WO2022075281A1 - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
WO2022075281A1
WO2022075281A1 PCT/JP2021/036702 JP2021036702W WO2022075281A1 WO 2022075281 A1 WO2022075281 A1 WO 2022075281A1 JP 2021036702 W JP2021036702 W JP 2021036702W WO 2022075281 A1 WO2022075281 A1 WO 2022075281A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
passage
internal combustion
combustion engine
cooling device
Prior art date
Application number
PCT/JP2021/036702
Other languages
French (fr)
Japanese (ja)
Inventor
友和 黒木
礼俊 松永
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to CN202180067720.8A priority Critical patent/CN116324153A/en
Publication of WO2022075281A1 publication Critical patent/WO2022075281A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/30Connections of coolers to other devices, e.g. to valves, heaters, compressors or filters; Coolers characterised by their location on the engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This disclosure relates to an internal combustion engine having an exhaust circulation device.
  • Patent Document 1 an internal combustion engine having an exhaust circulation device that circulates a part of the exhaust gas discharged from the internal combustion engine to the intake air as an exhaust circulation gas is known (see, for example, Patent Document 1).
  • Patent Document 1 a part of the exhaust gas discharged from the cylinder and passed through the exhaust gas purification device is introduced into the intake air.
  • a cooling device for cooling the exhaust circulating gas is arranged.
  • the cooling device is cooled by the cooling liquid, and the exhaust circulating gas is introduced into the intake air in a state where the temperature is lowered.
  • the exhaust gas purification device is compactly arranged by arranging the cooling device below the exhaust manifold.
  • the front-rear direction of the cooling device is surrounded by the cylinder block and the exhaust purification device, and the upper part is arranged in the space surrounded by the exhaust manifold.
  • the heat released from the exhaust manifold and the exhaust purification device tends to be trapped in the space.
  • the coolant flowing through the cooling device is likely to be heated.
  • the temperature of the exhaust circulating gas rises, and the intake air temperature tends to rise.
  • An object of the present disclosure is to provide an internal combustion engine capable of suppressing excessive heating of a cooling device.
  • the internal combustion engine includes a cylinder block, an intake passage, a supercharger, an exhaust purification device, an exhaust circulation passage, an exhaust circulation valve, and a cooling device.
  • the cylinder block holds the crank shaft from which the cylinder is formed.
  • the intake passage supplies intake air to the cylinder.
  • the supercharger supercharges the intake air flowing through the intake passage.
  • the exhaust gas purification device is displaced with respect to the turbocharger in the extending direction of the crank shaft, and extends in the extending direction of the cylinder.
  • the exhaust circulation passage is connected to the intake passage from the downstream side of the exhaust purification device.
  • the exhaust circulation valve is arranged on the exhaust circulation passage so as to be displaced in the extending direction of the crank shaft with respect to the exhaust purification device.
  • the cooling device is arranged on the exhaust circulation passage, and the exhaust circulation gas flowing through the exhaust circulation passage is cooled by the coolant.
  • One side of the cooling device is arranged between the exhaust gas purification device and the cylinder block, and the other side of the cooling device is arranged in a space surrounded by a supercharger, an exhaust purification device, and an exhaust circulation valve.
  • the cooling device since one side of the cooling device is arranged between the cylinder block and the exhaust gas purification device, it is easy to heat the coolant. Thereby, for example, in the cold start of the internal combustion engine, the temperature of the cooled coolant is likely to be raised. As a result, it is easy to promote warming up of the internal combustion engine.
  • the other side of the cooling device is arranged in the space between the supercharger and the exhaust circulation valve and the exhaust purification device, heat escapes from this space. This makes it possible to suppress excessive heating of the cooling device, for example, when the temperature of the internal combustion engine is high.
  • the internal combustion engine may be mounted on the vehicle.
  • the vehicle power transmission device may be located below the cooling device.
  • the cooling device may be arranged at an angle so as to approach the cylinder block as it approaches the exhaust gas purification device.
  • the cooling device can be arranged compactly. Further, by arranging in this way, since the cooling device is arranged along the exhaust gas purification device, it is easy to raise the temperature of the cooled coolant, for example, at the time of cold start of the internal combustion engine.
  • the internal combustion engine may further include a coolant supply passage for supplying the coolant to the cooling device.
  • the coolant supply passage may pass between the exhaust purification device and the cooling device.
  • the exhaust circulation passage may be arranged so as to be inclined downward as it approaches the exhaust purification device from the intake passage.
  • the internal combustion engine may be mounted on the vehicle.
  • the vehicle may have a heater device that warms the interior of the vehicle.
  • the coolant may flow to the heater device after passing through the cooling device.
  • FIG. 3 is a cross-sectional view of the inlet fitting in the vicinity of the center of the through hole according to the embodiment of the present disclosure.
  • the front-rear direction of the vehicle is referred to as Q in the drawing, and the front is referred to as F.
  • the vehicle width direction is indicated by P in the drawing, and the right side when viewed from the rear of the vehicle is indicated by R.
  • the vertical direction of the vehicle is marked as G in the drawing, and the upper direction is marked as U.
  • the internal combustion engine 1 includes a cylinder block 2, a cylinder head 4, an intake passage 6, a supercharger 8, an exhaust purification device 10, an exhaust circulation passage 12, and an exhaust circulation.
  • a valve 14, a cooling device 16, a coolant supply passage 18, and a coolant discharge passage 20 are provided.
  • the internal combustion engine 1 is an in-line 4-cylinder type internal combustion engine 1 in which four cylinders 2a are formed in series on the cylinder block 2.
  • the crank shaft 2b is extended in the arrangement direction of the cylinders 2a.
  • the crank shaft 2b is held by the cylinder block 2.
  • the type and arrangement direction of the internal combustion engine 1 are not limited to the series type, and may be, for example, a horizontally opposed type or a V type.
  • the internal combustion engine 1 is mounted on the vehicle C.
  • the vehicle C has a transmission 21, a differential gearbox (an example of a power transmission device) 22, and a heater device 24.
  • the transmission 21 shifts the power of the internal combustion engine 1 and transmits it to the differential gearbox 22.
  • the differential gearbox 22 reduces the power transmitted from the transmission 21 to drive the wheels W via the drive shaft 26.
  • the heater device 24 is a device that heats the interior of the vehicle C by using the heat of the coolant flowing through the internal combustion engine 1. In the present embodiment, the heater device 24 is arranged behind the vehicle on the dash panel (not shown) of the vehicle C.
  • the coolant When the internal combustion engine 1 is cold-started, the coolant receives heat by passing through the internal combustion engine 1, the cooling device 16, and the like. The heat-received coolant warms up, warms the internal combustion engine 1, and warms the room by passing through the heater device 24.
  • a thermostat opens and a coolant is supplied to a radiator (not shown) to cool the coolant.
  • the coolant that has passed through the radiator cools the internal combustion engine 1 and is also supplied to the cooling device 16 to cool the exhaust gas, which will be described later.
  • the internal combustion engine 1 arranges the extension direction of the crank shaft 2b with respect to the vehicle C (hereinafter referred to as the extension direction of the crank shaft 2b in the specification) in the vehicle width direction P of the vehicle C.
  • the transmission 21 is arranged on the left side of the internal combustion engine 1 in the vehicle width direction P.
  • the differential gear box 22 is formed of a relatively robust structure using aluminum die casting or the like, and is arranged on the right side R of the transmission 21 in the vehicle width direction P. That is, the vehicle C of the present embodiment is a front-wheel drive type arrangement in which the internal combustion engine 1 is placed horizontally.
  • the cylinder head 4 is arranged above the cylinder block 2.
  • the cylinder head 4 is formed with an intake port for supplying intake air to the cylinder 2a, and an intake manifold (not shown), an intercooler (not shown), and an intake passage 6 are connected to the intake port via a supercharger 8.
  • the exhaust collecting portion 4a in which the exhaust gas discharged from the four cylinders 2a is collected is integrally formed inside the cylinder head 4 (see FIG. 3).
  • the intake passage 6 has a curved portion 6h.
  • the curved portion 6h is formed into a curved shape by the inlet fitting 6a.
  • the inlet fitting 6a is formed in a cylindrical shape by a metal member such as aluminum, and an intake passage 6 is formed inside.
  • the inlet fitting 6a is formed in a curved shape from the upper U of the vehicle C toward the right side R in the vehicle width direction P. Due to such a shape, the inlet fitting 6a extends from the front F side of the vehicle toward the rear, and has an intake passage 6 that turns downward behind the internal combustion engine 1 and an inlet of a compressor 8b, which will be described later. Connect smoothly.
  • the inlet fitting 6a has a through hole 6c penetrating the wall surface of the intake passage 6, and functions as an introduction portion for introducing the exhaust circulation gas that has passed through the inside of the nipple 6b of the exhaust circulation passage 12 into the intake passage 6. ..
  • the pressure of the intake air flowing outside the curved portion 6h is high due to the curved portion 6h, and the pressure of the intake air flowing inside the curved portion 6h is low.
  • a swirling flow along the rotation direction of the compressor 8b is likely to occur in the intake passage 6 formed in the inlet fitting 6a. More specifically, the intake air flowing through the intake passage 6 upstream of the compressor 8b generates a swirling flow along the rotation direction of the compressor 8b while being dragged in the rotation direction of the compressor 8b. Therefore, the condensed water flowing into the intake passage 6 is centrifugally separated by the swirling flow and easily scatters toward the inner circumference X of the intake passage 6.
  • the turbocharger 8 has a turbine 8a and a compressor 8b arranged coaxially with the turbine 8a. As shown in FIG. 3, the turbine 8a is fixed to the outlet flange 4b of the exhaust collecting portion 4a. In the present embodiment, the turbine 8a is attached so that the exhaust gas flows upward from the outlet flange 4b. By arranging the turbine 8a in this way, the turbine 8a is easily cooled by the traveling wind passing between the hood covering the engine room in which the internal combustion engine 1 is housed and the internal combustion engine 1.
  • the compressor 8b is arranged on the intake passage 6 and rotates counterclockwise when viewed from the transmission 21 side (see FIG. 6).
  • the upstream side of the compressor 8b is connected to the intake passage 6 by an inlet fitting 6a that is curved from the upper U by the curved portion 6h and then extends in the extending direction of the crank shaft 2b (in the present embodiment, the vehicle width direction P).
  • the compressor 8b is rotated by the rotation of the turbine 8a by the exhaust gas flowing from the exhaust collecting portion 4a, and the intake air flowing through the intake passage 6 is supercharged.
  • the exhaust purification device 10 is displaced with respect to the supercharger 8 on the front side in the extending direction of the crank shaft 2b (in the present embodiment, on the right side in the vehicle width direction P).
  • the crank shaft 2b is generally referred to as the rear side on the transmission 21 side and the front side on the opposite side. Therefore, in the present embodiment, the front side seen in the extension direction of the crank shaft 2b corresponds to the right side of the vehicle width direction P, and the rear side seen in the extension direction of the crank shaft 2b corresponds to the left side of the vehicle width direction P.
  • the exhaust gas purification device 10 is arranged downstream of the turbine 8a to purify the exhaust gas.
  • the exhaust gas purification device 10 includes a catalyst unit 10a, an inlet pipe 10b, and an outlet pipe 10c.
  • the catalyst portion 10a is formed by inserting a honeycomb carrier coated with a three-way catalyst that purifies carbon monoxide or the like discharged from the cylinder 2a into a metal tubular member.
  • the catalyst unit 10a is controlled to have a high temperature.
  • the catalyst portion 10a extends in the extension direction of the cylinder 2a (hereinafter referred to as the extension direction of the cylinder 2a in the specification).
  • the cylinder 2a extension direction of the cylinder block 2 is arranged along the vertical direction G of the vehicle C. Therefore, in the present embodiment, the extension direction of the cylinder 2a substantially coincides with the vertical direction G.
  • the cylinder block 2 may be arranged so that the upper part of the cylinder 2a is slightly tilted to the rear of the vehicle C (see FIG. 3).
  • the inlet pipe 10b of the exhaust purification device 10 is arranged on the right side R (front side when viewed in the extending direction of the crank shaft 2b) of the turbine 8a in the vehicle width direction P.
  • the inlet pipe 10b is curved downward and connected to the catalyst portion 10a.
  • the catalyst portion 10a is offset to the right side from the turbine 8a by the inlet pipe 10b.
  • the outlet pipe 10c is connected below the catalyst portion 10a, curves toward the left side, and then extends to the rear of the vehicle.
  • a heat protector made of a plate-shaped metal member that matches the shape of the exhaust gas purification device 10 may be provided around the exhaust gas purification device 10.
  • the internal combustion engine 1 constitutes an exhaust circulation device by including an exhaust circulation passage 12, an exhaust circulation valve 14, and a cooling device 16.
  • the exhaust circulation device is provided to reburn the exhaust gas by circulating a part of the exhaust gas discharged from the cylinder 2a to the intake air as an exhaust gas circulation gas.
  • the internal combustion engine 1 improves the fuel efficiency of the vehicle C while reducing nitrogen oxides by reburning the exhaust gas.
  • the exhaust circulation device is a low-pressure type exhaust circulation device in which the exhaust circulation passage 12 is connected from the downstream of the exhaust purification device 10 to the upstream of the compressor 8b of the intake passage 6.
  • the exhaust circulation device is not limited to this, and may be a high-pressure type exhaust circulation device in which the exhaust circulation passage 12 is connected to the downstream side of the compressor 8b.
  • the exhaust gas recirculation may be abbreviated as EGR (Exhaust Gas Recirculation).
  • the exhaust circulation passage 12 extends downward from the intake passage 6 and turns to the right R toward the exhaust purification device 10.
  • the exhaust circulation passage 12 passes between the exhaust purification device 10 and the cylinder block 2 and is connected to the outlet pipe 10c of the exhaust purification device 10 (see FIG. 4).
  • the exhaust circulation passage 12 inclines downward from the intake passage 6 toward the outlet pipe 10c toward the exhaust purification device 10. That is, the exhaust circulation passage 12 inclines downward toward the right side R.
  • the condensed water generated by cooling the exhaust circulating gas by the cooling device 16 can be prevented from flowing downward due to its own weight and flowing into the intake passage 6.
  • the exhaust circulation passage 12 is connected to the intake passage 6 by a nipple 6b having a circular cross section provided downward from the inlet fitting 6a.
