JP3921835B2 - Vehicle heating device and exhaust gas recirculation device - Google Patents

Vehicle heating device and exhaust gas recirculation device Download PDF

Info

Publication number
JP3921835B2
JP3921835B2 JP26851298A JP26851298A JP3921835B2 JP 3921835 B2 JP3921835 B2 JP 3921835B2 JP 26851298 A JP26851298 A JP 26851298A JP 26851298 A JP26851298 A JP 26851298A JP 3921835 B2 JP3921835 B2 JP 3921835B2
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
exhaust
combustor
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26851298A
Other languages
Japanese (ja)
Other versions
JP2000094936A (en
Inventor
正支 高木
光 杉
肇 伊藤
敏夫 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP26851298A priority Critical patent/JP3921835B2/en
Priority to US09/324,307 priority patent/US6079629A/en
Priority to DE19925915A priority patent/DE19925915B4/en
Publication of JP2000094936A publication Critical patent/JP2000094936A/en
Application granted granted Critical
Publication of JP3921835B2 publication Critical patent/JP3921835B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【0001】
【発明の属する技術分野】
本発明は、燃料を燃焼させて暖房を図る燃焼機、及び排気再循環装置を備える車両用暖房装置、この車両用暖房装置に利用される排気再循環装置に関するものである。
【0002】
【従来の技術】
エンジン(ディーゼルエンジン及びガソリンエンジンを含む。)始動直後やデーゼルエンジンを搭載する車両では、エンジンの廃熱が小さいため、燃焼機にて暖房能力を補完する車両用暖房装置が実用化されている。
また、エンジン(内燃機関)の排気中に含まれる窒素酸化物を低減する手段として、排気を吸気側に還流(再循環)させてエンジンの燃焼室内温度(燃焼温度)を低下させる排気再循環装置が知られている。
【0003】
【発明が解決しようとする課題】
ところで、排気再循環装置は、前述のごとく、燃焼室内温度を低下させることにより、窒素酸化物の生成を抑制するものであるので、還流(再循環)させる排気の温度はできるだけ低い方がよい。
しかし、還流(再循環)させる排気を冷却する熱交換器を新たに設けると、エンジンルーム内にその熱交換器を設置するスペースを新たに確保する必要があるとともに、車両の製造原価上昇を招いてしまうという問題が発生する。
【0004】
本発明は、上記点に鑑み、排気再循環装置用に新たに熱交換器を設けることなく、還流(再循環)させる排気を冷却することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、上記目的を達成するために、以下の技術的手段を用いる。請求項1に記載の発明では、燃料を燃焼して発生した燃焼ガスと冷却液とを熱交換させて冷却液を加熱するとともに、内燃機関(1)の排気管(3)から導いた排気と冷却液とを熱交換させる燃焼室(11a)を有する燃焼機(11)と、内燃機関(1)の排気を燃焼室(11a)に導入させ、その排気を内燃機関(1)の吸気側に還流させる第1排気経路(14、15)と、内燃機関(1)の排気を燃焼室(11a)に導入させずに排気管(3)に流す第2排気経路と、内燃機関(1)の排気が流れる経路を、第1排気経路(14、15)と第2排気経路との間で切り替える切替手段(17、18)とを備え、切替手段(17、18)は、燃焼機(11)の停止時に、内燃機関(1)の排気が流れる経路を第1排気経路(14、15)とすることで、燃焼室(11a)にて内燃機関(1)の排気と冷却液とを熱交換させて内燃機関(1)の排気を冷却し、冷却された排気を内燃機関(1)の吸気側に還流させ、燃焼機(11)の稼働時に、内燃機関(1)の排気が流れる経路を第2排気経路とすることで、燃焼室(11a)での内燃機関(1)の排気と冷却液との熱交換を停止させるようになっていることを特徴とする。
【0006】
これにより、排気再循環装置用に新たに熱交換器を設けることなく、還流(再循環)させる排気を冷却することができるので、エンジンルーム内に熱交換器を設置するスペースを新たに確保することなく、かつ、車両の製造原価上昇を抑制することができる。
また、請求項2に記載の発明では、燃焼機(11)の燃焼室(11a)の吸気側と内燃機関(1)の吸気管(2)とを連通させる第1連通管(13)と、燃焼室(11a)の吸気側と内燃機関(1)の排気管(3)とを連通させる第2連通管(14)と、燃焼室(11a)の排気側と吸気管(2)とを連通させる第3連通管(15)と、燃焼室(11a)の排気側と排気管(3)とを連通させる第4連通管(16)と、第1連通管(13)を連通させる場合と第2連通管(14)を連通させる場合とを切り換える第1切換手段(17)と、第3連通管(15)を連通させる場合と第4連通管(16)を連通させる場合とを切り換える第2切換手段(18)とを備え、内燃機関(1)の停止時には、第1、4連通管(13、16)を連通させた状態で燃焼機(1)を稼働させて暖房運転を行い、内燃機関(1)の稼働時に、第1、3連通管(13、15)を連通させた状態で燃焼機(11)を稼働させて暖房運転を行うとともに、第2、4連通管(14、16)を閉じた状態で内燃機関(1)の排気を排気管(3)に流通させ、内燃機関(1)の稼働時に、第2、3連通管(14、15)を連通させた状態で燃焼機(11)を停止させて、内燃機関(1)の排気を吸気管(2)に還流させることを特徴とする。
また、請求項3に記載の発明は、請求項2に記載の発明を具体化したものであり、内燃機関(1)の稼働時であって、外気温度が所定温度よりも低く、かつ、内燃機関(1)の回転数が所定回転数以下の場合に、第1、3連通管(13、15)を連通させた状態で燃焼機(11)を稼働させて暖房運転を行うとともに、第2、4連通管(14、16)を閉じた状態で内燃機関(1)の排気を排気管(3)に流通させ、内燃機関(1)の稼働時であって、外気温度が所定温度よりも低く、かつ、内燃機関(1)の回転数が所定回転数より大きい場合に、第2、4連通管(14、16)を連通させた状態で燃焼機(11)を停止させて、内燃機関(1)の排気を燃焼機(11)に導入させた後、その排気を排気管(3)に排出させ、内燃機関(1)の稼働時であって、外気温度が所定温度以上の場合に、第2、3連通管(14、15)を連通させた状態で燃焼機(11)を停止させて、内燃機関(1)の排気を吸気管(2)に還流させるようになっていることを特徴とする。
【0007】
これにより、請求項1に記載の発明と同様に、エンジンルーム内に熱交換器を設置するスペースを新たに確保することなく、かつ、車両の製造原価上昇を抑制することができる。
また、請求項に記載の発明では、燃焼機(11)は、燃料を燃焼して発生した燃焼ガスと冷却液とを熱交換させて冷却液を加熱するとともに、内燃機関(1)の排気管(3)から導いた内燃機関(11)の排気と冷却液とを熱交換させる燃焼室(11a)を有しており、内燃機関(1)の排気を燃焼室(11a)に導入させ、その排気を内燃機関(1)の吸気側に還流させる第1排気経路(14、15)と、内燃機関(1)の排気を燃焼室(11a)に導入させずに内燃機関(1)の排気管(3)に流す第2排気経路と、内燃機関(1)の排気が流れる経路を、第1排気経路(14、15)と第2排気経路との間で切り替える切替手段(17、18)とを備え、切替手段(17、18)は、燃焼機(11)の停止時に、内燃機関(1)の排気が流れる経路を第1排気経路(14、15)とすることで、燃焼室(11a)にて内燃機関(1)の排気と冷却液とを熱交換させて内燃機関(1)排気を冷却し、冷却された排気を内燃機関(1)の吸気側に還流させ、燃焼機(11)の稼働時に、内燃機関(1)の排気が流れる経路を第2排気経路とすることで、燃焼室(11a)での内燃機関(1)の排気と冷却液との熱交換を停止させるようになっていることを特徴とする。
【0008】
これにより、請求項1に記載の発明と同様に、エンジンルーム内に熱交換器を設置するスペースを新たに確保することなく、かつ、車両の製造原価上昇を抑制することができる。
因みに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0009】
【発明の実施の形態】
(第1実施形態)
本実施形態は、本発明に係る車両用暖房装置を水冷式デーゼルエンジン(液冷式内燃機関)に適用したものであって、図1は本実施形態に係る車両用暖房装置の模式図である。
【0010】
図1中、1は水冷式デーゼルエンジン(以下、エンジンと略す。)であり、2はエアクリーナにて塵埃が除去された空気(以下、吸気と呼ぶ。)をエンジン1に導く吸気管である。3はエンジン1の排気が流通する排気管であり、この排気管3には、排気中の炭化水素や窒素酸化等の酸化還元反応を促進することにより排気を浄化する三元触媒(以下、触媒と略す。)4、及び触媒4から流出する排気の騒音(排気音)を低減するマフラー(消音器)5が配設されている。
【0011】
6はエンジン1の冷却水(冷却液)を冷却するラジエータであり、7はエンジン1から流出する冷却水をラジエータ6を迂回させてエンジン1に還流させるバイパス通路である。8は冷却水温度に応じてエンジン1から流出した冷却水をラジエータ6に流通させる場合と、バイパス通路7に流通させる場合とを切り換える周知のサーモスタットであり、9はエンジン1から駆動力を得て冷却水を循環させるウォータポンプである。
【0012】
ところで、10は冷却水を熱源として車室内に吹き出す空気を加熱するヒータコアであり、11はヒータコア10に流入する冷却水を加熱する燃焼機である。なお、燃焼機11は、燃焼機11内に設けられた燃焼室11aにて燃料を燃焼させることにより冷却水を加熱するものである。
12は燃焼機11に燃料を供給する燃料ポンプであり、この燃料ポンプ12は、エンジン1の燃料タンク(図示せず)から燃料(軽油)を吸引して燃焼機11に供給している。
【0013】
13は吸気管2と燃焼室11aの吸気側とを連通させる第1連通管であり、14は燃焼室11aの吸気側と排気管3とを連通させる第2連通管である。15は燃焼室11aの排気側と吸気管2とを連通させる第3連通管であり、16は燃焼室11aの排気側と排気管3とを連通させる第4連通管である。
そして、17は第1連通管13を連通させる場合と第2連通管14を連通させる場合とを切り換える第1切換弁(第1切換手段)であり、18は第3連通管15を連通させる場合と第4連通管16を連通させる場合とを切り換える第2切換弁(第2切換手段)である。
【0014】
なお、19は燃焼機11(燃焼室11a)に送風するターボ送風機(以下、送風機と略す。)である。因みに、ターボ送風機とは、羽根車の回転運動によって気体に運動エネルギを与える機械を言い、具他的には遠心式送風機、斜流送風機及び軸流送風機等を言う(JIS B 0132より)。
20は燃焼機11及びヒータコア10に冷却水を循環させる電動ウォータポンプであり、この電動ウォータポンプ20、第1、2切換弁17、18、送風機19及び燃料ポンプ12は、電子制御装置(ECU)21により制御されている。
【0015】
なお、22は、エンジン1から流出した冷却水を電動ウォータポンプ20を迂回させて燃焼機11に導くバイパス通路であり、このバイパス通路22には、電動ウォータポンプ20から吐出した冷却水がバイパス通路20を流通して電動ウォータポンプ20の吸入側に還流することを防止する逆止弁23が配設されている。
【0016】
また、24はエンジン1の排気中に含まれるカーボン(微粒子状の黒鉛)を分離し、カーボンが第2連通管14を流通することを防止するカーボン分離器24である。なお、このカーボン分離器24は遠心式のカーボン分離器であり、円筒状の分離器本体24aに流入した排気が分離器本体24aの内壁に沿って旋回することによりカーボンが分離された後、分離本体24aの中央部に開口する第2連通管14により排気が吸入される。
【0017】
次に、本実施形態に係る車両用暖房装置の作動を述べる。
1.エンジン1が停止している場合(図1参照)
第1連通管13及び第4連通管16とが連通するように第1、2切換弁17、18を作動させるとともに、送風機19及び電動ウォータポンプ20を稼働させて燃焼機11を着火(稼働)させる。
【0018】
これにより、燃料ポンプ12から供給された燃料は、第1連通管13を介して吸気管2から導入された空気(吸気)と混合して燃焼室内で燃焼する。そして、燃焼室11aにて発生した燃焼熱によりヒータコア10に向けて流通する冷却水が加熱されるとともに、燃焼室11a(燃焼機11)で発生した排気は、第4連通管16を流通して触媒4にて浄化された後、マフラー5にて消音されて大気中に放出される。
【0019】
因みに、送風機19の送風量は、燃焼機11で必要とされる熱量に基づいて供給される燃料量に応じて制御される。
2.エンジン1の回転数が所定回転以下の場合(図2参照)
第1、3連通管13、15が連通するように第1、2切換弁17、18を作動させるとともに、送風機19を稼働させて燃焼機11を着火(稼働)させる。なお、エンジン1の稼働と同時にウォータポンプ9が稼働するため、電動ウォータポンプ20は停止させる。なお、所定回転数については、後述する。
【0020】
これにより、燃料ポンプ12から供給された燃料は、第1連通管13を介して吸気管2から導入された空気(吸気)と混合して燃焼室内で燃焼する。そして、燃焼室11aにて発生した燃焼熱によりヒータコア10に向けて流通する冷却水が加熱されるとともに、燃焼室11a(燃焼機11)で発生した排気は、第3連通管15を経由して吸気管2に排出される。
【0021】
