132, thereby preventing the refrigerant from entering the fourth heat exchange device 122.
  • the second regulating device 132 may throttle and depressurize the refrigerant before entering the fourth heat exchange device 122 , and the second regulating device 132 may be an electronic expansion valve or a valve with a cut-off and a throttle.
  • the thermal management system 100 further includes a third regulating device 133 , and the third regulating device 133 is connected between the second valve port b and the third heat exchange device 120 During this time, the third adjusting device 133 is used to adjust the flow rate of the refrigerant entering the third heat exchanging device 120 .
  • the third adjustment device 133 can be used to adjust the amount of water entering the third heat exchange device 120.
  • the flow rate of the refrigerant thus determines whether the third heat exchange device 120 works so that the refrigerant flowing out from the second valve port b flows into the third heat exchange device 120 to evaporate and absorb heat.
  • the pipeline connected to the third heat exchange device 120 can be closed through the third adjustment device 133 , thereby preventing the refrigerant from entering the third heat exchange device 120 .
  • the third regulating device 133 may include a one-way valve 1331 and an electronic expansion valve 1332, and the one-way valve 1331 is connected to the second valve port b and the third heat exchange valve On the pipeline between the devices 120, the one-way valve 1331 is used to block the refrigerant flowing out of the second valve port b from flowing to the third heat exchange device 120, and the electronic expansion valve 1332 is connected in parallel with both ends of the one-way valve 1331, so that it can be adjusted by adjusting The opening of the electronic expansion valve 1332 adjusts the flow of the refrigerant flowing into the third heat exchange device 120 .
  • the electronic expansion valve 1332 can throttle and depressurize the refrigerant before entering the third heat exchange device 120 .
  • the electronic expansion valve 1332 can also be replaced with a thermal expansion valve with cut-off and throttle functions or a throttle element such as a throttle tube with cut-off and throttle functions, which is not specifically limited herein.
  • the gaseous refrigerant flowing out of the compressor 116 is first cooled and released in the third heat exchange device 120 , and then can be evaporated and absorbed in the fourth heat exchange device 122 to cool the air in the vehicle. After passing through the fourth heat exchange device 122 The refrigerant flows back to the compressor 116 with the refrigerant flow path shown by the arrows on the refrigerant circuit in FIG. 4 .
  • the second pump 110 does not work, the gaseous refrigerant only flows through the second heat exchange device 118 without heat exchange, and the gaseous refrigerant flows through the second heat exchange device 118 and passes through the first valve port a and the fourth The valve port d flows into the third heat exchange device 120 to cool and release heat, and then flows into the fourth heat exchange device 122 to evaporate and absorb heat, thereby cooling the air in the vehicle and realizing the air conditioning and refrigeration of the passenger compartment of the vehicle 1000 .
  • the second pump 110 stops working, the liquid in the second circuit 108 stops circulating, and the gaseous refrigerant flowing out of the compressor 116 does not exchange heat in the second heat exchange device 118, but After flowing through the second heat exchange device 118, it directly flows into the third heat exchange device 120 through the first valve port a and the fourth valve port d, and then flows through the second regulating device 132 into the second valve port b and the fourth heat exchange device.
  • the second adjusting device 132 is in the working state
  • the electronic expansion valve 1332 of the third regulating device 133 is in a closed state.
  • the thermal management system 100 further includes a fifth heat exchange device 134 disposed on the first circuit 102, one end of the fifth heat exchange device 134 is further connected to the second valve port b, and the other One end is connected between the third valve port c and the compressor 116 .
  • the first valve port a and the fourth valve port d can be connected, the third valve port c and the fourth valve port d are both disconnected, the second pump 110 stops working, and the compressor
  • the gaseous refrigerant flowing out of 116 only flows through the second heat exchange device 118 without heat exchange.
  • the gaseous refrigerant flows through the second heat exchange device 118 and flows into the third through the first valve port a and the fourth valve port d.
  • the heat exchange device 120 cools and releases heat, and then flows into the fifth heat exchange device 134 to evaporate and absorb heat to cool the liquid in the first circuit 102 , thereby forcibly cooling the battery 104 to avoid overheating of the battery 104 .
  • the second adjusting device 132 may be in a closed state or in a working state.
  • the refrigerant that flows through the third heat exchanging device 120 to cool and release heat only flows through the fifth heat exchanging device 134 , thereby realizing forced cooling of the battery 104 .
  • a part of the refrigerant that flows through the third heat exchange device 120 to cool and release heat may flow through the fourth heat exchange device 122 to achieve cooling of vehicle cold air, and the other part flows through the fifth heat exchange device 122.
  • the heat exchange device 134 is used to achieve forced cooling of the battery 104 , thereby simultaneously achieving the cooling of the passenger compartment and the forced cooling of the battery 104 .
  • the thermal management system 100 further includes a fourth regulating device 135 , the fourth regulating device 135 is connected between the fifth heat exchange device 134 and the second valve port b, the fourth regulating device 135 is The adjusting device 135 is used to adjust the flow rate of the refrigerant entering the fifth heat exchange device 134 .
  • the fourth regulating device 135 can be used to adjust the flow of the refrigerant entering the fifth heat exchanging device 134 to determine whether the fifth heat exchanging device 134 works and the intensity of the forced cooling of the battery 104, so as to achieve precise control of the refrigerant and Precisely cool the battery 104 .
  • the battery 104 can automatically report the temperature of the liquid in the first circuit 102. When the temperature of the liquid is too high, it means that the battery 104 is overheated, and then the fourth adjusting device 135 can be used to adjust the temperature of the refrigerant entering the fifth heat exchange device 134. flow, so as to achieve the corresponding cooling.
  • the fourth regulating device 135 can throttle and depressurize the refrigerant before entering the fifth heat exchanging device 134 , and the fourth regulating device 135 can also be an electronic expansion valve or an electronic expansion valve with cut-off and
  • the thermal expansion valve with throttling function or the throttling pipe with cut-off and throttling functions is not specifically limited here.
  • the fourth regulating device 135 when the liquid in the first circuit 102 does not need to be cooled by the fifth heat exchange device 134 to achieve cooling of the battery 104 , the fourth regulating device 135 is in a closed state. For example, when the battery 104 needs to be heated, the fourth regulating device 135 is turned off.
  • the thermal management system 100 includes a fifth heat exchange device 134 disposed on the first circuit 102 .
  • One end of the fifth heat exchange device 134 is connected to the second valve port b, and the other end is connected to the second valve port b. between the third valve port c and the compressor 116 .
  • the thermal management system 100 further includes a driving part 138 , a third pump 140 and a reversing valve 142 , which are all disposed in the third circuit 136 , and the third pump 140 is used to make the liquid in the third circuit 136 flow through the driving part 138 to drive the
  • the component 138 is cooled down, and the reversing valve 142 is also connected to the first circuit 102 , and the reversing valve 142 is used to selectively connect the first circuit 102 and the third circuit 136 .
  • the heated liquid in the third circuit 136 can flow into the first circuit 102 and flow through the fifth heat exchange device 134 after passing through the driving member 138 .
  • the first valve port a and the second valve port b are in communication
  • the third valve port c and the fourth valve port d are in communication
  • the second pump 110 and the compressor 116 are both activated
  • the water flowing out from the compressor 116 The gaseous refrigerant exchanges heat with the liquid in the second circuit 108 in the second heat exchange device 118 to heat the liquid in the second circuit 108
  • the cooled refrigerant can be exchanged with the liquid in the third circuit 136 in the fifth heat exchange device 134 .
  • the liquid entering the first circuit 102 is heat-exchanged and then flows back to the compressor 116.
  • the refrigerant flow path is shown by the arrow on the refrigerant circuit in FIG.
  • the arrows on the secondary loop 108 and the third loop 136 are shown.
  • the liquid heated by the driving component 138 in the third circuit 136 can be sent to the first circuit 102 , so that the liquid in the fifth heat exchange device 134 can be transferred into the first circuit 102 .
  • the heat in the car is heated to realize the heating of the passenger compartment and the heating and dehumidification.
  • the gaseous refrigerant flowing out from the compressor 116 is in the second heat exchange device 118 and the second circuit 108.
  • the liquid conducts heat exchange, thereby heating the liquid in the second circuit 108.
  • the flow rate flowing through the first heat exchange device 112 in the second circuit 108 can be adjusted to zero by the first regulating device 128, and the heated liquid in the second circuit 108 can be adjusted to zero. All the liquid in the heater enters the heater core 126 to heat the air in the vehicle to realize the heating of the passenger compartment.
  • the refrigerant flows out from the second heat exchange device 118 and enters through the first valve port a, and flows out from the second valve port b to the The fifth heat exchange device 134, thereby thermally interacting with the liquid flowing from the third circuit 136 into the first circuit 102 in the fifth heat exchange device 134 to absorb heat and evaporate, and then enter the compressor 116, thereby circulating, thereby The heating of the passenger compartment by the waste heat generated by the drive part 138 is achieved.
  • a part of the refrigerant may be diverted to the third heat exchange device 120 through the third adjustment device 133 for evaporation and heat absorption. It is combined with the refrigerant flowing through the fifth heat exchange device 134 before entering the compressor 116 . That is to say, in such an embodiment, a part of the refrigerant flowing out from the second valve port b may flow to the fifth heat exchange device 134, and then flows back to the compressor after evaporating and absorbing heat in the fifth heat exchange device 134. 116 , another part may flow through the third heat exchange device 120 , and then flow back to the compressor 116 after evaporating and absorbing heat in the third heat exchange device 120 .
  • part of the refrigerant flowing out from the second valve port b may also flow through the fourth heat exchange device 122 , for example, the refrigerant entering the fourth heat exchange device 122 may be adjusted by the second adjustment device 132 .
  • the flow rate of the refrigerant so that the refrigerant in the fourth heat exchange device 122 and the air inside the vehicle to condense and dehumidify the humid air in the vehicle, that is, in such an embodiment, flow out from the second valve port b
  • a part of the refrigerant may flow through the fifth heat exchange device 134, and then return to the compressor 116 after evaporating and absorbing heat in the fifth heat exchange device 134, and the other part may flow through the fourth heat exchange device 122, and in the fourth heat exchange device 122
  • the inside of the device 122 evaporates and absorbs heat to dehumidify the air in the vehicle, and then flows back to the compressor 116 to achieve heating and dehumidification of the passenger compartment.
  • the refrigerant flowing out from the second valve port b may also flow through the third heat exchange device 120 , the fourth heat exchange device 122 and the fifth heat exchange device in three paths, respectively.
  • the heat device 134 after evaporating and absorbing heat in the three heat exchange devices respectively, flows back to the compressor 116, which is not specifically limited herein.
  • the liquid in the first circuit 102 and the liquid in the third circuit 136 are the same type of cooling liquid, such as water or other cooling liquids. In this way, there will be no contamination caused by coolant mixing.
  • the reversing valve 142 may be a four-way valve, and the reversing valve 142 includes a fifth valve port d, a sixth valve port e, a seventh valve port f and an eighth valve Port g, the fifth valve port d and the sixth valve port e are connected to the first circuit 102 , and the seventh valve port f and the eighth valve port g are connected to the third circuit 136 .
  • the first circuit 102 and the third circuit 136 are independent of each other.
  • the fifth valve port d is communicated with the eighth valve port g, and the sixth valve port e and the seventh valve port f are communicated
  • the first circuit 102 is communicated with the third circuit 136, and the liquid on the third circuit 136 passes through the eighth valve Port g and the first valve port a flow into the first circuit 102 and mix with the liquid in the first circuit 102, and then the fifth heat exchange device 134 flows back to the third circuit 136 through the sixth valve port e and the seventh valve port f , so as to realize the utilization of the waste heat of the driving part 138 .
  • the driving component 138 may include electronic components such as a driving motor and a motor controller for driving and controlling the vehicle 1000 .
