WO2022077504A1 - 一种用于无线保真Wi-Fi系统的通信方法及装置 - Google Patents

一种用于无线保真Wi-Fi系统的通信方法及装置 Download PDF

Info

Publication number
WO2022077504A1
WO2022077504A1 PCT/CN2020/121687 CN2020121687W WO2022077504A1 WO 2022077504 A1 WO2022077504 A1 WO 2022077504A1 CN 2020121687 W CN2020121687 W CN 2020121687W WO 2022077504 A1 WO2022077504 A1 WO 2022077504A1
Authority
WO
WIPO (PCT)
Prior art keywords
mcs
symbols
field
siga
symbol
Prior art date
Application number
PCT/CN2020/121687
Other languages
English (en)
French (fr)
Inventor
阮卫
林伟
王庭武
沈旭强
王茜
李慕鹄
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/121687 priority Critical patent/WO2022077504A1/zh
Priority to CN202080100343.9A priority patent/CN115462013A/zh
Priority to EP20957282.5A priority patent/EP4221007A4/en
Publication of WO2022077504A1 publication Critical patent/WO2022077504A1/zh
Priority to US18/300,506 priority patent/US20230254061A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0029Reduction of the amount of signalling, e.g. retention of useful signalling or differential signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0031Multiple signaling transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/007Unequal error protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0086Unequal error protection
    • H04L1/0089Unequal error protection in payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0083Formatting with frames or packets; Protocol or part of protocol for error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0098Unequal error protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and device for a wireless fidelity Wi-Fi system.
  • Wi-Fi technology is a wireless local area network technology created by the Wi-Fi Alliance based on the Institute of Electrical and Electronic Engineers (IEEE) 802.11 standard. Wi-Fi technology usually involves two types of devices, an access point (AP) and a station (station, STA).
  • the AP may also be called a wireless access point, which is a provider of a Wi-Fi network, allows other wireless devices to access, and provides data access for the connected devices.
  • a device accessing a Wi-Fi network may be referred to as a STA.
  • electronic devices that support Wi-Fi functions such as mobile phones, tablet computers, and notebook computers, can be used as STAs.
  • User data is transmitted between the AP and the STA through Wi-Fi physical frames (referred to as Wi-Fi frames).
  • Wi-Fi networks of 802.11g, 802.11n, 802.11a, 802.11ac, and 802.11ax protocols all use orthogonal frequency division multiplexing (OFDM) technology.
  • the Wi-Fi frame sent by the sender includes a preamble field (preamble) and a data field (data).
  • the scrambling code seed is coded together with the first OFDM symbol of the data field part
  • the preamble field (signal field A, SIGA) includes the order of the modulation and coding scheme (MCS) of the data field part ( or index value), and the OFDM symbols of all data fields have the same order of MCS.
  • MCS modulation and coding scheme
  • the signal-to-noise ratio of channel estimation in the first few symbols is often relatively weak.
  • the frequency offset and phase correction capabilities Relatively weak, inter-channel interference (ISI) and inter-symbol interference (ISI) are relatively high, and high-order modulation is sensitive to frequency offset and phase, so the actual receiver
  • the probability of decoding the first OFDM symbol will be relatively high, and decoding the scrambling code will lead to a 50% bit error rate of the data, resulting in the failure of data packet demodulation, thus affecting the throughput of the system; even if the scrambling code probabilistic solution Yes, the probability of the first few symbols to be wrong is also relatively large.
  • the present application provides a communication method and device for a wireless fidelity Wi-Fi system, which can improve the demodulation performance of the Wi-Fi frame by the device.
  • a communication method for a Wireless Fidelity Wi-Fi system may be performed by a first communication device, the first communication device may also be a module or a chip in the first communication device, and the first communication device may also be a chip or a system-on-chip, and the method includes the following steps: first, generating A Wi-Fi frame including a first preamble field, where the first preamble field is used to indicate the modulation and coding strategy MCS of at least one symbol in the data field in the Wi-Fi frame, wherein the first m of the at least one symbol The order of the MCS of the symbol is smaller than the orders of the MCS of other symbols, where m is a positive integer greater than or equal to 1; then, the Wi-Fi frame is transmitted.
  • the symbols in this scheme may be OFDM symbols.
  • the order of the MCS of the first few symbols of the data field in the Wi-Fi frame is mainly reduced, that is, compared with other symbols after the first few symbols, the first few symbols are encoded with a lower order of MCS. , thereby reducing the requirement on the demodulation capability of the receiver, increasing the probability of unpairing the first few symbols, and further improving the demodulation performance of other symbols using high-order MCS coding.
  • the first preamble field includes a first high-efficiency signal field HE-SIGA; the method further includes: determining that the order of the MCS of the first m symbols is lower than the order of the MCS of other symbols. ; Include the order of the MCS of the numerical value and other symbols in the first high-efficiency signal field HE-SIGA. The method further includes: including a bit for indicating the value of m in the first high-efficiency signal field HE-SIGA.
  • the first high-efficiency signal field HE-SIGA of the first preamble field includes the MCSpostdata field (used to indicate the order of the MCS of the subsequent data field (postdata, refers to other symbols)), the MCSdiff field (used to indicate the preceding
  • the first preamble field includes the first high-efficiency signal field HE-SIGA; the method further includes: including the order of the MCS of at least one symbol in the first high-efficiency signal field HE-SIGA. The method further includes: including a bit for indicating the value of m in the first high-efficiency signal field HE-SIGA.
  • the first high-efficiency signal field HE-SIGA of the first preamble field includes the MCS postdata field (the MCS of the subsequent data field, refers to the order of the MCS of other symbols), the MCS predata field (the previous data field (predata, refers to the order of the MCS of the first m symbols) and the Npredata field (the number of symbols of the previous data field predata).
  • the first preamble field includes a first high-efficiency signal field HE-SIGA; the method further includes: including the order of the MCS of other symbols in the first high-efficiency signal field HE-SIGA.
  • the orders of the MCSs of the first m symbols can be determined according to the orders of the MCSs of other symbols. For example, when it is determined that the order of MCS of postdata is greater than or equal to the MCS threshold order (MCS th ), the order of MCS of fixed predata is MCS(0)-(MCS th -1), for example, MCS th is 8, When the order of the MCS of the postdata symbol is 8, 9, 10, 11, 12, and 13, the order of the MCS of the predata symbol is 7.
  • An exemplary number of spatial streams Nss is contained in the first high efficiency signal field HE- SIGA .
  • each of the first m symbols carries a spatial stream of user data.
  • the second communication device only receives a single stream for the first m symbols of the data field in the Wi-Fi frame, the second communication device has simple demodulation, lower requirements on timing, and stronger demodulation capability of a single stream.
  • the symbol can be used to re-do the channel estimation and enhance the channel estimation in the case of ensuring a high probability of unpairing, to enhance the signal-to-noise ratio of the channel estimation of the second communication device, and also to enhance the frequency offset and phase capabilities to improve the The demodulation capability of the second communication device.
  • each of the first m symbols carries multiple spatial streams of user data; wherein, the multiple spatial streams of user data carried in the at least one symbol are weighted by an orthogonal P matrix, wherein the orthogonal The P matrix is an orthogonal matrix of m*m.
  • the first communication device transmits the same data for the first m symbols of the data field in the Wi-Fi frame, and performs P matrix weighting between different symbols and different streams, so that the terminal device can re-evaluate the channel estimation and enhance the frequency offset estimation , to enhance the signal-to-noise ratio of the channel estimation of the second communication device to improve the demodulation capability of the terminal device.
  • the subcarrier spacing of the first m symbols is greater than the subcarrier spacing of other symbols.
  • the subcarrier of the predata symbol can use a larger subcarrier spacing than the subcarrier of the postdata symbol, and the symbol spacing is smaller.
  • the subcarrier spacing is larger, the anti-frequency offset capability can be improved; the MCS of the predata symbol is lower.
  • predata can be used to enhance channel estimation and phase estimation, and improve subsequent data demodulation capabilities.
  • a communication method for a Wireless Fidelity Wi-Fi system may be performed by a second communication device, the second communication device may also be a module or a chip in the second communication device, and the second communication device may also be a chip or a system-on-chip, and the method includes: receiving the first communication device The transmitted Wi-Fi frame; the modulation and coding strategy MCS of at least one symbol of the data field in the WI-FI frame transmitted by the first communication device is determined according to the first preamble field in the Wi-Fi frame, wherein, The order of MCS of the first m symbols in the at least one symbol is smaller than the order of MCS of other symbols, where m is a positive integer greater than or equal to 1; the at least one symbol is demodulated according to the MCS.
  • the first preamble field includes a first high-efficiency signal field HE-SIGA; the first high-efficiency signal field HE-SIGA includes the order of the MCS of the other symbols and is used to indicate The order of the MCS of the first m symbols is lower than the order of the MCS of the other symbols by a numerical value.
  • the first preamble field includes a first high-efficiency signal field HE-SIGA; the first high-efficiency signal field HE-SIGA includes the order of the MCS of the at least one symbol.
  • the first preamble field includes a first high-efficiency signal field HE-SIGA; the first high-efficiency signal field HE-SIGA includes the order of the MCS of the other symbols; according to the The first preamble field in the Wi-Fi frame determines the modulation and coding strategy MCS of at least one symbol of the data field in the WI-FI frame transmitted by the first communication device, including: according to the first high-efficiency signal field HE- The SIGA determines the order of the MCS of the other symbols; the order of the MCS of the first m symbols is determined according to the order of the MCS of the other symbols.
  • the first preamble field includes a first high-efficiency signal field HE-SIGA; the first high-efficiency signal field HE-SIGA includes bits used to indicate the value of m.
  • each of the first m symbols carries a spatial stream of user data.
  • each of the first m symbols carries multiple spatial streams of user data; wherein, the multiple spatial streams of user data carried in the at least one symbol are orthogonal P-matrix weighting, wherein the orthogonal P-matrix is an m*m orthogonal matrix.
  • the subcarrier spacing of the first m symbols is greater than the subcarrier spacing of the other symbols.
  • a third aspect provides a communication device, the communication device may be a first communication device, the first communication device may also be a module or a chip in the first communication device, and the first communication device may also be a chip or an on-chip
  • a system comprising: a processor for generating a Wi-Fi frame including a first preamble field, the first preamble field being used to indicate modulation and modulation of at least one symbol in a data field in the Wi-Fi frame
  • a coding strategy MCS wherein the order of the MCS of the first m symbols in the at least one symbol is smaller than the order of the MCS of other symbols, where m is a positive integer greater than or equal to 1; the transmitter is used to transmit the Wi-Fi frame.
  • the first preamble field includes a first high-efficiency signal field HE-SIGA; the processor is further configured to determine that the order of the MCS of the first m symbols is lower than the orders of the MCS of other symbols The value of the number; the number and the order of the MCS of the other symbols are included in the first high-efficiency signal field HE-SIGA.
  • the first preamble field includes a first high-efficiency signal field HE-SIGA; the processor is further configured to include a bit for indicating the value of m in the first high-efficiency signal field HE -SIGA.
  • the first preamble field includes the first high-efficiency signal field HE-SIGA; the processor is further configured to include the order of the MCS of at least one symbol in the first high-efficiency signal field HE-SIGA SIGA.
  • the first preamble field includes a first high-efficiency signal field HE-SIGA; the processor is further configured to include the order of the MCS of other symbols in the first high-efficiency signal field HE -SIGA.
  • the subcarrier spacing of the first m symbols is greater than the subcarrier spacing of other symbols.
  • a communication device may be a second communication device, the second communication device may also be a module or a chip in the second communication device, and the second communication device may also be a chip or a system on a chip, It includes: a receiver, configured to receive a Wi-Fi frame transmitted by a first communication device; a processor, configured to determine the Wi-Fi frame transmitted by the first communication device according to a first preamble field in the Wi-Fi frame
  • the first preamble field includes a first high-efficiency signal field HE-SIGA; the first high-efficiency signal field HE-SIGA includes the order of the MCS of the other symbols and is used to indicate the The order of the MCS of the first m symbols is lower than the order of the MCS of the other symbols by a numerical value.
  • the first preamble field includes a first high-efficiency signal field HE-SIGA; the first high-efficiency signal field HE-SIGA includes the order of the MCS of the at least one symbol.
  • the first preamble field includes a first high-efficiency signal field HE-SIGA; the first high-efficiency signal field HE-SIGA includes the order of the MCS of the other symbols; the processing The device is specifically configured to determine the order of the MCS of the other symbols according to the first high-efficiency signal field HE-SIGA; and determine the order of the MCS of the first m symbols according to the order of the MCS of the other symbols.
  • the first preamble field includes a first high-efficiency signal field HE-SIGA; the first high-efficiency signal field HE-SIGA includes bits used to indicate the value of m.
  • each of the first m symbols carries a spatial stream of user data.
  • each of the first m symbols carries multiple spatial streams of user data; wherein, the multiple spatial streams of user data carried in the at least one symbol are orthogonal P-matrix weighting, wherein the orthogonal P-matrix is an m*m orthogonal matrix.
  • the subcarrier spacing of the first m symbols is greater than the subcarrier spacing of the other symbols.
  • a computer-readable storage medium is provided, and a computer program is stored in the computer-readable storage medium, which, when executed on a computer, enables the computer to execute the method described in any one of the above-mentioned aspects.
  • a computer program product containing instructions, the computer program product comprising: computer program code, when the computer program code is run on a computer, the computer can execute the method described in any of the above aspects.
  • a communication system in a seventh aspect, includes the first communication device described in the above aspect and the second communication device described in the above aspect.
  • the first communication apparatus may be a network device
  • the second communication apparatus may be a terminal device.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an internal structure of a terminal device and a network device provided by an embodiment of the present application;
  • FIG. 3 is a schematic diagram of a transmission process of a sender under the 802.11ax Wi-Fi protocol provided by an embodiment of the present application;
  • FIG. 4 is a schematic diagram of a transmission process of a receiver under the 802.11ax Wi-Fi protocol provided by an embodiment of the present application;
  • FIG. 5 is a schematic structural diagram of a Wi-Fi frame provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a hardware structure of a terminal device and a network device provided by an embodiment of the present application;
  • FIG. 7 is a schematic diagram of a hardware structure of a terminal device provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a communication method for a Wireless Fidelity Wi-Fi system provided by an embodiment of the present application
  • FIG. 9 is a schematic structural diagram of a Wi-Fi frame provided by another embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a Wi-Fi frame provided by another embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a data field provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a data field provided by another embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a Wi-Fi frame provided by yet another embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a Wi-Fi frame provided by another embodiment of the present application.
  • 15 is a schematic structural diagram of a Wi-Fi frame provided by another embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a Wi-Fi frame provided by yet another embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • references to the terms “comprising” and “having” in the description of this application, and any variations thereof, are intended to cover non-exclusive inclusion.
  • a process, method, system, product or device comprising a series of steps or units is not limited to the listed steps or units, but optionally also includes other unlisted steps or units, or optionally also Include other steps or units inherent to these processes, methods, products or devices.
  • FIG. 1 shows a schematic diagram of a communication system applicable to the communication method for a Wireless Fidelity Wi-Fi system according to an embodiment of the present application.
  • the communication system includes a network device 101 and a terminal device 103 , and both the network device 101 and the terminal device 103 can be configured with multiple antennas.
  • the communication system may further include other network devices and/or other terminal devices, such as network device 102 and terminal device 104, and both network device 102 and terminal device 104 may also be configured with multiple antennas.
  • network equipment and terminal equipment may also include multiple components related to signal transmission and reception (eg, processors, encoders, decoders, modulators, demodulators, multiplexers, demultiplexers) Wait).
  • the above-mentioned network device may be a device with a wireless transceiver function or a chip that can be provided in the network device, and the network device includes but is not limited to: an access point (access point) in a Wi-Fi system, an evolved Node B (evolved Node B, eNB), home base station (for example, home evolved NodeB, or home Node B, HNB), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission point, TP), etc., and can also be a gNB in a new radio (new radio, NR) system, as well as a communication server, router, switch, bridge, computer, and the like.
  • a new radio new radio
  • the above-mentioned terminal equipment may also be referred to as user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent, or user device.
  • the terminal device in the embodiment of the present application may be a non-access point station (NON-STA or STA), a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal, wireless terminal in smart city (smart city), wireless terminal in smart home (smart home), etc.
  • the aforementioned terminal device and the chip that can be provided in the aforementioned terminal device are collectively referred to as a terminal device.
  • a network device or a terminal device can be regarded as a node, and any one-to-one, one-to-many, many-to-one, many-to-many, etc. can exist between any two or more nodes. form of communication.
  • the same network device may communicate with at least one terminal device and/or at least one network device, and the same terminal device may also communicate with at least one network device and/or at least one terminal device.
  • the network device 101 can communicate with the terminal device 103 , can also communicate with the network device 102 , and can also communicate with at least two of the terminal device 103 , the terminal device 104 and the network device 102 simultaneously.
  • the terminal device 104 can communicate with the network device 101 , can also communicate with the terminal device 103 , and can also communicate with at least two of the network device 101 , the network device 102 , and the terminal device 103 .
  • FIG. 1 is only a simplified schematic diagram for easy understanding, and the communication system may further include other network devices or may also include other terminal devices, which are not shown in FIG. 1 .
  • FIG. 2 shows a schematic diagram of the internal structure of the network device 101 and the terminal device 103 .
  • both the network device 101 and the terminal device 103 include an application layer processing module, a transmission control protocol (TCP)/user datagram protocol (UDP) processing module, an internet protocol (internet protocol) protocol, IP) processing module, logical link control (logical link control, LLC) processing module, media access control (media access control, MAC) layer processing module, physical layer (physical layer) baseband processing module, radio frequency module and antenna .
  • TCP transmission control protocol
  • UDP user datagram protocol
  • IP internet protocol
  • logical link control logical link control
  • media access control media access control
  • MAC physical layer
  • the physical layer baseband processing module is used to channel code binary user data, that is, information bits to generate coded bits, modulate the coded bits to generate modulation symbols, and then up-convert the modulation symbols. to generate a radio frequency signal and send it out through an antenna.
