WO2022077316A1 - 气溶胶产生装置、气溶胶产生方法、控制电路及存储介质 - Google Patents

气溶胶产生装置、气溶胶产生方法、控制电路及存储介质 Download PDF

Info

Publication number
WO2022077316A1
WO2022077316A1 PCT/CN2020/121066 CN2020121066W WO2022077316A1 WO 2022077316 A1 WO2022077316 A1 WO 2022077316A1 CN 2020121066 W CN2020121066 W CN 2020121066W WO 2022077316 A1 WO2022077316 A1 WO 2022077316A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
heating element
real
preset
heating
Prior art date
Application number
PCT/CN2020/121066
Other languages
English (en)
French (fr)
Inventor
刘经生
程时毅
刘立明
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to PCT/CN2020/121066 priority Critical patent/WO2022077316A1/zh
Publication of WO2022077316A1 publication Critical patent/WO2022077316A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices

Definitions

  • the present application relates to an aerosol generating device, an aerosol generating method, an aerosol generating device, a control circuit and a storage medium.
  • Atomization inhalation therapy mainly refers to aerosol inhalation therapy. Aerosol refers to tiny solid or liquid particles suspended in the air. Therefore, atomization inhalation therapy is to use atomization devices to disperse the drug into tiny droplets or particles, suspend them in the gas, and enter the respiratory tract and lungs to clean the airway, humidify the airway, local treatment or systemic purpose of treatment.
  • Atomization inhalation therapy has relatively high requirements on the atomization capability of the atomization device, as well as the particle size, characteristics and reliability of the atomization device generated by drug atomization.
  • an aerosol generating device an aerosol generating method, a control circuit and a storage medium are provided.
  • An aerosol generating device includes:
  • a heater comprising at least one heat generating element configured to heat the aerosol-forming substrate to form the aerosol
  • a power source for supplying power to the heating element
  • a control circuit for controlling the power supplied by the power source to the heating element so that,
  • An aerosol generating method applied to an aerosol generating device, the aerosol generating device comprising: a heater including at least one heating element configured to heat an aerosol-forming substrate to form an aerosol; and;
  • Methods include:
  • a control circuit is applied to an aerosol generating device, the control circuit being configured to perform the above-mentioned aerosol generating method.
  • An aerosol generating device comprising:
  • a heater comprising at least one heat generating element configured to heat the aerosol-forming substrate to form the aerosol
  • a power source for providing power to the heating element
  • the control circuit includes a memory and a processor, wherein the memory stores computer-readable instructions, and the processor implements the above-mentioned aerosol generating method when the computer-readable instructions are executed.
  • a computer-readable storage medium having computer-readable instructions stored thereon, the computer-readable instructions implementing the above-mentioned aerosol generating method when executed by a processor.
  • FIG. 1 is a schematic structural diagram of an aerosol generating device according to one or more embodiments
  • FIG. 2 is a schematic flowchart of a method for generating an aerosol according to one or more embodiments
  • FIG. 3 is a schematic flowchart of a method for generating an aerosol according to one or more embodiments
  • FIG. 4 is a schematic flowchart of a method for generating an aerosol according to one or more embodiments
  • FIG. 5 is a schematic flowchart of steps of controlling the supply of power to a heating element according to one or more embodiments
  • FIG. 6 is a schematic flowchart of the steps of controlling the supply of power to a heating element in accordance with one or more embodiments
  • FIG. 7 is a schematic flowchart of the steps of controlling the supply of power to a heating element in accordance with one or more embodiments
  • FIG. 8 is a structural block diagram of an aerosol generating device according to one or more embodiments.
  • FIG. 9 is a block diagram of a heater in accordance with one or more embodiments.
  • FIG. 10 is a structural block diagram of a control circuit according to one or more embodiments.
  • FIG. 11 is a structural block diagram of a control module according to one or more embodiments.
  • FIG. 12 is a schematic diagram of a circuit structure of a driving module according to one or more embodiments.
  • FIG. 13 is a structural block diagram of an aerosol generating device having an airflow sensor in accordance with one or more embodiments
  • FIG. 14 is a schematic diagram of a power variation curve of a heating element under an aerosol generating method according to one or more embodiments
  • 15 is a schematic diagram of a temperature change curve of a heating element under an aerosol generating method according to one or more embodiments
  • 16 is a schematic diagram of waveforms of a first PWM signal and a second PWM signal in accordance with one or more embodiments.
  • connection in the following embodiments should be understood as “electrical connection”, “communication connection” and the like if there is transmission of electrical signals or data between the objects to be connected.
  • the aerosol generating device for atomization inhalation therapy is shown in FIG. 1 and FIG. 8 , including a suction nozzle 600 , a heater 100 and a power circuit assembly 500 , and the power circuit assembly 500 includes a power source 200 and a control circuit 300 .
  • the heater 100 is provided with a heating element 110 .
  • specific drugs such as fentanyl, THC and other drugs or compositions are pre-placed on the heating element, and the instantaneous high temperature heating is used to vaporize and cool the drug film coated on the heating element.
  • compositions tiny condensed aerosol particles containing specific drugs (compositions) can be generated, wherein the aerosol particles are 30-70 nm, and the aerosol particles can realize the deposition of drugs into the blood through the lungs of patients after inhalation, so as to achieve the treatment of pain relief. Effect.
  • an aerosol generating method is provided, applied to an aerosol generating device, the aerosol generating device comprising: a heater 100 including a heater 100 configured to heat an aerosol-forming substrate at least one heating element 110 to form an aerosol; and;
  • the method includes:
  • the power supplied to the heating element 110 is controlled such that,
  • Step S110 in the first stage, provide electric power for heating the heating element 110 at a preset initial power and gradually increase to the preset heating power.
  • the heating element 110 is a component for heating the aerosol-forming substrate to realize atomization.
  • the heating element 110 is a heating sheet.
  • the first stage may be the first heating stage during each atomization heating process performed by the aerosol generating device, or the first heating stage in one of the heating cycles during each atomization heating process performed by the aerosol generating device. stage.
  • the heating is started with an initial power lower than the preset heating power, and then the power is gradually increased to the preset heating power to complete the heating start-up stage. Since it is necessary to heat to a higher temperature in a very short period of time in order to meet the atomization requirements of the medicine, the resistance value of the heating element 110 generally used is small. Specifically, the resistance value of the heating element 110 is less than or equal to 0.1 ohm , if the preset heating power needs to be used at the beginning of the first stage, the starting current will be relatively high, and it is easy to cause overcurrent to cause system failure during startup. Therefore, at the beginning of the first stage, a relatively low initial power can be used for heating, and then gradually increased to a preset heating power, which can effectively reduce the starting current and ensure the reliability of the aerosol generating device.
  • Figure 14 shows the power change curve of the heating element using the above-mentioned aerosol generating method
  • Figure 15 shows the heating element temperature changing curve using the above-mentioned aerosol generating method.
  • the power variation curve of the heating element shown in FIG. 14 and the temperature variation curve of the heating element shown in FIG. 15 the duration of the first stage is 20-100 milliseconds, that is, within 20-100 milliseconds from The initial power is gradually increased to the preset heating power. In one of the embodiments, the duration of the first stage is 30-80 milliseconds, that is, the initial power is gradually increased to the preset heating power within 30-80 milliseconds. In one of the embodiments, the control circuit controls the heating of the heating element by outputting a PWM control signal, the duty cycle of the PWM control signal corresponding to the initial power ranges from 10% to 50%, and the power is increased by gradually increasing the duty cycle. .
  • Step S120 in the second stage, provide electric power for heating the heating element 110 to a predetermined temperature with a predetermined heating power.
  • the second stage is the constant power heating stage. In the current stage, rapid temperature rise can be achieved, and the preset temperature can be quickly reached, which satisfies the short-term heating effect of drug atomization. Request to start atomization.
  • the preset temperature is the temperature at which the medicine can be atomized, which may be a temperature range in some embodiments, or a temperature value in some embodiments.
  • an automatic regulation algorithm such as a PID algorithm, the duty cycle of the PWM control signal can be dynamically adjusted to keep the power of the heating element 110 at a preset heating power.
  • the expected range of the preset temperature is 300-600°C; the expected range of the first temperature point A is 30-100°C; the first temperature Point A is the temperature when the power of the heating element increases to the preset heating power.
  • the temperature difference between the preset temperature B and the first temperature point A ranges from 200°C to 500°C, that is, the temperature difference between the temperature when the power of the heating element 110 reaches the preset heating power and the preset temperature B The range is 200 ⁇ 500°C.
  • the duration of the second phase is 100-300 milliseconds. In one of the embodiments, the duration of the second phase is 100-200 milliseconds.
  • the preset heating power is 20-60W. In one of the embodiments, the power accuracy of the constant power heating is ⁇ 1W, that is, the real-time power of the heating element 110 can fluctuate up and down by 1W under the preset heating power.
  • step S130 in the third stage, power is provided for heating the heating element 110 at a preset temperature at a constant temperature.
  • the third stage is entered.
  • the third stage is the constant temperature heating stage.
  • the drug is atomized to generate aerosol particles. No change occurs, and the heating element 110 is controlled to continuously heat the aerosol-forming substrate at a preset temperature to generate aerosol particles with uniform properties.
  • an automatic regulation algorithm such as a PID algorithm, the temperature of the heating element 110 can be dynamically adjusted to keep the temperature of the heating element 110 at a preset temperature.
  • the duty ratio of the PWM control signal is increased to increase the temperature of the heating element 110; when the real-time temperature of the heating element 110 is greater than the preset temperature, the duty cycle of the PWM control signal is reduced.
  • the duty cycle is used to reduce the temperature of the heating element 110 to achieve dynamic adjustment of the temperature of the heating element 110 .
  • the duration of the third stage is 400-800 milliseconds. In one of the embodiments, the duration of the third phase is 500-700 milliseconds. In one of the embodiments, the temperature accuracy of the constant temperature heating is ⁇ 10- ⁇ 50°C.
  • the heating element 110 in the first stage, the heating element 110 is started to heat with a preset initial power, and the power is gradually increased to the preset heating power, so as to reduce the current when the heating element 110 is started, and prevent the system from failing due to overcurrent during startup.
  • the heating element 110 is heated to a preset temperature with a preset heating power and constant power, so as to achieve rapid temperature rise, quickly reach the atomization temperature of the drug, and enter a state that can be inhaled; in the third stage, the heating element 110 is heated to a preset temperature.
  • the preset temperature is heated at a constant temperature, so that the medicine is always heated at the preset temperature, and the characteristics of the aerosol particles generated by the atomization are consistent, thereby improving the effectiveness and reliability of the atomization inhalation treatment.
  • the step of providing power to heat the heating element 110 at a preset initial power and gradually increase to the preset heating power includes:
  • Step S111 increasing the duty cycle of the PWM control signal in a linear manner until the power of the heating element 110 increases from the initial power to the preset heating power; the PWM control signal is used to control the driving module 120 to drive the heating element 110 to heat.
  • the duty cycle is increased in a linear manner, that is, the duty cycle is increased according to the preset interval time and the preset increase ratio, which can avoid the power surge of the heating element 110, and increase the heating power to the preset heating power relatively stably , to avoid overcurrent caused by power surge.
  • the preset interval time is 5-100 milliseconds.
  • the preset duty cycle increase ratio is 1% ⁇ 10%. Taking the duty cycle increase ratio of 1% as an example, the preset interval time is t. After the first stage is started, the duty cycle increases by 1% every time interval t, and then the initial power is increased to the preset time. Set the heating power.
  • the aerosol generating device further includes an airflow sensor 400 for detecting the user's breathing action as a trigger signal; the method further includes:
  • Step S140 when the trigger signal is acquired, trigger the first stage.
  • the airflow sensor 400 determines whether the user starts to use the aerosol generating device for inhalation therapy by detecting the airflow change of the user's breathing.
  • the step of controlling the power provided to the heating element 110 includes:
  • step S210 the real-time current and real-time voltage of the heating element 110 are acquired.
  • the real-time current and real-time voltage of the heating element 110 detected by the detection module 310 are acquired, and the detection module 310 may include a current sampling circuit and a voltage sampling circuit.
  • Step S220 calculating real-time adjustment parameters of the heating element 110 according to the real-time current and real-time voltage, wherein the real-time adjustment parameters include at least one of real-time temperature and real-time power.
  • the real-time resistance value is calculated according to the real-time current and the real-time voltage, and the current temperature of the heating element 110 can be determined from the preset resistance-temperature corresponding relationship according to the real-time resistance value.
  • the real-time power of the heating element 110 is the product of the real-time current and the real-time voltage.
  • Step S230 adjust the PWM control signal according to the real-time adjustment parameter.
  • the PWM control signal only according to the real-time temperature; you can also adjust the PWM control signal only according to the real-time power, or you can combine the two to control the PWM control signal.
  • the second stage it is necessary to monitor whether the real-time temperature reaches the preset temperature while controlling the real-time power to be constant at the preset heating power. If the preset temperature is reached, the third stage is entered. Differential regulation PWM control signal can be.
  • the step of adjusting the PWM control signal according to the real-time adjustment parameter includes:
  • Step S231 when the real-time current is less than or equal to the first current threshold, adjust the duty ratio of the PWM control signal according to the real-time adjustment parameter.
  • the first current threshold is a safe current threshold for the normal operation of the aerosol atomizing device. If the first current threshold exceeds the first current threshold, it is easy to reach the overcurrent threshold and overcurrent occurs, thereby triggering the overcurrent protection and stopping the operation.
  • the real-time current is less than or equal to the first current threshold, according to different stages, the duty cycle of the PWM control signal can be adjusted according to the real-time adjustment parameter.
  • the step of adjusting the PWM control signal according to the real-time adjustment parameter further includes:
  • Step S232 when the real-time current is greater than or equal to the second current threshold, control the duty cycle of the PWM control signal to gradually decrease to reduce power until the real-time current is less than or equal to the first current threshold; the first current threshold is less than the second current threshold , the second current threshold is smaller than the preset overcurrent threshold.
  • a second current threshold is set. If the real-time current is greater than or equal to the second current threshold, the power needs to be appropriately reduced to reduce the current, and the real-time current range is controlled within a safe range. Decreasing the duty cycle of the PWM control signal gradually reduces the power and prevents overcurrent.
  • the duty cycle of the PWM control signal when the real-time current is greater than or equal to the second current threshold, the duty cycle of the PWM control signal is reduced in a linear manner, so as to avoid a sharp drop in the power of the heating element 110, but a relatively stable drop, and then Gradually reduce the real-time current to avoid the sudden power reduction affecting the atomization heating control and affecting the atomization effect of the drug.
  • the preset interval time is 5-100 milliseconds.
  • the preset duty cycle reduction ratio is 1% ⁇ 10%.
  • steps in the flowcharts of FIGS. 2-7 are sequentially displayed according to the arrows, these steps are not necessarily executed in the order indicated by the arrows. Unless explicitly stated herein, the execution of these steps is not strictly limited to the order, and these steps may be performed in other orders. Moreover, at least a part of the steps in FIG. 2-FIG. 7 may include multiple steps or multiple stages, and these steps or stages are not necessarily executed and completed at the same time, but may be executed at different times. The order of execution is also not necessarily sequential, but may be performed alternately or alternately with other steps or at least a portion of a step or phase within the other steps.
  • an aerosol generating device comprising:
  • a heater 100 comprising at least one heat generating element 110 configured to heat the aerosol-forming substrate to form the aerosol;
  • the control circuit 300 is used to control the power provided by the power supply 200 to the heating element 110, so that,
  • the power to heat the heating element 110 at a preset initial power and gradually increase to the preset heating power is provided;
  • the heater 100 further includes:
  • the driving module 120 is used for driving the heating element 110 to heat according to the PWM control signal output by the control circuit 300;
  • the control circuit 300 is used for outputting the PWM control signal to the driving module 120, so that,
  • the heating element 110 is heated with the initial power and the duty cycle of the PWM control signal is linearly increased until the power of the heating element 110 reaches the preset heating power;
  • the heating element 110 is heated to a preset temperature with a preset heating power and constant power;
  • the heating element 110 is heated at a constant temperature at a preset temperature.
  • control circuit 300 includes:
  • a detection module 310 for detecting the real-time current and real-time voltage of the heating element 110.
  • the control module 320 is used to obtain the real-time current and real-time voltage of the heating element 110, and calculate the real-time adjustment parameters of the heating element 110 according to the real-time current and real-time voltage, and adjust the PWM control signal according to the real-time adjustment parameters.
  • the real-time adjustment parameters include real-time temperature and real-time adjustment parameters. at least one of the power.
  • control module 320 includes an MCU and peripheral circuits.
  • detection module 310 includes a current sampling circuit and a voltage sampling circuit.
  • control module 320 includes:
  • the heating control unit 321 is used to obtain the real-time current and real-time voltage, calculate the real-time adjustment parameters of the heating element 110 according to the real-time current and real-time voltage, and adjust the PWM control signal according to the real-time adjustment parameters when the real-time current is less than or equal to the first current threshold and stop regulating the duty cycle of the PWM control signal when the real-time current is greater than or equal to the second current threshold; the first current threshold is less than the second current threshold, and the second current threshold is less than the preset overcurrent threshold; and
  • the overcurrent monitoring unit 322 is configured to acquire the real-time current, and when the real-time current is greater than or equal to the second current threshold, control the duty cycle of the PWM control signal to gradually decrease to reduce power until the real-time current is less than or equal to the first current threshold .
  • the over-current monitoring unit 322 regulates the PWM control signal, until the real-time current recovers to less than or equal to the first current threshold, the over-current monitoring unit 322 stops regulating the PWM control signal , switch to the heating control unit 321 to regulate the PWM control signal.
  • the driving module includes a first semiconductor switch and a second semiconductor switch
  • the PWM control signal includes a first PWM signal and a second PWM signal
  • the first PWM signal terminal of the control circuit 300 is used for outputting the first PWM signal to control the first semiconductor switch, and the second PWM signal terminal is used for outputting the second PWM signal to control the second semiconductor switch;
  • the control circuit 300 is configured to control the second semiconductor switch to be turned off at a first time before the first semiconductor switch is controlled to be turned on; and to control the second semiconductor switch to be turned on at a second time after the first semiconductor switch is controlled to be turned off.
  • the first semiconductor switch and the second semiconductor switch may be MOS transistors, triodes, IGBTs, and the like.
  • the resistance of the heating element 110 is relatively low (for example, it generally needs to be less than 0.1 ⁇ ).
  • the resistance value of the element 110 is relatively small.
  • the driving module 120 includes: a first semiconductor switch Q1 , a second semiconductor switch Q2 and an inductance element L;
  • the controlled end of the first semiconductor switch Q1 is connected to the first PWM signal end P1 of the control circuit 300 , the first connection end of the first semiconductor switch Q1 is connected to the power supply VDD, and the second connection end is connected to the first end of the inductance element L;
  • the controlled end of the second semiconductor switch Q2 is connected to the second PWM signal end P2 of the control circuit 300, the first connection end of the second semiconductor switch Q2 is connected to the first end of the inductance element L, and the second connection end is grounded;
  • the second end of the inductance element L is connected to the first electrode of the heating element 110;
  • the second electrode of the heating element 110 is electrically connected to the second connection terminal of the second semiconductor switch Q2.
  • first semiconductor switch Q1 as a PMOS transistor and the second semiconductor switch Q2 as an NMOS transistor as an example to illustrate the working process of the driving module 120, combined with the waveform diagrams of the first PWM signal PWM1 and the second PWM signal PWM2, as shown in FIG. 16:
  • the first PWM signal PWM1 is at a high level, and the switch of the first semiconductor Q1 is turned off;
  • the second PWM signal PWM2 is at a low level, and the second semiconductor switch Q2 is turned off, and the heating element 110 has no current at this time;
  • the first PWM signal PWM1 is at a low level, and the first semiconductor switch Q1 is turned on;
  • the second PWM signal PWM2 is at a low level, and the second semiconductor switch Q2 is turned off, and the power supply 200 passes through the first semiconductor switch Q1 and the inductive element.
  • L supplies power to the heating element 110, and the inductance element L stores energy at this time;
  • the first PWM signal PWM1 is at a high level, and the first semiconductor switch Q1 is turned off;
  • the second PWM signal PWM2 is at a low level, and the second semiconductor switch Q2 is turned off, and the heating element 110 has no current at this time;
  • stage t3 the first PWM signal PWM1 is at a high level, and the first semiconductor switch Q1 is turned off; the second PWM signal PWM2 is at a high level, and the second semiconductor switch Q2 is turned on, and the energy stored in the inductance element L passes through the second semiconductor switch Q2 powers the heating element 110 .
  • Setting the inductance element L can make the current flowing through the heating element 110 stable without sudden change, and compared with not setting the inductance element L, the current flowing through the driving module 120 will be reduced, thereby reducing the occurrence of overcurrent and damaging the driving module 120
  • the probability of , in particular, the probability of overcurrent damage to the first semiconductor switch Q1 can be reduced.
  • the first semiconductor switch Q1 controls the main path, and the power supply 200 supplies power to the heating element 110 when it is turned on.
  • the second semiconductor switch Q2 controls the freewheeling path. When it is turned on, the first semiconductor switch Q1 is turned off, and the inductance element L Supplying power to the heating element 110 to realize freewheeling, making the current flowing through the heating element 110 more stable, ensuring the consistency of the heating process, and thus ensuring that the characteristics of the aerosol particles produced by the atomization of the drug are consistent.
  • the first time t0 and the second time t2 are equal.
  • the frequency range of the PWM control signal is 100kHz ⁇ 300kHz. In one of the embodiments, the frequency range of the PWM control signal is 150kHz ⁇ 250kHz.
  • the aerosol generating device further includes:
  • the airflow sensor 400 is used to detect the user's breathing action as a trigger signal
  • the control circuit 300 is used to trigger the first stage when the trigger signal is acquired.
  • the above-mentioned aerosol generating device is a device controlled by the above-mentioned aerosol generating method.
  • the aerosol generating device please refer to the above-mentioned limitations on the aerosol generating method, which will not be repeated here.
  • a control circuit 300 is also provided, which is applied to an aerosol generating device, and the control circuit 300 is configured to execute the aerosol generating method of any one of the above embodiments.
  • the above-mentioned control circuit 300 is a control circuit 300 for implementing the above-mentioned aerosol generating method.
  • the control circuit 300 please refer to the above-mentioned limitations on the aerosol generating method, which will not be repeated here.
  • an aerosol generating device characterized in that it includes:
  • a heater 100 comprising at least one heat generating element 110 configured to heat the aerosol-forming substrate to form the aerosol;
  • the control circuit 300 includes a memory and a processor, where computer-readable instructions are stored in the memory, and the processor implements the method of any of the foregoing embodiments when the processor executes the computer-readable instructions.
  • One or more non-volatile storage media storing computer-readable instructions that, when executed by one or more processors, cause the one or more processors to perform the method of any of the above embodiments.
  • Nonvolatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in various forms such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Road (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Anesthesiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Dispersion Chemistry (AREA)
  • Pulmonology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

一种气溶胶产生装置包括:加热器,其包括被配置用于加热气溶胶形成基质以形成气溶胶的至少一个发热元件;电源,用于向发热元件提供电力;以及控制电路,用于控制电源向发热元件提供的电力,从而使得,在第一阶段,提供使发热元件以预设的初始功率加热且逐渐增大至预设加热功率的电力;在第二阶段,提供使发热元件以预设加热功率加热至预设温度的电力;在第三阶段,提供使发热元件以预设温度恒温加热的电力。

Description

气溶胶产生装置、气溶胶产生方法、控制电路及存储介质 技术领域
本申请涉及一种气溶胶产生装置、气溶胶产生方法、气溶胶产生装置、控制电路及存储介质。
背景技术
随着医疗技术的发展,出现了雾化吸入治疗,雾化吸入治疗主要指气溶胶吸入疗法,气溶胶是指悬浮于空气中微小的固体或液体微粒。因此雾化吸入疗法是用雾化的装置将药物分散成微小的雾滴或微粒,使其悬浮于气体中,并进入呼吸道及肺内,达到洁净气道,湿化气道,局部治疗或全身治疗的目的。
雾化吸入治疗对于雾化装置的雾化能力要求相对较高,对于药物雾化产生的颗粒大小、特性以及雾化装置的可靠性都有较高的要求。
发明内容
根据本申请公开的各种实施例,提供一种气溶胶产生装置、气溶胶产生方法、控制电路及存储介质。
一种气溶胶产生装置包括:
加热器,其包括被配置用于加热气溶胶形成基质以形成气溶胶的至少一个发热元件;
电源,用于向发热元件提供电力;以及
控制电路,用于控制电源向发热元件提供的电力,从而使得,
在第一阶段,提供使发热元件以预设的初始功率加热且逐渐增大至预设加热功率的电力;
在第二阶段,提供使发热元件以预设加热功率加热至预设温度的电力;及
在第三阶段,提供使发热元件以预设温度恒温加热的电力。
一种气溶胶产生方法,应用于气溶胶产生装置,气溶胶产生装置包括:加热器,其包括被配置用于加热气溶胶形成基质以形成气溶胶的至少一个发热元件;以及;
用于向发热元件提供电力的电源;
方法包括:
控制向发热元件提供的电力,从而使得,
在第一阶段,提供使发热元件以预设的初始功率加热且逐渐增大至预设加热功率的电力;
在第二阶段,提供使发热元件以预设加热功率加热至预设温度的电力;及
在第三阶段,提供使发热元件以预设温度恒温加热的电力。
一种控制电路,应用于气溶胶产生装置,所述控制电路被配置用以执行上述的气溶胶产生方法。
一种气溶胶产生装置,包括:
加热器,其包括被配置用于加热气溶胶形成基质以形成气溶胶的至少一个发热元件;
电源,用于向所述发热元件提供电力;以及
控制电路,包括存储器和处理器,所述存储器存储有计算机可读指令,所述处理器执行所述计算机可读指令时实现上述气溶胶产生方法。
一种计算机可读存储介质,其上存储有计算机可读指令,所述计算机可读指令被处理器执行时实现上述气溶胶产生方法。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为根据一个或多个实施例中气溶胶产生装置的结构示意图;
图2为根据一个或多个实施例中气溶胶产生方法的流程示意图;
图3为根据一个或多个实施例中气溶胶产生方法的流程示意图;
图4为根据一个或多个实施例中气溶胶产生方法的流程示意图;
图5为根据一个或多个实施例中控制向发热元件提供电力步骤的流程示意图;
图6为根据一个或多个实施例中控制向发热元件提供电力步骤的流程示意图;
图7为根据一个或多个实施例中控制向发热元件提供电力步骤的流程示意图;
图8为根据一个或多个实施例中气溶胶产生装置的结构框图;
图9为根据一个或多个实施例中加热器的结构框图;
图10为根据一个或多个实施例中控制电路的结构框图;
图11为根据一个或多个实施例中控制模块的结构框图;
图12为根据一个或多个实施例中驱动模块的电路结构示意图;
图13为根据一个或多个实施例中具有气流传感器的气溶胶产生装置的结构框图;
图14为根据一个或多个实施例中在气溶胶产生方法下发热元件的功率变化曲线示意图;
图15为根据一个或多个实施例中在气溶胶产生方法下发热元件的温度变化曲线示意图;
图16为根据一个或多个实施例中第一PWM信号和第二PWM信号的波形示意图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使本申请的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
需要说明的是,当一个元件被认为是“连接”另一个元件时,它可以是直接连接到另一个元件,或者通过居中元件连接另一个元件。此外,以下实施例中的“连接”,如果被连接的对象之间具有电信号或数据的传递,则应理解为“电连接”、“通信连接”等。
在此使用时,单数形式的“一”、“一个”和“所述/该”也可以包括复数形式,除非上下文清楚指出另外的方式。还应当理解的是,术语“包括/包含”或“具有”等指定所陈述的特征、整体、步骤、操作、组件、部分或它们的组合的存在,但是不排除存在或添加一个或更多个其他特征、整体、步骤、操作、组件、部分或它们的组合的可能性。同时,在本说明书中使用的术语“和/或”包括相关所列项目的任何及所有组合。
在其中一个实施例中,雾化吸入治疗的气溶胶产生装置如图1和图8所示,包括吸嘴600、加热器100及电源电路组件500,电源电路组件500包括电源200及控制电路300,加热器100内设有发热元件110。在雾化吸入治疗的实际应用中,将特定药物例如芬太尼、THC等药物或组合物预置于发热元 件上,利用瞬间高温加热,使涂在发热元件上的药物薄膜气化并冷却,从而可以产生含有特定药物(组合物)的微小冷凝气溶胶颗粒,其中,气溶胶颗粒为30~70nm,该气溶胶颗粒能够实现病人吸入后药物通过肺部沉积入血,从而达到疼痛缓解的治疗效果。
在其中一个实施例中,如图2所示,提供了一种气溶胶产生方法,应用于气溶胶产生装置,气溶胶产生装置包括:加热器100,其包括被配置用于加热气溶胶形成基质以形成气溶胶的至少一个发热元件110;以及;
用于向发热元件110提供电力的电源200;
所述方法包括:
控制向发热元件110提供的电力,从而使得,
步骤S110,在第一阶段,提供使发热元件110以预设的初始功率加热且逐渐增大至预设加热功率的电力。
发热元件110为用于加热气溶胶形成基质以实现雾化的部件,在一个实施例中,发热元件110为加热片。第一阶段可以是气溶胶产生装置每次执行雾化加热工作过程中的第一个加热阶段,也可以是气溶胶产生装置每次执行雾化加热工作过程中其中一个加热周期的第一个加热阶段。
在第一阶段,采用低于预设加热功率的初始功率开始加热,随后再逐渐增大功率至预设加热功率,完成加热启动阶段。由于为了满足药物的雾化需求,需要在很短的时间内加热到较高的温度,所以一般所采用的发热元件110电阻值较小,具体来说,发热元件110的阻值小于等于0.1欧姆,若需要在第一阶段刚开始即采用预设加热功率,启动电流会比较高,容易在启动时发生过流导致系统失效。因此在第一阶段开始时,可以采用相对较低的初始功率进行加热,然后逐渐增大至预设加热功率,能够有效降低启动电流,保证气溶胶产生装置的可靠性。
如图14所示为采用上述气溶胶产生方法的发热元件功率变化曲线,如图15所示为采用上述气溶胶产生方法的发热元件温度变化曲线。
在其中一个实施例中,如图14所示的发热元件功率变化曲线和图15所示的发热元件温度变化曲线,第一阶段的持续时间为20~100毫秒,即在20~100毫秒内从初始功率逐渐增大至预设加热功率。在其中一个实施例中,第一阶段的持续时间为30~80毫秒,即在30~80毫秒内从初始功率逐渐增大至预设加热功率。在其中一个实施例中,控制电路通过输出PWM控制信号控制发热元件加热,初始功率对应的PWM控制信号的占空比范围为10%~50%,通过逐渐增大占空比实现功率的增大。
步骤S120,在第二阶段,提供使发热元件110以预设加热功率加热至预设温度的电力。
在发热元件110的功率增大至预设加热功率后进入第二阶段,第二阶段为恒功率加热阶段,在当前阶段能够实现快速升温,快速达到预设温度,满足药物雾化对于短时升温开始雾化的要求。预设温度为药物能够雾化的温度,在一些实施例中可以是一个温度范围,在一些实施例中也可以是一个温度值。通过自动调控算法,例如PID算法,能够动态调整PWM控制信号占空比,使发热元件110的功率保持在预设加热功率。当发热元件110的实时功率小于预设加热功率时,增大PWM控制信号的占空比,以使发热元件110的功率增大;当发热元件110的实时功率大于预设加热功率时,降低PWM控制信号的占空比,以使发热元件110的功率降低,实现动态调节发热元件110的功率。
在其中一个实施例中,如图15所示的发热元件温度变化曲线,预设温度的期望范围值为300~600℃;第一温度点A的期望范围值为30~100℃;第一温度点A为所述发热元件功率增大到所述预设加热功率时刻的温度。在其中一个实施例中,预设温度B与所述第一温度点A的温差范围为200~500℃,即发热元件110的功率达到预设加热功率时的温度与预设温度B的温度差范围为200~500℃。在其中一个实施例中,第二阶段的持续时间为100~300毫秒。在其中一个实施例中,第二阶段的持续时间为100~200毫秒。在其中一个实施例中,预设加热功率为20~60W。在其中一个实施例中,恒功率加热的功率精度为±1W,即发热元件110的实时功率可以在预设加热功率下上下浮动1W。
步骤S130,在第三阶段,提供使发热元件110以预设温度恒温加热的电力。
在发热元件110的温度达到预设温度后进入第三阶段,第三阶段为恒温加热阶段,在当前阶段,药物被雾化产生气溶胶颗粒,为了保证药物特性的一致,例如颗粒大小一致,药性不发生改变,控制发热元件110持续以预设温度加热气溶胶形成基质,产生特性一致的气溶胶颗粒。通过自动调控算法,例如PID算法,能够动态调整发热元件110的温度,使发热元件110的温度保持在预设温度。当发热元件110的实时温度小于加热温度时,增大PWM控制信号的占空比,以使发热元件110的温度升高;当发热元件110的实时温度大于预设温度时,降低PWM控制信号的占空比,以使发热元件110的温度降低,实现动态调节发热元件110的温度。
在其中一个实施例中,如图14和图15所示,第三阶段的持续时间为400~800毫秒。在其中一个实施例中,第三阶段的持续时间为500~700毫秒。在其中一个实施例中,恒温加热的温度精度为±10~±50℃。
上述气溶胶产生方法,在第一阶段使发热元件110以预设的初始功率启 动加热,并逐渐增大功率至预设加热功率,降低发热元件110启动时的电流,防止启动过流导致系统失效;在第二阶段使发热元件110以预设加热功率恒功率加热至预设温度,实现快速升温,快速达到药物的雾化温度,进入可供吸入的状态;在第三阶段使发热元件110以预设温度恒温加热,使药物一直处于预设温度进行加热,雾化产生的气溶胶颗粒特性具有一致性,进而提高雾化吸入治疗的有效性和可靠性。
在其中一个实施例中,如图3所示,在第一阶段,提供使发热元件110以预设的初始功率加热且逐渐增大至预设加热功率的电力的步骤包括:
步骤S111,以线性的方式增大PWM控制信号的占空比直至发热元件110的功率由初始功率增大到预设加热功率;PWM控制信号用于控制驱动模块120驱动发热元件110加热。
采用线性的方式增大占空比,即按照预设的间隔时间及预设的增大比例增大占空比,能够避免发热元件110功率激增,而是相对稳定的增大至预设加热功率,避免功率激增导致过流。在其中一个实施例中,预设的间隔时间为5~100毫秒。在其中一个实施例中,预设的占空比增大比例为1%~10%。以占空比增大比例为1%为例进行说明,预设的间隔时间为t,启动第一阶段后,每间隔t时间,占空比增大1%,进而将初始功率增大至预设加热功率。
在其中一个实施例中,如图4所示,气溶胶产生装置还包括气流传感器400,用于检测用户的呼吸动作作为触发信号;所述方法还包括:
步骤S140,当获取到触发信号时,触发第一阶段。
以用户的呼吸动作作为触发信号,在用户呼吸时进行加热雾化,即触发第一阶段开始进入雾化加热工作状态,避免在用户未使用时加热,造成药物浪费,影响治疗效果。气流传感器400通过检测用户呼吸的气流变化,判断用户是否开始使用气溶胶产生装置进行吸入治疗。
在其中一个实施例中,如图5所示,控制向发热元件110提供的电力的步骤包括:
步骤S210,获取发热元件110的实时电流及实时电压。
获取检测模块310检测的发热元件110的实时电流及实时电压,检测模块310可以包括电流采样电路和电压采样电路。
步骤S220,根据实时电流及实时电压计算发热元件110的实时调节参数,其中,实时调节参数包括实时温度和实时功率中的至少一个。
根据发热元件110阻值与温度变化的预设对应关系,根据实时电流及实时电压计算出实时阻值,根据实时阻值从预设的阻值温度对应关系中即可确定当前发热元件110的温度。发热元件110的实时功率即为实时电流与实时电压的乘积。
步骤S230,根据实时调节参数调节PWM控制信号。
根据所处阶段的不同,可以选择只根据实时温度进行PWM控制信号的调控;也可以只根据实时功率调节PWM控制信号,还可以结合两者共同对PWM控制信号进行调控。例如在第二阶段需要在控制实时功率恒定在预设加热功率的同时,监控实时温度是否达到预设温度,若达到预设温度则进入第三阶段,此时则根据实时温度与预设温度的差异调控PWM控制信号即可。
在其中一个实施例中,如图6所示,根据实时调节参数调节PWM控制信号的步骤包括:
步骤S231,在实时电流小于或等于第一电流阈值时,根据实时调节参数调控PWM控制信号的占空比。
第一电流阈值为气溶胶雾化装置正常工作的安全电流阈值,若超过第一电流阈值,则容易达到过流阈值发生过流,进而触发过流保护,停止工作。在实时电流小于或等于第一电流阈值时,根据所处阶段的不同,根据实时调节参数调控PWM控制信号的占空比即可。
在其中一个实施例中,如图7所示,根据实时调节参数调节PWM控制信号的步骤还包括:
步骤S232,在实时电流大于或等于第二电流阈值时,控制PWM控制信号的占空比逐渐减小以降低功率,直至实时电流小于或等于第一电流阈值;第一电流阈值小于第二电流阈值,第二电流阈值小于预设的过流阈值。
为了更好地避免发生过流,设置第二电流阈值,若实时电流大于或等于第二电流阈值,则需要适当降低功率以降低电流,将实时电流的范围控制在安全范围内,此时通过逐渐减小PWM控制信号的占空比逐渐降低功率,防止过流。
在其中一个实施例中,在实时电流大于或等于第二电流阈值时,以线性的方式减小PWM控制信号的占空比,能够避免发热元件110功率急剧下降,而是相对稳定的降低,进而逐渐降低实时电流,避免功率骤减影响雾化加热控制,影响药物的雾化效果。在其中一个实施例中,预设的间隔时间为5~100毫秒。在其中一个实施例中,预设的占空比减小比例为1%~10%。
应该理解的是,虽然图2-图7的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图2-图7中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交 替地执行。
在其中一个实施例中,如图8和图9所示,提供了一种气溶胶产生装置,所述装置包括:
加热器100,其包括被配置用于加热气溶胶形成基质以形成气溶胶的至少一个发热元件110;
电源200,用于向发热元件110提供电力;以及
控制电路300,用于控制电源200向发热元件110提供的电力,从而使得,
在第一阶段,提供使发热元件110以预设的初始功率加热且逐渐增大至预设加热功率的电力;
在第二阶段,提供使发热元件110以预设加热功率加热至预设温度的电力;
在第三阶段,提供使发热元件110以预设温度恒温加热的电力。
在其中一个实施例中,如图9所示,加热器100还包括:
驱动模块120,用于根据控制电路300输出的PWM控制信号驱动发热元件110加热;
控制电路300用于输出PWM控制信号至驱动模块120,从而使得,
在第一阶段,发热元件110以初始功率加热且线性增大PWM控制信号的占空比,直至发热元件110的功率达到预设加热功率;
在第二阶段,发热元件110以预设加热功率恒功率加热至预设温度;
在第三阶段,发热元件110以预设温度恒温加热。
在其中一个实施例中,如图10所示,控制电路300包括:
检测模块310,用于检测发热元件110的实时电流及实时电压;及
控制模块320,用于获取发热元件110的实时电流及实时电压,并根据实时电流及实时电压计算发热元件110的实时调节参数,根据实时调节参数调节PWM控制信号,实时调节参数包括实时温度和实时功率中的至少一个。
在其中一个实施例中,控制模块320包括MCU及外围电路。在其中一个实施例中,检测模块310包括电流采样电路及电压采样电路。
在其中一个实施例中,如图11所示,控制模块320包括:
加热控制单元321,用于获取实时电流及实时电压,根据实时电流及实时电压计算发热元件110的实时调节参数,并在实时电流小于或等于第一电流阈值时,根据实时调节参数调控PWM控制信号的占空比,且在实时电流大于或等于第二电流阈值时停止调控PWM控制信号的占空比;第一电流阈值小于第二电流阈值,第二电流阈值小于预设的过流阈值;及
过流监控单元322,用于获取实时电流,并在实时电流大于或等于第二 电流阈值时,控制PWM控制信号的占空比逐渐减小以降低功率,直至实时电流小于或等于第一电流阈值。
在实时限流大于或等于第二电流阈值时,由过流监控单元322对PWM控制信号进行调控,直至实时电流恢复至小于或等于第一电流阈值后,过流监控单元322停止调控PWM控制信号,切换至加热控制单元321对PWM控制信号进行调控。
在其中一个实施例中,驱动模块包括第一半导体开关及第二半导体开关;
PWM控制信号包括第一PWM信号和第二PWM信号;
控制电路300的第一PWM信号端用于输出第一PWM信号控制第一半导体开关,第二PWM信号端用于输出第二PWM信号控制第二半导体开关;
控制电路300用于在控制第一半导体开关导通前的第一时间时,控制第二半导体开关截止;在控制第一半导体开关截止后的第二时间时,控制第二半导体开关导通。
第一半导体开关和第二半导体开关可以是MOS管、三极管、IGBT等。为满足药物的雾化需求,需要短时升温到雾化温度(例如在0.3~0.4s加热到550℃左右),因此发热元件110的阻值较低(例如一般需要小于0.1Ω),由于发热元件110阻值较小,当控制电路300启动时,若PWM控制信号的占空比大于预设的启动占空比,则容易出现过流损坏第一半导体开关的情况。
在其中一个实施例中,如图12所示,驱动模块120包括:第一半导体开关Q1、第二半导体开关Q2及电感元件L;
第一半导体开关Q1的受控端连接控制电路300的第一PWM信号端P1,第一半导体开关Q1的第一连接端连接电源VDD,第二连接端连接电感元件L的第一端;
第二半导体开关Q2的受控端连接控制电路300的第二PWM信号端P2,第二半导体开关Q2的第一连接端连接电感元件L的第一端,第二连接端接地;
电感元件L的第二端连接发热元件110的第一电极;
发热元件110的第二电极电连接第二半导体开关Q2的第二连接端。
以第一半导体开关Q1为PMOS管,第二半导体开关Q2为NMOS管为例进行说明驱动模块120的工作过程,结合第一PWM信号PWM1和第二PWM信号PWM2的波形图,图16所示:
假设预设的启动占空比为duty,第一时间为t0、第二时间为t1,则:
duty=t1/(t0+t1+t2+t3)
在t0阶段,第一PWM信号PWM1为高电平,第一半导体Q1开关截止;第二PWM信号PWM2为低电平,第二半导体开关Q2截止,此时发热元件 110无电流;
在t1阶段,第一PWM信号PWM1为低电平,第一半导体开关Q1导通;第二PWM信号PWM2为低电平,第二半导体开关Q2截止,电源200通过第一半导体开关Q1和电感元件L为发热元件110供电,且此时电感元件L进行储能;
在t2阶段,第一PWM信号PWM1为高电平,第一半导体开关Q1截止;第二PWM信号PWM2为低电平,第二半导体开关Q2截止,此时发热元件110无电流;
在t3阶段,第一PWM信号PWM1为高电平,第一半导体开关Q1截止;第二PWM信号PWM2为高电平,第二半导体开关Q2导通,电感元件L存储的能量通过第二半导体开关Q2为发热元件110供电。
设置电感元件L能够使流过发热元件110的电流平稳,不会发生突变,且与不设置电感元件L相比,流经驱动模块120的电流会减少,从而降低出现过流而损坏驱动模块120的概率,特别是能够降低过流损坏第一半导体开关Q1的概率。
第一半导体开关Q1控制主通路,在其导通时由电源200为发热元件110供电,第二半导体开关Q2控制续流通路,在其导通时第一半导体开关Q1处于截止,由电感元件L为发热元件110供电,实现续流,使流过发热元件110的电流更加平稳,保证加热过程的一致性,进而保证药物雾化产生气溶胶颗粒的特性一致。
在其中一个实施例中,第一时间t0与第二时间t2相等。
在其中一个实施例中,PWM控制信号的频率范围为100kHz~300kHz。在其中一个实施例中,PWM控制信号的频率范围为150kHz~250kHz。
在其中一个实施例中,如图13所示,气溶胶产生装置还包括:
气流传感器400,用于检测用户的呼吸动作作为触发信号;
控制电路300用于在获取到触发信号时触发第一阶段。
上述气溶胶产生装置为受到上述气溶胶产生方法控制的设备,关于气溶胶产生装置的具体限定可以参见上文中对于气溶胶产生方法的限定,在此不再赘述。
在其中一个实施例中,还提供了一种控制电路300,应用于气溶胶产生装置,控制电路300被配置用以执行上述任一项实施例的气溶胶产生方法。上述控制电路300为用于实现上述气溶胶产生方法的控制电路300,关于控制电路300的具体限定可以参见上文中对于气溶胶产生方法的限定,在此不再赘述。
在其中一个实施例中,提供了一种气溶胶产生装置,其特征在于,包括:
加热器100,其包括被配置用于加热气溶胶形成基质以形成气溶胶的至少一个发热元件110;
电源200,用于向所述发热元件110提供电力;以及
控制电路300,包括存储器和处理器,存储器中存储有计算机可读指令,该处理器执行计算机可读指令时实现上述任一实施例的方法。
一个或多个存储有计算机可读指令的非易失性存储介质,计算机可读指令被一个或多个处理器执行时,使得一个或多个处理器执行上述任一实施例的方法。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机可读指令来指令相关的硬件来完成,所述的计算机可读指令可存储于一非易失性计算机可读取存储介质中,该计算机可读指令在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种气溶胶产生装置,包括:
    加热器,其包括被配置用于加热气溶胶形成基质以形成气溶胶的至少一个发热元件;
    电源,用于向所述发热元件提供电力;以及
    控制电路,用于控制所述电源向所述发热元件提供的电力,从而使得,
    在第一阶段,提供使所述发热元件以预设的初始功率加热且逐渐增大至预设加热功率的电力;
    在第二阶段,提供使所述发热元件以所述预设加热功率加热至预设温度的电力;
    在第三阶段,提供使所述发热元件以所述预设温度恒温加热的电力。
  2. 根据权利要求1所述的装置,其特征在于,所述加热器还包括:
    驱动模块,用于根据所述控制电路输出的PWM控制信号驱动所述发热元件加热;
    所述控制电路用于输出所述PWM控制信号至所述驱动模块,从而使得,
    在第一阶段,所述发热元件以所述初始功率加热且线性增大PWM控制信号的占空比,直至所述发热元件的功率达到所述预设加热功率;
    在第二阶段,所述发热元件以所述预设加热功率恒功率加热至预设温度;
    在第三阶段,所述发热元件以所述预设温度恒温加热。
  3. 根据权利要求1所述的装置,其特征在于,所述第一阶段的持续时间为20~100毫秒,所述第二阶段的持续时间为100~300毫秒,所述第三阶段的持续时间为400~800毫秒。
  4. 根据权利要求1所述的装置,其特征在于,所述预设温度的期望范围值为300~600℃;
    第一温度点的期望范围值为30~100℃;所述第一温度点为所述发热元件功率增大到所述预设加热功率时刻的温度。
  5. 根据权利要求4所述的装置,其特征在于,所述预设温度与所述第一温度点的温差范围为200~500℃。
  6. 根据权利要求1至5任一项所述的装置,其特征在于,所述控制电路包括:
    检测模块,用于检测所述发热元件的实时电流及实时电压;及
    控制模块,用于获取所述发热元件的实时电流及实时电压,并根据所述实时电流及所述实时电压计算所述发热元件的实时调节参数,根据所述实时调节参数调节所述PWM控制信号,所述实时调节参数包括实时温度和实时功率中的至少一个。
  7. 根据权利要求6所述的装置,其特征在于,所述控制模块包括:
    加热控制单元,用于获取所述实时电流及所述实时电压,根据所述实时电流及所述实时电压计算所述实时调节参数,并在所述实时电流小于或等于第一电流阈值时,根据所述实时调节参数调控所述PWM控制信号的占空比,且在所述实时电流大于或等于所述第二电流阈值时停止调控所述PWM控制信号的占空比;所述第一电流阈值小于所述第二电流阈值,所述第二电流阈值小于预设的过流阈值;及
    过流监控单元,用于获取所述实时电流,并在所述实时电流大于或等于所述第二电流阈值时,控制所述PWM控制信号的占空比逐渐减小以降低功率,直至所述实时电流小于或等于所述第一电流阈值。
  8. 根据权利要求2所述的装置,其特征在于,所述驱动模块包括:第一半导体开关及第二半导体开关;
    所述PWM控制信号包括第一PWM信号和第二PWM信号;
    所述控制电路的第一PWM信号端用于输出第一PWM信号控制所述第一半导体开关,第二PWM信号端用于输出第二PWM信号控制所述第二半导体开关;
    所述控制电路用于在控制所述第一半导体开关导通前的第一时间时,控制所述第二半导体开关截止;在控制所述第一半导体开关截止后的第二时间时,控制所述第二半导体开关导通。
  9. 根据权利要求8所述的装置,其特征在于,所述驱动模块还包括电感元件;
    所述第一半导体开关的受控端连接所述控制电路的第一PWM信号端,第一半导体开关的第一连接端连接所述电源,第二连接端连接所述电感元件的第一端;
    所述第二半导体开关的受控端连接所述控制电路的第二PWM信号端,第二半导体开关的第一连接端连接所述电感元件的第一端,第二连接端接地;
    所述电感元件的第二端连接所述发热元件的第一电极;
    所述发热元件的第二电极电连接所述第二半导体开关的第二连接端。
  10. 根据权利要求1所述的装置,其特征在于,还包括:
    气流传感器,用于检测用户的呼吸动作作为触发信号;
    所述控制电路用于在获取到所述触发信号时触发所述第一阶段。
  11. 一种气溶胶产生方法,其特征在于,应用于气溶胶产生装置,所述气溶胶产生装置包括:加热器,其包括被配置用于加热气溶胶形成基质以形成气溶胶的至少一个发热元件;以及;
    用于向所述发热元件提供电力的电源;
    所述方法包括:
    控制向发热元件提供的电力,从而使得,
    在第一阶段,提供使所述发热元件以预设的初始功率加热且逐渐增大至预设加热功率的电力;
    在第二阶段,提供使所述发热元件以所述预设加热功率加热至预设温度的电力;
    在第三阶段,提供使所述发热元件以所述预设温度恒温加热的电力。
  12. 根据权利要求11所述的方法,其特征在于,所述在第一阶段,提供使所述发热元件以预设的初始功率加热且逐渐增大至预设加热功率的电力的步骤包括:
    以线性的方式增大PWM控制信号的占空比直至所述发热元件的功率由所述初始功率增大到所述预设加热功率;所述PWM控制信号用于控制驱动模块驱动所述发热元件加热。
  13. 一种控制电路,应用于气溶胶产生装置,其特征在于,所述控制电路被配置用以执行权利要求11或12所述的气溶胶产生方法。
  14. 一种气溶胶产生装置,其特征在于,包括:
    加热器,其包括被配置用于加热气溶胶形成基质以形成气溶胶的至少一个发热元件;
    电源,用于向所述发热元件提供电力;以及
    控制电路,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现权利要求11或12所述的方法的步骤。
  15. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求11或12所述的方法的步骤。
PCT/CN2020/121066 2020-10-15 2020-10-15 气溶胶产生装置、气溶胶产生方法、控制电路及存储介质 WO2022077316A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/121066 WO2022077316A1 (zh) 2020-10-15 2020-10-15 气溶胶产生装置、气溶胶产生方法、控制电路及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/121066 WO2022077316A1 (zh) 2020-10-15 2020-10-15 气溶胶产生装置、气溶胶产生方法、控制电路及存储介质

Publications (1)

Publication Number Publication Date
WO2022077316A1 true WO2022077316A1 (zh) 2022-04-21

Family

ID=81207606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121066 WO2022077316A1 (zh) 2020-10-15 2020-10-15 气溶胶产生装置、气溶胶产生方法、控制电路及存储介质

Country Status (1)

Country Link
WO (1) WO2022077316A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115021562A (zh) * 2022-08-04 2022-09-06 深圳市微源半导体股份有限公司 驱动芯片及其控制方法、电子设备
WO2024124554A1 (zh) * 2022-12-16 2024-06-20 沃德韦国际控股有限公司 气溶胶生成装置的温度控制方法、装置和气溶胶生成设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109613945A (zh) * 2018-12-17 2019-04-12 威滔电子科技(深圳)有限公司 一种预加热时间控制方法和气溶胶产生装置
CN109619682A (zh) * 2018-12-11 2019-04-16 深圳市余看智能科技有限公司 气溶胶发生材料加热方法、加热组件及气溶胶发生装置
CN109843099A (zh) * 2019-01-11 2019-06-04 惠州市吉瑞科技有限公司深圳分公司 一种加热方法、加热组件及低温烟
CN110367593A (zh) * 2019-07-15 2019-10-25 上海新型烟草制品研究院有限公司 一种温控方法、气雾产生装置及气雾产生系统
US20200214360A1 (en) * 2019-01-08 2020-07-09 Ton Nguyen Vaporizer
CN111513365A (zh) * 2020-04-02 2020-08-11 深圳麦时科技有限公司 加热式气溶胶产生装置及方法
US20200288789A1 (en) * 2019-03-12 2020-09-17 Bongo Manufacturing, Llc Personal vaporizer and aromatherapy diffuser

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109619682A (zh) * 2018-12-11 2019-04-16 深圳市余看智能科技有限公司 气溶胶发生材料加热方法、加热组件及气溶胶发生装置
CN109613945A (zh) * 2018-12-17 2019-04-12 威滔电子科技(深圳)有限公司 一种预加热时间控制方法和气溶胶产生装置
US20200214360A1 (en) * 2019-01-08 2020-07-09 Ton Nguyen Vaporizer
CN109843099A (zh) * 2019-01-11 2019-06-04 惠州市吉瑞科技有限公司深圳分公司 一种加热方法、加热组件及低温烟
US20200288789A1 (en) * 2019-03-12 2020-09-17 Bongo Manufacturing, Llc Personal vaporizer and aromatherapy diffuser
CN110367593A (zh) * 2019-07-15 2019-10-25 上海新型烟草制品研究院有限公司 一种温控方法、气雾产生装置及气雾产生系统
CN111513365A (zh) * 2020-04-02 2020-08-11 深圳麦时科技有限公司 加热式气溶胶产生装置及方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115021562A (zh) * 2022-08-04 2022-09-06 深圳市微源半导体股份有限公司 驱动芯片及其控制方法、电子设备
CN115021562B (zh) * 2022-08-04 2022-11-04 深圳市微源半导体股份有限公司 驱动芯片及其控制方法、电子设备
WO2024124554A1 (zh) * 2022-12-16 2024-06-20 沃德韦国际控股有限公司 气溶胶生成装置的温度控制方法、装置和气溶胶生成设备

Similar Documents

Publication Publication Date Title
CN112403405B (zh) 气溶胶产生装置、气溶胶产生方法、控制电路及存储介质
WO2022077316A1 (zh) 气溶胶产生装置、气溶胶产生方法、控制电路及存储介质
US11864279B2 (en) Method, system and device for controlling a heating element
US9980519B2 (en) Electronic cigarette and atomizing method thereof
WO2016090951A1 (zh) 雾化装置及含有该雾化装置的电子烟
WO2020134428A1 (zh) 恒功率防干烧电子烟及其控制方法
CN106509998A (zh) 电子雾化装置的温度控制方法和系统
JP7105891B2 (ja) 電気式エアロゾル生成システム
WO2022052611A1 (zh) 恒温控制的电子雾化器
JP2020503895A (ja) 電気式エアロゾル発生システム
WO2022247563A1 (zh) 雾化控制方法、充电设备、雾化设备及电子雾化系统
JP2020503894A (ja) 電気式エアロゾル発生システム
JP2020503897A (ja) 電気式エアロゾル発生システム
JP2022522651A (ja) エアロゾル生成装置及びその動作方法
JP2022509012A (ja) 電子タバコの制御方法及び電子タバコ
JP2020503896A (ja) 電気式エアロゾル発生システム
WO2023083015A1 (zh) 一种加热组件、电子雾化装置以及加热组件的控制方法
CN217989794U (zh) 超声雾化器
US20220400535A1 (en) Circuit for Sensing and Controlling Heater Voltage in Aerosol Generator
CN213663687U (zh) 恒温控制的电子雾化器
TWI773697B (zh) 霧氣產生裝置及使該霧氣產生裝置動作之方法及電腦程式產品
CN114128929B (zh) 一种雾化装置功率控制方法、装置及电子设备
WO2023087224A1 (zh) 一种雾化装置功率控制方法、装置及电子设备
WO2024098867A1 (zh) 电子雾化装置及电子雾化装置的雾化控制方法
US20240196988A1 (en) Inhalation device, substrate, and control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20957096

Country of ref document: EP

Kind code of ref document: A1