  • the waste heat generated by the driving component 138 can also be directly utilized by connecting the first circuit 102 and the second circuit 108 to heat the battery 104 . heating. Specifically, in such an embodiment, both the compressor 116 and the second pump 110 can be turned off, and the liquid heated by the driving component 138 in the third circuit 136 can enter the first circuit 102 to directly heat the battery 104 , and then back into the third circuit 136 , and so on, thereby heating the battery 104 with the waste heat generated by the drive components 138 .
  • the thermal management system 100 further includes a radiator 146 and a fifth regulating device 144 arranged on the third circuit 136 , and the fifth regulating device 144 is arranged on the driving part 138 and the radiator 146 In between, two ends of the radiator 146 are respectively connected to the fifth regulating device 144 and the reversing valve 142 .
  • the thermal management system 100 further includes a connecting pipe 148, one end of the connecting pipe 148 is connected to the fifth regulating device 144, and the other end is connected between the reversing valve 142 and the radiator 146, and the fifth regulating device 144 is used for regulating the flow to the radiator 146 and the radiator 146.
  • the flow of the liquid in the connecting pipe 148 , the radiator 146 is used to cool the liquid in the third circuit 136 .
  • the fifth regulating device 144 can regulate the flow rate to the radiator 146 to control the temperature of the liquid in the third circuit 136, and then the temperature of the liquid in the third circuit 136 can be controlled by the fifth regulating device 144 to regulate the temperature of the liquid entering the third circuit 136.
  • the temperature of the liquid in the fifth heat exchange device 134 can regulate the flow rate to the radiator 146 to control the temperature of the liquid in the third circuit 136, and then the temperature of the liquid in the third circuit 136 can be controlled by the fifth regulating device 144 to regulate the temperature of the liquid entering the third circuit 136.
  • the reversing valve 142 communicates the first circuit 102 and the third circuit 136
  • the fifth The adjustment device 144 may adjust the flow through the radiator 146 to less or zero.
  • all or most of the liquid heated by the driving component 138 in the third circuit 136 directly passes through the connecting pipe 148 and then flows into the first circuit 102 through the reversing valve 142 to mix with the liquid in the first circuit 102, and flows through the first circuit 102.
  • the fifth heat exchange device 134 exchanges heat with the refrigerant to evaporate the refrigerant, and then flows back to the third circuit 136 through the reversing valve 142 .
  • the fifth adjusting device 144 may also be a three-way proportional valve.
  • the radiator 146 in order to take away the heat of the radiator 146, the radiator 146 can share a fan with the third heat exchange device 120, that is to say, the second fan 125 can also be used to form a flow through the heat dissipation device
  • the airflow of the radiator 146 is used to take away the heat of the radiator 146 and dissipate it to the outside of the vehicle.
  • the radiator 146 can also use other fans alone or the radiator 146 itself integrates a cooling fan.
  • a fan is provided for the radiator 146, which is not specifically limited herein.
  • the battery 104 when the ambient temperature is low and the battery 104 needs to be cooled, the battery 104 does not need to use an additional device to cool the battery 104 , and the reversing valve 142 can communicate with the first circuit 102 and the third circuit 136 , at this time, the liquid in the first circuit 102 flows into the third circuit 136, and then flows through the radiator 146.
  • the radiator 146 dissipates heat from the liquid flowing through itself, and then flows back into the first circuit 102 and through the battery 104 to dissipate heat.
  • the heat of the battery 104 is absorbed and circulated, thereby achieving heat dissipation and cooling of the battery 104 . It can be understood that, in such a process, the first liquid and the third liquid are mixed to form and the liquid will also flow through the driving part 138, so that the driving part 138 can also be cooled and dissipated.
  • the liquid heater 150 on the loop 108 is used to heat the liquid in the second loop 108 .
  • the liquid heater 150 can be used to heat the air in the second circuit 108 through the liquid heater 150 .
  • the liquid is heated to supplement the heat.
  • the refrigerant circuit 114 when the ambient temperature is low, for example, in the process of charging the battery 104 in winter, the refrigerant circuit 114 does not work, and the liquid in the second circuit 108 can be heated by the liquid heater 150, The liquid in the first circuit 102 is then heated by the first conditioning device 128 to store heat in the fifth heat exchange device 134 and the first circuit 102 .
  • the compressor 116 When the passenger compartment needs to be heated, the compressor 116 is started, and the refrigerant flowing out of the compressor 116 exchanges heat with the liquid in the second circuit 108 in the second heat exchange device 118 , and flows from the second valve port b of the four-way valve 130 It flows out to the fifth heat exchange device 134 to use the heat stored in the first circuit 102 to evaporate the refrigerant, so as to use the energy stored in the battery 104 to heat the air in the vehicle to achieve heating of the passenger compartment.
  • the refrigerant flowing out from the second valve port b can also partially flow into the fourth heat exchange device 122 to condense the humid air in the vehicle, so as to utilize the first
  • the primary circuit 102 stores energy to achieve heating and dehumidification of the passenger compartment.
  • the battery 104 heating mode and the passenger compartment heating mode for a long time under the condition of high ambient humidity is likely to cause the third heat exchange device 120 to freeze, resulting in insufficient heating.
  • the first valve port a of the four-way valve 130 can be communicated with the fourth valve port d, the second valve port b and the third valve port c are all disconnected, the second regulating device 132 is in a closed state, and the liquid heater 150 is working. Due to the high temperature of the liquid in the second circuit 108, the gaseous refrigerant flowing out of the compressor 116 is not processed in the second heat exchange device 118.
  • the gaseous refrigerant flows into the first valve port a, flows out from the fourth valve port d, flows through the third heat exchange device 120 for cooling and absorbs heat to achieve rapid deicing, and then enters the fifth exchange through the fourth adjustment device 135.
  • the heat device 134 in the fifth heat exchange device 134, evaporates and absorbs heat and flows back to the compressor 116.
  • the second pump 110 on the second circuit 108 works, the liquid heated by the liquid heater 150 in the second circuit 108 is divided into two paths by the first regulating device 128, and one path flows into the heater core 126, After completing the self-heating heating in the car, the other way flows through the first heat exchange device 112 , and the first heat exchange device 112 heats the liquid in the first circuit 102 to heat the battery 104 , thereby completing the water temperature in the first circuit 102 Compensation to ensure the stability of the temperature of the battery 104 .
  • the first regulating device 128 completes the opening of the proportional distribution according to the requirements of the two circuits.
  • the first pump 106 works, flows through the battery 104, and is transported by the refrigerant circuit 114 in the fifth heat exchange device 134. Evaporation absorbs heat, and temperature compensation is completed in the first heat exchange device 112 after the temperature of the cooling liquid decreases.
  • the first circuit 102 and the third circuit 136 are in a parallel state in the case where no waste heat recovery is available for the drive member 138 . If the third circuit 136 has waste heat available, the third circuit 136 and the first circuit 102 can be connected through the reversing valve 142, so as to recover the waste heat of the driving component 138.
  • the specific implementation has been described in detail above. , which will not be repeated here.
  • the thermal management system 100 further includes a gas-liquid separator 152.
  • the gas-liquid separator 152 is disposed at the inlet of the compressor 116, and the refrigerant flowing out from the second valve port c and The refrigerant flowing out of the fourth heat exchange device 122 first flows through the gas-liquid separator 152 and then flows into the compressor 116 .
  • the liquid in the refrigerant can be separated by passing through the gas-liquid separator 152 , so as to prevent liquid shock to the compressor 116 .
  • a first temperature sensor 154 is provided at the outlet of the compressor 116 , and the first temperature sensor 154 is used to detect the temperature of the gaseous refrigerant flowing out of the compressor 116 to control the compressor 116 .
  • 116 performs temperature protection, for example, when the temperature of the refrigerant is too high, the compressor 116 can be shut down in time.
  • a high pressure, pressure and temperature integrated sensor 156 is also provided at the outlet of the second heat exchange device 118, so as to detect the pressure and temperature of the refrigerant flowing out of the second heat exchange device 118 to calculate the degree of subcooling to adjust the opening of the electronic expansion valve 1332 of the third adjusting device 133 .
  • Refrigerant temperature sensors 158 are provided at both the inlet and the outlet of the third heat exchange device 120 for calculating the degree of superheat and the degree of subcooling of the third heat exchange device 120, respectively.
  • a low-pressure pressure sensor 160 is arranged to detect the low-pressure pressure.
  • a refrigerant temperature sensor 162 is also provided at the outlet of the fourth heat exchange device 122 for calculating the degree of superheat at the outlet of the fourth heat exchange device 122 .
  • a refrigerant temperature sensor 164 is also arranged at the outlet of the fifth heat exchange device 134 for calculating the degree of superheat at the outlet of the fifth heat exchange device 134 .
  • a temperature sensor 166 is also provided on the third circuit 136 , and the temperature sensor 166 is used to monitor the temperature of the liquid in the third circuit 136 .
  • the thermal management system 100 of the present application has rich functions, and basically all the energy is effectively recycled. Cooling, heating and dehumidification of the passenger compartment and heating of the battery 104 and heating and dehumidification of the passenger compartment with waste heat generated by the drive components 138 and energy storage of the battery 104 and the first circuit 102 for heating of the passenger compartment Dehumidification, etc.
  • the thermal management system 100 of the present application can realize multiple functions, the system loop is relatively simple, no need to add more functional components, the cost is reduced, and the cost performance is relatively high.
  • the thermal management system 100 of the present application can also choose to enter different working modes according to different ambient temperatures and different driving habits to reduce energy consumption.
  • Heating is used to improve the cruising range, and the 114 way of the refrigerant can be used to heat and dehumidify the passenger compartment.
  • the heat generated by the motor and other driving components 138 can be used to heat and dehumidify the passenger compartment, and the outdoor heat exchanger can be heated and dehumidified. Efficient de-icing, etc.
  • a vehicle 1000 according to an embodiment of the present application includes a vehicle body 200 and a thermal management system 100 according to any of the above embodiments, and the thermal management system 100 is installed on the vehicle body 200 .
  • the above-mentioned vehicle 1000 may be a hybrid vehicle 1000 or an electric vehicle 1000, which is not specifically limited.
  • the first heat exchange device 112 on the second circuit 108 is connected to the first circuit 102
  • the second circuit 108 is connected to the second heat exchange device 118 on the refrigerant circuit 114
  • the outgoing gaseous refrigerant can be cooled and released in the second heat exchange device 118 to heat the liquid in the second circuit 108
  • the heated liquid can be released in the first heat exchange device 112 to heat the first circuit 102 .
  • liquid, so that the battery 104 in the first circuit 102 can be heated.
  • the heat released when the gaseous refrigerant in the refrigerant circuit 114 is cooled can be used to heat the battery 104 , thereby preventing the discharge capacity of the battery 104 from decaying under low temperature conditions and improving the cruising range.
  • the battery 104 by arranging the first circuit 102 and the second circuit 108, the battery 104 can be heated directly by the heat of the refrigerant in the refrigerant circuit of the vehicle 1000 itself, without using an external electric heating element or the like. The battery 104 is heated in such a way that the utilization rate of energy is improved.
  • the thermal management system 100 of the present application can also use the cooling and evaporation of the refrigerant on the refrigerant circuit 114 to heat and cool the battery 104 , heat and dehumidify the passenger compartment, and use the drive component 138 to generate heat and moisture.
  • the waste heat is used to heat the battery 104, heat and dehumidify the passenger compartment, and use the battery 104 and the first circuit 102 to store energy for heating and dehumidification of the passenger compartment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种热管理系统(100)和车辆(1000)。热管理系统(100)包括设置在第一回路(102)上的电池(104)和第一泵(106)、均设置在第二回路(108)上的第二泵(110)和第一换热装置(112)以及均设置在冷媒回路(114)上的压缩机(116)和第二换热装置(118)。第一泵(106)用于向电池(104)输送液体。第一换热装置(112)同时还连接第一回路(102),第二泵(110)能够向第一换热装置(112)输送液体。第二换热装置(118)连接第二回路(108),第二泵(110)还能够向第二换热装置(118)输送液体。其中,在第二泵(110)和压缩机(116)启动时的情况下,第二泵(110)通过第二回路(108)向第二换热装置(118)输送液体以在第二换热装置(118)内与冷媒回路(114)中的冷媒进行热交换,从而加热第二回路(108)中液体,以使第二回路(108)中被加热后的液体流经第一换热装置(112)时与第一回路(102)中的液体进行热交换以加热第一回路中(102)的液体,从而对电池(104)进行加热。