  • the physical layer baseband processing module is used to down-convert and demodulate the RF signal received by the RF module to recover the coded bits, and perform channel decoding on the coded bits to recover the information bits, thus completing the Information bits, i.e. the transmission and reception of binary user data.
  • FIG. 2 only shows the network device 101 configured with two antennas and the terminal device 103 configured with one antenna. In practical applications, both the network device 101 and the terminal device 103 may have one or more antennas configured.
  • a node such as the above-mentioned network device 101 or terminal device 103, can send or receive signals through multiple antennas, which is referred to as multiple-input multiple-output (MIMO) technology.
  • MIMO multiple-input multiple-output
  • nodes can obtain gains such as diversity and multiplexing by adjusting the MIMO transmission and reception scheme, such as adjusting the weights of the transmitting antennas and assigning different signals to different antennas, thereby improving system capacity and increasing System reliability.
  • data transmitted between each pair of transmitting antennas and receiving antennas is regarded as a spatial stream (spatial stream, SS), which is referred to as a stream for short.
  • the transmission process of the sender under the 802.11ax Wi-Fi protocol mainly includes the following steps: Pre-FEC PHY padding before the frame check sequence, scrambling (scrambler), forward correction Forward error correction encoding, post-FEC PHY padding after frame check sequence, stream parser, segment parser, interleaver, also known as interleaving ), constellation mapper (constellation mapper), cyclic shift diversity (cyclic shift diversity), spatial mapper (spatial mapper), inverse discrete Fourier transform (IDFT), guard interval insertion and windowing (guard) interval insertion and windowing, GI&W) and analog and radio frequency (A&RF).
  • the 802.11ax protocol stipulates that the forward error correction code of the physical layer protocol data unit (PHY protocol data unit, PPDU) sent on the resource block (resource unit, RU) greater than 20MHz must use low-density parity check code (low density parity check code, LDPC).
  • PHY protocol data unit PHY protocol data unit
  • PPDU physical layer protocol data unit
  • LDPC low density parity check code
  • BCC binary convolutional coder
  • LDPC is used on any resource block of RU484, RU996 and RU996*2 Mandatory encoding on the block.
  • each resource block may also have alternative coding modes, which will not be repeated here.
  • the transmission process of the receiver under the 802.11ax Wi-Fi protocol mainly includes the following processes: discrete Fourier transform (IDFT), channel estimation, channel equalization & phase tracking & frequency offset tracking , demapping, BCC deinterleaving or LDPC subcarrier (tone) demapping, segment parsing, stream parsing, Viterbi decoding or LDPC decoding, and descrambling.
  • IDFT discrete Fourier transform
  • channel estimation channel equalization & phase tracking & frequency offset tracking
  • demapping demapping
  • segment parsing stream parsing
  • Viterbi decoding or LDPC decoding and descrambling.
  • the Wi-Fi physical frame transmitted through the above-mentioned transmission process is also referred to as a Wi-Fi frame.
  • the Wi-Fi physical frame is used as a physical layer convergence protocol (PLCP). ) data unit (PLCP data unit, PPDU).
  • PLCP data unit PLCP data unit
  • PPDU physical layer convergence protocol
  • the Wi-Fi frame structure includes a preamble field and a data field, wherein the data field is used as a PLCP service data unit (PLCP service data unit, PSDU).
  • the preamble fields include: traditional short training field (L-STF), traditional long training field (L-LTF), traditional signaling field (legacy-signal field, L-SIG) ), repeated legacy signaling field (repeated Legacy-signal field RL-SIG), high efficient signaling field A (high efficient-signal field A, HE-SIGA), high efficient-short training field (high efficient-short training field, HE- STF), high efficient-long training field (HE-LTF); the data field includes multiple symbols (for example, can be OFDM symbols), symbol 0 (symbol0, SYM0 for short)-symbol N+2 (symbolN +2, referred to as SYMN+2).
  • the sender fills the coded bits of the user data into symbols for transmission to the receiver.
  • the sender mainly performs the encoding process before stream parsing on the user data according to the order of the MCS indicated by the HE-SIGA of the Wi-Fi frame, and the same MCS is used for each symbol in the process.
  • 1024QAM modulation in 802.11ax or even a higher-order modulation method
  • the receiver actually demodulates the received Wi-Fi frame, considering the ability of hardware to realize processing, the channel of the first few symbols received is It is estimated that there is probably not enough time to do complex channel estimation enhancement noise suppression processing, so the signal-to-noise ratio of channel estimation in the first few symbols is often weak.
  • the first few symbols do not have enough symbols to calculate the frequency. Therefore, the frequency offset and phase correction capabilities are relatively weak, the inter-channel interference and inter-symbol interference are relatively high, and the high-order modulation is sensitive to the frequency offset and phase, so the actual receiver is not sensitive to the received signal.
  • the probability of the first few symbols being decoded incorrectly will be relatively high, and the wrong scrambling code will result in a 50% bit error rate of the data, resulting in the failure of data packet demodulation and affecting the throughput; even if the scrambling code is probabilistically solved, the first few symbols There is also a high probability of error.
  • the order of the MCS of the first few symbols in the data field is mainly reduced, that is, compared with other symbols after the first few symbols, the first few symbols are encoded with a lower order MCS, thereby reducing the need for
  • the requirement of the demodulation capability of the receiver increases the probability of unpairing the first few symbols, and further improves the demodulation performance of other symbols using high-order MCS coding.
  • the network device 101 and the terminal device 103 in this embodiment of the present application may also be referred to as communication devices.
  • the network device 101 is referred to as the first communication device
  • the terminal device 103 is referred to as the second communication device. It is a general-purpose device or a special-purpose device, which is not specifically limited in this embodiment of the present application.
  • FIG. 6 it is a schematic structural diagram of a network device 101 and a terminal device 103 provided in this embodiment of the present application.
  • the terminal device 103 includes at least one processor (in FIG. 6 , it is exemplified by including one processor 301 ) and at least one transceiver (in FIG. 6 , it is exemplified by including one transceiver 303 for illustration). ).
  • the terminal device 103 may further include at least one memory (in FIG. 6 , it is exemplified that one memory 302 is included), at least one output device (in FIG. 6 , one output device 304 is exemplified as an example) for illustration) and at least one input device (in FIG. 6 , one input device 305 is used as an example for illustration).
  • the processor 301, the memory 302 and the transceiver 303 are connected by a communication line.
  • the communication link may include a path to communicate information between the components described above.
  • the processor 301 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of programs in the present application. circuit.
  • the processor 301 may also include multiple CPUs, and the processor 301 may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, or processing cores for processing data (eg, computer program instructions).
  • the memory 302 may be a device having a storage function. For example, it may be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types of storage devices that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disk storage (including compact discs, laser discs, compact discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being stored by a computer any other medium taken, but not limited to this.
  • the memory 302 may exist independently and be connected to the processor 301 through a communication line.
  • the memory 302 may also be integrated with the processor 301 .
  • the memory 302 is used for storing computer-executed instructions for executing the solution of the present application, and the execution is controlled by the processor 301 .
  • the processor 301 is configured to execute the computer-executed instructions stored in the memory 302, so as to implement the communication method for the Wireless Fidelity Wi-Fi system described in the embodiments of the present application.
  • the processor 301 may also perform processing-related functions in the communication method for a wireless fidelity Wi-Fi system provided by the following embodiments of the present application, and the transceiver 303 is responsible for Communication with other devices or communication networks is not specifically limited in this embodiment of the present application.
  • the computer-executed instructions in the embodiment of the present application may also be referred to as application program code or computer program code, which is not specifically limited in the embodiment of the present application.
  • Transceiver 303 may use any transceiver-like device for communicating with other devices or communication networks.
  • the transceiver 303 includes a transmitter (transmitter, Tx) and a receiver (receiver, Rx).
  • Tx transmitter
  • Rx receiver
  • the terminal device 103 receives Wi-Fi frames through the receiver.
  • the output device 304 communicates with the processor 301 and can display information in a variety of ways.
  • the output device 304 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • LCD liquid crystal display
  • LED light emitting diode
  • CRT cathode ray tube
  • projector projector
  • Input device 305 communicates with processor 301 and can accept user input in a variety of ways.
  • the input device 305 may be a mouse, a keyboard, a touch screen device or a sensing device, or the like.
  • the network device 101 includes at least one processor (in FIG. 6 , it is exemplified by including one processor 201 ), at least one transceiver (in FIG. 6 , it is exemplified by including one transceiver 203 ) and At least one network interface (in FIG. 6, one network interface 204 is used as an example for illustration).
  • the network device 101 may further include at least one memory (in FIG. 6 , it is exemplified that one memory 202 is included for illustration).
  • the processor 201, the memory 202, the transceiver 203 and the network interface 204 are connected through a communication line.
  • the network interface 204 is used to connect with the core network device through a link (such as the S1 interface), or connect with the network interface of other network devices through a wired or wireless link (such as the X2 interface) (not shown in FIG. 6 ).
  • a link such as the S1 interface
  • a wired or wireless link such as the X2 interface
  • Transceiver 203 may use any transceiver-like device for communicating with other devices or communication networks.
  • the transceiver 203 includes a transmitter (transmitter, Tx) and a receiver (receiver, Rx).
  • the network device 101 transmits Wi-Fi frames through the transmitter.
  • FIG. 7 is a specific structural form of the terminal device 103 provided in this embodiment of the present application.
  • the functions of the processor 301 in FIG. 6 may be implemented by the processor 110 in FIG. 7 .
  • the functions of the transceiver 303 in FIG. 6 may be implemented by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, etc. in FIG. 7 .
  • the antenna 1 and the antenna 2 are used for transmitting and receiving electromagnetic wave signals.
  • Each antenna in terminal device 103 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • the antenna 1 can be multiplexed as a diversity antenna of the wireless local area network. In other embodiments, the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 150 can provide wireless communication solutions including 2G/3G/4G/5G etc. applied on the terminal device 103 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA) and the like.
  • the mobile communication module 150 can receive electromagnetic waves from the antenna 1, filter and amplify the received electromagnetic waves, and transmit them to the modulation and demodulation processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modulation and demodulation processor, and then turn it into an electromagnetic wave for radiation through the antenna 1 .
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 may be provided in the same device as at least part of the modules of the processor 110 .
  • the wireless communication module 160 can provide applications on the terminal device 103 including wireless local area networks (WLAN) (such as Wi-Fi networks), Bluetooth (blue tooth, BT), global navigation satellite system (global navigation satellite system, GNSS), frequency modulation (FM), near field communication (NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • WLAN wireless local area networks
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110 , perform frequency modulation on it, amplify the signal, and convert it into electromagnetic waves for radiation through the antenna 2 .
  • the wireless communication module 160 can provide a solution for NFC wireless communication applied on the terminal device 103, which means that the first device includes an NFC chip.
  • the NFC chip can improve the NFC wireless communication function.
  • the wireless communication module 160 can provide a solution for NFC wireless communication applied to the terminal device 103, which means that the first device includes an electronic tag (such as a radio frequency identification (RFID) tag. ).
  • the NFC chip of the other device is close to the electronic tag to perform NFC wireless communication with the second device.
  • the antenna 1 of the terminal device 103 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the terminal device 103 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code Division Multiple Access (WCDMA), Time Division Code Division Multiple Access (TD-SCDMA), Long Term Evolution (LTE), BT, GNSS, WLAN, NFC , FM, or IR technology, etc.
  • the GNSS may include a global positioning system (global positioning system, GPS), a global navigation satellite system (GLONASS), a Beidou navigation satellite system (BDS), a quasi-zenith satellite system (quasi -zenith satellite system, QZSS) or satellite based augmentation systems (satellite based augmentation systems, SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the function of the memory 302 in FIG. 6 may be implemented by the internal memory 121 in FIG. 7 or an external memory (eg, a Micro SD card) connected to the external memory interface 120, or the like.
  • an external memory eg, a Micro SD card
  • the functionality of output device 304 in FIG. 6 may be implemented by display screen 194 in FIG. 7 .
  • the display screen 194 is used for displaying images, videos and the like.
  • Display screen 194 includes a display panel.
  • the functionality of input device 305 in FIG. 6 may be implemented by a mouse, keyboard, touch screen device, or sensor module 180 in FIG. 7 .
  • the sensor module 180 may include, for example, a pressure sensor 180A, a gyro sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, and a fingerprint sensor 180H.
  • a pressure sensor 180A a pressure sensor 180A, a gyro sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, and a fingerprint sensor 180H.
  • the temperature sensor 180J, the touch sensor 180K, the ambient light sensor 180L, and the bone conduction sensor 180M which are not specifically limited in this embodiment of the present application.
  • the terminal device 103 may further include an audio module 170, a camera 193, an indicator 192, a motor 191, a button 190, a SIM card interface 195, a USB interface 130, a charging management module 140, One or more of the power management module 141 and the battery 142, wherein the audio module 170 can be connected with the speaker 170A (also called “speaker”), the receiver 170B (also called “earpiece”), the microphone 170C (also called “microphone”, “microphone”) or the headphone jack 170D, etc., which are not specifically limited in this embodiment of the present application.
  • the audio module 170 can be connected with the speaker 170A (also called “speaker"), the receiver 170B (also called “earpiece"), the microphone 170C (also called “microphone”, “microphone”) or the headphone jack 170D, etc., which are not specifically limited in this embodiment of the present application.
  • the structure shown in FIG. 7 does not constitute a specific limitation on the terminal device 103 .
  • the terminal device 103 may include more or less components than shown, or combine some components, or separate some components, or arrange different components.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the communication method for a wireless fidelity Wi-Fi system provided by the embodiments of the present application will be described below by taking the interaction between the network device shown in FIG. 1 and any terminal device as an example with reference to FIG. 1 to FIG.
  • a communication method for a wireless fidelity Wi-Fi system provided by an embodiment of the present application is described by taking a network device transmitting a Wi-Fi frame to a terminal device as an example.
  • the communication method of the Wi-Fi system includes steps S101 to S105.
  • a network device generates a Wi-Fi frame including a first preamble field.
  • the first preamble field is used to indicate the modulation and coding strategy MCS of at least one symbol in the data field in the Wi-Fi frame, wherein the order of the MCS of the first m symbols in the at least one symbol is smaller than that of other symbols.
  • the first preamble field includes the first high efficiency signal field HE-SIGA.
  • the method further includes: determining a numerical value where the order of the MCS of the first m symbols is lower than the order of the MCS of other symbols; including the numerical value and the order of the MCS of the other symbols in the first high-efficiency signal field HE-SIGA; The bit indicating the value of m is included in the first high-efficiency signal field HE-SIGA.
  • the first high-efficiency signal field HE-SIGA of the first preamble field contains the order of the MCS of the other symbols, and a numerical value for indicating that the order of the MCS of the first m symbols is lower than the order of the MCS of the other symbols, and bits used to indicate the value of m.
  • the first high-efficiency signal field HE-SIGA of the first preamble field includes the MCS postdata field (used to indicate the order of the MCS of the subsequent data field (postdata, referring to other symbols) number), MCS diff field (used to indicate the difference between the order of the MCS of the previous data field (predata, refers to the first m symbols) and the order of the MCS of the subsequent data field), in the embodiments of the present application, refer to, The order of MCS predata below MCS postdata) and the Npredata field (the number m of symbols of the preceding data field predata).
  • the four bits (4 bits) of the MCS postdata field of the HE-SIGA indicate the order of the MCS of other symbols; with reference to Table 1, the four bits of the MCS postdata field can indicate the value of the order of the MCS of the symbol of the postdata 0- 13.
  • the first preamble field includes the first high efficiency signal field HE-SIGA.
  • the method further includes: including the order of the MCS of at least one symbol in the first high-efficiency signal field HE-SIGA; and including a bit for indicating the value of m in the first high-efficiency signal field HE-SIGA.
  • the first high efficiency signal field HE-SIGA of the first preamble field carries the order of the MCS of at least one symbol of the data field in the Wi-Fi frame.
  • the first high-efficiency signal field HE-SIGA of the first preamble field includes the MCS postdata field (the order of the MCS of the subsequent data field, referring to other symbols MCS order), MCS predata field (the order of the MCS of the previous data field (predata, refers to the first m symbols)), and Npredata field (the number of symbols of the previous data field predata).
  • the four bits (4 bits) of the MCS postdata field in the HE-SIGA indicate the order of the MCS of other symbols; with reference to Table 1, the four bits of the MCS postdata field can indicate the order of the MCS of the postdata The value of 0 -13.
  • the three bits of the MCS predata field in HE-SIGA are used to indicate the order of the MCS of the predata symbol.
  • the MCS order mapping relationship between the three bits of the MCS predata field and the predata symbol is shown in Table 4.
  • the first preamble field includes the first high efficiency signal field HE-SIGA.
  • the method further includes: the method further includes: including the order of the MCS of other symbols in the first high-efficiency signal field HE-SIGA. In this way, the orders of the MCSs of the first m symbols can be determined according to the orders of the MCSs of other symbols.
  • the order of the MCS of the fixed predata is MCS(0)-(MCS th -1), for example, the MCS th is 8, for the sign of the postdata
  • the order of the MCS is 8, 9, 10, 11, 12, and 13, the order of the MCS of the predata symbol is 7.
  • the network device encodes the user data mainly according to the MCS and fills in at least one symbol.
  • the MCS of the symbol of the data field is provided in combination with Example 1, 2 or 3 in the above step S101.
  • the process of encoding user data is described as follows:
  • the encoding method of the user data may adopt BCC encoding or LDPC encoding.
  • Example 4 taking the BCC encoding method as an example, based on the Wi-Fi frame format provided by the embodiments of the present application, the calculation process of TX_TIME is as follows (Equation 1).
  • TX_TIME is the transmission duration of the Wi-Fi frame, and 20 includes the number of bytes of the L-STF, L-LTF, and L-SIG fields;
  • THE-PREAMBLE T RL-SIG + THE-SIGA + THE-STF +N HE-LTF T HE-LTFSYM ,
  • THE_PREAMBLE is the symbol period of the first preamble field
  • T predata is the symbol period of the first N predata symbols
  • T postdata is the symbol period of the following (N SYM -N predata ) symbols
  • N SYM is the number of symbols in the data field
  • T PE is the packet extension time of the data field
  • signalExtension is the signal extension time
  • THE-LTFSYM is the cycle length of the HE-LTF field
  • N HE-LTF is The number of symbols in the HE-LTF field
  • T RL-SIG is the period length of the RL-SIG field
  • THE-SIGA is the period