3.エンジン1の回転数が所定回転より大きい場合(図3参照)
第2、4連通管14、16が連通するように第1、2切換弁17、18を作動させ、かつ、送風機19を稼働させるとともに、燃焼機11及び電動ウォータポンプ20を停止させる
【0022】
これにより、エンジン1の排気が送風機19に吸引されて燃焼機11の燃焼室11a内に送風され、エンジン1の排気が有する熱が燃焼機11内を流通する冷却水に回収される。そして、冷却水にて熱が回収された排気は、第4連通管16から触媒4に向けて排出されてマフラー5を経由して大気中に放出される。
4.外気温度が高く、燃焼機11を稼働させる必要がない場合(図4参照)
第2、3連通管14、15が連通するように第1、2切換弁17、18を作動させるとともに、送風機19を稼働させた状態で燃焼機11を停止させる。因みに、外気温度が高く、燃焼機11を稼働させる必要がない場合とは、例えば外気温度が所定温度(約25℃)以上の状態を言うものである。
【0023】
これにより、エンジン1の排気が送風機19に吸引されて燃焼機11の燃焼室11a内に送風され、エンジン1の排気が有する熱が燃焼機11内を流通する冷却水に冷却される。そして、冷却水にて冷却された排気が第3連通管15を経由して吸気管2に排出される。
以上に述べたように、本実施形態では、第2、3連通管14、15、第1、2切換弁17、18、送風機19及び燃焼機11により、エンジン1の排気を冷却して吸気管2に還流(再循環)させる排気再循環装置EGRが構成されている。
【0024】
次に、所定回転数について述べる。
上述の作動説明で述べたように、エンジン1の回転数が所定回転数以下の場合は燃焼機11を稼働させて燃焼機11の熱により冷却水を加熱し、所定回転数より大きい場合は燃焼機11を停止してエンジン1の排気から熱を回収して冷却水を加熱している。
【0025】
したがって、所定回転数は、エンジン1の排気温度(熱量)が暖房能力を補完するに十分な温度(熱量)に達しているいるか否かに基づいて決定される。因みに、本実施形態では、所定回転数はエンジン1のアイドリング回転数(約600rpm)相当である。
次に、本実施形態の特徴を述べる。
【0026】
本実施形態によれば、燃焼機11の停止時に、燃焼機11(燃焼室11a)にて排気と冷却水を熱交換させて排気を冷却した後、その排気をエンジン1の吸気側に還流(再循環)させるので、エンジン1にて窒素酸化物が生成されることを効果的に抑制することができる。
したがって、排気再循環装置EGR用に新たに熱交換器を設けることなく、還流(再循環)させる排気を冷却することができるので、エンジンルーム内に熱交換器を設置するスペースを新たに確保することなく、かつ、車両の製造原価上昇を抑制することができる。
【0027】
また、本実施形態に係る車両用暖房装置では、エンジン1の回転数が所定回転数以下の場合には、エンジン1の廃熱量が、暖房を行うのに十分な熱量(温度)に達していないものとみなして、燃焼機11を稼働させて暖房能力を補完し、一方、エンジン1の回転数が所定回転数より大きい場合には、エンジン1の廃熱量が、暖房を行うのに十分な熱量(温度)に達したものとみなして、燃焼機11を停止させるとともに、冷却水に与えられた廃熱、及びエンジン1の排気中の廃熱を回収して暖房に利用している。
【0028】
したがって、エンジン1の排気からも廃熱を回収することとなるので、燃焼機11にて暖房能力を補完しなければないらない時間が短くなり、燃焼機11も含めた燃料消費率を向上させることができる。
また、エンジン1の回転数が所定回転数以下の場合には、燃焼機11にて冷却水が加熱されるので、エンジン1の暖機運転を促進することができるので、触媒4の温度を素早く上昇させて触媒4を有効に機能させることができる。
【0029】
ところで、上述の実施形態では、ディーゼルエンジンを用いた車両用暖房装置であったが、ガソリンエンジンを用いた車両にも適用することができる。
また、ターボチャージャやスーパーチャージャ等の過給機を有する車両にも本発明を適用することができる。
また、上述の実施形態では、吸気管2から燃焼機11に空気を吸入させたが、大気から空気を吸入するようにしてもよい。
【0030】
また、エンジン1の回転数が所定回転以下の場合に、エンジン1の排気が僅かに第2連通管15に漏れるようにしてもよい。これにより、エンジン1の排気圧によって燃焼機11の排気を確実に吸気管2に排出することができる。
また、上述の実施形態では、燃焼機11の停止時に排気再循環をさせたが、排気再循環専用の排気管を新たに設け、燃焼機11の稼働時においても排気再循環させてもよい。
【図面の簡単な説明】
【図1】エンジン停止時における実施形態に係る車両用暖房装置の模式図である。
【図2】アイドリング時における実施形態に係る車両用暖房装置の模式図である。
【図3】走行時における実施形態に係る車両用暖房装置の模式図である。
【図4】燃焼機停止時における実施形態に係る車両用暖房装置の模式図である。
【符号の説明】
1…エンジン(内燃機関)、2…吸気管、3…排気管、4…触媒、
10…ヒータコア、11…燃焼機、13…第1連通管、14…第2連通管、
15…第3連通管、16…第4連通管、
17…第1切換弁(第1切換手段)、18…第2切換弁(第2切換手段)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a combustor that performs heating by burning fuel , a vehicle heating device that includes an exhaust gas recirculation device, and an exhaust gas recirculation device that is used in the vehicle heating device .
[0002]
[Prior art]
In vehicles equipped with engines (including diesel engines and gasoline engines) immediately after starting or a diesel engine, the waste heat of the engine is small, and therefore a vehicle heating device that supplements the heating capacity with a combustor has been put into practical use.
Further, as means for reducing nitrogen oxides contained in the exhaust gas of the engine (internal combustion engine), an exhaust gas recirculation device that recirculates (recirculates) the exhaust gas to the intake side and lowers the combustion chamber temperature (combustion temperature) of the engine. It has been known.
[0003]
[Problems to be solved by the invention]
By the way, as described above, the exhaust gas recirculation device suppresses the generation of nitrogen oxides by lowering the temperature in the combustion chamber. Therefore, the temperature of the exhaust gas to be recirculated (recirculated) is preferably as low as possible.
However, if a new heat exchanger that cools the exhaust gas to be recirculated (recirculated) is newly installed, it is necessary to secure a new space for installing the heat exchanger in the engine room and increase the manufacturing cost of the vehicle. The problem of end up occurs.
[0004]
The present invention has been made in view of the above points, and has an object to cool exhaust gas to be recirculated (recirculated) without providing a new heat exchanger for the exhaust gas recirculation device.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention uses the following technical means. In the first aspect of the present invention, the combustion gas generated by burning the fuel and the coolant are heat-exchanged to heat the coolant, and the exhaust led from the exhaust pipe (3) of the internal combustion engine (1) A combustor (11) having a combustion chamber (11a) that exchanges heat with the coolant and an exhaust gas from the internal combustion engine (1) are introduced into the combustion chamber (11a), and the exhaust gas is introduced to the intake side of the internal combustion engine (1). A first exhaust path (14, 15) for recirculation, a second exhaust path for flowing the exhaust of the internal combustion engine (1) to the exhaust pipe (3) without introducing it into the combustion chamber (11a), and the internal combustion engine (1) The switching means (17, 18) includes a switching means (17, 18) for switching the path through which the exhaust flows between the first exhaust path (14, 15) and the second exhaust path, and the switching means (17, 18) is a combustor (11). The path through which the exhaust gas from the internal combustion engine (1) flows when the engine is stopped is defined as the first exhaust path (14, 15). Thus, the exhaust gas of the internal combustion engine (1) and the coolant are exchanged in the combustion chamber (11a) to cool the exhaust gas of the internal combustion engine (1), and the cooled exhaust gas is supplied to the intake side of the internal combustion engine (1). The exhaust path of the internal combustion engine (1) flows when the combustor (11) is operated, and the exhaust path of the internal combustion engine (1) and the coolant in the combustion chamber (11a) are used as the second exhaust path. The heat exchange with is stopped .
[0006]
As a result, the exhaust gas to be recirculated (recirculated) can be cooled without providing a new heat exchanger for the exhaust gas recirculation device, so that a space for installing the heat exchanger in the engine room is newly secured. And an increase in the manufacturing cost of the vehicle can be suppressed.