Description

热管理系统和车辆
优先权信息
本申请请求2020年10月14日向中国国家知识产权局提交的、专利申请号为202011095995.6的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及车辆技术领域,更具体而言,涉及一种热管理系统和车辆。
背景技术
目前,新能源汽车正在大范围普及,低温下的续航里程一直是制约新能源汽车推广普及的痛点,在低温工况下,电池可用的放电量衰减,导致续航里程下降严重。因此,如何提高电池的续航里程成为本领域技术人员研究的技术问题。
发明内容
本申请实施方式提供一种热管理系统和车辆。
本申请实施方式的热管理系统包括:
均设置在第一回路上的电池和第一泵,所述第一泵用于通过所述第一回路向所述电池输送液体;
均设置在第二回路上第二泵和第一换热装置,所述第一换热装置连接所述第一回路,所述第二泵能够通过所述第二回路向所述第一换热装置输送液体;和
均设置在冷媒回路上的压缩机和第二换热装置,所述第二换热装置连接所述第二回路,所述第二泵能够通过所述第二回路向所述第二换热装置输送液体;
其中,在所述第二泵和所述压缩机启动时的情况下,所述第二泵通过所述第二回路向所述第二换热装置输送液体以在所述第二换热装置内与所述冷媒回路中的冷媒进行热交换,从而加热所述第二回路中液体,以使所述第二回路中被加热后的液体流经所述第一换热装置时与所述第一回路中的液体进行热交换以加热所述第一回路中的液体,从而对所述电池进行加热。
上述实施方式的热管理系统中,第二回路上的第一换热装置连接第一回路,第二回路连接冷媒回路上的第二换热装置,从压缩机输送出的气态冷媒可在第二换热装置中进行冷却放热以加热第二回路中的液体,被加热后的液体在第一换热装置中进行放热可加热第一回路中的液体,从而可对第一回路中的电池进行加热。如此,可利用冷媒回路中的气态冷媒冷却时释放的热量对电池进行加热,从而防止电池在低温工况下放电量衰 减,提高续航里程。
在某些实施方式中,所述热管理系统还包括设置在所述第二回路上的暖风芯体和第一调节装置,所述第二泵的出口连接所述第二换热装置,所述第二换热装置连接所述第一调节装置,所述第一换热装置的一端连接所述第一调节装置,另一端连接在所述暖风芯体和所述第二泵的进口之间,所述第一调节装置用于调节流经所述第二换热装置后流经所述暖风芯体和所述第一换热装置的液体的流量,其中,所述第二回路流经所述暖风芯体的液体用于加热车内空气。
在某些实施方式中,所述热管理系统还包括设置在所述冷媒回路上的四通阀、第三换热装置和第四换热装置,所述四通阀包括第一阀口、第二阀口、第三阀口和第四阀口;
所述第二换热装置的出口连接所述第一阀口,所述第三换热装置的两端分别连接所述第二阀口和所述第四阀口,所述第四换热装置的进口也连接所述第二阀口,所述第四换热装置的出口连接所述压缩机的进口,所述压缩机的进口连接所述第三阀口;
其中,在所述第一阀口和所述第二阀口连通,所述第三阀口和第四阀口连通,且所述第二泵和所述压缩机均启动的情况下,从所述压缩机流出的气态冷媒在所述第二换热装置内与所述第二回路中的液体进行热交换以加热所述第二回路中的液体,在所述第二换热装置中冷却后得到的液态冷媒能够流经所述第三换热装置和\或所述第四换热装置,从而在所述第三换热装置内蒸发吸热后流回至所述压缩机和\或在所述第四换热装置内蒸发吸热以冷却车内空气后流回至所述压缩机。
在某些实施方式中,所述热管理系统还包括第二调节装置,所述第二调节装置连接在所述第二阀口和所述第四换热装置之间,所述第二调节装置用于调节进入所述第四换热装置的冷媒的流量。
在某些实施方式中,所述热管理系统还包括第三调节装置,所述第三调节装置连接在所述第二阀口和所述第三换热装置之间,所述第三调节装置用于调节进入所述第三换热装置的冷媒的流量。
在某些实施方式中,在所述第一阀口与所述第四阀口连通,所述第二阀口和所述第三阀口均断开,且所述第二泵停止的情况下,从所述压缩机流出的气态冷媒先在所述第三换热装置冷却放热,然后能够在所述第四换热装置内蒸发吸热以冷却车内空气,流经所述第四换热装置后的冷媒流回至所述压缩机。
在某些实施方式中,所述热管理系统还包括设置在所述第一回路上的第五换热装置,所述第五换热装置的一端连接所述第二阀口,另一端连接在第三阀口和所述压缩机之间;
其中,在所述第一阀口与所述第四阀口连通,所述第二阀口和所述第三阀口均断开, 且所述第二泵停止的情况下,从所述压缩机流出的气态冷媒先在所述第三换热装置冷却放热,然后能够在所述第五换热装置内蒸发吸热以冷却所述第一回路中的液体,从而对所述电池进行冷却。
在某些实施方式中,所述热管理系统包括设置在所述第一回路上的第五换热装置,所述第五换热装置的一端连接所述第二阀口,另一端连接在第三阀口和所述压缩机之间;
所述热管理系统还包括均设置在第三回路的驱动部件、第三泵和换向阀,所述第三泵用于使得所述第三回路内的液体流经所述驱动部件以对所述驱动部件降温,所述换向阀还连接所述第一回路,所述换向阀用于可选择地连通所述第一回路和所述第三回路;
在所述第一回路与所述第三回路连通的情况下,所述第三回路中流经所述驱动部件后被加热液体能够流入所述第一回路并流经所述第五换热装置;
其中,在所述第一阀口和所述第二阀口连通,所述第三阀口和第四阀口连通,且所述第二泵和所述压缩机均启动的情况下,从所述压缩机流出的气态冷媒在所述第二换热装置内与所述第二回路中的液体进行热交换以加热所述第二回路中的液体,冷却后的冷媒还能够在所述第五换热装置内与从所述第三回路进入至所述第一回路中的液体进行换热后流回至所述压缩机。
在某些实施方式中,所述热管理系统还包括第四调节装置,所述第四调节装置连接在所述第五换热装置和所述第二阀口之间,所述第四调节装置用于调节进入所述第五换热装置的冷媒的流量。
在某些实施方式中,所述热管理系统还包括设置在所述第三回路上的散热器和第五调节装置,所述第五调节装置设置在所述驱动部件和所述散热器之间,所述散热器的两端分别连接所述第五调节装置和所述换向阀;
所述热管理系统还包括连接管,所述连接管的一端连接所述第五调节装置,另一端连接在所述换向阀和所述散热器之间,所述第五调节装置用于调节流向所述散热器和所述连接管的液体的流量,所述散热器用于冷却所述第三回路中的液体。
在某些实施方式中,所述热管理系统还包括设置在所述第二回路上的液体加热器,所述液体加热器用于加热所述第二回路中的液体。
本申请实施方式的车辆包括车体和上述任一实施方式所述的热管理系统,所述热管理系统安装在所述车体。
上述实施方式的车辆中,第二回路上的第一换热装置连接第一回路,第二回路连接冷媒回路上的第二换热装置,从压缩机输送出的气态冷媒可在第二换热装置中进行冷却放热以加热第二回路中的液体,被加热后的液体在第一换热装置中进行放热可加热第一 回路中的液体,从而可对第一回路中的电池进行加热。如此,可利用冷媒回路中的气态冷媒冷却时释放的热量对电池进行加热,从而防止电池在低温工况下放电量衰减,提高续航里程。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请实施方式的热管理系统的模块示意图;
图2是本申请实施方式的热管理系统的另一模块示意图;
图3是图2中的热管理系统的状态示意图;
图4是图2中的热管理系统的另一状态示意图;
图5是本申请实施方式的热管理系统的又一模块示意图;
图6是本申请实施方式的热管理系统的再一模块示意图;
图7是本申请实施方式的热管理系统的再一模块示意图;
图8是本申请实施方式的热管理系统的再一模块示意图;
图9是本申请实施方式的热管理系统的再一模块示意图;
图10是本申请实施方式的车辆的结构示意图。
主要元件符号说明:
热管理系统100、第一回路102、电池104、第一泵106、第二回路108、第二泵110、第一换热装置112、冷媒回路114、压缩机116、第二换热装置118、第三换热装置120、第四换热装置122、第一风扇124、第二风扇125、暖风芯体126、第一调节装置128、四通阀130、第二调节装置132、第三调节装置133、第五换热装置134、第四调节装置135、第三回路136、驱动部件138、第三泵140、换向阀142、第五调节装置144、散热器146、连接管148、液体加热器150、气液分离器152;
车辆1000、车体200。
具体实施方式
下面详细描述本申请的实施方式,实施方式的示例在附图中示出,其中,相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考 附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的实施方式的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的实施方式的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的实施方式的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请的实施方式中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的实施方式的不同结构。为了简化本申请的实施方式的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请的实施方式可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请的实施方式提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1,本申请实施方式的热管理系统100可应用于本申请实施方式的车辆1000(见图10)。热管理系统100包括电池104、第一泵106、第二泵110、第一换热装置112以及压缩机116和第二换热装置118。电池104和第一泵106均设置在第一回路102上,第一泵106用于通过第一回路102向电池104输送液体。第二泵110和第一换热装置112均设置在第二回路108上,第一换热装置112同时还连接第一回路102,第二泵110能够通过第二回路108向第一换热装置112输送液体。压缩机116和第二换热装置118均设置在冷媒回路114上,第二换热装置118还同时连接第二回路108,第二泵110还能够通过第二回路108向第二换热装置118输送液体。其中,在第二泵110和压缩机116启动时的情况下,第二泵110通过第二回路108向第二换热装置118输送液体以在第二换热装置118内与冷媒回路114中的冷媒进行热交换,从而加热第二回路108中液体,以使第二回路108中被加热后的液体流经第一换热装置112时与第一回路102中的液体进行热交换以加热第一回路102中的液体,从而对电池104进行加热。其中图1中第一回路102和第二回路108上的箭头表示第一回路102和第二回路108中的液体的流动路径,冷媒回路114上的箭头表示冷媒的流动路径。