  • the subcarrier spacing of the first N predata symbols may be the same as the subcarrier spacing of the following (N SYM -N predata ) symbols, that is, T predata and T postdata are the same, and the 802.11ax protocol is followed.
  • the data field includes a service field (SERVICE field, usually 16 bits), PDSU information bits (info bits, PSDU Length), and physical layer padding bits before the frame check sequence. (pre-FEC PHY padding bits), tail bits (tail bits, usually BCC encoding has tail bits, LDPC encoding has no tail bits).
  • SESO field usually 16 bits
  • PDSU information bits info bits, PSDU Length
  • physical layer padding bits before the frame check sequence.
  • pre-FEC PHY padding bits pre-FEC PHY padding bits
  • tail bits tail bits, usually BCC encoding has tail bits
  • LDPC encoding has no tail bits.
  • the Wi-Fi frame needs to limit the number of symbols in the transmitted data field to be at least N predata symbols; N Excess is the number of data bits that can be carried by the last symbol of the data field.
  • APEP_LENGTH is the length of the data
  • Table 5 is the mapping relationship between the index value and the parameter of the MCS under RU996*2 and 8 spatial streams (Nss) under the 160MHZ bandwidth.
  • Modulation methods include: binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), 16 quadrature amplitude modulation (quadrature amplitude modulationQAM), 64QAM, 256QAM , 1024QAM, 4096QAM.
  • N Tail is the number of bits of tail bits
  • N service is the number of bits of service field.
  • N CBPS1,SHORT N SD,SHORT ⁇ N SS ⁇ N BPSCS1 ⁇ R 1 ,
  • N SD,SHORT is the number of data subcarriers in the a init symbol before the last symbol of the data field;
  • N SS is the number of spatial streams ;
  • N DBPS1, SHORT is the number of data bits of the last symbol 1/4 symbol.
  • S4 Calculate the number of data bits and the number of coded bits carried by the last symbol of the data field.
  • N CBPS,SHORT is the number of coded bits of the last symbol 1/4 symbol.
  • the post-FEC PHY padding bits are filled.
  • the number of bits of post-FEC PHY padding in the last data symbol of the data field is N PAD, and the post-FEC is calculated as Equation 8:
  • N PAD,post-FEC N CBPS1 -N CBPS1,last (Formula 8).
  • the last symbol contains N CBPS1, last bits and N PAD, post-FEC post-FEC PHY padding bits; post-FEC PHY padding is aligned to a init (a init value is 1, 2, 3, 4 ) at the number of data bits.
  • the subcarriers of the symbols of predata and the subcarriers of the symbols of postdata use the same subcarrier spacing.
  • the subcarriers of the symbols of predata may use larger subcarriers than the subcarriers of the symbols of postdata.
  • Carrier spacing, smaller symbol spacing, and larger subcarrier spacing can improve the ability to resist frequency offset; MCS of predata symbols adopts a lower order, and when larger subcarrier spacing is used, the signal-to-noise ratio is estimated for the channel.
  • T predata in (Equation 1) is different from T postdata , and the symbol of predata selects a larger subcarrier interval and a shorter symbol period.
  • Table 7 a mapping of subcarrier interval between predata and postdata is provided. relationship, others follow the 802.11ax protocol.
  • GI guarded interval
  • 802.11ax protocol 802.11ax protocol
  • different GI lengths are indicated, such as 3.2us/1.6us/0.8us.
  • the data field includes a service field (SERVICE field, usually 16 bits), PDSU information bits (info bits, PSDU Length), frame check sequence Pre-FEC PHY padding bits; for Wi-Fi frames, taking LDPC coding as an example, the calculation process of the coded bits of the symbol is as follows:
  • the Wi-Fi frame needs to limit the number of symbols of the symbols of the data field to be sent to be at least N predata symbols; N Excess is the number of data bits that can be carried by the last symbol of the data field.
  • N DBPS1,SHORT N CBPS1,SHORT ⁇ R 1
  • N CBPS1,SHORT N SD,SHORT ⁇ N SS ⁇ N BPSCS1 ⁇ R 1
  • N SD,SHORT is the data element of the a init symbol before the last symbol the number of carriers.
  • S4 Calculate the number of data bits and the number of coded bits carried by the last symbol of the data field.
  • N pld (N SYM,init -1-N predata,init ) ⁇ N DBPS1 +N predata ⁇ N DBPS0 +N DBPS,LAST,init , where the sign of predata
  • N pld0 N predata, init ⁇ N DBPS0
  • N pld1 N pld -N pld0 .
  • N avbits (N SYM,init -1-N predata,init ) ⁇ N CBPS1 +N predata ⁇ N CBPS0 +N CBPS ,LAST,init , where the predata
  • N avbit0 N predata, init ⁇ N CBPS0
  • N avbits1 (N SYM,init -1-N predata,init ) ⁇ N CBPS1 +N CBPS ,LAST,init .
  • the symbols of predata and the symbols of postdata are encoded separately, and the code block and code length of the symbols of predata are calculated as shown in Table 8 below.
  • N predata N predata,init +1.
  • N avbits needs to be increased to:
  • N DBPS1,last N DBPS1,last,init
  • N CBPS1,last N CBPS1,last,init .
  • the last 1 symbol contains N CBPS1, last bits and N PAD, post-FEC bits of post-FEC PHY padding.
  • the network device transmits the Wi-Fi frame to the terminal device.
  • the terminal device receives the Wi-Fi frame transmitted by the network device.
  • the terminal device determines, according to the first preamble field in the Wi-Fi frame, a modulation and coding strategy MCS of at least one symbol of the data field in the Wi-Fi frame transmitted by the first communication apparatus.
  • the terminal device demodulates the at least one symbol according to the MCS.
  • the terminal device demodulates at least one symbol according to the MCS, and obtains the user data carried by the at least one symbol, as shown in FIG. 4 .
  • Interleaving, stream parsing, etc. The terminal device performs processing such as demapping, deinterleaving, and stream parsing on the symbols of the postdata in the Wi-Fi frame according to the MCS of the postdata.
  • the MCS of the first few symbols of the data field in the Wi-Fi frame is mainly reduced, that is, compared with other symbols after the first few symbols, the first few symbols are encoded with a lower-order MCS, thereby reducing the MCS of the first few symbols.
  • the requirements for the demodulation capability of the receiver are improved, the probability of unpairing the first few symbols is improved, and the demodulation performance of other symbols using high-order MCS coding is further improved.
  • a communication method for a wireless fidelity Wi-Fi system provided by an embodiment of the present application is described by taking a network device transmitting a Wi-Fi frame to a terminal device as an example, the communication method for a wireless fidelity Wi-Fi system It includes steps S201-S209.
  • the network device generates a Wi-Fi frame including a first preamble field.
  • the first preamble field is used to indicate the modulation and coding strategy MCS of at least one symbol in the data field in the Wi-Fi frame, wherein the order of the MCS of the first m symbols in the at least one symbol is smaller than that of other symbols
  • the order of the MCS of the symbol where m is a positive integer greater than or equal to 1.
  • the first high-efficiency signal field HE-SIGA of the first preamble field includes an MCS postdata field (used to indicate a subsequent data field (postdata, refers to other symbols) ) of the MCS order, as shown in Table 1), the MCS diff field (used to indicate the order of the MCS of the previous data field (predata, refers to the first m symbols) and the order of the MCS of the subsequent data field.
  • the difference as shown in Table 2), refers to the order of MCS predata lower than MCS postdata in the embodiments of the present application). Or as shown in FIG.
  • the HE-SIGA of the first preamble field includes the MCS postdata field (the MCS in the subsequent data field refers to the order of the MCS of other symbols, as shown in Table 1), the MCS predata field (in the The order of the MCS of the pre-data field (predata, refers to the first m symbols), as shown in Table 4).
  • each of the first m symbols carries a spatial stream of user data; for example, Symbol 0 sends the first data stream. Spatial stream, Symbol 1 sends the second spatial stream, SymbolN sends the N ss spatial stream, etc.
  • N ss spatial streams can also be sent cyclically in the first m symbols. For example, Symbol 0 sends the first spatial stream, and Symbol 1 sends the second spatial stream, such as Symbol 2. The first spatial stream is sent, and Symbol 3 sends the second spatial stream .
  • the network device transmits the Wi-Fi frame to the terminal device.
  • the terminal device receives the Wi-Fi frame transmitted by the network device.
  • the terminal device determines, according to the first preamble field in the Wi-Fi frame, a modulation and coding strategy MCS of at least one symbol of the data field in the Wi-Fi frame transmitted by the first communication device.
  • the terminal device demodulates the at least one symbol according to the MCS.
  • the terminal device only receives a single stream for the first m symbols of the data field in the Wi-FI frame.
  • the terminal device has simple demodulation, low timing requirements, and strong demodulation capability of a single stream, so that the first few symbols can guarantee high
  • it is used to re-do channel estimation and enhance channel estimation to enhance the signal-to-noise ratio of terminal equipment channel estimation.
  • frequency offset and phase capability can also be enhanced to improve the demodulation capability of terminal equipment. .
  • a communication method for a wireless fidelity Wi-Fi system provided by an embodiment of the present application is described by taking a network device transmitting a Wi-Fi frame to a terminal device as an example, the communication method for a wireless fidelity Wi-Fi system It includes steps S301-S308.
  • the network device generates a Wi-Fi frame including a first preamble field.
  • the first preamble field is used to indicate the modulation and coding strategy MCS of at least one symbol in the data field in the Wi-Fi frame, wherein the order of the MCS of the first m symbols in the at least one symbol is smaller than that of other symbols.
  • a structure of a Wi-Fi frame is provided, wherein the first high-efficiency signal field HE-SIGA of the first preamble field includes the MCS postdata field (used to indicate the subsequent data field (postdata, refers to other symbols) ), the order of the MCS of the The difference, as shown in Table 2), refers to the order of MCS predata lower than MCS postdata in the embodiments of the present application).
  • the MCS postdata field used to indicate the subsequent data field (postdata, refers to other symbols
  • the HE-SIGA of the first preamble field includes the MCS postdata field (the MCS in the latter data field refers to the order of the MCS of other symbols, as shown in Table 1), the MCS predata field (in the The order of the MCS of the pre-data field (predata, refers to the first m symbols), as shown in Table 4).
  • Table 10 shows the relationship between the number of spatial streams N SS and the number of symbols N HE-LTF of HE-LTF.
  • each of the first m symbols carries multiple spatial streams S0-SSN of the user data;
  • the multiple spatial streams of user data carried in the symbol are weighted by an orthogonal (perpendicular, P) matrix, where the orthogonal P matrix is an m*m orthogonal matrix.
  • SSn is multiplied in each symbol by the element P(i,j) of the orthogonal P matrix, where 0 ⁇ i ⁇ N, 0 ⁇ j ⁇ N.
  • the orthogonal P matrix is consistent with the P matrix of HE-LTF in 802.11ax.
  • the network device transmits the Wi-Fi frame to the terminal device.
  • the terminal device receives the Wi-Fi frame transmitted by the network device.
  • the terminal device determines, according to the first preamble field in the Wi-Fi frame, a modulation and coding strategy MCS of at least one symbol of the data field in the Wi-Fi frame transmitted by the first communication device.
  • the terminal device demodulates the at least one symbol according to the MCS.
  • the network device transmits the same data for the first m symbols of the data field in the Wi-Fi frame, and performs P matrix weighting between different symbols and different streams, so that the terminal device can re-evaluate the channel estimation and enhance the frequency offset estimation.
  • the signal-to-noise ratio of the channel estimation of the terminal equipment is enhanced to improve the demodulation capability of the terminal equipment.
  • the above-mentioned network equipment and terminal equipment, etc. include corresponding hardware structures and/or software modules for performing each function.
  • Those skilled in the art should easily realize that the unit and algorithm operations of each example described in conjunction with the embodiments disclosed herein can be implemented in hardware or in the form of a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the network device may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • FIG. 17 shows a schematic structural diagram of a communication device.
  • the communication apparatus may be a chip or a system-on-chip in the above-mentioned network equipment, or other combined devices, components, etc. that can realize the functions of the above-mentioned network equipment, and the communication apparatus may be used to execute the functions of the network equipment involved in the above-mentioned embodiments.
  • the communication apparatus shown in FIG. 17 includes: a sending unit 1701 and a processing unit 1702 .
  • a processing unit 1702 configured to generate a Wi-Fi frame including a first preamble field, where the first preamble field is used to indicate the modulation and coding strategy MCS of at least one symbol in the data field in the Wi-Fi frame , wherein the MCS order of the first m symbols in the at least one symbol is smaller than the MCS order of other symbols, where m is a positive integer greater than or equal to 1.
  • a sending unit 1701 configured to transmit the Wi-Fi frame.
  • the first preamble field includes the first high-efficiency signal field HE-SIGA; the processing unit 1702 is further configured to determine that the order of the MCS of the first m symbols is lower than the order of the MCS of other symbols; and the order of the MCS of other symbols is included in the first high efficiency signal field HE-SIGA.
  • the first preamble field includes the first high-efficiency signal field HE-SIGA; the processing unit 1702 is further configured to include a bit for indicating the value of m in the first high-efficiency signal field HE-SIGA.
  • the first preamble field includes the first high-efficiency signal field HE-SIGA; the processing unit 1702 is further configured to include the order of the MCS of at least one symbol in the first high-efficiency signal field HE-SIGA.
  • the first preamble field includes the first high-efficiency signal field HE-SIGA; the processing unit 1702 is further configured to include the order of the MCS of other symbols in the first high-efficiency signal field HE-SIGA.
  • the subcarrier spacing of the first m symbols is greater than the subcarrier spacing of other symbols.
  • the communication device is presented in the form of dividing each functional module in an integrated manner.
  • Module herein may refer to a specific ASIC, circuit, processor and memory executing one or more software or firmware programs, integrated logic circuit, and/or other device that may provide the functions described above.
  • the communication apparatus may take the form of the network device shown in FIG. 6 .
  • the processor 201 in FIG. 6 may invoke the computer execution instructions stored in the memory 203 to cause the communication apparatus to execute the communication method for the Wi-Fi system in the above method embodiments.
  • the functions/implementation process of the sending unit 1701 and the processing unit 1702 in FIG. 17 can be implemented by the processor 201 in FIG. 6 calling the computer-executed instructions stored in the memory 203; or, the processing unit 1702 in FIG. 17 .
  • the function/implementation process can be realized by the processor 201 in FIG. 6 calling the computer-executed instructions stored in the memory 203, and the function/implementation process of the sending unit 1701 in FIG. machine to achieve.
  • the communication device provided in this embodiment can execute the above-mentioned communication method for a Wi-Fi system, the technical effect that can be obtained can be referred to the above-mentioned method embodiments, which will not be repeated here.
  • the terminal device may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • FIG. 18 shows a schematic structural diagram of a communication apparatus.
  • the communication apparatus may be a chip or a system-on-chip in the above-mentioned terminal equipment, or other combined devices, components, etc. that can realize the functions of the above-mentioned terminal equipment, and the communication apparatus may be used to perform the functions of the network equipment involved in the above-mentioned embodiments.
  • the communication apparatus shown in FIG. 18 includes: a receiving unit 1801 and a processing unit 1802 .
  • the receiving unit 1801 is configured to receive the Wi-Fi frame transmitted by the first communication device;
  • the processing unit 1802 is configured to determine the Wi-Fi frame transmitted by the first communication device according to the first preamble field in the Wi-Fi frame
  • the first preamble field includes a first high-efficiency signal field HE-SIGA; the first high-efficiency signal field HE-SIGA includes the order of the MCS of the other symbols and a value used to indicate the first m symbols.
  • the order of the MCS is lower than the order of the MCS of the other symbols by a numerical value.
  • the first preamble field includes a first high-efficiency signal field HE-SIGA; the first high-efficiency signal field HE-SIGA includes the order of the MCS of the at least one symbol.
  • the first preamble field includes a first high-efficiency signal field HE-SIGA; the first high-efficiency signal field HE-SIGA includes the order of the MCS of the other symbols; the processing unit 1802 is specifically configured to The first high-efficiency signal field HE-SIGA determines the order of the MCS of the other symbols; and determines the order of the MCS of the first m symbols according to the order of the MCS of the other symbols.
  • the first preamble field includes a first high-efficiency signal field HE-SIGA; the first high-efficiency signal field HE-SIGA includes bits used to indicate the value of m.
  • each of the first m symbols carries a spatial stream of user data.
  • each of the first m symbols carries multiple spatial streams of user data; wherein, the multiple spatial streams of user data carried in the at least one symbol are orthogonal P-matrix weighting, wherein the orthogonal P-matrix is an m*m orthogonal matrix.
  • the subcarrier spacing of the first m symbols is greater than the subcarrier spacing of the other symbols.
  • the communication device is presented in the form of dividing each functional module in an integrated manner.
  • Module herein may refer to a specific ASIC, circuit, processor and memory executing one or more software or firmware programs, integrated logic circuit, and/or other device that may provide the functions described above.
  • the communication apparatus may take the form of the terminal device shown in FIG. 6 .
  • the processor 201 in FIG. 6 may invoke the computer execution instructions stored in the memory 203 to cause the communication apparatus to execute the communication method for the Wi-Fi system in the above method embodiments.
  • the functions/implementation process of the receiving unit 1801 and the processing unit 1802 in FIG. 18 can be implemented by the processor 201 in FIG. 6 calling the computer-executed instructions stored in the memory 203; or, the processing unit 1802 in FIG. 18
  • the function/implementation process can be realized by the processor 201 in FIG. 2 calling the computer execution instructions stored in the memory 203, and the function/implementation process of the receiving unit 1801 in FIG. 18 can be implemented by the receiver of the transceiver 303 in FIG. 6 . to fulfill.
  • the communication device provided in this embodiment can execute the above-mentioned communication method for a Wi-Fi system, the technical effect that can be obtained can be referred to the above-mentioned method embodiments, which will not be repeated here.
  • an embodiment of the present application further provides a communication device (for example, the communication device may be a chip or a chip system), the communication device includes a processor and an interface, and the processor is configured to read an instruction to execute any of the above methods methods in the examples.
  • the communication device further includes a memory.
  • the memory is used to store necessary program instructions and data, and the processor can call the program code stored in the memory to instruct the communication apparatus to execute the method in any of the above method embodiments.
  • the memory may also not be in the communication device.
  • the communication device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in this embodiment of the present application.
  • the sending unit 1702 may be a transmitter when transmitting information
  • the receiving unit 1802 may be a receiver when receiving information
  • the transceiver unit may be The transceiver, the transceiver, the transmitter or the receiver can be a radio frequency circuit
  • the first communication device and the second communication device include a storage unit, the storage unit is used to store computer instructions
  • the processor is communicatively connected to the memory, and the processor Executing the computer instructions stored in the memory causes the first communication device and the second communication device to execute the method involved in the method embodiment.
  • the processor may be a general-purpose central processing unit (CPU), a microprocessor, or an application specific integrated circuit (ASIC).
  • the sending unit 1702 and the receiving unit 1802 may be input and/or output interfaces, pins or circuits, and the like.
  • the processing unit 1701 and the processing unit 1801 can execute the computer-executed instructions stored in the storage unit, so that the chips in the first communication device and the second communication device execute the methods involved in the method embodiments.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the terminal device or network device, such as only Read only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), etc.
  • ROM Read only memory
  • RAM random access memory
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or data storage devices including one or more servers, data centers, etc. that can be integrated with the medium.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.
  • the computer may include the aforementioned apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种用于无线保真Wi-Fi系统的通信方法及装置,涉及通信技术领域,能够提高装置对Wi-Fi帧的解调性能。该用于无线保真Wi-Fi系统的通信方法,包括:生成包括第一前导码字段的Wi-Fi帧,第一前导码字段用于指示Wi-Fi帧中的数据字段中的至少一个符号的调制与编码策略MCS,其中,至少一个符号中的前m个符号的MCS的阶数小于其它符号的MCS的阶数,其中m为大于或等于1的正整数;然后,传送Wi-Fi帧。

