WO2022075180A1 - Polyamide resin composition - Google Patents

Polyamide resin composition Download PDF

Info

Publication number
WO2022075180A1
WO2022075180A1 PCT/JP2021/036150 JP2021036150W WO2022075180A1 WO 2022075180 A1 WO2022075180 A1 WO 2022075180A1 JP 2021036150 W JP2021036150 W JP 2021036150W WO 2022075180 A1 WO2022075180 A1 WO 2022075180A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
polyamide resin
resin composition
mass
aliphatic
Prior art date
Application number
PCT/JP2021/036150
Other languages
French (fr)
Japanese (ja)
Inventor
秀作 和田
詩菜 鯵坂
耕士 東山
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to JP2022555419A priority Critical patent/JPWO2022075180A1/ja
Priority to CN202180067512.8A priority patent/CN116323759A/en
Publication of WO2022075180A1 publication Critical patent/WO2022075180A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/40Polyamides containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a polyamide resin composition.
  • a polyamide resin composition in which a polyamide resin is blended with a polyamide resin has been reported for the purpose of improving the flexibility and impact resistance of the polyamide resin (see Patent Document 1).
  • Magnetic resin composite materials are widely used in OA equipment, motors, actuators, sensors, etc.
  • the magnetic material resin composite material is required to have excellent magnetic properties, and for that purpose, it is required that the magnetic powder is well dispersed even if a large amount of the magnetic powder is blended.
  • the magnetic material resin composite material is required to have mechanical properties and other physical properties.
  • a magnetic resin composite material containing a magnetic powder, a polyamide resin, and an epoxy compound is known in order to achieve both moldability and mechanical properties of the magnetic resin composite material (see Patent Document 3).
  • a magnetic material resin composite material containing a magnetic powder and an aromatic polyamide resin is known (see Patent Document 4).
  • the reaction between the amino group of the polyamide resin and the epoxy group of the epoxy resin may generate a rigid and inflexible composite resin, which may be combined with the terminal carboxyl group of the polyamide resin. It was necessary to set the ratio with the terminal amino group to a specific range.
  • the magnetic material resin composite material of Patent Document 4 has poor flexibility. Further toughness was required for the polyamide resin composition of Patent Document 1 and the magnetic material resin composite material of Patent Document 2.
  • An object of the present invention is to provide a polyamide resin composition which has good molding processability, is tough, has flexibility, and can obtain a molded product having excellent impact resistance.
  • the present invention is, for example, the following [1] to [8].
  • [1] In 100% by mass of the polyamide resin composition, 15 to 35% by mass of the polyamide-based elastomer (A) and 40 to 79% by mass of the aliphatic polyamide resin (B) having an average carbon atom number of more than 6 per amide group.
  • [2] The polyamide resin composition of [1], wherein the polyamide-based elastomer (A) has a polyether structure.
  • the polyamide-based elastomer (A) is a structural unit derived from an aminocarboxylic acid compound represented by the following formula (1) and / or a lactam compound represented by the following formula (2), according to the following formula (3).
  • Polyamide resin composition [However, R 1 represents a linking group containing a hydrocarbon chain. ] [However, R 2 represents a linking group containing a hydrocarbon chain. ] [However, x represents an integer of 1 to 20, y represents an integer of 4 to 50, and z represents an integer of 1 to 20. ] [However, R 3 represents a linking group containing a hydrocarbon chain, and m is 0 or 1.
  • [6] A molded product of the polyamide resin composition according to any one of [1] to [5].
  • [7] A magnetic resin composite material containing the polyamide resin composition according to any one of [1] to [5] and a magnetic powder.
  • [8] A molded product of the magnetic resin composite material of [7].
  • the polyamide resin composition of the present invention has good molding processability, and can obtain a molded product that is tough, flexible, and has excellent impact resistance.
  • the polyamide resin composition in 100% by mass of the polyamide resin composition, 15 to 35% by mass of the polyamide-based elastomer (A) and 40 to 79% by mass of the aliphatic polyamide resin (B) having an average carbon atom number of more than 6 per amide group. %, 0.1 to 35% by mass of the aromatic polyamide resin (C), and 0 to 10% by mass of the aliphatic polyamide resin (D) having an average carbon atom number of 6 or less per amide group. ..
  • the polyamide resin composition contains a polyamide-based elastomer (A). Since the polyamide resin composition contains the polyamide-based elastomer (A), the molded product exhibits excellent flexibility.
  • the polyamide-based elastomer (A) has a hard segment and a soft segment, and the hard segment has a polyamide structure.
  • the soft segment of the polyamide-based elastomer preferably has a polyether structure, and more preferably has a structural unit derived from a polyether diamine compound.
  • Examples of the polyamide-based elastomer having a polyether structure as a soft segment include a polyether ester amide elastomer in which a hard segment and a soft segment are bonded by an ester bond, and a polyether polyamide elastomer in which a hard segment and a soft segment are bonded by an amide bond. From the viewpoint of exhibiting the effect of the present invention, excellent in hydrolysis resistance, and from the viewpoint of stability, a polyether polyamide elastomer in which a hard segment and a soft segment are bonded by an amide bond is preferable.
  • the polyamide structure in the hard segment is at least one selected from the group consisting of a nylon salt composed of a diamine and a dicarboxylic acid, an aminocarboxylic acid compound represented by the following formula (1), and a lactam compound represented by the following formula (2).
  • a polycondensate having a structural unit derived from the seed polyamide-forming monomer is preferred.
  • R 1 represents a linking group containing a hydrocarbon chain.
  • R 2 represents a linking group containing a hydrocarbon chain.
  • R 1 is preferably a divalent hydrocarbon group containing an aliphatic group having 2 to 20 carbon atoms, an alicyclic group and / or an aromatic group, and more preferably a carbon number.
  • aminocarboxylic acid compound (1) examples include 6-aminocaproic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 10-aminodecanoic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and the like having 5 to 20 carbon atoms.
  • the aliphatic ⁇ -aminocarboxylic acid of the above can be mentioned.