本申请实施方式的车辆1000可以为混合动力车辆1000或电动车辆1000,也即是说, 本申请实施方式的热管理系统100可以用于混合动力车辆1000或电动车辆1000。电池104可以用于给混合动力车辆1000或电动车辆1000提供电源。
可以理解,目前,新能源汽车正在大范围普及,但是在低温下的续航里程一直是制约新能源汽车推广普及的痛点,在低温工况下,电池可用的放电量衰减,导致续航里程下降严重。因此,如何提高电池的续航里程成为本领域技术人员研究的技术问题。
在本申请实施方式的热管理系统100中,第二回路108上的第一换热装置112连接第一回路102,第二回路108连接冷媒回路114上的第二换热装置118,从压缩机116输送出的气态冷媒可在第二换热装置118中进行冷却放热以加热第二回路108中的液体,被加热后的液体在第一换热装置112中进行放热可加热第一回路102中的液体,从而可对第一回路102中的电池104进行加热。如此,可利用冷媒回路114中的气态冷媒冷却时释放的热量对电池104进行加热,从而防止电池104在低温工况下放电量衰减,提高续航里程。此外,在本申请的实施方式中,通过设置上述第一回路102和第二回路108,可以直接利用车辆1000本身冷媒回路114中冷媒的热量对电池104进行加热,而无需通过外部的电加热元件等方式对电池104进行加热,提高了能量的利用率。
具体地,在本申请的实施方式中,第一回路102中液体和和第二回路108中的液体可为水或者其它用于冷却的冷却液。第一泵106和第二泵110可均为水泵或者其它电动泵。冷媒回路114中的存在冷媒,从压缩机116能流出的冷媒为气态冷媒。需要说明的是,“第一泵106用于通过第一回路102向电池104输送液体”可以理解为电池104本身存在冷却管路,而第一泵106可以直接向电池104的冷却管路内输送液体,或者是电池104本身不存在冷却管路,而是在电池104的表面或者其他部位缠绕或者铺设有冷却管路,第一泵106用于将液体输送至冷却管路,具体设置方式在此不作限制。
在本实施方式中,第一换热装置112可为水水换热器或者其它形式的换热元件,第二换热装置118可为设置在冷媒回路114上的水冷冷凝器,具体不作限制。此外,在本实施方式中,第一换热装置112设置在第二回路108的同时还连接第一回路102可以理解为在第一换热装置112内存在有分别连接在第一回路102和第二回路108上的两个管道,两者相互独立但能够进行热交换。因此,在第二回路108中的液体能够在第一换热装置112内与第一回路102中的进行热交换以加热第一回路102中的液体,从而使得加热后的液体能够加热电池104。
此外,第二换热装置118设置在冷媒回路114的同时还连接第二回路108可以理解为第二换热装置118内存在有分别连接在第一回路102以及冷媒回路114上的两个管道,两者相互独立但能够进行热交换。因此,在第二回路108中的液体温度较低且第二泵110启动时,在冷媒回路114中的气态冷媒能够在第二换热装置118内冷凝以加热第二回路 108中的液体,第二泵110将被加热后的液体输送至第一换热装置112内加热第一回路102中的液体以对电池104进行加热,然后流回至第二换热装置118内,以此循环。需要说明的是,在下文若出现某一换热装置同时连接在两个回路上的类似描述时,也可参照此处进行理解。
此外,在一些实施方式中,电池104可以集成有检测第一回路102中液体的温度的功能,电池104能够实施检测第一回路102中的液体温度并上报给车辆1000的控制器,控制器可根据温度信息判断电池104是否需要加热,进而确定是否需要开启压缩机116和第二泵110。可以理解的是,在其它实施方式中,电池104也可不具备温度采集功能,可以在第一回路102上设置温度传感器以检测第一回路102中的液体的温度,从而对电池104的温度进行检测。
请参阅图2,在某些实施方式中,热管理系统100还包括暖风芯体126和第一调节装置128,第二泵110的出口连接第二换热装置118,所述第二换热装置118连接第一调节装置128,第一换热装置112的一端也连接第一调节装置128,另一端连接在暖风芯体126和第二泵110的进口之间,第一调节装置128用于调节流经第二换热装置118后流经暖风芯体126和第一换热装置112的液体的流量,其中,第二回路108流经暖风芯体126的液体用于加热车内空气。其中图2中第一回路102和第二回路108上的箭头表示第一回路102和第二回路108中的液体的流动路径,冷媒回路114上的箭头表示冷媒的流动路径。
如此,在第二回路108中的液体流经第二换热装置118被加热后,可通过第一调节装置128调节流经第一换热装置112和暖风芯体126的流量,从而在对电池104进行加热的同时也能够通过暖风芯体126对车内空气以实现车内乘员舱的供暖。并且,第一调节装置128可以调节流向第一换热装置112和暖风芯体126的经加热后的液体的流量,从而控制流向电池104的液体的温度以防止温度过高的液体进入电池104而造成热冲击。此外,在这样的情况下,给电池104加热的热源与向车内进行供暖的热源为同一个热源,其热量均来源于冷媒回路114中的冷媒在第二换热装置118中冷凝时所释放的热量,而无需另外设置额外的热源对车内进行供暖,降低了空间的占用率以及节约了成本。
具体地,在本实施方式中,第一调节装置128可以是三通比例阀,三通比例阀的三个阀口可分别连接第二换热装置118、第一换热装置112和暖风芯体126,这样,在第二回路108中的液体流经第二换热装置118被加热后,可以通过控制三通比例阀的开度来调节流经第一换热装置112和暖风芯体126的流量。
可以理解的是,在这样的实施方式中,在需要对电池104进行加热但不需要加热车内空气时,可通过第一调节装置128将流经暖风芯体126的流量调节至零而使得所有的 液体均流经第一换热装置112以加热第一回路102中的液体。
在不需要对电池104进行加热但需要加热车内空气以给乘员舱供暖时,可通过第一调节装置128将流经第一换热装置112的流量调节至零而使得所有的液体均流经暖风芯体126以加热车内空气,其具体流动路径如图2中第二回路108上的箭头所示。
当然,在一些实施方式中,在需要对电池104加热的同时也需要对乘员舱进行供暖时,可通过第一调节装置128调节流向暖风芯体126和第一换热装置112的流量比例,从而实现同时电池104和乘员舱内的同时加热,具体在此不作限制。
此外,可以理解的是,在本实施方式中,为了能够在车内形成暖风,热管理系统100还包括第一风扇124,第一风扇124用于形成流经暖风芯体126的气流以将暖风芯体126的热量带入车内,从而加热车内空气。
请继续参阅图2,在某些实施方式中,热管理系统100还包括设置在冷媒回路114上的四通阀130、第三换热装置120和第四换热装置122,四通阀130包括第一阀口a、第二阀口b、第三阀口c和第四阀口d。
第二换热装置118的出口连接第一阀口a,第三换热装置120的两端分别连接第二阀口b和第四阀口d,第四换热装置122的进口也连接第二阀口b,第四换热装置122的出口连接压缩机116的进口,压缩机116的进口连接第三阀口c。
其中,在第一阀口a和第二阀口b连通,第三阀口c和第四阀口d连通,且第二泵110和压缩机116均启动的情况下,从压缩机116流出的气态冷媒在第二换热装置118内与第二回路108中的液体进行热交换以加热第二回路108中的液体,在第二换热装置118中冷却后得到的液态冷媒能够流经第三换热装置120和\或第四换热装置122,从而在第三换热装置120内蒸发吸热后流回至压缩机116和\或在第四换热装置122内蒸发吸热以冷却车内空气后流回至压缩机116。
如此,一方面,从压缩机116流出的气态冷媒在第二换热装置118内冷凝放热后加热第二回路108中的液体,然后流经第三换热装置120和/或第四换热装置122时在第三换热装置120和/或第四换热装置122吸热蒸发,然后流回至压缩机116内,以此循环,从而实现电池104的持续加热。另一方面,流入第四换热装置122的冷媒可在第四换热装置122蒸发吸热以对车能空气进行冷却,从而实现乘员舱的制冷或者除湿。
具体地,在这样的实施方式中,第三换热装置120可为车辆1000的室外换热器,第四换热装置122可为车辆1000的室内蒸发器。在一种可能的实施方式中,在第二换热装置118内冷却后的冷媒从四通阀130的第一阀口a流入,然后从第二阀口b流出后可只流经第三换热装置120从而与车外的空气进行热交换以转变为气态冷媒后通过第四阀口d流入,然后通过第三阀口c流出并返回至压缩机116内(冷媒的流动路径如图2 中冷媒回路上的箭头所示),以此循环。在这样的情况下,第二回路108内被加热的液体可用于通过第一换热装置112加热第一回路102内的液体以对电池104进行加热或者可用于通过暖风芯体126加热车内供气以实现乘员舱的供暖,当然,由上述可知,也可通过第一调节装置128来调节液体流向第一换热装置112和暖风芯体126的流量以实现电池104和车内空气的同时加热。
另外,请参阅图3,在另一种可能的实施方式中,在第二换热装置118内冷却后的冷媒从四通阀130的第一阀口a流入,然后从第二阀口b流出后,一部分流经第三换热装置120从而与车外的空气进行热交换以转变为气态冷媒后通过第四阀口d流入,然后通过第三阀口c流出并返回至压缩机116内,另一部分流经第四换热装置122从而在第四换热装置122内与车内空气进行热交换以对车内的湿空气进行冷凝,然后流回至压缩机116内(冷媒的流动路径如图3中冷媒回路上的箭头所示),以此循环。可以理解,在这样的情况下,第二回路108内被加热的液体同样可用于通过第一换热装置112加热第一回路102内的液体以对电池104进行加热或者可用于通过暖风芯体126加热车内供气以实现乘员舱的供暖以实现乘员舱内的供暖除湿,或者可通过第一调节装置128来调节液体流向第一换热装置112和暖风芯体126的流量以实现电池104和车内空气的同时加热。
当然,还可以理解的是,在其它实施方式中,从第二阀口b流出的冷媒也可以是全部流经第四换热装置122从而在第四换热装置122内与车内空气进行热交换以对车内进行制冷,然后流回至压缩机116内,具体在此不作限制。
此外,在本实施方式中,为了使得第四换热装置122能够对车内进行制冷或者冷凝车内的湿空气,第四换热装置122可以与暖风芯体126共用一个风扇,也即是说,第一风扇124也能够用于形成流经第四换热装置122的气流以将第四换热装置122的热量或者冷量带入车内,从而为车内提供冷气或者冷凝车内的湿空气。当然,可以理解的是,在其它实施方式中,第四换热装置122也可单独采用其它的风扇,具体在此不作限制。