Further, in the invention described in claim 2, the first communication pipe (13) for communicating the intake side of the combustion chamber (11a) of the combustor (11) and the intake pipe (2) of the internal combustion engine (1) ; The second communication pipe (14) for communicating the intake side of the combustion chamber (11a) and the exhaust pipe (3) of the internal combustion engine (1), and the exhaust side of the combustion chamber (11a) and the intake pipe (2) are communicated. The third communication pipe (15) to be communicated, the fourth communication pipe (16) for communicating the exhaust side of the combustion chamber (11a) and the exhaust pipe (3), and the first communication pipe (13) and the first communication pipe (13). A first switching means (17) for switching between the case where the two communication pipes (14) are communicated, and a second one which switches between the case where the third communication pipe (15) is communicated and the case where the fourth communication pipe (16) is communicated. Switching means (18), and when the internal combustion engine (1) is stopped, the first and fourth communication pipes (13, 16) are communicated. State in not operate the combustor (1) performs a heating operation, during operation of the internal combustion engine (1), combustor (11) operate in a state where the communicating first and third communicating pipe (13, 15) The exhaust operation of the internal combustion engine (1) is circulated through the exhaust pipe (3) with the second and fourth communication pipes (14, 16) closed, and when the internal combustion engine (1) is in operation, The combustor (11) is stopped in a state where the two or three communication pipes (14, 15) are connected, and the exhaust gas of the internal combustion engine (1) is recirculated to the intake pipe (2).
The invention according to claim 3 embodies the invention according to claim 2, wherein the internal combustion engine (1) is in operation, the outside air temperature is lower than a predetermined temperature, and the internal combustion engine (1) is in operation. When the rotational speed of the engine (1) is equal to or lower than the predetermined rotational speed, the combustion machine (11) is operated in a state where the first and third communication pipes (13, 15) are connected, and the heating operation is performed. The exhaust of the internal combustion engine (1) is circulated to the exhaust pipe (3) with the four communication pipes (14, 16) closed, and the external air temperature is higher than a predetermined temperature when the internal combustion engine (1) is in operation. When the internal combustion engine (1) is low and the rotational speed of the internal combustion engine (1) is larger than the predetermined rotational speed, the combustor (11) is stopped in a state where the second and fourth communication pipes (14, 16) are connected, and the internal combustion engine After introducing the exhaust of (1) into the combustor (11), the exhaust is discharged into the exhaust pipe (3), and the internal combustion engine (1 When the outside air temperature is equal to or higher than a predetermined temperature, the combustor (11) is stopped in a state where the second and third communication pipes (14, 15) are connected, and the internal combustion engine (1) The exhaust gas is recirculated to the intake pipe (2).
[0007]
Thereby, similarly to the invention according to claim 1, it is possible to suppress an increase in the manufacturing cost of the vehicle without newly securing a space for installing the heat exchanger in the engine room.
In the invention according to claim 4 , the combustor (11) heats the coolant by exchanging heat between the combustion gas generated by burning the fuel and the coolant, and exhausts the internal combustion engine (1). A combustion chamber (11a) for exchanging heat between the exhaust gas of the internal combustion engine (11) guided from the pipe (3) and the coolant, and introducing the exhaust gas of the internal combustion engine (1) into the combustion chamber (11a); A first exhaust path (14, 15) for recirculating the exhaust gas to the intake side of the internal combustion engine (1), and an exhaust gas from the internal combustion engine (1) without introducing the exhaust gas from the internal combustion engine (1) into the combustion chamber (11a). Switching means (17, 18) for switching between the first exhaust path (14, 15) and the second exhaust path between the second exhaust path flowing through the pipe (3) and the path through which the exhaust gas of the internal combustion engine (1) flows. The switching means (17, 18) is configured to discharge the internal combustion engine (1) when the combustor (11) is stopped. Is the first exhaust path (14, 15), the internal combustion engine (1) is cooled by exchanging heat between the exhaust gas of the internal combustion engine (1) and the coolant in the combustion chamber (11a). Then, the cooled exhaust gas is recirculated to the intake side of the internal combustion engine (1), and when the combustor (11) is operated, a path through which the exhaust gas from the internal combustion engine (1) flows is defined as a second exhaust path. The heat exchange between the exhaust gas of the internal combustion engine (1) and the coolant in 11a) is stopped .
[0008]
Thereby, similarly to the invention according to claim 1, it is possible to suppress an increase in the manufacturing cost of the vehicle without newly securing a space for installing the heat exchanger in the engine room.
Incidentally, the reference numerals in parentheses of each means described above are an example showing the correspondence with the specific means described in the embodiments described later.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
In this embodiment, the vehicle heating device according to the present invention is applied to a water-cooled diesel engine (liquid-cooled internal combustion engine), and FIG. 1 is a schematic diagram of the vehicle heating device according to this embodiment. .
[0010]
In FIG. 1, 1 is a water-cooled diesel engine (hereinafter abbreviated as “engine”), and 2 is an intake pipe that guides air (hereinafter referred to as “intake air”) from which dust has been removed by an air cleaner to the engine 1. Reference numeral 3 denotes an exhaust pipe through which the exhaust of the engine 1 circulates. The exhaust pipe 3 has a three-way catalyst (hereinafter referred to as catalyst) that purifies the exhaust by promoting oxidation-reduction reactions such as hydrocarbons and nitrogen oxidation in the exhaust. 4) and a muffler (silencer) 5 for reducing the noise (exhaust noise) of the exhaust gas flowing out from the catalyst 4.