  • R 2 is preferably a divalent hydrocarbon group containing an aliphatic group having 3 to 20 carbon atoms, an alicyclic group and / or an aromatic group, and more preferably having 3 carbon atoms.
  • lactam compound (2) examples include aliphatic lactams having 4 to 20 carbon atoms such as ⁇ -caprolactam, ⁇ -enantractam, ⁇ -undecalactam, ⁇ -lauryl lactam, and 2-pyrrolidone.
  • ⁇ -lauric lactam, 11-aminoundecanoic acid or 12-aminododecanoic acid are preferable from the viewpoint of dimensional stability due to low water absorption, chemical resistance, and mechanical properties.
  • diamines in the nylon salt examples include ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2.
  • Diamines such as aliphatic diamines having 2 to 20 carbon atoms such as 4-trimethylhexane-1,6-diamine, 2,4,4-trimethylhexane-1,6-diamine, 3-methylpentane-1,5-diamine Examples include compounds.
  • dicarboxylic acid in the nylon salt at least one dicarboxylic acid selected from aliphatic, alicyclic and aromatic dicarboxylic acids or a derivative thereof can be used.
  • dicarboxylic acid examples include linear aliphatic dicarboxylic acids having 2 to 25 carbon atoms such as oxalic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid.
  • an aliphatic dicarboxylic acid such as a dimerized aliphatic dicarboxylic acid (dimeric acid) having 14 to 48 carbon atoms obtained by distilling an unsaturated fatty acid obtained by distilling triglyceride and a hydrogenated product thereof (hydrogenated dicarboxylic acid).
  • the hard segment can also be derived from a polyamide having a carboxyl group at both terminal groups, in which case the hard segment is selected from the group consisting of a polyamide structure and an aliphatic dicarboxylic acid, an alicyclic dicarboxylic acid and an aromatic dicarboxylic acid. It is also a segment containing a structural unit derived from at least one dicarboxylic acid (4).
  • R 3 represents a linking group containing a hydrocarbon chain, and m is 0 or 1.
  • dicarboxylic acid compound (4) at least one dicarboxylic acid selected from aliphatic, alicyclic and aromatic dicarboxylic acids or a derivative thereof can be used.
  • R 3 is preferably a divalent hydrocarbon group containing an aliphatic group having 1 to 20 carbon atoms, an alicyclic group group and / or an aromatic group, and more preferably 1 carbon atom.
  • the hydrocarbon group having up to 15 carbon atoms more preferably the hydrocarbon group having 2 to 12 carbon atoms, still more preferably the hydrocarbon group having 4 to 10 carbon atoms, and particularly preferably 4 to 10 carbon atoms.
  • It is an alkylene group of 10.
  • Specific examples of the dicarboxylic acid compound represented by the above formula (4) include a compound exemplified as a dicarboxylic acid compound of a nylon salt composed of a diamine compound and a dicarboxylic acid compound.
  • the above-mentioned polyamide-forming monomer can be obtained by ring-opening polymerization or polycondensation by a conventional method to obtain a polyamide having carboxyl groups at both ends.
  • the hard segment dicarboxylic acid can be used as a molecular weight modifier.
  • the number average molecular weight of the hard segment is preferably 300 to 15,000, and more preferably 300 to 6000 from the viewpoint of flexibility and moldability.
  • the number average molecular weight is a value obtained by gel permeation chromatography.
  • the soft segment preferably has a polyether structure, and the constituent unit of the polyether structure is preferably an oxyalkylene having 2 to 4 carbon atoms.
  • the alkylene group of oxyalkylene is preferably a linear or branched alkylene group having 2 to 4 carbon atoms, and is preferably an ethylene group, an n-propylene group, an i-propylene group, a 1-methylethylene group, or a 2-methylethylene group. , N-butylene group, 1-methylpropylene group, 2-methylpropylene group, dimethylethylene group, ethylethylene group and the like.
  • the structural unit of the polyether structure may be one kind alone or two or more kinds, but two or more kinds are preferable.
  • soft segment's polyether structure examples include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, and XYX-type triblock polyether. These can be used alone or in combination of two or more.
  • XYX-type triblock polyether have a structure represented by the following chemical formula. (In the formula, x represents an integer of 1 to 20, y represents an integer of 4 to 50, and z represents an integer of 1 to 20.)
  • x and z are each independently preferably an integer of 1 to 18, more preferably an integer of 1 to 16, further preferably an integer of 1 to 14, and particularly preferably an integer of 1 to 12.
  • y is preferably an integer of 5 to 45, more preferably an integer of 6 to 40, further preferably an integer of 7 to 35, and particularly preferably an integer of 8 to 30.
  • a polyether diamine compound can be obtained by reacting the ends of these polyethers with ammonia or the like.
  • the number average molecular weight of the soft segment is preferably 200 to 6000, more preferably 650 to 2000.
  • the XYX type triblock polyether diamine compound is represented by, for example, the following formula (3).
  • x represents an integer of 1 to 20
  • y represents an integer of 4 to 50
  • z represents an integer of 1 to 20.
  • x and z are each independently preferably an integer of 1 to 18, more preferably an integer of 1 to 16, further preferably an integer of 1 to 14, and particularly preferably an integer of 1 to 12.
  • y is preferably an integer of 5 to 45, more preferably an integer of 6 to 40, further preferably an integer of 7 to 35, and particularly preferably an integer of 8 to 30.
  • each combination of the hard segment and the soft segment mentioned above can be mentioned.
  • the hard segment / soft segment (mass ratio) is more preferably 95/5 to 25/75.
  • the ratio (mass ratio) between the hard segment and the soft segment is a value calculated based on the blending amount of the monomer components constituting each segment.
  • the ratio (mass ratio) of the hard segment and the soft segment of the obtained polyamide elastomer is equal to the value calculated based on the blending amount of the monomer components constituting each segment.
  • the hard segment / soft segment (mass ratio) is smaller than the above range, the crystallinity of the polyamide component may be lowered, and the mechanical properties such as strength and elastic modulus may be lowered, which may not be preferable.