请参阅图2和图3,可以理解的是,为了使得第三换热装置120内的冷媒能够进行充分的热交换,车载热管理系统100还包括第二风扇125,第二风扇125用于形成流经第三换热装置120的气流以与冷媒进行充分的热交换。
进一步地,请参阅图1至图3,在这样的实施方式中,热管理系统100还包括第二调节装置132,第二调节装置132连接在第二阀口b和第四换热装置122之间,第二调节装置132用于调节进入第四换热装置122的冷媒的流量。
如此,可通过第二调节装置132来调节进入第四换热装置122内的冷媒的流量从而决定第四换热装置122是否工作以对车内进行制冷或者冷凝车内的湿空气。例如,在不 需要第四换热装置122工作时,可通过第二调节装置132关闭连接第四换热装置122的管路,从而阻止冷媒进入第四换热装置122内。
具体地,在本申请的实施方式中,第二调节装置132可对进入第四换热装置122之前的冷媒进行节流降压,第二调节装置132可为电子膨胀阀或者带有截止和节流功能的热力膨胀阀或者带有截止和节流功能的节流管,具体在此不作限制。
此外,请继续参阅图1至图3,在某些实施方式中,热管理系统100还包括第三调节装置133,第三调节装置133连接在第二阀口b和第三换热装置120之间,第三调节装置133用于调节进入第三换热装置120的冷媒的流量。
如此,在第一阀口a与第二阀口b连通,第三阀口c和第四阀口d连通的情况下,可通过第三调节装置133来调节进入第三换热装置120内的冷媒的流量从而决定第三换热装置120是否工作以使得从第二阀口b流出的冷媒是否流入第三换热装置120内蒸发吸热。例如,在不需要第三换热装置120工作时,可通过第三调节装置133关闭连接第三换热装置120的管路,从而阻止冷媒进入第三换热装置120内。
具体地,请参阅图2和图3,在一些实施方式中,第三调节装置133可包括单向阀1331和电子膨胀阀1332,单向阀1331连接在第二阀口b和第三换热装置120之间的管路上,单向阀1331用于阻隔第二阀口b流出的冷媒流向第三换热装置120,电子膨胀阀1332并联在单向阀1331的两端,如此,可通过调节电子膨胀阀1332的开度来调节流入第三换热装置120的冷媒的流量,可以理解,电子膨胀阀1332可以对进入第三换热装置120之前的冷媒进行节流降压。当然,在一些实施方式中,电子膨胀阀1332也可替换成带有截止和节流功能的热力膨胀阀或者带有截止和节流功能的节流管等节流元件,具体在此不作限制。
请参阅图4,在某些实施方式中,在第一阀口a与第四阀口d连通,第二阀口b和第三阀口c均断开,且第二泵110停止的情况下,从压缩机116流出的气态冷媒先在第三换热装置120冷却放热,然后能够在第四换热装置122内蒸发吸热以冷却车内空气,流经第四换热装置122后的冷媒流回至压缩机116,其冷媒流动路径如图4中冷媒回路上的箭头所示。
如此,第二泵110不工作,气态冷媒在流经第二换热装置118时只流经而不进行换热,气态冷媒流经第二换热装置118后通过第一阀口a和第四阀口d流入第三换热装置120内冷却放热,然后再流入第四换热装置122内蒸发吸热,从而对车内的空气进行冷却,实现车辆1000乘员舱的空调制冷。
具体地,在这样的实施方式中,第二泵110停止工作,第二回路108中的液体停止循环,从压缩机116流出的气态冷媒在第二换热装置118内不进行换热,而是流经第二 换热装置118后直接通过第一阀口a和第四阀口d流入第三换热装置120内,然后流经第二调节装置132后进入第二阀口b和第四换热装置122之间的管路内,从而进入至第四换热装置122内蒸发吸热以对车内空气进行冷却,从而实现制冷,在这样的情况下,第二调节装置132处于工作状态,第三调节装置133的电子膨胀阀1332处于关闭状态。
请参阅图5,在某些实施方式中,热管理系统100还包括设置在第一回路102上的第五换热装置134,第五换热装置134的一端还连接第二阀口b,另一端连接在第三阀口c和压缩机116之间。其中,在第一阀口a与第四阀口d连通,第二阀口b和第三阀口c均断开,且第二泵110停止,第一泵106启动的情况下,从压缩机116流出的气态冷媒先在第三换热装置120冷却放热,然后能够在第五换热装置134内蒸发吸热以冷却第一回路102中的液体,从而对电池104进行冷却,其冷媒流动路径如图5中冷媒回路上的箭头所示。
如此,在需要对电池104进行降温时,可将第一阀口a与第四阀口d连通,第三阀口c和第四阀口d均断开,第二泵110停止工作,压缩机116流出的气态冷媒在流经第二换热装置118时只流经而不进行换热,气态冷媒流经第二换热装置118后通过第一阀口a和第四阀口d流入第三换热装置120内冷却放热,然后再流入第五换热装置134内蒸发吸热以冷却第一回路102中的液体,进而对电池104进行强制冷却以避免电池104过热。
可以理解的是,在这样的实施方式中,第二调节装置132可以处于关闭状态也可以是处于工作状态。在第二调节装置132处于关闭状态时,流经第三换热装置120冷却放热后的冷媒只流经第五换热装置134,从而实现对电池104的强制冷却。在第二调节装置132处于工作状态时,流经第三换热装置120冷却放热后的冷媒可一部分流经第四换热装置122以实现车冷空气的冷却,另一部流经第五换热装置134以实现电池104的强制冷却,从而同时实现乘员舱的制冷和电池104的强制冷却。
另外,请参阅图5,在某些实施方式中,热管理系统100还包括第四调节装置135,第四调节装置135连接在第五换热装置134和第二阀口b之间,第四调节装置135用于调节进入第五换热装置134的冷媒的流量。
这样,可通过第四调节装置135来调节进入第五换热装置134的冷媒的流量来决定第五换热装置134是否工作以及决定对电池104进行强制制冷的强度,从而实现冷媒的精准控制以对电池104进行精准降温。例如,电池104可自动上报第一回路102中的液体的温度,在液体温度过高时,则表示电池104过热,然后可通过第四调节装置135来调节进入第五换热装置134的冷媒的流量,从而实现相应的降温。
具体地,在本申请的实施方式中,第四调节装置135可对进入第五换热装置134之 前的冷媒进行节流降压,第四调节装置135也可为电子膨胀阀或者带有截止和节流功能的热力膨胀阀或者带有截止和节流功能的节流管,具体在此不作限制。
可以理解的是,在上述实施方式中,在不需要通过第五换热装置134对第一回路102中液体进行冷却以实现电池104的冷却时,第四调节装置135处于关闭状态。例如,在需要对电池104进行加热时,第四调节装置135处于关闭状态。
请参阅图6,在某些实施方式中,热管理系统100包括设置在第一回路102上的第五换热装置134,第五换热装置134的一端连接第二阀口b,另一端连接在第三阀口c和压缩机116之间。
热管理系统100还包括均设置在第三回路136的驱动部件138、第三泵140和换向阀142,第三泵140用于使得第三回路136内的液体流经驱动部件138以对驱动部件138降温,换向阀142还连接第一回路102,换向阀142用于可选择地连通第一回路102和第三回路136。
在第一回路102与第三回路136连通的情况下,第三回路136中流经驱动部件138后被加热液体能够流入第一回路102并流经第五换热装置134。其中,在第一阀口a和第二阀口b连通,第三阀口c和第四阀口d连通,且第二泵110和压缩机116均启动的情况下,从压缩机116流出的气态冷媒在第二换热装置118内与第二回路108中的液体进行热交换以加热第二回路108中的液体,冷却后的冷媒能够在第五换热装置134内与从第三回路136进入至第一回路102中的液体进行换热后流回至压缩机116,其冷媒流动路径如图6中冷媒回路上的箭头所示,液体流动路径如图6中的第一回路102、第二回路108以及第三回路136上的箭头所示。
如此,通过换向阀142连通第一回路102和第三回路136,可将第三回路136中被驱动部件138加热过后的液体输送至第一回路102内,从而在第五换热装置134内与冷媒进行热交换以对冷媒进行蒸发,以此循环,可以实现对驱动部件138所产生的废热进行利用,节约能源,也即是说,在这样的实施方式中,可以利用驱动部件138所产生的热量来对车内空气进行加热以实现乘员舱的供暖以及采暖除湿等工作。
具体地,在这样的实施方式中,在需要利用驱动部件138产生的余热对乘员舱进行供暖时,从压缩机116内流出的气态冷媒在第二换热装置118内与第二回路108中的液体进行热交换,从而加热第二回路108中的液体,可通过第一调节装置128将第二回路108内流经第一换热装置112的流量调节成零,第二回路108中的被加热的液体全部进入暖风芯体126中以加热车内空气从而实现乘员舱的供暖,随后,冷媒从第二换热装置118流出后从第一阀口a进入,从第二阀口b流出至第五换热装置134,从而在第五换热装置134内与从第三回路136流入至第一回路102中的液体进行热交互以吸热蒸发, 随后进入压缩机116,以此循环,从而实现利用驱动部件138所产生的废热对乘员舱进行供暖。
还可以理解的是,在这样的情况下,若驱动部件138所产生的废热不足以满足供暖需求,可通过第三调节装置133将一部分冷媒分流至第三换热装置120内进行蒸发吸热后与流经第五换热装置134后的冷媒在进入压缩机116前完成汇合。也即是说,在这样的实施方式中,从第二阀口b流出的冷媒可一部分流经至第五换热装置134,在第五换热装置134内蒸发吸热后流回至压缩机116,另一部分可流经第三换热装置120,在第三换热装置120内蒸发吸热后流回至压缩机116。
另外,在一个可能的实施方式中,从第二阀口b流出的冷媒也可一部分流经第四换热装置122,例如,可通过第二调节装置132调节进入第四换热装置122内的冷媒的流量,从而使得冷媒在第四换热装置122内与车内空气进行以对车内的湿空气进行冷凝除湿,也即是说,在这样的实施方式中,从第二阀口b流出的冷媒可一部分流经至第五换热装置134,在第五换热装置134内蒸发吸热后流回至压缩机116,另一部分可流经第四换热装置122,在第四换热装置122内蒸发吸热以对车内空气进行除湿后流回至压缩机116,从而实现乘员舱的供暖和除湿。
再有,可以理解的是,在一个可能的实施方式中,从第二阀口b流出的冷媒也可分三路分别流经第三换热装置120、第四换热装置122以及第五换热装置134,分别在这个三个换热装置内进行蒸发吸热后流回至压缩机116,具体在此不作限制。
需要说明的是,在这样的实施方式中,第一回路102中的液体和第三回路136中的液体为同样类型的冷却液,例如都为水或者其他冷却液。这样,不会出现冷却液混合而导致污染的现象。
具体地,请参阅图6,在本实施方式中,换向阀142可为四通阀,换向阀142包括第五阀口d、第六阀口e、第七阀口f和第八阀口g,第五阀口d和第六阀口e连接在第一回路102上,第七阀口f和第八阀口g连接在第三回路136上。