[0011]
Reference numeral 6 denotes a radiator that cools the cooling water (coolant) of the engine 1, and reference numeral 7 denotes a bypass passage that causes the cooling water flowing out from the engine 1 to bypass the radiator 6 and return to the engine 1. 8 is a known thermostat that switches between when the coolant flowing out from the engine 1 is circulated to the radiator 6 and when it is circulated through the bypass passage 7 according to the coolant temperature, and 9 is a driving force obtained from the engine 1. It is a water pump that circulates cooling water.
[0012]
By the way, 10 is a heater core that heats the air blown into the passenger compartment using the cooling water as a heat source, and 11 is a combustor that heats the cooling water flowing into the heater core 10. The combustor 11 heats the cooling water by burning fuel in a combustion chamber 11 a provided in the combustor 11.
A fuel pump 12 supplies fuel to the combustor 11, and the fuel pump 12 sucks fuel (light oil) from a fuel tank (not shown) of the engine 1 and supplies it to the combustor 11.
[0013]
Reference numeral 13 denotes a first communication pipe that connects the intake pipe 2 and the intake side of the combustion chamber 11a, and reference numeral 14 denotes a second communication pipe that connects the intake side of the combustion chamber 11a and the exhaust pipe 3. Reference numeral 15 denotes a third communication pipe that connects the exhaust side of the combustion chamber 11a and the intake pipe 2. Reference numeral 16 denotes a fourth communication pipe that connects the exhaust side of the combustion chamber 11a and the exhaust pipe 3.
Reference numeral 17 denotes a first switching valve (first switching means) for switching between a case where the first communication pipe 13 is communicated and a case where the second communication pipe 14 is communicated, and 18 is a case where the third communication pipe 15 is communicated. And a second switching valve (second switching means) for switching between the case where the fourth communication pipe 16 and the fourth communication pipe 16 are communicated.
[0014]
Reference numeral 19 denotes a turbo blower (hereinafter abbreviated as a blower) that blows air to the combustor 11 (combustion chamber 11a). Incidentally, the turbo blower refers to a machine that imparts kinetic energy to gas by the rotational movement of the impeller, and specifically refers to a centrifugal blower, a mixed flow blower, an axial flow blower, and the like (from JIS B 0132).
An electric water pump 20 circulates cooling water through the combustor 11 and the heater core 10. The electric water pump 20, the first and second switching valves 17 and 18, the blower 19, and the fuel pump 12 include an electronic control unit (ECU). 21 is controlled.
[0015]
Reference numeral 22 denotes a bypass passage for bypassing the coolant that has flowed out of the engine 1 to the combustor 11 by bypassing the electric water pump 20. The coolant discharged from the electric water pump 20 is bypassed in the bypass passage 22. A check valve 23 that prevents the refrigerant from flowing back to the suction side of the electric water pump 20 is disposed.
[0016]
Reference numeral 24 denotes a carbon separator 24 that separates carbon (particulate graphite) contained in the exhaust of the engine 1 and prevents the carbon from flowing through the second communication pipe 14. The carbon separator 24 is a centrifugal carbon separator. After the carbon flowing into the cylindrical separator body 24a is swung along the inner wall of the separator body 24a, the carbon is separated. Exhaust gas is sucked through the second communication pipe 14 that opens at the center of the main body 24a.
[0017]
Next, the operation of the vehicle heating apparatus according to this embodiment will be described.
1. When the engine 1 is stopped (see FIG. 1)
The first and second switching valves 17 and 18 are operated so that the first communication pipe 13 and the fourth communication pipe 16 communicate with each other, and the blower 19 and the electric water pump 20 are operated to ignite the combustor 11 (operation). Let
[0018]
Thereby, the fuel supplied from the fuel pump 12 is mixed with the air (intake air) introduced from the intake pipe 2 via the first communication pipe 13 and burned in the combustion chamber. Then, the cooling water flowing toward the heater core 10 is heated by the combustion heat generated in the combustion chamber 11a, and the exhaust generated in the combustion chamber 11a (combustor 11) flows through the fourth communication pipe 16. After being purified by the catalyst 4, it is silenced by the muffler 5 and released into the atmosphere.
[0019]
Incidentally, the amount of air blown from the blower 19 is controlled according to the amount of fuel supplied based on the amount of heat required by the combustor 11.
2. When the rotational speed of the engine 1 is equal to or lower than a predetermined speed (see FIG. 2)
The first and third switching valves 17 and 18 are operated so that the first and third communication pipes 13 and 15 communicate with each other, and the blower 19 is operated to ignite (operate) the combustor 11. In addition, since the water pump 9 operates simultaneously with the operation of the engine 1, the electric water pump 20 is stopped. The predetermined rotation speed will be described later.
[0020]
Thereby, the fuel supplied from the fuel pump 12 is mixed with the air (intake air) introduced from the intake pipe 2 via the first communication pipe 13 and burned in the combustion chamber. Then, the cooling water flowing toward the heater core 10 is heated by the combustion heat generated in the combustion chamber 11 a, and the exhaust gas generated in the combustion chamber 11 a (combustor 11) passes through the third communication pipe 15. It is discharged to the intake pipe 2.
[0021]
3. When the rotation speed of the engine 1 is larger than a predetermined rotation (see FIG. 3)
The first and second switching valves 17 and 18 are operated so that the second and fourth communication pipes 14 and 16 communicate with each other, the blower 19 is operated, and the combustor 11 and the electric water pump 20 are stopped .
[0022]