  • the hard segment / soft segment (mass ratio) is larger than the above range, it may not be preferable because the function and performance as an elastomer such as rubber elasticity and flexibility are difficult to be exhibited.
  • polyamide-based elastomers include, for example, the product name "Dyamide (registered trademark)” series manufactured by Daicel Ebonic, the product name “Pebax” series manufactured by ARKEMA, and the product name "Grill” manufactured by MSMEM Japan. Examples include “Flex (registered trademark) EBG”, “Grillflex (registered trademark) ELG”, “Grillon (registered trademark) ELX”, and Ube Kosan Co., Ltd. trade name "UBESTA XPA (registered trademark)” series.
  • the product name "UBESTA XPA (registered trademark)" series manufactured by Ube Kosan Co., Ltd. is preferable from the viewpoint of exhibiting the effect of the present invention and excellent in hydrolysis resistance.
  • the polyamide elastomer (A) may be used alone or in combination of two or more.
  • the degree of polymerization of the polyamide-based elastomer (A) is not particularly limited, but in accordance with JIS K6920-2, 0.25 g of the polyamide-based elastomer was dissolved in 50 ml of m-cresol, which is a special reagent product, and measured at 25 ° C.
  • the relative viscosity is preferably 1.10 to 5.00, more preferably 1.50 to 4.50, and particularly preferably 1.50 to 3.00.
  • the hardness (shore D) of the polyamide-based elastomer (A) is preferably in the range of 15 to 70, more preferably in the range of 18 to 70, more preferably in the range of 20 to 70, and particularly preferably in the range of 20 to 70. It is in the range of 25 to 70.
  • a preferred embodiment of the polyamide-based elastomer (A) is a structural unit derived from an aminocarboxylic acid compound represented by the above formula (1) and / or a lactam compound represented by the above formula (2), represented by the above formula (3). It is a polymer containing the structural unit derived from the XYX type triblock polyether diamine compound and the structural unit derived from the dicarboxylic acid compound represented by the above formula (4).
  • a method for producing the polyamide-based elastomer (A) in a preferred embodiment consisting of a step of melt-polymerizing a polyamide-forming monomer, an XYX-type triblock polyetherdiamine, and a dicarboxylic acid under pressure and / or normal pressure, and further melt-polymerizing under reduced pressure, if necessary, can be used.
  • a method comprising the steps of simultaneously melt-polymerizing the three components of a polyamide-forming monomer, an XYX-type triblock polyetherdiamine, and a dicarboxylic acid under pressure and / or normal pressure, and further melt-polymerizing under reduced pressure as necessary. Can be used.
  • a method of first polymerizing the two components of the polyamide-forming monomer and the dicarboxylic acid and then polymerizing the XYX-type triblock polyether diamine can also be used.
  • a similar production method can be mentioned for a polyamide elastomer having a polyether structural unit derived from polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol or the like as a soft segment.
  • the polyamide elastomer can be produced at a polymerization temperature of preferably 150 to 300 ° C, more preferably 160 to 280 ° C, and particularly preferably 180 to 250 ° C.
  • a polymerization temperature preferably 150 to 300 ° C, more preferably 160 to 280 ° C, and particularly preferably 180 to 250 ° C.
  • the polyamide elastomer can be produced by a method consisting of a normal pressure melt polymerization or a normal pressure melt polymerization followed by a vacuum melt polymerization step.
  • a lactam compound or a compound synthesized from a diamine compound and a dicarboxylic acid compound and / or a salt thereof is used as the polyamide-forming monomer
  • an appropriate amount of water is allowed to coexist and the pressure is 0.1 to 5 MPa. It can be produced by a method consisting of the melt polymerization of the above, followed by the atmospheric melt polymerization and / or the vacuum melt polymerization.
  • the polyamide elastomer can be produced with a polymerization time of usually 0.5 to 30 hours. If the polymerization time is shorter than the above range, the increase in molecular weight tends to be insufficient, and if it is long, coloring due to thermal decomposition or the like is likely to occur, and in either case, a polyetheramide elastomer having desired physical properties may not be obtained.
  • the production of the polyamide elastomer can be carried out by a batch type or a continuous type, and a batch type reaction kettle, a single-tank or multi-tank continuous reaction device, a tubular continuous reaction device, or the like is used alone or in combination as appropriate. be able to.
  • monoamines such as laurylamine, stearylamine, hexamethylenediamine, and methoxylylenediamine, and diamines, acetic acids, and benzoic acids are used to adjust the molecular weight and stabilize the melt viscosity during molding, if necessary.
  • Monocarboxylic acid such as stearic acid, adipic acid, sebacic acid, dodecanedioic acid, dicarboxylic acid and the like can be added. It is preferable to appropriately add these amounts so that the relative viscosity of the finally obtained elastomer is in the range of 1.10 to 5.00.
  • the amount of the above monoamine and diamine, monocarboxylic acid, dicarboxylic acid and the like added is preferably in a range that does not impair the characteristics of the obtained polyamide elastomer.
  • phosphoric acid, pyrophosphoric acid, polyphosphoric acid, etc. are used as catalysts as necessary, and phosphorous acid, hypophosphorous acid, and these are used for the effects of both catalysts and heat resistant agents.
  • Inorganic phosphorus compounds such as alkali metal salts and alkaline earth metal salts can be added. The addition amount is usually 50 to 3000 ppm with respect to the charged raw material.
  • the content of the polyamide-based elastomer (A) in 100% by mass of the polyamide resin composition is 15 to 35% by mass, preferably 15 to 30% by mass, and more preferably 20 to 30% by mass.
  • the content of the polyamide-based elastomer (A) is within the above range, a molded product having both flexibility and toughness and excellent impact resistance can be obtained.
  • the polyamide resin composition contains an aliphatic polyamide resin (B) having an average carbon atom number of more than 6 per amide group (hereinafter, also referred to as “aliphatic polyamide resin (B)”).