其中,在第五阀口d和第六阀口e连通、第七阀口f和第八阀口g连通时,第一回路102和第三回路136相互独立。在第五阀口d和第八阀口g连通、第六阀口e和第七阀口f连通时,第一回路102和第三回路136连通,第三回路136上的液体通过第八阀口g和第一阀口a流入第一回路102与第一回路102中的液体混合,然后第五换热装置134后通过第六阀口e和第七阀口f流回至第三回路136,以此循环以实现对驱动部件138的废热的利用。
另外,在本申请的实施方式中,驱动部件138可包括驱动电机和电机控制器等用于对车辆1000进行驱动和控制的电子元件。
此外,可以理解的是,在某些实施方式中,在电池104的加热需求不高时,也可通过连通第一回路102和第二回路108直接利用驱动部件138所产生的废热对电池104进行加热。具体地,在这样的实施方式中,压缩机116和第二泵110均可处于关闭状态,第三回路136中被驱动部件138加热后的液体可进入第一回路102中直接对电池104进行加热,然后回到第三回路136中,以此循环,从而利用驱动部件138所产生的废热对电池104进行加热。
请参阅图7,在某些实施方式中,热管理系统100还包括设置在第三回路136上的散热器146和第五调节装置144,第五调节装置144设置在驱动部件138和散热器146之间,散热器146的两端分别连接第五调节装置144和换向阀142。热管理系统100还包括连接管148,连接管148的一端连接第五调节装置144,另一端连接在换向阀142和散热器146之间,第五调节装置144用于调节流向散热器146和连接管148的液体的流量,散热器146用于冷却第三回路136中的液体。
如此,第五调节装置144可以调节流向散热器146的流量,从而控制第三回路136中的液体的温度,进而可通过第五调节装置144来控制第三回路136中的液体的温度来调节进入第五换热装置134内的液体的温度。
具体地,在这样的实施方式中,在需要利用驱动部件138的废热在第五换热装置134内与冷媒进行热交换时,换向阀142连通第一回路102和第三回路136,第五调节装置144可以将流经散热器146的流量调至较小或者零。此时,第三回路136中被驱动部件138加热后的液体全部或者大部分直接通过连接管148然后通过换向阀142流入第一回路102中与第一回路102中的液体混合,流经第五换热装置134时与冷媒进行热交换以蒸发冷媒,随后再通过换向阀142流回至第三回路136。可以理解是,在这样的实施方式中,第五调节装置144也可以为三通比例阀。
在本实施方式中,为了能够对将散热器146的热量带走,散热器146可以与第三换热装置120共用一个风扇,也即是说,第二风扇125也能够用于形成流经散热器146的气流以将散热器146的热量带走散发至车外。当然,可以理解的是,在其它实施方式中,散热器146也可单独采用其它的风扇或者散热器146本身集成有散热风扇,另外,在散热器146的散热性能较好的情况下,也可不给散热器146设置风扇,具体在此不作限制。
此外,在某些实施方式中,在环境温度较低且电池104需要进行降温时,电池104无需采用额外的装置对电池104进行冷却,换向阀142可连通第一回路102和第三回路136,此时,第一回路102中的液体流入第三回路136,进而流经散热器146,散热器146对流经其本身的液体进行散热,然后重新流回第一回路102并流经电池104以吸收电池104的热量,以此循环,从而实现对电池104的散热和降温。可以理解的是,在这样的 过程中,第一液体和第三液体混合形成也液体也会流经驱动部件138,这样,同样也可以对驱动部件138进行降温和散热。
可以理解,在外界温度极低的情况下,受冷媒特性影响,会出现热量供应不足的现象,基于此,请参阅图8,在某些实施方式中,热管理系统100还包括设置在第二回路108上的液体加热器150,液体加热器150用于加热第二回路108中的液体。
如此,在外界温度极低,受冷媒特性影响而导致冷媒所供应的热量不足以给电池104进行加热或者不足以给车内的空气进行加热时,可通过液体加热器150对第二回路108中的液体进行加热以补充热量。
此外,在这样的实施方式中,在外界环境温度较低时,例如,在冬季对电池104充电的过程中,冷媒回路114不工作,可通过液体加热器150加热第二回路108中的液体,然后通过第一调节装置128加热第一回路102中的液体从而将热量存储在第五换热装置134和第一回路102中。在需要对乘员舱进行供暖时,压缩机116启动,压缩机116流出的冷媒在第二换热装置118内与第二回路108中的液体热交换,从四通阀130的第二阀口b流出至第五换热装置134以利用第一回路102中存储的热量对冷媒进行蒸发,从而实现利用电池104储能对车内空气进行以实现乘员舱的供暖。此外,正如上文所示的,在这样的实施方式中,从第二阀口b流出的冷媒也可以部分流入至第四换热装置122内对车内的湿空气进行冷凝,从而实现利用第一回路102进行储能以实现乘员舱的采暖除湿。
再有,可以理解,在环境湿度较大的情况下,长时间运行电池104加热模式以及乘员舱供暖模式,容易造成第三换热装置120的结冰,导致制热量不足。在某些实施方式中,为了实现对第三换热装置120的除冰,可将四通阀130的第一阀口a与第四阀口d连通,第二阀口b和第三阀口c均断开,第二调节装置132处于关闭状态,液体加热器150工作,由于第二回路108中液体的温度较高,从压缩机116流出的气态冷媒在第二换热装置118内不进行换热,随后气态冷媒第一阀口a流入,第四阀口d流出,流经第三换热装置120内进行冷却吸热以实现快速除冰,然后通过第四调节装置135进入第五换热装置134,在第五换热装置134内蒸发吸热和流回至压缩机116。
在这样的情况下,第二回路108上的第二泵110工作,第二回路108中被液体加热器150加热的液体通过第一调节装置128分成两路,一路流进暖风芯体126,完成车内的从采暖加热,另一路流经第一换热装置112,在第一换热装置112加热第一回路102中液体,以对电池104进行加热,从而完成第一回路102中的水温补偿,保障电池104温度的稳定。在此过程中,第一调节装置128按两路的需求完成比例分配的开启,第一回路102内,第一泵106工作,流经电池104,在第五换热装置134中被冷媒回路114 蒸发吸热,冷却液温度降低后在第一换热装置112内完成温度补偿。
可以理解的是,在这样的实施方式中,在驱动部件138无废热回收可利用的情况下,第一回路102和第三回路136处于并联状态。如果第三回路136有余热可以利用,则可通过换向阀142连通第三回路136和第一回路102,从而对驱动部件138的废热进行回收利用,具体实现方式已在上文进行了详细介绍,在此不作重复阐述。
请参阅图9,在某些实施方式中,热管理系统100还包括气液分离器152,气液分离器152设置在压缩机116的进口处,从第二阀口c流出的冷媒以及从第四换热装置122流出的冷媒均先流经气液分离器152后再流入压缩机116中。
如此,在冷媒进入压缩机116之前先流经气液分离器152可以将冷媒中的液体分离出来,防止对压缩机116造成液击。
请参阅图9,在某些实施方式中,在压缩机116的出口处设置有第一温度传感器154,第一温度传感器154用于检测从压缩机116中流出的气态冷媒的温度以对压缩机116进行温度保护,例如,在冷媒的温度过高时,可将压缩机116及时关闭。
此外,在一些实施方式中,在第二换热装置118的出口处还设置有高压压力温度一体式传感器156,从而检测从第二换热装置118流出的冷媒的压力和温度以计算过冷度以调节第三调节装置133的电子膨胀阀1332的开度。在第三换热装置120的进口和出口处均设置有制冷剂温度传感器158,分别用于计算第三换热装置120的过热度和过冷度。在气液分离器152之前的管路上,设置低压压力传感器160,用于检测低压压力。在第四换热装置122的出口也设置制冷剂温度传感器162,用于计算第四换热装置122出口的过热度。在第五换热装置134的出口设置也制冷剂温度传感器164,用于计算第五换热装置134出口的过热度。此外,在第三回路136上也设置有温度传感器166,温度传感器166用于监测第三回路136中的液体的温度。
由上述可知,在本申请的热管理系统100的实现的功能较为丰富,基本将所有的能量都有效的回收利用,例如,利用冷媒回路114的上的冷媒的冷却和蒸发对电池104进行加热和冷却、对乘员舱进行供暖和除湿以及利用驱动部件138所产生的废热给电池104进行加热以及对乘员舱进行供暖和除湿以及利用电池104和第一回路102进行储能以用于乘员舱的供暖除湿等。其次,本申请的热管理系统100可实现多功能,系统回路较为简单,不需增加较多的功能组件,降低了成本,性价比较较高。另外,本申请的热管理系统100还根据不同的环境温度,不同的驾驶习惯,可以选择进入不同的工作模式,降低能耗,例如在处于冬季低温环境下时,可通过冷媒回路114对电池104进行加热以提高续航里程,并且可利用冷媒回114路对乘员舱进行供暖和除湿,同时还可利用电机等驱动部件138所产生的热量对乘员舱进行供暖和除湿,以及对室外换热器进行高效的 除冰等。
请参阅图10,本申请实施方式的车辆1000包括车体200和上述任一实施方式的热管理系统100,热管理系统100安装在车体200。具体地,上述车辆1000可以为混合动力车辆1000或电动车辆1000,具体不作限制。
在本申请实施方式的车辆1000中,第二回路108上的第一换热装置112连接第一回路102,第二回路108连接冷媒回路114上的第二换热装置118,从压缩机116输送出的气态冷媒可在第二换热装置118中进行冷却放热以加热第二回路108中的液体,被加热后的液体在第一换热装置112中进行放热可加热第一回路102中的液体,从而可对第一回路102中的电池104进行加热。如此,可利用冷媒回路114中的气态冷媒冷却时释放的热量对电池104进行加热,从而防止电池104在低温工况下放电量衰减,提高续航里程。此外,在本申请的实施方式中,通过设置上述第一回路102和第二回路108,可以直接利用车辆1000本身冷媒回路中冷媒的热量对电池104进行加热,而无需通过外部的电加热元件等方式对电池104进行加热,提高了能量的利用率。此外,由上述可知,在本申请的热管理系统100还可利用冷媒回路114的上的冷媒的冷却和蒸发对电池104进行加热和冷却、对乘员舱进行供暖和除湿以及利用驱动部件138所产生的废热给电池104进行加热以及对乘员舱进行供暖和除湿以及利用电池104和第一回路102进行储能以用于乘员舱的供暖除湿等,功能较为丰富。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管上面已经示出和描述了本申请的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施实施进行变化、修改、替换和变型。