As a result, the exhaust from the engine 1 is sucked into the blower 19 and blown into the combustion chamber 11 a of the combustor 11, and the heat of the exhaust of the engine 1 is recovered into the cooling water flowing through the combustor 11. Then, the exhaust gas whose heat has been recovered by the cooling water is discharged from the fourth communication pipe 16 toward the catalyst 4 and is released into the atmosphere via the muffler 5.
4). When the outside air temperature is high and it is not necessary to operate the combustor 11 (see FIG. 4)
The first and second switching valves 17 and 18 are operated so that the second and third communication pipes 14 and 15 communicate with each other, and the combustor 11 is stopped in a state where the blower 19 is operated. Incidentally, the case where the outside air temperature is high and the combustor 11 does not need to be operated refers to a state where the outside air temperature is equal to or higher than a predetermined temperature (about 25 ° C.), for example.
[0023]
As a result, the exhaust from the engine 1 is sucked into the blower 19 and blown into the combustion chamber 11 a of the combustor 11, and the heat of the exhaust of the engine 1 is cooled by the cooling water flowing through the combustor 11. Then, the exhaust gas cooled by the cooling water is discharged to the intake pipe 2 via the third communication pipe 15.
As described above, in this embodiment, the exhaust pipe of the engine 1 is cooled by the second and third communication pipes 14 and 15, the first and second switching valves 17 and 18, the blower 19 and the combustor 11, and the intake pipe. An exhaust gas recirculation device EGR that recirculates (recirculates) the gas to 2 is configured.
[0024]
Next, the predetermined rotation speed will be described.
As described in the above description of the operation, when the rotational speed of the engine 1 is equal to or lower than the predetermined rotational speed, the combustor 11 is operated and the cooling water is heated by the heat of the combustor 11. The machine 11 is stopped and heat is recovered from the exhaust of the engine 1 to heat the cooling water.
[0025]
Accordingly, the predetermined rotational speed is determined based on whether or not the exhaust temperature (heat amount) of the engine 1 has reached a temperature (heat amount) sufficient to supplement the heating capacity. Incidentally, in the present embodiment, the predetermined rotational speed corresponds to the idling rotational speed (about 600 rpm) of the engine 1.
Next, features of the present embodiment will be described.
[0026]
According to the present embodiment, when the combustor 11 is stopped, the exhaust gas is cooled by exchanging heat between the exhaust gas and the cooling water in the combustor 11 (combustion chamber 11a), and then the exhaust gas is returned to the intake side of the engine 1 ( Therefore, the generation of nitrogen oxides in the engine 1 can be effectively suppressed.
Therefore, since the exhaust gas to be recirculated (recirculated) can be cooled without providing a new heat exchanger for the exhaust gas recirculation device EGR, a space for installing the heat exchanger in the engine room is newly secured. And an increase in the manufacturing cost of the vehicle can be suppressed.
[0027]
Moreover, in the vehicle heating device according to the present embodiment, when the rotation speed of the engine 1 is equal to or lower than the predetermined rotation speed, the waste heat amount of the engine 1 does not reach a heat amount (temperature) sufficient for heating. Assuming that the combustor 11 is operated to supplement the heating capacity, on the other hand, if the engine 1 has a rotational speed greater than the predetermined rotational speed, the amount of waste heat of the engine 1 is sufficient for heating. Assuming that the temperature has been reached, the combustor 11 is stopped, and the waste heat given to the cooling water and the waste heat in the exhaust of the engine 1 are recovered and used for heating.
[0028]
Therefore, since waste heat is also collected from the exhaust of the engine 1, the time that the combustion capacity must be supplemented by the combustor 11 is shortened, and the fuel consumption rate including the combustor 11 is improved. Can do.
Further, when the engine 1 has a rotational speed equal to or lower than the predetermined rotational speed, the cooling water is heated by the combustor 11, so that the warm-up operation of the engine 1 can be promoted. The catalyst 4 can be made to function effectively by raising.
[0029]
By the way, in the above-mentioned embodiment, although it was a vehicle heating device using a diesel engine, it can be applied to a vehicle using a gasoline engine.
Further, the present invention can be applied to a vehicle having a supercharger such as a turbocharger or a supercharger.
In the above-described embodiment, air is sucked into the combustor 11 from the intake pipe 2. However, air may be sucked from the atmosphere.
[0030]
Further, the exhaust of the engine 1 may slightly leak into the second communication pipe 15 when the rotation speed of the engine 1 is equal to or less than a predetermined rotation. Thereby, the exhaust of the combustor 11 can be reliably discharged to the intake pipe 2 by the exhaust pressure of the engine 1.
In the above-described embodiment, exhaust gas recirculation is performed when the combustor 11 is stopped. However, an exhaust pipe dedicated for exhaust gas recirculation may be newly provided, and exhaust gas recirculation may be performed even when the combustor 11 is in operation.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a vehicle heating apparatus according to an embodiment when an engine is stopped.
FIG. 2 is a schematic diagram of the vehicle heating device according to the embodiment during idling.
FIG. 3 is a schematic diagram of the vehicle heating apparatus according to the embodiment during traveling.
FIG. 4 is a schematic diagram of the vehicle heating apparatus according to the embodiment when the combustor is stopped.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Engine (internal combustion engine), 2 ... Intake pipe, 3 ... Exhaust pipe, 4 ... Catalyst,
DESCRIPTION OF SYMBOLS 10 ... Heater core, 11 ... Combustor, 13 ... 1st communication pipe, 14 ... 2nd communication pipe,
15 ... 3rd communication pipe, 16 ... 4th communication pipe,
17 ... 1st switching valve (1st switching means), 18 ... 2nd switching valve (2nd switching means).