  • the exhaust circulation passage 12 includes a first passage 12a from the nipple 6b to the exhaust circulation valve 14, a second passage 12b from the exhaust circulation valve 14 to the cooling device 16, and the inside of the cooling device. It has a third passage 12c through which it passes and a fourth passage 12d from the cooling device 16 to the outlet pipe 10c.
  • the first passage 12a, the second passage 12b, the third passage 12c, and the fourth passage 12d are pipes having a circular cross section, respectively.
  • the first passage 12a is formed by a rubber hose and a metal nipple attached to the exhaust circulation valve 14.
  • the second passage 12b is formed of a metal member such as aluminum.
  • the third passage 12c is formed by a stainless steel passage from the inlet flange 16c of the cooling device 16 to the outlet side surface 16b of the cooling device 16 described later, and the cooling device 16 is provided around the stainless steel passage.
  • the fourth passage 12d is formed of a stainless steel pipe. The exhaust circulation gas enters the fourth passage 12d from the outlet pipe 10c of the exhaust purification device 10, passes through the third passage 12c, the second passage 12b, the first passage 12a, and the nipple 6b in this order, and flows into the intake passage 6.
  • the exhaust circulation passage 12 extends from the through hole 6c in the tangential TL direction and downward of the inner circumference X of the intake passage 6. Further, the exhaust circulation passage 12 has a direction perpendicular to the extension direction of the intake passage 6 with respect to the intake passage 6 (in this embodiment, either one of the vertical direction G and the front-rear direction Q or the vertical direction G and the front-rear direction Q). It is arranged offset (displaced) in the diagonal direction between them. In this way, the exhaust circulation passage 12 extends along the tangential TL direction and is arranged so as to be offset in the direction perpendicular to the extension direction of the intake passage 6, so that the exhaust circulation passage 12 is centrifugally separated by the swirling flow generated in the intake passage 6. The condensed water is easily pushed back to the exhaust circulation passage 12.
  • the exhaust circulation passage 12 extends toward the outside of the curved portion 6h. More specifically, at least a part of the through hole 6c to which the nipple 6b of the exhaust circulation passage 12 is connected is arranged near the lower end of the curved portion 6h (see FIG. 2).
  • the exhaust circulation passage 12 extends downward from the through hole 6c and toward the radially outer side (lower side in the present embodiment) of the portion where the curved portion 6h curves from the upper side toward the right side R.
  • the exhaust circulation passage 12 extends toward the outside of the curved portion 6h, and the condensed water is pushed back to the exhaust circulation passage 12 by the pressure of the intake air flowing outside the intake passage 6 formed in the curved portion 6h.
  • Cheap As a result, it is easy to prevent the condensed water from flowing into the intake passage 6. Further, even if the condensed water flows into the intake passage 6, it is likely to be pushed back from the intake passage 6 to the exhaust circulation passage 12.
  • the exhaust circulation passage 12 is connected toward the upstream of the intake passage so as to form an acute angle with the intake passage 6. More specifically, as shown in FIG. 2, the intake passage center line (see the two-dot chain line Oa), which is a virtual line passing through the substantially center of the intake passage 6, and the substantially center of the first passage 12a of the exhaust circulation passage 12.
  • the angle ⁇ formed by the central line of the exhaust circulation passage (see the two-dot chain line Oe), which is a virtual line passing through the above, is an acute angle.
  • the exhaust circulation passage 12 is connected in the direction opposite to the direction in which the intake air of the intake passage 6 flows, and the exhaust circulation gas flowing through the exhaust circulation passage 12 is introduced at an acute angle against the flow of the intake air flowing through the intake passage 6. .. Therefore, the condensed water having a heavier specific gravity than the exhaust circulating gas contained in the exhaust circulating gas is easily affected by the pressure of the intake air flowing through the intake passage 6. As a result, the condensed water contained in the exhaust circulation gas is likely to be pushed back toward the exhaust circulation passage 12.
  • the nipple 6b of the exhaust circulation passage 12 has an extension portion 6d extending linearly from below and a curved portion 6e curvedly connecting the extension portion 6d to the through hole 6c. .. That is, when viewed in the cross section of FIG. 6, the exhaust circulation passage 12 is arranged so that the inner peripheral surface 6f on the front side F in the front-rear direction Q of the extended portion 6d does not intersect with the inner peripheral surface 6g of the intake passage 6. To.
  • the exhaust circulation passage 12 is smoothly connected from the extending portion 6d to the through hole 6c by the curved portion 6e without significantly changing the inner diameter. Further, the exhaust circulation passage 12 is connected to the through hole 6c without protruding into the intake passage 6.
  • the exhaust circulation passage 12 is arranged offset to the cylinder block 2 side (in the present embodiment, the front side F in the front-rear direction Q of the vehicle C) with respect to the intake passage 6.
  • the nipple 6b does not protrude behind the internal combustion engine 1 and can be fitted compactly. Further, it becomes easy to secure a distance between the internal combustion engine 1 and the dash panel (not shown) of the vehicle C, and the safety in the event of a collision of the vehicle C is improved.
  • the condensed water having a heavier specific gravity than the exhaust circulating gas is centrifuged and collides with the upper part of the inner peripheral surface of the curved portion 6e.
  • the condensed water that has collided with the upper part of the inner peripheral surface of the curved portion 6e runs down the inner peripheral surface of the curved portion 6e due to its own weight and heads for the exhaust circulation valve 14. As a result, it is possible to prevent the condensed water from flowing into the intake passage 6.
  • the curved portion 6e is bent along the rotation direction of the compressor 8b of the turbocharger 8. Therefore, the condensed water centrifugally separated by the swirling flow easily flows into the nipple 6b of the exhaust circulation passage 12. As a result, the condensed water easily returns to the exhaust circulation passage 12.
  • the exhaust circulation valve 14 is arranged on the exhaust circulation passage 12.
  • the exhaust circulation valve 14 is provided to adjust the amount of the exhaust circulation gas introduced into the intake passage 6.
  • the exhaust circulation valve 14 is arranged below the supercharger 8 and is arranged side by side with the exhaust purification device 10 in the extending direction of the crank shaft 2b (in the present embodiment, the vehicle width direction P).
  • the cooling device 16 is a heat exchanger that is arranged on the exhaust circulation passage 12 and cools the exhaust circulation gas flowing through the exhaust circulation passage 12 with a coolant.
  • the cooling device 16 is formed of a metal member such as a square pillar-shaped stainless steel provided with a passage through which a cooling liquid flows, and includes an inlet side surface 16a and an outlet side surface 16b.
  • the cooling device 16 covers the periphery of the third passage 12c and cools the exhaust circulating gas by flowing a cooling liquid around the third passage 12c.
  • the cooling device 16 is welded to the third passage 12c, and the inlet flange 16c to the outlet side surface 16b are integrally formed.
  • the cooling device 16 is arranged along the vehicle width direction P in the longitudinal direction and is fixed to the cylinder block 2.
  • the cooling device 16 is arranged so as to be inclined so that the inlet side surface 16a approaches the cylinder block 2 as it approaches the exhaust gas purification device 10. That is, the cooling device 16 is arranged so that the longitudinal direction of the cooling device 16 is inclined in the front-rear direction Q so that the inlet side surface 16a is in front F in the front-rear direction Q with respect to the exit side surface 16b.
  • One side portion including the inlet side surface 16a of the cooling device 16 is arranged between the exhaust gas purification device 10 and the cylinder block 2, and the other side portion including the outlet side surface 16b is viewed from the rear surface of the vehicle C (internal combustion engine 1). It is arranged in the space S surrounded by the supercharger 8, the exhaust purification device 10, and the exhaust circulation valve 14 (as viewed from the exhaust side side surface of the above). From such a space S, the traveling wind passing above the internal combustion engine 1 and between the engine hood of the vehicle C (not shown) passes through the turbine 8a and then passes through. At this time, the heat from the exhaust gas purification device 10 is also taken away with the traveling wind. That is, the space S becomes a part of the cooling passage using the traveling wind.
  • the traveling wind that has passed through the space S passes behind the differential gearbox 22 and exits to the lower part of the vehicle C.
  • the exhaust collecting portion 4a is integrally formed with the cylinder head 4, and the outlet of the exhaust collecting portion 4a is connected to the turbine 8a.
  • the exhaust purification device 10 is arranged offset with respect to the turbocharger 8 on the front side in the extension direction of the crank shaft 2b (in the present embodiment, on the right side in the vehicle width direction P).
  • the exhaust manifold is used instead of the exhaust collecting portion 4a, and the exhaust purification device 10 is attached to the exhaust manifold without being offset in the extending direction of the crank shaft 2b (for example, the internal combustion engine of Patent Document 1).
  • the running wind tends to flow in the space S below the supercharger 8.
  • the cooling device 16 By arranging the cooling device 16 in this way, the cooling device 16 can be arranged compactly. Further, at the time of the cold start of the internal combustion engine 1, the coolant flowing through the cooling device 16 is in a cold state. However, since the cooling device 16 is arranged along the curved surface of the exhaust gas purification device 10, the cooling liquid receives heat from the exhaust gas purification device 10, and the temperature of the cooling liquid tends to rise. On the other hand, since the outlet side surface 16b of the cooling device 16 is arranged in the space S, after the internal combustion engine 1 is warmed up, the cooling device 16 is excessively heated by being cooled by the traveling wind while the vehicle C is traveling. Can be suppressed.
  • the cooling device 16 is arranged side by side in the order of the exhaust circulation valve 14, the cooling device 16, and the exhaust purification device 10 along the crank shaft 2b extension direction (in the present embodiment, the same direction as the vehicle width direction P). To. That is, the cooling device 16 is arranged between the exhaust circulation valve 14 and the exhaust purification device 10 when viewed from the rear of the vehicle C. Since the cooling device 16 is cooled by the cooling liquid, the heat released from the exhaust gas purification device 10 is cut off by the cooling device 16. As a result, the temperature rise around the exhaust circulation valve 14 can be suppressed.
  • a differential gearbox 22 which is an example of a power transmission device, is arranged below the cooling device 16.
  • scattered objects such as stones scattered from below the vehicle C hit the differential gearbox 22. Therefore, it is possible to prevent the cooling device 16 from being damaged by the scattered matter.
  • the coolant supply passage 18 branches from the thermocase 4c attached to the cylinder head 4 and is connected to the cooling device 16 to supply the cooling liquid to the cooling device 16.
  • the coolant supply passage 18 passes from the right side of the exhaust circulation valve 14 to the rear side and extends forward.
  • the coolant supply passage 18 extending forward passes between the cooling device 16 and the exhaust purification device 10 and is connected to a nipple arranged near the inlet side surface 16a of the cooling device 16.
  • the coolant flows through the coolant supply passage 18.
  • the coolant easily receives heat from the exhaust gas purification device 10 and warms up.
  • the coolant discharge passage 20 is connected to the heater device 24 from the vicinity of the outlet side surface 16b of the cooling device 16. That is, when the internal combustion engine 1 is started cold, the coolant is heated by the heat of the exhaust gas purification device 10 and flows to the heater device 24. As a result, the heater device 24 can easily obtain the heat of the coolant, and it is easy to shorten the time until the room is warmed up. That is, the heater performance is improved.
  • the supercharger 8 is a turbocharger type supercharger 8 having a turbine 8a.
  • the heat capacity of the turbine 8a is large, the heat at the start of the internal combustion engine 1 is taken away by the turbine 8a, and the heater performance tends to deteriorate.
  • the heater performance is likely to be improved by the cooling device 16 receiving heat from the exhaust gas purification device 10.
  • the exhaust gas is introduced downstream of the supercharger 8 by introducing the exhaust gas into the intake passage 6 upstream of the supercharger 8. It is possible to introduce more exhaust circulation gas than it does.
  • the exhaust gas is necessary to cool the exhaust gas in order to prevent the intake air temperature from rising.
  • the exhaust circulation gas is cooled, condensed water is likely to be generated. Further, if the condensed water adheres to the compressor 8b, it tends to cause a failure of the turbocharger 8.
  • the condensed water can be suppressed from flowing out to the intake passage 6, it is easy to suppress the condensed water from adhering to the compressor 8b.
  • the pressure loss when the inner diameter of the exhaust circulation passage 12 is narrowed also increases.
  • the pressure loss becomes large it becomes difficult for the exhaust circulating gas to be introduced into the intake passage 6.
  • the extending portion 6d to the through hole 6c are smoothly connected by the curved portion 6e without significantly changing the inner diameter.
  • the pressure loss of the exhaust circulating gas is suppressed.
  • the exhaust circulating gas can be smoothly introduced into the intake passage 6.
  • the vehicle C has been described by exemplifying the arrangement of the front wheel drive type in which the internal combustion engine 1 is placed horizontally, but the present disclosure is not limited to this.
  • the internal combustion engine 1, the transmission 21, and the differential gearbox 22 may be arranged, for example, in a vehicle in which the crank shaft 2b is arranged in the front-rear direction Q of the vehicle C and the internal combustion engine 1 is vertically placed.
  • the vehicle C may be a four-wheel drive vehicle in which the differential gearbox 22 is provided with a transfer for transmitting power to the rear wheels.
  • the differential gear box 22 may be a part of a transaxle housing in which the transmission 21 and the differential gear are integrally formed.
  • the exhaust gas purification device 10 has been described by using the catalyst portion 10a to which the three-way catalyst is applied as an example, but the present disclosure is not limited to this.
  • the exhaust gas purification device 10 may be a device such as a gasoline particulate filter or a diesel particulate filter that adsorbs soot.
  • the exhaust circulation passage 12 may be provided so as to connect the outlet pipe 10c of the exhaust purification device 10 to the intake passage 6. Further, the material used for each passage of the exhaust circulation passage 12 is not limited to this, and may be appropriately changed.
  • the inlet side surface 16a is arranged between the cylinder block 2 and the catalyst portion 10a of the exhaust gas purification device 10, and the outlet side surface 16b is arranged in the space S.
  • the present disclosure is not limited to this.
  • the side (one side) including the inlet side surface 16a of the cooling device 16 is arranged between the cylinder block 2 and the catalyst portion 10a of the exhaust gas purification device 10, and the remaining part (the other side) of the cooling device 16 is arranged. , It may be arranged in the space S.