Claims (12)

  1. 一种热管理系统,用于车辆,其特征在于,包括:
    均设置在第一回路上的电池和第一泵,所述第一泵用于通过所述第一回路向所述电池输送液体;
    均设置在第二回路上第二泵和第一换热装置,所述第一换热装置连接所述第一回路,所述第二泵能够通过所述第二回路向所述第一换热装置输送液体;和
    均设置在冷媒回路上的压缩机和第二换热装置,所述第二换热装置连接所述第二回路,所述第二泵能够通过所述第二回路向所述第二换热装置输送液体;
    其中,在所述第二泵和所述压缩机启动时的情况下,所述第二泵通过所述第二回路向所述第二换热装置输送液体以在所述第二换热装置内与所述冷媒回路中的冷媒进行热交换,从而加热所述第二回路中液体,以使所述第二回路中被加热后的液体流经所述第一换热装置时与所述第一回路中的液体进行热交换以加热所述第一回路中的液体,从而对所述电池进行加热。
  2. 根据权利要求1所述的热管理系统,其特征在于,所述热管理系统还包括设置在所述第二回路上的暖风芯体和第一调节装置,所述第二泵的出口连接所述第二换热装置,所述第二换热装置连接所述第一调节装置,所述第一换热装置的一端连接所述第一调节装置,另一端连接在所述暖风芯体和所述第二泵的进口之间,所述第一调节装置用于调节流经所述第二换热装置后流经所述暖风芯体和所述第一换热装置的液体的流量,其中,所述第二回路流经所述暖风芯体的液体用于加热车内空气。
  3. 根据权利要求1所述的热管理系统,其特征在于,所述热管理系统还包括设置在所述冷媒回路上的四通阀、第三换热装置和第四换热装置,所述四通阀包括第一阀口、第二阀口、第三阀口和第四阀口;
    所述第二换热装置的出口连接所述第一阀口,所述第三换热装置的两端分别连接所述第二阀口和所述第四阀口,所述第四换热装置的进口也连接所述第二阀口,所述第四换热装置的出口连接所述压缩机的进口,所述压缩机的进口连接所述第三阀口;
    其中,在所述第一阀口和所述第二阀口连通,所述第三阀口和第四阀口连通,且所述第二泵和所述压缩机均启动的情况下,从所述压缩机流出的气态冷媒在所述第二换热装置内与所述第二回路中的液体进行热交换以加热所述第二回路中的液体,在所述第二换热装置中冷却后得到的液态冷媒能够流经所述第三换热装置和\或所述第四换热装置, 从而在所述第三换热装置内蒸发吸热后流回至所述压缩机和\或在所述第四换热装置内蒸发吸热以冷却车内空气后流回至所述压缩机。
  4. 根据权利要求3所述的热管理系统,其特征在于,所述热管理系统还包括第二调节装置,所述第二调节装置连接在所述第二阀口和所述第四换热装置之间,所述第二调节装置用于调节进入所述第四换热装置的冷媒的流量。
  5. 根据权利要求3所述的热管理系统,其特征在于,所述热管理系统还包括第三调节装置,所述第三调节装置连接在所述第二阀口和所述第三换热装置之间,所述第三调节装置用于调节进入所述第三换热装置的冷媒的流量。
  6. 根据权利要求3所述的热管理系统,其特征在于,在所述第一阀口与所述第四阀口连通,所述第二阀口和所述第三阀口均断开,且所述第二泵停止的情况下,从所述压缩机流出的气态冷媒先在所述第三换热装置冷却放热,然后能够在所述第四换热装置内蒸发吸热以冷却车内空气,流经所述第四换热装置后的冷媒流回至所述压缩机。
  7. 根据权利要求3所述的热管理系统,其特征在于,所述热管理系统还包括设置在所述第一回路上的第五换热装置,所述第五换热装置的一端连接所述第二阀口,另一端连接在第三阀口和所述压缩机之间;
    其中,在所述第一阀口与所述第四阀口连通,所述第二阀口和所述第三阀口均断开,且所述第二泵停止的情况下,从所述压缩机流出的气态冷媒先在所述第三换热装置冷却放热,然后能够在所述第五换热装置内蒸发吸热以冷却所述第一回路中的液体,从而对所述电池进行冷却。
  8. 根据权利要求3所述的热管理系统,其特征在于,所述热管理系统包括设置在所述第一回路上的第五换热装置,所述第五换热装置的一端连接所述第二阀口,另一端连接在第三阀口和所述压缩机之间;
    所述热管理系统还包括均设置在第三回路的驱动部件、第三泵和换向阀,所述第三泵用于使得所述第三回路内的液体流经所述驱动部件以对所述驱动部件降温,所述换向阀还连接所述第一回路,所述换向阀用于可选择地连通所述第一回路和所述第三回路;
    在所述第一回路与所述第三回路连通的情况下,所述第三回路中流经所述驱动部件后被加热液体能够流入所述第一回路并流经所述第五换热装置;
    其中,在所述第一阀口和所述第二阀口连通,所述第三阀口和第四阀口连通,且所述第二泵和所述压缩机均启动的情况下,从所述压缩机流出的气态冷媒在所述第二换热装置内与所述第二回路中的液体进行热交换以加热所述第二回路中的液体,冷却后的冷媒还能够在所述第五换热装置内与从所述第三回路进入至所述第一回路中的液体进行换热后流回至所述压缩机。
  9. 根据权利要求8所述的热管理系统,其特征在于,所述热管理系统还包括第四调节装置,所述第四调节装置连接在所述第五换热装置和所述第二阀口之间,所述第四调节装置用于调节进入所述第五换热装置的冷媒的流量。
  10. 根据权利要求8所述的热管理系统,其特征在于,所述热管理系统还包括设置在所述第三回路上的散热器和第五调节装置,所述第五调节装置设置在所述驱动部件和所述散热器之间,所述散热器的两端分别连接所述第五调节装置和所述换向阀;
    所述热管理系统还包括连接管,所述连接管的一端连接所述第五调节装置,另一端连接在所述换向阀和所述散热器之间,所述第五调节装置用于调节流向所述散热器和所述连接管的液体的流量,所述散热器用于冷却所述第三回路中的液体。
  11. 根据权利要求1-10任一项所述的热管理系统,其特征在于,所述热管理系统还包括设置在所述第二回路上的液体加热器,所述液体加热器用于加热所述第二回路中的液体。
  12. 一种车辆,其特征在于,包括车体和权利要求1-11任一项所述的热管理系统,所述热管理系统安装在所述车体。
PCT/CN2021/100670 2020-10-14 2021-06-17 热管理系统和车辆 WO2022077944A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011095995.6 2020-10-14
CN202011095995.6A CN112193016B (zh) 2020-10-14 2020-10-14 热管理系统和车辆