Description

一种用于无线保真Wi-Fi系统的通信方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种用于无线保真Wi-Fi系统的通信方法及装置。
背景技术
Wi-Fi技术是Wi-Fi联盟创建于电气和电子工程师协会(institute of electrical and electronic engineers,IEEE)802.11标准的无线局域网技术。Wi-Fi技术中通常涉及接入点(access point,AP)和站点(station,STA)两类设备。其中,AP也可以称为无线接入点,是Wi-Fi网络的提供者,允许其他无线设备接入,并为接入的设备提供数据访问。接入Wi-Fi网络的设备可称为STA。如,手机,平板电脑及笔记本电脑等支持Wi-Fi功能的电子设备均可作为STA。AP与STA之间通过Wi-Fi物理帧(简称Wi-Fi帧)进行用户数据的传输。
目前,802.11g、802.11n、802.11a、802.11ac、802.11ax协议的Wi-Fi网络都采用正交频分复用(orthogonal frequency division multiplexing,OFDM)技术。通常,发送端发送的Wi-Fi帧中包括前导码字段(preamble)和数据字段(data)。其中,扰码种子是和数据字段部分的第一个OFDM符号一起编码,前导码字段中(信号字段A,SIGA)包括数据字段部分的调制编码策略(modulation and coding scheme,MCS)的阶数(或索引值),并且所有数据字段的OFDM符号的MCS的阶数相同。而在接收端,在对接收到的Wi-Fi帧的解调当中,考虑接收端硬件的处理能力,对于接收到的前几个OFDM符号很有可能没有足够的时间来做复杂的信道估计以增强抑噪处理,所以前几个符号信道估计的信噪比往往比较弱,另一方面,前几个OFDM符号还没有足够的符号来计算频偏及相位信息,因此频偏和相位校正能力均比较弱,信道间干扰(inter channel interference,ISI)和符号间干扰(inter symbol interference,ISI)相对来讲均比较高,而高阶调制又对频偏及相位敏感,因此实际接收端对接收到的第一个OFDM符号解错的概率会比较高,而扰码解错,会导致数据50%的误比特率,导致数据包解调失败,从而影响系统的吞吐率;即使扰码概率性解对,前几个符号解错的概率也比较大。而随着Wi-Fi系统对高吞吐量需求的增大,尤其在802.11ax中引入了1024QAM(quadrature amplitude modulation,正交振幅调制)调制,并且后续系统可能会引入4KQAM调制方式;这种Wi-Fi帧设计对系统影响更大,因为射频(radio frequency,RF)指标受限,已经无法通过提升信号信噪比来改善系统的接收能力,而此时第一个OFDM符号的解调能力相对来讲比较弱,尤其在灵敏度附近时候,第一个OFDM符号(甚至前几个OFDM符号)解错的概率会比较高,扰码解错的概率自然也就比较高,因此扰码解错也会成为整个系统链路吞吐率提升的瓶颈。
发明内容
本申请提供一种用于无线保真Wi-Fi系统的通信方法及装置,能够提高装置对Wi-Fi帧的解调性能。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种用于无线保真Wi-Fi系统的通信方法。该方法可以由第一通信装置执行,所述第一通信装置也可以为第一通信装置内的模块或芯片,第一通信装置也可以为芯片或片上系统,该方法包括如下步骤:首先,生成包括第一前导码字段的Wi-Fi帧,第一前导码字段用于指示Wi-Fi帧中的数据字段中的至少一个符号的调制与编码策略MCS,其中,至少一个符号中的前m个符号的MCS的阶数小于其它符号的MCS的阶数,其中m为大于或等于1的正整数;然后,传送Wi-Fi帧。其中,该方案中的符号可以为OFDM符号。上述方案中,主要通过降低Wi-Fi帧中数据字段的前几个符号的MCS的阶数,即相对于前几个符号之后的其他符号,前几个符号使用更低阶数的MCS进行编码,从而降低了对接收方解调能力的要求,提高了前几个符号解对的概率,进而提高之后的其他采用高阶的MCS编码的符号的解调性能。
在一种可能是实现方式中,第一前导码字段包括第一高效信号字段HE-SIGA;该方法还包括:确定前m个符号的MCS的阶数低于其他符号的MCS的阶数的数值;将数值以及其他符号的MCS的阶数包含于第一高效信号字段HE-SIGA。该方法还包括:将用于指示m的取值的比特包含于第一高效信号字段HE-SIGA。例如:第一前导码字段的第一高效信号字段HE-SIGA,包括MCSpostdata字段(用于指示在后数据字段(postdata,指其他符号)的MCS的阶数)、MCSdiff字段(用于指示在前数据字段(predata,指前m个符号)的MCS的阶数与在后数据字段的MCS的阶数的区别),在本申请的实施例中指,MCS predata字段低于MCS postdata字段的阶数)以及Npredata字段(在前数据字段predata的符号的数量m)。
在一种可能是实现方式中,第一前导码字段包括第一高效信号字段HE-SIGA;该方法还包括:将至少一个符号的MCS的阶数包含于第一高效信号字段HE-SIGA。该方法还包括:将用于指示m的取值的比特包含于第一高效信号字段HE-SIGA。例如:第一前导码字段的第一高效信号字段HE-SIGA,包括MCS postdata字段(在后数据字段的MCS,指其他符号的MCS的阶数)、MCS predata字段(在前数据字段(predata,指前m个符号)的MCS的阶数)以及Npredata字段(在前数据字段predata的符号的数量)。
在一种可能是实现方式中,所述第一前导码字段包括第一高效信号字段HE-SIGA;该方法还包括:将其他符号的MCS的阶数包含于第一高效信号字段HE-SIGA。这样,可以根据其他符号的MCS的阶数确定前m个符号的MCS的阶数。例如,当确定postdata的MCS的阶数大于或等于MCS门限阶数(MCS th)时,固定predata的MCS的阶数为MCS(0)-(MCS th-1),例如,MCS th为8,对于postdata的符号的MCS的阶数为8、9、10、11、12、13时,predata的符号的MCS的阶数为7。
在一种可能是实现方式中,所述第一前导码字段包括第一高效信号字段HE-SIGA;所述第一高效信号字段HE-SIGA包含用户数据的空间流的数量;其中m=k*N ss,其中N ss为所述空间流的数量,k取大于等于1的正整数。示例性的空间流的数量N ss包含在第一高效信号字段HE-SIGA中。其中,前m个符号中每个符号携带用户数据的一个空间流。这样第二通信装置对于Wi-Fi帧中数据字段的前m个符号只接收单流,第二通信装置解调简单,对时序要求较低,单流的解调能力较强,这样前几个符号可以保障高概率解对的情况下,用来重新做信道估计,并增强信道估计,来增强第二通信装置信 道估计的信噪比,同时也可以做频偏和相位能力增强,从而来提升第二通信装置的解调能力。
在一种可能是实现方式中,所述第一前导码字段包括高效率长训练字段HE-LTF;其中m=S,其中S为所述HE-LTF的符号数量。其中,所述前m个符号中每个符号携带用户数据的多个空间流;其中,所述至少一个符号中携带的用户数据的多个空间流采用正交P矩阵加权,其中所述正交P矩阵为m*m的正交矩阵。这样第一通信装置对于Wi-Fi帧中数据字段的前m个符号发送相同的数据,并在不同符号、不同流之间做P矩阵加权,这样终端设备可以重新解信道估计和增强频偏估计,来增强第二通信装置信道估计的信噪比,来提升终端设备的解调能力。
在一种可能是实现方式中,所述前m个符号的子载波间隔大于其他符号的子载波间隔。predata的符号的子载波可以采用比postdata的符号的子载波更大的子载波间隔,更小的符号间隔,子载波间隔更大时,能够提高抗频偏能力;predata的符号的MCS采用更低的阶数,采用更大的子载波间隔时,对信道估计信噪比和频偏纠正能力的要求会弱一些,降低predata的符号的解错的概率,降低扰码解错的概率;同时在predata大概率解对的情况下,predata可以用来增强信道估计和相位估计,提升后面数据解调能力。
第二方面,提供一种用于无线保真Wi-Fi系统的通信方法。该方法可以由第二通信装置执行,所述第二通信装置也可以为第二通信装置内的模块或芯片,第二通信装置也可以为芯片或片上系统,该方法包括:接收第一通信装置传送的Wi-Fi帧;根据所述Wi-Fi帧中的第一前导码字段确定所述第一通信装置传送的WI-FI帧中数据字段的至少一个符号的调制与编码策略MCS,其中,所述至少一个符号中的前m个符号的MCS的阶数小于其他符号的MCS的阶数,其中m为大于或等于1的正整数;根据所述MCS解调所述至少一个符号。
在一种可能是实现方式中,所述第一前导码字段包括第一高效信号字段HE-SIGA;所述第一高效信号字段HE-SIGA包含所述其他符号的MCS的阶数以及用于指示所述前m个符号的MCS的阶数低于所述其他符号的MCS的阶数的数值。
在一种可能是实现方式中,所述第一前导码字段包括第一高效信号字段HE-SIGA;所述第一高效信号字段HE-SIGA包含所述至少一个符号的MCS的阶数。
在一种可能是实现方式中,所述第一前导码字段包括第一高效信号字段HE-SIGA;所述第一高效信号字段HE-SIGA包含所述其他符号的MCS的阶数;根据所述Wi-Fi帧中的第一前导码字段确定所述第一通信装置传送的WI-FI帧中数据字段的至少一个符号的调制与编码策略MCS,包括:根据所述第一高效信号字段HE-SIGA确定所述其他符号的MCS的阶数;根据所述其他符号的MCS的阶数确定所述前m个符号的MCS的阶数。
在一种可能是实现方式中,所述第一前导码字段包括第一高效信号字段HE-SIGA;所述第一高效信号字段HE-SIGA包含用于指示所述m的取值的比特。
在一种可能是实现方式中,所述第一前导码字段包括第一高效信号字段HE-SIGA;所述第一高效信号字段HE-SIGA包含用户数据的空间流的数量;其中m=k*N ss,其中N ss为所述空间流的数量,k取大于等于1的正整数。
在一种可能是实现方式中,所述前m个符号中每个所述符号携带用户数据的一个空间流。
在一种可能是实现方式中,所述第一前导码字段包括高效率长训练字段HE-LTF;其中m=S,其中S为所述HE-LTF的符号数量。
在一种可能是实现方式中,所述前m个符号中每个所述符号携带用户数据的多个空间流;其中,所述至少一个符号中携带的用户数据的多个空间流采用正交P矩阵加权,其中所述正交P矩阵为m*m的正交矩阵。
在一种可能是实现方式中,所述前m个符号的子载波间隔大于所述其他符号的子载波间隔。
第三方面,提供了一种通信装置,该通信装置可以为第一通信装置,所述第一通信装置也可以为第一通信装置内的模块或芯片,第一通信装置也可以为芯片或片上系统,包括:处理器,用于生成包括第一前导码字段的Wi-Fi帧,所述第一前导码字段用于指示所述Wi-Fi帧中的数据字段中的至少一个符号的调制与编码策略MCS,其中,所述至少一个符号中的前m个符号的MCS的阶数小于其它符号的MCS的阶数,其中m为大于或等于1的正整数;发射机,用于传送所述Wi-Fi帧。
在一种可能是实现方式中,第一前导码字段包括第一高效信号字段HE-SIGA;所述处理器,还用于确定前m个符号的MCS的阶数低于其他符号的MCS的阶数的数值;将数值以及其他符号的MCS的阶数包含于第一高效信号字段HE-SIGA。
在一种可能是实现方式中,第一前导码字段包括第一高效信号字段HE-SIGA;所述处理器,还用于将用于指示m的取值的比特包含于第一高效信号字段HE-SIGA。
在一种可能是实现方式中,第一前导码字段包括第一高效信号字段HE-SIGA;所述处理器,还用于将至少一个符号的MCS的阶数包含于第一高效信号字段HE-SIGA。
在一种可能是实现方式中,所述第一前导码字段包括第一高效信号字段HE-SIGA;所述处理器,还用于将其他符号的MCS的阶数包含于第一高效信号字段HE-SIGA。
在一种可能是实现方式中,所述第一前导码字段包括第一高效信号字段HE-SIGA;所述第一高效信号字段HE-SIGA包含用户数据的空间流的数量;其中m=k*N ss,其中N ss为所述空间流的数量,k取大于等于1的正整数。
在一种可能是实现方式中,所述第一前导码字段包括高效率长训练字段HE-LTF;其中m=S,其中S为所述HE-LTF的符号数量。
在一种可能是实现方式中,所述前m个符号的子载波间隔大于其他符号的子载波间隔。
第四方面,提供了一种通信装置,该通信装置可以为第二通信装置,第二通信装置也可以为第二通信装置内的模块或芯片,第二通信装置也可以为芯片或片上系统,包括:接收机,用于接收第一通信装置传送的Wi-Fi帧;处理器,用于根据所述Wi-Fi帧中的第一前导码字段确定所述第一通信装置传送的WI-FI帧中数据字段的至少一个符号的调制与编码策略MCS,其中,所述至少一个符号中的前m个符号的MCS的阶数小于其他符号的MCS的阶数,其中m为大于或等于1的正整数;根据所述MCS解调所述至少一个符号。
在一种可能是实现方式中,第一前导码字段包括第一高效信号字段HE-SIGA;所 述第一高效信号字段HE-SIGA包含所述其他符号的MCS的阶数以及用于指示所述前m个符号的MCS的阶数低于所述其他符号的MCS的阶数的数值。
在一种可能是实现方式中,所述第一前导码字段包括第一高效信号字段HE-SIGA;所述第一高效信号字段HE-SIGA包含所述至少一个符号的MCS的阶数。
在一种可能是实现方式中,所述第一前导码字段包括第一高效信号字段HE-SIGA;所述第一高效信号字段HE-SIGA包含所述其他符号的MCS的阶数;所述处理器,具体用于根据所述第一高效信号字段HE-SIGA确定所述其他符号的MCS的阶数;根据所述其他符号的MCS的阶数确定所述前m个符号的MCS的阶数。
在一种可能是实现方式中,所述第一前导码字段包括第一高效信号字段HE-SIGA;所述第一高效信号字段HE-SIGA包含用于指示所述m的取值的比特。
在一种可能是实现方式中,所述第一前导码字段包括第一高效信号字段HE-SIGA;所述第一高效信号字段HE-SIGA包含用户数据的空间流的数量;其中m=k*N ss,其中N ss为所述空间流的数量,k取大于等于1的正整数。
在一种可能是实现方式中,所述前m个符号中每个所述符号携带用户数据的一个空间流。
在一种可能是实现方式中,所述第一前导码字段包括高效率长训练字段HE-LTF;其中m=S,其中S为所述HE-LTF的符号数量。
在一种可能是实现方式中,所述前m个符号中每个所述符号携带用户数据的多个空间流;其中,所述至少一个符号中携带的用户数据的多个空间流采用正交P矩阵加权,其中所述正交P矩阵为m*m的正交矩阵。
在一种可能是实现方式中,所述前m个符号的子载波间隔大于所述其他符号的子载波间隔。
第五方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第六方面,提供了一种包含指令的计算机程序产品,计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第七方面,提供一种通信系统,该通信系统包括上述方面所述的第一通信装置和上述方面所述的第二通信装置。一种示例中,第一通信装置可以为网络设备,第二通信装置可以为终端设备。
其中,第二方面至第七方面中任一种设计方式所带来的技术效果可参见上述第一方面中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请的实施例提供的一种通信系统的结构示意图;
图2为本申请的实施例提供的终端设备及网络设备的内部结构示意图;
图3为本申请的实施例提供的802.11axWi-Fi协议下的发送方的传输过程示意图;
图4为本申请的实施例提供的802.11axWi-Fi协议下的接收方的传输过程示意图;
图5为本申请的实施例提供的一种Wi-Fi帧的结构示意图;
图6为本申请的实施例提供的终端设备及网络设备的硬件结构示意图;
图7为本申请的实施例提供的终端设备的硬件结构示意图;
图8为本申请的实施例提供的用于无线保真Wi-Fi系统的通信方法的流程示意图;
图9为本申请的另一实施例提供的一种Wi-Fi帧的结构示意图;
图10为本申请的又一实施例提供的一种Wi-Fi帧的结构示意图;
图11为本申请的实施例提供的一种数据字段的结构示意图;
图12为本申请的另一实施例提供的一种数据字段的结构示意图;
图13为本申请的再一实施例提供的一种Wi-Fi帧的结构示意图;
图14为本申请的另一实施例提供的一种Wi-Fi帧的结构示意图;
图15为本申请的又一实施例提供的一种Wi-Fi帧的结构示意图;
图16为本申请的再一实施例提供的一种Wi-Fi帧的结构示意图;
图17为本申请的实施例提供的网络设备的结构示意图;
图18为本申请的实施例提供的终端设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。另外,在本申请实施例中,“示例性地”、“例如”等用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。本申请实施例中,“信息(information)”,“信号(signal)”,“消息(message)”,“信道(channel)”、“信令(singalling)”、“消息(message)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
此外,本申请的描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。图1示出了适用于本申请实施例的用于无线保真Wi-Fi系统的通信方法的通信系统的示意图。如图1所示,该通信系统包括网络设备101和终端设备103,网络设备101和终端设备103均可配置有多个天线。可选地,该通信系统 还可包括其他网络设备和/或其他终端设备,如网络设备102和终端设备104,且网络设备102和终端设备104也均可配置有多个天线。
应理解,上述网络设备以及终端设备还可包括与信号发送和接收相关的多个部件(例如,处理器、编码器、译码器、调制器、解调器、复用器、解复用器等)。
示例性地,上述网络设备可以为具有无线收发功能的设备或可设置于该网络设备的芯片,该网络设备包括但不限于:Wi-Fi系统中的接入点AP(access point)、演进型节点B(evolved Node B,eNB)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为新空口(new radio,NR)系统中的gNB,以及通信服务器、路由器、交换机、网桥、计算机等。
示例性地,上述终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是非接入点站点(non-access point station,NON-STA或STA)、手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。本申请实施例将前述终端设备及可设置于前述终端设备的芯片统称为终端设备。
在该通信系统中,一个网络设备或一个终端设备均可以视为一个节点,任意两个或两个以上节点之间可以存在一对一、一对多、多对一、多对多等任意一种形式的通信。示例性的,同一网络设备可以与至少一个终端设备和/或至少一个网络设备通信,同一终端设备也可以与至少一个网络设备和/或至少一个终端设备通信。例如,如图1所示,网络设备101可以与终端设备103通信,也可以与网络设备102通信,还可以与终端设备103、终端设备104以及网络设备102中的至少两个同时通信。又例如,终端设备104可以与网络设备101通信,也可以与终端设备103通信,还可以与网络设备101、网络设备102,以及终端设备103中的至少两个通信。
应理解,图1仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。
图2示出了网络设备101与终端设备103内部结构示意图。如图2所示,网络设备101和终端设备103均包括有应用层处理模块、传输控制协议(transmission control protocol,TCP)/用户数据报协议(user datagram protocol,UDP)处理模块、互联网协议(internet protocol,IP)处理模块、逻辑链路控制(logical link control,LLC)处理模块、媒体接入控制(media access control,MAC)层处理模块、物理层(physical layer)基带处理模块、射频模块和天线。其中,IP处理模块与LLC处理模块通过上层接口连接。
其中,对于发送方,如网络设备101,物理层基带处理模块用于对二进制用户数据,即信息比特进行信道编码以产生编码比特,对编码比特进行调制以生成调制符号,然后对调制符号上变频以生成射频信号,并通过天线发送出去。对于接收方,如终端设备103,物理层基带处理模块用于将射频模块接收到射频信号进行下变频、解调以恢复编码比特,并对编码比特进行信道译码以恢复信息比特,从而完成了信息比特, 即二进制用户数据的发送和接收。
需要说明的是,图2仅示出了配置有2根天线的网络设备101和配置有1根天线的终端设备103。实际应用中,网络设备101和终端设备103的天线均可以配置为1或多根。
事实上,在现代通信系统中,多天线技术被广泛应用,如在Wi-Fi、LTE、5G NR等系统中。一个节点,如上述网络设备101或终端设备103,可以通过多天线发送或者接收信号,简称多入多出(multiple-input multiple-output,MIMO)技术。在支持MIMO的通信系统中,节点通过调整MIMO发送、接收方案,如调整发送天线的权值,分配不同的信号到不同的天线上等,可以获取分集、复用等增益,提高系统容量、增加系统可靠性。在本申请实施例中,每一对发送天线与接收天线之间传输的数据,视为一个空间流(spatial stream,SS),简称流。
如图3所示,802.11ax Wi-Fi协议下的发送方的传输过程,主要包括如下步骤:帧校验序列前物理层填充(Pre-FEC PHY padding),加扰(scrambler),前向纠错编码(forward error correction encoding),帧校验序列后物理层填充(post-FEC PHY padding),流解析(stream parser),分段解析(segment parser),交错复用(Interleaver,也称作交织),星座点映射(constellation mapper),循环移位分集(cyclic shift diversity),空间映射(spatial mapper),离散傅里叶逆变换(inverse discrete Fourier transform,IDFT),插入保护间隔和加窗(guard interval insertion and windowing,GI&W)以及模拟和射频(analog and radio frequency,A&RF)。其中,802.11ax协议规定:在大于20MHz的资源块(resource unit,RU)上发送的物理层协议数据单元(PHY protocol data unit,PPDU)的前向纠错码必须要采用低密度奇偶校验码(low density parity check code,LDPC)。换句话说,二进制卷积编码(binary convolutional coder,BCC)是在RU26、RU52、RU106和RU242任一资源块上的必选编码方式,而LDPC是在RU484、RU996和RU996*2中任一资源块上必选的编码方式。当然,除上述必选编码方式外,每种资源块还可以有备选的编码方式,此处不再赘述。