  • aliphatic polyamide resin (B) When the polyamide resin composition contains the aliphatic polyamide resin (B) having an average carbon atom number of more than 6 per amide group, it becomes easy to improve the molding processability, and the flexibility and mechanical properties of the molded product are easily improved. It becomes easy to improve. Further, since the polyamide resin has low water absorption, it is superior in hydrolysis resistance to other thermoplastic resins.
  • the aliphatic polyamide resin examples include an aliphatic homopolyamide resin and an aliphatic copolymerized polyamide resin.
  • the aliphatic homopolyamide resin is a polyamide resin composed of one kind of constituent unit derived from an aliphatic monomer.
  • the aliphatic homopolyamide resin may be composed of at least one of one kind of lactam and aminocarboxylic acid which is a hydrolyzate of the lactam, and is composed of a combination of one kind of diamine and one kind of dicarboxylic acid. It may be a thing.
  • the aliphatic copolymerized polyamide resin is a polyamide resin composed of two or more kinds of constituent units derived from an aliphatic monomer.
  • the aliphatic copolymerized polyamide resin is two or more copolymers selected from the group consisting of a combination of diamine and dicarboxylic acid, lactam and aminocarboxylic acid.
  • the combination of diamine and dicarboxylic acid is regarded as one kind of monomer by the combination of one kind of diamine and one kind of dicarboxylic acid.
  • An aliphatic homopolyamide resin having an average number of carbon atoms per amide group of more than 6 means that when the constituent units are lactam and aminocarboxylic acid, the number of carbon atoms in the hydrocarbon chain of the constituent units exceeds 6. To say.
  • the constituent unit is a combination of diamine and dicarboxylic acid, the value obtained by multiplying the number of carbon atoms of the diamine hydrocarbon chain by the molar concentration of diamine in the polyamide and the number of carbon atoms of the diamine hydrocarbon chain in the polyamide It means that the sum with the value obtained by multiplying the molar concentration of the dicarboxylic acid of is more than 6.
  • polytetramethylene sebacamide (polyamide 410) is an aliphatic homopolyamide resin having an average carbon atom number of more than 6 per amide group when tetramethylenediamine is less than 67 mol% in polyamide. Further, if it is 67 mol% or more, it is an aliphatic homopolyamide resin having an average carbon atom number of 6 or less with respect to one amide group described later.
  • the number of carbon atoms per amide group of each constituent unit constituting the copolymer is obtained as described above, and the copolymer weight is obtained. It means that the average number of carbon atoms in the copolymer, which is the product of the molar concentration of each structural unit in the coalescence and the number of carbon atoms for one amide group of each structural unit, exceeds 6.
  • Polyundecane lactam (polyamide 11), polylauryl lactam (polyamide 12), polytetramethylene dodecamide (polyamide 412), and polypentamethylene are examples of aliphatic homopolyamide resins having an average carbon atom number of more than 6 per amide group.
  • Azelamide (polyamide 59), polypentamethylene sebacamide (polyamide 510), polypentamethylene dodecamide (polyamide 512), polyhexamethylene sveramide (polyamide 68), polyhexamethylene azelamide (polyamide 69), polyhexa Methylene sebacamide (polyamide 610), polyhexamethylene undecamide (polyamide 611), polyhexamethylene dodecamide (polyamide 612), polyhexamethylenetetradecamide (polyamide 614), polyhexamethylene hexadecamide (polyamide 616).
  • Polyhexamethylene octadecamide polyamide 618
  • polynonamethylene adipamide polyamide 96
  • polynonamethylene sveramide polyamide 98
  • polynonamethylene azelamide polyamide 99
  • polynonamethylene sebacamide Polyamide 910
  • Polynonamethylene dodecamide Polyamide 912
  • Polydecamethylene adipamide Polyamide 106
  • Polydecamethylene sveramide Polyamide 108
  • Polydecamethylene azelamide Polyamide 109
  • Polydecamethylene se Polydecamethylene se.
  • aliphatic copolymerized polyamide resin having an average carbon atom number of more than 6 for one amide group a raw material monomer for forming an aliphatic homopolypolymer resin having an average carbon atom number of more than 6 for one amide group is used.
  • a raw material monomer for forming an aliphatic homopolypolymer resin having an average carbon atom number of more than 6 for one amide group is used.
  • caprolactam / hexamethylene diaminoazeline acid copolymer polyamide 6/69
  • caprolactam / hexamethylene diaminosevacinic acid copolymer polyamide 6/610
  • caprolactam / hexamethylene diaminoundecane caprolactam / hexamethylene diaminoundecane.
  • Dicarboxylic acid copolymer (polyamide 6/611), caprolactam / hexamethylene diaminododecanedicarboxylic acid copolymer (polyamide 6/612), caprolactam / aminoundecanoic acid copolymer (polyamide 6/11), caprolactam / lauryllactam Polymer (Polymer 6/12), Caprolactam / Hexamethylene diaminoadipic acid / Lauryl lactam copolymer (Polymer 6/66/12), Caprolactum / Hexamethylene diaminoadipic acid / Hexamethylene diaminosevacinic acid copolymer (Polymer 6) / 66/610), caprolactam / hexamethylenediaminoadipic acid / hexamethylenediaminododecanedicanoic acid copolymer (polyamide 6/66/612) and the like can be mentioned.
  • the aliphatic polyamide resin (B) preferably has an average carbon atom number of 8 to 12 per amide group, and more preferably 10 to 12. It is particularly preferably at least one selected from the group consisting of polyamide 11, polyamide 12, polyamide 612, polyamide 611, polyamide 610, polyamide 6/12 copolymer and polyamide 6/66/12 copolymer.
  • the degree of polymerization of the aliphatic polyamide resin (B) is not particularly limited, but in accordance with JIS K6933, 1 g of the polyamide resin is dissolved in 100 ml of 96% concentrated sulfuric acid, and the relative viscosity measured at 25 ° C. is 1.10. It is preferably ⁇ 5.00, more preferably 1.50 to 4.50, and particularly preferably 1.50 to 3.00.