Publications (1)

Publication Number Publication Date
WO2022077944A1 true WO2022077944A1 (zh) 2022-04-21

Family

ID=74009008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100670 WO2022077944A1 (zh) 2020-10-14 2021-06-17 热管理系统和车辆

Country Status (2)

Country Link
CN (1) CN112193016B (zh)
WO (1) WO2022077944A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024001481A1 (zh) * 2022-06-29 2024-01-04 比亚迪股份有限公司 热管理系统和具有其的车辆
WO2024067490A1 (zh) * 2022-09-29 2024-04-04 比亚迪股份有限公司 用于车辆的集成模块、热管理系统和车辆

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112193016B (zh) * 2020-10-14 2022-08-16 广州小鹏汽车科技有限公司 热管理系统和车辆
CN112886089B (zh) * 2021-01-07 2022-10-14 广州橙行智动汽车科技有限公司 热管理系统和车辆
CN114006082A (zh) * 2021-10-29 2022-02-01 西安交通大学 锂电池温度控制装置
CN114851802A (zh) * 2022-04-29 2022-08-05 岚图汽车科技有限公司 一种集成式热管理装置及系统
CN117382370A (zh) * 2022-07-05 2024-01-12 华为技术有限公司 一种电动汽车热管理系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190176571A1 (en) * 2017-12-08 2019-06-13 Hyundai Motor Company Hvac system of vehicle
CN110039973A (zh) * 2019-05-21 2019-07-23 威马智慧出行科技(上海)有限公司 一种电动车辆的热管理系统
CN111129663A (zh) * 2019-12-17 2020-05-08 广州小鹏汽车科技有限公司 车载热管理系统和车辆
CN111216515A (zh) * 2020-02-25 2020-06-02 中国第一汽车股份有限公司 一种电动汽车热管理系统
CN211592161U (zh) * 2019-11-20 2020-09-29 泰铂(上海)环保科技股份有限公司 一种电动汽车用集成间接式热泵的整车热管理系统
CN112193016A (zh) * 2020-10-14 2021-01-08 广州小鹏汽车科技有限公司 热管理系统和车辆
CN112886089A (zh) * 2021-01-07 2021-06-01 广州橙行智动汽车科技有限公司 热管理系统和车辆

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108592441A (zh) * 2018-05-21 2018-09-28 江西江铃集团新能源汽车有限公司 电动汽车热管理系统
CN108973591B (zh) * 2018-08-02 2024-04-16 威马智慧出行科技(上海)有限公司 电动汽车温度调控系统及其控制方法
CN209365827U (zh) * 2019-01-04 2019-09-10 上海银轮热交换系统有限公司 一种新能源汽车车用余热回收式热泵空调系统
JP2020147161A (ja) * 2019-03-13 2020-09-17 トヨタ自動車株式会社 車載温調装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190176571A1 (en) * 2017-12-08 2019-06-13 Hyundai Motor Company Hvac system of vehicle
CN110039973A (zh) * 2019-05-21 2019-07-23 威马智慧出行科技(上海)有限公司 一种电动车辆的热管理系统
CN211592161U (zh) * 2019-11-20 2020-09-29 泰铂(上海)环保科技股份有限公司 一种电动汽车用集成间接式热泵的整车热管理系统
CN111129663A (zh) * 2019-12-17 2020-05-08 广州小鹏汽车科技有限公司 车载热管理系统和车辆
CN111216515A (zh) * 2020-02-25 2020-06-02 中国第一汽车股份有限公司 一种电动汽车热管理系统
CN112193016A (zh) * 2020-10-14 2021-01-08 广州小鹏汽车科技有限公司 热管理系统和车辆
CN112886089A (zh) * 2021-01-07 2021-06-01 广州橙行智动汽车科技有限公司 热管理系统和车辆

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024001481A1 (zh) * 2022-06-29 2024-01-04 比亚迪股份有限公司 热管理系统和具有其的车辆
WO2024067490A1 (zh) * 2022-09-29 2024-04-04 比亚迪股份有限公司 用于车辆的集成模块、热管理系统和车辆

Also Published As

Publication number Publication date
CN112193016B (zh) 2022-08-16
CN112193016A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
WO2022077944A1 (zh) 热管理系统和车辆
WO2022147975A1 (zh) 热管理系统和车辆
US20230158856A1 (en) Heat pump system for vehicle
CN114312205B (zh) 热管理系统、热管理系统的控制方法与电动汽车
CN109291763B (zh) 一种热泵空调系统及其控制方法和汽车
WO2020108542A1 (zh) 车辆热管理系统及其控制方法、车辆
JP5396246B2 (ja) 車両用空調装置
JP4150770B2 (ja) 車両冷却システム
EP3984795B1 (en) Thermal management system
CN111216515A (zh) 一种电动汽车热管理系统
CN107914538B (zh) 一种电动汽车热管理系统
CN111251802B (zh) 车辆的热管理系统及车辆
CN107639992B (zh) 一种热管理系统
CN111129663B (zh) 车载热管理系统和车辆
CN114734778A (zh) 一种集成式模块化整车热管理系统
CN112302778A (zh) 一种混合动力汽车整车热管理装置及管理方法
CN111251814B (zh) 车辆的热管理系统及车辆
EP3982054A1 (en) Heat exchanger and heat exchange system
CN116215186A (zh) 车载热循环系统和车辆
CN111251804B (zh) 车辆的热管理系统及车辆
CN219856733U (zh) 车载热循环系统和车辆
CN116512864B (zh) 混合动力车辆热量管理系统和混合动力车辆
CN220904609U (zh) 用于车辆的综合热管理系统
KR102577144B1 (ko) 자동차용 히트펌프 시스템
CN220281077U (zh) 车辆热管理系统和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21878994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21878994

Country of ref document: EP

Kind code of ref document: A1