WO2022077167A1 - Novel self-aligned half damascene contact scheme to reduce cost for 3d pcm - Google Patents

Novel self-aligned half damascene contact scheme to reduce cost for 3d pcm Download PDF

Info

Publication number
WO2022077167A1
WO2022077167A1 PCT/CN2020/120435 CN2020120435W WO2022077167A1 WO 2022077167 A1 WO2022077167 A1 WO 2022077167A1 CN 2020120435 W CN2020120435 W CN 2020120435W WO 2022077167 A1 WO2022077167 A1 WO 2022077167A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit line
word line
metal
contact hole
word
Prior art date
Application number
PCT/CN2020/120435
Other languages
French (fr)
Inventor
Jun Liu
Original Assignee
Yangtze Advanced Memory Industrial Innovation Center Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangtze Advanced Memory Industrial Innovation Center Co., Ltd filed Critical Yangtze Advanced Memory Industrial Innovation Center Co., Ltd
Priority to CN202080002912.6A priority Critical patent/CN112449724A/en
Priority to PCT/CN2020/120435 priority patent/WO2022077167A1/en
Publication of WO2022077167A1 publication Critical patent/WO2022077167A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • H10B63/24Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes of the Ovonic threshold switching type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5386Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Patterning of the switching material
    • H10N70/063Patterning of the switching material by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices

Definitions

  • the present disclosure generally relates to three-dimensional electronic memories, and more particularly, to reducing multiple metal chemical-mechanical planarizations to reduce costs for 3D X-Point memory manufacturing.
  • Planar memory cells are scaled to smaller sizes by improving process technology, circuit design, programming algorithm, and fabrication process.
  • feature sizes of the memory cells approach a lower limit
  • planar process and fabrication techniques become challenging and costly.
  • memory density for planar memory cells approaches an upper limit.
  • a three-dimensional (3D) memory architecture can address the density limitation in planar memory cells.
  • Phase-change memory is a non-volatile solid-state memory technology that exploits reversible, thermally-assisted switching of phase-change materials like chalcogenide compounds such as GST (Germanium-Antimony-Tellurium) , between states with different electrical resistance.
  • the fundamental storage unit (the “cell” ) can be programmed into a number of different states, or levels, which exhibit different resistance characteristics. Programmable cell-states can be used to represent different data values, permitting storage of information.
  • PCM cells are programmed or erased by thermal self heating to induce an amorphous or crystalline state to denote 1 and 0.
  • Programming current is directly proportional to the size and cross-sectional area of the PCM cell.
  • each cell can be set to one of two states, a “SET” state and a “RESET” state, permitting storage of one bit per cell.
  • RESET state which corresponds to a wholly amorphous state of the phase-change material
  • the electrical resistance of the cell is very high.
  • the phase-change material can be transformed into a low-resistance, fully-crystalline state. This low-resistance state provides the SET state of the cell. If the cell is then heated to a high temperature, above the melting point of the phase-change material, the material reverts to the fully-amorphous RESET state on rapid cooling.
  • Reading and writing of data in PCM cells is achieved by applying appropriate voltages to the phase-change material via a pair of electrodes associated with each cell. In a write operation, the resulting programming signal causes Joule heating of the phase- change material to an appropriate temperature to induce the desired cell-state on cooling. Reading of PCM cells is performed using cell resistance as a metric for cell-state. An applied read voltage causes current to flow through the cell.
  • This current is dependent on resistance of the cell. Measurement of the cell current therefore provides an indication of the programmed cell state. A sufficiently low read voltage is used for this resistance metric to ensure that application of the read voltage does not disturb the programmed cell state. Cell state detection can then be performed by comparing the resistance metric with predefined reference levels. Programming current (I) is typically in the order of 100-200 ⁇ A. The voltage drop may be significant if the write or word line (WL) and bit line (BL) in the cell encounters large resistance.
  • word lines and bit lines are formed of 20nm/20nm L/Spattern.
  • the memory chip is composed of many small memory arrays (tile) , and is at risk from large voltage drops across word lines and bit lines during program operation.
  • bit lines and word lines are formed of tungsten (W) that has an electrical property of relatively high resistivity.
  • W tungsten
  • CMP chemical-mechanical planarization
  • bit lines and word lines have to align with contacts in order to make good electrical contacts. As such, alignment marks are very tight, and tolerances are such that cost is increased.
  • a new self-aligned damascene contact scheme for 3D X-Point Memory is presented allowing a reduced programming current and reduced write line and bit line resistance as compared to current state of the art 3D X-Point Memory cell structures.
  • each stack is composed of a perpendicular word line and a bit line.
  • the memory cell stack is self-aligned to the word line and the bit line.
  • the word lines and the bit lines are formed using material that contains tungsten (W) or cobalt (Co) or rhodium (Rh) or ruthenium (Ru) or iridium (Ir) or molybdenum (Mo) , or a mixture of one or more of these metals with graphene.
  • cobalt shows less resistivity increase with scaling and has an estimated 40%lower resistivity than tungsten for 20nm wide interconnects.
  • the word line or bit line contact holes are formed individually and filled by word line or bit line metals.
  • a method for forming a new self-aligned half damascene contact for 3D X-Point Memory includes forming a cross-point memory array with parallel bit lines and perpendicular word lines. Word line and bit line contact holes are formed. The word line and bit line contact holes are filled by word line or bit line metals.
  • a 3D X-Point Memory Die architecture is disclosed. Quantities of memory arrays (tiles) are separated by small space, typically 20nm in an X-direction and a Y-direction of the array. Tungsten (W) or cobalt (Co) or rhodium (Rh) or ruthenium (Ru) or iridium (Ir) or molybdenum (Mo) , or a mixture of one or more of these metals with graphene, write lines and bit lines electrically access each memory cell.
  • a three-dimensional memory cell structure includes at least one memory cell stack.
  • the memory cell stack has a selector, a phase change memory cell, and a first electrode, a second electrode and a third electrode.
  • the phase change memory cell is disposed between the first and the second electrode, and the selector is disposed between the second and the third electrode.
  • a word line and a bit line are perpendicular to each other and coupled to the memory cell stack.
  • the memory cell stack is self-aligned or overlay controlled with respect to the word line and the bit line.
  • the word line is formed from material containing a least one of tungsten (W) , cobalt (Co) , rhodium (Rh) , ruthenium (Ru) , iridium (Ir) , molybdenum (Mo) , or a mixture of graphene.
  • the bit line formed from material containing a least one of tungsten (W) , cobalt (Co) , rhodium (Rh) , ruthenium (Ru) , iridium (Ir) , molybdenum (Mo) , or a mixture of graphene.
  • At least one word line contact hole or bit line contact hole are formed, wherein the word line contact hole or the bit line contact hole is filled by a word line metal or bit line metal.
  • the word line contact hole or the bit line contact hole is filled by the word line metal or bit line metal and forms a blanket metal film above the word line hole or bit line contact hole.
  • the word line or the bit line is formed with a half-damascene process.
  • the blanket metal film forms the word line or the bit line.
  • the three-dimensional memory includes a substrate, wherein the word line contact hole or the bit line contact hole is first formed in the substrate.
  • a three-dimensional X-Point Memory Die architecture includes a plurality of top memory arrays or tiles containing a first set of phase change memory cells, and a plurality of bottom memory arrays or tiles containing a second set of phase change memory cells.
  • a plurality of bit lines are coupled to the top array and coupled to the bottom array.
  • a plurality of word lines are perpendicular to the bit lines, and comprise a set of top cell word lines coupled to the top array and a set of bottom cell word lines coupled to the bottom array.
  • the top array of memory cells are each separated by a first space defined by adjacent phase change memory cell in the top array, and the bottom array of memory cells are each separated by a second space defined by adjacent phase change memory cell in the bottom array.
  • the word lines are formed from material containing a least one of tungsten (W) , cobalt (Co) , rhodium (Rh) , ruthenium (Ru) , iridium (Ir) , molybdenum (Mo) , or a mixture of graphene
  • the bit lines are formed from material containing a least one of tungsten (W) , cobalt (Co) , rhodium (Rh) , ruthenium (Ru) , iridium (Ir) , molybdenum (Mo) , or a mixture of graphene to electrically access each memory cell.
  • a method of forming a three-dimensional memory comprises forming first a cross point memory array with a parallel bit line and a perpendicular word line, and forming a memory cell stack at a cross point of the word line and the bit line.
  • the memory cell stack is self-aligned.
  • the bit line and word line are formed from material containing a least one of tungsten (W) , cobalt (Co) , rhodium (Rh) , ruthenium (Ru) , iridium (Ir) , molybdenum (Mo) , or a mixture of graphene.
  • the word line and the bit line have reduced resistance and also use reduced voltage to improve programming and increase array size as compared to the bit line and the word line being formed from material containing tungsten (W) .
  • the method includes forming the word line and the bit line by a half-damascene process.
  • a self-aligned half-damascene contact scheme forms contact holes first followed by low resistivity metal deposition to fill the holes and form blanket metal films for the 3D X-Point PCM memory cell. Subsequently bit line and word line can be formed by photolithography and dry etch of metal films.
  • metals used may be of low resistivity, including but not limited to W, Co, Rh, Ru, Ir, Mo, or a mixture with graphene.
  • three metal CMPs can be eliminated.
  • five metal CMPS can be eliminated.
  • WL and BL formed with Co, Rh, Ru are friendly to scaling. There is no interface contact resistance between WL/BL and contacts with the disclosed scheme. Multiple metal CMPs are eliminated to lower cost. Self alignment prevents adjacent metal shorts.
  • Fig. 1 is an isometric view of a prior three-dimensional cross point memory.
  • Figs. 2A and 2B are plan views of a section of a three-dimensional cross point memory showing a bottom cell stack deposition
  • Fig. 2C is a diagram showing abbreviations for layers in the cell stack.
  • Figs. 3A and 3B are plan views of the three-dimensional cross point memory in accordance with the embodiment of Figs. 2A-2D with bottom cell double patterning and encapsulation layer deposition, respectively.
  • Figs. 4A and 4B are plan views of the three-dimensional cross point memory in accordance with the embodiment of Figs. 3A and 3B showing a gap fill layer and chemical mechanical planarization (CMP) , respectively.