  • the content of the aliphatic polyamide resin (B) having an average carbon atom number of more than 6 per amide group in 100% by mass of the polyamide resin composition is 40 to 79% by mass, preferably 45 to 77% by mass. , 50-75% by mass is more preferable.
  • the content of the aliphatic polyamide resin (B) is within the above range, a molded product having both flexibility and toughness and excellent impact resistance can be obtained.
  • the polyamide resin composition contains an aromatic polyamide resin (C).
  • the aromatic polyamide resin is an aromatic polyamide resin containing at least one aromatic monomer component, and is, for example, an aliphatic dicarboxylic acid and an aromatic diamine, an aromatic dicarboxylic acid and an aliphatic diamine, or an aromatic diamine and an aromatic. It is a polyamide resin obtained by polycondensation of dicarboxylic acid as a raw material.
  • Examples of the aliphatic diamine and the aliphatic dicarboxylic acid as raw materials include those similar to those exemplified in the above description of the aliphatic copolymerized polyamide resin.
  • Examples of the aromatic diamine include methoxylylenediamine and paraxylylenediamine
  • examples of the aromatic dicarboxylic acid include naphthalenedicarboxylic acid, terephthalic acid, isophthalic acid and phthalic acid. These aromatic diamines and aromatic dicarboxylic acids may be used alone or in combination of two or more.
  • polyamide 9T polynonane methylene terephthalamide
  • polyoxide 6T polyhexamethylene terephthalamide
  • polyhexamethylene isophthalamide polyamide 6I
  • polyhexamethylene adipamide / polyhexamethylene terephthalamide copolymer examples include polynonane methylene terephthalamide (polyamide 9T), polyhexamethylene terephthalamide (polyoxide 6T), polyhexamethylene isophthalamide (polyamide 6I), and polyhexamethylene adipamide / polyhexamethylene terephthalamide copolymer.
  • an aromatic copolymerized polyamide containing at least two monomer components is preferable, and a semi-aromatic polyamide obtained by copolymerizing one or more aromatic monomer components and one or more aliphatic monomer components.
  • Polyamide is more preferable, and polyhexamethylene terephthalamide / polyhexamethylene isophthalamide copolymer (polyamide 6T / 6I) and polyxylylene adipamide (polyamide MXD6) are further preferable.
  • aromatic polyamide resin (C) particularly useful ones include an amorphous partially aromatic copolymerized polyamide resin containing at least two aromatic monomer components.
  • the amorphous partially aromatic copolymerized polyamide resin an amorphous polyamide having a glass transition temperature of 100 ° C. or higher obtained by the peak temperature of the loss elastic modulus at the time of absolute drying obtained by measuring the dynamic viscoelasticity is used. preferable.
  • the amorphous partially aromatic copolymerized polyamide resin include polyhexamethylene terephthalamide / polyhexamethylene isophthalamide copolymer (polyamide 6T / 6I).
  • amorphous means that the amount of heat of crystal melting measured by a differential scanning calorimeter (DSC) is 1 cal / g or less.
  • the degree of polymerization of the aromatic polyamide resin (C) is not particularly limited, but in accordance with JIS K6933, 1 g of the polyamide resin is dissolved in 100 ml of m-cresol, which is a special reagent product, and the relative viscosity measured at 25 ° C. is determined. It is preferably 1.50 to 4.00, more preferably 1.80 to 2.50.
  • the content of the aromatic polyamide resin (C) in 100% by mass of the polyamide resin composition is 0.1 to 35% by mass, preferably 0.1 to 33% by mass, and more preferably 0.2 to 30% by mass. ..
  • the content of the aromatic polyamide resin (C) is in the above range, the flexibility is not impaired and the impact resistance is excellent.
  • the polyamide resin composition may optionally contain an aliphatic polyamide resin (D) having an average carbon atom number of 6 or less per amide group (hereinafter, also referred to as “aliphatic polyamide resin (D)”). preferable.
  • the aromatic polyamide (C) can be easily blended, and molding processability is possible. It is preferable from the viewpoint of.
  • Examples of the aliphatic polyamide resin (D) having an average carbon atom number of 6 or less per amide group include polycaprolactum (polyamide 6), polyethylene adipamide (polyamide 26), and polytetramethylene succinamide (polyamide 44). , Polytetramethylene glutamide (polyamide 45), polytetramethylene adipamide (polyamide 46), polytetramethylene sveramide (polyamide 48), polypentamethylene succinamide (polyamide 54), polypentamethylene glutamide (polyamide 54).
  • polyamide 55 polypentamethylene adipamide (polyamide 56), polyhexamethylene adipamide (polyamide 66), caprolactam / hexamethylene diaminoadipic acid copolymer (polyamide 6/66).
  • polyamide 6 is preferable from the viewpoint of compatibility with the aromatic polyamide resin (C).
  • the degree of polymerization of the aliphatic polyamide resin (D) is not particularly limited, but in accordance with JIS K6933, 1 g of the polyamide resin is dissolved in 100 ml of 96% concentrated sulfuric acid, and the relative viscosity measured at 25 ° C. is 1.10. It is preferably 5.00 to 5.00, and more preferably 1.50 to 4.20.
  • the content of the aliphatic polyamide resin (D) having an average carbon atom number of 6 or less per amide group in 100% by mass of the polyamide resin composition is 0 to 10% by mass.
  • the content of the aliphatic polyamide resin (D) is in the above range, the flexibility is good and the aromatic polyamide resin (C) can be easily blended.
  • Polyamide resin manufacturing equipment includes batch type reaction kettles, single-tank or multi-tank continuous reaction equipment, tubular continuous reaction equipment, uniaxial kneading extruders, kneading reaction extruders such as twin-screw kneading extruders, etc.
  • a known polyamide production apparatus can be mentioned.
  • As a polymerization method a known method such as melt polymerization, solution polymerization or solid phase polymerization can be used, and polymerization can be carried out by repeating normal pressure, reduced pressure and pressurization operations. These polymerization methods can be used alone or in combination as appropriate.
  • the terminal amino group concentration of the polyamide resin is preferably 30 ⁇ mol / g or more, and is in the range of 30 ⁇ mol / g or more and 110 ⁇ mol / g or less, as the terminal amino group concentration obtained by neutralization titration by dissolving in a mixed solvent of phenol and methanol. Is more preferable, and a range of 30 ⁇ mol / g or more and 70 ⁇ mol / g or less is further preferable. Within the above range, the molding processability of the polyamide resin composition is good.
  • the terminal amino group concentration in the polyamide resin is preferably measured by the above neutralization pruning, but the terminal amino of each polyamide resin is preferable.
  • the base concentration and the mixing ratio thereof are known, the average value calculated by multiplying the respective terminal amino group concentrations by the mixing ratio may be used as the terminal amino group concentration of the polyamide resin.
  • the polyamide resin composition may contain a thermoplastic resin other than the polyamide elastomer and the polyamide resin as long as the object of the present invention is not impaired.
  • the thermoplastic resin other than the polyamide-based elastomer and the polyamide resin is preferably 2% by mass or less, more preferably 0 to 1.5% by mass, based on 100% by mass of the polyamide resin composition.
  • the polyamide resin composition is a dye, a pigment, a fibrous reinforcing material, a particulate reinforcing material, a plasticizer, an antioxidant, a heat resistant agent, a foaming agent, and a weather resistant agent other than the above-mentioned components, as long as the object of the present invention is not impaired.
  • a crystal nucleating agent, a crystallization accelerator, a mold release agent, a lubricant, an antistatic agent, a flame retardant, a flame retardant aid, a functionalizing agent such as a colorant, and the like may be appropriately contained.
  • the content of the arbitrary component is preferably 0.01 to 1% by mass, more preferably 0.05 to 0.5% by mass in 100% by mass of the polyamide resin composition.
  • the method for producing the polyamide resin composition is not particularly limited, and for example, the following method can be applied.
  • a commonly known melt kneader such as a single-screw or twin-screw extruder, a Banbury mixer, a kneader, and a mixing roll is used for mixing the raw materials of each component.
  • a method of simply mixing the raw materials of each component with a commonly known mixer such as a tumbler mixer or a blender can also be applied.
  • a method of blending all raw materials and then melt-kneading a method of blending some raw materials, then melt-kneading, and then blending the remaining raw materials and melt-kneading, or one. Any method may be used, such as a method of mixing the remaining raw materials using a side feeder after blending the raw materials of the portion, but a method of blending all the raw materials and then melt-kneading is preferable.
  • the MFR Melt flow rate measured at a temperature of 190 ° C. and a load of 1.00 kg is preferably less than 15 g / 10 minutes, preferably 4 g / 10 minutes or more and less than 15 g / 10 minutes. More preferably, it is 7 g / 10 minutes or more and less than 15 g / 10 minutes.
  • the MFR is in this range, the moldability of the polyamide resin is good, but the toughness of the obtained molded product is not impaired.
  • the density of the polyamide resin composition is preferably 1.02 g / cm 3 or more, more preferably 1.03 to 1.10 g / cm 3 , and even more preferably 1.03 to 1.06 g / cm 3 . When the density is in this range, various inorganic additives such as magnetic powder tend to be easily uniformly dispersed.
  • the density of the polyamide resin composition is obtained by multiplying the density of each component by the content (% by mass) to obtain the sum of them. The density of each component was measured according to ISO1183-3.
  • the polyamide resin composition can maintain flexibility in a wide temperature range. It is expected that the generation of cracks due to stress concentration due to dimensional changes can be suppressed.
  • the polyamide resin composition can be suitably used for manufacturing an injection molded product by injection molding, an extrusion molded product by extrusion molding, a blow molded product by blow molding, and a rotation molded product by rotation molding. Since the polyamide resin composition has good injection moldability, it can be more preferably used as an injection molded product by injection molding.
  • the method for producing an injection-molded product by injection molding from the polyamide resin composition is not particularly limited, and a known method can be used.
  • the method for producing an extruded product from the polyamide resin composition by extrusion molding is not particularly limited, and a known method can be used.
  • the method for producing a blow-molded product from the polyamide resin composition by blow molding is not particularly limited, and a known method can be used.
  • the method for producing a rotary molded product by rotary molding from the polyamide resin composition is not particularly limited, and a known method can be used.
  • a known method can be used.
  • the method described in International Publication No. 2019/054109 is referred to.
  • the injection molded product by injection molding, the extrusion molded product by extrusion molding, the blow molded product by blow molding, and the rotary molded product by rotary molding are not particularly limited, but are not particularly limited, but are spoilers, air intake ducts, intake manifolds, resonators, fuel tanks, and the like.
  • Electric parts such as gas tanks, hydraulic oil tanks, fuel filler tubes, fuel delivery pipes, other automobile parts such as hoses, tubes and tanks, electric tool housings, mechanical parts such as pipes, tanks, tubes, hoses, films, etc. -Various uses such as electronic parts, household / office supplies, building material-related parts, furniture parts, etc. are preferably mentioned. It was
  • the polyamide resin composition has excellent gas barrier properties, it is suitably used for molded products that come into contact with high-pressure gas, for example, tanks, tubes, hoses, films, etc. that come into contact with high-pressure gas.
  • the type of the gas is not particularly limited, and examples thereof include hydrogen, nitrogen, oxygen, helium, methane, butane, and propane. Gases having a small polarity are preferable, and hydrogen, nitrogen, and methane are particularly preferable.
  • the polyamide resin composition can be used as a magnetic material resin composite material by blending with the magnetic powder.
  • the magnetic powder is not particularly limited as long as it is a known magnetic powder that has a function of imparting magnetism and can be used for plastic magnets.
  • ferrite-based magnetic powder alnico-based magnetic powder, rare earth magnetic powder, etc.