Abstract

Provided is an internal combustion engine capable of suppressing excessive heating of a cooling device. The internal combustion engine comprises: a cylinder block (2); an intake passage (6); a supercharger (8); an exhaust purification device (10) and an exhaust circulation passage (12); an exhaust circulation valve (14) that is disposed on the exhaust circulation passage to be displaced in an extension direction of a crank shaft with respect to the exhaust purification device; and a cooling device (16) that is disposed on the exhaust circulation passage and cools an exhaust circulation gas flowing in the exhaust circulation passage using a coolant. One side of the cooling device is disposed between the exhaust purification device and the cylinder block, and the outer side of the cooling device is disposed in a space (S) surrounded by the supercharger, the exhaust purification device, and the exhaust circulation valve.

Description

内燃機関Internal combustion engine
 本開示は、排気循環装置を有する内燃機関に関する。 This disclosure relates to an internal combustion engine having an exhaust circulation device.
 従来、内燃機関から排出される排ガスの一部を排気循環ガスとして吸気に循環させる排気循環装置を有する内燃機関が知られている(例えば、特許文献1参照)。特許文献1の内燃機関では、シリンダから排出し排気浄化装置を通過した排気の一部を、吸気に導入する。 Conventionally, an internal combustion engine having an exhaust circulation device that circulates a part of the exhaust gas discharged from the internal combustion engine to the intake air as an exhaust circulation gas is known (see, for example, Patent Document 1). In the internal combustion engine of Patent Document 1, a part of the exhaust gas discharged from the cylinder and passed through the exhaust gas purification device is introduced into the intake air.
 また、特許文献1の内燃機関では、排気循環ガスを冷却するための、冷却装置が配置されている。特許文献1の排気浄化装置では、冷却装置は冷却液によって冷却され、温度を下げた状態で排気循環ガスを吸気に導入する。また、特許文献1の排気浄化装置では、冷却装置を排気マニホールドの下方に配置することで、排気浄化装置をコンパクトに配置している。 Further, in the internal combustion engine of Patent Document 1, a cooling device for cooling the exhaust circulating gas is arranged. In the exhaust purification device of Patent Document 1, the cooling device is cooled by the cooling liquid, and the exhaust circulating gas is introduced into the intake air in a state where the temperature is lowered. Further, in the exhaust gas purification device of Patent Document 1, the exhaust gas purification device is compactly arranged by arranging the cooling device below the exhaust manifold.
国際公開第2012/056885号International Publication No. 2012/056885
 しかし、特許文献1の内燃機関では、冷却装置の前後方向がシリンダブロックと排気浄化装置に囲まれ、上方が排気マニホールドに囲まれた空間に配置されている。このような空間は、内燃機関に向けて流れる走行風が抜け難い。このため、排気マニホールドおよび排気浄化装置から放出される熱が空間にこもりやすい。これによって、冷却装置に流れる冷却液が加熱されやすい。冷却液が加熱されると、排気循環ガスの温度が上昇し、吸気温度が上昇しやすい。 However, in the internal combustion engine of Patent Document 1, the front-rear direction of the cooling device is surrounded by the cylinder block and the exhaust purification device, and the upper part is arranged in the space surrounded by the exhaust manifold. In such a space, it is difficult for the running wind flowing toward the internal combustion engine to escape. Therefore, the heat released from the exhaust manifold and the exhaust purification device tends to be trapped in the space. As a result, the coolant flowing through the cooling device is likely to be heated. When the coolant is heated, the temperature of the exhaust circulating gas rises, and the intake air temperature tends to rise.
 本開示の課題は、冷却装置の過度な加熱を抑制できる内燃機関を提供することにある。 An object of the present disclosure is to provide an internal combustion engine capable of suppressing excessive heating of a cooling device.
 本開示に係る内燃機関は、シリンダブロックと、吸気通路と、過給機と、排気浄化装置と、排気循環通路と、排気循環バルブと、冷却装置と、を備える。シリンダブロックは、シリンダが形成されクランク軸を保持する。吸気通路は、シリンダに吸気を供給する。過給機は、吸気通路に流れる吸気を過給する。排気浄化装置は、過給機に対してクランク軸の延設方向に変位して配置され、シリンダの延設方向に延びる。排気循環通路は、排気浄化装置の下流から吸気通路に接続される。排気循環バルブは、排気循環通路上に、排気浄化装置に対してクランク軸の延設方向に変位して配置される。冷却装置は、排気循環通路上に配置され、排気循環通路を流れる排気循環ガスを冷却液によって冷却する。冷却装置の一方側は、排気浄化装置とシリンダブロックの間に配置され、冷却装置の他方側は、過給機と、排気浄化装置と、排気循環バルブと、に囲まれる空間に配置される。 The internal combustion engine according to the present disclosure includes a cylinder block, an intake passage, a supercharger, an exhaust purification device, an exhaust circulation passage, an exhaust circulation valve, and a cooling device. The cylinder block holds the crank shaft from which the cylinder is formed. The intake passage supplies intake air to the cylinder. The supercharger supercharges the intake air flowing through the intake passage. The exhaust gas purification device is displaced with respect to the turbocharger in the extending direction of the crank shaft, and extends in the extending direction of the cylinder. The exhaust circulation passage is connected to the intake passage from the downstream side of the exhaust purification device. The exhaust circulation valve is arranged on the exhaust circulation passage so as to be displaced in the extending direction of the crank shaft with respect to the exhaust purification device. The cooling device is arranged on the exhaust circulation passage, and the exhaust circulation gas flowing through the exhaust circulation passage is cooled by the coolant. One side of the cooling device is arranged between the exhaust gas purification device and the cylinder block, and the other side of the cooling device is arranged in a space surrounded by a supercharger, an exhaust purification device, and an exhaust circulation valve.
 この内燃機関によれば、冷却装置の一方側は、シリンダブロックと排気浄化装置との間に配置されるため、冷却液を加熱しやすい。これによって、例えば、内燃機関の冷態始動では、冷えた冷却液の温度を上昇させやすい。この結果、内燃機関の暖機を促進しやすい。一方、冷却装置の他方側は、過給機と、排気循環バルブと排気浄化装置との間の空間に配置されるため、この空間から熱が逃げる。これによって、例えば内燃機関の温度が高い場合において、冷却装置の過度な加熱を抑制できる。 According to this internal combustion engine, since one side of the cooling device is arranged between the cylinder block and the exhaust gas purification device, it is easy to heat the coolant. Thereby, for example, in the cold start of the internal combustion engine, the temperature of the cooled coolant is likely to be raised. As a result, it is easy to promote warming up of the internal combustion engine. On the other hand, since the other side of the cooling device is arranged in the space between the supercharger and the exhaust circulation valve and the exhaust purification device, heat escapes from this space. This makes it possible to suppress excessive heating of the cooling device, for example, when the temperature of the internal combustion engine is high.
 内燃機関は車両に搭載されてもよい。車両の動力伝達装置が冷却装置の下方に配置されてもよい。 The internal combustion engine may be mounted on the vehicle. The vehicle power transmission device may be located below the cooling device.
 この構成によれば、車両の下方からの飛散物は、比較的頑強な構造の動力伝達装置に向かうので、冷却装置が破損することを抑制できる。 According to this configuration, scattered matter from below the vehicle heads toward the power transmission device having a relatively robust structure, so that damage to the cooling device can be suppressed.
 冷却装置は、排気浄化装置に近づくにつれてシリンダブロックに近づくように傾斜して配置されてもよい。 The cooling device may be arranged at an angle so as to approach the cylinder block as it approaches the exhaust gas purification device.
 この構成によれば、冷却装置をコンパクトに配置できる。さらに、このように配置することで、冷却装置が排気浄化装置に沿って配置されるため、例えば内燃機関の冷態始動時においては、冷えた冷却液の温度を上昇させやすい。 According to this configuration, the cooling device can be arranged compactly. Further, by arranging in this way, since the cooling device is arranged along the exhaust gas purification device, it is easy to raise the temperature of the cooled coolant, for example, at the time of cold start of the internal combustion engine.
 内燃機関は、冷却装置に冷却液を供給する冷却液供給通路をさらに備えてもよい。冷却液供給通路は、排気浄化装置と冷却装置との間を通過してもよい。 The internal combustion engine may further include a coolant supply passage for supplying the coolant to the cooling device. The coolant supply passage may pass between the exhaust purification device and the cooling device.
 この構成によれば、冷却液供給通路を流れる冷却液の温度を上昇させやすい。これによって、例えば内燃機関の冷態始動時においては、冷えた冷却液の温度を上昇させやすい。 According to this configuration, it is easy to raise the temperature of the coolant flowing through the coolant supply passage. This makes it easy to raise the temperature of the cooled coolant, for example, when the internal combustion engine is cold-started.
 排気循環通路は、吸気通路から排気浄化装置に近づくにつれて下方に傾斜して配置されてもよい。 The exhaust circulation passage may be arranged so as to be inclined downward as it approaches the exhaust purification device from the intake passage.
 この構成によれば、凝縮水が吸気通路に流れ込むことを抑制できる。 According to this configuration, it is possible to prevent the condensed water from flowing into the intake passage.
 内燃機関は車両に搭載されてもよい。車両は車両の室内を温めるヒータ装置を有してもよい。冷却液は冷却装置を通過した後、ヒータ装置に流れてもよい。 The internal combustion engine may be mounted on the vehicle. The vehicle may have a heater device that warms the interior of the vehicle. The coolant may flow to the heater device after passing through the cooling device.
 この構成によれば、車両のヒータ性能が向上する。 According to this configuration, the heater performance of the vehicle is improved.
 本開示によれば、冷却装置の過度な加熱を抑制できる内燃機関を提供できる。 According to the present disclosure, it is possible to provide an internal combustion engine capable of suppressing excessive heating of a cooling device.
本開示の実施形態による内燃機関の車両搭載状態の概念図。The conceptual diagram of the vehicle-mounted state of the internal combustion engine according to the embodiment of this disclosure. 本開示の実施形態による内燃機関の後面図。Rear view of the internal combustion engine according to the embodiment of the present disclosure. 図2のIV-IV断面図IV-IV cross-sectional view of FIG. 図2のV-V断面図VV cross-sectional view of FIG. 本開示の実施形態によるインレットフィッチングを示す図。The figure which shows the inlet fitting according to the embodiment of this disclosure. 本開示の実施形態によるインレットフィッチングの貫通孔中心付近における断面図。FIG. 3 is a cross-sectional view of the inlet fitting in the vicinity of the center of the through hole according to the embodiment of the present disclosure.
 以下、本開示の一実施形態について、図面を参照しながら説明する。なお、以下明細書において、車両の前後方向をQと図面に記し、前方をFと記す。また、車両の車幅方向をPと図面に記し、車両の後方からみて右側をRと記す。さらに、車両の上下方向をGと図面に記し、上方をUと記す。 Hereinafter, one embodiment of the present disclosure will be described with reference to the drawings. In the following specification, the front-rear direction of the vehicle is referred to as Q in the drawing, and the front is referred to as F. Further, the vehicle width direction is indicated by P in the drawing, and the right side when viewed from the rear of the vehicle is indicated by R. Further, the vertical direction of the vehicle is marked as G in the drawing, and the upper direction is marked as U.
 図1および図2に示すように、内燃機関1は、シリンダブロック2と、シリンダヘッド4と、吸気通路6と、過給機8と、排気浄化装置10と、排気循環通路12と、排気循環バルブ14と、冷却装置16と、冷却液供給通路18と、冷却液排出通路20と、を備える。 As shown in FIGS. 1 and 2, the internal combustion engine 1 includes a cylinder block 2, a cylinder head 4, an intake passage 6, a supercharger 8, an exhaust purification device 10, an exhaust circulation passage 12, and an exhaust circulation. A valve 14, a cooling device 16, a coolant supply passage 18, and a coolant discharge passage 20 are provided.
 本実施形態では、内燃機関1は、シリンダブロック2にシリンダ2aが直列に4つ形成される直列4気筒型の内燃機関1である。内燃機関1は、シリンダ2aの配列方向にクランク軸2bが延設される。クランク軸2bは、シリンダブロック2に保持される。しかし、内燃機関1の型式、配列方向は直列型に限定されず、例えば、水平対向型や、V型でもよい。 In the present embodiment, the internal combustion engine 1 is an in-line 4-cylinder type internal combustion engine 1 in which four cylinders 2a are formed in series on the cylinder block 2. In the internal combustion engine 1, the crank shaft 2b is extended in the arrangement direction of the cylinders 2a. The crank shaft 2b is held by the cylinder block 2. However, the type and arrangement direction of the internal combustion engine 1 are not limited to the series type, and may be, for example, a horizontally opposed type or a V type.
 内燃機関1は、車両Cに搭載される。車両Cは、トランスミッション21と、デファレンシャルギヤボックス(動力伝達装置の一例)22と、ヒータ装置24と、を有する。トランスミッション21は、内燃機関1の動力を変速してデファレンシャルギヤボックス22に伝達する。デファレンシャルギヤボックス22は、トランスミッション21から伝達された動力を減速して、ドライブシャフト26を介して車輪Wを駆動する。ヒータ装置24は、内燃機関1に流れる冷却液の熱を用いて車両Cの室内を温める装置である。本実施形態では、ヒータ装置24は、車両Cのダッシュパネル(図示無し)の車両後方に配置される。 The internal combustion engine 1 is mounted on the vehicle C. The vehicle C has a transmission 21, a differential gearbox (an example of a power transmission device) 22, and a heater device 24. The transmission 21 shifts the power of the internal combustion engine 1 and transmits it to the differential gearbox 22. The differential gearbox 22 reduces the power transmitted from the transmission 21 to drive the wheels W via the drive shaft 26. The heater device 24 is a device that heats the interior of the vehicle C by using the heat of the coolant flowing through the internal combustion engine 1. In the present embodiment, the heater device 24 is arranged behind the vehicle on the dash panel (not shown) of the vehicle C.
 なお、冷却液は、内燃機関1が冷態始動した場合、内燃機関1、および冷却装置16などを通過することで受熱する。受熱した冷却液は温まり、内燃機関1を暖機するとともに、ヒータ装置24を通過することで室内を温める。 When the internal combustion engine 1 is cold-started, the coolant receives heat by passing through the internal combustion engine 1, the cooling device 16, and the like. The heat-received coolant warms up, warms the internal combustion engine 1, and warms the room by passing through the heater device 24.