Claims (4)

液冷式の内燃機関(1)を有する車両に適用される車両用暖房装置であって、
前記内燃機関(1)の冷却液を熱源として車室内を暖房するヒータコア(10)と、
燃料を燃焼して発生した燃焼ガスと前記冷却液とを熱交換させて前記冷却液を加熱するとともに、前記内燃機関(1)の排気管(3)から導いた排気と前記冷却液とを熱交換させる燃焼室(11a)を有する燃焼機(11)と、
前記内燃機関(1)の排気を前記燃焼室(11a)に導入させ、その排気を前記内燃機関(1)の吸気側に還流させる第1排気経路(14、15)と、
前記内燃機関(1)の排気を前記燃焼室(11a)に導入させずに前記排気管(3)に流す第2排気経路と、
前記内燃機関(1)の排気が流れる経路を、前記第1排気経路(14、15)と前記第2排気経路との間で切り替える切替手段(17、18)とを備え、
前記切替手段(17、18)は、前記燃焼機(11)の停止時に、前記内燃機関(1)の排気が流れる経路を前記第1排気経路(14、15)とすることで、前記燃焼室(11a)にて前記内燃機関(1)の排気と前記冷却液とを熱交換させて前記内燃機関(1)の排気を冷却し、冷却された排気を前記内燃機関(1)の吸気側に還流させ、
前記燃焼機(11)の稼働時に、前記内燃機関(1)の排気が流れる経路を前記第2排気経路とすることで、前記燃焼室(11a)での前記内燃機関(1)の排気と前記冷却液との熱交換を停止させるようになっていることを特徴とする車両用暖房装置。
A vehicle heating device applied to a vehicle having a liquid-cooled internal combustion engine (1),
A heater core (10) for heating the passenger compartment using the coolant of the internal combustion engine (1) as a heat source;
Heat is exchanged between the combustion gas generated by burning the fuel and the cooling liquid to heat the cooling liquid, and the exhaust led from the exhaust pipe (3) of the internal combustion engine (1) and the cooling liquid are heated. A combustor (11) having a combustion chamber (11a) to be replaced ;
A first exhaust path (14, 15) for introducing the exhaust of the internal combustion engine (1) into the combustion chamber (11a) and returning the exhaust to the intake side of the internal combustion engine (1);
A second exhaust path for flowing the exhaust of the internal combustion engine (1) to the exhaust pipe (3) without introducing it into the combustion chamber (11a);
Switching means (17, 18) for switching a path through which the exhaust gas of the internal combustion engine (1) flows between the first exhaust path (14, 15) and the second exhaust path;
The switching means (17, 18) is configured such that when the combustor (11) is stopped, a path through which exhaust gas from the internal combustion engine (1) flows is the first exhaust path (14, 15), so that the combustion chamber In (11a), the exhaust gas of the internal combustion engine (1) and the coolant are exchanged with heat to cool the exhaust gas of the internal combustion engine (1), and the cooled exhaust gas is sent to the intake side of the internal combustion engine (1). Reflux,
When the combustor (11) is in operation, a path through which the exhaust gas of the internal combustion engine (1) flows is defined as the second exhaust path, so that the exhaust gas of the internal combustion engine (1) in the combustion chamber (11a) A vehicle heating device characterized in that heat exchange with a coolant is stopped .
液冷式の内燃機関(1)を有する車両に適用される車両用暖房装置であって、
前記内燃機関(1)の冷却液を熱源として車室内を暖房するヒータコア(10)と、
燃料を燃焼することにより前記冷却液を加熱する燃焼機(11)と、
前記燃焼機(11)の燃焼室(11a)の吸気側と前記内燃機関(1)の吸気管(2)とを連通させる第1連通管(13)と、
前記燃焼室(11a)の吸気側と前記内燃機関(1)の排気管(3)とを連通させる第2連通管(14)と、
前記燃焼室(11a)の排気側と前記吸気管(2)とを連通させる第3連通管(15)と、
前記燃焼室(11a)の排気側と前記排気管(3)とを連通させる第4連通管(16)と、
前記第1連通管(13)を連通させる場合と前記第2連通管(14)を連通させる場合とを切り換える第1切換手段(17)と、
前記第3連通管(15)を連通させる場合と前記第4連通管(16)を連通させる場合とを切り換える第2切換手段(18)とを備え、
前記内燃機関(1)の停止時には、前記第1、4連通管(13、16)を連通させた状態で前記燃焼機(1)を稼働させて暖房運転を行い、
前記内燃機関(1)の稼働時に、前記第1、3連通管(13、15)を連通させた状態で前記燃焼機(11)を稼働させて暖房運転を行うとともに、前記第2、4連通管(14、16)を閉じた状態で前記内燃機関(1)の排気を前記排気管(3)に流通させ、
前記内燃機関(1)の稼働時に、前記第2、3連通管(14、15)を連通させた状態で前記燃焼機(11)を停止させて、前記内燃機関(1)の排気を前記吸気管(2)に還流させることを特徴とする車両用暖房装置。
A vehicle heating device applied to a vehicle having a liquid-cooled internal combustion engine (1),
A heater core (10) for heating the passenger compartment using the coolant of the internal combustion engine (1) as a heat source;
A combustor (11) for heating the coolant by burning fuel;
A first communication pipe (13) communicating the intake side of the combustion chamber (11a) of the combustor (11) and the intake pipe (2) of the internal combustion engine (1) ;
A second communication pipe (14) communicating the intake side of the combustion chamber (11a) and the exhaust pipe (3) of the internal combustion engine (1);
A third communication pipe (15) communicating the exhaust side of the combustion chamber (11a) with the intake pipe (2);
A fourth communication pipe (16) communicating the exhaust side of the combustion chamber (11a) and the exhaust pipe (3);
First switching means (17) for switching between the case of communicating the first communication pipe (13) and the case of communicating the second communication pipe (14);
A second switching means (18) for switching between a case where the third communication pipe (15) is communicated and a case where the fourth communication pipe (16) is communicated;
When the internal combustion engine (1) is stopped, a heating operation is performed by operating the combustor (1) in a state where the first and fourth communication pipes (13, 16) are in communication.
When the internal combustion engine (1) is in operation, the combustor (11) is operated in a state where the first and third communication pipes (13, 15) are in communication and the heating operation is performed. With the pipes (14, 16) closed, the exhaust of the internal combustion engine (1) is circulated through the exhaust pipe (3),
When the internal combustion engine (1) is in operation, the combustor (11) is stopped in a state where the second and third communication pipes (14, 15) are in communication, and exhaust gas from the internal combustion engine (1) is taken into the intake air. A heating apparatus for a vehicle, characterized by being refluxed to the pipe (2).