  • examples of the ferrite-based magnetic powder include barium-ferrium-based magnetic powder such as iron oxide and barium carbonate, and strontium-based magnetic powder such as iron oxide and strontium carbonate.
  • alnico-based magnetic powder examples include alnico made of nickel, aluminum, cobalt, and copper, alnico made of nickel, aluminum, cobalt, copper, and titanium.
  • the rare earth magnetic powder examples include samarium cobalt, rare earth cobalt magnets in which the cobalt component of samarium cobalt is replaced with copper, iron, titanium, zirconium, hafnium, niobium, tantalum and the like, neodium-iron-boron magnets and the like. These can be used alone or in combination of two or more.
  • the average particle size of the magnetic powder is 0. It is preferably 1 to 300 ⁇ m, more preferably 0.1 to 200 ⁇ m, and 0. It is more preferably 5 to 100 ⁇ m. If the average particle size of the magnetic powder exceeds the above value, the fluidity of the magnetic resin composite material and the mechanical strength of the molded body may decrease.
  • the blending amount of the magnetic powder is preferably 50 to 98% by mass, more preferably 65 to 97% by mass, and further preferably 70 to 95% by mass with respect to the entire magnetic material resin composite material. preferable.
  • the blending amount is less than the above value, the residual magnetic flux density is low, the practicality as a permanent magnet application is small, and the effect on the flow characteristics of the resin may be small.
  • the magnetic field orientation is inferior, the residual magnetic flux density is not improved due to the decrease in the resin component, and the amount of resin is small, so that the fluidity is inferior. It may cause troubles such as defects and lack practicality.
  • the magnetic powder may be treated in advance with a coupling agent or a surface modifier in order to improve the dispersibility or adhesion when blended in the polyamide resin composition.
  • a coupling agent or surface modifier conventional coupling agents or surface modifiers such as silane-based, titanate-based, aluminum-based, phosphite ester and other organic phosphorus compound-based, chromium-based, and methacrylate-based agents can be used. ..
  • the optimum type of these is appropriately selected depending on the type of resin used as the binder. Among these, amino group-containing silane-based compounds and titanate-based compounds are more preferable in order to enhance compatibility with polyamide resins.
  • a lubricant, a stabilizer, or the like as an additive to improve the fluidity, molding processability, and magnetic properties of the magnetic resin composite material.
  • the magnetic resin composite material is a dye, a pigment, a fibrous reinforcing material, a particulate reinforcing material, a plasticizer, an antioxidant, a heat resistant agent, a foaming agent, and a weather resistant material other than the above-mentioned components, as long as the object of the present invention is not impaired. It may appropriately contain a functionalizing agent such as an agent, a crystal nucleating agent, a crystallization accelerator, a mold release agent, a lubricant, a stabilizer, an antistatic agent, a flame retardant, a flame retardant aid, and a coloring agent.
  • a functionalizing agent such as an agent, a crystal nucleating agent, a crystallization accelerator, a mold release agent, a lubricant, a stabilizer, an antistatic agent, a flame retardant, a flame retardant aid, and a coloring agent.
  • the magnetic material resin composite material is produced by mixing a polyamide resin composition and a magnetic powder in a mixing step, and further through a kneading step. Further, each component of the polyamide resin composition and the magnetic powder are directly mixed by a mixing step, and further manufactured through a kneading step. In the mixing step, the magnetic powder, each component of the polyamide resin composition or the polyamide resin composition, and various additives, if necessary, are mixed and mixed by a known method. The mixing step is preferably performed before the kneading step described later.
  • the mixer is not particularly limited, and examples thereof include a ribbon mixer, a V-type mixer, a rotary mixer, a Henschel mixer, a flash mixer, a Nauta mixer, and a tumbler. Further, it is also effective to add and grind and mix using a rotary ball mill, a vibrating ball mill, a planetary ball mill, a wet mill, a jet mill, a hammer mill, a cutter mill and the like.
  • the shape of the polyamide resin composition for molding the magnetic resin composite may be any of pellets, beads, powder, paste, etc., but a fine particle size is desirable in order to improve the homogeneity of the mixture.
  • a mixed magnetic powder, a polyamide resin composition and any various additives are used, or a mixed magnetic powder, each component of the polyamide resin composition and any various additives are used in a batch kneader such as a brabender.
  • This is a step of kneading in a temperature range of 50 to 400 ° C. using a Banbury mixer, a Henshell mixer, a helical rotor, a roll, a single-screw extruder, a twin-screw extruder, or the like.
  • the kneading temperature is generally selected from a temperature range in which the polyamide resin melts and does not decompose.
  • the kneaded product is extruded into a strand or sheet and then cut, hot-cut, underwater-cut, or a block-shaped material that has been cooled and solidified is crushed into pellets or powder. To. In this way, a magnetic material resin composite material can be obtained.
  • a molding process of further performing a molding process is performed.
  • a one-step molding method in which the mixture is melt-kneaded and molded into a desired shape as it is, and a two-step molding in which a molding step is performed by a conventional method such as injection molding, extrusion molding, or compression molding while applying a magnetic field after the kneading step. It can be manufactured by either method.
  • a pellet or powdery magnetic material resin composite material is heated and melted, and injection molding, extrusion molding, and compression are performed while applying a magnetic field as necessary.
  • a method of molding can be mentioned.
  • extrusion molding it can also be performed together with kneading.
  • the injection molding method is particularly useful because it can obtain a magnetic material resin composite having excellent surface smoothness and magnetic properties.
  • the molding temperature is the same as the kneading temperature.
  • Molded products are usually further magnetized to improve their performance as permanent magnets.
  • Magnetization is performed by a method usually performed, for example, an electromagnet that generates a static magnetic field, a condenser magnetizer that generates a pulse magnetic field, or the like.
  • the magnetic field strength at this time is preferably 15 kOe or more, and more preferably 30 kOe or more.
  • Molded products of magnetic resin composite materials are used for electromagnetic equipment, in-vehicle electromagnetic equipment (motors, generators, etc.), toys, office equipment, audio equipment, etc.