如图4所示,802.11ax Wi-Fi协议下的接收方的传输过程,主要包括以下过程:离散傅里叶变换(discrete Fourier transform,IDFT)、信道估计、信道均衡&相位跟踪&频偏跟踪、解映射、BCC解交织或LDPC子载波(tone)解映射、段解析、流解析、维特比译码或LDPC译码、解扰。
其中,通过上述的传输过程传输的Wi-Fi物理帧,也称作Wi-Fi帧,参照图5所示,802.11ax中,Wi-Fi物理帧作为物理层汇聚协议(physical layer convergence protocol,PLCP)数据单元(PLCP data unit,PPDU)。Wi-Fi帧结构,包括前导码字段和数据字段,其中数据字段作为PLCP服务数据单元(PLCP sevice data unit,PSDU)。前导码字段包括:传统短训练字段(legacy-short training field,L-STF)、传统长训练字段(legacy-long training field,L-LTF)、传统信令字段(legacy-signal field,L-SIG)、重复传统信令字段(repeated Legacy-signal field RL-SIG)、高效信令字段A(high efficient-signal field A,HE-SIGA)、高效短训练字段(high efficient-short training field,HE-STF)、高效长训练字段 (high efficient-long training field,HE-LTF);数据字段包括多个符号(例如,可以是OFDM符号),符号0(symbol0,简称SYM0)-符号N+2(symbolN+2,简称SYMN+2)。通常,发送方将用户数据的编码比特填充在符号向接收方进行传输。目前,发送方主要依据Wi-Fi帧的HE-SIGA指示的MCS的阶数对用户数据执行流解析之前的编码过程,该过程中每个符号均采用相同的MCS。802.11ax中引入了1024QAM调制,甚至更高阶的调制方式后,接收方在对接收到的Wi-Fi帧的实际解调当中,考虑硬件实现处理的能力,接收到的前几个符号的信道估计很有可能没有足够的时间来做复杂的信道估计增强抑噪处理,所以前几个符号信道估计的信噪比往往比较弱,另一方面,前几个符号还没有足够的符号来计算频偏及相位信息,因此频偏和相位校正能力均比较弱,信道间干扰和符号间干扰相对来讲均比较高,而高阶调制又对频偏及相位敏感,因此实际接收方对接收到的前几个符号解错的概率会比较高,而扰码解错,会导致数据50%的误比特率,导致数据包解调失败,影响吞吐;即使扰码概率性解对,前几个符号解错的概率也比较大。本申请中,主要通过降低数据字段中前几个符号的MCS的阶数,即相对于前几个符号之后的其他符号,前几个符号使用更低阶数的MCS进行编码,从而降低了对接收方解调能力的要求,提高了前几个符号解对的概率,进而提高之后的其他采用高阶的MCS编码的符号的解调性能。
可选的,本申请实施例中的网络设备101与终端设备103也可以称之为通信装置,例如将网络设备101称为第一通信装置,将终端设备103称为第二通信装置,其可以是一个通用设备或者是一个专用设备,本申请实施例对此不作具体限定。
可选的,如图6所示,为本申请实施例提供的网络设备101和终端设备103的结构示意图。
其中,终端设备103包括至少一个处理器(图6中示例性的以包括一个处理器301为例进行说明)和至少一个收发器(图6中示例性的以包括一个收发器303为例进行说明)。可选的,终端设备103还可以包括至少一个存储器(图6中示例性的以包括一个存储器302为例进行说明)、至少一个输出设备(图6中示例性的以包括一个输出设备304为例进行说明)和至少一个输入设备(图6中示例性的以包括一个输入设备305为例进行说明)。
处理器301、存储器302和收发器303通过通信线路相连接。通信线路可包括一通路,在上述组件之间传送信息。
处理器301可以是通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。在具体实现中,作为一种实施例,处理器301也可以包括多个CPU,并且处理器301可以是单核(single-CPU)处理器或多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器302可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only  memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器302可以是独立存在,通过通信线路与处理器301相连接。存储器302也可以和处理器301集成在一起。
其中,存储器302用于存储执行本申请方案的计算机执行指令,并由处理器301来控制执行。具体的,处理器301用于执行存储器302中存储的计算机执行指令,从而实现本申请实施例中所述的用于无线保真Wi-Fi系统的通信方法。
或者,可选的,本申请实施例中,也可以是处理器301执行本申请下述实施例提供的用于无线保真Wi-Fi系统的通信方法中的处理相关的功能,收发器303负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码或者计算机程序代码,本申请实施例对此不作具体限定。
收发器303可以使用任何收发器一类的装置,用于与其他设备或通信网络通信。收发器303包括发射机(transmitter,Tx)和接收机(receiver,Rx),例如在本申请的实施例中终端设备103通过接收机接收Wi-Fi帧。
输出设备304和处理器301通信,可以以多种方式来显示信息。例如,输出设备304可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。
输入设备305和处理器301通信,可以以多种方式接受用户的输入。例如,输入设备305可以是鼠标、键盘、触摸屏设备或传感设备等。
网络设备101包括至少一个处理器(图6中示例性的以包括一个处理器201为例进行说明)、至少一个收发器(图6中示例性的以包括一个收发器203为例进行说明)和至少一个网络接口(图6中示例性的以包括一个网络接口204为例进行说明)。可选的,网络设备101还可以包括至少一个存储器(图6中示例性的以包括一个存储器202为例进行说明)。其中,处理器201、存储器202、收发器203和网络接口204通过通信线路相连接。网络接口204用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与其它网络设备的网络接口进行连接(图6中未示出),本申请实施例对此不作具体限定。另外,处理器201、存储器202和收发器203的相关描述可参考终端设备103中处理器301、存储器302和收发器303的描述,在此不再赘述。收发器203可以使用任何收发器一类的装置,用于与其他设备或通信网络通信。收发器203包括发射机(transmitter,Tx)和接收机(receiver,Rx),例如在本申请的实施例中网络设备101通过发射机传送Wi-Fi帧。
结合图6所示的终端设备103的结构示意图,示例性的,图7为本申请实施例提供的终端设备103的一种具体结构形式。
其中,在一些实施例中,图6中的处理器301的功能可以通过图7中的处理器110实现。
在一些实施例中,图6中的收发器303的功能可以通过图7中的天线1,天线2,移动通信模块150,无线通信模块160等实现。
其中,天线1和天线2用于发射和接收电磁波信号。终端设备103中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在终端设备103上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
无线通信模块160可以提供应用在终端设备103上的包括无线局域网(wireless local area networks,WLAN)(如Wi-Fi网络),蓝牙(blue tooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。当终端设备103是第一设备时,无线通信模块160可以提供应用在终端设备103上的NFC无线通信的解决方案,是指第一设备包括NFC芯片。该NFC芯片可以提高NFC无线通信功能。当终端设备103是第二设备时,无线通信模块160可以提供应用在终端设备103上的NFC无线通信的解决方案,是指第一设备包括电子标签(如射频识别(radio frequency identification,RFID)标签)。其他设备的NFC芯片靠近该电子标签可以与第二设备进行NFC无线通信。
在一些实施例中,终端设备103的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得终端设备103可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)或星基增强系统(satellite  based augmentation systems,SBAS)。
在一些实施例中,图6中的存储器302的功能可以通过图7中的内部存储器121或者外部存储器接口120连接的外部存储器(例如Micro SD卡)等实现。
在一些实施例中,图6中的输出设备304的功能可以通过图7中的显示屏194实现。其中,显示屏194用于显示图像,视频等。显示屏194包括显示面板。
在一些实施例中,图6中的输入设备305的功能可以通过鼠标、键盘、触摸屏设备或图7中的传感器模块180来实现。示例性的,如图7所示,该传感器模块180例如可以包括压力传感器180A、陀螺仪传感器180B、气压传感器180C、磁传感器180D、加速度传感器180E、距离传感器180F、接近光传感器180G、指纹传感器180H、温度传感器180J、触摸传感器180K、环境光传感器180L、和骨传导传感器180M中的一个或多个,本申请实施例对此不作具体限定。
在一些实施例中,如图7所示,该终端设备103还可以包括音频模块170、摄像头193、指示器192、马达191、按键190、SIM卡接口195、USB接口130、充电管理模块140、电源管理模块141和电池142中的一个或多个,其中,音频模块170可以与扬声器170A(也称“喇叭”)、受话器170B(也称“听筒”)、麦克风170C(也称“话筒”,“传声器”)或耳机接口170D等连接,本申请实施例对此不作具体限定。
可以理解的是,图7所示的结构并不构成对终端设备103的具体限定。比如,在本申请另一些实施例中,终端设备103可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
下面将结合图1至图7,以图1所示的网络设备与任一终端设备进行交互为例,对本申请实施例提供的用于无线保真Wi-Fi系统的通信方法进行展开说明。
需要说明的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
如图8所示,为本申请实施例提供的一种用于无线保真Wi-Fi系统的通信方法,以网络设备向终端设备传送Wi-Fi帧为例进行说明,该用于无线保真Wi-Fi系统的通信方法包括步骤S101-步骤S105。
S101、网络设备生成包括第一前导码字段的Wi-Fi帧。
第一前导码字段的示例如图9所示,第一前导码字段包含的内容与图5类似,不在赘述。其中,第一前导码字段用于指示Wi-Fi帧中的数据字段中的至少一个符号的调制与编码策略MCS,其中,至少一个符号中的前m个符号的MCS的阶数小于其它符号的MCS的阶数,其中m为大于或等于1的正整数。
在示例一中,第一前导码字段包括第一高效信号字段HE-SIGA。该方法还包括:确定前m个符号的MCS的阶数低于其他符号的MCS的阶数的数值;将数值以及其他符号的MCS的阶数包含于第一高效信号字段HE-SIGA;将用于指示m的取值的比特包含于第一高效信号字段HE-SIGA。这样,第一前导码字段的第一高效信号字段HE-SIGA包含其他符号的MCS的阶数,以及用于指示前m个符号的MCS的阶数低于其他符号的MCS的阶数的数值,以及用于指示m取值的比特。
参照图9所示的Wi-Fi帧,其中第一前导码字段的第一高效信号字段HE-SIGA,包括MCS postdata字段(用于指示在后数据字段(postdata,指其他符号)的MCS的阶数)、MCS diff字段(用于指示在前数据字段(predata,指前m个符号)的MCS的阶数与在后数据字段的MCS的阶数的区别),在本申请的实施例中指,MCS predata低于MCS postdata的阶数)以及Npredata字段(在前数据字段predata的符号的数量m)。
HE-SIGA的MCS postdata字段四个比特(4bit)指示其他符号的MCS的阶数;参照表1所示,MCS postdata字段的四个比特能够指示postdata的符号的MCS的阶数的取值0-13。
Figure PCTCN2020121687-appb-000001
表1
HE-SIGA的MCSdiff字段三个比特,用来表示predata的符号比postdata的符号的MCS低M阶(例如,M>=1并且M<=8),如表2所示。
Figure PCTCN2020121687-appb-000002
表2
参照图9所示的帧结构,其中,HE-SIGA中的NPredata字段三个比特,用来指示前m=N predata(N predata>=1并且N predata<=8)个符号采用的MCS的阶数。Npredata两个比特和符号数(m)的映射关系如表3所示。
Figure PCTCN2020121687-appb-000003
表3
在示例二中,第一前导码字段包括第一高效信号字段HE-SIGA。该方法还包括:将至少一个符号的MCS的阶数包含于第一高效信号字段HE-SIGA;将用于指示m的取值的比特包含于第一高效信号字段HE-SIGA。第一前导码字段的第一高效信号字段HE-SIGA携带Wi-Fi帧中数据字段的至少一个符号的MCS的阶数。
结合图10所示,提供一种Wi-Fi帧的示例,其中第一前导码字段的第一高效信号字段HE-SIGA,包括MCS postdata字段(在后数据字段的MCS的阶数,指其他符号的MCS阶数)、MCS predata字段(在前数据字段(predata,指前m个符号)的MCS的阶数)以及Npredata字段(在前数据字段predata的符号的数量)。
HE-SIGA中的MCS postdata字段的四个比特(4bit)指示其他符号的MCS的阶数;参照表1所示,MCS postdata字段的四个比特的能够指示postdata的MCS的阶数的取值0-13。
HE-SIGA中MCS predata字段的三个比特用来表示predata的符号的MCS的阶数。MCS predata字段的三个比特和predata的符号的MCS的阶数映射关系如表4所示。
Figure PCTCN2020121687-appb-000004
表4
示例性的,参照图10所示的帧结构,其中,HE-SIGA中Npredata字段的三个比特,用来指示前m=N predata(N predata>=1并且N predata<=8)个符号采用的MCS的阶数。Npredata字段的两个比特和符号数(m)的映射关系如表3所示。
在示例三中,第一前导码字段包括第一高效信号字段HE-SIGA。该方法还包括:该方法还包括:将其他符号的MCS的阶数包含于第一高效信号字段HE-SIGA。这样,可以根据其他符号的MCS的阶数确定前m个符号的MCS的阶数。例如,当确定postdata的MCS大于或等于MCS门限(MCS th)时,固定predata的MCS的阶数为MCS(0)-(MCS th-1),例如,MCS th为8,对于postdata的符号的MCS的阶数为8、9、10、11、12、13时,predata的符号的MCS的阶数为7。
其中,网络设备主要根据MCS对用户数据进行编码并填充于至少一个符号。
具体的,结合上述步骤S101中的示例一、二或三提供的数据字段的符号的MCS。对用户数据的编码的过程说明如下:
如上所述,对用户数据的编码方式可以采用BCC编码或者LDPC编码。
在示例四中,以BCC编码方式为例,基于本申请的实施例提供的Wi-Fi帧格式,TX_TIME计算过程如下(式一)。
Figure PCTCN2020121687-appb-000005
其中,TX_TIME为Wi-Fi帧的发送时长,20包括L-STF、L-LTF、L-SIG字段的字节数;T HE-PREAMBLE=T RL-SIG+T HE-SIGA+T HE-STF+N HE-LTFT HE-LTFSYM,T HE_PREAMBLE为第一前导码字段的符号周期,T predata为前N predata个符号的符号周期,T postdata为后面(N SYM-N predata)个符号的符号周期;N SYM为数据字段中符号的数量,T PE为数据字段的数据包扩展(packet  extension)时间,signalExtension为信号扩展时间,T HE-LTFSYM为HE-LTF字段的周期长度,N HE-LTF为HE-LTF字段的符号数,T RL-SIG为RL-SIG字段的周期长度,T HE-SIGA为HE-SIGA字段的周期长度,T HE-STF为HE-STF字段的周期长度。该示例四中,前N predata个符号的子载波间隔可以与后面(N SYM-N predata)个符号的子载波间隔相同,即T predata与T postdata相同,遵循802.11ax协议。
当编码方式为BCC编码时,如图11所示,数据字段包含服务字段(SERVICE字段,通常为16比特),PDSU信息位(info bits,PSDU Length长度)、帧校验序列前物理层填充比特(pre-FEC PHY padding bits),尾比特(tail bits,通常BCC编码方式具有尾比特,LDPC编码没有尾比特)。则对于Wi-Fi帧,以BCC编码为例,编码比特的计算流程如下:
S1、计算数据字段的最后一个符号的数据比特数N Excess
该Wi-Fi帧需要限定发送的数据字段的符号的符号数要至少要大于等于N predata个符号;N Excess是数据字段的最后一个符号能够承载的数据比特数。
N Excess=mod(8×APEP_LENGTH+N Tail+N service-N DBPS0×N predata,N DBPS1)    (式二),其中:N DBPS1=N sd×N BPSCS1×R 1,N DBPS0=N sd×N BPSCS0×R 0,R 1为postdata的符号的编码码率,R 0为predata的符号的编码码率;N BPSCS1为postdata的符号上每个子载波上的编码比特数,N BPSCS0为predata的符号上每个子载波上的编码比特数,N sd为一个符号有效数据子载波的个数,以上参数符合802.11ax协议;N DBPS1为postdata的符号的数据比特数,N DBPS0为predata的符号的数据比特数。APEP_LENGTH为数据字段携带的数据包的长度,单位为字节;N service为服务字段的比特数,N Tail为尾比特的比特数。
N BPSCS1,N BPSCS0,R 1,R 0可以MCS参数查表或者计算得到;例如,如果HE-SIGA指示postdata的符号的MCS为12,HE-SIGA指示predata的符号的MCS比其他符号的MCS低两阶,即predata的符号的MCS为10,则根据如下MCS参数查找表(表5),可以查询得到
Figure PCTCN2020121687-appb-000006
N BPSCS1=12;
Figure PCTCN2020121687-appb-000007
N BPSCS0=10。
Figure PCTCN2020121687-appb-000008
表5
其中,表5为160MHZ带宽下RU996*2,8个空间流(Nss)下的MCS的索引值与参 数的映射关系。调制方式(modulation)包括:二进制相移键控(binary phase shift keying,BPSK)、正交相移键控(quadrature phase shift keying,QPSK),16正交振幅调制(quadrature amplitude modulationQAM),64QAM,256QAM,1024QAM,4096QAM。
S2、计算predata的符号的个数N SYM,init
Figure PCTCN2020121687-appb-000009
其中,N Predata∈[1~8],N Tail为尾比特的比特数,N service为服务字段的比特数。
S3、计算Pre-FEC PHY padding的因子a init
基于N Excess,Pre-FEC PHY padding的初始a init计算如下(式四)。
Figure PCTCN2020121687-appb-000010
N CBPS1,SHORT=N SD,SHORT×N SS×N BPSCS1×R 1,N SD,SHORT为数据字段的最后一个符号前a init码元的数据子载波的个数;N SS为空间流个数;N DBPS1,SHORT为最后一个符号1/4码元的数据比特数。
其中,N SD,SHORT与RU大小的关系表如表6所示。
RU_size N SD,SHORT
242-tone 60
484-tone 120
996-tone 240
2x996-tone 492
表6
S4、计算数据字段的最后一个符号承载的数据比特数和编码比特数。
数据字段的最后一个符号承载的数据比特数为:
Figure PCTCN2020121687-appb-000011
数据字段的最后一个符号编码比特数为:
Figure PCTCN2020121687-appb-000012
其中,N CBPS,SHORT为最后一个符号1/4码元的编码比特数。
S5、计算pre-FEC PHY padding的比特数N PAD,Pre-FEC
Figure PCTCN2020121687-appb-000013
S6、BCC编码。
其中,N SYM=N SYM,init,a=a init;数据字段的最后一个数据符号的数据比特数为:N DBPS1,last=N DBPS1,last,init;数据字段的最后一个数据符号的编码比特数为:N CBPS1,last=N CBPS1,last,init
S7、计算post-FEC PHY padding。
对数据字段的最后一个符号编码后进行post-FEC PHY padding比特的填充,数据字段的最后一个数据符号的post-FEC PHY padding的比特数N PAD,post-FEC计算如式八:
N PAD,post-FEC=N CBPS1-N CBPS1,last   (式八)。
最后1个符号包含N CBPS1,last个比特和N PAD,post-FEC个post-FEC PHY padding比特;post-FEC PHY padding是按照对齐到a init(a init取值为1,2,3,4)处的数据比特数。
其中,其他扰码、星座点映射,IFFT,CSD等处理参照802.11ax协议,没有变更。
其中上述示例四中,predata的符号的子载波和postdata的符号的子载波采用相同的子载波间隔,在一些示例中,predata的符号的子载波可以采用比postdata的符号的子载波更大的子载波间隔,更小的符号间隔,子载波间隔更大时,能够提高抗频偏能力;predata的符号的MCS采用更低的阶数,采用更大的子载波间隔时,对信道估计信噪比和频偏纠正能力的要求会弱一些,降低predata的符号的解错的概率,降低扰码解错的概率;同时在predata大概率解对的情况下,predata可以用来增强信道估计和相位估计,提升后面数据解调能力。这样,(式一)中T predata与T postdata不相同,predata的符号选用较大的子载波间隔,符号周期更短,如表7所示,提供了一种predata和postdata的子载波间隔的映射关系,其他均遵循802.11ax协议。