前記内燃機関(1)の稼働時であって、外気温度が所定温度よりも低く、かつ、前記内燃機関(1)の回転数が所定回転数以下の場合に、前記第1、3連通管(13、15)を連通させた状態で前記燃焼機(11)を稼働させて暖房運転を行うとともに、前記第2、4連通管(14、16)を閉じた状態で前記内燃機関(1)の排気を前記排気管(3)に流通させ、When the internal combustion engine (1) is in operation and the outside air temperature is lower than a predetermined temperature and the rotational speed of the internal combustion engine (1) is equal to or lower than the predetermined rotational speed, the first and third communication pipes ( 13 and 15), the combustor (11) is operated to perform heating operation, and the second and fourth communication pipes (14, 16) are closed, and the internal combustion engine (1) is closed. Let exhaust flow through the exhaust pipe (3),
前記内燃機関(1)の稼働時であって、外気温度が前記所定温度よりも低く、かつ、前When the internal combustion engine (1) is in operation, the outside air temperature is lower than the predetermined temperature, and 記内燃機関(1)の回転数が前記所定回転数より大きい場合に、前記第2、4連通管(14、16)を連通させた状態で前記燃焼機(11)を停止させて、前記内燃機関(1)の排気を前記燃焼機(11)に導入させた後、その排気を前記排気管(3)に排出させ、When the rotational speed of the internal combustion engine (1) is greater than the predetermined rotational speed, the combustor (11) is stopped in a state where the second and fourth communication pipes (14, 16) are connected, and the internal combustion engine is stopped. After the exhaust of the engine (1) is introduced into the combustor (11), the exhaust is discharged into the exhaust pipe (3),
前記内燃機関(1)の稼働時であって、外気温度が前記所定温度以上の場合に、前記第2、3連通管(14、15)を連通させた状態で前記燃焼機(11)を停止させて、前記内燃機関(1)の排気を前記吸気管(2)に還流させるようになっていることを特徴とする請求項2に記載の車両用暖房装置。When the internal combustion engine (1) is in operation and the outside air temperature is equal to or higher than the predetermined temperature, the combustor (11) is stopped while the second and third communication pipes (14, 15) are in communication. The vehicle heating device according to claim 2, wherein the exhaust gas of the internal combustion engine (1) is recirculated to the intake pipe (2).
液冷式の内燃機関(1)の冷却液を熱源とするヒータコア(10)、及び燃料を燃焼させることにより前記冷却液を加熱する燃焼機(11)を有する車両に適用され、
前記内燃機関(1)から排出される排気中の窒素酸化物を低減する排気再循環装置であって、
前記燃焼機(11)は、燃料を燃焼して発生した燃焼ガスと前記冷却液とを熱交換させて前記冷却液を加熱するとともに、前記内燃機関(1)の排気管(3)から導いた前記内燃機関(11)の排気と前記冷却液とを熱交換させる燃焼室(11a)を有しており、
前記内燃機関(1)の排気を前記燃焼室(11a)に導入させ、その排気を前記内燃機関(1)の吸気側に還流させる第1排気経路(14、15)と、
前記内燃機関(1)の排気を前記燃焼室(11a)に導入させずに前記内燃機関(1)の排気管(3)に流す第2排気経路と、
前記内燃機関(1)の排気が流れる経路を、前記第1排気経路(14、15)と前記第2排気経路との間で切り替える切替手段(17、18)とを備え、
前記切替手段(17、18)は、前記燃焼機(11)の停止時に、前記内燃機関(1)の排気が流れる経路を前記第1排気経路(14、15)とすることで、前記燃焼室(11a)にて前記内燃機関(1)の排気と前記冷却液とを熱交換させて前記内燃機関(1)排気を冷却し、冷却された排気を前記内燃機関(1)の吸気側に還流させ、
前記燃焼機(11)の稼働時に、前記内燃機関(1)の排気が流れる経路を前記第2排気経路とすることで、前記燃焼室(11a)での前記内燃機関(1)の排気と前記冷却液との熱交換を停止させるようになっていることを特徴とする排気再循環装置。
Applied to a vehicle having a heater core (10) using a coolant of a liquid-cooled internal combustion engine (1) as a heat source, and a combustor (11) for heating the coolant by burning fuel;
An exhaust gas recirculation device for reducing nitrogen oxides in exhaust gas discharged from the internal combustion engine (1),
The combustor (11) heats the coolant by exchanging heat between the combustion gas generated by burning the fuel and the coolant, and led from the exhaust pipe (3) of the internal combustion engine (1). A combustion chamber (11a) for exchanging heat between the exhaust gas of the internal combustion engine (11) and the coolant;
A first exhaust path (14, 15) for introducing the exhaust of the internal combustion engine (1) into the combustion chamber (11a) and returning the exhaust to the intake side of the internal combustion engine (1);
A second exhaust path for flowing the exhaust of the internal combustion engine (1) to the exhaust pipe (3) of the internal combustion engine (1) without introducing it into the combustion chamber (11a);
Switching means (17, 18) for switching a path through which the exhaust gas of the internal combustion engine (1) flows between the first exhaust path (14, 15) and the second exhaust path;
The switching means (17, 18) is configured such that when the combustor (11) is stopped, a path through which exhaust gas from the internal combustion engine (1) flows is the first exhaust path (14, 15), so that the combustion chamber In (11a), the exhaust gas of the internal combustion engine (1) and the coolant are subjected to heat exchange to cool the exhaust gas of the internal combustion engine (1), and the cooled exhaust gas is recirculated to the intake side of the internal combustion engine (1). Let
When the combustor (11) is in operation, a path through which the exhaust gas of the internal combustion engine (1) flows is defined as the second exhaust path, so that the exhaust gas of the internal combustion engine (1) in the combustion chamber (11a) An exhaust gas recirculation device that stops heat exchange with a coolant .
JP26851298A 1998-06-09 1998-09-22 Vehicle heating device and exhaust gas recirculation device Expired - Fee Related JP3921835B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP26851298A JP3921835B2 (en) 1998-09-22 1998-09-22 Vehicle heating device and exhaust gas recirculation device
US09/324,307 US6079629A (en) 1998-06-09 1999-06-02 Vehicle heating apparatus having combustor
DE19925915A DE19925915B4 (en) 1998-06-09 1999-06-07 Vehicle heater with burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26851298A JP3921835B2 (en) 1998-09-22 1998-09-22 Vehicle heating device and exhaust gas recirculation device