 一方、内燃機関1が暖機された後は、図示しないサーモスタットが開き、図示しないラジエーターに冷却液が供給されることで、冷却液が冷やされる。ラジエーターを通過した冷却液は、内燃機関1を冷却するとともに、冷却装置16にも供給され、後述する排気循環ガスを冷却する。 On the other hand, after the internal combustion engine 1 is warmed up, a thermostat (not shown) opens and a coolant is supplied to a radiator (not shown) to cool the coolant. The coolant that has passed through the radiator cools the internal combustion engine 1 and is also supplied to the cooling device 16 to cool the exhaust gas, which will be described later.
 本実施形態では、内燃機関1が車両Cに対しクランク軸2bの延設方向(以下明細書において、クランク軸2b延設方向と記す)が車両Cの車幅方向Pに配置される。トランスミッション21は、内燃機関1の車幅方向Pの左側に配置される。デファレンシャルギヤボックス22は、アルミダイキャストなどを用いて比較的頑強な構造で形成され、トランスミッション21の車幅方向Pの右側Rに配置される。すなわち、本実施形態の車両Cは、内燃機関1を横置きした前輪駆動型の配置である。 In the present embodiment, the internal combustion engine 1 arranges the extension direction of the crank shaft 2b with respect to the vehicle C (hereinafter referred to as the extension direction of the crank shaft 2b in the specification) in the vehicle width direction P of the vehicle C. The transmission 21 is arranged on the left side of the internal combustion engine 1 in the vehicle width direction P. The differential gear box 22 is formed of a relatively robust structure using aluminum die casting or the like, and is arranged on the right side R of the transmission 21 in the vehicle width direction P. That is, the vehicle C of the present embodiment is a front-wheel drive type arrangement in which the internal combustion engine 1 is placed horizontally.
 シリンダヘッド4は、シリンダブロック2の上部に配置される。シリンダヘッド4は、シリンダ2aに吸気を供給する吸気ポートが形成され、吸気ポートにインテークマニホールド(図示無し)、インタークーラー(図示無し)、および過給機8を介して吸気通路6が接続される。本実施形態では、4つのシリンダ2aから排出された排気が集合する排気集合部4aが、シリンダヘッド4の内部に一体で形成される(図3参照)。 The cylinder head 4 is arranged above the cylinder block 2. The cylinder head 4 is formed with an intake port for supplying intake air to the cylinder 2a, and an intake manifold (not shown), an intercooler (not shown), and an intake passage 6 are connected to the intake port via a supercharger 8. In the present embodiment, the exhaust collecting portion 4a in which the exhaust gas discharged from the four cylinders 2a is collected is integrally formed inside the cylinder head 4 (see FIG. 3).
 吸気通路6は、湾曲部6hを有する。湾曲部6hは、インレットフィッチング6aによって湾曲形状に形成される。インレットフィッチング6aは、アルミなどの金属部材によって筒状に形成され、内部に吸気通路6が形成される。本実施形態では、インレットフィッチング6aは、車両Cの上方Uから車幅方向Pの右側Rに向けて湾曲形状に形成される。インレットフィッチング6aは、このような形状によって、車両の前方F側から後方に向かって延び、内燃機関1の後方において下方へと向きを変える吸気通路6と、後述するコンプレッサ8bの入口と、を円滑に接続する。また、インレットフィッチング6aは、吸気通路6の壁面を貫通する貫通孔6cを有し、排気循環通路12のニップル6bの内部を通過した排気循環ガスを吸気通路6に導入する導入部として機能する。 The intake passage 6 has a curved portion 6h. The curved portion 6h is formed into a curved shape by the inlet fitting 6a. The inlet fitting 6a is formed in a cylindrical shape by a metal member such as aluminum, and an intake passage 6 is formed inside. In the present embodiment, the inlet fitting 6a is formed in a curved shape from the upper U of the vehicle C toward the right side R in the vehicle width direction P. Due to such a shape, the inlet fitting 6a extends from the front F side of the vehicle toward the rear, and has an intake passage 6 that turns downward behind the internal combustion engine 1 and an inlet of a compressor 8b, which will be described later. Connect smoothly. Further, the inlet fitting 6a has a through hole 6c penetrating the wall surface of the intake passage 6, and functions as an introduction portion for introducing the exhaust circulation gas that has passed through the inside of the nipple 6b of the exhaust circulation passage 12 into the intake passage 6. ..
 このようなインレットフィッチング6aでは、湾曲部6hによって湾曲部6hの外側を流れる吸気の圧力が高く、湾曲部6hの内側を流れる吸気の圧力が低くなる。また、後述するコンプレッサ8bの回転によって、インレットフィッチング6aに形成された吸気通路6にコンプレッサ8bの回転方向に沿った旋回流が発生しやすい。より具体的には、コンプレッサ8bよりも上流の吸気通路6を流れる吸気は、コンプレッサ8bの回転方向に引きずられながらコンプレッサ8bの回転方向に沿った旋回流が発生する。このため、吸気通路6に流入した凝縮水は旋回流によって遠心分離され、吸気通路6の内周Xに向けて飛散しやすい。 In such an inlet fitting 6a, the pressure of the intake air flowing outside the curved portion 6h is high due to the curved portion 6h, and the pressure of the intake air flowing inside the curved portion 6h is low. Further, due to the rotation of the compressor 8b described later, a swirling flow along the rotation direction of the compressor 8b is likely to occur in the intake passage 6 formed in the inlet fitting 6a. More specifically, the intake air flowing through the intake passage 6 upstream of the compressor 8b generates a swirling flow along the rotation direction of the compressor 8b while being dragged in the rotation direction of the compressor 8b. Therefore, the condensed water flowing into the intake passage 6 is centrifugally separated by the swirling flow and easily scatters toward the inner circumference X of the intake passage 6.
 過給機8は、タービン8aと、タービン8aと同軸上に配置されるコンプレッサ8bと、を有する。タービン8aは、図3に示すように、排気集合部4aの出口フランジ4bに固定される。本実施形態では、タービン8aは、出口フランジ4bから上方に向けて排気が流れるように取り付けられる。このように、タービン8aを配置することで、内燃機関1が収容されるエンジンルームを覆うフードと内燃機関1との間を通過する走行風によって、タービン8aが冷却されやすい。 The turbocharger 8 has a turbine 8a and a compressor 8b arranged coaxially with the turbine 8a. As shown in FIG. 3, the turbine 8a is fixed to the outlet flange 4b of the exhaust collecting portion 4a. In the present embodiment, the turbine 8a is attached so that the exhaust gas flows upward from the outlet flange 4b. By arranging the turbine 8a in this way, the turbine 8a is easily cooled by the traveling wind passing between the hood covering the engine room in which the internal combustion engine 1 is housed and the internal combustion engine 1.
 コンプレッサ8bは、吸気通路6上に配置され、トランスミッション21側からみて、反時計回りに回転する(図6参照)。コンプレッサ8bの上流側は、上方Uから湾曲部6hによって湾曲したのちクランク軸2b延設方向(本実施形態では、車幅方向P)に延びるインレットフィッチング6aによって、吸気通路6と接続される。過給機8は、排気集合部4aから流れる排気によってタービン8aが回転することでコンプレッサ8bが回転し、吸気通路6を流れる吸気が過給される。 The compressor 8b is arranged on the intake passage 6 and rotates counterclockwise when viewed from the transmission 21 side (see FIG. 6). The upstream side of the compressor 8b is connected to the intake passage 6 by an inlet fitting 6a that is curved from the upper U by the curved portion 6h and then extends in the extending direction of the crank shaft 2b (in the present embodiment, the vehicle width direction P). In the supercharger 8, the compressor 8b is rotated by the rotation of the turbine 8a by the exhaust gas flowing from the exhaust collecting portion 4a, and the intake air flowing through the intake passage 6 is supercharged.
 図2に示すように、排気浄化装置10は、過給機8に対してクランク軸2b延設方向の前側(本実施形態では車幅方向Pの右側)に変位して配置される。なお、クランク軸2bは、一般的にトランスミッション21側が後側と称し、反対側が前側と称する。したがって、本実施形態では、クランク軸2b延設方向でみた前側は、車幅方向Pの右側に一致し、クランク軸2b延設方向でみた後側は、車幅方向Pの左側に一致する。 As shown in FIG. 2, the exhaust purification device 10 is displaced with respect to the supercharger 8 on the front side in the extending direction of the crank shaft 2b (in the present embodiment, on the right side in the vehicle width direction P). The crank shaft 2b is generally referred to as the rear side on the transmission 21 side and the front side on the opposite side. Therefore, in the present embodiment, the front side seen in the extension direction of the crank shaft 2b corresponds to the right side of the vehicle width direction P, and the rear side seen in the extension direction of the crank shaft 2b corresponds to the left side of the vehicle width direction P.
 排気浄化装置10は、タービン8aの下流に配置され、排気を浄化する。本実施形態では、排気浄化装置10は、触媒部10aと、入口管10bと、出口管10cと、を含む。触媒部10aは、シリンダ2aから排出される一酸化炭素などを浄化する三元触媒が塗布されたハニカム担体が、金属製の管状部材に挿入されて形成される。内燃機関1が冷態始動した場合、触媒部10aは高温となるように制御される。 The exhaust gas purification device 10 is arranged downstream of the turbine 8a to purify the exhaust gas. In the present embodiment, the exhaust gas purification device 10 includes a catalyst unit 10a, an inlet pipe 10b, and an outlet pipe 10c. The catalyst portion 10a is formed by inserting a honeycomb carrier coated with a three-way catalyst that purifies carbon monoxide or the like discharged from the cylinder 2a into a metal tubular member. When the internal combustion engine 1 is cold-started, the catalyst unit 10a is controlled to have a high temperature.
 排気浄化装置10は、触媒部10aがシリンダ2aの延設方向(以下明細書においてシリンダ2a延設方向と記す)に延びる。本実施形態では、シリンダブロック2のシリンダ2a延設方向が、車両Cの上下方向Gに沿って配置される。したがって本実施形態では、シリンダ2a延設方向は上下方向Gと略一致する。なお、シリンダブロック2は、シリンダ2aの上方が車両Cの後方にやや傾けて配置されてもよい(図3参照)。すなわち、本実施形態では、排気浄化装置10の入口管10bは、タービン8aの車幅方向Pの右側R(クランク軸2b延設方向でみて前側)に配置される。入口管10bは、下方に湾曲して触媒部10aに接続される。触媒部10aは、入口管10bによってタービン8aと右側にオフセットして配置される。出口管10cは、触媒部10aの下方に接続され、左側に向けて湾曲したのち車両後方へと延びる。排気浄化装置10の周囲には、排気浄化装置10の形状に合わせた板状金属部材のヒートプロテクタを設けてもよい。 In the exhaust gas purification device 10, the catalyst portion 10a extends in the extension direction of the cylinder 2a (hereinafter referred to as the extension direction of the cylinder 2a in the specification). In the present embodiment, the cylinder 2a extension direction of the cylinder block 2 is arranged along the vertical direction G of the vehicle C. Therefore, in the present embodiment, the extension direction of the cylinder 2a substantially coincides with the vertical direction G. The cylinder block 2 may be arranged so that the upper part of the cylinder 2a is slightly tilted to the rear of the vehicle C (see FIG. 3). That is, in the present embodiment, the inlet pipe 10b of the exhaust purification device 10 is arranged on the right side R (front side when viewed in the extending direction of the crank shaft 2b) of the turbine 8a in the vehicle width direction P. The inlet pipe 10b is curved downward and connected to the catalyst portion 10a. The catalyst portion 10a is offset to the right side from the turbine 8a by the inlet pipe 10b. The outlet pipe 10c is connected below the catalyst portion 10a, curves toward the left side, and then extends to the rear of the vehicle. A heat protector made of a plate-shaped metal member that matches the shape of the exhaust gas purification device 10 may be provided around the exhaust gas purification device 10.
 内燃機関1は、排気循環通路12と、排気循環バルブ14と、冷却装置16と、を備えることによって、排気循環装置を構成する。排気循環装置は、シリンダ2aから排出された排気の一部を排気循環ガスとして吸気に循環することで、排気を再燃焼させるために設けられる。内燃機関1は、排気を再燃焼させることで窒素酸化物を低減しつつ、車両Cの燃費を向上させる。本実施形態では、排気循環装置は、排気循環通路12が排気浄化装置10の下流から吸気通路6のコンプレッサ8bの上流に接続される低圧型の排気循環装置である。しかし、排気循環装置はこれに限定されず、排気循環通路12がコンプレッサ8bの下流に接続される高圧型の排気循環装置であってもよい。なお、排気循環は、略してEGR(Exhaust Gas Recirculation)と称される場合もある。 The internal combustion engine 1 constitutes an exhaust circulation device by including an exhaust circulation passage 12, an exhaust circulation valve 14, and a cooling device 16. The exhaust circulation device is provided to reburn the exhaust gas by circulating a part of the exhaust gas discharged from the cylinder 2a to the intake air as an exhaust gas circulation gas. The internal combustion engine 1 improves the fuel efficiency of the vehicle C while reducing nitrogen oxides by reburning the exhaust gas. In the present embodiment, the exhaust circulation device is a low-pressure type exhaust circulation device in which the exhaust circulation passage 12 is connected from the downstream of the exhaust purification device 10 to the upstream of the compressor 8b of the intake passage 6. However, the exhaust circulation device is not limited to this, and may be a high-pressure type exhaust circulation device in which the exhaust circulation passage 12 is connected to the downstream side of the compressor 8b. The exhaust gas recirculation may be abbreviated as EGR (Exhaust Gas Recirculation).
 排気循環通路12は、吸気通路6から下方に延び、排気浄化装置10に向けて右側Rに曲がる。排気循環通路12は、排気浄化装置10とシリンダブロック2との間を通り、排気浄化装置10の出口管10cに接続される(図4参照)。排気循環通路12は、吸気通路6から出口管10cに向けて、排気浄化装置10に向かうにつれて、下方に傾斜する。すなわち、排気循環通路12は、右側Rに向かうにつれて、下方に傾斜する。これによって、排気循環ガスが冷却装置16によって冷却されることで発生する凝縮水が、自重によって下方に流れ、吸気通路6に凝縮水が流れることを抑制できる。 The exhaust circulation passage 12 extends downward from the intake passage 6 and turns to the right R toward the exhaust purification device 10. The exhaust circulation passage 12 passes between the exhaust purification device 10 and the cylinder block 2 and is connected to the outlet pipe 10c of the exhaust purification device 10 (see FIG. 4). The exhaust circulation passage 12 inclines downward from the intake passage 6 toward the outlet pipe 10c toward the exhaust purification device 10. That is, the exhaust circulation passage 12 inclines downward toward the right side R. As a result, the condensed water generated by cooling the exhaust circulating gas by the cooling device 16 can be prevented from flowing downward due to its own weight and flowing into the intake passage 6.
 本実施形態では、排気循環通路12は、図5に示すように、インレットフィッチング6aから下方に向けて設けられた断面円形のニップル6bによって吸気通路6と接続される。また、排気循環通路12は、図2に示すように、ニップル6bから排気循環バルブ14までの第1通路12aと、排気循環バルブ14から冷却装置16までの第2通路12bと、冷却装置内を通過する第3通路12cと、冷却装置16から出口管10cまでの第4通路12dと、を有する。第1通路12a、第2通路12b、第3通路12c、および第4通路12dは、それぞれ断面円形の管である。 In the present embodiment, as shown in FIG. 5, the exhaust circulation passage 12 is connected to the intake passage 6 by a nipple 6b having a circular cross section provided downward from the inlet fitting 6a. Further, as shown in FIG. 2, the exhaust circulation passage 12 includes a first passage 12a from the nipple 6b to the exhaust circulation valve 14, a second passage 12b from the exhaust circulation valve 14 to the cooling device 16, and the inside of the cooling device. It has a third passage 12c through which it passes and a fourth passage 12d from the cooling device 16 to the outlet pipe 10c. The first passage 12a, the second passage 12b, the third passage 12c, and the fourth passage 12d are pipes having a circular cross section, respectively.
 第1通路12aは、ゴム製のホースと、排気循環バルブ14に取り付けられた金属製のニップルによって形成される。第2通路12bは、アルミなどの金属部材によって形成される。第3通路12cは、冷却装置16の入口フランジ16cから後述する冷却装置16の出口側面16bまでがステンレス製の通路によって形成され、このステンレス製の通路の周囲に冷却装置16が設けられる。第4通路12dは、ステンレス製のパイプによって形成される。排気循環ガスは、排気浄化装置10の出口管10cから第4通路12dに入り、第3通路12c、第2通路12b、第1通路12a、ニップル6bの順に通過して吸気通路6に流れる。 The first passage 12a is formed by a rubber hose and a metal nipple attached to the exhaust circulation valve 14. The second passage 12b is formed of a metal member such as aluminum. The third passage 12c is formed by a stainless steel passage from the inlet flange 16c of the cooling device 16 to the outlet side surface 16b of the cooling device 16 described later, and the cooling device 16 is provided around the stainless steel passage. The fourth passage 12d is formed of a stainless steel pipe. The exhaust circulation gas enters the fourth passage 12d from the outlet pipe 10c of the exhaust purification device 10, passes through the third passage 12c, the second passage 12b, the first passage 12a, and the nipple 6b in this order, and flows into the intake passage 6.
 図6に示すように、排気循環通路12は、貫通孔6cから吸気通路6の内周Xの接線TL方向かつ下方に延びる。また、排気循環通路12は、吸気通路6に対し、吸気通路6の延設方向と直行する方向(本実施形態では上下方向Gおよび前後方向Qのいずれか一方向または上下方向Gおよび前後方向Qの間の斜め方向)にオフセット(変位)して配置される。このように、排気循環通路12が接線TL方向に沿って延び、吸気通路6の延設方向と直行する方向にオフセットして配置されることによって、吸気通路6に発生する旋回流によって遠心分離された凝縮水が排気循環通路12に押し戻されやすい。 As shown in FIG. 6, the exhaust circulation passage 12 extends from the through hole 6c in the tangential TL direction and downward of the inner circumference X of the intake passage 6. Further, the exhaust circulation passage 12 has a direction perpendicular to the extension direction of the intake passage 6 with respect to the intake passage 6 (in this embodiment, either one of the vertical direction G and the front-rear direction Q or the vertical direction G and the front-rear direction Q). It is arranged offset (displaced) in the diagonal direction between them. In this way, the exhaust circulation passage 12 extends along the tangential TL direction and is arranged so as to be offset in the direction perpendicular to the extension direction of the intake passage 6, so that the exhaust circulation passage 12 is centrifugally separated by the swirling flow generated in the intake passage 6. The condensed water is easily pushed back to the exhaust circulation passage 12.
 図5に示すように、排気循環通路12は、湾曲部6hの外側に向かって延びる。より具体的には、排気循環通路12のニップル6bが接続する貫通孔6cの少なくとも一部が湾曲部6hの下端近傍に配置される(図2参照)。排気循環通路12は、貫通孔6cから下方かつ湾曲部6hが上方から右側Rに向けて湾曲する部分の径方向外側(本実施形態では下側)に向かって延びる。このように、排気循環通路12が湾曲部6hの外側に向かって延びることによって、湾曲部6h内に形成される吸気通路6の外側を流れる吸気の圧力によって凝縮水が排気循環通路12に押し戻されやすい。この結果、吸気通路6に凝縮水が流入することを抑制しやすい。さらに、凝縮水は、吸気通路6に流入したとしても、吸気通路6から排気循環通路12に押し戻されやすい。 As shown in FIG. 5, the exhaust circulation passage 12 extends toward the outside of the curved portion 6h. More specifically, at least a part of the through hole 6c to which the nipple 6b of the exhaust circulation passage 12 is connected is arranged near the lower end of the curved portion 6h (see FIG. 2). The exhaust circulation passage 12 extends downward from the through hole 6c and toward the radially outer side (lower side in the present embodiment) of the portion where the curved portion 6h curves from the upper side toward the right side R. As described above, the exhaust circulation passage 12 extends toward the outside of the curved portion 6h, and the condensed water is pushed back to the exhaust circulation passage 12 by the pressure of the intake air flowing outside the intake passage 6 formed in the curved portion 6h. Cheap. As a result, it is easy to prevent the condensed water from flowing into the intake passage 6. Further, even if the condensed water flows into the intake passage 6, it is likely to be pushed back from the intake passage 6 to the exhaust circulation passage 12.
 また、排気循環通路12は、吸気通路6と鋭角を成すように吸気通路の上流に向かって接続される。より具体的には、図2に示すように、吸気通路6の略中央を通る仮想線である吸気通路中央線(二点鎖線Oa参照)と、排気循環通路12の第1通路12aの略中央を通る仮想線である排気循環通路中央線(二点鎖線Oe参照)とがなす角度αが鋭角である。これによって、排気循環通路12は、吸気通路6の吸気が流れる方向に逆らって接続され、排気循環通路12を流れる排気循環ガスは、吸気通路6を流れる吸気の流れに逆らって鋭角に導入される。このため、排気循環ガスに含まれる排気循環ガスよりも比重が重い凝縮水は、吸気通路6を流れる吸気の圧力の影響を受けやすくなる。この結果、排気循環ガスに含まれる凝縮水が排気循環通路12に向けて押し戻されやすい。 Further, the exhaust circulation passage 12 is connected toward the upstream of the intake passage so as to form an acute angle with the intake passage 6. More specifically, as shown in FIG. 2, the intake passage center line (see the two-dot chain line Oa), which is a virtual line passing through the substantially center of the intake passage 6, and the substantially center of the first passage 12a of the exhaust circulation passage 12. The angle α formed by the central line of the exhaust circulation passage (see the two-dot chain line Oe), which is a virtual line passing through the above, is an acute angle. As a result, the exhaust circulation passage 12 is connected in the direction opposite to the direction in which the intake air of the intake passage 6 flows, and the exhaust circulation gas flowing through the exhaust circulation passage 12 is introduced at an acute angle against the flow of the intake air flowing through the intake passage 6. .. Therefore, the condensed water having a heavier specific gravity than the exhaust circulating gas contained in the exhaust circulating gas is easily affected by the pressure of the intake air flowing through the intake passage 6. As a result, the condensed water contained in the exhaust circulation gas is likely to be pushed back toward the exhaust circulation passage 12.
 図6に示すように、排気循環通路12のニップル6bは、下方から直線的に延びる延設部6dと、延設部6dから貫通孔6cまでを曲線的に接続する曲部6eと、を有する。すなわち、図6の断面でみた場合、排気循環通路12は、延設部6dのうち前後方向Qの前側Fにある内周面6fが吸気通路6の内周面6gと交差しないように配置される。排気循環通路12は、延設部6dから貫通孔6cまでが曲部6eによって、内径が大きく変化することなく円滑に接続される。また、排気循環通路12は、吸気通路6に突出することなく、貫通孔6cに接続される。排気循環通路12をこのような配置とすることによって、吸気通路6に凝縮水が流入した場合であっても、凝縮水が排気循環通路12に戻りやすい。本実施形態では、排気循環通路12は、吸気通路6に対しシリンダブロック2側(本実施形態では、車両Cの前後方向Qの前側F)にオフセットして配置される。これによって、内燃機関1の後方にニップル6bが突出することなく、コンパクトに収まる。さらに、内燃機関1と車両Cのダッシュパネル(図示なし)との距離も確保しやすくなり、車両Cの衝突時の安全性が高くなる。 As shown in FIG. 6, the nipple 6b of the exhaust circulation passage 12 has an extension portion 6d extending linearly from below and a curved portion 6e curvedly connecting the extension portion 6d to the through hole 6c. .. That is, when viewed in the cross section of FIG. 6, the exhaust circulation passage 12 is arranged so that the inner peripheral surface 6f on the front side F in the front-rear direction Q of the extended portion 6d does not intersect with the inner peripheral surface 6g of the intake passage 6. To. The exhaust circulation passage 12 is smoothly connected from the extending portion 6d to the through hole 6c by the curved portion 6e without significantly changing the inner diameter. Further, the exhaust circulation passage 12 is connected to the through hole 6c without protruding into the intake passage 6. By arranging the exhaust circulation passage 12 in this way, even when the condensed water flows into the intake passage 6, the condensed water easily returns to the exhaust circulation passage 12. In the present embodiment, the exhaust circulation passage 12 is arranged offset to the cylinder block 2 side (in the present embodiment, the front side F in the front-rear direction Q of the vehicle C) with respect to the intake passage 6. As a result, the nipple 6b does not protrude behind the internal combustion engine 1 and can be fitted compactly. Further, it becomes easy to secure a distance between the internal combustion engine 1 and the dash panel (not shown) of the vehicle C, and the safety in the event of a collision of the vehicle C is improved.
 また、排気循環ガスが曲部6eを通過する場合、排気循環ガスよりも比重が重い凝縮水は遠心分離され、曲部6eの内周面上部に衝突する。曲部6eの内周面上部に衝突した凝縮水は、自重によって曲部6eの内周面を伝い落ち、排気循環バルブ14に向かう。これによって、凝縮水が吸気通路6に流入することを抑制できる。 Further, when the exhaust circulating gas passes through the curved portion 6e, the condensed water having a heavier specific gravity than the exhaust circulating gas is centrifuged and collides with the upper part of the inner peripheral surface of the curved portion 6e. The condensed water that has collided with the upper part of the inner peripheral surface of the curved portion 6e runs down the inner peripheral surface of the curved portion 6e due to its own weight and heads for the exhaust circulation valve 14. As a result, it is possible to prevent the condensed water from flowing into the intake passage 6.
 また、曲部6eは、過給機8のコンプレッサ8bの回転方向に沿って曲げられる。このため、旋回流によって遠心分離された凝縮水が排気循環通路12のニップル6bに流れ込みやすい。これによって、凝縮水が排気循環通路12に戻りやすい。 Further, the curved portion 6e is bent along the rotation direction of the compressor 8b of the turbocharger 8. Therefore, the condensed water centrifugally separated by the swirling flow easily flows into the nipple 6b of the exhaust circulation passage 12. As a result, the condensed water easily returns to the exhaust circulation passage 12.
 排気循環バルブ14は、排気循環通路12上に配置される。排気循環バルブ14は、吸気通路6に導入する排気循環ガスの量を調整するために設けられる。排気循環バルブ14は、過給機8よりも下方に配置され、排気浄化装置10とクランク軸2b延設方向(本実施形態では車幅方向P)に並んで配置される。 The exhaust circulation valve 14 is arranged on the exhaust circulation passage 12. The exhaust circulation valve 14 is provided to adjust the amount of the exhaust circulation gas introduced into the intake passage 6. The exhaust circulation valve 14 is arranged below the supercharger 8 and is arranged side by side with the exhaust purification device 10 in the extending direction of the crank shaft 2b (in the present embodiment, the vehicle width direction P).
 冷却装置16は、排気循環通路12上に配置され、排気循環通路12を流れる排気循環ガスを冷却液によって冷却する熱交換器である。本実施形態では、冷却装置16は、冷却液が流れる通路を設けた四角柱形状のステンレスなどの金属部材によって形成され、入口側面16aと、出口側面16bと、を含む。冷却装置16は、第3通路12cの周囲を覆い、第3通路12cの周囲に冷却液を流すことで排気循環ガスを冷却する。本実施形態では、冷却装置16は、第3通路12cと溶接され、入口フランジ16cから出口側面16bまでが一体で形成される。 The cooling device 16 is a heat exchanger that is arranged on the exhaust circulation passage 12 and cools the exhaust circulation gas flowing through the exhaust circulation passage 12 with a coolant. In the present embodiment, the cooling device 16 is formed of a metal member such as a square pillar-shaped stainless steel provided with a passage through which a cooling liquid flows, and includes an inlet side surface 16a and an outlet side surface 16b. The cooling device 16 covers the periphery of the third passage 12c and cools the exhaust circulating gas by flowing a cooling liquid around the third passage 12c. In the present embodiment, the cooling device 16 is welded to the third passage 12c, and the inlet flange 16c to the outlet side surface 16b are integrally formed.
 冷却装置16は、図2、図3、および図4に示すように、長手方向が車幅方向Pに沿って配置され、シリンダブロック2に固定される。冷却装置16は、排気浄化装置10に近づくにつれて入口側面16aがシリンダブロック2に近づくよう傾斜して配置される。すなわち、冷却装置16は、入口側面16aが出口側面16bよりも前後方向Qの前方Fになるように、冷却装置16の長手方向が前後方向Qに傾斜して配置される。 As shown in FIGS. 2, 3, and 4, the cooling device 16 is arranged along the vehicle width direction P in the longitudinal direction and is fixed to the cylinder block 2. The cooling device 16 is arranged so as to be inclined so that the inlet side surface 16a approaches the cylinder block 2 as it approaches the exhaust gas purification device 10. That is, the cooling device 16 is arranged so that the longitudinal direction of the cooling device 16 is inclined in the front-rear direction Q so that the inlet side surface 16a is in front F in the front-rear direction Q with respect to the exit side surface 16b.
 冷却装置16の入口側面16aを含む一方側の部分は、排気浄化装置10とシリンダブロック2の間に配置され、出口側面16bを含む他方側の部分は、車両Cの後面からみて(内燃機関1の排気側側面からみて)過給機8と、排気浄化装置10と、排気循環バルブ14と、に囲まれる空間Sに配置される。このような空間Sからは、内燃機関1の上方と車両Cの図示しないエンジンフードの間を通過する走行風が、タービン8aを通過したのち、通り抜ける。このとき排気浄化装置10からの熱も走行風とともに持ち去られる。すなわち、空間Sは走行風を用いた冷却通路の一部となる。空間Sを抜けた走行風は、デファレンシャルギヤボックス22の後方を通過して、車両Cの下部に抜ける。特に、本実施形態の内燃機関1は、排気集合部4aがシリンダヘッド4に一体で形成され、排気集合部4aの出口がタービン8aに接続される。また、排気浄化装置10は、過給機8に対してクランク軸2b延設方向の前側(本実施形態では車幅方向Pの右側)にオフセットして配置される。これによって、排気集合部4aの代わりにエキゾーストマニホールドを用い、排気浄化装置10がエキゾーストマニホールドに対しクランク軸2b延設方向にオフセットされず取り付けられる内燃機関(例えば、特許文献1の内燃機関)よりも、過給機8の下方の空間Sに走行風が流れやすい。 One side portion including the inlet side surface 16a of the cooling device 16 is arranged between the exhaust gas purification device 10 and the cylinder block 2, and the other side portion including the outlet side surface 16b is viewed from the rear surface of the vehicle C (internal combustion engine 1). It is arranged in the space S surrounded by the supercharger 8, the exhaust purification device 10, and the exhaust circulation valve 14 (as viewed from the exhaust side side surface of the above). From such a space S, the traveling wind passing above the internal combustion engine 1 and between the engine hood of the vehicle C (not shown) passes through the turbine 8a and then passes through. At this time, the heat from the exhaust gas purification device 10 is also taken away with the traveling wind. That is, the space S becomes a part of the cooling passage using the traveling wind. The traveling wind that has passed through the space S passes behind the differential gearbox 22 and exits to the lower part of the vehicle C. In particular, in the internal combustion engine 1 of the present embodiment, the exhaust collecting portion 4a is integrally formed with the cylinder head 4, and the outlet of the exhaust collecting portion 4a is connected to the turbine 8a. Further, the exhaust purification device 10 is arranged offset with respect to the turbocharger 8 on the front side in the extension direction of the crank shaft 2b (in the present embodiment, on the right side in the vehicle width direction P). As a result, the exhaust manifold is used instead of the exhaust collecting portion 4a, and the exhaust purification device 10 is attached to the exhaust manifold without being offset in the extending direction of the crank shaft 2b (for example, the internal combustion engine of Patent Document 1). , The running wind tends to flow in the space S below the supercharger 8.
 冷却装置16をこのような配置とすることで、冷却装置16がコンパクトに配置できる。また、内燃機関1の冷態始動時においては、冷却装置16を流れる冷却液は冷えた状態となっている。しかし、冷却装置16が排気浄化装置10の曲面に沿って配置されるため、冷却液が排気浄化装置10から受熱し、冷却液の温度が上昇しやすい。一方、冷却装置16の出口側面16bは空間Sに配置されるため、内燃機関1の暖機後、車両Cの走行中は、走行風によって冷却され、冷却装置16が過度に加熱されることを抑制できる。 By arranging the cooling device 16 in this way, the cooling device 16 can be arranged compactly. Further, at the time of the cold start of the internal combustion engine 1, the coolant flowing through the cooling device 16 is in a cold state. However, since the cooling device 16 is arranged along the curved surface of the exhaust gas purification device 10, the cooling liquid receives heat from the exhaust gas purification device 10, and the temperature of the cooling liquid tends to rise. On the other hand, since the outlet side surface 16b of the cooling device 16 is arranged in the space S, after the internal combustion engine 1 is warmed up, the cooling device 16 is excessively heated by being cooled by the traveling wind while the vehicle C is traveling. Can be suppressed.
 また、冷却装置16は、クランク軸2b延設方向(本実施形態では、車幅方向Pと同じ方向)に沿って、排気循環バルブ14、冷却装置16、排気浄化装置10の順に並んで配置される。すなわち、冷却装置16は、車両Cの後面視では排気循環バルブ14と、排気浄化装置10との間に配置される。冷却装置16は、冷却液によって冷却されるため、排気浄化装置10から放出された熱が冷却装置16によって遮断される。この結果、排気循環バルブ14周囲の温度上昇を抑制できる。 Further, the cooling device 16 is arranged side by side in the order of the exhaust circulation valve 14, the cooling device 16, and the exhaust purification device 10 along the crank shaft 2b extension direction (in the present embodiment, the same direction as the vehicle width direction P). To. That is, the cooling device 16 is arranged between the exhaust circulation valve 14 and the exhaust purification device 10 when viewed from the rear of the vehicle C. Since the cooling device 16 is cooled by the cooling liquid, the heat released from the exhaust gas purification device 10 is cut off by the cooling device 16. As a result, the temperature rise around the exhaust circulation valve 14 can be suppressed.
 冷却装置16の下方には、動力伝達装置の一例であるデファレンシャルギヤボックス22が配置される。これによって、車両Cの下方から飛散する石などの飛散物はデファレンシャルギヤボックス22に当たる。したがって、飛散物によって冷却装置16が損傷することを防止できる。 Below the cooling device 16, a differential gearbox 22, which is an example of a power transmission device, is arranged. As a result, scattered objects such as stones scattered from below the vehicle C hit the differential gearbox 22. Therefore, it is possible to prevent the cooling device 16 from being damaged by the scattered matter.
 冷却液供給通路18は、図4に示すように、シリンダヘッド4に取り付けられたサーモケース4cから分岐して冷却装置16に接続され、冷却装置16に冷却液を供給する。図2、図3および図4に示すように、冷却液供給通路18は、排気循環バルブ14の右側から後方側を通り、前方へ向かって延びる。前方に向かって延びた冷却液供給通路18は、冷却装置16と排気浄化装置10の間を通過して、冷却装置16の入口側面16a近傍に配置されるニップルに接続される。内燃機関1が冷態始動した場合、冷却液供給通路18には冷えた冷却液が流れる。しかし、冷却液供給通路18をこのような配置とすることで、冷却液が排気浄化装置10から受熱し温まりやすい。 As shown in FIG. 4, the coolant supply passage 18 branches from the thermocase 4c attached to the cylinder head 4 and is connected to the cooling device 16 to supply the cooling liquid to the cooling device 16. As shown in FIGS. 2, 3 and 4, the coolant supply passage 18 passes from the right side of the exhaust circulation valve 14 to the rear side and extends forward. The coolant supply passage 18 extending forward passes between the cooling device 16 and the exhaust purification device 10 and is connected to a nipple arranged near the inlet side surface 16a of the cooling device 16. When the internal combustion engine 1 is cold-started, the cold coolant flows through the coolant supply passage 18. However, by arranging the coolant supply passage 18 in this way, the coolant easily receives heat from the exhaust gas purification device 10 and warms up.
 冷却液排出通路20は、図1に示すように、冷却装置16の出口側面16b近傍からヒータ装置24に接続される。すなわち、内燃機関1が冷態始動した場合、冷却液は、排気浄化装置10の熱によって温められて、ヒータ装置24に流れる。これによって、ヒータ装置24が冷却液の熱を得やすくなり、室内が暖まるまでの時間を短くしやすい。すなわち、ヒータ性能が向上する。特に本実施形態では、過給機8は、タービン8aを有するターボチャージャー型の過給機8である。このような、過給機8では、タービン8aの熱容量が大きく、内燃機関1の始動時の熱がタービン8aに奪われ、ヒータ性能が悪化しやすい。しかし、本実施形態の内燃機関1によれば、冷却装置16が排気浄化装置10から受熱することでヒータ性能が向上しやすい。 As shown in FIG. 1, the coolant discharge passage 20 is connected to the heater device 24 from the vicinity of the outlet side surface 16b of the cooling device 16. That is, when the internal combustion engine 1 is started cold, the coolant is heated by the heat of the exhaust gas purification device 10 and flows to the heater device 24. As a result, the heater device 24 can easily obtain the heat of the coolant, and it is easy to shorten the time until the room is warmed up. That is, the heater performance is improved. In particular, in the present embodiment, the supercharger 8 is a turbocharger type supercharger 8 having a turbine 8a. In such a supercharger 8, the heat capacity of the turbine 8a is large, the heat at the start of the internal combustion engine 1 is taken away by the turbine 8a, and the heater performance tends to deteriorate. However, according to the internal combustion engine 1 of the present embodiment, the heater performance is likely to be improved by the cooling device 16 receiving heat from the exhaust gas purification device 10.
 また、近年の燃費規制の強化によって、吸気通路6に導入する排気循環ガスの導入量が増加しつつある。特に本実施形態の内燃機関1では、過給機8を有するため、過給機8の上流の吸気通路6に排気循環ガスを導入することで、過給機8の下流に排気循環ガスを導入するよりも多くの排気循環ガスを導入できる。しかし、大量の排気循環ガスを吸気に導入する場合、吸気温度の上昇を防止するため、排気循環ガスを冷却する必要がある。排気循環ガスを冷却すると、凝縮水も発生しやすい。さらに、凝縮水がコンプレッサ8bに付着すると、過給機8の故障の原因になりやすい。本実施形態の内燃機関1によれば、凝縮水が吸気通路6に流出することを抑制できるため、凝縮水がコンプレッサ8bに付着することを抑制しやすい。 In addition, due to the recent tightening of fuel efficiency regulations, the amount of exhaust gas introduced into the intake passage 6 is increasing. In particular, since the internal combustion engine 1 of the present embodiment has the supercharger 8, the exhaust gas is introduced downstream of the supercharger 8 by introducing the exhaust gas into the intake passage 6 upstream of the supercharger 8. It is possible to introduce more exhaust circulation gas than it does. However, when a large amount of exhaust gas is introduced into the intake air, it is necessary to cool the exhaust gas in order to prevent the intake air temperature from rising. When the exhaust circulation gas is cooled, condensed water is likely to be generated. Further, if the condensed water adheres to the compressor 8b, it tends to cause a failure of the turbocharger 8. According to the internal combustion engine 1 of the present embodiment, since the condensed water can be suppressed from flowing out to the intake passage 6, it is easy to suppress the condensed water from adhering to the compressor 8b.
 また、排気循環ガスの導入量が増加すると、排気循環通路12の内径が絞られた場合における圧力損失も大きくなる。圧力損失が大きくなると、排気循環ガスが吸気通路6に導入し難くなる。しかし、本実施形態の内燃機関1によれば、延設部6dから貫通孔6cまでが曲部6eによって、内径が大きく変化することなく円滑に接続される。これによって、排気循環ガスの圧力損失が抑制される。この結果、排気循環ガスを吸気通路6に円滑に導入できる。 Further, as the amount of exhaust gas introduced increases, the pressure loss when the inner diameter of the exhaust circulation passage 12 is narrowed also increases. When the pressure loss becomes large, it becomes difficult for the exhaust circulating gas to be introduced into the intake passage 6. However, according to the internal combustion engine 1 of the present embodiment, the extending portion 6d to the through hole 6c are smoothly connected by the curved portion 6e without significantly changing the inner diameter. As a result, the pressure loss of the exhaust circulating gas is suppressed. As a result, the exhaust circulating gas can be smoothly introduced into the intake passage 6.
 以上説明した通り、本開示によれば、凝縮水が排気循環通路12に戻りやすく、排気循環ガスを導入しやすい内燃機関1を提供できる。 As described above, according to the present disclosure, it is possible to provide the internal combustion engine 1 in which the condensed water easily returns to the exhaust circulation passage 12 and the exhaust circulation gas is easily introduced.
 <他の実施形態>
 以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた複数の変形例は必要に応じて任意に組合せ可能である。
<Other embodiments>
Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above embodiments, and various changes can be made without departing from the gist of the invention. In particular, the plurality of modifications described in the present specification can be arbitrarily combined as needed.
 (a)上記実施形態では、車両Cは、内燃機関1を横置きした前輪駆動型の配置を例に説明したが、本開示はこれに限定されるものではない。内燃機関1、トランスミッション21、およびデファレンシャルギヤボックス22の配置は、例えば、クランク軸2b延設方向を車両Cの前後方向Qに配置し内燃機関1を縦置きした車両であってもよい。さらに、車両Cは、デファレンシャルギヤボックス22に、後輪に動力を伝達するトランスファーを設けた4輪駆動車でもよい。また、デファレンシャルギヤボックス22は、トランスミッション21とデファレンシャルギヤを一体で形成したトランスアクスルの筐体の一部であってもよい。 (A) In the above embodiment, the vehicle C has been described by exemplifying the arrangement of the front wheel drive type in which the internal combustion engine 1 is placed horizontally, but the present disclosure is not limited to this. The internal combustion engine 1, the transmission 21, and the differential gearbox 22 may be arranged, for example, in a vehicle in which the crank shaft 2b is arranged in the front-rear direction Q of the vehicle C and the internal combustion engine 1 is vertically placed. Further, the vehicle C may be a four-wheel drive vehicle in which the differential gearbox 22 is provided with a transfer for transmitting power to the rear wheels. Further, the differential gear box 22 may be a part of a transaxle housing in which the transmission 21 and the differential gear are integrally formed.
 (b)上記実施形態では、排気浄化装置10は、三元触媒が塗布される触媒部10aを例に用いて説明したが、本開示はこれに限定されるものではない。排気浄化装置10は、煤を吸着するガソリンパーティキュレートフィルター、またはディーゼルパーティキュレートフィルターなどの装置であってもよい。 (B) In the above embodiment, the exhaust gas purification device 10 has been described by using the catalyst portion 10a to which the three-way catalyst is applied as an example, but the present disclosure is not limited to this. The exhaust gas purification device 10 may be a device such as a gasoline particulate filter or a diesel particulate filter that adsorbs soot.
 (c)上記実施形態では、排気循環通路12を複数の通路に分割する例を用いて説明したが、本開示はこれに限定されるものではない。排気循環通路12は、排気浄化装置10の出口管10cから吸気通路6までを接続させるように設けられればよい。また、排気循環通路12の各通路に用いた材料は、これに限定されるものではなく、適宜変更してもよい。 (C) In the above embodiment, the example of dividing the exhaust circulation passage 12 into a plurality of passages has been described, but the present disclosure is not limited to this. The exhaust circulation passage 12 may be provided so as to connect the outlet pipe 10c of the exhaust purification device 10 to the intake passage 6. Further, the material used for each passage of the exhaust circulation passage 12 is not limited to this, and may be appropriately changed.
 (d)上記実施形態では、入口側面16aがシリンダブロック2と、排気浄化装置10の触媒部10aとの間に配置され、出口側面16bが空間Sに配置される例を用いて説明したが、本開示はこれに限定されるものではない。少なくとも、冷却装置16の入口側面16aを含む側(一方側)が、シリンダブロック2と、排気浄化装置10の触媒部10aとの間に配置され、冷却装置16の残りの部分(他方側)が、空間Sに配置されればよい。 (D) In the above embodiment, the inlet side surface 16a is arranged between the cylinder block 2 and the catalyst portion 10a of the exhaust gas purification device 10, and the outlet side surface 16b is arranged in the space S. The present disclosure is not limited to this. At least, the side (one side) including the inlet side surface 16a of the cooling device 16 is arranged between the cylinder block 2 and the catalyst portion 10a of the exhaust gas purification device 10, and the remaining part (the other side) of the cooling device 16 is arranged. , It may be arranged in the space S.
 本出願は、2020年10月5日出願の日本特許出願2020-168220に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on the Japanese patent application 2020-168220 filed on October 5, 2020, the contents of which are incorporated herein by reference.
1:内燃機関,2:シリンダブロック
2a:シリンダ,2b:クランク軸 
6:吸気通路,8:過給機,10:排気浄化装置,12:排気循環通路
14:排気循環バルブ,
16:冷却装置,16a:入口側面,16b:出口側面
18:冷却液供給通路
22:デファレンシャルギヤボックス(動力伝達装置の一例)
24:ヒータ装置,C:車両
G:上下方向(シリンダ2a延設方向)
P:車幅方向(クランク軸2b延設方向)
Q:前後方向
S:空間
1: Internal combustion engine, 2: Cylinder block 2a: Cylinder, 2b: Crank shaft
6: Intake passage, 8: Supercharger, 10: Exhaust purification device, 12: Exhaust circulation passage 14: Exhaust circulation valve,
16: Cooling device, 16a: Inlet side surface, 16b: Outlet side surface 18: Coolant supply passage 22: Differential gearbox (example of power transmission device)
24: Heater device, C: Vehicle G: Vertical direction (cylinder 2a extension direction)
P: Vehicle width direction (crank shaft 2b extension direction)
Q: Front-back direction S: Space

Claims (6)

  1.  シリンダが形成されクランク軸を保持するシリンダブロックと、
     前記シリンダに吸気を供給する吸気通路と、
     前記吸気通路に流れる吸気を過給する過給機と、
     前記過給機に対して前記クランク軸の延設方向に変位して配置され、前記シリンダの延設方向に延びる排気浄化装置と、
     前記排気浄化装置の下流から前記吸気通路に接続される排気循環通路と、
     前記排気循環通路上に、前記排気浄化装置に対して前記クランク軸の延設方向に変位して配置される排気循環バルブと、
     前記排気循環通路上に配置され、前記排気循環通路を流れる排気循環ガスを冷却液によって冷却する冷却装置と、
    を備え、
     前記冷却装置の一方側は、前記排気浄化装置と前記シリンダブロックの間に配置され、前記冷却装置の他方側は、前記過給機と、前記排気浄化装置と、前記排気循環バルブと、に囲まれる空間に配置される、
    内燃機関。
    The cylinder block where the cylinder is formed and holds the crank shaft,
    An intake passage that supplies intake air to the cylinder and
    A turbocharger that supercharges the intake air flowing through the intake passage, and
    An exhaust gas purification device that is displaced with respect to the turbocharger in the extending direction of the crank shaft and extends in the extending direction of the cylinder.
    An exhaust circulation passage connected to the intake passage from the downstream of the exhaust purification device, and
    An exhaust circulation valve arranged on the exhaust circulation passage so as to be displaced in the extending direction of the crank shaft with respect to the exhaust purification device.
    A cooling device arranged on the exhaust circulation passage and cooling the exhaust circulation gas flowing through the exhaust circulation passage with a coolant.
    Equipped with
    One side of the cooling device is arranged between the exhaust purification device and the cylinder block, and the other side of the cooling device is surrounded by the supercharger, the exhaust purification device, and the exhaust circulation valve. Placed in the space
    Internal combustion engine.
  2.  前記内燃機関は車両に搭載され、
     前記車両の動力伝達装置が前記冷却装置の下方に配置される、
    請求項1に記載の内燃機関。
    The internal combustion engine is mounted on the vehicle and
    The vehicle power transmission device is located below the cooling device.
    The internal combustion engine according to claim 1.
  3.  前記冷却装置は、前記排気浄化装置に近づくにつれて前記シリンダブロックに近づくように傾斜して配置される、
    請求項1または2に記載の内燃機関。
    The cooling device is arranged so as to be inclined so as to approach the cylinder block as it approaches the exhaust gas purification device.
    The internal combustion engine according to claim 1 or 2.
  4.  前記冷却装置に冷却液を供給する冷却液供給通路をさらに備え、
     前記冷却液供給通路は、前記排気浄化装置と前記冷却装置との間を通過する、
    請求項1から3のいずれか1項に記載の内燃機関。
    Further provided with a cooling liquid supply passage for supplying the cooling liquid to the cooling device,
    The coolant supply passage passes between the exhaust purification device and the cooling device.
    The internal combustion engine according to any one of claims 1 to 3.
  5.  前記排気循環通路は、前記吸気通路から前記排気浄化装置に近づくにつれて下方に傾斜して配置される、
    請求項1から4のいずれか1項に記載の内燃機関。
    The exhaust circulation passage is arranged so as to be inclined downward as it approaches the exhaust purification device from the intake passage.
    The internal combustion engine according to any one of claims 1 to 4.
  6.  前記内燃機関は車両に搭載され、
     前記車両は前記車両の室内を温めるヒータ装置を有し、
     前記冷却液は前記冷却装置を通過した後、前記ヒータ装置に流れる、
    請求項1から5のいずれか1項に記載の内燃機関。
    The internal combustion engine is mounted on the vehicle and
    The vehicle has a heater device that heats the interior of the vehicle.
    After passing through the cooling device, the cooling liquid flows to the heater device.
    The internal combustion engine according to any one of claims 1 to 5.
PCT/JP2021/036702 2020-10-05 2021-10-04 Internal combustion engine WO2022075281A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180067720.8A CN116324153A (en) 2020-10-05 2021-10-04 Internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020168220A JP2022060646A (en) 2020-10-05 2020-10-05 Internal combustion engine
JP2020-168220 2020-10-05

Publications (1)

Publication Number Publication Date
WO2022075281A1 true WO2022075281A1 (en) 2022-04-14

Family

ID=81125203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036702 WO2022075281A1 (en) 2020-10-05 2021-10-04 Internal combustion engine

Country Status (3)

Country Link
JP (1) JP2022060646A (en)
CN (1) CN116324153A (en)
WO (1) WO2022075281A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070878A (en) * 2004-09-06 2006-03-16 Mazda Motor Corp Intake and exhaust system structure of engine
JP2010150961A (en) * 2008-12-24 2010-07-08 Mitsubishi Motors Corp Exhaust gas recirculation device
JP2012057519A (en) * 2010-09-08 2012-03-22 Mazda Motor Corp Exhaust system device of vehicle
WO2012056885A1 (en) * 2010-10-28 2012-05-03 本田技研工業株式会社 Egr cooler structure
JP2013079598A (en) * 2011-10-04 2013-05-02 Suzuki Motor Corp Egr cooler unit protection device for vehicular engine
JP2015010495A (en) * 2013-06-27 2015-01-19 スズキ株式会社 Exhaust gas recirculation device of vehicular engine
JP2015124692A (en) * 2013-12-26 2015-07-06 ダイハツ工業株式会社 Internal combustion engine
JP2015124695A (en) * 2013-12-26 2015-07-06 ダイハツ工業株式会社 Egr device of internal combustion engine
JP2018017210A (en) * 2016-07-29 2018-02-01 本田技研工業株式会社 Egr device for internal combustion engine
JP2019173720A (en) * 2018-03-29 2019-10-10 ダイハツ工業株式会社 Egr device of internal combustion engine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070878A (en) * 2004-09-06 2006-03-16 Mazda Motor Corp Intake and exhaust system structure of engine
JP2010150961A (en) * 2008-12-24 2010-07-08 Mitsubishi Motors Corp Exhaust gas recirculation device
JP2012057519A (en) * 2010-09-08 2012-03-22 Mazda Motor Corp Exhaust system device of vehicle
WO2012056885A1 (en) * 2010-10-28 2012-05-03 本田技研工業株式会社 Egr cooler structure
JP2013079598A (en) * 2011-10-04 2013-05-02 Suzuki Motor Corp Egr cooler unit protection device for vehicular engine
JP2015010495A (en) * 2013-06-27 2015-01-19 スズキ株式会社 Exhaust gas recirculation device of vehicular engine
JP2015124692A (en) * 2013-12-26 2015-07-06 ダイハツ工業株式会社 Internal combustion engine
JP2015124695A (en) * 2013-12-26 2015-07-06 ダイハツ工業株式会社 Egr device of internal combustion engine
JP2018017210A (en) * 2016-07-29 2018-02-01 本田技研工業株式会社 Egr device for internal combustion engine
JP2019173720A (en) * 2018-03-29 2019-10-10 ダイハツ工業株式会社 Egr device of internal combustion engine

Also Published As

Publication number Publication date
CN116324153A (en) 2023-06-23
JP2022060646A (en) 2022-04-15

Similar Documents

Publication Publication Date Title
US10487711B2 (en) Work vehicle
CN106794754B (en) Working truck
US8360192B2 (en) Exhaust system with active exhaust muffler
US8256551B2 (en) Agricultural vehicle cooling assembly fan shroud with seals for pass-through cooling and exhaust tubes
US9683348B2 (en) Engine device
US7331422B2 (en) Vortex muffler
US8590306B2 (en) Cooling device of turbocharger of engine for vehicle
KR101648866B1 (en) Arrangement for cooling of recirculating exhaust gases of a combustion engine
US20200256234A1 (en) Engine apparatus
US8615998B2 (en) Lubrication device of turbocharger of engine for vehicle
US9598091B2 (en) Air intake system for an engine
JP2022060647A (en) Internal combustion engine
WO2022075281A1 (en) Internal combustion engine
US3700029A (en) Vehicle pollution control unit
JP6551046B2 (en) engine
JP6711088B2 (en) Saddle type vehicle
US6318347B1 (en) Remote mounted air-to-air aftercooler
JP6416052B2 (en) Work vehicle
JP2009150243A (en) Turbocharged engine
JP6688126B2 (en) Intake air rectification device for internal combustion engine
CN219452256U (en) Engine thermal cycle system and car
JP7028586B2 (en) Exhaust gas aftertreatment method and exhaust pipe of diesel engine
JPS5934413A (en) Catalytic recombustion apparatus for engine exhaust
JP3921835B2 (en) Vehicle heating device and exhaust gas recirculation device
JPH01301410A (en) Exhauster of automobile engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877580

Country of ref document: EP

Kind code of ref document: A1