Figure PCTCN2020121687-appb-000014
表7
其中,保护间隔(guarded interval,GI)长度参见802.11ax协议,根据HE-SIGA指示不同GI长度,有3.2us/1.6us/0.8us等。
在示例五中,当编码方式为LDPC编码时,如图12所示,数据字段包含服务字段(SERVICE字段,通常为16比特),PDSU信息位(info bits,PSDU Length长度)、帧校验序列前物理层填充比特(pre-FEC PHY padding bits);则对于Wi-Fi帧,以LDPC编码为例,符号的编码比特的计算流程如下:
S1、计算数据字段的最后一个符号的数据比特数N Excess
该Wi-Fi帧需要限定发送的数据字段的符号的符号数要至少要大于N predata个符号;N Excess是数据字段的最后一个符号能够承载的数据比特数。
N Excess=mod(8×APEP_LENGTH+N Tail+N service-N DBPS0×N predata,init,N DBPS1),其中,N DBPS1=N sd1×N BPSCS1×R 1,N DBPS0=N sd0×N BPSCS0×R 0,其中,R 1为postdata的符号的编码码率,R 0为predata的符号的编码码率;N BPSCS1为postdata每个子载波上面的编码比特数,N BPSCS0为predata每个子载波上面的编码比特数,N sd1为postdata的符号的有效数据子载波的个数,N sd0为predata的符号的有效数据子载波的个数;N DBPS1为postdata的符号的数据比特数,N DBPS0为predata的符号的数据比特数;APEP_LENGTH为数据包的长度,字节为单位;N service为服务比特数;N BPSCS1,N BPSCS0,R 1,R 0可以根据MCS表参数查表或者计算得到;例如,如果SIGA指示postdata的数据符号MCS为12,则SIGA指示predata的符号固定MCS为7,则根据MCS参数查找表(表5),
Figure PCTCN2020121687-appb-000015
N BPSCS1=12;
Figure PCTCN2020121687-appb-000016
N BPSCS0=6。
S2、计算predata的符号的个数N SYM,init
Figure PCTCN2020121687-appb-000017
S3、计算pre-FEC PHY padding的因子a init
基于N Excess,pre-FEC PHY padding的a init计算如下:
Figure PCTCN2020121687-appb-000018
其中,N DBPS1,SHORT=N CBPS1,SHORT×R 1,N CBPS1,SHORT=N SD,SHORT×N SS×N BPSCS1×R 1,N SD,SHORT为最后一个符号前a init码元的数据子载波的个数。
S4、计算数据字段的最后一个符号承载的数据比特数和编码比特数。
Figure PCTCN2020121687-appb-000019
Figure PCTCN2020121687-appb-000020
计算数据字段的LDPC编码的数据比特数N pld,N pld=(N SYM,init-1-N predata,init)×N DBPS1+N predata×N DBPS0+N DBPS,LAST,init,其中predata的符号的LDPC编码的数据比特数:N pld0=N predata,init×N DBPS0;postdata的符号的LDPC编码的数据比特数N pld1=N pld-N pld0
计算数据字段的LDPC编码的编码比特数N avbits,N avbits=(N SYM,init-1-N predata,init)×N CBPS1+N predata×N CBPS0+N CBPS,LAST,init,其中,predata的符号的LDPC编码的编码比特数N avbit0=N predata,init×N CBPS0;postdata的符号的LDPC编码的LDPC编码的编码比特数N avbits1=(N SYM,init-1-N predata,init)×N CBPS1+N CBPS,LAST,init
LDPC编码方式下,predata的符号和postdata的符号单独编码,predata的符号的码块和码长计算如下表8所示。
Figure PCTCN2020121687-appb-000021
表8
postdata的符号的码块和码长计算如下表9所示。
Figure PCTCN2020121687-appb-000022
表9
predata的缩短比特N shrt0=max(0,(N CW0-1)×L LDPC0×R 0-N pld0);postdata的缩短比特N shrt1=max(0,(N CW1-1)×L LDPC1×R 1-(N pld-N pld0));predata的打孔比特 N punc0=max(0,N CW0×L LDPC0-N avbits0-N shrt0);postdata的打孔比特N punc1=max(0,N CW1×L LDPC1-N avbits1-N shrt1)。
参照802.11ax协议,LDPC编码中需要判断Predata的LDPC_extra_symbol_flag(LDPC的扩展符号标识)是否为1,LDPC需要增加字段指示Npredata的extra symbol。Extra symbol的计算参照LDPC计算过程参见802.11n/802.11ac/802.11ax协议,这里不再阐述。此时N predata=N predata,init+1。
LDPC_extra_symbol_flag的判断方法为:
Figure PCTCN2020121687-appb-000023
if((N punc>0.3×[N CW1×L LDPC1×(1-R 1)]);。
LDPC_extra_symbol_flag=1
当LDPC_extra_symbol_flag为1的时候,N avbits需要增加为:
Figure PCTCN2020121687-appb-000024
数据字段的符号个数和a因子更新为:
Figure PCTCN2020121687-appb-000025
最后一个符号的数据比特数和编码比特数为:
Figure PCTCN2020121687-appb-000026
Figure PCTCN2020121687-appb-000027
当LDPC_extra_symbol_flag为0的时候,数据字段的符号个数和a因子为:
N SYM=N SYM,init,a=a init
最后一个符号的数据比特数和编码比特数为:
N DBPS1,last=N DBPS1,last,init,N CBPS1,last=N CBPS1,last,init
S5、计算post-FEC PHY padding。
对最后一个符号编码后进行post-FEC PHY padding,最后1个符号的post-FEC PHY padding计算如下:N PAD,post-FEC=N CBPS1-N CBPS1,last
最后1个符号包含N CBPS1,last个比特和N PAD,post-FEC个post-FEC PHY padding的比特。
S102、网络设备向终端设备传送Wi-Fi帧。
S103、终端设备接收网络设备传送的Wi-Fi帧。
S104、终端设备根据所述Wi-Fi帧中的第一前导码字段确定所述第一通信装置传送的Wi-Fi帧中数据字段的至少一个符号的调制与编码策略MCS。
S105、终端设备根据MCS解调所述至少一个符号。
其中,终端设备根据MCS解调至少一个符号,获取至少一个符号携带的用户数据的过程可以参考图4所示,终端设备根据predata的MCS对Wi-Fi帧中的predata的符号进行解映射、解交织、流解析等处理。终端设备根据postdata的MCS对Wi-Fi帧中的postdata的符号进行解映射、解交织、流解析等处理。
上述方案中,主要通过降低Wi-Fi帧中数据字段的前几个符号的MCS,即相对于前几个符号之后的其他符号,前几个符号使用更低阶数的MCS进行编码,从而降低了对接收方解调能力的要求,提高了前几个符号解对的概率,进而提高之后的其他采用高阶的MCS编码的符号的解调性能。
本申请实施例提供的一种用于无线保真Wi-Fi系统的通信方法,以网络设备向终端设备传送Wi-Fi帧为例进行说明,该用于无线保真Wi-Fi系统的通信方法包括步骤S201-步骤S209。
S201、网络设备生成包括第一前导码字段的Wi-Fi帧。
其中,其中,第一前导码字段用于指示Wi-Fi帧中的数据字段中的至少一个符号的调制与编码策略MCS,其中,至少一个符号中的前m个符号的MCS的阶数小于其它符号的MCS的阶数,其中m为大于或等于1的正整数。如图13所示,提供一种Wi-Fi帧的结构,其中第一前导码字段的第一高效信号字段HE-SIGA,包括MCS postdata字段(用于指示在后数据字段(postdata,指其他符号)的MCS的阶数,参照表1所示)、MCS diff字段(用于指示在前数据字段(predata,指前m个符号)的MCS的阶数与在后数据字段的MCS的阶数的区别,参照表2所示),在本申请的实施例中指,MCS predata低于MCS postdata的阶数)。或者如图14所示,第一前导码字段的HE-SIGA,包括MCS postdata字段(在后数据字段的MCS,指其他符号的MCS的阶数,参照表1所示)、MCS predata字段(在前数据字段(predata,指前m个符号)的MCS的阶数,参照表4所示)。第一高效信号字段HE-SIGA包含用户数据的空间流的数量;其中,m=k*N ss,其中N ss为空间流的数量,k取大于等于1的正整数。这样,网络设备根据用户数据的空间流的数量确定m的取值。
网络设备根据MCS对用户数据流进行编码并填充于至少一个符号后,如图13和图14所示,前m个符号中每个符号携带用户数据的一个空间流;比如Symbol 0发送第一条空间流,Symbol 1发送第二条空间流,SymbolN发送第N ss条空间流等。在空间流的数量较少时,也可以在前m个符号中循环发送N ss条空间流,例如,在比如Symbol 0发送第一条空间流,Symbol 1发送第二条空间流,比如Symbol 2发送第一条空间流,Symbol 3发送第二条空间流……,其中编码过程可以参照上述实施例的具体说明,不再赘述。
S202、网络设备向终端设备传送Wi-Fi帧。
S203、终端设备接收网络设备传送的Wi-Fi帧。
S204、终端设备根据所述Wi-Fi帧中的第一前导码字段确定所述第一通信装置传送的Wi-Fi帧中数据字段的至少一个符号的调制与编码策略MCS。
S205、终端设备根据MCS解调所述至少一个符号。
这样终端设备对于Wi-FI帧中数据字段的前m个符号只接收单流,终端设备解调简单,对时序要求较低,单流的解调能力较强,这样前几个符号可以保障高概率解对 的情况下,用来重新做信道估计,并增强信道估计,来增强终端设备信道估计的信噪比,同时也可以做频偏和相位能力增强,从而来提升终端设备的解调能力。
本申请实施例提供的一种用于无线保真Wi-Fi系统的通信方法,以网络设备向终端设备传送Wi-Fi帧为例进行说明,该用于无线保真Wi-Fi系统的通信方法包括步骤S301-步骤S308。
S301、网络设备生成包括第一前导码字段的Wi-Fi帧。
其中,第一前导码字段用于指示Wi-Fi帧中的数据字段中的至少一个符号的调制与编码策略MCS,其中,至少一个符号中的前m个符号的MCS的阶数小于其它符号的MCS的阶数,其中m为大于或等于1的正整数。如图15所示,提供一种Wi-Fi帧的结构,其中第一前导码字段的第一高效信号字段HE-SIGA,包括MCS postdata字段(用于指示在后数据字段(postdata,指其他符号)的MCS的阶数,参照表1所示)、MCS diff字段(用于指示在前数据字段(predata,指前m个符号)的MCS的阶数与在后数据字段的MCS的阶数的区别,参照表2所示),在本申请的实施例中指,MCS predata低于MCS postdata的阶数)。或者如图16所示,第一前导码字段的HE-SIGA,包括MCS postdata字段(在后数据字段的MCS,指其他符号的MCS的阶数,参照表1所示)、MCS predata字段(在前数据字段(predata,指前m个符号)的MCS的阶数,参照表4所示)。第一前导码字段还包括高效率长训练字段HE-LTF;其中m=S,其中S为HE-LTF的符号数量。这样,网络设备根据高效率长训练字段HE-LTF的符号数量确定m的取值。
其中,表10给出了空间流的个数N SS与HE-LTF的符号数量N HE-LTF的关系。
N SS N HE-LTF
1 1
2 2
3 4
4 4
5 6
6 6
7 8
8 8
表10
网络设备根据MCS对用户数据进行编码并填充于至少一个符号后,如图15和图16所示,前m个符号中每个符号携带用户数据的多个空间流SS0-SSN;其中,至少一个符号中携带的用户数据的多个空间流采用正交(perpendicular,P)矩阵加权,其中正交P矩阵为m*m的正交矩阵。其中SSn在每个符号中与正交P矩阵的元素P(i,j)相乘,其中0≤i≤N,0≤j≤N。
正交P矩阵与802.11ax中HE-LTF的P矩阵保持一致。例如:
Figure PCTCN2020121687-appb-000028
Figure PCTCN2020121687-appb-000029
其中,
Figure PCTCN2020121687-appb-000030
Figure PCTCN2020121687-appb-000031
其中,编码过程可以参照上述实施例的具体说明,不再赘述。
S302、网络设备向终端设备传送Wi-Fi帧。
S303、终端设备接收网络设备传送的Wi-Fi帧。
S304、终端设备根据所述Wi-Fi帧中的第一前导码字段确定所述第一通信装置传送的Wi-Fi帧中数据字段的至少一个符号的调制与编码策略MCS。
S305、终端设备根据MCS解调所述至少一个符号。
这样网络设备对于Wi-Fi帧中数据字段的前m个符号发送相同的数据,并在不同符号、不同流之间做P矩阵加权,这样终端设备可以重新解信道估计和增强频偏估计,来增强终端设备信道估计的信噪比,来提升终端设备的解调能力。
可以理解的是,上述网络设备和终端设备等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法操作,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对网络设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以采用集成的方式划分各个功能模块的情况下,图17示出了一种通信装置的结构示意图。该通信装置可以为上述网络设备中的芯片或者片上系统,或其他可实现上述网络设备功能的组合器件、部件等,该通信装置可以用于执行上述实施例中涉及的网络设备的功能。
作为一种可能的实现方式,图17所示的通信装置包括:发送单元1701和处理单元1702。处理单元1702,用于生成包括第一前导码字段的Wi-Fi帧,所述第一前导码字段用于指示所述Wi-Fi帧中的数据字段中的至少一个符号的调制与编码策略MCS,其中,所述至少一个符号中的前m个符号的MCS的阶数小于其它符号的MCS的阶数,其中m为大于或等于1的正整数。发送单元1701,用于传送所述Wi-Fi帧。
可选的,第一前导码字段包括第一高效信号字段HE-SIGA;处理单元1702,还用于确定前m个符号的MCS的阶数低于其他符号的MCS的阶数的数值;将数值以及其他符号的MCS的阶数包含于第一高效信号字段HE-SIGA。
可选的,第一前导码字段包括第一高效信号字段HE-SIGA;处理单元1702,还用于将用于指示m的取值的比特包含于第一高效信号字段HE-SIGA。
可选的,第一前导码字段包括第一高效信号字段HE-SIGA;处理单元1702,还用于将至少一个符号的MCS的阶数包含于第一高效信号字段HE-SIGA。
可选的,所述第一前导码字段包括第一高效信号字段HE-SIGA;处理单元1702,还用于将其他符号的MCS的阶数包含于第一高效信号字段HE-SIGA。
可选的,所述第一前导码字段包括第一高效信号字段HE-SIGA;所述第一高效信号字段HE-SIGA包含用户数据的空间流的数量;其中m=k*N ss,其中N ss为所述空间流的数量,k取大于等于1的正整数。
可选的,所述第一前导码字段包括高效率长训练字段HE-LTF;其中m=S,其中S为所述HE-LTF的符号数量。
可选的,所述前m个符号的子载波间隔大于其他符号的子载波间隔。
其中,上述方法实施例涉及的各操作的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该通信装置以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该通信装置可以采用图6所示的网络设备的形式。
比如,图6中的处理器201可以通过调用存储器203中存储的计算机执行指令,使得通信装置执行上述方法实施例中的用于无线保真Wi-Fi系统的通信方法。
示例性的,图17中的发送单元1701和处理单元1702的功能/实现过程可以通过图6中的处理器201调用存储器203中存储的计算机执行指令来实现;或者,图17中的处理单元1702的功能/实现过程可以通过图6中的处理器201调用存储器203中存储的计算机执行指令来实现,图17中的发送单元1701的功能/实现过程可以通过图6中的收发器203中的发射机来实现。
由于本实施例提供的通信装置可执行上述的用于无线保真Wi-Fi系统的通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
本申请实施例可以根据上述方法示例对终端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以采用集成的方式划分各个功能模块的情况下,图18示出了一种通信装置的结构示意图。该通信装置可以为上述终端设备中的芯片或者片上系统,或其他可实现上述终端设备功能的组合器件、部件等,该通信装置可以用于执行上述实施例中涉及的网络设备的功能。
作为一种可能的实现方式,图18所示的通信装置包括:接收单元1801和处理单元1802。接收单元1801,用于接收第一通信装置传送的Wi-Fi帧;处理单元1802,用于根据所述Wi-Fi帧中的第一前导码字段确定所述第一通信装置传送的WI-FI帧中 数据字段的至少一个符号的调制与编码策略MCS,其中,所述至少一个符号中的前m个符号的MCS的阶数小于其他符号的MCS的阶数,其中m为大于或等于1的正整数;根据所述MCS解调所述至少一个符号。
可选的,第一前导码字段包括第一高效信号字段HE-SIGA;所述第一高效信号字段HE-SIGA包含所述其他符号的MCS的阶数以及用于指示所述前m个符号的MCS的阶数低于所述其他符号的MCS的阶数的数值。
可选的,所述第一前导码字段包括第一高效信号字段HE-SIGA;所述第一高效信号字段HE-SIGA包含所述至少一个符号的MCS的阶数。
可选的,所述第一前导码字段包括第一高效信号字段HE-SIGA;所述第一高效信号字段HE-SIGA包含所述其他符号的MCS的阶数;处理单元1802,具体用于根据所述第一高效信号字段HE-SIGA确定所述其他符号的MCS的阶数;根据所述其他符号的MCS的阶数确定所述前m个符号的MCS的阶数。
可选的,所述第一前导码字段包括第一高效信号字段HE-SIGA;所述第一高效信号字段HE-SIGA包含用于指示所述m的取值的比特。
可选的,所述第一前导码字段包括第一高效信号字段HE-SIGA;所述第一高效信号字段HE-SIGA包含用户数据的空间流的数量;其中m=k*N ss,其中N ss为所述空间流的数量,k取大于等于1的正整数。
可选的,所述前m个符号中每个所述符号携带用户数据的一个空间流。
在一种可能是实现方式中,所述第一前导码字段包括高效率长训练字段HE-LTF;其中m=S,其中S为所述HE-LTF的符号数量。
在一种可能是实现方式中,所述前m个符号中每个所述符号携带用户数据的多个空间流;其中,所述至少一个符号中携带的用户数据的多个空间流采用正交P矩阵加权,其中所述正交P矩阵为m*m的正交矩阵。
在一种可能是实现方式中,所述前m个符号的子载波间隔大于所述其他符号的子载波间隔。
其中,上述方法实施例涉及的各操作的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该通信装置以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该通信装置可以采用图6所示的终端设备的形式。
比如,图6中的处理器201可以通过调用存储器203中存储的计算机执行指令,使得通信装置执行上述方法实施例中的用于无线保真Wi-Fi系统的通信方法。
示例性的,图18中的接收单元1801和处理单元1802的功能/实现过程可以通过图6中的处理器201调用存储器203中存储的计算机执行指令来实现;或者,图18中的处理单元1802的功能/实现过程可以通过图2中的处理器201调用存储器203中存储的计算机执行指令来实现,图18中的接收单元1801的功能/实现过程可以通过图6中的收发器303的接收机来实现。
由于本实施例提供的通信装置可执行上述的用于无线保真Wi-Fi系统的通信方 法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
可选的,本申请实施例还提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器和接口,处理器用于读取指令以执行上述任一方法实施例中的方法。在一种可能的设计中,该通信装置还包括存储器。该存储器,用于保存必要的程序指令和数据,处理器可以调用存储器中存储的程序代码以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
具体的,当第二通信装置为终端设备,第一通信装置为网络设备时,发送单元1702、在传送信息时可以为发射机,接收单元1802在接收信息时可以为接收器,收发单元可以为收发器,此收发器、发射器或接收器可以为射频电路,当第一通信装置、第二通信装置包含存储单元时,该存储单元用于存储计算机指令,处理器与存储器通信连接,处理器执行存储器存储的计算机指令,使第一通信装置、第二通信装置执行方法实施例涉及的方法。其中,处理器可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application specific intergrated circuit,ASIC)。
当第一通信装置、第二通信装置为芯片时,发送单元1702、接收单元1802可以是输入和/或输出接口、管脚或电路等。该处理单元1701、处理单元1801可执行存储单元存储的计算机执行指令,以使该第一通信装置、第二通信装置内的芯片执行方法实施例所涉及的方法。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端设备或网络设备内的位于所述芯片外部的存储单元,如只读存储器(read only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词 不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (24)

  1. 一种用于无线保真Wi-Fi系统的通信方法,其特征在于,包括:
    生成包括第一前导码字段的Wi-Fi帧,所述第一前导码字段用于指示所述Wi-Fi帧中的数据字段中的至少一个符号的调制与编码策略MCS,其中,所述至少一个符号中的前m个符号的MCS的阶数小于其它符号的MCS的阶数,其中m为大于或等于1的正整数;
    传送所述Wi-Fi帧。
  2. 根据权利要求1所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,所述第一前导码字段包括第一高效信号字段HE-SIGA;该方法还包括:
    确定所述前m个符号的MCS的阶数低于所述其他符号的MCS的阶数的数值;
    将所述数值以及所述其他符号的MCS的阶数包含于所述第一高效信号字段HE-SIGA。
  3. 根据权利要求1所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,所述第一前导码字段包括第一高效信号字段HE-SIGA;该方法还包括:
    将所述至少一个符号的MCS的阶数包含于所述第一高效信号字段HE-SIGA。
  4. 根据权利要求1所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,所述第一前导码字段包括第一高效信号字段HE-SIGA;该方法还包括:
    将所述其他符号的MCS的阶数包含于所述第一高效信号字段HE-SIGA。
  5. 根据权利要求1-4任一项所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,所述第一前导码字段包括第一高效信号字段HE-SIGA;该方法还包括:
    将用于指示所述m的取值的比特包含于所述第一高效信号字段HE-SIGA。
  6. 根据权利要求1-4任一项所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,所述第一前导码字段包括第一高效信号字段HE-SIGA;所述第一高效信号字段HE-SIGA包含用户数据的空间流的数量;其中m=k*N ss,其中N ss为所述空间流的数量,k取大于等于1的正整数。
  7. 根据权利要求6所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,所述前m个符号中每个所述符号携带用户数据的一个空间流。
  8. 根据权利要求1-4任一项所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,所述第一前导码字段还包括高效率长训练字段HE-LTF;其中m=S,其中S为所述HE-LTF的符号数量。
  9. 根据权利要求8所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,
    所述前m个符号中每个所述符号携带用户数据的多个空间流;其中,所述至少一个符号中携带的用户数据的多个空间流采用正交P矩阵加权,其中所述正交P矩阵为m*m的正交矩阵。
  10. 根据权利要求1-9任一项所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,所述前m个符号的子载波间隔大于所述其他符号的子载波间隔。
  11. 一种用于无线保真Wi-Fi系统的通信方法,其特征在于,包括:
    接收第一通信装置传送的Wi-Fi帧;
    根据所述Wi-Fi帧中的第一前导码字段确定所述第一通信装置传送的WI-FI帧中 数据字段的至少一个符号的调制与编码策略MCS,其中,所述至少一个符号中的前m个符号的MCS的阶数小于其他符号的MCS的阶数,其中m为大于或等于1的正整数;
    根据所述MCS解调所述至少一个符号。
  12. 根据权利要求11所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,所述第一前导码字段包括第一高效信号字段HE-SIGA;
    所述第一高效信号字段HE-SIGA包含所述其他符号的MCS的阶数以及用于指示所述前m个符号的MCS的阶数低于所述其他符号的MCS的阶数的数值。
  13. 根据权利要求11所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,所述第一前导码字段包括第一高效信号字段HE-SIGA;
    所述第一高效信号字段HE-SIGA包含所述至少一个符号的MCS的阶数。
  14. 根据权利要求11所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,所述第一前导码字段包括第一高效信号字段HE-SIGA;所述第一高效信号字段HE-SIGA包含所述其他符号的MCS的阶数;
    根据所述Wi-Fi帧中的第一前导码字段确定所述第一通信装置传送的WI-FI帧中数据字段的至少一个符号的调制与编码策略MCS,包括:
    根据所述第一高效信号字段HE-SIGA确定所述其他符号的MCS的阶数;
    根据所述其他符号的MCS的阶数确定所述前m个符号的MCS的阶数。
  15. 根据权利要求11-14任一项所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,所述第一前导码字段包括第一高效信号字段HE-SIGA;所述第一高效信号字段HE-SIGA包含用于指示所述m的取值的比特。
  16. 根据权利要求11-14任一项所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,所述第一前导码字段包括第一高效信号字段HE-SIGA;所述第一高效信号字段HE-SIGA包含用户数据的空间流的数量;其中m=k*N ss,其中N ss为所述空间流的数量,k取大于等于1的正整数。
  17. 根据权利要求16所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,
    所述前m个符号中每个所述符号携带用户数据的一个空间流。
  18. 根据权利要求11-14任一项所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,所述第一前导码字段包括高效率长训练字段HE-LTF;其中m=S,其中S为所述HE-LTF的符号数量。
  19. 根据权利要求18所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,
    所述前m个符号中每个所述符号携带用户数据的多个空间流;其中,所述至少一个符号中携带的用户数据的多个空间流采用正交P矩阵加权,其中所述正交P矩阵为m*m的正交矩阵。
  20. 根据权利要求11-19任一项所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,所述前m个符号的子载波间隔大于所述其他符号的子载波间隔。
  21. 一种通信装置,其特征在于,包括:
    处理器,用于生成包括第一前导码字段的Wi-Fi帧,所述第一前导码字段用于指示所述Wi-Fi帧中的数据字段中的至少一个符号的调制与编码策略MCS,其中,所述至少一个符号中的前m个符号的MCS的阶数小于其它符号的MCS的阶数,其中m为大 于或等于1的正整数;
    发射机,用于传送所述Wi-Fi帧。
  22. 一种通信装置,其特征在于,包括:
    接收机,用于接收第一通信装置传送的Wi-Fi帧;
    处理器,根据所述Wi-Fi帧中的第一前导码字段确定所述第一通信装置传送的WI-FI帧中数据字段的至少一个符号的调制与编码策略MCS,其中,所述至少一个符号中的前m个符号的MCS的阶数小于其他符号的MCS的阶数,其中m为大于或等于1的正整数;根据所述MCS解调所述至少一个符号。
  23. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序包括用于执行如权利要求1-10中任一项所述的用于无线保真Wi-Fi系统的通信方法的指令,和/或如权利要求11-20中任一项所述的用于无线保真Wi-Fi系统的通信方法的指令。
  24. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得所述计算机执行如权利要求1-10中任一项所述的用于无线保真Wi-Fi系统的通信方法,和/或如权利要求11-20中任一项所述的用于无线保真Wi-Fi系统的通信方法。
PCT/CN2020/121687 2020-10-16 2020-10-16 一种用于无线保真Wi-Fi系统的通信方法及装置 WO2022077504A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/121687 WO2022077504A1 (zh) 2020-10-16 2020-10-16 一种用于无线保真Wi-Fi系统的通信方法及装置
CN202080100343.9A CN115462013A (zh) 2020-10-16 2020-10-16 一种用于无线保真Wi-Fi系统的通信方法及装置
EP20957282.5A EP4221007A4 (en) 2020-10-16 2020-10-16 COMMUNICATION METHOD AND APPARATUS FOR WIRELESS LOYALTY SYSTEM (WI-FI)
US18/300,506 US20230254061A1 (en) 2020-10-16 2023-04-14 Communication method for wireless fidelity wi-fi system and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/121687 WO2022077504A1 (zh) 2020-10-16 2020-10-16 一种用于无线保真Wi-Fi系统的通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/300,506 Continuation US20230254061A1 (en) 2020-10-16 2023-04-14 Communication method for wireless fidelity wi-fi system and apparatus

Publications (1)

Publication Number Publication Date
WO2022077504A1 true WO2022077504A1 (zh) 2022-04-21

Family

ID=81208912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121687 WO2022077504A1 (zh) 2020-10-16 2020-10-16 一种用于无线保真Wi-Fi系统的通信方法及装置

Country Status (4)

Country Link
US (1) US20230254061A1 (zh)
EP (1) EP4221007A4 (zh)
CN (1) CN115462013A (zh)
WO (1) WO2022077504A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116781213A (zh) * 2023-08-17 2023-09-19 上海朗力半导体有限公司 基于索引调制传输的编码调制参数确定方法及服务设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104601513A (zh) * 2011-04-28 2015-05-06 英特尔公司 用于低功率无线网络中通信的方法和布置
CN106576020A (zh) * 2014-08-21 2017-04-19 Lg 电子株式会社 在无线通信系统中的数据传输方法以及其装置
EP3267642A1 (en) * 2015-03-06 2018-01-10 LG Electronics Inc. Data transmission method and apparatus in wireless communication system
US20180343081A1 (en) * 2015-12-16 2018-11-29 Telefonaktiebolaget Lm Ericsson (Publ) Transmitting communication device, receiving communication device and method performed therein comprising mapping the constellation symbols
CN111726193A (zh) * 2019-03-18 2020-09-29 华为技术有限公司 信息指示方法及装置、数据传输系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2017009078A (es) * 2015-02-02 2017-11-09 Lg Electronics Inc Metodos y aparatos para la transmision/recepcion de he-sig b.
US20170048034A1 (en) * 2015-08-10 2017-02-16 Qualcomm Incorporated Methods and apparatus for he-sigb encoding
WO2017100741A1 (en) * 2015-12-11 2017-06-15 Marvell World Trade Ltd. Signal field encoding in a high efficiency wireless local area network (wlan) data unit
WO2017192079A1 (en) * 2016-05-04 2017-11-09 Telefonaktiebolaget Lm Ericsson (Publ) A transmitter, a receiver and respective methods using different modulation and coding schemes for diferent codeblocks
US11228390B2 (en) * 2016-10-12 2022-01-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting data, receiving-end device, and transmitting-end device
WO2019045708A1 (en) * 2017-08-30 2019-03-07 Intel IP Corporation METHODS AND SYSTEMS FOR NEW GENERATION WI-FI

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104601513A (zh) * 2011-04-28 2015-05-06 英特尔公司 用于低功率无线网络中通信的方法和布置
CN106576020A (zh) * 2014-08-21 2017-04-19 Lg 电子株式会社 在无线通信系统中的数据传输方法以及其装置
EP3267642A1 (en) * 2015-03-06 2018-01-10 LG Electronics Inc. Data transmission method and apparatus in wireless communication system
US20180343081A1 (en) * 2015-12-16 2018-11-29 Telefonaktiebolaget Lm Ericsson (Publ) Transmitting communication device, receiving communication device and method performed therein comprising mapping the constellation symbols
CN111726193A (zh) * 2019-03-18 2020-09-29 华为技术有限公司 信息指示方法及装置、数据传输系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4221007A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116781213A (zh) * 2023-08-17 2023-09-19 上海朗力半导体有限公司 基于索引调制传输的编码调制参数确定方法及服务设备
CN116781213B (zh) * 2023-08-17 2023-11-07 上海朗力半导体有限公司 基于索引调制传输的编码调制参数确定方法及服务设备

Also Published As

Publication number Publication date
EP4221007A1 (en) 2023-08-02
US20230254061A1 (en) 2023-08-10
CN115462013A (zh) 2022-12-09
EP4221007A4 (en) 2023-11-08

Similar Documents

Publication Publication Date Title
TWI722375B (zh) Wlan中用於ofdma傳輸的增強資源單元分配方案
US11082150B2 (en) Wireless communication method and apparatus for mapping a phase tracking reference signal based on a target modulation and coding scheme index
US11575482B2 (en) Communication method, communication apparatus, and communication device
CN112753185A (zh) 无线局域网(wlan)中的混合自动重传请求(harq)
TWI533643B (zh) 用於強化無線通訊訊框之系統及方法
US20160323060A1 (en) Apparatus, computer readable medium, and method for higher qam in a high efficiency wireless local-area network
US20230198715A1 (en) Phase tracking reference signal sending method and receiving method and communication apparatus
US20230096177A1 (en) Ppdu transmission method and related apparatus
US20220141062A1 (en) Data sending and receiving method and apparatus
US20230254061A1 (en) Communication method for wireless fidelity wi-fi system and apparatus
JP5989831B2 (ja) インターリーブを実行するためのシステム、方法、およびデバイス
WO2021203976A1 (zh) 数据处理方法、装置及系统
US11757585B2 (en) Data transmission method and related apparatus
WO2018202106A1 (zh) 无线通信方法及装置
WO2020215994A1 (zh) 通信方法、设备及系统
WO2015018000A1 (zh) 上行信息的处理方法及设备
WO2022142577A1 (zh) Ppdu的传输方法及相关装置
US20230388165A1 (en) Information indication method and apparatus
WO2021244403A1 (zh) 一种信号发送方法、信号接收方法与相关装置
US20230023324A1 (en) Apparatus, system, and method of communicating an extended range (er) physical layer (phy) protocol data unit (ppdu)
WO2022067723A1 (zh) 信息发送和接收方法、装置及系统
US20220303052A1 (en) Low-density parity-check rate matching in communication systems
WO2023050435A1 (zh) 一种用于无线保真Wi-Fi系统的通信方法及装置
WO2023071901A1 (zh) 通信方法和通信装置
WO2023246422A1 (zh) 数据处理方法和数据处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957282

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020957282

Country of ref document: EP

Effective date: 20230427

NENP Non-entry into the national phase

Ref country code: DE