Publications (2)

Publication Number Publication Date
JP2000094936A JP2000094936A (en) 2000-04-04
JP3921835B2 true JP3921835B2 (en) 2007-05-30

Family

ID=17459549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26851298A Expired - Fee Related JP3921835B2 (en) 1998-06-09 1998-09-22 Vehicle heating device and exhaust gas recirculation device

Country Status (1)

Country Link
JP (1) JP3921835B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9951659B2 (en) * 2015-01-23 2018-04-24 Ford Global Technologies, Llc Thermodynamic system in a vehicle

Also Published As

Publication number Publication date
JP2000094936A (en) 2000-04-04

Similar Documents

Publication Publication Date Title
US8739531B2 (en) Hybrid power plant with waste heat recovery system
JP5754755B2 (en) Engine arrangement with charge air cooler and EGR system
JP4492672B2 (en) Control device for hybrid system
CN106545390B (en) System for controlling waste heat recovery and exhaust gas recirculation system
CN101605683A (en) The catalyst temperature raising device of motor vehicle driven by mixed power
KR20110135968A (en) Arrangement for cooling of recirculating exhaust gases of a combustion engine
JP2003193832A (en) Exhaust device for heat engine
KR960012126B1 (en) Engine cooling system
JP4114535B2 (en) Thermoelectric generator
JP2012107599A (en) Exhaust heat recovery device
JP4511845B2 (en) Internal combustion engine with a supercharger
WO2002006646A1 (en) Internal combustion engine with combustion heater
JP3921835B2 (en) Vehicle heating device and exhaust gas recirculation device
JP3630001B2 (en) Intake heating system
CN113969845A (en) Method for controlling vehicle engine system
WO2010123409A1 (en) Method and arrangement for recirculation of exhaust gases of a combustion engine
JP3906581B2 (en) Vehicle heating system
JP2001323844A (en) Internal combustion engine having combustion type heater
JP3906582B2 (en) Vehicle heating system
US11959409B2 (en) Internal-combustion-engine warm-up apparatus
JP7472846B2 (en) Engine System
JP3358557B2 (en) Vehicle heating system
US11867107B2 (en) Internal combustion engine for a motor vehicle and motor vehicle
JP7338524B2 (en) Exhaust Purification Catalyst Temperature Retaining Method and Exhaust Purification Catalyst Heat Retention System
JP2000511988A (en) Automobile with internal combustion engine with external exhaust gas recirculation and heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees