WO2023050435A1 - 一种用于无线保真Wi-Fi系统的通信方法及装置 - Google Patents

一种用于无线保真Wi-Fi系统的通信方法及装置 Download PDF

Info

Publication number
WO2023050435A1
WO2023050435A1 PCT/CN2021/122476 CN2021122476W WO2023050435A1 WO 2023050435 A1 WO2023050435 A1 WO 2023050435A1 CN 2021122476 W CN2021122476 W CN 2021122476W WO 2023050435 A1 WO2023050435 A1 WO 2023050435A1
Authority
WO
WIPO (PCT)
Prior art keywords
code
spreading
data code
modulation
frame
Prior art date
Application number
PCT/CN2021/122476
Other languages
English (en)
French (fr)
Inventor
孙宝玉
闫永立
阮卫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21959001.5A priority Critical patent/EP4401367A1/en
Priority to PCT/CN2021/122476 priority patent/WO2023050435A1/zh
Priority to CN202180102058.5A priority patent/CN117957823A/zh
Publication of WO2023050435A1 publication Critical patent/WO2023050435A1/zh
Priority to US18/623,763 priority patent/US20240259124A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0602Systems characterised by the synchronising information used
    • H04J3/0605Special codes used as synchronising signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation
    • H04J13/102Combining codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26132Structure of the reference signals using repetition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26134Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0026Division using four or more dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present application relates to the field of communication technologies, and in particular to a communication method and device for a Wireless Fidelity Wi-Fi system.
  • Wi-Fi technology is a wireless local area network technology created by the Wi-Fi Alliance based on the Institute of Electrical and Electronics Engineers (Institute of Electrical and Electronic Engineers, IEEE) 802.11 standard.
  • Wi-Fi technology generally involves two types of devices, an access point (access point, AP) and a station (station, STA).
  • the AP can also be called a wireless access point, which is a provider of a Wi-Fi network, allows other wireless devices to access, and provides data access for the connected devices.
  • a device connected to a Wi-Fi network may be called an STA.
  • electronic devices that support the Wi-Fi function such as mobile phones, tablet computers, and notebook computers, can be used as STAs.
  • Wi-Fi frame a Wi-Fi physical frame
  • Wi-Fi frame a Wi-Fi physical frame
  • IOT devices In recent years, more and more Internet of Things (IOT) devices serving as STAs have appeared in home networks, and even ordinary household appliances have the attributes of IOT devices through integrated Wi-Fi modules. IOT devices generally have the following characteristics : Low cost, low power consumption, low traffic, wide coverage.
  • the 802.11b standard In the Wi-Fi-based IoT devices, the 802.11b standard has extremely high potential and has the above characteristics at the same time.
  • PHY preamble also called the PHY convergence protocol, PLCP
  • the gain of the preamble comes from the spreading gain of the AP.
  • the AP uses the traditional barker code with a code length of 11 to spread the scrambled (scrambling) preamble. Its spread spectrum gain is about 10.4dB.
  • IOT devices such as refrigerators, air conditioners, color TVs, smart curtains, smart cameras, smart home and other smart home devices
  • IOT devices may be distributed in various places in the home. It puts forward relatively strict requirements on the coverage capability of the equipment.
  • Embodiments of the present application provide a communication method and device for a wireless fidelity Wi-Fi system, which can improve the anti-interference capability of IOT devices, and can improve coverage and wall penetration capabilities.
  • a communication method for a Wireless Fidelity Wi-Fi system is provided.
  • the method can be executed by a first communication device, and the first communication device can also be a module or a chip in the first communication device, and the first communication device can also be a chip or a system on a chip.
  • one or more extension codes provided by the embodiments of this application are mainly replaced in the synchronization sequence of the preamble of the Wi-Fi frame. Since the extension code is generated based on the Barker code, the symbols of the extension code There is a correlation between them, so that in the process of Wi-Fi frame transmission, after the synchronization sequence is spread by the Barker code, the chips formed by spreading different symbols contained in the spreading code are also correlated.
  • the symbols in the current synchronization sequence are discrete points, so only the chips formed by the spreading of each symbol itself have correlation
  • the synchronization sequence includes: a first group of spreading codes, the first group of spreading codes includes a first spreading code and a second spreading code of a first duration after the first spreading code; the second spreading code , the second group of spreading codes includes the third spreading code and the fourth spreading code of the second time length after the third spreading code; the second group of spreading codes is located after the first group of spreading codes, and the first time length is not equal to the second time length .
  • the synchronization sequence of the Wi-Fi frame contains 2 sets of spreading codes, each set of spreading codes has two spreading codes.
  • the spreading sequence C 1 of the second group of spreading codes [C ACQ1 , C eSFD1 ], wherein the second group of spreading codes in the second group
  • the spreading sequence of the three spreading codes is
  • the PSDU of the Wi-Fi frame includes an extended header and a payload; the payload includes a plurality of data code blocks, and the data code blocks include an encoding field and a check field;
  • the extension The header is used to indicate one or more of the following information: the length of the payload, the encoding method of the encoded field, the modulation method, and the type of the check field; before transmitting the Wi-Fi frame, it also includes : performing channel coding on the data code block in the coding manner (such as LDPC coding, Polar coding, etc.); performing rate matching on the data code block after channel coding; performing rate matching on the data code block after rate matching
  • the block is modulated according to the modulation method, and the modulation method includes differential modulation; the transmitting the Wi-Fi frame includes: transmitting the modulated data code block after spreading.
  • the transmission of the payload of the Wi-Fi frame mainly introduces channel coding in the link of the transmitter, which is more conducive to improving the transmission quality in
  • the network device before modulating the rate-matched data code block according to the modulation mode, it further includes: performing differential encoding on the rate-matched data code block, and the modulation mode includes non-differential modulation.
  • the modulation method includes differential modulation
  • the network device performs differential encoding on the rate-matched data code blocks to combine with differential modulation, so as to achieve the effect of non-differential modulation, so that the receiver uses non-differential demodulation to calculate logarithmic likelihood Ratio (log likelihood ratio, LLR).
  • the extended header further includes a check digit.
  • the parity bit is used for data verification of the extended header.
  • the PSDU further includes an extended start frame delimiter SFD located before the extended header.
  • the extended start frame delimiter is used to indicate that the extended header eheader is to be transmitted next.
  • the spreading code is obtained from a spreading sequence generated by spreading the initial sequence based on the Barker code.
  • a communication method for a Wireless Fidelity Wi-Fi system is provided.
  • the synchronization sequence includes: a first group of spreading codes, and the first group of spreading codes includes a first spreading code and a second spreading code of a first duration after the first spreading code ;
  • the second group of spreading codes, the second group of spreading codes includes a third spreading code and a fourth spreading code of a second duration after the third spreading code;
  • the second set of spreading codes is located in the first group after the spreading code, and the first duration is not equal to the second duration.
  • the PSDU of the Wi-Fi frame includes an extended header and a payload; the payload includes a plurality of data code blocks, and the data code blocks include an encoding field and a check field;
  • the extension The header is used to indicate one or more of the following information: the length of the payload, the encoding method of the coded field, the modulation method, and the type of the check field; the method further includes: according to the Barker code pair Despreading the data code block; demodulating the despread data code block according to the modulation method, the modulation method including differential modulation; performing rate matching on the demodulated data code block; The data code block after de-rate matching is subjected to channel decoding according to the coding mode.
  • the method before performing rate matching on the demodulated data code blocks, the method further includes: performing differential decoding on the demodulated data code blocks, where the modulation mode includes non-differential modulation.
  • the extended header further includes a check digit.
  • the PSDU further includes an extended start frame delimiter SFD located before the extended header.
  • the spreading sequence c of the spreading code satisfies the following formula:
  • the spreading code is obtained from a spreading sequence generated by spreading the initial sequence based on the Barker code.
  • a communication method for a Wireless Fidelity Wi-Fi system can be executed by a first communication device, and the first communication device can also be a module or a chip in the first communication device, and the first communication device can also be a chip or a system on a chip.
  • the method includes the following steps: generating a PSDU including Wi-Fi frame, the PSDU includes an extended header and a payload; the payload includes a plurality of data code blocks, and the data code block includes a coding field and a check field; the extended header is used to indicate the following or multiple pieces of information: the length of the payload, the coding method of the coding field, the modulation method, and the type of the check field; channel coding is performed on the data code block in the coding method; the channel coded performing rate matching on the data code blocks; modulating the rate-matched data code blocks according to the modulation method, where the modulation method includes differential modulation; and transmitting the modulated data code blocks.
  • the transmission of the payload of the Wi-Fi frame mainly introduces channel coding in the link of the transmitter, which is more conducive to improving the transmission quality in low SNR scenarios.
  • the network device before modulating the rate-matched data code block according to the modulation mode, it further includes: performing differential encoding on the rate-matched data code block, and the modulation mode includes non-differential modulation.
  • the modulation method includes differential modulation
  • the network device performs differential encoding on the rate-matched data code blocks to combine with differential modulation, so as to achieve the effect of non-differential modulation, so that the receiver uses non-differential demodulation to calculate logarithmic likelihood than LLR.
  • the extended header further includes a check digit.
  • the PSDU further includes an extended start frame delimiter SFD located before the extended header.
  • the extended start frame delimiter is used to indicate that the extended header eheader is to be transmitted next.
  • a communication method for a Wireless Fidelity Wi-Fi system is provided.
  • the method can be executed by a second communication device, and the second communication device can also be a module or a chip in the second communication device, and the second communication device can also be a chip or a system on a chip, and the method includes: receiving a Wi-Fi frame , the PSDU of the Wi-Fi frame includes an extended header and a payload; the payload includes a plurality of data code blocks, and the data code blocks include a coding field and a check field; the extended header is used to indicate the following or multiple pieces of information: the length of the payload, the coding method of the coded field, the modulation method, and the type of the check field; despread the data code block according to the Barker code; according to the modulation
  • the method demodulates the data code blocks after despreading, and the modulation method includes differential modulation; performs de-rate matching on the demodulated data code blocks; performs de-rate matching on the de-
  • the method before performing rate matching on the demodulated data code blocks, the method further includes: performing differential decoding on the demodulated data code blocks, where the modulation mode includes non-differential modulation.
  • the extended header further includes a check digit.
  • the parity bit is used for data verification of the extended header.
  • the PSDU further includes an extended start frame delimiter SFD located before the extended header.
  • a communication device may be a first communication device.
  • the first communication device may also be a module or a chip in the first communication device.
  • the first communication device may also be a chip or an on-chip
  • the synchronization sequence includes: a first group of spreading codes, and the first group of spreading codes includes a first spreading code and a second spreading code of a first duration after the first spreading code ;
  • the second group of spreading codes, the second group of spreading codes includes a third spreading code and a fourth spreading code of a second duration after the third spreading code;
  • the second set of spreading codes is located in the first group after the spreading code, and the first duration is not equal to the second duration.
  • the PSDU of the Wi-Fi frame includes an extended header and a payload; the payload includes a plurality of data code blocks, and the data code blocks include an encoding field and a check field;
  • the extension The header is used to indicate one or more of the following information: the length of the payload, the coding method of the coded field, the modulation method, and the type of the check field; performing channel coding on the data code blocks; performing rate matching on the data code blocks after channel coding; modulating the rate-matched data code blocks according to the modulation method, the modulation method including differential modulation; the transmitter , used to transmit the modulated data code block after spreading.
  • the processor is further configured to perform differential encoding on the modulated data code blocks, where the modulation manner includes non-differential modulation.
  • the extended header further includes a check digit.
  • the PSDU further includes an extended start frame delimiter SFD located before the extended header.
  • the spreading sequence c of the spreading code satisfies the following formula:
  • the spreading code is obtained from a spreading sequence generated by spreading the initial sequence based on the Barker code.
  • a communication device may be a second communication device.
  • the second communication device may also be a module or a chip in the second communication device.
  • the second communication device may also be a chip or a system on a chip.
  • a receiver configured to receive a Wi-Fi frame
  • a processor configured to despread the Wi-Fi frame according to the Barker code, and obtain a synchronization sequence in the preamble, and the Wi-Fi
  • the synchronization sequence includes: a first group of spreading codes, and the first group of spreading codes includes a first spreading code and a second spreading code of a first duration after the first spreading code ;
  • the second group of spreading codes, the second group of spreading codes includes a third spreading code and a fourth spreading code of a second duration after the third spreading code;
  • the second set of spreading codes is located in the first group after the spreading code, and the first duration is not equal to the second duration.
  • the PSDU of the Wi-Fi frame includes an extended header and a payload; the payload includes a plurality of data code blocks, and the data code blocks include an encoding field and a check field;
  • the extension The header is used to indicate one or more of the following information: the length of the payload, the coding method of the coded field, the modulation method, and the type of the check field; the processor is also used to despreading the data code block; demodulating the despread data code block according to the modulation method, the modulation method including differential modulation; performing rate matching on the demodulated data code block; The data code block after de-rate matching is subjected to channel decoding according to the coding mode.
  • the processor is further configured to dedifferentially decode the despread data code blocks, where the modulation manner includes non-differential modulation.
  • the extended header further includes a check digit.
  • the PSDU further includes an extended start frame delimiter SFD located before the extended header.
  • the spreading sequence c of the spreading code satisfies the following formula:
  • the spreading code is obtained from a spreading sequence generated by spreading the initial sequence based on the Barker code.
  • a communication device may be a first communication device.
  • the first communication device may also be a module or a chip in the first communication device.
  • the first communication device may also be a chip or an on-chip
  • the system includes: a processor, configured to generate a Wi-Fi frame including a PSDU, the PSDU includes an extended header and a payload; the payload includes a plurality of data code blocks, and the data code blocks include an encoding field and a check field ;
  • the extended header is used to indicate one or more of the following information: the length of the payload, the coding method of the coded field, the modulation method, and the type of the check field; performing channel coding on the data code block; performing rate matching on the data code block after channel coding; modulating the rate-matched data code block according to the modulation method, and the modulation method includes differential modulation; the transmitter, Used to transmit modulated data code blocks.
  • the processor is further configured to perform differential encoding on the rate-matched data code blocks, and the modulation manner includes non-differential modulation.
  • the extended header further includes a check digit.
  • the PSDU further includes an extended start frame delimiter SFD located before the extended header.
  • a communication device may be a second communication device, the second communication device may also be a module or a chip in the second communication device, and the second communication device may also be a chip or a system on a chip, Including: a receiver for receiving a Wi-Fi frame, the PSDU of the Wi-Fi frame includes an extended header and a payload; the payload includes a plurality of data code blocks, and the data code block includes a coding field and a check field ;
  • the extended header is used to indicate one or more of the following information: the length of the payload, the encoding method of the coded field, the modulation method, and the type of the check field; Barker code despreads the data code block; demodulates the despread data code block according to the modulation method, and the modulation method includes differential modulation; derates the demodulated data code block Matching: performing channel decoding on the data code blocks after de-rate matching according to the encoding method.
  • the processor is further configured to perform de-differential decoding on the demodulated data code blocks, where the modulation manner includes non-differential modulation.
  • the extended header further includes a check digit.
  • the PSDU further includes an extended start frame delimiter SFD located before the extended header.
  • a computer-readable storage medium is provided, and a computer program is stored in the computer-readable storage medium.
  • the computer can execute the method described in any one of the above aspects.
  • a computer program product containing instructions
  • the computer program product includes: computer program code, when the computer program code is run on a computer, the computer can execute the method described in any one of the above aspects.
  • a communication system includes the first communication device described in the above aspect and the second communication device described in the above aspect.
  • the first communication device may be a network device
  • the second communication device may be a terminal device.
  • the technical effect brought by any design method in the second aspect can refer to the technical effect brought by the different design methods in the first aspect above, and will not be repeated here.
  • the technical effects brought by any design method in the fourth aspect please refer to the technical effects brought by the different design methods in the above third aspect, which will not be repeated here.
  • the technical effects brought by any one of the design methods in the fifth aspect and the sixth aspect please refer to the technical effects brought about by the different design methods in the first aspect above, and will not be repeated here.
  • the technical effects brought about by any one of the design methods in the seventh aspect and the eighth aspect please refer to the technical effects brought about by different design methods in the first aspect above, which will not be repeated here.
  • the technical effect brought by any one of the design methods in the ninth aspect to the eleventh aspect please refer to the technical effects brought about by the different design methods in the above-mentioned first aspect and the third aspect, and will not be repeated here.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an internal structure of a terminal device and a network device provided by an embodiment of the present application;
  • Fig. 3 is a schematic diagram of the transmission process between the sender and the receiver under the 802.11b Wi-Fi protocol provided by the embodiments of the present application;
  • FIG. 4 is a schematic structural diagram of a Wi-Fi frame provided by an embodiment of the present application.
  • Fig. 5 is the amplitude curve of coherent superposition between code chips (chip) of the Barker code that the embodiment of the present application provides;
  • FIG. 6 is a schematic diagram of a hardware structure of a terminal device and a network device provided by an embodiment of the present application;
  • FIG. 7 is a schematic diagram of a hardware structure of a terminal device provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a communication method for a wireless fidelity Wi-Fi system provided by an embodiment of the present application.
  • FIG. 9 is an amplitude curve of coherent superposition of chips generated after spreading of the spreading code provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a Wi-Fi frame provided by another embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a Wi-Fi frame provided by another embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a Wi-Fi frame provided by another embodiment of the present application.
  • FIG. 13A is a schematic diagram of a transmission process between the sender and the receiver provided by another embodiment of the present application.
  • FIG. 13B is a schematic diagram of a transmission process between the sender and the receiver provided by another embodiment of the present application.
  • Fig. 13C is a schematic diagram of a transmission process between the sender and the receiver provided by another embodiment of the present application.
  • FIG. 14A is a schematic structural diagram of a Wi-Fi frame provided by another embodiment of the present application.
  • FIG. 14B is a schematic structural diagram of a Wi-Fi frame provided by another embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a Wi-Fi frame provided by another embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a Wi-Fi frame provided by another embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a network device provided by another embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a terminal device provided by another embodiment of the present application.
  • the present application presents various aspects, embodiments or features in terms of a system that can include a number of devices, components, modules and the like. It is to be understood and appreciated that the various systems may include additional devices, components, modules, etc. and/or may not include all of the devices, components, modules etc. discussed in connection with the figures. In addition, combinations of these schemes can also be used.
  • "exemplarily”, “for example” and the like are used as an example, illustration or description. Any embodiment or design described herein as “example” is not to be construed as preferred or advantageous over other embodiments or designs. Rather, the use of the word example is intended to present concepts in a concrete manner.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
  • FIG. 1 shows a schematic diagram of a communication system applicable to a communication method for a wireless fidelity Wi-Fi system according to an embodiment of the present application.
  • the communication system includes a network device 101 and a terminal device 103, and both the network device 101 and the terminal device 103 are configured with multiple antennas.
  • the communication system may further include other network devices and/or other terminal devices, such as the network device 102 and the terminal device 104, and both the network device 102 and the terminal device 104 may also be configured with multiple antennas.
  • network equipment and terminal equipment may also include multiple components related to signal transmission and reception (for example, processors, encoders, decoders, modulators, demodulators, multiplexers, demultiplexers wait).
  • the above-mentioned network device may be a device with a wireless transceiver function or a chip that can be set on the network device, and the network device includes but is not limited to: an access point AP (access point) in a Wi-Fi system, an evolved Node B (evolved Node B, eNB), home base station (for example, home evolved NodeB, or home Node B, HNB), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission point, TP), etc., can also be the gNB in the new air interface (new radio, NR) system, as well as communication servers, routers, switches, bridges, computers, etc.
  • the above-mentioned terminal equipment may also be called user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent, or user device.
  • the terminal device in the embodiment of the present application can be a non-access point station (non-access point station, NON-STA or STA), a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal, wireless terminal in smart city (smart city), wireless terminal in smart home (smart home), etc.
  • the aforementioned terminal equipment and chips that can be provided in the aforementioned terminal equipment are collectively referred to as terminal equipment.
  • a network device or a terminal device can be regarded as a node, and any one-to-one, one-to-many, many-to-one, many-to-many, etc. can exist between any two or more nodes. forms of communication.
  • the same network device may communicate with at least one terminal device and/or at least one network device, and the same terminal device may also communicate with at least one network device and/or at least one terminal device.
  • the network device 101 may communicate with the terminal device 103 , may also communicate with the network device 102 , and may communicate with at least two of the terminal device 103 , the terminal device 104 and the network device 102 simultaneously.
  • the terminal device 104 may communicate with the network device 101 , may also communicate with the terminal device 103 , and may also communicate with at least two of the network device 101 , the network device 102 , and the terminal device 103 .
  • FIG. 1 is only a simplified schematic diagram for easy understanding, and the communication system may also include other network devices or other terminal devices, which are not shown in FIG. 1 .
  • FIG. 2 shows a schematic diagram of the internal structures of the network device 101 and the terminal device 103 .
  • both the network device 101 and the terminal device 103 include an application layer processing module, a transmission control protocol (transmission control protocol, TCP)/user datagram protocol (user datagram protocol, UDP) processing module, an Internet protocol (internet protocol, IP) processing module, logical link control (logical link control, LLC) processing module, media access control (media access control, MAC) layer processing module, physical layer (physical layer) baseband processing module, RF front-end and antenna .
  • TCP transmission control protocol
  • UDP user datagram protocol
  • IP Internet protocol
  • logical link control logical link control
  • media access control media access control
  • MAC physical layer
  • RF front-end and antenna RF front-end and antenna
  • the IP processing module and the LLC processing module are connected through an upper layer interface.
  • both the network device 101 and the terminal device 103 configured with one antenna are shown in FIG. 2 .
  • both the network device 101 and the terminal device 103 may be configured with one or more antennas.
  • multi-antenna technology is widely used, such as in Wi-Fi, LTE, 5G NR and other systems.
  • a node such as the above-mentioned network device 101 or terminal device 103, can send or receive signals through multiple antennas, referred to as multiple-input multiple-output (MIMO) technology.
  • MIMO multiple-input multiple-output
  • nodes can obtain gains such as diversity and multiplexing by adjusting MIMO transmission and reception schemes, such as adjusting the weights of transmitting antennas and assigning different signals to different antennas, so as to improve system capacity and increase System reliability.
  • the transmission process (refer to FIG. 3 ) between the sender and the receiver under the 802.11b standard Wi-Fi protocol is described in detail as follows.
  • the physical layer baseband processing module is used to scramble the binary user data of the MAC layer processing module (ie, the MAC source), that is, the information bits, generate modulation symbols after modulation, and then perform modulation on the modulation symbols Spread spectrum to generate radio frequency signal, and send out through the antenna of the radio frequency front end.
  • the physical layer baseband processing module is used to despread (despread, i.e. the inverse process of spread spectrum), demodulate and descramble (descramble code, That is, the reverse process of scrambling) to restore the information bits, thus completing the sending and receiving of information bits, that is, binary user data.
  • the Wi-Fi physical frame transmitted through the above-mentioned transmission process is also called a Wi-Fi frame, as shown in Figure 4, in 802.11b, the Wi-Fi physical frame is used as a physical layer convergence protocol (physical layer convergence protocol, PLCP ) data unit (PLCP data unit, PPDU).
  • Wi-Fi frame structure including PLCP preamble (referred to as preamble), PLCP header (header, referred to as header) and PLCP service data unit (PLCP service data unit, PSDU), usually the payload (payload) as PSDU.
  • the preamble includes: a synchronization sequence (synchronous, SYNC) and a start frame delimiter (start of frame delimiter, SFD).
  • the length of the long preamble is 144 bits, including a 128-bit synchronization sequence at the front and a 16-bit SFD at the rear.
  • the length of the short preamble is 72 bits, including a 56-bit synchronization sequence at the front and a 16-bit SFD at the rear.
  • the SYNC of the long preamble is 128 bits after scrambling "1" (for example, the seed code of the scrambler used for scrambling can be "1101100"), and the SYNC of the short preamble is 56 bits after scrambling "0". SYNC is used to wake up the receiver and synchronize it with the received signal.
  • the SFD is used to notify the receiver that some parameters related to the MAC layer will be transmitted immediately after the SFD ends.
  • the value of SFD can be, for example, 1111 0011 1010 0000.
  • the modulation algorithm of the preamble is fixed.
  • the modulation algorithm of the head can adopt DBPSK or in-phase binary phase shift keying (quadrature binary phase shift keying, QBPSK).
  • PSDU can use other modulation algorithms, such as: DBPSK, QBPSK, complementary code keying (complementary code keying, CCK) (CCK5.5 or CCK11), etc.
  • the header contains physical parameters related to data transmission, these parameters include: signaling (SIGNAL), service (SERVICE), length of data to be transmitted (LENGTH) and 16-bit CRC check code.
  • the receiver will adjust the receiving rate according to these parameters, select the decoding method, and decide when to end the data reception.
  • the signaling (SIGNAL) field is 8 bits long and defines the data transmission rate. It has four values: 0Ah, 14h, 37h and 6Eh, which specify the transmission rate as 1Mbps, 2Mbps, 5.5Mbps and 11Mbps respectively, and the receiver will adjust itself according to this receiving rate.
  • the length of the service (SERVICE) field is also 8 bits, which specifies which modulation code (CCK or packet binary convolutional coding (PBCC)) to use.
  • CCK modulation code
  • PBCC packet binary convolutional coding
  • the length (LENGTH) field is 16 bits long and is used to indicate how long it takes to send the following PSDU (in microseconds).
  • the 16-bit CRC check code is used to check whether the received signaling, business and length fields are correct.
  • the preamble and header are sent at a fixed rate of 1Mbps, while the PSDU part can be transmitted at 1Mbps (DBPSK modulation), 2Mbps (DQPSK modulation), 5.5Mbps (CCK or PBCC) and 11Mbps (CCK or PBCC) rates.
  • IOT Internet of Things
  • the IOT devices generally have the following characteristics : Low cost, low power consumption, low traffic, wide coverage.
  • the 802.11b standard has extremely high potential and has the above characteristics at the same time.
  • the IOT device based on the 802.11b standard detects the gain of the preamble in the Wi-Fi frame from the spreading gain of the AP.
  • the AP uses a traditional code length of The 11 barker code spreads the preamble after scrambling (scrambling code processing), and its spreading gain is about 10.4dB.
  • IOT devices such as refrigerators, air conditioners, color TVs, smart curtains, smart cameras, smart home and other smart home devices
  • IOT devices may be distributed in various places in the home. It puts forward relatively strict requirements on the coverage capability of the equipment.
  • the amplitude curve of coherent superposition between chips (chips) of the Barker code is provided, in which the maximum amplitude (10.4dB) is reached at the position marked as 7 in the chip, so based on the code
  • the maximum peak value of the synchronization sequence of the preamble spread by the Barker code with a length of 11 is limited by the maximum length (11) of coherent superposition between the chips of the Barker code, so that the maximum peak value of the synchronization sequence may be submerged by noise and cannot A peak is detected, causing the IOT device to fail to synchronize (acquisition, ACQ).
  • one or more extension codes provided by the embodiments of this application are mainly replaced in the synchronization sequence of the preamble of the Wi-Fi frame. Since the extension code is generated based on the Barker code, the symbols of the extension code There is a correlation between them, so that in the process of Wi-Fi frame transmission, after the synchronization sequence is spread by the Barker code, the chips formed by spreading different symbols contained in the spreading code are also correlated.
  • the symbols in the current synchronization sequence are discrete points, so only the chips formed by the spreading of each symbol itself have correlation
  • the network device 101 and the terminal device 103 in the embodiment of the present application may also be referred to as communication devices, for example, the network device 101 is referred to as a first communication device, and the terminal device 103 is referred to as a second communication device, which may It is a general-purpose device or a special-purpose device, which is not specifically limited in this embodiment of the present application.
  • FIG. 6 it is a schematic structural diagram of a network device 101 and a terminal device 103 provided in this embodiment of the present application.
  • the terminal device 103 includes at least one processor (in FIG. 6, it is illustrated by including a processor 301 as an example) and at least one transceiver (in FIG. 6, it is illustrated by an example of including a transceiver 303 ).
  • the terminal device 103 may also include at least one memory (in FIG. 6, a memory 302 is used as an example for illustration), at least one output device (in FIG. 6, an output device 304 is used as an example description) and at least one input device (in FIG. 6, an input device 305 is used as an example for illustration).
  • a communication link may include a pathway for the transfer of information between the aforementioned components.
  • the processor 301 can be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, a specific application integrated circuit (application-specific integrated circuit, ASIC), or one or more integrated circuits used to control the execution of the program program of this application. circuit.
  • the processor 301 may also include multiple CPUs, and the processor 301 may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, or processing cores for processing data such as computer program instructions.
  • the memory 302 may be a device having a storage function. For example, it may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory, RAM) or other types of memory that can store information and instructions
  • a dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be stored by a computer Any other medium, but not limited to.
  • the memory 302 may exist independently and be connected to the processor 301 through a communication line.
  • the memory 302 can also be integrated with the processor 301 .
  • the memory 302 is used to store computer-executed instructions for implementing the solutions of the present application, and the execution is controlled by the processor 301 .
  • the processor 301 is configured to execute computer-executed instructions stored in the memory 302, so as to implement the communication method for a wireless fidelity Wi-Fi system described in the embodiment of the present application.
  • the processor 301 may also perform processing-related functions in the communication method for a wireless fidelity Wi-Fi system provided in the following embodiments of the present application, and the transceiver 303 is responsible for Communicate with other devices or communication networks, which is not specifically limited in this embodiment of the present application.
  • the computer-executed instructions in the embodiments of the present application may also be referred to as application program codes or computer program codes, which are not specifically limited in the embodiments of the present application.
  • Transceiver 303 may use any transceiver-like device for communicating with other devices or communication networks.
  • the transceiver 303 includes a transmitter (transmitter, Tx) and a receiver (receiver, Rx).
  • Tx transmitter
  • Rx receiver
  • the terminal device 103 receives Wi-Fi frames through the receiver.
  • Output device 304 is in communication with processor 301 and can display information in a variety of ways.
  • the output device 304 may be a liquid crystal display (liquid crystal display, LCD), a light emitting diode (light emitting diode, LED) display device, a cathode ray tube (cathode ray tube, CRT) display device, or a projector (projector), etc.
  • the input device 305 communicates with the processor 301 and can accept user input in various ways.
  • the input device 305 may be a mouse, a keyboard, a touch screen device, or a sensing device, among others.
  • the network device 101 includes at least one processor (in FIG. 6, a processor 201 is used as an example for illustration), at least one transceiver (in FIG. 6, a transceiver 203 is used as an example for illustration), and At least one network interface (in FIG. 6, one network interface 204 is used as an example for illustration).
  • the network device 101 may further include at least one memory (in FIG. 6 , a memory 202 is used as an example for illustration).
  • the processor 201, the memory 202, the transceiver 203 and the network interface 204 are connected through communication lines.
  • the network interface 204 is used to connect to the core network device through a link (such as an S1 interface), or connect to a network interface (not shown in FIG.
  • Transceiver 203 may use any transceiver-like device for communicating with other devices or communication networks.
  • the transceiver 203 includes a transmitter (transmitter, Tx) and a receiver (receiver, Rx).
  • Tx transmitter
  • Rx receiver
  • FIG. 7 shows a specific structural form of the terminal device 103 provided in the embodiment of the present application.
  • the functions of the processor 301 in FIG. 6 may be implemented by the processor 110 in FIG. 7 .
  • the functions of the transceiver 303 in FIG. 6 can be implemented by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160 and the like in FIG. 7 .
  • antenna 1 and antenna 2 are used for transmitting and receiving electromagnetic wave signals.
  • Each antenna in the terminal device 103 can be used to cover single or multiple communication frequency bands. Different antennas can also be multiplexed to improve the utilization of the antennas.
  • Antenna 1 can be multiplexed as a diversity antenna of a wireless local area network. In other embodiments, the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 150 can provide wireless communication solutions including 2G/3G/4G/5G applied on the terminal device 103.
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (low noise amplifier, LNA) and the like.
  • the mobile communication module 150 can receive electromagnetic waves through the antenna 1, filter and amplify the received electromagnetic waves, and send them to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signals modulated by the modem processor, and convert them into electromagnetic waves through the antenna 1 for radiation.
  • at least part of the functional modules of the mobile communication module 150 may be set in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be set in the same device.
  • the wireless communication module 160 can provide applications on the terminal device 103 including wireless local area networks (wireless local area networks, WLAN) (such as Wi-Fi network), Bluetooth (blue tooth, BT), global navigation satellite system (global navigation satellite system, GNSS), frequency modulation (frequency modulation, FM), near field communication (near field communication, NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency-modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110 , frequency-modulate it, amplify it, and convert it into electromagnetic waves through the antenna 2 for radiation.
  • the wireless communication module 160 may provide an NFC wireless communication solution applied to the terminal device 103, which means that the first device includes an NFC chip.
  • the NFC chip can improve the NFC wireless communication function.
  • the wireless communication module 160 can provide a NFC wireless communication solution applied to the terminal device 103, which means that the first device includes an electronic tag (such as a radio frequency identification (radio frequency identification, RFID) tag ).
  • the NFC chips of other devices approach the electronic tag to perform NFC wireless communication with the second device.
  • the antenna 1 of the terminal device 103 is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160, so that the terminal device 103 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (general packet radio service, GPRS), code division multiple access (code division multiple access, CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time division code division multiple access (time-division code division multiple access, TD-SCDMA), long term evolution (long term evolution, LTE), BT, GNSS, WLAN, NFC , FM, or IR technology, etc.
  • the GNSS may include a global positioning system (global positioning system, GPS), a global navigation satellite system (global navigation satellite system, GLONASS), a Beidou navigation satellite system (beidou navigation satellite system, BDS), a quasi-zenith satellite system (quasi -zenith satellite system (QZSS) or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the function of the memory 302 in FIG. 6 can be implemented by the internal memory 121 in FIG. 7 or an external memory (such as a Micro SD card) connected to the external memory interface 120, etc.
  • an external memory such as a Micro SD card
  • the functions of the output device 304 in FIG. 6 can be implemented by the display screen 194 in FIG. 7 .
  • the display screen 194 is used for displaying images, videos and the like.
  • the display screen 194 includes a display panel.
  • the function of the input device 305 in FIG. 6 can be realized by a mouse, a keyboard, a touch screen device or the sensor module 180 in FIG. 7 .
  • the sensor module 180 may include, for example, a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, and a fingerprint sensor 180H , temperature sensor 180J, touch sensor 180K, ambient light sensor 180L, and bone conduction sensor 180M, which is not specifically limited in this embodiment of the present application.
  • the terminal device 103 may further include an audio module 170, a camera 193, an indicator 192, a motor 191, buttons 190, a SIM card interface 195, a USB interface 130, a charging management module 140, One or more of the power management module 141 and the battery 142, wherein the audio module 170 can communicate with a speaker 170A (also called “horn"), a receiver 170B (also called “handset"), a microphone 170C (also called “microphone”, “Microphone”) or headphone jack 170D, etc., which are not specifically limited in this embodiment of the present application.
  • a speaker 170A also called “horn”
  • a receiver 170B also called “handset”
  • a microphone 170C also called “microphone", “Microphone”
  • headphone jack 170D etc.
  • the structure shown in FIG. 7 does not constitute a specific limitation on the terminal device 103 .
  • the terminal device 103 may include more or fewer components than shown in the figure, or combine certain components, or separate certain components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the communication method used in the wireless fidelity Wi-Fi system provided by the embodiment of the present application will be described below with reference to FIG. 1 to FIG. 7 , taking the interaction between the network device shown in FIG. 1 and any terminal device as an example.
  • FIG 8 it is a communication method for a wireless fidelity Wi-Fi system provided by the embodiment of this application.
  • the network device transmits a Wi-Fi frame to the terminal device as an example for illustration.
  • the communication method of the Wi-Fi system includes step S101-step S104.
  • the network device generates a Wi-Fi frame including a PLCP preamble.
  • the ways to generate the extension code include but are not limited to the following ways:
  • the Barker code is used as the base code to construct the spreading sequence of the new spreading code, as follows:
  • the spreading code may be obtained from a spreading sequence generated by spreading the initial sequence based on the Barker code.
  • Construct spreading codes based on search usually, the synchronization sequence in the preamble is randomly scrambled and then transmitted based on Barker code spread spectrum. It can be searched based on the cross-correlation and autocorrelation properties of the transmitted sequence as the basis for performance evaluation, and the correct performance can be found from the transmitted sequence.
  • the optimal continuous sequence is used as the spreading code. The specific process is as follows,
  • c ACQ (i) is the initial sequence before scrambling (for example, it may be the synchronization sequence of a traditional preamble), and R(i) is the scrambling code sequence generated in step S1.
  • b(k) [+1,+1,+1,-1,-1,-1,+1,-1,-1,+1,-1].
  • the Monte Carlo method is used to search for an extension code with a length of N*11 in the chip sequence of c R-ACQ-barker (1), and the pseudocode is described as follows:
  • the g value can be obtained, that is, the corresponding symbol position of the spreading code in the c R-ACQ (i) chip sequence.
  • the symbol s(n) extracted from the symbol sequence c R-ACQ (i) based on g is the constructed spreading code.
  • s [+1,+1,-1,+1,+1;+1,+1,-1,-1,+1;-1,+1,-1,+1,-1;-1 ,+1,-1,-1,-1; +1,-1].
  • the network equipment of the sender transmits the Wi-Fi frame and spreads the synchronization sequence , because the spreading code in the synchronization sequence is generated based on the Barker code, that is, there is coherence between the symbols of the spreading code, so the 242 chips generated after spreading by the Barker code (11 bits) also have coherent superposition performance , as shown in Figure 9, 242 chips achieve a gain close to 250dB, which is nearly 22 times higher than the detection peak value of the prior art, so that the terminal equipment at the receiving side can detect the gain close to 250dB by using the coherent superposition and estimation algorithm peak, thereby improving the performance of preamble-based synchronization.
  • the structure of the designed Wi-Fi frame is shown in Figure 10, Figure 11 and Figure 12 based on the synchronization code segment constructed in the first or second method above, and the specific description is as follows:
  • the spreading code may replace the symbol at the position in the current synchronization sequence.
  • the network device as the transmitter generates a standard Barker code-based synchronization sequence according to the 802.11b standard, and scrambles the sequence.
  • step S2 scrambling is performed on a synchronous sequence (symbol) of all 1s or all 0s whose length is L,
  • c ACQ (i) is the original symbol sequence that is all 1 or 0 before scrambling
  • the network device as the transmitting party performs spread spectrum (barker spread spectrum) according to the protocol requirements in the process of transmitting the Wi-Fi frame in the subsequent steps, that is, performs Barker code spread spectrum on the replaced symbol sequence C hybrid (i) , generating the spreading sequence:
  • the terminal device as the receiver since the terminal device as the receiver has known the sequence C hybrid (i), it can use the coherent algorithm to perform synchronization position detection based on the sequence C hybrid (i), and can obtain the coherent sum performance as shown in FIG. 9 . Higher coherence peaks can be detected during sequence detection. In addition, when coherent coarse frequency estimation, coherent fine frequency offset estimation, coherent channel estimation, etc. are performed on the result of the synchronous position detection, the performance of parameter estimation can also be improved.
  • the synchronization sequence of the Wi-Fi frame shown in FIG. 10 contains multiple spreading codes, for example, 5 spreading codes are placed in the synchronization sequence.
  • the network device as the transmitter generates a standard Barker code-based synchronization sequence according to the 802.11b standard, and scrambles the sequence.
  • c ACQ (i) is the original symbol sequence that is all 1 or 0 before scrambling, and R (i) is the scrambling sequence that S1 produces;
  • step S3 use the spreading sequence of spreading code Replace the k-segment sequence in the original sequence c R-ACQ (i), the replacement start position S, the replacement sequence length J and the number of segments K are configurable, and the sequence length J and the number of segments K are selected based on performance requirements, and the replaced sequence is recorded
  • the network device as the transmitting party performs spread spectrum (barker spread spectrum) according to the protocol requirements in the process of transmitting the Wi-Fi frame in the subsequent steps, that is, performs Barker code spread spectrum on the replaced symbol sequence C hybrid (i) , generating the spreading sequence:
  • the terminal device as the receiver since the terminal device as the receiver has known the sequence C hybrid (i), it can use the coherent algorithm to perform synchronization position detection based on the sequence C hybrid (i), and can obtain the coherent sum performance as shown in FIG. 9 . Higher coherence peaks can be detected during sequence detection. In addition, when coherent coarse frequency estimation, coherent fine frequency offset estimation, coherent channel estimation, etc. are performed on the result of the synchronous position detection, the performance of parameter estimation can also be improved.
  • the synchronization sequence of the Wi-Fi frame shown in FIG. 11 contains 2 sets of spreading codes, and each set of spreading codes has two spreading codes.
  • the spreading sequence C 1 of the second group of spreading codes [C ACQ1 , C eSFD1 ], wherein the second group of spreading codes in the second group
  • the spreading sequence of the three spreading codes is
  • d 0 ⁇ d 1 is to resist the periodicity of the spreading sequences of the two sets of spreading codes.
  • the network device as the transmitter generates a standard Barker code-based synchronization sequence according to the 802.11b standard, and scrambles the sequence.
  • c ACQ (i) is the original symbol sequence that is all 1 or 0 before scrambling, and R (i) is the scrambling sequence that S1 produces;
  • the terminal device as the receiver since the terminal device as the receiver has known the sequence C hybrid (i), it can use the coherent algorithm to perform synchronization position detection based on the sequence C hybrid (i), and can obtain the coherent sum performance as shown in FIG. 9 . Higher coherence peaks can be detected during sequence detection. In addition, when coherent coarse frequency estimation, coherent fine frequency offset estimation, coherent channel estimation, etc. are performed based on the result of the synchronization position detection, the performance of parameter estimation can also be improved.
  • the C ACQ0 and C eSFD0 (or C ACQ1 and C eSFD1 ) sequences in the spreading sequences of each group of spreading codes in the synchronization sequence are detected, and whether the C ACQ0 and C eSFD0 (or C ACQ1 and C eSFD1 ) sequences are inverted To distinguish 2 groups of sequences; through the interval between C ACQ0 and C eSFD0 sequence peaks to identify which group of spreading codes is synchronized, so as to determine the synchronization position according to C ACQ0 (or C ACQ1 ) and determine according to C eSFD0 (or C eSFD1 ) Frame start position.
  • the first time length d 0 , the second time length d 1 , and the third time length d 2 between each group and each sequence mainly serve two functions. One is to perform synchronization position detection and SFD detection for identifying the sequence, and the other is to prevent the sequence from appear periodically to avoid destroying the power spectrum template (power spectral density, PSD) of the Barker code.
  • PSD power spectral density
  • the network device transmits the Wi-Fi frame to the terminal device.
  • the terminal device receives the Wi-Fi frame transmitted by the network device.
  • the terminal device despreads the Wi-Fi frame according to the Barker code, and obtains a synchronization sequence in the preamble.
  • one or more extension codes provided by the embodiments of this application are mainly replaced in the synchronization sequence of the preamble of the Wi-Fi frame. Since the extension code is generated based on the Barker code, the symbols of the extension code There is a correlation between them, so that in the process of Wi-Fi frame transmission, after the synchronization sequence is spread by the Barker code, the chips formed by spreading different symbols contained in the spreading code are also correlated.
  • the symbols in the current synchronization sequence are discrete points, so only the chips formed by the spreading of each symbol itself have correlation
  • a communication method for a wireless fidelity Wi-Fi system provided by the embodiment of the present application is described by taking the network device to transmit a Wi-Fi frame to the terminal device as an example.
  • the network device mainly transmits a frame to the terminal device.
  • the payload of the Wi-Fi frame is taken as an example for description.
  • the PSDU of the Wi-Fi frame includes an extended header (eheadr) and a payload (payload), the payload includes multiple data code blocks, and the data code blocks include code fields (code word0, code word1...) and checksum Check field (CRC), usually when the valid data cannot occupy the length of the full load, the tail is usually filled with padding (Pading); the extended header (eheadr) is used to indicate one or more of the following information: The length, the encoding method of the coded field, the modulation method and the type of the check field.
  • eheadr is used to indicate one or more of the following information: The length, the encoding method of the coded field, the modulation method and the type of the check field.
  • the network device transmits the load of the Wi-Fi frame to the terminal device including the following steps:
  • the network device performs channel coding on the data code block in a coding manner.
  • the data code block mainly divides the scrambled information bits from the MAC source into coded fields conforming to the coding rules according to certain rules, and adds check fields to the coded fields after segmentation (for example, cyclic redundancy The check field of the cyclic redundancy check (CRC)), so that the receiver can use the check field to assist in decoding and verifying data.
  • the channel coding may specifically include PLCP coding, polar coding, etc., for example, the data code block may be polar coded by using a coding rule of a polar coder.
  • the network device performs rate matching on the channel-coded data code blocks.
  • the channel-coded data code can be matched to the physical resource by repeating, puncturing or truncating.
  • the network device performs differential encoding on the rate-matched data code blocks.
  • the network device modulates the differentially encoded data code blocks according to a modulation manner.
  • the network device when the modulation method includes differential modulation, in step 203, the network device performs differential encoding on the data code block after rate matching, and combines it with the differential modulation in subsequent step 204, so as to realize non- The effect of differential modulation so that the receiver uses non-differential demodulation to calculate the log likelihood ratio (log likelihood ratio, LLR).
  • the modulation method includes differential modulation
  • the receiver can also directly adopt differential demodulation in step 207 .
  • step 203 can be omitted, that is, the differential encoding function can directly transparently transmit the data after rate matching code block, as shown in FIG. 13B , the receiver directly adopts non-differential differential demodulation.
  • CCK complementary code keying
  • the network device transmits the data code block to the terminal device.
  • the radio frequency front end may transmit the data code block only through the antenna after spectrum spreading.
  • the terminal device despreads the data code block according to the Barker code.
  • the terminal device demodulates the despread data code blocks according to the modulation mode.
  • the terminal device performs de-differential decoding on the demodulated data code block.
  • the LLR calculation of the received data code block is implemented jointly by the differential resolution function and the demodulation function.
  • rate dematching is directly performed on the demodulated data code block.
  • the terminal device performs de-rate matching on the demodulated data code blocks.
  • the terminal device performs channel decoding on the data code block after de-rate matching according to the coding mode.
  • the polar decoding decodes the input LLR according to a certain decoding algorithm, and decodes the encoded field. Finally, check the coded field decoded by the channel (for example, the CRC can be decomposed according to the check field CRC after the coded field), and combine several coded fields with correct verification results to restore the transmitter's information bits.
  • the transmission of the payload of the Wi-Fi frame mainly introduces channel coding in the link of the transmitter, which is more conducive to improving the transmission quality in low SNR scenarios.
  • the Wi-Fi frame structure provided by the embodiment of the present application may also have the above-mentioned preamble shown in FIG. 10 (that is, the enhanced preamble ( epreamble)) and the PSDU shown in Figure 14A, that is, the payload part is sent in a channel coding manner; in this way, while improving the synchronization performance, it is also conducive to improving the transmission quality in low SNR scenarios.
  • a Wi-Fi frame structure is provided, including an enhanced preamble (epreamble), a header (header, referred to as the header) and a PLCP service data unit (PLCP service data unit, PSDU).
  • PSDU includes extended header eheader and payload (payload).
  • the payload includes multiple data code blocks.
  • the data code block includes code fields (code word0, code word1...) and check fields (CRC), where the check field CRC is used for
  • the receiver checks the received encoded field.
  • the epreamble can be any one provided in FIG. 10 , FIG. 11 and FIG. 12 .
  • the data code block may only include coded fields (code word0, code word1...), and the receiver directly checks the transmitted data according to the coded fields.
  • the eheader may include an elenghth field (12bit), used to indicate the length of the payload; an eMOD field (2bit), used to indicate the modulation mode of the payload; a reserved field (reserved, 2bit); and an eCRC (8bit) field, used for Verify eheader.
  • an elenghth field (12bit) used to indicate the length of the payload
  • an eMOD field (2bit) used to indicate the modulation mode of the payload
  • a reserved field reserved field (reserved, 2bit)
  • eCRC (8bit) field used for Verify eheader.
  • Table 1 provides the value of each parameter in eheader:
  • the bit in the b3 field can be used to indicate whether to use the Wi-Fi frame structure provided by the embodiment of this application, and configuration 0 represents a traditional 802.11b frame Structure; configuration 1 indicates the Wi-Fi frame structure provided by the embodiment of the present application.
  • the eheader is designed to use the first 48 bits of the PSDU to send data length/modulation signaling information, so it can be sent with a smaller Polar code field and CRC check field formed by polar coding to adapt to work at extremely low SNR scenario.
  • PSDU also includes an extended start frame delimiter SFD (eSFD) before the extended header eheader , 48bit).
  • SFD extended start frame delimiter
  • the eheader may include an elength field (12bit), used to indicate the length of the payload; an eMOD field (2bit), used to indicate the modulation method of the payload; eCoding (1bit), used to indicate the encoding method adopted by the payload; - reserved field (reserved, 1bit); and the eCRC (8bit) field, used to check the eheader.
  • an elength field (12bit) used to indicate the length of the payload
  • an eMOD field (2bit) used to indicate the modulation method of the payload
  • eCoding (1bit) used to indicate the encoding method adopted by the payload
  • - reserved field reserved field (reserved, 1bit)
  • eCRC (8bit) field used to check the eheader.
  • Table 3 provides the value of each parameter in eheader:
  • the length of the spreading code is 22us
  • the receiver mainly performs despreading based on Barker codes in the ACQ phase (that is, the synchronization sequence detection phase)
  • the spreading codes provided in the embodiments of the present application are constructed based on Barker codes, so no descrambling operation is required.
  • the length of the five spreading codes is 110us, and the symbols of the remaining 18us of the synchronization sequence are not replaced, so descrambling can be performed normally, so that the descrambler is initialized to prepare for further analysis of SFD.
  • whether to use the Wi-Fi frame structure provided by the embodiment of the present application can be indicated through the b3 field of the SERVICE field of the above-mentioned header.
  • the aforementioned eSFD+eheader in the MPDU (MPDU is called PSDU after entering the PLCP layer) can also be used to indicate that the payload adopts the Wi-Fi frame structure provided by the embodiment of the present application.
  • eSFD is designed to use the first 48 bits of PSDU to send, so it can be sent with a smaller Polar code field and CRC check field formed by polar coding to adapt to work in extremely low SNR scenarios.
  • the traditional Wi-Fi frame detection and the Wi-Fi frame detection provided by the embodiments of the present application are performed simultaneously in the SYNC phase (ie, the phase of receiving the synchronization sequence), that is, the ACQ (ie, the current Synchronization sequence)/SFD/header detection and eACQ (ie synchronization sequence including spreading code)/eSFD/eheader detection.
  • the above-mentioned network devices and terminal devices include corresponding hardware structures and/or software modules for performing various functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • the embodiment of the present application may divide the network device into functional modules according to the above method example, for example, each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 17 shows a schematic structural diagram of a communication device.
  • the communication device may be a chip or a system-on-a-chip in the above-mentioned network device, or other combination devices, components, etc. that can realize the functions of the above-mentioned network device, and the communication device may be used to perform the functions of the network device involved in the above-mentioned embodiments.
  • the communication device shown in FIG. 17 includes: a sending unit 1701 and a processing unit 1702 .
  • the sending unit 1701 is configured to send the Wi-Fi frame.
  • the synchronization sequence includes: a first group of spreading codes, and the first group of spreading codes includes a first spreading code and a second spreading code of a first duration after the first spreading code ;
  • the second group of spreading codes, the second group of spreading codes includes a third spreading code and a fourth spreading code of a second duration after the third spreading code;
  • the second set of spreading codes is located in the first group after the spreading code, and the first duration is not equal to the second duration.
  • the PSDU of the Wi-Fi frame includes an extended header and a payload; the payload includes a plurality of data code blocks, and the data code blocks include an encoding field and a check field;
  • the extension The header is used to indicate one or more of the following information: the length of the payload, the coding method of the coded field, the modulation method, and the type of the check field;
  • the processing unit 1702 is also used to use the coding method to performing channel coding on the data code block; performing rate matching on the data code block after channel coding; modulating the rate-matched data code block according to the modulation method, the modulation method including differential modulation; sending A unit 1701 is configured to spread the modulated data code block and then transmit it.
  • the processor is further configured to perform differential encoding on the modulated data code blocks, where the modulation manner includes non-differential modulation.
  • the extended header further includes a check digit.
  • the PSDU further includes an extended start frame delimiter SFD located before the extended header.
  • the spreading sequence c of the spreading code satisfies the following formula:
  • the spreading code is obtained from a spreading sequence generated by spreading the initial sequence based on the Barker code.
  • the communication device is presented in the form of dividing various functional modules in an integrated manner.
  • a “module” here may refer to a specific ASIC, a circuit, a processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the functions described above.
  • the communication device can take the form of the network device shown in FIG. 6 .
  • the processor 201 in FIG. 6 may call the computer-executed instructions stored in the memory 203, so that the communication device executes the communication method for a wireless fidelity Wi-Fi system in the above method embodiment.
  • the function/implementation process of the sending unit 1701 and the processing unit 1702 in FIG. 17 can be implemented by the processor 201 in FIG.
  • the function/implementation process can be realized by the processor 201 in FIG. 6 calling the computer execution instructions stored in the memory 203.
  • the communication device provided in this embodiment can execute the above-mentioned communication method for a wireless fidelity Wi-Fi system, the technical effect it can obtain can refer to the above-mentioned method embodiment, and details are not repeated here.
  • the embodiment of the present application may divide the terminal device into functional modules according to the above method example, for example, each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 18 shows a schematic structural diagram of a communication device.
  • the communication device may be a chip or a system-on-a-chip in the above-mentioned terminal equipment, or other combined devices or components that can realize the functions of the above-mentioned terminal equipment, and the communication device may be used to perform the functions of the network equipment involved in the above-mentioned embodiments.
  • the communication device shown in FIG. 18 includes: a receiving unit 1801 and a processing unit 1802 .
  • the receiving unit 1801 is configured to receive and receive the Wi-Fi frame;
  • the processing unit 1802 is configured to despread the Wi-Fi frame according to the Barker code to obtain the synchronization sequence in the preamble, the
  • the synchronization sequence includes: a first group of spreading codes, and the first group of spreading codes includes a first spreading code and a second spreading code of a first duration after the first spreading code ;
  • the second group of spreading codes, the second group of spreading codes includes a third spreading code and a fourth spreading code of a second duration after the third spreading code;
  • the second set of spreading codes is located in the first group after the spreading code, and the first duration is not equal to the second duration.
  • the PSDU of the Wi-Fi frame includes an extended header and a payload; the payload includes a plurality of data code blocks, and the data code blocks include an encoding field and a check field;
  • the extension The header is used to indicate one or more of the following information: the length of the payload, the coding method of the coded field, the modulation method, and the type of the check field;
  • the processing unit 1802 is also used to despreading the data code block; demodulating the despread data code block according to the modulation method, the modulation method including differential modulation; performing derate matching on the demodulated data code block; Channel decoding is performed on the data code block after de-rate matching according to the encoding manner.
  • the processor is further configured to dedifferentially decode the despread data code blocks, where the modulation manner includes non-differential modulation.
  • the extended header further includes a check digit.
  • the PSDU further includes an extended start frame delimiter SFD located before the extended header.
  • the spreading sequence c of the spreading code satisfies the following formula:
  • the spreading code is obtained from a spreading sequence generated by spreading the initial sequence based on the Barker code.
  • the communication device is presented in the form of dividing various functional modules in an integrated manner.
  • a “module” here may refer to a specific ASIC, a circuit, a processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the functions described above.
  • the communication device can take the form of the terminal device shown in FIG. 6 .
  • the processor 201 in FIG. 6 may call the computer-executed instructions stored in the memory 203, so that the communication device executes the communication method for a wireless fidelity Wi-Fi system in the above method embodiment.
  • the functions/implementation process of the receiving unit 1801 and the processing unit 1802 in FIG. 18 can be realized by calling the computer execution instructions stored in the memory 203 by the processor 201 in FIG. 6; or, the processing unit 1802 in FIG. 18
  • the function/implementation process can be realized by the processor 201 in FIG. 2 calling the computer execution instructions stored in the memory 203.
  • the function/implementation process of the receiving unit 1801 in FIG. 18 can be realized by the receiver of the transceiver 303 in FIG. 6 to fulfill.
  • FIG. 19 shows a schematic structural diagram of a communication device.
  • the communication device may be a chip or a system-on-a-chip in the above-mentioned network device, or other combination devices, components, etc. that can realize the functions of the above-mentioned network device, and the communication device may be used to perform the functions of the network device involved in the above-mentioned embodiments.
  • the communication device shown in FIG. 19 includes: a sending unit 1901 and a processing unit 1902 .
  • the processing unit 1902 is configured to generate a Wi-Fi frame including a PSDU, the PSDU includes an extended header and a payload; the payload includes a plurality of data code blocks, and the data code blocks include an encoding field and a check field; the The extension header is used to indicate one or more of the following information: the length of the payload, the coding method of the coded field, the modulation method, and the type of the check field; performing channel coding; performing rate matching on the data code block after channel coding; and modulating the data code block after rate matching according to the modulation mode, where the modulation mode includes differential modulation.
  • the sending unit 1901 is configured to send the Wi-Fi frame.
  • the processing unit 1902 is further configured to perform differential encoding on the rate-matched data code block, and the modulation mode includes non-differential modulation.
  • the extended header further includes a check digit.
  • the PSDU further includes an extended start frame delimiter SFD located before the extended header.
  • the communication device is presented in the form of dividing various functional modules in an integrated manner.
  • a “module” here may refer to a specific ASIC, a circuit, a processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the functions described above.
  • the communication device can take the form of the network device shown in FIG. 6 .
  • the processor 201 in FIG. 6 may call the computer-executed instructions stored in the memory 203, so that the communication device executes the communication method for a wireless fidelity Wi-Fi system in the above method embodiment.
  • the function/implementation process of the sending unit 1901 and the processing unit 1902 in FIG. 19 can be realized by calling the computer execution instructions stored in the memory 203 by the processor 201 in FIG.
  • the function/implementation process of FIG. 6 can be realized by calling the computer execution instructions stored in the memory 203 by the processor 201 in FIG. 6, and the function/implementation process of the sending unit 1901 in FIG. machine to achieve.
  • the communication device provided in this embodiment can execute the above-mentioned communication method for a wireless fidelity Wi-Fi system, the technical effect it can obtain can refer to the above-mentioned method embodiment, and details are not repeated here.
  • the embodiment of the present application may divide the terminal device into functional modules according to the above method example, for example, each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 20 shows a schematic structural diagram of a communication device.
  • the communication device may be a chip or a system-on-a-chip in the above-mentioned terminal equipment, or other combined devices or components that can realize the functions of the above-mentioned terminal equipment, and the communication device may be used to perform the functions of the network equipment involved in the above-mentioned embodiments.
  • the communication device shown in FIG. 20 includes: a receiving unit 2001 and a processing unit 2002.
  • the receiving unit 2001 is configured to receive a Wi-Fi frame, the PSDU of the Wi-Fi frame includes an extended header and a payload; the payload includes a plurality of data code blocks, and the data code blocks include an encoding field and a check field; the The extended header is used to indicate one or more of the following information: the length of the payload, the encoding method of the coded field, the modulation method, and the type of the check field;
  • the processing unit 2002 is configured to despreading the data code block; demodulating the despread data code block according to the modulation method, the modulation method including differential modulation; performing derate matching on the demodulated data code block; Channel decoding is performed on the data code block after de-rate matching according to the encoding manner.
  • the processing unit 2002 is further configured to perform de-differential decoding on the demodulated data code blocks, where the modulation manner includes non-differential modulation.
  • the extended header further includes a check digit.
  • the PSDU further includes an extended start frame delimiter SFD located before the extended header.
  • SFD extended start frame delimiter
  • the communication device is presented in the form of dividing various functional modules in an integrated manner.
  • a “module” here may refer to a specific ASIC, a circuit, a processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the functions described above.
  • the communication device can take the form of the terminal device shown in FIG. 6 .
  • the processor 201 in FIG. 6 may call the computer-executed instructions stored in the memory 203, so that the communication device executes the communication method for a wireless fidelity Wi-Fi system in the above method embodiment.
  • the functions/implementation process of the receiving unit 2001 and the processing unit 2002 in FIG. 20 can be realized by calling the computer execution instructions stored in the memory 203 by the processor 201 in FIG.
  • the function/implementation process can be realized by the processor 201 in FIG. 2 calling the computer execution instructions stored in the memory 203
  • the function/implementation process of the receiving unit 2001 in FIG. 20 can be realized by the receiver of the transceiver 303 in FIG. 6 to fulfill.
  • the communication device provided in this embodiment can execute the above-mentioned communication method for a wireless fidelity Wi-Fi system, the technical effect it can obtain can refer to the above-mentioned method embodiment, and details are not repeated here.
  • the embodiment of the present application also provides a communication device (for example, the communication device may be a chip or a chip system), the communication device includes a processor and an interface, and the processor is used to read instructions to perform any of the above methods Methods in the Examples.
  • the communication device further includes a memory.
  • the memory is used to store necessary program instructions and data, and the processor can call the program code stored in the memory to instruct the communication device to execute the method in any one of the above method embodiments.
  • the memory may not be in the communication device.
  • the communication device is a system-on-a-chip, it may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in this embodiment of the present application.
  • the sending unit 1702 and the sending unit 1902 can be transmitters when transmitting information
  • the receiving unit 1802 and receiving unit 2002 can be transmitters when receiving information.
  • the receiver, the transceiver unit can be a transceiver, and this transceiver, transmitter or receiver can be a radio frequency circuit.
  • the first communication device and the second communication device include a storage unit, the storage unit is used to store computer instructions, and the processor Connected to the memory in communication, the processor executes the computer instructions stored in the memory, so that the first communication device and the second communication device execute the methods involved in the method embodiments.
  • the processor may be a general central processing unit (CPU), a microprocessor, or an application specific integrated circuit (ASIC).
  • the sending unit 1702 and the receiving unit 1802 may be input and/or output interfaces, pins or circuits.
  • the processing unit 1701 and the processing unit 1801 can execute the computer-executed instructions stored in the storage unit, so that the chips in the first communication device and the second communication device execute the methods involved in the method embodiments.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the terminal device or network device, such as only Read only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM), etc.
  • ROM Read only memory
  • RAM random access memory
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server, or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may be a data storage device including one or more servers, data centers, etc. that can be integrated with the medium.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (solid state disk, SSD)), etc.
  • the computer may include the aforementioned apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种用于无线保真Wi-Fi系统的通信方法及装置,涉及通信技术领域,能够提高IOT设备抗干扰能力,并且可以提高覆盖能力和穿墙能力。该用于无线保真Wi-Fi系统的通信方法,包括:生成包括前导码的Wi-Fi帧,前导码的同步序列中包括至少一个扩展码,扩展码包括基于巴克码生成的N个符号,其中N=α*M,M为巴克码的码片长度,α为正整数;然后,传送Wi-Fi帧。

Description

一种用于无线保真Wi-Fi系统的通信方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种用于无线保真Wi-Fi系统的通信方法及装置。
背景技术
Wi-Fi技术是Wi-Fi联盟创建于电气和电子工程师协会(institute of electrical and electronic engineers,IEEE)802.11标准的无线局域网技术。Wi-Fi技术中通常涉及接入点(access point,AP)和站点(station,STA)两类设备。其中,AP也可以称为无线接入点,是Wi-Fi网络的提供者,允许其他无线设备接入,并为接入的设备提供数据访问。接入Wi-Fi网络的设备可称为STA。如,手机,平板电脑及笔记本电脑等支持Wi-Fi功能的电子设备均可作为STA。AP与STA之间通过Wi-Fi物理帧(简称Wi-Fi帧)进行用户数据的传输。目前,已经发展和普及的6代Wi-Fi系统(801.11,802.11b,802.11a/g,802.11n,802.11ac,802.11ax)中,每一代IEEE 802.11标准都在大幅度的提升其通信质量和速率。
近年来,家庭网络中出现了越来越多的作为STA的物联网(internet of things,IOT)设备,甚至普通家电通过集成Wi-Fi模块也具备了IOT设备的属性,IOT设备一般具有以下特点:低成本、低功耗、低流量、广覆盖。而基于Wi-Fi的物联网设备中,802.11b标准具有极高的潜力同时具备以上特点。通常,AP在发送Wi-Fi帧时,基于802.11b标准的IOT设备检测Wi-Fi帧中的物理层前导码(PHY preamble,也称作物理层汇聚协议(PHY convergence protocal,PLCP)前导码,简称前导码)的增益来自于AP的扩频增益,802.11b标准下AP采用的是传统的码长为11的巴克(barker)码对加扰(扰码处理)后的前导码进行扩频,其扩频增益约为10.4dB。但是在复杂的家庭环境下,如普通家庭用户一般只有一个AP,而IOT设备(比如冰箱、空调、彩电、智能窗帘、智能摄像头、智能家居等智慧家庭设备)可能分布在家庭的各个位置,这就对设备的覆盖能力提出了比较苛刻的要求。尤其超低信噪比(signal-to-noise ratio,SNR)场景下,由于扰码后的前导码的符号是离散分布的,并且扩频用的巴克码的码片(chip)间相干叠加最大长度受限于周期11,因此基于码长11的巴克码片扩频的前导码的同步序列的最大峰值受限于巴克码的码片间相干叠加的最大长度(11),从而导致该同步序列的最大峰值可能会被噪声淹没,无法检测出峰值,导致IOT设备无法同步(acquisition,ACQ)上。因此,该扩频增益远不能满足广覆盖的需求,这将使得802.11b标准的IOT设备抗干扰能力和穿墙能力弱,影响用户体验。
发明内容
本申请的实施例提供一种用于无线保真Wi-Fi系统的通信方法及装置,能够提高IOT设备抗干扰能力,并且可以提高覆盖能力和穿墙能力。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种用于无线保真Wi-Fi系统的通信方法。该方法可以由第一通信装置执行,所述第一通信装置也可以为第一通信装置内的模块或芯片,第一通信装置也可以为芯片或片上系统,该方法包括如下步骤:首先,生成包括前导码的Wi-Fi帧,所述前导码的同步序列中包括至少一个扩展码,所述扩展码包括基于巴克码生成的N个符号,其中N=α*M,M为巴克码的码片长度,α为正整数;然后,传送Wi-Fi帧。本申请中,主要通过在Wi-Fi帧的前导码的同步序列中替换一段或多段本申请的实施例提供的扩展码,由于该扩展码是基于巴克码生成的,因此该扩展码的符号之间具有相关性,这样在Wi-Fi帧传送过程中,通过巴克码对该同步序列进行扩频之后,则扩展码所包含的不同符号扩频形成的码片也是具有相关性的,相对于现有技术(目前的同步序列中符号是离散点因此仅每个符号自身扩频形成的码片具有相关性)可以相关叠加更长的码长和周期,进而能够取得更高的检测峰值,从而能够提高IOT设备抗干扰能力,并且可以提高覆盖能力和穿墙能力。
在一种可能是实现方式中,同步序列包括:第一组扩展码,第一组扩展码包括第一扩展码以及位于第一扩展码之后第一时长的第二扩展码;第二组扩展码,第二组扩展码包括第三扩展码以及位于第三扩展码之后第二时长的第四扩展码;第二组扩展码位于第一组扩展码之后,并且第一时长与第二时长不相等。Wi-Fi帧的同步序列中包含2组扩展码,每组扩展码两个扩展码。例如:第一组扩展码的扩频序列C 0=[C ACQ0,C eSFD0],其中第一组扩展码中的第一扩展码的扩频序列为
Figure PCTCN2021122476-appb-000001
第一组同步码片段中的第二扩展码的扩频序列为
Figure PCTCN2021122476-appb-000002
两个序列之间间隔为第一时长d 0(推荐为d 0=5us);第二组扩展码的扩频序列C 1=[C ACQ1,C eSFD1],其中第二组扩展码中的第三扩展码的扩频序列为
Figure PCTCN2021122476-appb-000003
第二组扩展码中的第四扩展码的扩频序列为
Figure PCTCN2021122476-appb-000004
两个序列之间间隔为第二时长d 1(推荐为d 1=7us)。对同步序列中每组扩展码的扩频序列中的C ACQ0和C eSFD0(或C ACQ1和C eSFD1)序列进行检测,通过C ACQ0和C eSFD0(或C ACQ1和C eSFD1)序列是否反向区分2组序列;通过C ACQ0和C eSFD0序列峰值之间的间隔识别哪一组扩展码是否同步上,从而根据C ACQ0(或C ACQ1)确定同步位置并根据C eSFD0(或C eSFD1)确定帧起始位置。且d 0≠d 1,是为了抗2组扩展码的扩频序列的周期性。
在一种可能是实现方式中,所述Wi-Fi帧的PSDU包括扩展头部以及载荷;所述载荷包括多个数据码块,所述数据码块包括编码字段和校验字段;所述扩展头部用于指示以下一项或多项信息:所述载荷的长度、所述编码字段的编码方式、调制方式以及所述校验字段的类型;所述传送所述Wi-Fi帧之前还包括:以所述编码方式对所述数据码块进行信道编码(例如可以是LDPC编码、Polar编码等);对信道编码后的所述数据码块进行速率匹配;对速率匹配后的所述数据码块按照所述调制方式进行调制,所述调制方式包括差分调制;所述传送所述Wi-Fi帧,包括:对调制后的数据码块进行扩频后传送。这样对于Wi-Fi帧的载荷的传输主要在发射方的链路中引入了信道编码,更加有利于低SNR场景下提高传输质量。
在一种可能是实现方式中,对速率匹配后的所述数据码块按照所述调制方式进行调制之前,还包括:对速率匹配后的所述数据码块进行差分编码,所述调制方式包括非差分调制。当调制方式包括差分调制时,网络设备将经过速率匹配后的数据码块做 差分编码,以和差分调制联合,从而实现非差分调制的效果,以便接收方采用非差分解调计算对数似然比(log likelihood ratio,LLR)。
在一种可能是实现方式中,扩展头部还包括校验位。其中,该校验位用于对扩展头部进行数据校验。
在一种可能是实现方式中,所述PSDU还包括位于所述扩展头部之前的扩展起始帧定界符SFD。其中,扩展起始帧定界符用来指示接下来传送扩展头部eheader。
在一种可能是实现方式中,扩展码的扩频序列c满足如下公式:
Figure PCTCN2021122476-appb-000005
扩展码
Figure PCTCN2021122476-appb-000006
其中,b为巴克码,r=[+1;-1]。
在一种可能是实现方式中,扩展码为基于巴克码对初始序列进行扩频生成的扩频序列中获取。
第二方面,提供一种用于无线保真Wi-Fi系统的通信方法。该方法可以由第二通信装置执行,所述第二通信装置也可以为第二通信装置内的模块或芯片,第二通信装置也可以为芯片或片上系统,该方法包括:接收Wi-Fi帧,所述Wi-Fi帧的前导码的同步序列中包括至少一个扩展码,所述扩展码包括基于巴克码生成的N个符号,其中N=α*M,M为巴克码的码片长度,α为正整数;根据所述巴克码对所述Wi-Fi帧解扩频,获取所述前导码中的同步序列。
在一种可能是实现方式中,所述同步序列包括:第一组扩展码,所述第一组扩展码包括第一扩展码以及位于所述第一扩展码之后第一时长的第二扩展码;第二组扩展码,所述第二组扩展码包括第三扩展码以及位于所述第三扩展码之后第二时长的第四扩展码;所述第二组扩展码位于所述第一组扩展码之后,并且所述第一时长与所述第二时长不相等。
在一种可能是实现方式中,所述Wi-Fi帧的PSDU包括扩展头部以及载荷;所述载荷包括多个数据码块,所述数据码块包括编码字段和校验字段;所述扩展头部用于指示以下一项或多项信息:所述载荷的长度、所述编码字段的编码方式、调制方式以及所述校验字段的类型;所述方法还包括:根据所述巴克码对所述数据码块进行解扩频;根据所述调制方式对解扩频后的数据码块进行解调,所述调制方式包括差分调制;对解调后的数据码块进行解速率匹配;对解速率匹配后的数据码块按照所述编码方式进行信道译码。
在一种可能是实现方式中,对解调后的数据码块进行解速率匹配之前,还包括:对解调后的数据码块进行解差分译码,所述调制方式包括非差分调制。
在一种可能是实现方式中,所述扩展头部还包括校验位。
在一种可能是实现方式中,所述PSDU还包括位于所述扩展头部之前的扩展起始帧定界符SFD。
在一种可能是实现方式中,所述扩展码的扩频序列c满足如下公式:
Figure PCTCN2021122476-appb-000007
所述扩展码
Figure PCTCN2021122476-appb-000008
其中,b为所述巴克码,r=[+1;-1]。
在一种可能是实现方式中,所述扩展码为基于巴克码对初始序列进行扩频生成的扩频序列中获取。
第三方面,提供一种用于无线保真Wi-Fi系统的通信方法。该方法可以由第一通信装置执行,所述第一通信装置也可以为第一通信装置内的模块或芯片,第一通信装 置也可以为芯片或片上系统,该方法包括如下步骤:生成包括PSDU的Wi-Fi帧,所述PSDU包括扩展头部以及载荷;所述载荷包括多个数据码块,所述数据码块包括编码字段和校验字段;所述扩展头部用于指示以下一项或多项信息:所述载荷的长度、所述编码字段的编码方式、调制方式以及所述校验字段的类型;以所述编码方式对所述数据码块进行信道编码;对信道编码后的所述数据码块进行速率匹配;对速率匹配后的所述数据码块按照所述调制方式进行调制,所述调制方式包括差分调制;传送调制后的数据码块。这样对于Wi-Fi帧的载荷的传输主要在发射方的链路中引入了信道编码,更加有利于低SNR场景下提高传输质量。
在一种可能是实现方式中,对速率匹配后的所述数据码块按照所述调制方式进行调制之前,还包括:对速率匹配后的所述数据码块进行差分编码,所述调制方式包括非差分调制。当调制方式包括差分调制时,网络设备将经过速率匹配后的数据码块做差分编码,以和差分调制联合,从而实现非差分调制的效果,以便接收方采用非差分解调计算对数似然比LLR。
在一种可能是实现方式中,所述扩展头部还包括校验位。
在一种可能是实现方式中,所述PSDU还包括位于所述扩展头部之前的扩展起始帧定界符SFD。其中,扩展起始帧定界符用来指示接下来传送扩展头部eheader。
第四方面,提供一种用于无线保真Wi-Fi系统的通信方法。该方法可以由第二通信装置执行,所述第二通信装置也可以为第二通信装置内的模块或芯片,第二通信装置也可以为芯片或片上系统,该方法包括:接收Wi-Fi帧,所述Wi-Fi帧的PSDU包括扩展头部以及载荷;所述载荷包括多个数据码块,所述数据码块包括编码字段和校验字段;所述扩展头部用于指示以下一项或多项信息:所述载荷的长度、所述编码字段的编码方式、调制方式以及所述校验字段的类型;根据所述巴克码对所述数据码块进行解扩频;根据所述调制方式对解扩频后的数据码块进行解调,所述调制方式包括差分调制;对解调后的数据码块进行解速率匹配;对解速率匹配后的数据码块按照所述编码方式进行信道译码。
在一种可能是实现方式中,对解调后的数据码块进行解速率匹配之前,还包括:对解调后的数据码块进行解差分译码,所述调制方式包括非差分调制。
在一种可能是实现方式中,所述扩展头部还包括校验位。其中,该校验位用于对扩展头部进行数据校验。
在一种可能是实现方式中,所述PSDU还包括位于所述扩展头部之前的扩展起始帧定界符SFD。
第五方面,提供了一种通信装置,该通信装置可以为第一通信装置,所述第一通信装置也可以为第一通信装置内的模块或芯片,第一通信装置也可以为芯片或片上系统,包括:处理器,用于生成包括前导码的Wi-Fi帧,所述前导码的同步序列中包括至少一个扩展码,所述扩展码包括基于巴克码生成的N个符号,其中N=α*M,M为巴克码的码片长度,α为正整数;发射机,用于传送所述Wi-Fi帧。
在一种可能是实现方式中,所述同步序列包括:第一组扩展码,所述第一组扩展码包括第一扩展码以及位于所述第一扩展码之后第一时长的第二扩展码;第二组扩展码,所述第二组扩展码包括第三扩展码以及位于所述第三扩展码之后第二时长的第四 扩展码;所述第二组扩展码位于所述第一组扩展码之后,并且所述第一时长与所述第二时长不相等。
在一种可能是实现方式中,所述Wi-Fi帧的PSDU包括扩展头部以及载荷;所述载荷包括多个数据码块,所述数据码块包括编码字段和校验字段;所述扩展头部用于指示以下一项或多项信息:所述载荷的长度、所述编码字段的编码方式、调制方式以及所述校验字段的类型;处理器还用于以所述编码方式对所述数据码块进行信道编码;对信道编码后的所述数据码块进行速率匹配;对速率匹配后的所述数据码块按照所述调制方式进行调制,所述调制方式包括差分调制;发射机,用于对调制后的数据码块进行扩频后传送。
在一种可能是实现方式中,处理器还用于对调制后的数据码块进行差分编码,所述调制方式包括非差分调制。
在一种可能是实现方式中,所述扩展头部还包括校验位。
在一种可能是实现方式中,所述PSDU还包括位于所述扩展头部之前的扩展起始帧定界符SFD。
在一种可能是实现方式中,所述扩展码的扩频序列c满足如下公式:
Figure PCTCN2021122476-appb-000009
所述扩展码
Figure PCTCN2021122476-appb-000010
其中,b为所述巴克码,r=[+1;-1]。
在一种可能是实现方式中,所述扩展码为基于巴克码对初始序列进行扩频生成的扩频序列中获取。
第六方面,提供了一种通信装置,该通信装置可以为第二通信装置,第二通信装置也可以为第二通信装置内的模块或芯片,第二通信装置也可以为芯片或片上系统,包括:接收机,用于接收Wi-Fi帧;处理器,用于根据根据所述巴克码对所述Wi-Fi帧解扩频,获取所述前导码中的同步序列,所述Wi-Fi帧的前导码的同步序列中包括至少一个扩展码,所述扩展码包括基于巴克码生成的N个符号,其中N=α*M,M为巴克码的码片长度,α为正整数。
在一种可能是实现方式中,所述同步序列包括:第一组扩展码,所述第一组扩展码包括第一扩展码以及位于所述第一扩展码之后第一时长的第二扩展码;第二组扩展码,所述第二组扩展码包括第三扩展码以及位于所述第三扩展码之后第二时长的第四扩展码;所述第二组扩展码位于所述第一组扩展码之后,并且所述第一时长与所述第二时长不相等。
在一种可能是实现方式中,所述Wi-Fi帧的PSDU包括扩展头部以及载荷;所述载荷包括多个数据码块,所述数据码块包括编码字段和校验字段;所述扩展头部用于指示以下一项或多项信息:所述载荷的长度、所述编码字段的编码方式、调制方式以及所述校验字段的类型;处理器,还用于根据所述巴克码对所述数据码块进行解扩频;根据所述调制方式对解扩频后的数据码块进行解调,所述调制方式包括差分调制;对解调后的数据码块进行解速率匹配;对解速率匹配后的数据码块按照所述编码方式进行信道译码。
在一种可能是实现方式中,处理器,还用于对解扩频后的数据码块进行解差分译码,所述调制方式包括非差分调制。
在一种可能是实现方式中,所述扩展头部还包括校验位。
在一种可能是实现方式中,所述PSDU还包括位于所述扩展头部之前的扩展起始帧定界符SFD。
在一种可能是实现方式中,所述扩展码的扩频序列c满足如下公式:
Figure PCTCN2021122476-appb-000011
所述扩展码
Figure PCTCN2021122476-appb-000012
其中,b为所述巴克码,r=[+1;-1]。
在一种可能是实现方式中,所述扩展码为基于巴克码对初始序列进行扩频生成的扩频序列中获取。
第七方面,提供了一种通信装置,该通信装置可以为第一通信装置,所述第一通信装置也可以为第一通信装置内的模块或芯片,第一通信装置也可以为芯片或片上系统,包括:处理器,用于生成包括PSDU的Wi-Fi帧,所述PSDU包括扩展头部以及载荷;所述载荷包括多个数据码块,所述数据码块包括编码字段和校验字段;所述扩展头部用于指示以下一项或多项信息:所述载荷的长度、所述编码字段的编码方式、调制方式以及所述校验字段的类型;以所述编码方式对所述数据码块进行信道编码;对信道编码后的所述数据码块进行速率匹配;对速率匹配后的所述数据码块按照所述调制方式进行调制,所述调制方式包括差分调制;发射机,用于传送调制后的数据码块。
在一种可能是实现方式中,处理器还用于对速率匹配后的所述数据码块进行差分编码,所述调制方式包括非差分调制。
在一种可能是实现方式中,所述扩展头部还包括校验位。
在一种可能是实现方式中,所述PSDU还包括位于所述扩展头部之前的扩展起始帧定界符SFD。
第八方面,提供了一种通信装置,该通信装置可以为第二通信装置,第二通信装置也可以为第二通信装置内的模块或芯片,第二通信装置也可以为芯片或片上系统,包括:接收机,用于接收Wi-Fi帧,所述Wi-Fi帧的PSDU包括扩展头部以及载荷;所述载荷包括多个数据码块,所述数据码块包括编码字段和校验字段;所述扩展头部用于指示以下一项或多项信息:所述载荷的长度、所述编码字段的编码方式、调制方式以及所述校验字段的类型;处理器,用于根据所述巴克码对所述数据码块进行解扩频;根据所述调制方式对解扩频后的数据码块进行解调,所述调制方式包括差分调制;对解调后的数据码块进行解速率匹配;对解速率匹配后的数据码块按照所述编码方式进行信道译码。
在一种可能是实现方式中,处理器还用于对解调后的数据码块进行解差分译码,所述调制方式包括非差分调制。
在一种可能是实现方式中,所述扩展头部还包括校验位。
在一种可能是实现方式中,所述PSDU还包括位于所述扩展头部之前的扩展起始帧定界符SFD。
第九方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第十方面,提供了一种包含指令的计算机程序产品,计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第十一方面,提供一种通信系统,该通信系统包括上述方面所述的第一通信装置 和上述方面所述的第二通信装置。一种示例中,第一通信装置可以为网络设备,第二通信装置可以为终端设备。
其中,第二方面中任一种设计方式所带来的技术效果可参见上述第一方面中不同设计方式所带来的技术效果,此处不再赘述。第四方面中任一种设计方式所带来的技术效果可参见上述第三方面中不同设计方式所带来的技术效果,此处不再赘述。第五方面、第六方面中任一种设计方式所带来的技术效果可参见上述第一方面中不同设计方式所带来的技术效果,此处不再赘述。第七方面、第八方面中任一种设计方式所带来的技术效果可参见上述第一方面中不同设计方式所带来的技术效果,此处不再赘述。第九方面至第十一方面中任一种设计方式所带来的技术效果可参见上述第一方面、第三方面中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请的实施例提供的一种通信系统的结构示意图;
图2为本申请的实施例提供的终端设备及网络设备的内部结构示意图;
图3为本申请的实施例提供的802.11b Wi-Fi协议下的发送方和接收方之间的传输过程示意图;
图4为本申请的实施例提供的一种Wi-Fi帧的结构示意图;
图5为本申请的实施例提供的巴克码的码片(chip)间相干叠加的振幅曲线;
图6为本申请的实施例提供的终端设备及网络设备的硬件结构示意图;
图7为本申请的实施例提供的终端设备的硬件结构示意图;
图8为本申请的实施例提供的用于无线保真Wi-Fi系统的通信方法的流程示意图;
图9为本申请的实施例提供的扩展码的扩频之后生成的码片的相干叠加的振幅曲线;
图10为本申请的另一实施例提供的一种Wi-Fi帧的结构示意图;
图11为本申请的又一实施例提供的一种Wi-Fi帧的结构示意图;
图12为本申请的再一实施例提供的一种Wi-Fi帧的结构示意图;
图13A为本申请的另一实施例提供的一种发送方和接收方之间的传输过程示意图;
图13B为本申请的又一实施例提供的一种发送方和接收方之间的传输过程示意图;
图13C为本申请的再一实施例提供的一种发送方和接收方之间的传输过程示意图;
图14A为本申请的另一实施例提供的一种Wi-Fi帧的结构示意图;
图14B为本申请的又一实施例提供的一种Wi-Fi帧的结构示意图;
图15为本申请的再一实施例提供的一种Wi-Fi帧的结构示意图;
图16为本申请的另一实施例提供的一种Wi-Fi帧的结构示意图;
图17为本申请的实施例提供的网络设备的结构示意图;
图18为本申请的实施例提供的终端设备的结构示意图;
图19为本申请的另一实施例提供的网络设备的结构示意图;
图20为本申请的另一实施例提供的终端设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。另外,在本申请实施例中,“示例性地”、“例如”等用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。本申请实施例中,“信息(information)”,“信号(signal)”,“消息(message)”,“信道(channel)”、“信令(singalling)”、“消息(message)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
此外,本申请的描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。图1示出了适用于本申请实施例的用于无线保真Wi-Fi系统的通信方法的通信系统的示意图。如图1所示,该通信系统包括网络设备101和终端设备103,网络设备101和终端设备103均可配置有多个天线。可选地,该通信系统还可包括其他网络设备和/或其他终端设备,如网络设备102和终端设备104,且网络设备102和终端设备104也均可配置有多个天线。
应理解,上述网络设备以及终端设备还可包括与信号发送和接收相关的多个部件(例如,处理器、编码器、译码器、调制器、解调器、复用器、解复用器等)。
示例性地,上述网络设备可以为具有无线收发功能的设备或可设置于该网络设备的芯片,该网络设备包括但不限于:Wi-Fi系统中的接入点AP(access point)、演进型节点B(evolved Node B,eNB)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为新空口(new radio,NR)系统中的gNB,以及通信服务器、路由器、交换机、网桥、计算机等。
示例性地,上述终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是非接入点站点(non-access point station,NON-STA或STA)、手机(mobile phone)、平板 电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。本申请实施例将前述终端设备及可设置于前述终端设备的芯片统称为终端设备。
在该通信系统中,一个网络设备或一个终端设备均可以视为一个节点,任意两个或两个以上节点之间可以存在一对一、一对多、多对一、多对多等任意一种形式的通信。示例性的,同一网络设备可以与至少一个终端设备和/或至少一个网络设备通信,同一终端设备也可以与至少一个网络设备和/或至少一个终端设备通信。例如,如图1所示,网络设备101可以与终端设备103通信,也可以与网络设备102通信,还可以与终端设备103、终端设备104以及网络设备102中的至少两个同时通信。又例如,终端设备104可以与网络设备101通信,也可以与终端设备103通信,还可以与网络设备101、网络设备102,以及终端设备103中的至少两个通信。
应理解,图1仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。
图2示出了网络设备101与终端设备103内部结构示意图。如图2所示,网络设备101和终端设备103均包括有应用层处理模块、传输控制协议(transmission control protocol,TCP)/用户数据报协议(user datagram protocol,UDP)处理模块、互联网协议(internet protocol,IP)处理模块、逻辑链路控制(logical link control,LLC)处理模块、媒体接入控制(media access control,MAC)层处理模块、物理层(physical layer)基带处理模块、射频前端和天线。其中,IP处理模块与LLC处理模块通过上层接口连接。
需要说明的是,图2中仅示出了配置有2根天线的网络设备101和配置有1根天线的终端设备103。实际应用中,网络设备101和终端设备103的天线均可以配置为1或多根。事实上,在现代通信系统中,多天线技术被广泛应用,如在Wi-Fi、LTE、5G NR等系统中。一个节点,如上述网络设备101或终端设备103,可以通过多天线发送或者接收信号,简称多入多出(multiple-input multiple-output,MIMO)技术。在支持MIMO的通信系统中,节点通过调整MIMO发送、接收方案,如调整发送天线的权值,分配不同的信号到不同的天线上等,可以获取分集、复用等增益,提高系统容量、增加系统可靠性。
其中,对802.11b标准Wi-Fi协议下对发送方和接收方之间的传输过程(参照图3)详细说明如下。对于发送方,如网络设备101,物理层基带处理模块用于对MAC层处理模块(即MAC信源)的二进制用户数据,即信息比特进行加扰、调制后生成调制符号,然后对调制符号进行扩频以生成射频信号,并经射频前端的天线发送出去。对于接收方,如终端设备103,物理层基带处理模块用于将射频前端经天线接收到射频信号进行解扩(解扩频,即扩频的逆过程)、解调和解扰(解扰码,即扰码的逆过程)以恢复信息比特,从而完成了信息比特,即二进制用户数据的发送和接收。
其中,通过上述的传输过程传输的Wi-Fi物理帧,也称作Wi-Fi帧,参照图4所示,802.11b中,Wi-Fi物理帧作为物理层汇聚协议(physical layer convergence protocol,PLCP)数据单元(PLCP data unit,PPDU)。Wi-Fi帧结构,包括PLCP前导码(简称前导码)、PLCP头部(header,简称头部)和PLCP服务数据单元(PLCP  sevice data unit,PSDU),通常载荷(payload)作为PSDU。前导码包括:同步序列(synchronous,SYNC)和起始帧界定符(start of frame delimiter,SFD)。通常,长前导码的长度是144bit,包含位于前部的128bit的同步序列,以及位于后部的16bit的SFD。短前导码的长度是72bit,包含位于前部的56bit的同步序列,以及位于后部的16bit的SFD。其中,长前导码的SYNC是128位经过扰码后的“1”(例如加扰采用的扰码器的种码可以为“1101100”),短前导码的SYNC是56位经过扰码后的“0”。SYNC被用于唤醒接收方,使其与接收信号同步。SFD用于通知接收方,在SFD结束后紧接着就开始传送与MAC层相关的一些参数。SFD的值例如可以是1111 0011 1010 0000,当接收方收到SFD时,表示接下来的头部将发送。前导码通常是使用差分二进制相移键控(differential binary phase shift keying,DBPSK)进行调制,并以1M的速率进行发送,前导码的调制算法是固定的。头部的调制算法可以采用DBPSK或同相二进制相移键控(quadrature binary phase shift keying,QBPSK)。PSDU可以使用其他的调制算法,例如:DBPSK、QBPSK、补码键控(complementary code keying,CCK)(CCK5.5或CCK11)等。头部包含了与数据传输相关的物理参数,这些参数包括:信令(SIGNAL)、业务(SERVICE)、将要传输的数据的长度(LENGTH)和16位的CRC校验码。接收方将按照这些参数调整接收速率、选择解码方式、决定何时结束数据接收。信令(SIGNAL)字段长8位,定义数据传输速率,它有四个值:0Ah、14h、37h和6Eh,分别指定传输速率为1Mbps、2Mbps、5.5Mbps和11Mbps,接收方将按此调整自己的接收速率。业务(SERVICE)字段长度也是8位,它指定使用何种调制码(CCK或分组二进制卷积码(packet binary convolutional coding,PBCC))。长度(LENGTH)字段长16位,用于指示发送后面的PSDU需用多长时间(单位为微秒)。16位CRC校验码用于检验收到的信令、业务和长度字段是否正确。前导码和头部以固定的1Mbps速率发送,而PSDU部分则可以1Mbps(DBPSK调制)、2Mbps(DQPSK调制)、5.5Mbps(CCK或PBCC)和11Mbps(CCK或PBCC)速率进行传送。近年来,家庭网络中出现了越来越多的作为STA的物联网(internet of things,IOT)设备,甚至普通家电通过集成Wi-Fi模块也具备了IOT设备的属性,IOT设备一般具有以下特点:低成本、低功耗、低流量、广覆盖。而基于Wi-Fi的物联网设备中,802.11b标准具有极高的潜力同时具备以上特点。通常,AP在发送Wi-Fi帧时,基于802.11b标准的IOT设备检测Wi-Fi帧中的前导码的增益来自于AP的扩频增益,802.11b标准下AP采用的是传统的码长为11的巴克(barker)码对加扰(扰码处理)后的前导码进行扩频,其扩频增益约为10.4dB。但是在复杂的家庭环境下,如普通家庭用户一般只有一个AP,而IOT设备(比如冰箱、空调、彩电、智能窗帘、智能摄像头、智能家居等智慧家庭设备)可能分布在家庭的各个位置,这就对设备的覆盖能力提出了比较苛刻的要求。尤其超低信噪比(signal-to-noise ratio,SNR)场景下,由于加扰后的前导码的符号是离散分布的,并且扩频用的巴克码的码片(chip)间相干叠加最大长度受限于周期11,参照图5所示,提供了巴克码的码片(chip)间相干叠加的振幅曲线,其中在码片标识为7的位置达到最大振幅(10.4dB),因此基于码长11的巴克码片扩频的前导码的同步序列的最大峰值受限于巴克码的码片间相干叠加的最大长度(11),从而导致该同步序列的最大峰值可能会被噪声淹没,无法检测出峰值,导致IOT设备无法同步 (acquisition,ACQ)上。因此,该扩频增益远不能满足广覆盖的需求,这将使得802.11b标准的IOT设备抗干扰能力弱,接入能力差,影响用户体验。本申请中,主要通过在Wi-Fi帧的前导码的同步序列中替换一段或多段本申请的实施例提供的扩展码,由于该扩展码是基于巴克码生成的,因此该扩展码的符号之间具有相关性,这样在Wi-Fi帧传送过程中,通过巴克码对该同步序列进行扩频之后,则扩展码所包含的不同符号扩频形成的码片也是具有相关性的,相对于现有技术(目前的同步序列中符号是离散点因此仅每个符号自身扩频形成的码片具有相关性)可以相关叠加更长的码长和周期,进而能够取得更高的检测峰值,从而能够提高IOT设备抗干扰能力,进而提高覆盖能力。
可选的,本申请实施例中的网络设备101与终端设备103也可以称之为通信装置,例如将网络设备101称为第一通信装置,将终端设备103称为第二通信装置,其可以是一个通用设备或者是一个专用设备,本申请实施例对此不作具体限定。
可选的,如图6所示,为本申请实施例提供的网络设备101和终端设备103的结构示意图。
其中,终端设备103包括至少一个处理器(图6中示例性的以包括一个处理器301为例进行说明)和至少一个收发器(图6中示例性的以包括一个收发器303为例进行说明)。可选的,终端设备103还可以包括至少一个存储器(图6中示例性的以包括一个存储器302为例进行说明)、至少一个输出设备(图6中示例性的以包括一个输出设备304为例进行说明)和至少一个输入设备(图6中示例性的以包括一个输入设备305为例进行说明)。
处理器301、存储器302和收发器303通过通信线路相连接。通信线路可包括一通路,在上述组件之间传送信息。
处理器301可以是通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。在具体实现中,作为一种实施例,处理器301也可以包括多个CPU,并且处理器301可以是单核(single-CPU)处理器或多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器302可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器302可以是独立存在,通过通信线路与处理器301相连接。存储器302也可以和处理器301集成在一起。
其中,存储器302用于存储执行本申请方案的计算机执行指令,并由处理器301 来控制执行。具体的,处理器301用于执行存储器302中存储的计算机执行指令,从而实现本申请实施例中所述的用于无线保真Wi-Fi系统的通信方法。
或者,可选的,本申请实施例中,也可以是处理器301执行本申请下述实施例提供的用于无线保真Wi-Fi系统的通信方法中的处理相关的功能,收发器303负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码或者计算机程序代码,本申请实施例对此不作具体限定。
收发器303可以使用任何收发器一类的装置,用于与其他设备或通信网络通信。收发器303包括发射机(transmitter,Tx)和接收机(receiver,Rx),例如在本申请的实施例中终端设备103通过接收机接收Wi-Fi帧。
输出设备304和处理器301通信,可以以多种方式来显示信息。例如,输出设备304可以是液晶显示器(liquid crystal display,LCD),发光二极管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。
输入设备305和处理器301通信,可以以多种方式接受用户的输入。例如,输入设备305可以是鼠标、键盘、触摸屏设备或传感设备等。
网络设备101包括至少一个处理器(图6中示例性的以包括一个处理器201为例进行说明)、至少一个收发器(图6中示例性的以包括一个收发器203为例进行说明)和至少一个网络接口(图6中示例性的以包括一个网络接口204为例进行说明)。可选的,网络设备101还可以包括至少一个存储器(图6中示例性的以包括一个存储器202为例进行说明)。其中,处理器201、存储器202、收发器203和网络接口204通过通信线路相连接。网络接口204用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与其它网络设备的网络接口进行连接(图6中未示出),本申请实施例对此不作具体限定。另外,处理器201、存储器202和收发器203的相关描述可参考终端设备103中处理器301、存储器302和收发器303的描述,在此不再赘述。收发器203可以使用任何收发器一类的装置,用于与其他设备或通信网络通信。收发器203包括发射机(transmitter,Tx)和接收机(receiver,Rx),例如在本申请的实施例中网络设备101通过发射机传送Wi-Fi帧。
结合图6所示的终端设备103的结构示意图,示例性的,图7为本申请实施例提供的终端设备103的一种具体结构形式。
其中,在一些实施例中,图6中的处理器301的功能可以通过图7中的处理器110实现。
在一些实施例中,图6中的收发器303的功能可以通过图7中的天线1,天线2,移动通信模块150,无线通信模块160等实现。
其中,天线1和天线2用于发射和接收电磁波信号。终端设备103中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在终端设备103上的包括2G/3G/4G/5G等无线通 信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
无线通信模块160可以提供应用在终端设备103上的包括无线局域网(wireless local area networks,WLAN)(如Wi-Fi网络),蓝牙(blue tooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。当终端设备103是第一设备时,无线通信模块160可以提供应用在终端设备103上的NFC无线通信的解决方案,是指第一设备包括NFC芯片。该NFC芯片可以提高NFC无线通信功能。当终端设备103是第二设备时,无线通信模块160可以提供应用在终端设备103上的NFC无线通信的解决方案,是指第一设备包括电子标签(如射频识别(radio frequency identification,RFID)标签)。其他设备的NFC芯片靠近该电子标签可以与第二设备进行NFC无线通信。
在一些实施例中,终端设备103的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得终端设备103可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)或星基增强系统(satellite based augmentation systems,SBAS)。
在一些实施例中,图6中的存储器302的功能可以通过图7中的内部存储器121或者外部存储器接口120连接的外部存储器(例如Micro SD卡)等实现。
在一些实施例中,图6中的输出设备304的功能可以通过图7中的显示屏194实现。其中,显示屏194用于显示图像,视频等。显示屏194包括显示面板。
在一些实施例中,图6中的输入设备305的功能可以通过鼠标、键盘、触摸屏设备或图7中的传感器模块180来实现。示例性的,如图7所示,该传感器模块180例 如可以包括压力传感器180A、陀螺仪传感器180B、气压传感器180C、磁传感器180D、加速度传感器180E、距离传感器180F、接近光传感器180G、指纹传感器180H、温度传感器180J、触摸传感器180K、环境光传感器180L、和骨传导传感器180M中的一个或多个,本申请实施例对此不作具体限定。
在一些实施例中,如图7所示,该终端设备103还可以包括音频模块170、摄像头193、指示器192、马达191、按键190、SIM卡接口195、USB接口130、充电管理模块140、电源管理模块141和电池142中的一个或多个,其中,音频模块170可以与扬声器170A(也称“喇叭”)、受话器170B(也称“听筒”)、麦克风170C(也称“话筒”,“传声器”)或耳机接口170D等连接,本申请实施例对此不作具体限定。
可以理解的是,图7所示的结构并不构成对终端设备103的具体限定。比如,在本申请另一些实施例中,终端设备103可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
下面将结合图1至图7,以图1所示的网络设备与任一终端设备进行交互为例,对本申请实施例提供的用于无线保真Wi-Fi系统的通信方法进行展开说明。
需要说明的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
如图8所示,为本申请实施例提供的一种用于无线保真Wi-Fi系统的通信方法,以网络设备向终端设备传送Wi-Fi帧为例进行说明,该用于无线保真Wi-Fi系统的通信方法包括步骤S101-步骤S104。
S101、网络设备生成包括PLCP前导码的Wi-Fi帧。
该PLCP前导码的同步序列中包括至少一个扩展码,扩展码包括基于巴克码生成的N个符号,其中N=α*M,M为巴克码的码片长度,α为正整数;以11位码片的巴克码则,M=11,α=1、2、3……n。
具体的,扩展码的生成方式包括但不限于以下方式:
方式一:扩展码的扩频序列c满足如下公式:
Figure PCTCN2021122476-appb-000013
其中,扩展码s:
Figure PCTCN2021122476-appb-000014
b为巴克码,r=[+1;-1]。具体的,采用巴克码作为基码构造新的扩展码的扩频序列,如下式:
Figure PCTCN2021122476-appb-000015
其中,基码序列为(802.11b标准规定的巴克码),b=[+1,+1,+1,-1,-1,-1,+1,-1,-1,+1,-1]。其中,扩展码为s,其构造方法包括但不限于如下方法,记s的符号长度为N,则基于巴克码和抗周期翻转码r构造扩展码
Figure PCTCN2021122476-appb-000016
s=[+1,+1,+1,-1,-1,-1,+1,-1,-1,+1,-1,-1,-1,-1,+1,+1,+1,-1,+1,+1,-1,+1],其中,α=2;抗周期翻转码序列为r=[+1;-1]的主要作用抵抗码序的周期性,以防止破坏功率谱模板和影响峰均比性能。
方式二:扩展码可以是基于巴克码对初始序列进行扩频生成的扩频序列中获取。例如:基于搜索构造扩展码。通常,前导码中的同步序列是随机加扰后,基于巴克码扩频后发射,可以基于发射序列的互相关性和自相关性质作为性能评估依据去搜索,从该段发射序列中找对性能最优的一段连续序列作为扩展码。具体过程如下,
S1、基于802.11b标准的扰码产生多项式G(z)=z -7+z -4+1生成扰码序列R(i)。
S2、对于长度为L的初始序列(128位的全1或者56位的全0序列)进行加扰。
Figure PCTCN2021122476-appb-000017
其中c ACQ(i)是加扰前的初始序列(例如可以是传统的前导码的同步序列),R(i)步骤S1生成的扰码序列。
S3、对加扰后的序列c R-ACQ(i)进行巴克码扩频。
Figure PCTCN2021122476-appb-000018
i=0,1,...,L-1;k=0,1,...,10;l=0,1,...,L*11-1;
b(k)=[+1,+1,+1,-1,-1,-1,+1,-1,-1,+1,-1]。
S4、基于搜索准则在c R-ACQ-barker(l)中搜索扩展码。
其中搜索准则为:如果选定序列的主瓣峰值y first越大,旁瓣峰值y secend越小,主瓣和旁瓣峰值比
Figure PCTCN2021122476-appb-000019
大于门限TH=β*N*11(0<β<1基于性能要求可配置),则判断该选定序列满足要求。
基于该搜索准则,采用蒙特卡洛方法在c R-ACQ-barker(l)的码片序列中搜索长度为N*11的扩展码,伪代码描述如下:
For g=1,2,...,L-N-1;
取出位置g对应的序列c s-ACQ-barker(j):
Figure PCTCN2021122476-appb-000020
计算该序列c s-ACQ-barker(j)的自相关函数:y corr(k):
y corr(k)=E[c * s-ACQ-barker(j)*c s-ACQ-barker(j)],j=1,2,...,N*11-1;k=0,1,...,2*N*11-1。寻找主瓣y first和旁瓣值y secend,以及比值R ratio
Figure PCTCN2021122476-appb-000021
Figure PCTCN2021122476-appb-000022
判断是否满足门限:
R ratio≥TH;TH=β*N*11,0<β<1。
如果满足该公式,则搜索到扩展码,停止寻找;
如果不满足该公式,继续寻找:g=g+1;
End
基于该步骤可以得到g值,也就是扩展码在c R-ACQ(i)码片序列中对应的符号位置。
S5、基于g从符号序列c R-ACQ(i)中取出的符号s(n),即为构造的扩展码。
s(n)=c R-ACQ(γ),n=0,1,...,N-1,γ=g,g+1,...,g+N。
S6、基于扩展码s(n)和巴克码构造扩频序列c。
Figure PCTCN2021122476-appb-000023
比如,找出的如下一段序列作为扩展码s,
s=[+1,+1,-1,+1,+1;+1,+1,-1,-1,+1;-1,+1,-1,+1,-1;-1,+1,-1,-1,-1;+1,-1]。
这样,基于上述方式构造的前导码的同步序列包括基于方式一或二构造的扩展码(例如α=2)时,则,发送方的网络设备在传送该Wi-Fi帧,对同步序列扩频时,由 于同步序列中的扩展码是基于巴克码生成,即扩展码的各个符号之间具有相干性,因此在通过巴克码(11位)扩频之后生成的码片242个也具有相干叠加性能,参照图9所示,242个码片取得接近250dB的增益,相对于现有技术检测峰值提高了近22倍,这样接收方的终端设备可以采用相干叠加和估计算法检测到接近250dB的增益的峰值,从而提高了基于前导码的进行同步的性能。
具体的,基于上述的方式一或二构造的同步码片段,设计的Wi-Fi帧的结构参照图10、图11以及图12所示,具体说明如下:
其中,图10示出的Wi-Fi帧的同步序列的的固定位置放置一个扩展码,扩展码的扩频序列为C 0=c。例如可以是将该扩展码替换目前的同步序列中该位置的符号。
具体的,作为发射方的网络设备按照802.11b标准要求产生标准的基于巴克码的同步序列,并对序列进行加扰,记加扰后的序列为c R-ACQ(i),i=0,1,…,L-1;L=128或56。则构造该Wi-Fi帧的具体步骤为:在步骤S1中,基于802.11b的扰码产生多项式G(z)=z -7+z -4+1生成扰码序列R(i)。在步骤S2中,对于长度为L的全1或者全0的同步序列(符号)进行加扰,
Figure PCTCN2021122476-appb-000024
其中,c ACQ(i)是加扰前的原始全为1或者0的符号序列,R(i)是S1所产生的加扰序列;在步骤S3中,用扩展码的扩频序列C 0,i=0,1,…,J-1;替换原始序列c R-ACQ(i)中的一段序列,其替换的起始位置S和替换序列长度J可配置,基于性能要求选择序列长度J,记替换后的序列为C hybrid(i):
Figure PCTCN2021122476-appb-000025
其中,j是扩展码的扩频序列的符号的索引,S是扩展码的扩频序列在原始序列c R-ACQ(i)中的替换的起始位置。则,作为发射方的网络设备在后续步骤中传输该Wi-Fi帧的过程中照协议要求进行扩频(barker扩频),即对替换后的符号序列C hybrid(i)进行巴克码扩频,生成的扩频序列:
Figure PCTCN2021122476-appb-000026
这样作为接收方的终端设备由于已知序列C hybrid(i),则可以基于该序列C hybrid(i)采用相干算法做同步位置检测,可以获得如图9示出的相干和并性能,在同步序列检测过程中可以检测出更高的相干峰值。此外,当机遇该同步位置检测的结果进行相干粗频频估计、相干细频偏估计和相干信道估计等时,也可以提升参数估计性能。
在另一个示例中,图10示出的Wi-Fi帧的同步序列中包含多个扩展码,例如在同步序列里面放置5个扩展码。扩展码的扩频序列为:
Figure PCTCN2021122476-appb-000027
抗反转周期码p=[+1,-1,-1,+1,-1]。
具体的,作为发射方的网络设备按照802.11b标准要求产生标准的基于巴克码的同步序列,并对序列进行加扰,记加扰后的序列为c R-ACQ(i),i=0,1,…,L-1;L=128或56。则构造该Wi-Fi帧的具体步骤为:在步骤S1中,基于802.11b的扰码产生多项式G(z)=z -7+z -4+1生成扰码序列R(i)。在步骤S2中,对于长度为L的全1 或者全0的同步序列(符号)进行加扰,
Figure PCTCN2021122476-appb-000028
其中,c ACQ(i)是加扰前的原始全为1或者0的符号序列,R(i)是S1所产生的加扰序列;在步骤S3中,用扩展码的扩频序列
Figure PCTCN2021122476-appb-000029
替换原始序列c R-ACQ(i)中的k段序列,其替换的起始位置S、替换序列长度J以及段数K可配置,基于性能要求选择序列长度J和段数K,记替换后的序列为C hybrid(i):
Figure PCTCN2021122476-appb-000030
其中,j是扩展码的扩频序列的符号的索引,S是扩展码的扩频序列在原始序列c R-ACQ(i)中的替换的起始位置。则,作为发射方的网络设备在后续步骤中传输该Wi-Fi帧的过程中照协议要求进行扩频(barker扩频),即对替换后的符号序列C hybrid(i)进行巴克码扩频,生成的扩频序列:
Figure PCTCN2021122476-appb-000031
这样作为接收方的终端设备由于已知序列C hybrid(i),则可以基于该序列C hybrid(i)采用相干算法做同步位置检测,可以获得如图9示出的相干和并性能,在同步序列检测过程中可以检测出更高的相干峰值。此外,当机遇该同步位置检测的结果进行相干粗频频估计、相干细频偏估计和相干信道估计等时,也可以提升参数估计性能。
在另一个示例中,图11示出的Wi-Fi帧的同步序列中包含2组扩展码,每组扩展码两个扩展码。其中第一组扩展码的扩频序列C 0=[C ACQ0,C eSFD0],其中第一组扩展码中的第一扩展码的扩频序列为
Figure PCTCN2021122476-appb-000032
第一组同步码片段中的第二扩展码的扩频序列为
Figure PCTCN2021122476-appb-000033
两个序列之间间隔为第一时长d 0(推荐为d 0=5us);第二组扩展码的扩频序列C 1=[C ACQ1,C eSFD1],其中第二组扩展码中的第三扩展码的扩频序列为
Figure PCTCN2021122476-appb-000034
第二组扩展码中的第四扩展码的扩频序列为
Figure PCTCN2021122476-appb-000035
两个序列之间间隔为第二时长d 1(推荐为d 1=7us)。且d 0≠d 1,是为了抗2组扩展码的扩频序列的周期性。
具体的,作为发射方的网络设备按照802.11b标准要求产生标准的基于巴克码的同步序列,并对序列进行加扰,记加扰后的序列为c R-ACQ(i),i=0,1,…,L-1;L=128或56。则构造该Wi-Fi帧的具体步骤为:在步骤S1中,基于802.11b的扰码产生多项式G(z)=z -7+z -4+1生成扰码序列R(i)。在步骤S2中,对于长度为L的全1或者全0的同步序列(符号)进行加扰,
Figure PCTCN2021122476-appb-000036
其中,c ACQ(i)是加扰前的原始全为1或者0的符号序列,R(i)是S1所产生的加扰序列;在步骤S3中,用扩展码的扩频序列C k(j),j=0,1,...,J-1;k=0,,替换原始序列c R-ACQ(i)中的2组序列,其替换的起始位置S和替换序列长度J可配置,基于性能要求选择序列长度J,记替换后的序列为C hybrid(i);
Figure PCTCN2021122476-appb-000037
其中,j是扩展码的扩频序列的符号的索引,S是扩展码的扩频序列在原始序列c R-ACQ(i)中的替换的起始位置。
这样作为接收方的终端设备由于已知序列C hybrid(i),则可以基于该序列C hybrid(i)采用相干算法做同步位置检测,可以获得如图9示出的相干和并性能,在同步序列检测过程中可以检测出更高的相干峰值。此外,当基于该同步位置检测的结果进行相干粗频频估计、相干细频偏估计和相干信道估计等时,也可以提升参数估计性能。此外,对同步序列中每组扩展码的扩频序列中的C ACQ0和C eSFD0(或C ACQ1和C eSFD1)序列进行检测,通过C ACQ0和C eSFD0(或C ACQ1和C eSFD1)序列是否反向区分2组序列;通过C ACQ0和C eSFD0序列峰值之间的间隔识别哪一组扩展码是否同步上,从而根据C ACQ0(或C ACQ1)确定同步位置并根据C eSFD0(或C eSFD1)确定帧起始位置。2组扩展码间隔第三时长d 2(推荐d 2=11us),以增加同步机会。各组和各个序列之间的间隔第一时长d 0、第二时长d 1以及第三时长d 2,主要起两个作用,一时为了识别序列做同步位置检测和SFD检测,二是为了防止序列周期性出现,避免破坏巴克码的功率谱模板(power spectral density,PSD)。
S102、网络设备向终端设备传送Wi-Fi帧。
S103、终端设备接收网络设备传送的Wi-Fi帧。
S104、终端设备根据巴克码对Wi-Fi帧解扩频,获取前导码中的同步序列。
本申请中,主要通过在Wi-Fi帧的前导码的同步序列中替换一段或多段本申请的实施例提供的扩展码,由于该扩展码是基于巴克码生成的,因此该扩展码的符号之间具有相关性,这样在Wi-Fi帧传送过程中,通过巴克码对该同步序列进行扩频之后,则扩展码所包含的不同符号扩频形成的码片也是具有相关性的,相对于现有技术(目前的同步序列中符号是离散点因此仅每个符号自身扩频形成的码片具有相关性)可以相关叠加更长的码长和周期,进而能够取得更高的检测峰值,从而能够提高IOT设备抗干扰能力,并且可以提高覆盖能力和穿墙能力。
本申请实施例提供的一种用于无线保真Wi-Fi系统的通信方法,以网络设备向终端设备传送Wi-Fi帧为例进行说明,在该示例中,主要以网络设备向终端设备传送Wi-Fi帧的载荷为例进行说明。结合图14A所示,Wi-Fi帧的PSDU包括扩展头部(eheadr)和载荷(payload),载荷包括多个数据码块,数据码块包括编码字段(code word0、code word1……)和校验字段(CRC),通常在有效数据不能占满载荷的载荷的长度时,尾部通常以填充(Pading)方式补齐;扩展头部(eheadr)用于指示以下 一项或多项信息:载荷的长度、编码字段的编码方式、调制方式以及校验字段的类型。
参照图13A、图13B和图13C所示,网络设备向终端设备传送Wi-Fi帧的载荷包括如下步骤:
201、网络设备以编码方式对数据码块进行信道编码。
其中,数据码块主要是将来自MAC信源的加扰后的信息比特按照一定的规则分割为一个个符合编码规则的编码字段,并对分割后的编码字段添加校验字段(例如,循环冗余校验(cyclic redundancy check,CRC)的校验字段),以便接收方利用校验字段辅助译码和校验数据。在步骤201中,其中信道编码具体可以包括PLCP编码、极化(Polar)编码等,例如可以将数据码块通过极化(Polar)编码器的编码规则进行极化编码。
202、网络设备对信道编码后的数据码块进行速率匹配。
具体的,可以信道编码后的数据码,通过重复,打孔或截短的方式匹配到物理资源上。
203、网络设备对速率匹配后的数据码块进行差分编码。
204、网络设备对差分编码后的数据码块按照调制方式进行调制。
其中,如图13C所示,当调制方式包括差分调制时,在步骤203中网络设备将经过速率匹配后的数据码块做差分编码,以和后级步骤204中的差分调制联合,从而实现非差分调制的效果,以便接收方采用非差分解调计算对数似然比(log likelihood ratio,LLR)。当然,如图13A所示,当调制方式包括差分调制时,接收方也可以直接在步骤207中采用差分解调。当后级步骤204的调制方式包括非差分调制时,例如采用补码键控(complementary code keying,CCK)调制时,则可以省去步骤203,即差分编码功能可以直接透传速率匹配后的数据码块,这样参照图13B所示,接收方直接采用非差分差分解调。
205、网络设备向终端设备传送数据码块。
具体的,在步骤205中具体可以是经扩频、由射频前端将数据码块仅由天线传送。
206、终端设备根据巴克码对数据码块进行解扩频。
207、终端设备根据调制方式对解扩频后的数据码块进行解调。
208、终端设备对解调后的数据码块进行解差分译码。
对应前述步骤203和204的逆过程,该步骤207中和208中,当调制方式采用差分调制时,通过解差分功能以及解调功能联合实现对接收的数据码块的LLR计算。当调制方式包括非差分调制时,则直接对数据码块进行解调后的结果进行解速率匹配。
209、终端设备对对解调后的数据码块进行解速率匹配。
例如:通过解重复、解打孔或解截短生成符合polar译码要求的输入数据长度。
210、终端设备对解速率匹配后的数据码块按照编码方式进行信道译码。
polar译码对输入的LLR按照一定的译码算法做译码,译码出编码字段。最终对信道译码出的编码字段进行校验(例如可以根据编码字段后的校验字段CRC进行解CRC),并将校验结果正确的若干个编码字段进行码块合并,还原出发射方的信息比特。
这样对于Wi-Fi帧的载荷的传输主要在发射方的链路中引入了信道编码,更加有利于低SNR场景下提高传输质量。
在一种示例中,本申请的实施例提供的Wi-Fi帧结构可以同时具有上述的图10示出的前导码(即本申请的实施例提供的包括至少一个扩展码的增强型前导码(epreamble))以及如图14A所示的PSDU,即采用信道编码方式对载荷部分进行发送;这样在提高同步性能的同时,也能够有利于低SNR场景下提高传输质量。具体的参照图14A所示,提供了一种Wi-Fi帧结构,包括增强型前导码(epreamble)、头部(header,简称头部)和PLCP服务数据单元(PLCP sevice data unit,PSDU)。PSDU包括扩展头部eheader以及载荷(payload),载荷包括多个数据码块,数据码块包括编码字段(code word0、code word1……)和校验字段(CRC),其中校验字段CRC用于接收方对接收到的编码字段进行校验。可以理解的是epreamble可以是图10、图11以及图12中提供的任一一种。此外,需要说明的是,参照图14B所示,数据码块也可仅包含编码字段(code word0、code word1……),接收方对直接根据编码字段对传输的数据进行校验。具体的,eheader可以包括elenghth字段(12bit),用于指示payload的长度;eMOD字段(2bite),用于指示payload的调制方式;保留字段(reserved,2bit);以及eCRC(8bite)字段,用于校验eheader。
其中,表1提供了eheader中各个参数的值:
Figure PCTCN2021122476-appb-000038
表1
需要说明的是,如图4中头部header的业务(SERVICE)字段如表2所示,
Figure PCTCN2021122476-appb-000039
表2
由于表2中的b3域在802.11b标准中目前没有使用,可以借用b3域中的bit来指示是否是使用本申请的实施例提供的Wi-Fi帧结构,配置0表示传统的的802.11b帧结构;配置1指示本申请的实施例提供的Wi-Fi帧结构。
此外,eheader的设计为借用PSDU的前48bit来发送数据长度/调制信令信息,因此可以采用极化编码方式形成的较小的Polar编码字段和CRC校验字段发送,以适配工作在极低SNR场景。
在一种示例中,参照图16所示,其提供的一种Wi-Fi帧结构为在图15的基础上,PSDU还包括位于扩展头部eheader之前的扩展起始帧定界符SFD(eSFD,48bit)。
具体的,eheader可以包括elenghth字段(12bit),用于指示payload的长度;eMOD字段(2bite),用于指示payload的调制方式;eCoding(1bit),用于指示payload采用的编码方式;-保留字段(reserved,1bit);以及eCRC(8bite)字段,用于校验eheader。
其中,表3提供了eheader中各个参数的值:
Figure PCTCN2021122476-appb-000040
表3
扩展起始帧定界符SFD可以包括eSFD sequence序列(16bit)以及eCRC(8bit),用来指示接下来发送eheader。示例性的eSFD中的sequence=[1000110011101111],eCRC=[11000001]。
需要说明的是,参照图15或图16所示,当在Wi-Fi帧的同步序列连续插入五个扩展码C 0-C 5时,以α=2为例,则扩展码的长度为22us,由于接收方在ACQ阶段(即同步序列检测阶段),主要是基于巴克码进行解扩,而本申请的实施例提供的扩展码是基于巴克码构造的,因此无需解扰操作。此外,五个扩展码的长度为110us,则同步序列剩余的18us的符号未被替换,因此可以正常进行解扰,从而对解扰器进行初始化以准备进一步解析SFD。此外,在本申请的实施例中,可以通过上述的头部header的业务(SERVICE)字段的b3域来指示是否是使用本申请的实施例提供的Wi-Fi帧结构。当然,也可以使用上述的在MPDU(MPDU进入PLCP层以后称为PSDU)的eSFD+eheader来指示payload采用了本申请的实施例提供的Wi-Fi帧结构。
此外,eSFD的设计为借用PSDU的前48bit来发送,因此可以采用极化编码方式形成的较小的Polar编码字段和CRC校验字段发送,以适配工作在极低SNR场景。
对于作为接收方的终端设备,在SYNC阶段(即接收同步序列的阶段)同时进行传统的Wi-Fi帧检测以及本申请的实施例提供的Wi-Fi帧检测,即同时进行ACQ(即目前的同步序列)/SFD/header检测以及eACQ(即包含扩展码的同步序列)/eSFD/eheader检测。则,在传统的Wi-Fi帧检测成功(即ACQ/SFD/header全部检测成功);如果b3=0, 继续按照传统方式进行payload的数据解调译码,同时停止对本申请的实施例提供的Wi-Fi帧检测;如果b3=1,则此帧为本申请的实施例提供的Wi-Fi帧,(同时停止对本申请的实施例提供的Wi-Fi帧检测),接下来等待24us后开始进行payload的数据解调译码。同时停止传统的Wi-Fi帧检测;如果对本申请的实施例提供的Wi-Fi帧检测成功(eACQ/eSFD/eheader全部检测成功),之后按照本申请的实施例提供的方式对padload的数据解调译码。并且,eHeader检测成功时,立即停止传统的Wi-Fi帧检测。虽然图15和图16中的载荷中的数据码块是以包含编码字段和校验字段为例进行说明,但是在一些示例中图15和图16中的载荷中的数据码块也可以采用如图14B的形式,即仅包含编码字段。
可以理解的是,上述网络设备和终端设备等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法操作,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对网络设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以采用集成的方式划分各个功能模块的情况下,图17示出了一种通信装置的结构示意图。该通信装置可以为上述网络设备中的芯片或者片上系统,或其他可实现上述网络设备功能的组合器件、部件等,该通信装置可以用于执行上述实施例中涉及的网络设备的功能。
作为一种可能的实现方式,图17所示的通信装置包括:发送单元1701和处理单元1702。处理单元1702,用于用于生成包括前导码的Wi-Fi帧,所述前导码的同步序列中包括至少一个扩展码,所述扩展码包括基于巴克码生成的N个符号,其中N=α*M,M为巴克码的码片长度,α为正整数。发送单元1701,用于传送所述Wi-Fi帧。
在一种可能是实现方式中,所述同步序列包括:第一组扩展码,所述第一组扩展码包括第一扩展码以及位于所述第一扩展码之后第一时长的第二扩展码;第二组扩展码,所述第二组扩展码包括第三扩展码以及位于所述第三扩展码之后第二时长的第四扩展码;所述第二组扩展码位于所述第一组扩展码之后,并且所述第一时长与所述第二时长不相等。
在一种可能是实现方式中,所述Wi-Fi帧的PSDU包括扩展头部以及载荷;所述载荷包括多个数据码块,所述数据码块包括编码字段和校验字段;所述扩展头部用于指示以下一项或多项信息:所述载荷的长度、所述编码字段的编码方式、调制方式以及所述校验字段的类型;处理单元1702还用于以所述编码方式对所述数据码块进行信道编码;对信道编码后的所述数据码块进行速率匹配;对速率匹配后的所述数据码块按照所述调制方式进行调制,所述调制方式包括差分调制;发送单元1701,用于对调制 后的数据码块进行扩频后传送。
在一种可能是实现方式中,处理器还用于对调制后的数据码块进行差分编码,所述调制方式包括非差分调制。
在一种可能是实现方式中,所述扩展头部还包括校验位。
在一种可能是实现方式中,所述PSDU还包括位于所述扩展头部之前的扩展起始帧定界符SFD。
在一种可能是实现方式中,所述扩展码的扩频序列c满足如下公式:
Figure PCTCN2021122476-appb-000041
所述扩展码
Figure PCTCN2021122476-appb-000042
其中,b为所述巴克码,r=[+1;-1]。
在一种可能是实现方式中,所述扩展码为基于巴克码对初始序列进行扩频生成的扩频序列中获取。
其中,上述方法实施例涉及的各操作的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该通信装置以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该通信装置可以采用图6所示的网络设备的形式。
比如,图6中的处理器201可以通过调用存储器203中存储的计算机执行指令,使得通信装置执行上述方法实施例中的用于无线保真Wi-Fi系统的通信方法。
示例性的,图17中的发送单元1701和处理单元1702的功能/实现过程可以通过图6中的处理器201调用存储器203中存储的计算机执行指令来实现;或者,图17中的处理单元1702的功能/实现过程可以通过图6中的处理器201调用存储器203中存储的计算机执行指令来实现,图17中的发送单元1701的功能/实现过程可以通过图6中的收发器203中的发射机来实现。
由于本实施例提供的通信装置可执行上述的用于无线保真Wi-Fi系统的通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
本申请实施例可以根据上述方法示例对终端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以采用集成的方式划分各个功能模块的情况下,图18示出了一种通信装置的结构示意图。该通信装置可以为上述终端设备中的芯片或者片上系统,或其他可实现上述终端设备功能的组合器件、部件等,该通信装置可以用于执行上述实施例中涉及的网络设备的功能。
作为一种可能的实现方式,图18所示的通信装置包括:接收单元1801和处理单元1802。接收单元1801,用于接收用于接收Wi-Fi帧;处理单元1802,用于根据根据所述巴克码对所述Wi-Fi帧解扩频,获取所述前导码中的同步序列,所述Wi-Fi帧的前导码的同步序列中包括至少一个扩展码,所述扩展码包括基于巴克码生成的N个符号,其中N=α*M,M为巴克码的码片长度,α为正整数。
在一种可能是实现方式中,所述同步序列包括:第一组扩展码,所述第一组扩展码包括第一扩展码以及位于所述第一扩展码之后第一时长的第二扩展码;第二组扩展码,所述第二组扩展码包括第三扩展码以及位于所述第三扩展码之后第二时长的第四扩展码;所述第二组扩展码位于所述第一组扩展码之后,并且所述第一时长与所述第二时长不相等。
在一种可能是实现方式中,所述Wi-Fi帧的PSDU包括扩展头部以及载荷;所述载荷包括多个数据码块,所述数据码块包括编码字段和校验字段;所述扩展头部用于指示以下一项或多项信息:所述载荷的长度、所述编码字段的编码方式、调制方式以及所述校验字段的类型;处理单元1802,还用于根据所述巴克码对所述数据码块进行解扩频;根据所述调制方式对解扩频后的数据码块进行解调,所述调制方式包括差分调制;对解调后的数据码块进行解速率匹配;对解速率匹配后的数据码块按照所述编码方式进行信道译码。
在一种可能是实现方式中,处理器,还用于对解扩频后的数据码块进行解差分译码,所述调制方式包括非差分调制。
在一种可能是实现方式中,所述扩展头部还包括校验位。
在一种可能是实现方式中,所述PSDU还包括位于所述扩展头部之前的扩展起始帧定界符SFD。
在一种可能是实现方式中,所述扩展码的扩频序列c满足如下公式:
Figure PCTCN2021122476-appb-000043
所述扩展码
Figure PCTCN2021122476-appb-000044
其中,b为所述巴克码,r=[+1;-1]。
在一种可能是实现方式中,所述扩展码为基于巴克码对初始序列进行扩频生成的扩频序列中获取。
其中,上述方法实施例涉及的各操作的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该通信装置以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该通信装置可以采用图6所示的终端设备的形式。
比如,图6中的处理器201可以通过调用存储器203中存储的计算机执行指令,使得通信装置执行上述方法实施例中的用于无线保真Wi-Fi系统的通信方法。
示例性的,图18中的接收单元1801和处理单元1802的功能/实现过程可以通过图6中的处理器201调用存储器203中存储的计算机执行指令来实现;或者,图18中的处理单元1802的功能/实现过程可以通过图2中的处理器201调用存储器203中存储的计算机执行指令来实现,图18中的接收单元1801的功能/实现过程可以通过图6中的收发器303的接收机来实现。
由于本实施例提供的通信装置可执行上述的用于无线保真Wi-Fi系统的通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。比如,以采用集成的方式划分各个功能模块的情况下,图19示出了一种通信装置的结构示意图。该通信装置可以为上述网络设备中的芯片或者片上系统,或其他可实现上述网络设备功能的组合器件、部件等,该通信装置可以用于执行上述实施例中涉及的网络设备的 功能。
作为一种可能的实现方式,图19所示的通信装置包括:发送单元1901和处理单元1902。处理单元1902,用于生成包括PSDU的Wi-Fi帧,所述PSDU包括扩展头部以及载荷;所述载荷包括多个数据码块,所述数据码块包括编码字段和校验字段;所述扩展头部用于指示以下一项或多项信息:所述载荷的长度、所述编码字段的编码方式、调制方式以及所述校验字段的类型;以所述编码方式对所述数据码块进行信道编码;对信道编码后的所述数据码块进行速率匹配;对速率匹配后的所述数据码块按照所述调制方式进行调制,所述调制方式包括差分调制。发送单元1901,用于传送所述Wi-Fi帧。
在一种可能是实现方式中,处理单元1902还用于对速率匹配后的所述数据码块进行差分编码,所述调制方式包括非差分调制。
在一种可能是实现方式中,所述扩展头部还包括校验位。
在一种可能是实现方式中,所述PSDU还包括位于所述扩展头部之前的扩展起始帧定界符SFD。
其中,上述方法实施例涉及的各操作的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该通信装置以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该通信装置可以采用图6所示的网络设备的形式。
比如,图6中的处理器201可以通过调用存储器203中存储的计算机执行指令,使得通信装置执行上述方法实施例中的用于无线保真Wi-Fi系统的通信方法。
示例性的,图19中的发送单元1901和处理单元1902的功能/实现过程可以通过图6中的处理器201调用存储器203中存储的计算机执行指令来实现;或者,图19中的处理单元1902的功能/实现过程可以通过图6中的处理器201调用存储器203中存储的计算机执行指令来实现,图19中的发送单元1901的功能/实现过程可以通过图6中的收发器203中的发射机来实现。
由于本实施例提供的通信装置可执行上述的用于无线保真Wi-Fi系统的通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
本申请实施例可以根据上述方法示例对终端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以采用集成的方式划分各个功能模块的情况下,图20示出了一种通信装置的结构示意图。该通信装置可以为上述终端设备中的芯片或者片上系统,或其他可实现上述终端设备功能的组合器件、部件等,该通信装置可以用于执行上述实施例中涉及的网络设备的功能。
作为一种可能的实现方式,图20所示的通信装置包括:接收单元2001和处理单 元2002。接收单元2001,用于接收Wi-Fi帧,Wi-Fi帧的PSDU包括扩展头部以及载荷;所述载荷包括多个数据码块,所述数据码块包括编码字段和校验字段;所述扩展头部用于指示以下一项或多项信息:所述载荷的长度、所述编码字段的编码方式、调制方式以及所述校验字段的类型;处理单元2002,用于根据所述巴克码对所述数据码块进行解扩频;根据所述调制方式对解扩频后的数据码块进行解调,所述调制方式包括差分调制;对解调后的数据码块进行解速率匹配;对解速率匹配后的数据码块按照所述编码方式进行信道译码。
在一种可能是实现方式中,处理单元2002还用于对解调后的数据码块进行解差分译码,所述调制方式包括非差分调制。
在一种可能是实现方式中,所述扩展头部还包括校验位。
在一种可能是实现方式中,所述PSDU还包括位于所述扩展头部之前的扩展起始帧定界符SFD。其中,上述方法实施例涉及的各操作的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该通信装置以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该通信装置可以采用图6所示的终端设备的形式。
比如,图6中的处理器201可以通过调用存储器203中存储的计算机执行指令,使得通信装置执行上述方法实施例中的用于无线保真Wi-Fi系统的通信方法。
示例性的,图20中的接收单元2001和处理单元2002的功能/实现过程可以通过图6中的处理器201调用存储器203中存储的计算机执行指令来实现;或者,图20中的处理单元2002的功能/实现过程可以通过图2中的处理器201调用存储器203中存储的计算机执行指令来实现,图20中的接收单元2001的功能/实现过程可以通过图6中的收发器303的接收机来实现。
由于本实施例提供的通信装置可执行上述的用于无线保真Wi-Fi系统的通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
可选的,本申请实施例还提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器和接口,处理器用于读取指令以执行上述任一方法实施例中的方法。在一种可能的设计中,该通信装置还包括存储器。该存储器,用于保存必要的程序指令和数据,处理器可以调用存储器中存储的程序代码以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
具体的,当第二通信装置为终端设备,第一通信装置为网络设备时,发送单元1702、发送单元1902在传送信息时可以为发射机,接收单元1802、接收单元2002在接收信息时可以为接收器,收发单元可以为收发器,此收发器、发射器或接收器可以为射频电路,当第一通信装置、第二通信装置包含存储单元时,该存储单元用于存储计算机指令,处理器与存储器通信连接,处理器执行存储器存储的计算机指令,使第一通信装置、第二通信装置执行方法实施例涉及的方法。其中,处理器可以是一个通 用中央处理器(CPU),微处理器,特定应用集成电路(application specific intergrated circuit,ASIC)。
当第一通信装置、第二通信装置为芯片时,发送单元1702、接收单元1802可以是输入和/或输出接口、管脚或电路等。该处理单元1701、处理单元1801可执行存储单元存储的计算机执行指令,以使该第一通信装置、第二通信装置内的芯片执行方法实施例所涉及的方法。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端设备或网络设备内的位于所述芯片外部的存储单元,如只读存储器(read only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种用于无线保真Wi-Fi系统的通信方法,其特征在于,包括:
    生成包括前导码的Wi-Fi帧,所述前导码的同步序列中包括至少一个扩展码,所述扩展码包括基于巴克码生成的N个符号,其中N=α*M,M为巴克码的码片长度,α为正整数;
    传送所述Wi-Fi帧。
  2. 根据权利要求1所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,所述同步序列包括:
    第一组扩展码,所述第一组扩展码包括第一扩展码以及位于所述第一扩展码之后第一时长的第二扩展码;
    第二组扩展码,所述第二组扩展码包括第三扩展码以及位于所述第三扩展码之后第二时长的第四扩展码;
    所述第二组扩展码位于所述第一组扩展码之后,并且所述第一时长与所述第二时长不相等。
  3. 根据权利要求1所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,所述Wi-Fi帧的PSDU包括扩展头部以及载荷;
    所述载荷包括多个数据码块,所述数据码块包括编码字段和校验字段;所述扩展头部用于指示以下一项或多项信息:所述载荷的长度、所述编码字段的编码方式、调制方式以及所述校验字段的类型;
    所述传送所述Wi-Fi帧之前还包括:以所述编码方式对所述数据码块进行信道编码;对信道编码后的所述数据码块进行速率匹配;对速率匹配后的所述数据码块按照所述调制方式进行调制,所述调制方式包括差分调制;
    所述传送所述Wi-Fi帧,包括:对调制后的数据码块进行扩频后传送。
  4. 根据权利要求3所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,对速率匹配后的所述数据码块按照所述调制方式进行调制之前,还包括:
    对速率匹配后的所述数据码块进行差分编码,所述调制方式包括非差分调制。
  5. 根据权利要求3所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,
    所述扩展头部还包括校验位。
  6. 根据权利要求3所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,所述PSDU还包括位于所述扩展头部之前的扩展起始帧定界符SFD。
  7. 根据权利要求1-6任一项所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,所述扩展码的扩频序列c满足如下公式:
    Figure PCTCN2021122476-appb-100001
    所述扩展码
    Figure PCTCN2021122476-appb-100002
    其中,b为所述巴克码,r=[+1;-1]。
  8. 根据权利要求1-6任一项所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,所述扩展码为基于巴克码对初始序列进行扩频生成的扩频序列中获取。
  9. 一种用于无线保真Wi-Fi系统的通信方法,其特征在于,包括:
    生成包括PSDU的Wi-Fi帧,所述PSDU包括扩展头部以及载荷;所述载荷包括多个数据码块,所述数据码块包括编码字段和校验字段;所述扩展头部用于指示以下一项或多项信息:所述载荷的长度、所述编码字段的编码方式、调制方式以及所述校验 字段的类型;
    以所述编码方式对所述数据码块进行信道编码;
    对信道编码后的所述数据码块进行速率匹配;
    对速率匹配后的所述数据码块按照所述调制方式进行调制,所述调制方式包括差分调制;
    传送调制后的数据码块。
  10. 根据权利要求9所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,对速率匹配后的所述数据码块按照所述调制方式进行调制之前,还包括:
    对速率匹配后的所述数据码块进行差分编码,所述调制方式包括非差分调制。
  11. 根据权利要求9所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,所述扩展头部还包括校验位。
  12. 根据权利要求9所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,所述PSDU还包括位于所述扩展头部之前的扩展起始帧定界符SFD。
  13. 一种用于无线保真Wi-Fi系统的通信方法,其特征在于,包括:
    接收Wi-Fi帧,所述Wi-Fi帧的前导码的同步序列中包括至少一个扩展码,所述扩展码包括基于巴克码生成的N个符号,其中N=α*M,M为巴克码的码片长度,α为正整数;
    根据所述巴克码对所述Wi-Fi帧解扩频,获取所述前导码中的同步序列。
  14. 根据权利要求13所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,所述同步序列包括:
    第一组扩展码,所述第一组扩展码包括第一扩展码以及位于所述第一扩展码之后第一时长的第二扩展码;
    第二组扩展码,所述第二组扩展码包括第三扩展码以及位于所述第三扩展码之后第二时长的第四扩展码;
    所述第二组扩展码位于所述第一组扩展码之后,并且所述第一时长与所述第二时长不相等。
  15. 根据权利要求13所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,所述Wi-Fi帧的PSDU包括扩展头部以及载荷;
    所述载荷包括多个数据码块,所述数据码块包括编码字段和校验字段;所述扩展头部用于指示以下一项或多项信息:所述载荷的长度、所述编码字段的编码方式、调制方式以及所述校验字段的类型;
    所述方法还包括:
    根据所述巴克码对所述数据码块进行解扩频;
    根据所述调制方式对解扩频后的数据码块进行解调,所述调制方式包括差分调制;
    对解调后的数据码块进行解速率匹配;
    对解速率匹配后的数据码块按照所述编码方式进行信道译码。
  16. 根据权利要求15所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,对解调后的数据码块进行解速率匹配之前,还包括:
    对解调后的数据码块进行解差分译码,所述调制方式包括非差分调制。
  17. 根据权利要求15所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,所述扩展头部还包括校验位。
  18. 根据权利要求15所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,所述PSDU还包括位于所述扩展头部之前的扩展起始帧定界符SFD。
  19. 根据权利要求13-18任一项所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,所述扩展码的扩频序列c满足如下公式:
    Figure PCTCN2021122476-appb-100003
    所述扩展码
    Figure PCTCN2021122476-appb-100004
    其中,b为所述巴克码,r=[+1;-1]。
  20. 根据权利要求13-18任一项所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,所述扩展码为基于巴克码对初始序列进行扩频生成的扩频序列中获取。
  21. 一种用于无线保真Wi-Fi系统的通信方法,其特征在于,包括:
    接收Wi-Fi帧,所述Wi-Fi帧的PSDU包括扩展头部以及载荷;所述载荷包括多个数据码块,所述数据码块包括编码字段和校验字段;所述扩展头部用于指示以下一项或多项信息:所述载荷的长度、所述编码字段的编码方式、调制方式以及所述校验字段的类型;
    根据所述巴克码对所述数据码块进行解扩频;
    根据所述调制方式对解扩频后的数据码块进行解调,所述调制方式包括差分调制;
    对解调后的数据码块进行解速率匹配;
    对解速率匹配后的数据码块按照所述编码方式进行信道译码。
  22. 根据权利要求21所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,对解调后的数据码块进行解速率匹配之前,还包括:
    对解调后的数据码块进行解差分译码,所述调制方式包括非差分调制。
  23. 根据权利要求21所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,
    所述扩展头部还包括校验位。
  24. 根据权利要求21所述的用于无线保真Wi-Fi系统的通信方法,其特征在于,所述PSDU还包括位于所述扩展头部之前的扩展起始帧定界符SFD。
  25. 一种通信装置,其特征在于,包括:
    处理器,用于生成包括前导码的Wi-Fi帧,所述前导码的同步序列中包括至少一个扩展码,所述扩展码包括基于巴克码生成的N个符号,其中N=α*M,M为巴克码的码片长度,α为正整数;
    发射机,用于传送所述Wi-Fi帧。
  26. 一种通信装置,其特征在于,包括:
    接收机,用于接收Wi-Fi帧;
    处理器,用于根据根据所述巴克码对所述Wi-Fi帧解扩频,获取所述前导码中的同步序列,所述Wi-Fi帧的前导码的同步序列中包括至少一个扩展码,所述扩展码包括基于巴克码生成的N个符号,其中N=α*M,M为巴克码的码片长度,α为正整数。
  27. 一种通信装置,其特征在于,包括:
    处理器,用于生成包括PSDU的Wi-Fi帧,所述PSDU包括扩展头部以及载荷;所述载荷包括多个数据码块,所述数据码块包括编码字段和校验字段;所述扩展头部用于指示以下一项或多项信息:所述载荷的长度、所述编码字段的编码方式、调制方式 以及所述校验字段的类型;以所述编码方式对所述数据码块进行信道编码;对信道编码后的所述数据码块进行速率匹配;对速率匹配后的所述数据码块按照所述调制方式进行调制,所述调制方式包括差分调制;
    发射机,用于传送调制后的数据码块。
  28. 一种通信装置,其特征在于,包括:
    接收机,用于接收Wi-Fi帧,所述Wi-Fi帧的PSDU包括扩展头部以及载荷;所述载荷包括多个数据码块,所述数据码块包括编码字段和校验字段;所述扩展头部用于指示以下一项或多项信息:所述载荷的长度、所述编码字段的编码方式、调制方式以及所述校验字段的类型;
    处理器,用于根据所述巴克码对所述数据码块进行解扩频;根据所述调制方式对解扩频后的数据码块进行解调,所述调制方式包括差分调制;对解调后的数据码块进行解速率匹配;对解速率匹配后的数据码块按照所述编码方式进行信道译码。
  29. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序包括用于执行如权利要求1-24中任一项所述的用于无线保真Wi-Fi系统的通信方法的指令。
  30. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得所述计算机执行如权利要求1-24中任一项所述的用于无线保真Wi-Fi系统的通信方法。
PCT/CN2021/122476 2021-09-30 2021-09-30 一种用于无线保真Wi-Fi系统的通信方法及装置 WO2023050435A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21959001.5A EP4401367A1 (en) 2021-09-30 2021-09-30 Communication method and apparatus for wireless fidelity (wi-fi) system
PCT/CN2021/122476 WO2023050435A1 (zh) 2021-09-30 2021-09-30 一种用于无线保真Wi-Fi系统的通信方法及装置
CN202180102058.5A CN117957823A (zh) 2021-09-30 2021-09-30 一种用于无线保真Wi-Fi系统的通信方法及装置
US18/623,763 US20240259124A1 (en) 2021-09-30 2024-04-01 Communication method for wireless fidelity wi-fi system and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122476 WO2023050435A1 (zh) 2021-09-30 2021-09-30 一种用于无线保真Wi-Fi系统的通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/623,763 Continuation US20240259124A1 (en) 2021-09-30 2024-04-01 Communication method for wireless fidelity wi-fi system and apparatus

Publications (1)

Publication Number Publication Date
WO2023050435A1 true WO2023050435A1 (zh) 2023-04-06

Family

ID=85781224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122476 WO2023050435A1 (zh) 2021-09-30 2021-09-30 一种用于无线保真Wi-Fi系统的通信方法及装置

Country Status (4)

Country Link
US (1) US20240259124A1 (zh)
EP (1) EP4401367A1 (zh)
CN (1) CN117957823A (zh)
WO (1) WO2023050435A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101379788A (zh) * 2005-12-13 2009-03-04 高通股份有限公司 用于无线局域网的射程扩大技术
US8891592B1 (en) * 2009-10-16 2014-11-18 Marvell International Ltd. Control physical layer (PHY) data unit
CN104901777A (zh) * 2015-04-17 2015-09-09 中国工程物理研究院电子工程研究所 一种用于太赫兹无线网络的物理层架构
CN106209159A (zh) * 2016-07-18 2016-12-07 乐鑫信息科技(上海)有限公司 一种数据包前导序列和包头及其处理方法和数据帧
CN109076052A (zh) * 2016-04-15 2018-12-21 华为技术有限公司 用于具有多种站点类别的无线网络的系统和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101379788A (zh) * 2005-12-13 2009-03-04 高通股份有限公司 用于无线局域网的射程扩大技术
US8891592B1 (en) * 2009-10-16 2014-11-18 Marvell International Ltd. Control physical layer (PHY) data unit
CN104901777A (zh) * 2015-04-17 2015-09-09 中国工程物理研究院电子工程研究所 一种用于太赫兹无线网络的物理层架构
CN109076052A (zh) * 2016-04-15 2018-12-21 华为技术有限公司 用于具有多种站点类别的无线网络的系统和方法
CN106209159A (zh) * 2016-07-18 2016-12-07 乐鑫信息科技(上海)有限公司 一种数据包前导序列和包头及其处理方法和数据帧

Also Published As

Publication number Publication date
US20240259124A1 (en) 2024-08-01
CN117957823A (zh) 2024-04-30
EP4401367A1 (en) 2024-07-17

Similar Documents

Publication Publication Date Title
US11626947B2 (en) Communication method and communications device
CN108809568B (zh) 一种信息发送、接收方法及相关设备
US10756802B2 (en) Communication method and terminal device
US11419120B2 (en) Information transmission method and communications device
CN109600834B (zh) 通信的方法和通信设备
US9912455B2 (en) Data transmission method and apparatus
EP3621275B1 (en) Transmitting method and receiving method for broadcast signal, network device, and terminal device
WO2019191912A1 (zh) 数据传输的方法、终端设备和网络设备
EP4187830A1 (en) Methods for sending and receiving phase tracking reference signal, and communication device
US20200068517A1 (en) Signal Transmission Method and Apparatus
CN105284089B (zh) 传输数据的方法和装置
US20190174515A1 (en) Physical Channel Sending Method and Receiving Method, Terminal Device, and Network Device
US11050538B2 (en) Information sending and receiving method and device
WO2023050435A1 (zh) 一种用于无线保真Wi-Fi系统的通信方法及装置
WO2022037451A1 (zh) 一种通信方法及装置
CN113366896B (zh) 参考信号接收与发送方法、装置及系统
CN111147204B (zh) 通信方法、装置及存储介质
WO2022206271A1 (zh) 一种确定资源的方法和装置
WO2024065196A1 (zh) 数据传输方法及装置
WO2021134608A1 (zh) 信号传输方法和装置
JP2023531560A (ja) 通信方法、ユーザデバイス、基地局デバイスおよびコンピュータ記憶媒体
CN109600748A (zh) 由基于非授权的传输转为基于授权的传输的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959001

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180102058.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021959001

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021959001

Country of ref document: EP

Effective date: 20240411

NENP Non-entry into the national phase

Ref country code: DE