WO2022032489A1 - A new replacement bit line and word line scheme for 3d phase change memory to improve program and increase array size - Google Patents

A new replacement bit line and word line scheme for 3d phase change memory to improve program and increase array size Download PDF

Info

Publication number
WO2022032489A1
WO2022032489A1 PCT/CN2020/108486 CN2020108486W WO2022032489A1 WO 2022032489 A1 WO2022032489 A1 WO 2022032489A1 CN 2020108486 W CN2020108486 W CN 2020108486W WO 2022032489 A1 WO2022032489 A1 WO 2022032489A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit line
word line
array
memory
phase change
Prior art date
Application number
PCT/CN2020/108486
Other languages
French (fr)
Inventor
Jun Liu
Original Assignee
Yangtze Advanced Memory Industrial Innovation Center Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangtze Advanced Memory Industrial Innovation Center Co., Ltd filed Critical Yangtze Advanced Memory Industrial Innovation Center Co., Ltd
Priority to PCT/CN2020/108486 priority Critical patent/WO2022032489A1/en
Priority to CN202080002003.2A priority patent/CN112106136A/en
Publication of WO2022032489A1 publication Critical patent/WO2022032489A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • H10B63/24Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes of the Ovonic threshold switching type
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/06Arrangements for interconnecting storage elements electrically, e.g. by wiring
    • G11C5/063Voltage and signal distribution in integrated semi-conductor memory access lines, e.g. word-line, bit-line, cross-over resistance, propagation delay
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe

Definitions

  • the present disclosure generally relates to three-dimensional electronic memories, and more particularly, to reducing voltage drop in word lines and bit lines, and increasing subarray or tile size to improve array efficiency.
  • Planar memory cells are scaled to smaller sizes by improving process technology, circuit design, programming algorithm, and fabrication process.
  • feature sizes of the memory cells approach a lower limit
  • planar process and fabrication techniques become challenging and costly.
  • memory density for planar memory cells approaches an upper limit.
  • a three-dimensional (3D) memory architecture can address the density limitation in planar memory cells.
  • Phase-change memory is a non-volatile solid-state memory technology that exploits reversible, thermally-assisted switching of phase-change materials like chalcogenide compounds such as GST (Germanium-Antimony-Tellurium) , between states with different electrical resistance.
  • the fundamental storage unit (the “cell” ) can be programmed into a number of different states, or levels, which exhibit different resistance characteristics. Programmable cell-states can be used to represent different data values, permitting storage of information.
  • PCM cells are programmed or erased by thermal self heating to induce an amorphous or crystalline state to denote 1 and 0.
  • Programming current is directly proportional to the size and cross-sectional area of the PCM cell.
  • each cell can be set to one of two states, a “SET” state and a “RESET” state, permitting storage of one bit per cell.
  • RESET state which corresponds to a wholly amorphous state of the phase-change material
  • the electrical resistance of the cell is very high.
  • the phase-change material can be transformed into a low-resistance, fully-crystalline state. This low-resistance state provides the SET state of the cell. If the cell is then heated to a high temperature, above the melting point of the phase-change material, the material reverts to the fully-amorphous RESET state on rapid cooling.
  • Reading and writing of data in PCM cells is achieved by applying appropriate voltages to the phase-change material via a pair of electrodes associated with each cell. In a write operation, the resulting programming signal causes Joule heating of the phase-change material to an appropriate temperature to induce the desired cell-state on cooling. Reading of PCM cells is performed using cell resistance as a metric for cell-state. An applied read voltage causes current to flow through the cell.
  • This current is dependent on resistance of the cell. Measurement of the cell current therefore provides an indication of the programmed cell state. A sufficiently low read voltage is used for this resistance metric to ensure that application of the read voltage does not disturb the programmed cell state. Cell state detection can then be performed by comparing the resistance metric with predefined reference levels. Programming current (I) is typically in the order of 50-200 ⁇ A. The voltage drop may be significant if the word line (WL) and bit line (BL) in the cell encounters large resistance.
  • bit lines and word lines are formed of tungsten (W) that is relatively high in resistivity.
  • the memory chip is composed of many small memory arrays (tile) and risk large voltage drops of word lines and bit lines during program operation. Voltage drops due to word line and bit line resistances will cause memory cells to experience different program currents that may lead to over programming or under programming along the word line and bit line.
  • tungsten resistivity rapidly increases with smaller critical dimensions or CD due to electron scattering at surfaces and grain boundaries.
  • each stack is composed of a perpendicular word line and a bit line.
  • the memory cell stack is self-aligned to the word line and the bit line.
  • the word lines and bit lines are formed with self aligned replacement metals. Further depending on the implementation the replacement metals include copper.
  • a method for forming a new replacement for a bit line and word line for 3D Phase change Memory includes forming a phase change memory array with parallel bit lines (BL) and perpendicular word lines (WL) .
  • a memory cell (PCM) is formed at the phase change of the WL and the BL and is self-aligned.
  • the word line and bit line are formed by removing a sacrificial nitride layer that forms a channel and filling the channel with a replacement metal.
  • a 3D Phase change Memory Die architecture is disclosed. Quantities of memory arrays (tiles) are separated by small space, typically 20nm in an X-direction and a Y-direction of the array. Replacement copper word lines and bit lines are used to electrically access each memory cell with less resistance as compared to word lines and bit lines made of current state of the art tungsten material.
  • a three-dimensional memory cell structure includes at least one memory cell stack, the memory cell stack having a selector, a phase change memory cell, and a first electrode and a second electrode.
  • the phase change memory cell is disposed between the first and the second electrode.
  • Each memory cell stack has a word line and a bit line perpendicular to each other and coupled to the memory cell stack.
  • the memory cell stack is self-aligned with respect to the word line and the bit line.
  • the word line and the bit line are formed with a self-aligned replacement metal for improved programming and increased array size as compared to tungsten word line and bit line.
  • the replacement metal is copper.
  • the three-dimensional memory is a 2 stack array and the word line is a top word line and the bit line is a bottom bit line.
  • the top word line is formed in a self-aligned scheme with a copper material, and the bottom bit line is formed with a copper damascene process.
  • the three-dimensional memory is a 4 stack array and the word line is a first middle word line and a second middle word line, and the bit line is a top bit line and a bottom bit line. Both the first and second middle word lines and the top bit line are formed in a self-aligned scheme with a copper material.
  • the bottom bit line is formed with a copper damascene process.
  • Some aspects include a three-dimensional Phase change Memory Die architecture having a plurality of top memory arrays or tiles containing a first set of phase change memory cells.
  • a plurality of bottom memory arrays or tiles contains a second set of phase change memory cells.
  • a plurality of bit lines are coupled to the top array and coupled to the bottom array.
  • a plurality of word lines are perpendicular to the bit lines, and comprise a set of top cell word lines coupled to the top array and a set of bottom cell word lines coupled to the bottom array.
  • the top array of memory cells are each separated by a first space defined by adjacent phase change memory cell in the top array.
  • the bottom array of memory cells are each separated by a second space defined by adjacent phase change memory cell in the bottom array.
  • the word lines and the bit lines are formed from a copper material to electrically access each memory cell.
  • a method of forming a three-dimensional memory comprises forming a phase change memory array with a parallel bit line and a perpendicular word line.
  • a memory cell is formed at a phase change of the word line and the bit line, wherein the memory cell is self-aligned.
  • Forming the word line and the bit line is done by removing a sacrificial nitride layer creating a channel and filling the channel with a replacement metal.
  • the bit line and word line are formed from a copper material for the word line and the bit line to have reduced resistance and use reduced voltage to improve programming and increase array size as compared to being formed from a material containing tungsten (W) , or enable larger array size with allowed programming current or voltage.
  • a method of forming a three-dimensional memory comprises further comprises forming a cooper bit line on a substrate with a copper cap barrier.
  • a bottom cell stack deposition is formed having layers of a tungsten, a first carbon electrode, an ovonic threshold switch, a second carbon electrode, a phase change memory, a third carbon electrode and a nitride layer.
  • Bottom cell double patterning is used to form a parallel bottom cell in electrical contact with the bottom bit line.
  • a nitride encapsulation layer deposition is applied to overlay the cell stack.
  • a gap fill is applied to the cell stack with an atomic layer deposition oxide, a spin on dielectric or a flowable chemical vapor deposition oxide.
  • CMP Chemical mechanical planarization
  • an oxide and/or nitride compound is applied to the cell stack stopping on the third carbon electrode next to the nitride layer.
  • a nitride hard mask deposition is applied to the nitride layer.
  • Bottom word line double patterning is applied to form a parallel bottom cell word line perpendicular to the bit line in contact with the bottom cell’s top carbon electrode that is the third carbon electrode.
  • the bottom cell stack deposition of a nitride layer and an oxide layer encapsulation is applied and followed by applying a gap fill to the encapsulation.
  • Chemical mechanical planarization (CMP) with an oxide compound is again applied to the cell stack stopping on the nitride layer.
  • Fig. 1 is an isometric view of a prior three-dimensional phase change memory.
  • Figs. 2A, 2B, and 2C are plan views of a section of a three-dimensional phase change memory showing forming copper bit lines with cobalt cap barrier and bottom cell stack deposition
  • Fig. 2D is a diagram showing abbreviations for layers in the cell stack.
  • Figs. 3A and 3B are plan views of the three-dimensional phase change memory in accordance with the embodiment of Figs. 2A-2D with bottom cell double patterning and encapsulation layer deposition, respectively.
  • Figs. 4A and 4B are plan views of the three-dimensional phase change memory in accordance with the embodiment of Figs. 3A and 3B showing a gap fill layer and chemical mechanical planarization (CMP) , respectively.
  • CMP chemical mechanical planarization
  • Figs. 5A and 5B are plan views of the three-dimensional phase change memory in the X-direction and the Y-direction of the memory, respectively, in accordance with the embodiment of Figs. 4A and 4B showing nitride hard mask deposition.
  • Figs. 6A and 6B are plan views of the three-dimensional phase change memory in the X-direction and the Y-direction of the memory, respectively, in accordance with the embodiment of Figs. 5A and 5B showing bottom cell word line double patterning to form parallel bottom cell word lines perpendicular to bit lines.
  • Figs. 7A and 7B are plan views of the three-dimensional phase change memory in the X-direction and the Y-direction of the memory, respectively, in accordance with the embodiment of Figs. 6A and 6B showing deposition of nitride and oxide encapsulation deposition followed by gap fill.
  • Figs. 8A and 8B are plan views of the three-dimensional phase change memory in the X-direction and the Y-direction of the memory, respectively, in accordance with the embodiment of Figs. 7A and 7B showing oxide chemical mechanical planarization (CMP) and wet etching to remove nitride to fill with tantalum (Ta) /Copper (Cu) to form copper replacement word lines.
  • CMP oxide chemical mechanical planarization
  • Cu copper replacement word lines
  • Fig. 9 is a plan view of the three-dimensional phase change memory in accordance with the embodiment of Figs. 8A and 8B showing a second stack of memory cell deposition and patterning with replacement top cell copper bit lines.
  • references in the specification to “one embodiment, ” “an embodiment, ” “an example embodiment, ” “some embodiments, ” and the like, merely indicate that the embodiment described may include a particular feature, structure, or characteristic. Moreover, such phrases do not necessarily refer to the same embodiment. Further, when a particular feature, structure or characteristic is described in connection with an embodiment, it would be within the knowledge of a person skilled in the pertinent art to affect such feature, structure or characteristic in connection with other embodiments whether or not explicitly described.
  • terminology may be understood at least in part from usage in context.
  • the term “one or more” as used herein, depending at least in part upon context may be used to describe any feature, structure, or characteristic in a singular sense or may be used to describe combinations of features, structures or characteristics in a plural sense.
  • terms, such as “a, ” “an, ” or “the, ” again, may be understood to convey a singular usage or to convey a plural usage, depending at least in part upon context.
  • spatially relative terms such as “beneath, ” “below, ” “lower, ” “above, ” “upper, ” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element (s) or feature (s) as illustrated in the figures.
  • the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures.
  • the apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
  • substrate may refer to any workpiece on which formation or treatment of material layers is desired.
  • Non-limiting examples include silicon, germanium, silica, sapphire, zinc oxide, silicon carbide, aluminum nitride, gallium nitride, Spinel, silicon on oxide, silicon carbide on oxide, glass, gallium nitride, indium nitride, aluminum nitride, glasses, combinations or alloys thereof, and other solid materials.
  • the substrate itself can be patterned. Materials added on top of the substrate can be patterned or can remain unpattern.
  • the substrate can include a wide array of semiconductor materials, including but not limited to silicon, germanium, gallium arsenide, indium phosphide, and the like.
  • the substrate can be made from an electrically non-conductive material, such as a glass, a plastic, or a sapphire wafer.
  • a layer refers to a material portion including a region with a thickness.
  • a layer can extend over the entirety of an underlying or overlying structure, or may have an extent less than the extent of an underlying or overlying structure. Further, a layer can be a region of a homogeneous or inhomogeneous continuous structure that has a thickness less than the thickness of the continuous structure. For example, a layer can be located between any pair of horizontal planes between, or at, a top surface and a bottom surface of the continuous structure. A layer can extend horizontally, vertically, and/or along a tapered surface.
  • a substrate can be a layer, can include one or more layers therein, and/or can have one or more layer thereupon, thereabove, and/or therebelow.
  • a layer can include multiple layers.
  • an interconnect layer can include one or more conductor and contact layers (in which contacts, interconnect lines, and/or vias are formed) and one or more dielectric layers.
  • horizontal as used herein will be understood to be defined as a plane parallel to the plane or surface of the substrate, regardless of the orientation of the substrate.
  • vertical will refer to a direction perpendicular to the horizontal as previously defined. Terms such as “above” , “below” , “bottom” , “top” , “side” (e.g. sidewall) , “higher” , “lower” , “upper” , “over” , and “under” , are defined with respect to the horizontal plane.
  • on means there is direct contact between the elements. The term “above” will allow for intervening elements.
  • a material e.g. a dielectric material or an electrode material
  • crystalline if it exhibits greater than or equal to 30%crystallinity as measured by a technique such as x-ray diffraction (XRD) .
  • XRD x-ray diffraction
  • first, ” “second, ” and other ordinals will be understood to provide differentiation only, rather than imposing any specific spatial or temporal order.
  • oxide of an element
  • nitride of an element
  • the term “Damascene” will be understood to mean a Damascene Process.
  • the underlying silicon oxide insulating layer is patterned with open trenches or channels where the conductor should be located.
  • a thick coating of copper that significantly overfills the trenches is deposited on the insulator, and chemical-mechanical planarization (CMP) is used to remove the copper (known as overburden) that extends above the top of the insulating layer. Copper sunken within the trenches or channels of the insulating layer is not removed and becomes the patterned conductor.
  • Damascene processes generally form and fill a single feature with copper per Damascene stage.
  • Dual-Damascene processes generally form and fill two features with copper at once.
  • the present technology is applied to a new replacement bit line and word line scheme for 3D Phase change Memory to improve programming and increase array size.
  • the proposed new replacement bit line and word line scheme in 2 stack array top word line (WL) is formed in a self-aligned scheme with low resistivity copper (Cu) , while the bottom bit line (BL) is formed with a copper (Cu) damascene process.
  • Such a scheme reduces the voltage drop to about 1/4 of that if using tungsten (W) as the word line and bit line due to tungsten’s relatively high resistivity as compared to copper.
  • both middle word line and top bit line are formed in a self-aligned scheme with low resistivity copper.
  • the bottom bit line is formed with a copper damascene process.
  • the word line and bit line are formed as a self-aligned replacement metal-interconnect such as low resistance copper.
  • Cell stack height and aspect ratio are effectively reduced due to the ability to use a thinner layer of tungsten with the copper, or elimination of the tungsten altogether by using just the copper replacement metal for the word line and bit line.
  • the present disclosure allows a copper word line and bit line that permits a voltage drop reduction to 1/4 of the voltage used in current state of the art word line and bit line if using tungsten.
  • the lower resistivity of the copper allows lower voltage to be used.
  • Subarray or tile size can then be increased accordingly to improve array efficiency.
  • FIG. 1A A generalized prior example of a three-dimensional (3D) memory is shown in FIG. 1A.
  • Fig. 1 is an isometric view of a section of three-dimensional crosspoint memory.
  • the memory includes a first layer of memory cells 5 and a second layer of memory cells 10. Between the first layer of memory cells 5 and second layer of memory cells is a number of word lines 15 extending in the X direction. Above the first layer of memory cells 5 is a number of first bit lines 20 extending along the Y direction, and below the second layer of memory cells is a number of second bit lines 25 extending along the Y direction.
  • FIG. 1 illustrates the general structure of a 3D Phase change Memory cell, and that terminology is used herein to describe the improvement.
  • the word lines, top cell bit lines, and bottom cell bit lines are typically formed according to a 20 nm /20 nm Line /Space (L/S) pattern, and are formed on a silicon substrate.
  • the memory may employ complementary metal-oxide semiconductor (CMOS) technology.
  • CMOS complementary metal-oxide semiconductor
  • FIG. 2A is a plane top view of a structure showing forming a copper bit line 203 with a cobalt cap barrier 202 on a substrate 201.
  • a cross-sectional view of FIG. 2A is taken along line A-A and shown in FIG. 2B.
  • FIG. 2C illustrates bottom cell stack deposition.
  • the substrate 201 with the copper bit line203 and cobalt cap 202 has the following layers deposited thereon. Starting from the bottom of the cell stack deposition, deposited on the structure in FIG.
  • 2B is a tungsten silicon nitride barrier 210, a first carbon electrode 209, a selector or an ovonic threshold switch 208, a second carbon electrode 207, a phase change memory cell 206, a third carbon electrode 205, and a nitride layer 204.
  • Layer 204 is a nitride layer or other hard mask material.
  • materials include, but are not limited to, metal nitrides such as TiN, TiAlN, TaN, BN, metal oxide nitrides such as TiON, metal silicides such as PtSi, semiconductors such as silicon or germanium (with and without doping) , silicon nitride or germanium nitride, reduced metal oxides such as TiOx (x ⁇ 2 indicates reduction) , metals such as W, Ni, Co, or carbon based materials.
  • the electrodes can be formed of any convenient electrically-conductive material, typically a metallic material (e.g. a pure metal or a metal compound, alloy or other mixture) or a doped semiconductor material such as silicon or carbon.
  • a metallic material e.g. a pure metal or a metal compound, alloy or other mixture
  • doped semiconductor material such as silicon or carbon.
  • first, second and third are to provide differentiation only, rather than imposing any specific spatial or temporal order.
  • the carbon electrode may be interchangeable and the reference to the terms first, second and third are merely used as a reference to describe adjacent elements.
  • the layers are abbreviated as: W/carbon electrode/OTS/carbon electrode/PCM/carbon electrode/nitride as shown in FIG. 2D.
  • Reference numeral 201 refers to the substrate or an oxide layer.
  • Reference number 211 refers to a Spin on Dielectric (SOD) process and is synonymous with gap fill 402 as shown herein.
  • SOD Spin on Dielectric
  • FIG. 3A shows exemplary cell stacks 1, 2, and 3. Each stack is made of several layers as previously described in FIGS. 2A-2D.
  • the cell stacks 1, 2, and 3 are similar in function and composition.
  • similar reference numerals to common elements in various figures denote similar material and functions of the elements shown and described.
  • FIG. 3A Shown in FIG. 3A is a bottom cell double patterning to form a parallel bottom cell in electrical contacts with bottom bit lines.
  • FIG. 3B shown is an encapsulation layer 304 deposition covering stacks 1, 2, and 3 to protect the exposed phase change memory cell 206 and ovonic threshold switch 208 in each stack.
  • FIG. 4A illustrates a gap fill 402 over the stacks 1, 2, and 3.
  • Gap fill may be obtained through atomic layer deposition oxide, Spin on Dielectric (SOD) 211 or flowable chemical vapor deposition (CVD) oxide.
  • Examples of gap fill materials include, but are not limited to, Silicon oxide, silicon nitride, doped silicon oxide such as C, F, or other dopants, or low thermal conductive materials such as porous or polymeric materials.
  • FIG. 4B illustrates oxide/nitride chemical mechanical planarization (CMP) treatment producing oxide layer 401 to the stacks 1, 2, and 3. Layer 401 is placed over the encapsulation layer 304. The CMP treatment stops on the carbon electrode 205 as shown in FIG. 4B. Depending on the orientation, carbon electrode 205 may be referred to as the third carbon electrode, or referred to as the first carbon electrode.
  • CMP oxide/nitride chemical mechanical planarization
  • FIG. 5A illustrates a nitride hard mask deposition as shown in a X-direction.
  • FIG. 5B illustrates the nitride hard mask in a Y-direction.
  • X and Y directions are given using Figure 1 as a base reference.
  • a nitride hard mask deposition layer 501 is produced.
  • the layer may be nitride based compound as described herein, or any other nitride based compound.
  • the layer 501 is disposed on top of carbon electrode 205.
  • deposition may be accomplished by physical vapor deposition (PVD) or Chemical vapor deposition (CVD) . In this process a vacuum deposition method is used to produce high quality, high-performance, solid materials.
  • PVD physical vapor deposition
  • CVD Chemical vapor deposition
  • the wafer (substrate) is exposed to one or more volatile precursors, which react and/or decompose on the substrate surface to produce the desired deposit.
  • FIGS. 6A and 6B illustrate bottom cell word line double patterning to form parallel bottom cell word lines perpendicular to bit lines that are in contact with the bottom cell top carbon electrode 205.
  • FIG. 6A shows the bottom word line double patterning in the X-direction and FIG. 6B shows it in the Y-directions.
  • phase change memory (PCM) cell 206 and ovonic threshold switch 208 are between carbon electrodes.
  • Carbon electrodes 205, 207 surround the phase change memory cell 206, and carbon electrodes 207 and 209 surround the ovonic threshold switch 208.
  • FIGS. 7A and 7B illustrate deposition of nitride and oxide encapsulation 304, 401, respectively, followed by gap fill 402 shown in both the x and y directions. Again the nitride is applied to a top referenced carbon electrode, and in this figure denoted as the third carbon electrode 205.
  • FIGS. 8A and 8B illustrate oxide chemical mechanical planarization (CMP) is done and stopped on nitride layer 203 above carbon electrode 205.
  • CMP oxide chemical mechanical planarization
  • Wet etching is used to remove nitride to fill with a tantalum /copper (Ta/Cu) compound to form a replacement copper word line 801.
  • Ta/Cu tantalum /copper
  • hot phosphoric acid may be utilized in the etching process.
  • FIG. 9 illustrates a second stack of memory cell deposition and patterning with the new cell structure described herein with a replacement top cell copper bit lines. Shown is top section 901 and bottom section 903 that relate to embodiments shown in FIGS. 8B and 8A, respectively. Top cell and bottom cell replacement word lines separate the two stacks in FIG. 9 as denoted by section 902.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

Three-dimensional memory architecture has a new replacement bit line and word line scheme. In a 2 stack array, a top word line (WL) is formed in a self-aligned scheme with low resistivity copper, while a bottom bit line (BL) is formed with a copper damascene process. The voltage across the array is reduced to about 1/4 relative to using tungsten WL and BL due to coppers lower resistivity. In a 4 stack array, both middle WL and top BL are formed in a self-aligned scheme with low resistivity copper while a bottom BL is formed with copper damascene process. WL and BL are formed as self-aligned replacement metal interconnects. Cell stack height and aspect ratio are effectively reduced due to ability to use thinner tungsten layers or elimination of tungsten altogether. Subarray or tile size is increased accordingly to improve array efficiency.

Description

A NEW REPLACEMENT BIT LINE AND WORD LINE SCHEME FOR 3D PHASE CHANGE MEMORY TO IMPROVE PROGRAM AND INCREASE ARRAY SIZE TECHNICAL FIELD
The present disclosure generally relates to three-dimensional electronic memories, and more particularly, to reducing voltage drop in word lines and bit lines, and increasing subarray or tile size to improve array efficiency.
BACKGROUND
Planar memory cells are scaled to smaller sizes by improving process technology, circuit design, programming algorithm, and fabrication process. However, as feature sizes of the memory cells approach a lower limit, planar process and fabrication techniques become challenging and costly. As such, memory density for planar memory cells approaches an upper limit. A three-dimensional (3D) memory architecture can address the density limitation in planar memory cells.
Phase-change memory (PCM) is a non-volatile solid-state memory technology that exploits reversible, thermally-assisted switching of phase-change materials like chalcogenide compounds such as GST (Germanium-Antimony-Tellurium) , between states with different electrical resistance. The fundamental storage unit (the “cell” ) can be programmed into a number of different states, or levels, which exhibit different resistance characteristics. Programmable cell-states can be used to represent different data values, permitting storage of information.
PCM cells are programmed or erased by thermal self heating to induce an amorphous or crystalline state to denote 1 and 0. Programming current is directly proportional to the size and cross-sectional area of the PCM cell. In single-level PCM devices, each cell can be set to one of two states, a “SET” state and a “RESET” state, permitting storage of one bit per cell. In the RESET state, which corresponds to a wholly amorphous state of the phase-change material, the electrical resistance of the cell is very high. By heating to a temperature above its crystallization point and then cooling, the phase-change material can be transformed into a low-resistance, fully-crystalline state. This low-resistance state provides the SET state of the cell. If the cell is then heated to a high temperature, above the melting point of the phase-change material, the material reverts to the fully-amorphous RESET state on rapid cooling.
In addition, large programming current requirements also lend to large program voltage requirements. Reading and writing of data in PCM cells is achieved by applying appropriate voltages to the phase-change material via a pair of electrodes associated with each  cell. In a write operation, the resulting programming signal causes Joule heating of the phase-change material to an appropriate temperature to induce the desired cell-state on cooling. Reading of PCM cells is performed using cell resistance as a metric for cell-state. An applied read voltage causes current to flow through the cell.
This current is dependent on resistance of the cell. Measurement of the cell current therefore provides an indication of the programmed cell state. A sufficiently low read voltage is used for this resistance metric to ensure that application of the read voltage does not disturb the programmed cell state. Cell state detection can then be performed by comparing the resistance metric with predefined reference levels. Programming current (I) is typically in the order of 50-200μA. The voltage drop may be significant if the word line (WL) and bit line (BL) in the cell encounters large resistance.
In commercial 3D Phase change memory, bit lines and word lines are formed of tungsten (W) that is relatively high in resistivity. The memory chip is composed of many small memory arrays (tile) and risk large voltage drops of word lines and bit lines during program operation. Voltage drops due to word line and bit line resistances will cause memory cells to experience different program currents that may lead to over programming or under programming along the word line and bit line. In addition, tungsten resistivity rapidly increases with smaller critical dimensions or CD due to electron scattering at surfaces and grain boundaries.
Thus there is a need in the art for a memory cell stack that will minimize the word line and bit line resistance, and their impact to programing operation to improve the programming window and increase tile size.
SUMMARY
The following summary is included in order to provide a basic understanding of aspects and features of the disclosure. This summary is not an extensive overview and as such it is not intended to particularly identify key or critical elements or to delineate the scope of the disclosure. Its sole purpose is to present concepts in a summarized format.
In one aspect, a new replacement for a bit line and word line for 3D Phase change Memory is presented allowing a reduced programming current and reduced resistivity as compared to current state of the art 3D Phase change Memory cell structures that use tungsten. In the present new cell structure, each stack is composed of a perpendicular word line and a bit line. The memory cell stack is self-aligned to the word line and the bit line. Depending on the implementation, the word lines and bit lines are formed with self aligned replacement metals. Further depending on the implementation the replacement metals include copper.
In another aspect, a method for forming a new replacement for a bit line and word line for 3D Phase change Memory is described. The method includes forming a phase change  memory array with parallel bit lines (BL) and perpendicular word lines (WL) . A memory cell (PCM) is formed at the phase change of the WL and the BL and is self-aligned. The word line and bit line are formed by removing a sacrificial nitride layer that forms a channel and filling the channel with a replacement metal.
In another aspect, a 3D Phase change Memory Die architecture is disclosed. Quantities of memory arrays (tiles) are separated by small space, typically 20nm in an X-direction and a Y-direction of the array. Replacement copper word lines and bit lines are used to electrically access each memory cell with less resistance as compared to word lines and bit lines made of current state of the art tungsten material.
In accordance with an aspect, a three-dimensional memory cell structure includes at least one memory cell stack, the memory cell stack having a selector, a phase change memory cell, and a first electrode and a second electrode. The phase change memory cell is disposed between the first and the second electrode. Each memory cell stack has a word line and a bit line perpendicular to each other and coupled to the memory cell stack. The memory cell stack is self-aligned with respect to the word line and the bit line. The word line and the bit line are formed with a self-aligned replacement metal for improved programming and increased array size as compared to tungsten word line and bit line. Depending on the implementation, the replacement metal is copper.
In another aspect, when the three-dimensional memory is a 2 stack array and the word line is a top word line and the bit line is a bottom bit line. The top word line is formed in a self-aligned scheme with a copper material, and the bottom bit line is formed with a copper damascene process.
In another aspect, when the three-dimensional memory is a 4 stack array and the word line is a first middle word line and a second middle word line, and the bit line is a top bit line and a bottom bit line. Both the first and second middle word lines and the top bit line are formed in a self-aligned scheme with a copper material. The bottom bit line is formed with a copper damascene process.
Some aspects include a three-dimensional Phase change Memory Die architecture having a plurality of top memory arrays or tiles containing a first set of phase change memory cells. A plurality of bottom memory arrays or tiles contains a second set of phase change memory cells. A plurality of bit lines are coupled to the top array and coupled to the bottom array. A plurality of word lines are perpendicular to the bit lines, and comprise a set of top cell word lines coupled to the top array and a set of bottom cell word lines coupled to the bottom array. The top array of memory cells are each separated by a first space defined by adjacent phase change memory cell in the top array. The bottom array of memory cells are each separated  by a second space defined by adjacent phase change memory cell in the bottom array. The word lines and the bit lines are formed from a copper material to electrically access each memory cell.
In yet another aspect, a method of forming a three-dimensional memory comprises forming a phase change memory array with a parallel bit line and a perpendicular word line. A memory cell is formed at a phase change of the word line and the bit line, wherein the memory cell is self-aligned. Forming the word line and the bit line is done by removing a sacrificial nitride layer creating a channel and filling the channel with a replacement metal.
The bit line and word line are formed from a copper material for the word line and the bit line to have reduced resistance and use reduced voltage to improve programming and increase array size as compared to being formed from a material containing tungsten (W) , or enable larger array size with allowed programming current or voltage.
In accordance with an aspect, a method of forming a three-dimensional memory comprises further comprises forming a cooper bit line on a substrate with a copper cap barrier. A bottom cell stack deposition is formed having layers of a tungsten, a first carbon electrode, an ovonic threshold switch, a second carbon electrode, a phase change memory, a third carbon electrode and a nitride layer. Bottom cell double patterning is used to form a parallel bottom cell in electrical contact with the bottom bit line. A nitride encapsulation layer deposition is applied to overlay the cell stack. A gap fill is applied to the cell stack with an atomic layer deposition oxide, a spin on dielectric or a flowable chemical vapor deposition oxide. Chemical mechanical planarization (CMP) with an oxide and/or nitride compound is applied to the cell stack stopping on the third carbon electrode next to the nitride layer. A nitride hard mask deposition is applied to the nitride layer. Bottom word line double patterning is applied to form a parallel bottom cell word line perpendicular to the bit line in contact with the bottom cell’s top carbon electrode that is the third carbon electrode. The bottom cell stack deposition of a nitride layer and an oxide layer encapsulation is applied and followed by applying a gap fill to the encapsulation. Chemical mechanical planarization (CMP) with an oxide compound is again applied to the cell stack stopping on the nitride layer. Wet etching to remove the nitride layer is done and he channel created is filled with a tantalum/copper material to form a replacement cooper word line. A second stack of memory cell deposition and patterning with a replacement top cell cooper bit line is applied.
BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing aspects, features and advantages of the present disclosure will be further appreciated when considered with reference to the following description of exemplary embodiments and accompanying drawings, wherein like reference numerals represent like  elements. In describing the exemplary embodiments of the present disclosure illustrated in the drawings, specific terminology may be used for the sake of clarity.
However, the aspects of the present disclosure are not intended to be limited to the specific terms used.
Fig. 1 is an isometric view of a prior three-dimensional phase change memory.
Figs. 2A, 2B, and 2C are plan views of a section of a three-dimensional phase change memory showing forming copper bit lines with cobalt cap barrier and bottom cell stack deposition, and Fig. 2D is a diagram showing abbreviations for layers in the cell stack.
Figs. 3A and 3B are plan views of the three-dimensional phase change memory in accordance with the embodiment of Figs. 2A-2D with bottom cell double patterning and encapsulation layer deposition, respectively.
Figs. 4A and 4B are plan views of the three-dimensional phase change memory in accordance with the embodiment of Figs. 3A and 3B showing a gap fill layer and chemical mechanical planarization (CMP) , respectively.
Figs. 5A and 5B are plan views of the three-dimensional phase change memory in the X-direction and the Y-direction of the memory, respectively, in accordance with the embodiment of Figs. 4A and 4B showing nitride hard mask deposition.
Figs. 6A and 6B are plan views of the three-dimensional phase change memory in the X-direction and the Y-direction of the memory, respectively, in accordance with the embodiment of Figs. 5A and 5B showing bottom cell word line double patterning to form parallel bottom cell word lines perpendicular to bit lines.
Figs. 7A and 7B are plan views of the three-dimensional phase change memory in the X-direction and the Y-direction of the memory, respectively, in accordance with the embodiment of Figs. 6A and 6B showing deposition of nitride and oxide encapsulation deposition followed by gap fill.
Figs. 8A and 8B are plan views of the three-dimensional phase change memory in the X-direction and the Y-direction of the memory, respectively, in accordance with the embodiment of Figs. 7A and 7B showing oxide chemical mechanical planarization (CMP) and wet etching to remove nitride to fill with tantalum (Ta) /Copper (Cu) to form copper replacement word lines.
Fig. 9 is a plan view of the three-dimensional phase change memory in accordance with the embodiment of Figs. 8A and 8B showing a second stack of memory cell deposition and patterning with replacement top cell copper bit lines.
DETAILED DESCRIPTION
Although specific configurations and arrangements are discussed, it should be understood that this is done for illustrative purposes only. A person skilled in the pertinent art will recognize that other configurations and arrangements can be used without departing from the spirit and scope of the present disclosure. It will be apparent to a person skilled in the pertinent art that the present disclosure can also be employed in a variety of other applications.
It is noted that references in the specification to “one embodiment, ” “an embodiment, ” “an example embodiment, ” “some embodiments, ” and the like, merely indicate that the embodiment described may include a particular feature, structure, or characteristic. Moreover, such phrases do not necessarily refer to the same embodiment. Further, when a particular feature, structure or characteristic is described in connection with an embodiment, it would be within the knowledge of a person skilled in the pertinent art to affect such feature, structure or characteristic in connection with other embodiments whether or not explicitly described.
In general, terminology may be understood at least in part from usage in context. For example, the term “one or more” as used herein, depending at least in part upon context, may be used to describe any feature, structure, or characteristic in a singular sense or may be used to describe combinations of features, structures or characteristics in a plural sense. Similarly, terms, such as “a, ” “an, ” or “the, ” again, may be understood to convey a singular usage or to convey a plural usage, depending at least in part upon context.
It should be readily understood that the meaning of “on, ” “above, ” and “over” in the present disclosure should be interpreted in the broadest manner such that “on” not only means “directly on” something but also includes the meaning of “on” something with an intermediate feature or a layer there between, and that “above” or “over” not only means the meaning of “above” or “over” something but can also include the meaning it is “above” or “over” something with no intermediate feature or layer there between (i.e., directly on something) .
Further, spatially relative terms, such as “beneath, ” “below, ” “lower, ” “above, ” “upper, ” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element (s) or feature (s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
The term “substrate” as used herein may refer to any workpiece on which formation or treatment of material layers is desired. Non-limiting examples include silicon,  germanium, silica, sapphire, zinc oxide, silicon carbide, aluminum nitride, gallium nitride, Spinel, silicon on oxide, silicon carbide on oxide, glass, gallium nitride, indium nitride, aluminum nitride, glasses, combinations or alloys thereof, and other solid materials. The substrate itself can be patterned. Materials added on top of the substrate can be patterned or can remain unpattern. Furthermore, the substrate can include a wide array of semiconductor materials, including but not limited to silicon, germanium, gallium arsenide, indium phosphide, and the like. Alternatively, the substrate can be made from an electrically non-conductive material, such as a glass, a plastic, or a sapphire wafer.
As used herein, the term “layer” refers to a material portion including a region with a thickness. A layer can extend over the entirety of an underlying or overlying structure, or may have an extent less than the extent of an underlying or overlying structure. Further, a layer can be a region of a homogeneous or inhomogeneous continuous structure that has a thickness less than the thickness of the continuous structure. For example, a layer can be located between any pair of horizontal planes between, or at, a top surface and a bottom surface of the continuous structure. A layer can extend horizontally, vertically, and/or along a tapered surface. A substrate can be a layer, can include one or more layers therein, and/or can have one or more layer thereupon, thereabove, and/or therebelow. A layer can include multiple layers. For example, an interconnect layer can include one or more conductor and contact layers (in which contacts, interconnect lines, and/or vias are formed) and one or more dielectric layers.
The term “horizontal” as used herein will be understood to be defined as a plane parallel to the plane or surface of the substrate, regardless of the orientation of the substrate. The term “vertical” will refer to a direction perpendicular to the horizontal as previously defined. Terms such as “above” , “below” , “bottom” , “top” , “side” (e.g. sidewall) , “higher” , “lower” , “upper” , “over” , and “under” , are defined with respect to the horizontal plane. The term “on” means there is direct contact between the elements. The term “above” will allow for intervening elements.
As used herein, a material (e.g. a dielectric material or an electrode material) will be considered to be “crystalline” if it exhibits greater than or equal to 30%crystallinity as measured by a technique such as x-ray diffraction (XRD) . Amorphous material is considered non-crystalline.
As used herein, the terms “first, ” “second, ” and other ordinals will be understood to provide differentiation only, rather than imposing any specific spatial or temporal order.
As used herein, the term “oxide” (of an element) will be understood to include additional components besides the element and oxygen, including but not limited to a dopant or  alloy. As used herein, the term “nitride” (of an element) will be understood to include additional components besides the element and nitrogen, including but not limited to a dopant or alloy.
As used herein, the term “Damascene” will be understood to mean a Damascene Process. In this process, the underlying silicon oxide insulating layer is patterned with open trenches or channels where the conductor should be located. A thick coating of copper that significantly overfills the trenches is deposited on the insulator, and chemical-mechanical planarization (CMP) is used to remove the copper (known as overburden) that extends above the top of the insulating layer. Copper sunken within the trenches or channels of the insulating layer is not removed and becomes the patterned conductor. Damascene processes generally form and fill a single feature with copper per Damascene stage. Dual-Damascene processes generally form and fill two features with copper at once.
The present technology is applied to a new replacement bit line and word line scheme for 3D Phase change Memory to improve programming and increase array size. In the proposed new replacement bit line and word line scheme, in 2 stack array top word line (WL) is formed in a self-aligned scheme with low resistivity copper (Cu) , while the bottom bit line (BL) is formed with a copper (Cu) damascene process. Such a scheme reduces the voltage drop to about 1/4 of that if using tungsten (W) as the word line and bit line due to tungsten’s relatively high resistivity as compared to copper. In 4 stack array, both middle word line and top bit line are formed in a self-aligned scheme with low resistivity copper. The bottom bit line is formed with a copper damascene process. These features allow increased array size.
Therefore, the word line and bit line are formed as a self-aligned replacement metal-interconnect such as low resistance copper. Cell stack height and aspect ratio are effectively reduced due to the ability to use a thinner layer of tungsten with the copper, or elimination of the tungsten altogether by using just the copper replacement metal for the word line and bit line. Again, the present disclosure allows a copper word line and bit line that permits a voltage drop reduction to 1/4 of the voltage used in current state of the art word line and bit line if using tungsten. Thus the lower resistivity of the copper allows lower voltage to be used. Subarray or tile size can then be increased accordingly to improve array efficiency.
The present technology is applied in the field of three-dimensional memory. A generalized prior example of a three-dimensional (3D) memory is shown in FIG. 1A. In particular, Fig. 1 is an isometric view of a section of three-dimensional crosspoint memory. The memory includes a first layer of memory cells 5 and a second layer of memory cells 10. Between the first layer of memory cells 5 and second layer of memory cells is a number of word lines 15 extending in the X direction. Above the first layer of memory cells 5 is a number of first bit lines 20 extending along the Y direction, and below the second layer of memory cells is  a number of second bit lines 25 extending along the Y direction. Further, as can be seen from the figure, the sequential structure of bit lines -memory cells -word lines -memory cells may be repeated along the Z direction to realize a stacked configuration. In any event, an individual memory cell may be accessed by selectively activating the word line and bit line corresponding to the cell. Reference will be made to X and Y directions utilizing the directional model shown in FIG. 1. FIG. 1 illustrates the general structure of a 3D Phase change Memory cell, and that terminology is used herein to describe the improvement. The word lines, top cell bit lines, and bottom cell bit lines are typically formed according to a 20 nm /20 nm Line /Space (L/S) pattern, and are formed on a silicon substrate. Moreover, the memory may employ complementary metal-oxide semiconductor (CMOS) technology.
As stated above, issue of voltage drop due to word line and bit line resistance may occur with the memory cells. The present disclosure addresses this issue and provides reducing current and voltage required for the memory cell. Adverting to FIG. 2A is a plane top view of a structure showing forming a copper bit line 203 with a cobalt cap barrier 202 on a substrate 201. A cross-sectional view of FIG. 2A is taken along line A-A and shown in FIG. 2B. FIG. 2C illustrates bottom cell stack deposition. The substrate 201 with the copper bit line203 and cobalt cap 202 has the following layers deposited thereon. Starting from the bottom of the cell stack deposition, deposited on the structure in FIG. 2B is a tungsten silicon nitride barrier 210, a first carbon electrode 209, a selector or an ovonic threshold switch 208, a second carbon electrode 207, a phase change memory cell 206, a third carbon electrode 205, and a nitride layer 204.
Layer 204 is a nitride layer or other hard mask material. Examples of such materials include, but are not limited to, metal nitrides such as TiN, TiAlN, TaN, BN, metal oxide nitrides such as TiON, metal silicides such as PtSi, semiconductors such as silicon or germanium (with and without doping) , silicon nitride or germanium nitride, reduced metal oxides such as TiOx (x<2 indicates reduction) , metals such as W, Ni, Co, or carbon based materials. The electrodes can be formed of any convenient electrically-conductive material, typically a metallic material (e.g. a pure metal or a metal compound, alloy or other mixture) or a doped semiconductor material such as silicon or carbon. Moreover, while the features described are particularly advantageous for multi-level cells, these features can also be applied to advantage in single-level cells in some embodiments.
Again, as previously sated the use of the terms first, second and third is to provide differentiation only, rather than imposing any specific spatial or temporal order. The carbon electrode may be interchangeable and the reference to the terms first, second and third are merely used as a reference to describe adjacent elements. The layers are abbreviated as:  W/carbon electrode/OTS/carbon electrode/PCM/carbon electrode/nitride as shown in FIG. 2D. Reference numeral 201 refers to the substrate or an oxide layer. Reference number 211 refers to a Spin on Dielectric (SOD) process and is synonymous with gap fill 402 as shown herein.
FIG. 3A shows  exemplary cell stacks  1, 2, and 3. Each stack is made of several layers as previously described in FIGS. 2A-2D. The cell stacks 1, 2, and 3 are similar in function and composition. For the description of materials disclosed herein, similar reference numerals to common elements in various figures denote similar material and functions of the elements shown and described.
Shown in FIG. 3A is a bottom cell double patterning to form a parallel bottom cell in electrical contacts with bottom bit lines. In FIG. 3B, shown is an encapsulation layer 304  deposition covering stacks  1, 2, and 3 to protect the exposed phase change memory cell 206 and ovonic threshold switch 208 in each stack.
FIG. 4A illustrates a gap fill 402 over the  stacks  1, 2, and 3. Gap fill may be obtained through atomic layer deposition oxide, Spin on Dielectric (SOD) 211 or flowable chemical vapor deposition (CVD) oxide. Examples of gap fill materials, include, but are not limited to, Silicon oxide, silicon nitride, doped silicon oxide such as C, F, or other dopants, or low thermal conductive materials such as porous or polymeric materials. FIG. 4B illustrates oxide/nitride chemical mechanical planarization (CMP) treatment producing oxide layer 401 to the  stacks  1, 2, and 3. Layer 401 is placed over the encapsulation layer 304. The CMP treatment stops on the carbon electrode 205 as shown in FIG. 4B. Depending on the orientation, carbon electrode 205 may be referred to as the third carbon electrode, or referred to as the first carbon electrode.
FIG. 5A illustrates a nitride hard mask deposition as shown in a X-direction. FIG. 5B illustrates the nitride hard mask in a Y-direction. Again, X and Y directions are given using Figure 1 as a base reference. A nitride hard mask deposition layer 501 is produced. The layer may be nitride based compound as described herein, or any other nitride based compound. The layer 501 is disposed on top of carbon electrode 205. Typically deposition may be accomplished by physical vapor deposition (PVD) or Chemical vapor deposition (CVD) . In this process a vacuum deposition method is used to produce high quality, high-performance, solid materials. In typical CVD, the wafer (substrate) is exposed to one or more volatile precursors, which react and/or decompose on the substrate surface to produce the desired deposit.
FIGS. 6A and 6B illustrate bottom cell word line double patterning to form parallel bottom cell word lines perpendicular to bit lines that are in contact with the bottom cell top carbon electrode 205. FIG. 6A shows the bottom word line double patterning in the X-direction and FIG. 6B shows it in the Y-directions. As shown in FIG. 6A phase change memory  (PCM) cell 206 and ovonic threshold switch 208 are between carbon electrodes.  Carbon electrodes  205, 207 surround the phase change memory cell 206, and  carbon electrodes  207 and 209 surround the ovonic threshold switch 208.
FIGS. 7A and 7B illustrate deposition of nitride and  oxide encapsulation  304, 401, respectively, followed by gap fill 402 shown in both the x and y directions. Again the nitride is applied to a top referenced carbon electrode, and in this figure denoted as the third carbon electrode 205.
FIGS. 8A and 8B illustrate oxide chemical mechanical planarization (CMP) is done and stopped on nitride layer 203 above carbon electrode 205. Wet etching is used to remove nitride to fill with a tantalum /copper (Ta/Cu) compound to form a replacement copper word line 801. Depending on the implementation, hot phosphoric acid may be utilized in the etching process.
FIG. 9 illustrates a second stack of memory cell deposition and patterning with the new cell structure described herein with a replacement top cell copper bit lines. Shown is top section 901 and bottom section 903 that relate to embodiments shown in FIGS. 8B and 8A, respectively. Top cell and bottom cell replacement word lines separate the two stacks in FIG. 9 as denoted by section 902.
Most of the foregoing alternative examples are not mutually exclusive, but may be implemented in various combinations to achieve unique advantages. As these and other variations and combinations of the features discussed above may be utilized without departing from the subject matter defined by the claims, the foregoing description of the embodiments should be taken by way of illustration rather than by way of limitation of the subject matter defined by the claims. As an example, the preceding operations do not have to be performed in the precise order described above. Rather, various steps can be handled in a different order, such as reversed, or simultaneously. Steps can also be omitted unless otherwise stated. In addition, the provision of the examples described herein, as well as clauses phrased as "such as, " "including" and the like, should not be interpreted as limiting the subject matter of the claims to the specific examples; rather, the examples are intended to illustrate only one of many possible embodiments. Further, the same reference numbers in different drawings may identify the same or similar elements.
Although the present disclosure herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present disclosure. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other  arrangements may be devised without departing from the spirit and scope of the present disclosure as defined by the appended claims.

Claims (15)

  1. A three-dimensional memory cell structure, comprising:
    at least one memory cell stack, the memory cell stack having a selector, a phase change memory cell, and a first electrode and a second electrode; the phase change memory cell disposed between the first and the second electrode;
    each memory cell stack having a word line and a bit line perpendicular to each other and coupled to the memory cell stack, and wherein the memory cell stack is self-aligned with respect to the word line and the bit line; and
    wherein, the word line and the bit line are formed with a self-aligned replacement metal for improved programming and increased array size as compared to tungsten word line and tungsten bit line.
  2. The three-dimensional memory according to claim 1, wherein,
    the three-dimensional memory is a 2 stack array and the word line is a top word line and the bit line is a bottom bit line, and
    the top word line is formed in a self-aligned scheme with a copper material, and the bottom bit line is formed with a copper damascene process.
  3. The three-dimensional memory according to claim 1, wherein,
    the three-dimensional memory is a 4 stack array and the word line is a first middle word line and a second middle word line, and the bit line is a top bit line and a bottom bit line, and
    wherein both the first and second middle word lines and the top bit line are formed in a self-aligned scheme with a copper material, and the bottom bit line is formed with a copper damascene process.
  4. The three-dimensional memory according to claim 1, wherein the replacement metal is a copper material.
  5. The three-dimensional memory according to claim 4, wherein the memory cell stack requires a reduced voltage of about 1/4 as compared to the word line and the bit line formed by a tungsten material.
  6. The three-dimensional memory according to claim 1, further comprising additional memory cells in a region above or below the word line.
  7. The three-dimensional memory according to claim 1, wherein the word line and the bit line are self-aligned replacement metal interconnects.
  8. The three-dimensional memory according to claim 1, wherein the self-aligned replacement metal is copper, and the memory cell stack further includes a height and an aspect ratio, and the height and the aspect ratio are reduced due to a thinner amount of a tungsten material required or elimination of a tungsten material in the memory cell stack.
  9. The three-dimensional memory according to claim 8, wherein a subarray or tile size is increased to improve array efficiency.
  10. A three-dimensional Phase change Memory Die architecture, comprising:
    a plurality of top memory arrays or tiles containing a first set of phase change memory cells;
    a plurality of bottom memory arrays or tiles containing a second set of phase change memory cells;
    a plurality of bit lines coupled to the top array and coupled to the bottom array;
    a plurality of word lines perpendicular to the bit lines, and comprising a set of top cell word lines coupled to the top array and a set of bottom cell word lines coupled to the bottom array;
    the top array of memory cells are each separated by a first space defined by adjacent phase change memory cell in the top array, and the bottom array of memory cells are each separated by a second space defined by adjacent phase change memory cell in the bottom array, and
    wherein, the word lines and the bit lines are formed from a copper material to electrically access each memory cell.
  11. The three-dimensional architecture according to claim 10, wherein the top and the bottom word lines are coupled thereto.
  12. The three-dimensional architecture, wherein the first space and second space are about 20nm in an X-direction and about 20nm in a Y-direction.
  13. A method of forming a three-dimensional memory comprising:
    forming a phase change memory array with a parallel bit line and a perpendicular word line;
    forming a memory cell at a phase change of the word line and the bit line, wherein the memory cell is self-aligned; and
    forming the word line and the bit line by removing a sacrificial nitride layer creating a channel and filling the channel with a replacement metal.
  14. The method according to claim 13, wherein the bit line and word line are formed from a copper material for the word line and the bit line to have reduced resistance and use reduced voltage to improve programming and increase array size as compared to being formed from a material containing tungsten (W) .
  15. The method according to claim 14, further comprising,
    forming a cooper bit line on a substrate with a copper cap barrier;
    forming a bottom cell stack deposition having layers of a tungsten silicon nitride copper barrier, a first carbon electrode, an ovonic threshold switch, a second carbon electrode, a phase change memory, a third carbon electrode and a nitride layer;
    using bottom cell double patterning to form a parallel bottom cell in electrical contact with the bottom bit line;
    applying a nitride encapsulation layer deposition to overlay the cell stack;
    applying a gap fill to the cell stack with an atomic layer deposition oxide, a spin on dielectric or a flowable chemical vapor deposition oxide;
    applying chemical mechanical planarization (CMP) with an oxide and/or nitride compound to the cell stack stopping on the third carbon electrode next to the nitride layer;
    applying a nitride hard mask deposition to the nitride layer;
    using bottom word line double patterning to form a parallel bottom cell word line perpendicular to the bit line in contact with the bottom cell’s top carbon electrode that is the third carbon electrode;
    applying to the bottom cell stack deposition of a nitride layer and an oxide layer encapsulation followed by applying a gap fill to the encapsulation;
    applying chemical mechanical planarization (CMP) with an oxide compound to the cell stack stopping on the nitride layer;
    wet etching to remove the nitride layer to fill with a tantalum/copper material to form a replacement cooper word line; and
    applying a second stack of memory cell deposition and patterning with a replacement top cell cooper bit line.
PCT/CN2020/108486 2020-08-11 2020-08-11 A new replacement bit line and word line scheme for 3d phase change memory to improve program and increase array size WO2022032489A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/108486 WO2022032489A1 (en) 2020-08-11 2020-08-11 A new replacement bit line and word line scheme for 3d phase change memory to improve program and increase array size
CN202080002003.2A CN112106136A (en) 2020-08-11 2020-08-11 New replacement bit line and word line scheme for 3D phase change memory cells to improve programming and increase array size

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108486 WO2022032489A1 (en) 2020-08-11 2020-08-11 A new replacement bit line and word line scheme for 3d phase change memory to improve program and increase array size

Publications (1)

Publication Number Publication Date
WO2022032489A1 true WO2022032489A1 (en) 2022-02-17

Family

ID=73785359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108486 WO2022032489A1 (en) 2020-08-11 2020-08-11 A new replacement bit line and word line scheme for 3d phase change memory to improve program and increase array size

Country Status (2)

Country Link
CN (1) CN112106136A (en)
WO (1) WO2022032489A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112567525B (en) * 2020-11-18 2023-06-30 长江先进存储产业创新中心有限责任公司 Vertical 3D PCM memory cell and program read scheme

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180358094A1 (en) * 2016-02-17 2018-12-13 Micron Technology, Inc. Memory cell architecture for multilevel cell programming
US10692572B2 (en) * 2014-04-30 2020-06-23 Micron Technology, Inc. Variable resistance memory stack with treated sidewalls
US10720574B2 (en) * 2014-04-30 2020-07-21 Micron Technology, Inc. Phase change memory stack with treated sidewalls

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579760B1 (en) * 2002-03-28 2003-06-17 Macronix International Co., Ltd. Self-aligned, programmable phase change memory
US7220985B2 (en) * 2002-12-09 2007-05-22 Spansion, Llc Self aligned memory element and wordline
US7324365B2 (en) * 2006-03-02 2008-01-29 Infineon Technologies Ag Phase change memory fabricated using self-aligned processing
US9306165B2 (en) * 2014-03-27 2016-04-05 Micron Technology, Inc. Replacement materials processes for forming cross point memory

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10692572B2 (en) * 2014-04-30 2020-06-23 Micron Technology, Inc. Variable resistance memory stack with treated sidewalls
US10720574B2 (en) * 2014-04-30 2020-07-21 Micron Technology, Inc. Phase change memory stack with treated sidewalls
US20180358094A1 (en) * 2016-02-17 2018-12-13 Micron Technology, Inc. Memory cell architecture for multilevel cell programming

Also Published As

Publication number Publication date
CN112106136A (en) 2020-12-18

Similar Documents

Publication Publication Date Title
US11063215B2 (en) Spacial arrangments of and critical dimensions for bit line contacts of three-dimensional phase-change memory devices
US11133465B2 (en) Methods for forming three-dimensional phase-change memory devices
WO2022021014A1 (en) New cell structure with reduced programming current and thermal cross talk for 3d x-point memory
CN100456513C (en) Phase changeable memory cells and methods of forming the same
US9000408B2 (en) Memory device with low reset current
TWI497706B (en) Mushroom type memory cell having self-aligned bottom electrode and diode access device
US20200006431A1 (en) Three-dimensional memory device containing cobalt capped copper lines and method of making the same
WO2022104591A1 (en) Vertical 3d pcm memory cell and program read scheme
US11031435B2 (en) Memory device containing ovonic threshold switch material thermal isolation and method of making the same
WO2022032489A1 (en) A new replacement bit line and word line scheme for 3d phase change memory to improve program and increase array size
WO2022032490A1 (en) New cell stack with reduced wl and bl resistance for 3d x-point memory to improve program and increase array size
WO2022104505A1 (en) A novel gap fill and cell structure for improved selector thermal reliability for 3d pcm
WO2022115985A1 (en) A novel liner confined cell structure and fabrication method with reduced programming current and thermal cross talk for 3d x-point memory
WO2022077167A1 (en) Novel self-aligned half damascene contact scheme to reduce cost for 3d pcm
WO2022115986A1 (en) New liner electrode cell structure and fabrication method with reduced programming current and thermal cross talk for 3d x-point memory
WO2022115984A1 (en) Novel recess liner confined cell structure and fabrication method with reduced programming current and thermal cross talk for 3d x-point memory
WO2022109773A1 (en) New super-lattice cell structure and fabrication method with reduced programming current and thermal cross talk for 3d x-point memory
US20240040938A1 (en) Memory device and fabrication method thereof
CN116033758A (en) Semiconductor device and method for manufacturing the same
CN101459191A (en) Phase changing storage device and its making method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948988

Country of ref document: EP

Kind code of ref document: A1