  • CMP chemical mechanical planarization
  • Figs. 5A and 5B are plan views of the three-dimensional cross point memory in accordance with the embodiment of Figs. 4A and 4B showing word line contact hole etching and word line metal deposition to fill the contact hole and form a blanket metal film.
  • Figs. 6A and 6B are plan views of the three-dimensional cross point memory in accordance with the embodiment of Figs. 5A and 5B in the Y-direction of the memory, showing word line double patterning and a first partial etching to form parallel lines.
  • Figs. 7A and 7B are plan views of the three-dimensional cross point memory, in the Y-direction of the memory in accordance with the embodiment of Figs. 6A and 6B showing encapsulation, gap filling and polishing the cell stack.
  • Figs. 8A and 8B are plan views of the three-dimensional cross point memory in the Y-direction of the memory in accordance with the embodiment of Fig. 7 showing a second stack memory cell deposition and patterning with top bit line contact hold formation.
  • Figs. 9A and 9B are plan views of the three-dimensional cross point memory in the X-direction and the Y-direction of the memory, respectively, in accordance with the embodiment of Figs. 8A and 8B showing top bit line metal deposition and patterning to form the top cell.
  • references in the specification to “one embodiment, ” “an embodiment, ” “an example embodiment, ” “some embodiments, ” and the like, merely indicate that the embodiment described may include a particular feature, structure, or characteristic. Moreover, such phrases do not necessarily refer to the same embodiment. Further, when a particular feature, structure or characteristic is described in connection with an embodiment, it would be within the knowledge of a person skilled in the pertinent art to affect such feature, structure or characteristic in connection with other embodiments whether or not explicitly described.
  • terminology may be understood at least in part from usage in context.
  • the term “one or more” as used herein, depending at least in part upon context may be used to describe any feature, structure, or characteristic in a singular sense or may be used to describe combinations of features, structures or characteristics in a plural sense.
  • terms, such as “a, ” “an, ” or “the, ” again, may be understood to convey a singular usage or to convey a plural usage, depending at least in part upon context.
  • spatially relative terms such as “beneath, ” “below, ” “lower, ” “above, ” “upper, ” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element (s) or feature (s) as illustrated in the figures.
  • the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures.
  • the apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
  • substrate may refer to any workpiece on which formation or treatment of material layers is desired.
  • Non-limiting examples include silicon, germanium, silica, sapphire, zinc oxide, silicon carbide, aluminum nitride, gallium nitride, Spinel, silicon on oxide, silicon carbide on oxide, glass, gallium nitride, indium nitride, aluminum nitride, glasses, combinations or alloys thereof, and other solid materials.
  • the substrate itself can be patterned. Materials added on top of the substrate can be patterned or can remain unpattern.
  • the substrate can include a wide array of semiconductor materials, including but not limited to silicon, germanium, gallium arsenide, indium phosphide, and the like.
  • the substrate can be made from an electrically non-conductive material, such as a glass, a plastic, or a sapphire wafer.
  • a layer refers to a material portion including a region with a thickness.
  • a layer can extend over the entirety of an underlying or overlying structure, or may have an extent less than the extent of an underlying or overlying structure. Further, a layer can be a region of a homogeneous or inhomogeneous continuous structure that has a thickness less than the thickness of the continuous structure. For example, a layer can be located between any pair of horizontal planes between, or at, a top surface and a bottom surface of the continuous structure. A layer can extend horizontally, vertically, and/or along a tapered surface.
  • a substrate can be a layer, can include one or more layers therein, and/or can have one or more layer thereupon, thereabove, and/or therebelow.
  • a layer can include multiple layers.
  • an interconnect layer can include one or more conductor and contact layers (in which contacts, interconnect lines, and/or vias are formed) and one or more dielectric layers.
  • horizontal as used herein will be understood to be defined as a plane parallel to the plane or surface of the substrate, regardless of the orientation of the substrate.
  • vertical will refer to a direction perpendicular to the horizontal as previously defined. Terms such as “above” , “below” , “bottom” , “top” , “side” (e.g. sidewall) , “higher” , “lower” , “upper” , “over” , and “under” , are defined with respect to the horizontal plane.
  • on means there is direct contact between the elements. The term “above” will allow for intervening elements.
  • a material e.g. a dielectric material or an electrode material
  • crystalline if it exhibits greater than or equal to 30%crystallinity as measured by a technique such as x-ray diffraction (XRD) .
  • XRD x-ray diffraction
  • first, ” “second, ” and other ordinals will be understood to provide differentiation only, rather than imposing any specific spatial or temporal order.
  • oxide of an element
  • nitride of an element
  • the term “Damascene” will be understood to mean a Damascene Process.
  • the underlying silicon oxide insulating layer is patterned with open trenches or channels that the conductor should be located.
  • a thick coating of copper that significantly overfills the trenches is deposited on the insulator, and chemical-mechanical planarization (CMP) is used to remove the copper (known as overburden) that extends above the top of the insulating layer. Copper sunken within the trenches or channels of the insulating layer is not removed and becomes the patterned conductor.
  • Damascene processes generally form and fill a single feature with copper per Damascene stage.
  • Dual-Damascene processes generally form and fill two features with copper at once.
  • the damascene method involves etching line and via features in the dielectric, a silica-based material, then filling those features with barrier and Cu metal. The excess metal is removed by CMP and the wafer is then processed by an aqueous post-CMP cleaning step.
  • a modification of this process is used to decrease the overlap of the source and drain with an island by fabricating the island inlaid in the substrate dielectric.
  • Process steps in fabricating the “half ⁇ damascene” are shown in the following diagram and may be used to form various components in a semiconductor including cross ⁇ tie single electron transistors (SET) .
  • the following steps are a general explanation of the half-damascene process: (a) Si substrate (dark grey) is oxidized (SiO2 in blue) ; (b) a trench for the island is etched through an Electron-beam lithography (EBL) defined polymethylglutarimide (PMGI) mask (yellow) ; (c) metal (light grey, e.g.
  • EBL is the practice of scanning a focused beam of electrons to draw custom shapes on a surface covered with an electron-sensitive film called a resist (also known as “exposing” )
  • CMP chemical mechanical planarization or polishing
  • metal island is formed;
  • ALD dielectric green is deposited;
  • metal source and drain electrodes are deposited; and
  • micrograph of half ⁇ damascene SET gate not shown) .
  • the nearly vertical line is the inlaid island and the slightly wider, nearly horizontal lines are the source and drain.
  • the present technology is applied to a new self-aligned half-damascene contact scheme to reduce costs for 3D X-Point Memory.
  • contact holes are formed first, followed by low resistivity metal deposition to fill the holes and form blanket metal films.
  • the bit line and word line can be formed by photolithography and dry etch of metal films.
  • Metals can be made of low resistivity, such as at least one of tungsten (W) , cobalt (Co) , rhodium (Rh) , ruthenium (Ru) , iridium (Ir) , molybdenum (Mo) , or a mixture of graphene.
  • CMP chemical- physical planarizations
  • a four (4) stack five metal CMPs can be eliminated.
  • Word lines and bit lines formed with cobalt, rhodium, and ruthenium were found to be more acceptable to scaling than materials like tungsten or copper.
  • Cell stack height and aspect ratio is effectively reduced due to thinner metal used or elimination of a metal etching altogether for the word line and bit line formation.
  • Voltage drop is reduced compared to prior art word lines and bit lines using tungsten (W) .
  • Subarray or tile size is increased accordingly to improve array efficiency.
  • FIG. 1A A generalized prior example of a three-dimensional (3D) memory is shown in FIG. 1A.
  • Fig. 1 is an isometric view of a section of three-dimensional cross-point memory.
  • the memory includes a first layer of memory cells 5 and a second layer of memory cells 10. Between the first layer of memory cells 5 and second layer of memory cells is a number of word lines 15 extending in the X direction. Above the first layer of memory cells 5 is a number of first bit lines 20 extending along the Y direction, and below the second layer of memory cells is a number of second bit lines 25 extending along the Y direction.
  • bit lines -memory cells -word lines -memory cells may be repeated along the Z direction to realize a stacked configuration.
  • an individual memory cell may be accessed by selectively activating the word line and bit line corresponding to the cell.
  • FIG. 1 illustrates the general structure of a 3D X-Point Memory cell, and that terminology is used herein to describe the improvement.
  • the word lines, top cell bit lines, and bottom cell bit lines are typically formed according to a 20 nm /20 nm Line /Space (L/S) pattern, and are formed on a silicon substrate.
  • the memory may employ complementary metal-oxide semiconductor (CMOS) technology.
  • CMOS complementary metal-oxide semiconductor
  • FIG. 2A is a plan view of a structure showing forming bit line contact holes 200 in a substrate 201.
  • FIG. 2B illustrates bottom cell stack deposition.
  • the substrate 201 with bit line contact holes 200 have the following layers deposited thereon. Starting from the bottom of the cell stack deposition, deposited in the bit line contact holes 200 of FIG.
  • 2A is the bit line metal 202 and a bit line layer also labeled as 202, a first carbon electrode 209, a selector or an ovonic threshold switch (OTC) 208, a second carbon electrode 207, a phase change memory cell 206, a third carbon electrode 205, and a nitride layer 204.
  • OTC ovonic threshold switch
  • Examples of such materials include metal nitrides such as TiN, TiAlN, TaN, BN, metal oxide nitrides such as TiON, metal silicides such as PtSi, semiconductors such as silicon or germanium (with and without doping) , reduced metal oxides such as TiOx (x ⁇ 2 indicates reduction) , metals such as W, Ni, Co, or carbon based materials.
  • deposition may be accomplished by chemical vapor deposition (CVD) .
  • CVD chemical vapor deposition
  • a vacuum deposition method is used to produce high quality, high performance, and solid materials.
  • the water (substrate) is exposed to one or more volatile precursors, which react and/or decompose on the substrate surface to produce the desired deposit.
  • Layer 202 may be a tungsten based compound and functions as a conductor among other things.
  • the conductor may be made of other materials that have conductive properties.
  • the bit line metal 202 and bit line layer 202 may be formed from material containing at least one of cobalt (Co) , rhodium (Rh) , ruthenium (Ru) , iridium (Ir) , molybdenum (Mo) , or a mixture of graphene.
  • nitride layer 204 referred herein as a nitride layer is shown in FIG. 2C.
  • nitride materials include, but are not limited to, metal nitrides such as TiN, TiAlN, TaN, BN, metal oxide nitrides such as TiON, metal silicides such as PtSi, semiconductors such as silicon or germanium (with and without doping) , reduced metal oxides such as TiOx (x ⁇ 2 indicates reduction) , metals such as W, Ni, Co, or carbon based materials.
  • the carbon electrodes 205, 207 and 209 may be interchangeable and the reference to the terms first, second and third are merely used as a reference to describe adjacent elements.
  • the electrodes can be formed of any convenient electrically-conductive material, typically a metallic material (e.g. a pure metal or a metal compound, alloy or other mixture) or a doped semiconductor material such as silicon.
  • the electrode may be a carbon electrode or any other electrode known to one skilled in the art.
  • the layers shown in FIG. 2C are abbreviated as: W/C/OTS/C/PCM/C/Nit stack as shown in FIG. 2C. These abbreviations refer to tungsten layer, a first carbon electrode, a selector or ovonic threshold switch, a second carbon electrode, a phase change memory cell, a third carbon electrode, and a nitride layer, respectively.
  • Reference numeral 201 refers to the substrate or an oxide layer. Oxide is also denoted as reference numerals 312 and 812 herein as shown in FIG. 2C.
  • FIG. 3A shows exemplary cell stacks 1, 2, and 3. Each stack is made of several layers as previously described in FIGS. 2A-2C.
  • the cell stacks 1, 2, and 3 are similar in function and composition.
  • similar reference numerals to common elements in various figures denote similar material and functions of the elements shown and described.
  • Tungsten 202 is within the substrate 201 and in the cell stack as shown in FIG. 3A.
  • FIG. 3A Also shown in FIG. 3A is a bottom cell double patterning to form a parallel bottom cell in electrical contacts with bottom bit lines.
  • a first partial etch occurs to etch through the top electrode 205 and PCM cell 206 and stops on electrode 207 to form parallel lines.
  • Bottom cell double patterning with first etching or partial etching, depending on the embodiment, may be accomplished for example using hydrogen peroxide or ammonium hydroxide or other methods known by those skilled in the art.
  • FIG. 3B also illustrates deposition of nitride and oxide encapsulation 310, 312 to cover stacks 1, 2, and 3 to protect the exposed electrode 205 and PCM cell 206 in each stack.
  • Encapsulation layer 310 may be composed of silicon nitride or other suitable materials.
  • Stacks 1, 2, and 3 may be further encapsulated with oxide layer 312 including a substrate.
  • FIG. 4A illustrates the second etching to etch through the remaining electrodes 207, 209, ovonic thermal switch (OTC) 208 and conductor 202 to form parallel bottom cell bit lines.
  • Encapsulation layer 410 deposition covers stacks 1, 2, and 3 to protect the now exposed ovonic thermal switch (OTC) 208 in each stack.
  • gap fill 402 covers the stacks 1, 2, and 3.
  • Gap fill 402 may be obtained through atomic layer deposition (ALD) oxide, Spin on Dielectric (SOD) , or flowable chemical vapor deposition (CVD) oxide and is synonymous with gap fill 211, 402, and 802 as shown herein.
  • ALD atomic layer deposition
  • SOD Spin on Dielectric
  • CVD flowable chemical vapor deposition
  • gap fill materials include, but are not limited to, gallium arsenide (GaAs) , indium gallium arsenide (InGaAs) , gallium nitride (GaN) , aluminum nitride (AlN) , cadmium sulfide (CdS) , cadmium selenide (CdSe) , cadmium tellurite (CdTe) , zinc sulfide (ZnS) , lead sulfide (PbS) and lead selenide (PbSe) and cobalt based compounds and any combination thereof.
  • FIG. 4B illustrates oxide/nitride chemical mechanical planarization (CMP) treatment to the stacks 1, 2, and 3. The CMP treatment stops on the carbon electrode 205 as shown in FIG. 4B.
  • CMP oxide/nitride chemical mechanical planarization
  • FIGS. 5A and 5B illustrate a word line contact hole etching step and word line metal deposition step.
  • the word line is formed by a half-damascene process.
  • FIG. 5A shows the gap fill etching, which is stopped at the tungsten 202 filled substrate 201. Wet etching is used to remove a portion of gap fill 402 to fill with word line metal 502. Depending on the implementation, ammonium hydroxide or hydrogen peroxide may be utilized in the etching process.
  • FIG. 5B illustrates the word line metal deposition step, which fills the contact hole 500 and then forms a blanket metal layer 502.
  • the metal layer 502 may be tungsten or any other conductor metal, such as at least one of cobalt (Co) , rhodium (Rh) , ruthenium (Ru) , iridium (Ir) , molybdenum (Mo) , or a mixture of graphene.
  • deposition may be accomplished by chemical vapor deposition (CVD) . In this process a vacuum deposition method is used to produce high quality, high-performance, solid materials. In typical CVD, the wafer (substrate) is exposed to one or more volatile precursors, which react and/or decompose on the substrate surface to produce the desired deposit.
  • layer 202 may be filled before or during the formation of the blanket metal layer 502.
  • FIGS. 6A and 6B illustrate bottom cell word line double patterning of the embodiment shown in FIGS. 5A and 5B to form parallel bottom cell write lines perpendicular to bit lines that are in contact with the bottom cell top carbon electrode 205.
  • FIG. 6A is a cross-section taken from stack 1 of FIG. 5B along line 6A-6A showing the various layers described in FIG. 5B shown in the Y-direction.
  • a first partial etch occurs to etch through the top electrode 205, PCM 206, and stops on electrode 207 to form parallel lines.
  • Etching depending on the embodiment, may be accomplished for example using hydrogen peroxide or ammonium hydroxide, or by other methods known by those skilled in the art.
  • FIGS. 7A and 7B illustrate deposition of nitride and oxide encapsulation 710, 712 to cover stacks 1, 2, and 3 to protect the exposed electrode and nitride-recess liner confined phase change memory cell in each stack.
  • Encapsulation layer 710 may be composed of silicon nitride or other suitable materials.
  • Stacks 1, 2, and 3 may be further encapsulated with oxide layer 712 including a substrate.
  • Bottom cell write line etching then occurs with a second etching to etch through the remaining electrodes 207, 209, ovonic thermal switch 208, and conductor 202 to form parallel bottom cell word lines.
  • Encapsulation layer 714 deposition covering stacks 1, 2, and 3 to protect the now exposed ovonic thermal switch 208 in each stack.
  • gap fill 702 covers the stacks 1, 2, and 3.
  • Gap fill may be obtained through atomic layer deposition oxide, Spin on Dielectric (SOD) or flowable chemical vapor deposition (CVD) oxide.
  • Oxide chemical mechanical polishing (CMP) is done and stopped on conductor 502, as shown in FIG. 7B.
  • conductor 502 may be tungsten (W) or another conductive material.
  • FIGS. 8A and 8B illustrate a top cell stack of memory cell deposition and double patterning with the new cell structure described herein.
  • top section 810 is formed by depositing on bottom section 830 write line metal 202, carbon electrode 209, OTS 208, carbon electrode 207, PCM 206, carbon electrode 205, and nitride layer 204 (not shown) .
  • Top cell and bottom cell write lines 820 separate the two stacks.
  • Oxide/nitride chemical mechanical polishing (CMP) treatment to the stacks 801, 802, and 803. The CMP treatment stops on carbon electrode 205.
  • CMP chemical mechanical polishing
  • the word line may be formed from material containing a least one of tungsten (W) , cobalt (Co) , rhodium (Rh) , ruthenium (Ru) , iridium (Ir) , molybdenum (Mo) , or a mixture of graphene.
  • W tungsten
  • Co cobalt
  • Rh rhodium
  • Ru ruthenium
  • Ir iridium
  • Mo molybdenum
  • gap fill 840 is etched to form top bit line contact hole 850.
  • top bit line contact hole 850 is formed utilizing a half-damascene process.
  • FIGS. 9A and 9B illustrate top bit line metal deposition to fill contact hole 850 and double patterning to form the top cell. Shown is top section 810 and bottom section 830. Top cell and bottom cell write lines 820 separate the two stacks. Bit line metal 902 is deposited to fill bit line contact hole 850 from FIG. 8B and double patterning is performed to form the top cell 810. Depending upon the implementation, the top bit line may be formed from material containing a least one of tungsten (W) , cobalt (Co) , rhodium (Rh) , ruthenium (Ru) , iridium (Ir) , molybdenum (Mo) , or a mixture of graphene. In an embodiment, the top bit line 902 is formed by a half-damascene process.

Abstract

A self aligned half damascene contact scheme to reduce cost for 3D PCM is disclosed. In the proposed contact scheme, contact holes are formed first followed by low resistivity metal deposition to fill the holes and form blanket metal films. Subsequently bit line and word line can be formed by photolithography and dry etch of metal films. Metals can be of low resistivity, such as W, Co, Rh, Ru, Ir, Mo, or a mixture with graphene. As such for 2 stack, three metal CMPs can be eliminated. For 4 stacks, five metal CMPS can be eliminated. WL and BL formed with Co, Rh, Ru are friendly to scaling. There is no interface contact resistance between WL/BL and contacts with the disclosed scheme. Multiple metal CMPs are eliminated to lower cost. Self alignment prevents adjacent metal shorts.

Description

[Title established by the ISA under Rule 37.2] NOVEL SELF-ALIGNED HALF DAMASCENE CONTACT SCHEME TO REDUCE COST FOR 3D PCM TECHNICAL FIELD
The present disclosure generally relates to three-dimensional electronic memories, and more particularly, to reducing multiple metal chemical-mechanical planarizations to reduce costs for 3D X-Point memory manufacturing.
BACKGROUND
Planar memory cells are scaled to smaller sizes by improving process technology, circuit design, programming algorithm, and fabrication process. However, as feature sizes of the memory cells approach a lower limit, planar process and fabrication techniques become challenging and costly. As such, memory density for planar memory cells approaches an upper limit. A three-dimensional (3D) memory architecture can address the density limitation in planar memory cells.
Phase-change memory (PCM) is a non-volatile solid-state memory technology that exploits reversible, thermally-assisted switching of phase-change materials like chalcogenide compounds such as GST (Germanium-Antimony-Tellurium) , between states with different electrical resistance. The fundamental storage unit (the “cell” ) can be programmed into a number of different states, or levels, which exhibit different resistance characteristics. Programmable cell-states can be used to represent different data values, permitting storage of information.
PCM cells are programmed or erased by thermal self heating to induce an amorphous or crystalline state to denote 1 and 0. Programming current is directly proportional to the size and cross-sectional area of the PCM cell. In single-level PCM devices, each cell can be set to one of two states, a “SET” state and a “RESET” state, permitting storage of one bit per cell. In the RESET state, which corresponds to a wholly amorphous state of the phase-change material, the electrical resistance of the cell is very high. By heating to a temperature above its crystallization point and then cooling, the phase-change material can be transformed into a low-resistance, fully-crystalline state. This low-resistance state provides the SET state of the cell. If the cell is then heated to a high temperature, above the melting point of the phase-change material, the material reverts to the fully-amorphous RESET state on rapid cooling.
In addition, large programming current requirements also lend to large program voltage requirements. Reading and writing of data in PCM cells is achieved by applying appropriate voltages to the phase-change material via a pair of electrodes associated with each cell. In a write operation, the resulting programming signal causes Joule heating of the phase- change material to an appropriate temperature to induce the desired cell-state on cooling. Reading of PCM cells is performed using cell resistance as a metric for cell-state. An applied read voltage causes current to flow through the cell.
This current is dependent on resistance of the cell. Measurement of the cell current therefore provides an indication of the programmed cell state. A sufficiently low read voltage is used for this resistance metric to ensure that application of the read voltage does not disturb the programmed cell state. Cell state detection can then be performed by comparing the resistance metric with predefined reference levels. Programming current (I) is typically in the order of 100-200μA. The voltage drop may be significant if the write or word line (WL) and bit line (BL) in the cell encounters large resistance.
In commercial 3D X-point memory, word lines and bit lines are formed of 20nm/20nm L/Spattern. The memory chip is composed of many small memory arrays (tile) , and is at risk from large voltage drops across word lines and bit lines during program operation. Typically 3D X-point memory, bit lines and word lines are formed of tungsten (W) that has an electrical property of relatively high resistivity. Separate contacts are formed for each bit line and word line individually, which requires one contact etch and one contact chemical-mechanical planarization (CMP) . In addition, bit lines and word lines have to align with contacts in order to make good electrical contacts. As such, alignment marks are very tight, and tolerances are such that cost is increased.
Thus there is a need in the art for a self-aligned half damascene contact scheme that will minimize the interface contact resistance between write or word line and bit line and the contacts, eliminate multiple metal CMPs to lower costs, and self-align to prevent adjacent metal shorts.
SUMMARY
The following summary is included in order to provide a basic understanding of aspects and features of the disclosure. This summary is not an extensive overview and as such it is not intended to particularly identify key or critical elements or to delineate the scope of the disclosure. Its sole purpose is to present concepts in a summarized format.
In one aspect, a new self-aligned damascene contact scheme for 3D X-Point Memory is presented allowing a reduced programming current and reduced write line and bit line resistance as compared to current state of the art 3D X-Point Memory cell structures. In the present new cell structure, each stack is composed of a perpendicular word line and a bit line. The memory cell stack is self-aligned to the word line and the bit line. The word lines and the bit lines are formed using material that contains tungsten (W) or cobalt (Co) or rhodium (Rh) or ruthenium (Ru) or iridium (Ir) or molybdenum (Mo) , or a mixture of one or more of these metals  with graphene. These materials are good candidates to reduce resistance for several purposes including scaling of the memory array. Compared with tungsten, cobalt, for example, shows less resistivity increase with scaling and has an estimated 40%lower resistivity than tungsten for 20nm wide interconnects. The word line or bit line contact holes are formed individually and filled by word line or bit line metals.
In another aspect, a method for forming a new self-aligned half damascene contact for 3D X-Point Memory is disclosed. The method includes forming a cross-point memory array with parallel bit lines and perpendicular word lines. Word line and bit line contact holes are formed. The word line and bit line contact holes are filled by word line or bit line metals.
In another aspect, a 3D X-Point Memory Die architecture is disclosed. Quantities of memory arrays (tiles) are separated by small space, typically 20nm in an X-direction and a Y-direction of the array. Tungsten (W) or cobalt (Co) or rhodium (Rh) or ruthenium (Ru) or iridium (Ir) or molybdenum (Mo) , or a mixture of one or more of these metals with graphene, write lines and bit lines electrically access each memory cell.
In accordance with an aspect, a three-dimensional memory cell structure includes at least one memory cell stack. The memory cell stack has a selector, a phase change memory cell, and a first electrode, a second electrode and a third electrode. The phase change memory cell is disposed between the first and the second electrode, and the selector is disposed between the second and the third electrode. A word line and a bit line are perpendicular to each other and coupled to the memory cell stack. The memory cell stack is self-aligned or overlay controlled with respect to the word line and the bit line. The word line is formed from material containing a least one of tungsten (W) , cobalt (Co) , rhodium (Rh) , ruthenium (Ru) , iridium (Ir) , molybdenum (Mo) , or a mixture of graphene. The bit line formed from material containing a least one of tungsten (W) , cobalt (Co) , rhodium (Rh) , ruthenium (Ru) , iridium (Ir) , molybdenum (Mo) , or a mixture of graphene. At least one word line contact hole or bit line contact hole are formed, wherein the word line contact hole or the bit line contact hole is filled by a word line metal or bit line metal.
In some arrangements, the word line contact hole or the bit line contact hole is filled by the word line metal or bit line metal and forms a blanket metal film above the word line hole or bit line contact hole.
In some arrangements, the word line or the bit line is formed with a half-damascene process.
In some arrangements, the blanket metal film forms the word line or the bit line.
In some arrangements, the three-dimensional memory includes a substrate, wherein the word line contact hole or the bit line contact hole is first formed in the substrate.
In another aspect, a three-dimensional X-Point Memory Die architecture includes a plurality of top memory arrays or tiles containing a first set of phase change memory cells, and a plurality of bottom memory arrays or tiles containing a second set of phase change memory cells. A plurality of bit lines are coupled to the top array and coupled to the bottom array. A plurality of word lines are perpendicular to the bit lines, and comprise a set of top cell word lines coupled to the top array and a set of bottom cell word lines coupled to the bottom array. The top array of memory cells are each separated by a first space defined by adjacent phase change memory cell in the top array, and the bottom array of memory cells are each separated by a second space defined by adjacent phase change memory cell in the bottom array. The word lines are formed from material containing a least one of tungsten (W) , cobalt (Co) , rhodium (Rh) , ruthenium (Ru) , iridium (Ir) , molybdenum (Mo) , or a mixture of graphene, and the bit lines are formed from material containing a least one of tungsten (W) , cobalt (Co) , rhodium (Rh) , ruthenium (Ru) , iridium (Ir) , molybdenum (Mo) , or a mixture of graphene to electrically access each memory cell.
In accordance with in aspect, a method of forming a three-dimensional memory comprises forming first a cross point memory array with a parallel bit line and a perpendicular word line, and forming a memory cell stack at a cross point of the word line and the bit line. The memory cell stack is self-aligned. The bit line and word line are formed from material containing a least one of tungsten (W) , cobalt (Co) , rhodium (Rh) , ruthenium (Ru) , iridium (Ir) , molybdenum (Mo) , or a mixture of graphene. The word line and the bit line have reduced resistance and also use reduced voltage to improve programming and increase array size as compared to the bit line and the word line being formed from material containing tungsten (W) .
In some arrangements, the method includes forming the word line and the bit line by a half-damascene process.
In another aspect, a self-aligned half-damascene contact scheme forms contact holes first followed by low resistivity metal deposition to fill the holes and form blanket metal films for the 3D X-Point PCM memory cell. Subsequently bit line and word line can be formed by photolithography and dry etch of metal films. Again, metals used, depending on the embodiment, may be of low resistivity, including but not limited to W, Co, Rh, Ru, Ir, Mo, or a mixture with graphene. As such for 2 stack, three metal CMPs can be eliminated. For 4 stacks, five metal CMPS can be eliminated. WL and BL formed with Co, Rh, Ru are friendly to scaling. There is no interface contact resistance between WL/BL and contacts with the disclosed scheme. Multiple metal CMPs are eliminated to lower cost. Self alignment prevents adjacent metal shorts.
BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing aspects, features and advantages of the present disclosure will be further appreciated when considered with reference to the following description of exemplary embodiments and accompanying drawings, wherein like reference numerals represent like elements. In describing the exemplary embodiments of the present disclosure illustrated in the drawings, specific terminology may be used for the sake of clarity.
However, the aspects of the present disclosure are not intended to be limited to the specific terms used.
Fig. 1 is an isometric view of a prior three-dimensional cross point memory.
Figs. 2A and 2B are plan views of a section of a three-dimensional cross point memory showing a bottom cell stack deposition, and Fig. 2C is a diagram showing abbreviations for layers in the cell stack.
Figs. 3A and 3B are plan views of the three-dimensional cross point memory in accordance with the embodiment of Figs. 2A-2D with bottom cell double patterning and encapsulation layer deposition, respectively.
Figs. 4A and 4B are plan views of the three-dimensional cross point memory in accordance with the embodiment of Figs. 3A and 3B showing a gap fill layer and chemical mechanical planarization (CMP) , respectively.
Figs. 5A and 5B are plan views of the three-dimensional cross point memory in accordance with the embodiment of Figs. 4A and 4B showing word line contact hole etching and word line metal deposition to fill the contact hole and form a blanket metal film.
Figs. 6A and 6B are plan views of the three-dimensional cross point memory in accordance with the embodiment of Figs. 5A and 5B in the Y-direction of the memory, showing word line double patterning and a first partial etching to form parallel lines.
Figs. 7A and 7B are plan views of the three-dimensional cross point memory, in the Y-direction of the memory in accordance with the embodiment of Figs. 6A and 6B showing encapsulation, gap filling and polishing the cell stack.
Figs. 8A and 8B are plan views of the three-dimensional cross point memory in the Y-direction of the memory in accordance with the embodiment of Fig. 7 showing a second stack memory cell deposition and patterning with top bit line contact hold formation.
Figs. 9A and 9B are plan views of the three-dimensional cross point memory in the X-direction and the Y-direction of the memory, respectively, in accordance with the embodiment of Figs. 8A and 8B showing top bit line metal deposition and patterning to form the top cell.
DETAILED DESCRIPTION
Although specific configurations and arrangements are discussed, it should be understood that this is done for illustrative purposes only. A person skilled in the pertinent art will recognize that other configurations and arrangements can be used without departing from the spirit and scope of the present disclosure. It will be apparent to a person skilled in the pertinent art that the present disclosure can also be employed in a variety of other applications.
It is noted that references in the specification to “one embodiment, ” “an embodiment, ” “an example embodiment, ” “some embodiments, ” and the like, merely indicate that the embodiment described may include a particular feature, structure, or characteristic. Moreover, such phrases do not necessarily refer to the same embodiment. Further, when a particular feature, structure or characteristic is described in connection with an embodiment, it would be within the knowledge of a person skilled in the pertinent art to affect such feature, structure or characteristic in connection with other embodiments whether or not explicitly described.
In general, terminology may be understood at least in part from usage in context. For example, the term “one or more” as used herein, depending at least in part upon context, may be used to describe any feature, structure, or characteristic in a singular sense or may be used to describe combinations of features, structures or characteristics in a plural sense. Similarly, terms, such as “a, ” “an, ” or “the, ” again, may be understood to convey a singular usage or to convey a plural usage, depending at least in part upon context.
It should be readily understood that the meaning of “on, ” “above, ” and “over” in the present disclosure should be interpreted in the broadest manner such that “on” not only means “directly on” something but also includes the meaning of “on” something with an intermediate feature or a layer there between, and that “above” or “over” not only means the meaning of “above” or “over” something but can also include the meaning it is “above” or “over” something with no intermediate feature or layer there between (i.e., directly on something) .
Further, spatially relative terms, such as “beneath, ” “below, ” “lower, ” “above, ” “upper, ” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element (s) or feature (s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
The term “substrate” as used herein may refer to any workpiece on which formation or treatment of material layers is desired. Non-limiting examples include silicon,  germanium, silica, sapphire, zinc oxide, silicon carbide, aluminum nitride, gallium nitride, Spinel, silicon on oxide, silicon carbide on oxide, glass, gallium nitride, indium nitride, aluminum nitride, glasses, combinations or alloys thereof, and other solid materials. The substrate itself can be patterned. Materials added on top of the substrate can be patterned or can remain unpattern. Furthermore, the substrate can include a wide array of semiconductor materials, including but not limited to silicon, germanium, gallium arsenide, indium phosphide, and the like. Alternatively, the substrate can be made from an electrically non-conductive material, such as a glass, a plastic, or a sapphire wafer.
As used herein, the term “layer” refers to a material portion including a region with a thickness. A layer can extend over the entirety of an underlying or overlying structure, or may have an extent less than the extent of an underlying or overlying structure. Further, a layer can be a region of a homogeneous or inhomogeneous continuous structure that has a thickness less than the thickness of the continuous structure. For example, a layer can be located between any pair of horizontal planes between, or at, a top surface and a bottom surface of the continuous structure. A layer can extend horizontally, vertically, and/or along a tapered surface. A substrate can be a layer, can include one or more layers therein, and/or can have one or more layer thereupon, thereabove, and/or therebelow. A layer can include multiple layers. For example, an interconnect layer can include one or more conductor and contact layers (in which contacts, interconnect lines, and/or vias are formed) and one or more dielectric layers.
The term “horizontal” as used herein will be understood to be defined as a plane parallel to the plane or surface of the substrate, regardless of the orientation of the substrate. The term “vertical” will refer to a direction perpendicular to the horizontal as previously defined. Terms such as “above” , “below” , “bottom” , “top” , “side” (e.g. sidewall) , “higher” , “lower” , “upper” , “over” , and “under” , are defined with respect to the horizontal plane. The term “on” means there is direct contact between the elements. The term “above” will allow for intervening elements.
As used herein, a material (e.g. a dielectric material or an electrode material) will be considered to be “crystalline” if it exhibits greater than or equal to 30%crystallinity as measured by a technique such as x-ray diffraction (XRD) . Amorphous material is considered non-crystalline.
As used herein, the terms “first, ” “second, ” and other ordinals will be understood to provide differentiation only, rather than imposing any specific spatial or temporal order.
As used herein, the term “oxide” (of an element) will be understood to include additional components besides the element and oxygen, including but not limited to a dopant or  alloy. As used herein, the term “nitride” (of an element) will be understood to include additional components besides the element and nitrogen, including but not limited to a dopant or alloy.
As used herein, the term “Damascene” will be understood to mean a Damascene Process. In this process, the underlying silicon oxide insulating layer is patterned with open trenches or channels that the conductor should be located. A thick coating of copper that significantly overfills the trenches is deposited on the insulator, and chemical-mechanical planarization (CMP) is used to remove the copper (known as overburden) that extends above the top of the insulating layer. Copper sunken within the trenches or channels of the insulating layer is not removed and becomes the patterned conductor. Damascene processes generally form and fill a single feature with copper per Damascene stage. Dual-Damascene processes generally form and fill two features with copper at once. So generally, the damascene method involves etching line and via features in the dielectric, a silica-based material, then filling those features with barrier and Cu metal. The excess metal is removed by CMP and the wafer is then processed by an aqueous post-CMP cleaning step.
A modification of this process, known as “half damascene” fabrication, is used to decrease the overlap of the source and drain with an island by fabricating the island inlaid in the substrate dielectric. Process steps in fabricating the “half‐damascene” are shown in the following diagram and may be used to form various components in a semiconductor including cross‐tie single electron transistors (SET) . The following steps are a general explanation of the half-damascene process: (a) Si substrate (dark grey) is oxidized (SiO2 in blue) ; (b) a trench for the island is etched through an Electron-beam lithography (EBL) defined polymethylglutarimide (PMGI) mask (yellow) ; (c) metal (light grey, e.g. Ni) is deposited; EBL is the practice of scanning a focused beam of electrons to draw custom shapes on a surface covered with an electron-sensitive film called a resist (also known as “exposing” ) (d) the chemical mechanical planarization or polishing (CMP) step is performed and metal island is formed; (e) ALD dielectric (green) is deposited; (f) metal source and drain electrodes (light grey) are deposited; and (g) micrograph of half‐damascene SET (gate not shown) . The nearly vertical line is the inlaid island and the slightly wider, nearly horizontal lines are the source and drain.
The present technology is applied to a new self-aligned half-damascene contact scheme to reduce costs for 3D X-Point Memory. In the proposed new contact scheme, contact holes are formed first, followed by low resistivity metal deposition to fill the holes and form blanket metal films. Subsequently, the bit line and word line can be formed by photolithography and dry etch of metal films. Metals can be made of low resistivity, such as at least one of tungsten (W) , cobalt (Co) , rhodium (Rh) , ruthenium (Ru) , iridium (Ir) , molybdenum (Mo) , or a mixture of graphene. As such, for a two (2) stack, for example, three (3) metal chemical- physical planarizations (CMP) can be eliminated. For a four (4) stack, five metal CMPs can be eliminated. Word lines and bit lines formed with cobalt, rhodium, and ruthenium were found to be more acceptable to scaling than materials like tungsten or copper. Cell stack height and aspect ratio is effectively reduced due to thinner metal used or elimination of a metal etching altogether for the word line and bit line formation. Voltage drop is reduced compared to prior art word lines and bit lines using tungsten (W) . Subarray or tile size is increased accordingly to improve array efficiency. Compared with tungsten, cobalt shows less resistivity increase with scaling and has an estimated 40%lower resistivity than tungsten for 20-nm-wide interconnects. Thus the use of Co, Rh, Ru, for example, are good candidates to reduce resistance in word lines and bit lines in 3D X-Point Memory for scaling purposes. No interface contact resistance is present between the write line/bit line and contacts. Multiple metal chemical-physical planarizations are eliminated, thus lowering manufacturing costs. Bit lines and word lines are self-aligned with the contacts to prevent adjacent metal shorts.
The present technology is applied in the field of three-dimensional memory. A generalized prior example of a three-dimensional (3D) memory is shown in FIG. 1A. In particular, Fig. 1 is an isometric view of a section of three-dimensional cross-point memory. The memory includes a first layer of memory cells 5 and a second layer of memory cells 10. Between the first layer of memory cells 5 and second layer of memory cells is a number of word lines 15 extending in the X direction. Above the first layer of memory cells 5 is a number of first bit lines 20 extending along the Y direction, and below the second layer of memory cells is a number of second bit lines 25 extending along the Y direction. Further, as can be seen from the figure, the sequential structure of bit lines -memory cells -word lines -memory cells may be repeated along the Z direction to realize a stacked configuration. In any event, an individual memory cell may be accessed by selectively activating the word line and bit line corresponding to the cell. Reference will be made to X and Y directions utilizing the directional model shown in FIG. 1.
FIG. 1 illustrates the general structure of a 3D X-Point Memory cell, and that terminology is used herein to describe the improvement. The word lines, top cell bit lines, and bottom cell bit lines are typically formed according to a 20 nm /20 nm Line /Space (L/S) pattern, and are formed on a silicon substrate. Moreover, the memory may employ complementary metal-oxide semiconductor (CMOS) technology.
As stated above, there is an issue of separate contacts are formed for each bit line and word line individually, which requires one contact etch and one contact chemical-mechanical planarization (CMP) . Bit lines and word lines have to align with contacts in order to make good electrical contacts. Moreover, alignment marks are very tight. The present  disclosure addresses this issue and provides reducing costs for the manufacture of a 3D X-Point Memory by eliminating multiple CMPs. Adverting to FIG. 2A is a plan view of a structure showing forming bit line contact holes 200 in a substrate 201. FIG. 2B illustrates bottom cell stack deposition. The substrate 201 with bit line contact holes 200 have the following layers deposited thereon. Starting from the bottom of the cell stack deposition, deposited in the bit line contact holes 200 of FIG. 2A is the bit line metal 202 and a bit line layer also labeled as 202, a first carbon electrode 209, a selector or an ovonic threshold switch (OTC) 208, a second carbon electrode 207, a phase change memory cell 206, a third carbon electrode 205, and a nitride layer 204. Examples of such materials include metal nitrides such as TiN, TiAlN, TaN, BN, metal oxide nitrides such as TiON, metal silicides such as PtSi, semiconductors such as silicon or germanium (with and without doping) , reduced metal oxides such as TiOx (x<2 indicates reduction) , metals such as W, Ni, Co, or carbon based materials. Typically, deposition may be accomplished by chemical vapor deposition (CVD) . In this process, a vacuum deposition method is used to produce high quality, high performance, and solid materials. In typical CVD, the water (substrate) is exposed to one or more volatile precursors, which react and/or decompose on the substrate surface to produce the desired deposit.
Layer 202 may be a tungsten based compound and functions as a conductor among other things. Depending on the embodiment, the conductor may be made of other materials that have conductive properties. Accordingly, depending upon the implementation, the bit line metal 202 and bit line layer 202 may be formed from material containing at least one of cobalt (Co) , rhodium (Rh) , ruthenium (Ru) , iridium (Ir) , molybdenum (Mo) , or a mixture of graphene.
Layer 204 referred herein as a nitride layer is shown in FIG. 2C. Examples of such nitride materials include, but are not limited to, metal nitrides such as TiN, TiAlN, TaN, BN, metal oxide nitrides such as TiON, metal silicides such as PtSi, semiconductors such as silicon or germanium (with and without doping) , reduced metal oxides such as TiOx (x<2 indicates reduction) , metals such as W, Ni, Co, or carbon based materials.
Again, as previously stated the use of the terms first, second and third is to provide differentiation only, rather than imposing any specific spatial or temporal order. The  carbon electrodes  205, 207 and 209 may be interchangeable and the reference to the terms first, second and third are merely used as a reference to describe adjacent elements. The electrodes can be formed of any convenient electrically-conductive material, typically a metallic material (e.g. a pure metal or a metal compound, alloy or other mixture) or a doped semiconductor material such as silicon. Depending on the embodiment, the electrode may be a carbon electrode or any other electrode known to one skilled in the art.
The layers shown in FIG. 2C are abbreviated as: W/C/OTS/C/PCM/C/Nit stack as shown in FIG. 2C. These abbreviations refer to tungsten layer, a first carbon electrode, a selector or ovonic threshold switch, a second carbon electrode, a phase change memory cell, a third carbon electrode, and a nitride layer, respectively. Reference numeral 201 refers to the substrate or an oxide layer. Oxide is also denoted as reference numerals 312 and 812 herein as shown in FIG. 2C.
FIG. 3A shows  exemplary cell stacks  1, 2, and 3. Each stack is made of several layers as previously described in FIGS. 2A-2C. The cell stacks 1, 2, and 3 are similar in function and composition. For the description of materials disclosed herein, similar reference numerals to common elements in various figures denote similar material and functions of the elements shown and described. Tungsten 202 is within the substrate 201 and in the cell stack as shown in FIG. 3A.
Also shown in FIG. 3A is a bottom cell double patterning to form a parallel bottom cell in electrical contacts with bottom bit lines. A first partial etch occurs to etch through the top electrode 205 and PCM cell 206 and stops on electrode 207 to form parallel lines. Bottom cell double patterning with first etching or partial etching, depending on the embodiment, may be accomplished for example using hydrogen peroxide or ammonium hydroxide or other methods known by those skilled in the art. FIG. 3B also illustrates deposition of nitride and  oxide encapsulation  310, 312 to cover  stacks  1, 2, and 3 to protect the exposed electrode 205 and PCM cell 206 in each stack. Encapsulation layer 310 may be composed of silicon nitride or other suitable materials.  Stacks  1, 2, and 3 may be further encapsulated with oxide layer 312 including a substrate.
FIG. 4A illustrates the second etching to etch through the remaining  electrodes  207, 209, ovonic thermal switch (OTC) 208 and conductor 202 to form parallel bottom cell bit lines. Encapsulation layer 410 deposition covers  stacks  1, 2, and 3 to protect the now exposed ovonic thermal switch (OTC) 208 in each stack. After encapsulation, gap fill 402 covers the  stacks  1, 2, and 3. Gap fill 402 may be obtained through atomic layer deposition (ALD) oxide, Spin on Dielectric (SOD) , or flowable chemical vapor deposition (CVD) oxide and is synonymous with  gap fill  211, 402, and 802 as shown herein. Examples of gap fill materials, include, but are not limited to, gallium arsenide (GaAs) , indium gallium arsenide (InGaAs) , gallium nitride (GaN) , aluminum nitride (AlN) , cadmium sulfide (CdS) , cadmium selenide (CdSe) , cadmium tellurite (CdTe) , zinc sulfide (ZnS) , lead sulfide (PbS) and lead selenide (PbSe) and cobalt based compounds and any combination thereof. FIG. 4B illustrates oxide/nitride chemical mechanical planarization (CMP) treatment to the  stacks  1, 2, and 3. The CMP treatment stops on the carbon electrode 205 as shown in FIG. 4B.
FIGS. 5A and 5B illustrate a word line contact hole etching step and word line metal deposition step. In a preferred embodiment, the word line is formed by a half-damascene process. FIG. 5A shows the gap fill etching, which is stopped at the tungsten 202 filled substrate 201. Wet etching is used to remove a portion of gap fill 402 to fill with word line metal 502. Depending on the implementation, ammonium hydroxide or hydrogen peroxide may be utilized in the etching process. FIG. 5B illustrates the word line metal deposition step, which fills the contact hole 500 and then forms a blanket metal layer 502. The metal layer 502 may be tungsten or any other conductor metal, such as at least one of cobalt (Co) , rhodium (Rh) , ruthenium (Ru) , iridium (Ir) , molybdenum (Mo) , or a mixture of graphene. Typically deposition may be accomplished by chemical vapor deposition (CVD) . In this process a vacuum deposition method is used to produce high quality, high-performance, solid materials. In typical CVD, the wafer (substrate) is exposed to one or more volatile precursors, which react and/or decompose on the substrate surface to produce the desired deposit. Depending upon the embodiment, layer 202 may be filled before or during the formation of the blanket metal layer 502.
FIGS. 6A and 6B illustrate bottom cell word line double patterning of the embodiment shown in FIGS. 5A and 5B to form parallel bottom cell write lines perpendicular to bit lines that are in contact with the bottom cell top carbon electrode 205. FIG. 6A is a cross-section taken from stack 1 of FIG. 5B along line 6A-6A showing the various layers described in FIG. 5B shown in the Y-direction. As shown in FIG. 6B, a first partial etch occurs to etch through the top electrode 205, PCM 206, and stops on electrode 207 to form parallel lines. Etching, depending on the embodiment, may be accomplished for example using hydrogen peroxide or ammonium hydroxide, or by other methods known by those skilled in the art.
FIGS. 7A and 7B illustrate deposition of nitride and  oxide encapsulation  710, 712 to cover  stacks  1, 2, and 3 to protect the exposed electrode and nitride-recess liner confined phase change memory cell in each stack. Encapsulation layer 710 may be composed of silicon nitride or other suitable materials.  Stacks  1, 2, and 3 may be further encapsulated with oxide layer 712 including a substrate. Bottom cell write line etching then occurs with a second etching to etch through the remaining  electrodes  207, 209, ovonic thermal switch 208, and conductor 202 to form parallel bottom cell word lines. Encapsulation layer 714  deposition covering stacks  1, 2, and 3 to protect the now exposed ovonic thermal switch 208 in each stack. After encapsulation, gap fill 702 covers the  stacks  1, 2, and 3. Gap fill may be obtained through atomic layer deposition oxide, Spin on Dielectric (SOD) or flowable chemical vapor deposition (CVD) oxide. Oxide chemical mechanical polishing (CMP) is done and stopped on conductor 502, as shown in FIG. 7B. Again depending on the embodiment conductor 502 may be tungsten (W) or another conductive material.
FIGS. 8A and 8B illustrate a top cell stack of memory cell deposition and double patterning with the new cell structure described herein. As shown in the X direction in FIG. 8A, top section 810 is formed by depositing on bottom section 830 write line metal 202, carbon electrode 209, OTS 208, carbon electrode 207, PCM 206, carbon electrode 205, and nitride layer 204 (not shown) . Top cell and bottom cell write lines 820 separate the two stacks. Oxide/nitride chemical mechanical polishing (CMP) treatment to the  stacks  801, 802, and 803. The CMP treatment stops on carbon electrode 205. Again, depending on the implementation, the word line may be formed from material containing a least one of tungsten (W) , cobalt (Co) , rhodium (Rh) , ruthenium (Ru) , iridium (Ir) , molybdenum (Mo) , or a mixture of graphene. As shown in the Y direction in FIG. 8B, gap fill 840 is etched to form top bit line contact hole 850. In an embodiment, top bit line contact hole 850 is formed utilizing a half-damascene process.
FIGS. 9A and 9B illustrate top bit line metal deposition to fill contact hole 850 and double patterning to form the top cell. Shown is top section 810 and bottom section 830. Top cell and bottom cell write lines 820 separate the two stacks. Bit line metal 902 is deposited to fill bit line contact hole 850 from FIG. 8B and double patterning is performed to form the top cell 810. Depending upon the implementation, the top bit line may be formed from material containing a least one of tungsten (W) , cobalt (Co) , rhodium (Rh) , ruthenium (Ru) , iridium (Ir) , molybdenum (Mo) , or a mixture of graphene. In an embodiment, the top bit line 902 is formed by a half-damascene process.
Most of the foregoing alternative examples are not mutually exclusive, but may be implemented in various combinations to achieve unique advantages. As these and other variations and combinations of the features discussed above may be utilized without departing from the subject matter defined by the claims, the foregoing description of the embodiments should be taken by way of illustration rather than by way of limitation of the subject matter defined by the claims. As an example, the preceding operations do not have to be performed in the precise order described above. Rather, various steps can be handled in a different order, such as reversed, or simultaneously. Steps can also be omitted unless otherwise stated. In addition, the provision of the examples described herein, as well as clauses phrased as "such as, " "including" and the like, should not be interpreted as limiting the subject matter of the claims to the specific examples; rather, the examples are intended to illustrate only one of many possible embodiments. Further, the same reference numbers in different drawings may identify the same or similar elements.
Although the present disclosure herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present disclosure. It is therefore to be understood that  numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present disclosure as defined by the appended claims.

Claims (12)

  1. A three-dimensional memory cell structure, comprising:
    at least one memory cell stack, the memory cell stack having a selector, a phase change memory cell, and a first electrode, a second electrode and a third electrode; the phase change memory cell disposed between the first and the second electrode, and the selector disposed between the second and the third electrode;
    a word line and a bit line perpendicular to each other and coupled to the memory cell stack, wherein the memory cell stack is self-aligned with respect to the word line and the bit line;
    the word line formed from material containing a least one of tungsten (W) , cobalt (Co) , rhodium (Rh) , ruthenium (Ru) , iridium (Ir) , molybdenum (Mo) , or a mixture of one or more of these metals with graphene;
    the bit line formed from material containing a least one of tungsten (W) , cobalt (Co) , rhodium (Rh) , ruthenium (Ru) , iridium (Ir) , molybdenum (Mo) , or a mixture of one or more of these metals with graphene;
    at least one word line contact hole or bit line contact hole; and
    wherein, the word line contact hole or the bit line contact hole is filled by a word line metal or bit line metal.
  2. The three-dimensional memory according to claim 1, wherein the word line contact hole or the bit line contact hole is filled by the word line metal or bit line metal and forms a blanket metal film above the word line hole or bit line contact hole.
  3. The three-dimensional memory according to claim 2, wherein the word line or the bit line is formed with a half-damascene process.
  4. The three-dimensional memory according to claim 2, wherein the blanket metal film forms the word line or the bit line.
  5. The three-dimensional memory according to claim 1, further comprising a substrate and wherein the word line contact hole or bit line contact hole is first formed in the substrate.
  6. A three-dimensional Memory Die architecture, comprising:
    a plurality of top memory arrays or tiles containing a first set of phase change memory cells;
    a plurality of bottom memory arrays or tiles containing a second set of phase change memory cells;
    a plurality of bit lines coupled to the top array and coupled to the bottom array;
    a plurality of word lines perpendicular to the bit lines, and comprising a set of top cell word lines coupled to the top array and a set of bottom cell word lines coupled to the bottom array;
    the top array of memory cells are each separated by a first space defined by adjacent phase change memory cell in the top array, and the bottom array of memory cells are each separated by a second space defined by adjacent phase change memory cell in the bottom array, and
    wherein, the word lines are formed from material containing a least one of tungsten (W) , cobalt (Co) , rhodium (Rh) , or ruthenium (Ru) , iridium (Ir) , molybdenum (Mo) , or a mixture of one or more of these metals with graphene, and the bit lines are formed from material containing a least one of tungsten (W) , cobalt (Co) , rhodium (Rh) , or ruthenium (Ru) , iridium (Ir) , molybdenum (Mo) , or a mixture of one or more of these metals with graphene, to electrically access each memory cell.
  7. The three-dimensional architecture according to claim 8, wherein the top and the bottom word lines are coupled thereto.
  8. The three-dimensional architecture, wherein the first space and second space are about 20nm in an X-direction and about 20nm in a Y-direction.
  9. A method of forming a three-dimensional memory comprising:
    forming first a word line contact hole and bit line contact hole in a substrate;
    depositing word line metal in the word line contact hole and bit line metal in the bit line contact hole to fill the contact holes and form a blanket word line metal film and a blanket bit line metal film;
    forming a cross point memory array with a parallel bit line and a perpendicular word line; and
    forming a memory cell stack at a cross point of the word line and the bit line, wherein the memory cell stack is self-aligned;
    wherein the bit line and word line metals are formed from material containing a least one of tungsten (W) , cobalt (Co) , rhodium (Rh) , ruthenium (Ru) , iridium (Ir) , molybdenum (Mo) , or a mixture of one or more of these metals with graphene, for the word line and the bit line to have reduced resistance and use reduced voltage and to improve programming and increase array size as compared to the bit line and the word line being formed.
  10. The method according to claim 9, wherein the blanket word line metal film and a blanket bit line metal film are formed with a half-damascene process.
  11. The method according to claim 9, further comprising forming the bit line and word line from the bit line blanket film and word line blanket film.
  12. The method according to claim 9, wherein the word line and the bit line are formed by etching the cell stack with phase vapor deposition with material containing the least one of tungsten (W) , cobalt (Co) , rhodium (Rh) , ruthenium (Ru) , iridium (Ir) , molybdenum (Mo) , or a mixture with graphene.
PCT/CN2020/120435 2020-10-12 2020-10-12 Novel self-aligned half damascene contact scheme to reduce cost for 3d pcm WO2022077167A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080002912.6A CN112449724A (en) 2020-10-12 2020-10-12 Novel self-aligned semi-damascene contact scheme for reducing cost for 3D PCM
PCT/CN2020/120435 WO2022077167A1 (en) 2020-10-12 2020-10-12 Novel self-aligned half damascene contact scheme to reduce cost for 3d pcm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/120435 WO2022077167A1 (en) 2020-10-12 2020-10-12 Novel self-aligned half damascene contact scheme to reduce cost for 3d pcm

Publications (1)

Publication Number Publication Date
WO2022077167A1 true WO2022077167A1 (en) 2022-04-21

Family

ID=74739763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120435 WO2022077167A1 (en) 2020-10-12 2020-10-12 Novel self-aligned half damascene contact scheme to reduce cost for 3d pcm

Country Status (2)

Country Link
CN (1) CN112449724A (en)
WO (1) WO2022077167A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1479376A (en) * 2002-08-28 2004-03-03 旺宏电子股份有限公司 Structure of storage device and its manufacturing method
US20190140022A1 (en) * 2017-11-09 2019-05-09 Samsung Electronics Co., Ltd. Memory devices having crosspoint memory arrays therein with multi-level word line and bit line structures
US20190362785A1 (en) * 2014-04-30 2019-11-28 Micron Technology, Inc. Variable resistance memory stack with treated sidewalls
CN110914994A (en) * 2019-10-14 2020-03-24 长江存储科技有限责任公司 Method for forming three-dimensional phase change memory device
CN110914907A (en) * 2019-10-14 2020-03-24 长江存储科技有限责任公司 Three-dimensional phase change memory device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9252153B1 (en) * 2014-09-22 2016-02-02 Macronix International Co., Ltd. Method of word-line formation by semi-damascene process with thin protective conductor layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1479376A (en) * 2002-08-28 2004-03-03 旺宏电子股份有限公司 Structure of storage device and its manufacturing method
US20190362785A1 (en) * 2014-04-30 2019-11-28 Micron Technology, Inc. Variable resistance memory stack with treated sidewalls
US20190140022A1 (en) * 2017-11-09 2019-05-09 Samsung Electronics Co., Ltd. Memory devices having crosspoint memory arrays therein with multi-level word line and bit line structures
CN110914994A (en) * 2019-10-14 2020-03-24 长江存储科技有限责任公司 Method for forming three-dimensional phase change memory device
CN110914907A (en) * 2019-10-14 2020-03-24 长江存储科技有限责任公司 Three-dimensional phase change memory device

Also Published As

Publication number Publication date
CN112449724A (en) 2021-03-05

Similar Documents

Publication Publication Date Title
US7642622B2 (en) Phase changeable memory cells and methods of forming the same
US10748966B2 (en) Three-dimensional memory device containing cobalt capped copper lines and method of making the same
TWI422014B (en) Memory device and manufacturing method thereof
US7414258B2 (en) Spacer electrode small pin phase change memory RAM and manufacturing method
US7671395B2 (en) Phase change memory cells having a cell diode and a bottom electrode self-aligned with each other
US8168469B2 (en) Nonvolatile memory device made of resistance material and method of fabricating the same
US7608503B2 (en) Side wall active pin memory and manufacturing method
TWI497706B (en) Mushroom type memory cell having self-aligned bottom electrode and diode access device
WO2022021014A1 (en) New cell structure with reduced programming current and thermal cross talk for 3d x-point memory
US20070131922A1 (en) Thin Film Fuse Phase Change Cell with Thermal Isolation Pad and Manufacturing Method
WO2022104591A1 (en) Vertical 3d pcm memory cell and program read scheme
US20210057489A1 (en) Memory cell manufacturing method
US10957370B1 (en) Integration of epitaxially grown channel selector with two terminal resistive switching memory element
WO2022032489A1 (en) A new replacement bit line and word line scheme for 3d phase change memory to improve program and increase array size
WO2022115986A1 (en) New liner electrode cell structure and fabrication method with reduced programming current and thermal cross talk for 3d x-point memory
CN112585758B (en) Novel gap fill and cell structure for improved selector thermal reliability for 3D PCM
WO2022115985A1 (en) A novel liner confined cell structure and fabrication method with reduced programming current and thermal cross talk for 3d x-point memory
WO2022077167A1 (en) Novel self-aligned half damascene contact scheme to reduce cost for 3d pcm
WO2022032490A1 (en) New cell stack with reduced wl and bl resistance for 3d x-point memory to improve program and increase array size
WO2022109773A1 (en) New super-lattice cell structure and fabrication method with reduced programming current and thermal cross talk for 3d x-point memory
CN101783357B (en) Integrated circuit memory with single crystal silicon on silicide driver and manufacturing method
WO2022115984A1 (en) Novel recess liner confined cell structure and fabrication method with reduced programming current and thermal cross talk for 3d x-point memory
TWI769041B (en) Memory cell and 3d memory device having the same
US20240040938A1 (en) Memory device and fabrication method thereof
KR20070063810A (en) Phase change ram device and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956949

Country of ref document: EP

Kind code of ref document: A1