  • the measured values of the examples are the values measured by the following measuring methods. ⁇ Density> The density of each component is multiplied by the content (% by mass) to obtain the sum of them. The density of each component was measured according to ISO1183-3.
  • ⁇ MFR> The MFR (melt flow rate) of the polyamide resin composition was measured at 190 ° C. with a load of 1.00 kg in accordance with ISO 1133. From the obtained MFR measurement results, the molding processability was evaluated according to the following criteria. ⁇ : MFR is 7 g / 10 minutes or more and less than 15 g / 10 minutes. ⁇ : MFR is 4 g / 10 minutes or more and less than 7 g / 10 minutes. X: MFR is less than 4 g / 10 minutes or 15 g / 10 minutes or more.
  • Toughness ⁇ Tensile yield stress, tensile yield strain, tensile fracture nominal strain and tensile modulus> Tensile yield stress and tensile of test piece (test piece size: 10 x 170 x 4 mm) using Shimadzu automatic extensometer AGX-AT / SIE-560SA according to ISO527-2 / 1A / 50. Yield strain was measured at 23 ° C., relative humidity 50% RH, and test speed 50 mm / min. From the measurement results of the obtained tensile yield stress, the toughness was evaluated according to the following criteria. ⁇ : Tension yield stress is 35 MPa or more. ⁇ : The tensile yield stress is 32 MPa or more and less than 35 MPa.
  • X The tensile yield stress is less than 32 MPa. From the measurement results of the obtained tensile yield strain, the toughness was evaluated according to the following criteria. ⁇ : Tension yield strain is 9% or more. ⁇ : Tensile yield strain is 7% or more and less than 9%. X: The tensile yield strain is less than 7%. From the obtained measurement results of tensile fracture nominal strain, toughness was evaluated according to the following criteria. ⁇ : Tensile fracture nominal strain is 20% or more. ⁇ : Tensile fracture nominal strain is 14% or more and less than 20%. X: Tensile fracture nominal strain is less than 14%. From the obtained measurement results of tensile elastic modulus, toughness was evaluated according to the following criteria. ⁇ : The tensile elastic modulus is 1100 MPa or more. ⁇ : The tensile elastic modulus is 1000 MPa or more and less than 1100 MPa. X: The tensile elastic modulus is less than 1000 MPa.
  • Bending elastic modulus is 1100 MPa or more.
  • The flexural modulus is 1000 MPa or more and less than 1100 MPa.
  • X The flexural modulus is less than 1000 MPa.
  • Charpy impact strength is less than 4 kJ / m 2 . From the obtained measurement results of Charpy impact strength at ⁇ 40 ° C., the impact resistance was evaluated according to the following criteria. ⁇ : Charpy impact strength is 3 kJ / m 2 or more. ⁇ : Charpy impact strength is 2 kJ / m 2 or more and less than 3 kJ / m 2 . X: Charpy impact strength is less than 2 kJ / m 2 .
  • ELASTAMINE RT-1000 10.51 kg, hindered phenolic antioxidant (manufactured by BASF Japan, trade name: Irganox (registered trademark) 245) 0.06 kg, and sodium hypophosphite (Taipei Chemical Industry Co., Ltd.) (Made) 0.03 kg was charged. After sufficiently replacing the inside of the container with nitrogen, the temperature was raised from room temperature to 230 ° C. over 1 hour to carry out polymerization.
  • Examples 1 to 11, Comparative Examples 1 to 6 Each component listed in Table 1 was blended with a blender for 10 minutes to obtain each blend composition. From each of the obtained blend compositions, a test piece used for evaluating the above mechanical properties was prepared using a Sumitomo SG75 injection molding machine manufactured by Sumitomo Heavy Industries, Ltd. The test pieces of Examples 1 and 4 to 11 are tested by setting the cylinder temperature of the injection molding machine to 250 ° C., and the test pieces of Examples 2 and 3 are tested by setting the cylinder temperature to 270 ° C. Pieces were made. For Comparative Example 1, the cylinder temperature was set to 210 ° C., and for Comparative Examples 2 to 6, the cylinder temperature was set to 250 ° C. Table 1 shows the results of evaluation of physical properties and mechanical properties. The unit of the composition in the table is mass%, and the entire polyamide resin composition is 100% by mass.
  • the relative viscosities of the polyamide resins (B) and (D) are based on JIS K 6933, and are values measured at 25 ° C. with 1 g of the polyamide resin dissolved in 100 ml of 96% concentrated sulfuric acid.
  • the relative viscosity of the above-mentioned polyamide-based elastomer (A) is a value measured at 25 ° C. in accordance with JIS K 6920-2 by dissolving 0.25 g of the polyamide-based elastomer in 50 ml of m-cresol, which is a special grade reagent.
  • the polyamide resin compositions of Examples 1 to 11 have molding processability, toughness, flexibility and impact resistance. Since Comparative Example 1 does not contain the polyamide-based elastomer (A) and the aromatic polyamide (C), the tensile yield stress, the tensile fracture nominal strain and the tensile elastic modulus are high, but the tensile yield strain and the Charpy impact strength at 23 ° C. Since it is low, it is easily broken and lacks toughness. In addition, the molding processability is also inferior.
  • Comparative Example 2 since the amount of the polyamide-based elastomer (A) is smaller than the range of the present invention, it can be seen that the values of tensile fracture nominal strain and Charpy impact strength are poor and the impact resistance is poor. In Comparative Example 3, since the amount of the aliphatic polyamide resin (B) is smaller than the range of the present invention, the value of the tensile yield stress is low and the toughness is lacking. In Comparative Example 4, since the amount of the polyamide-based elastomer (A) is larger than the range of the present invention, the tensile yield stress, the tensile elastic modulus, the bending strength and the bending elastic modulus are low, and the toughness is lacking and the flexibility is obtained. Lacking.
  • Comparative Example 5 since the amount of the aliphatic polyamide resin (B) is larger than the range of the present invention, it can be seen that the value of Charpy impact strength at 23 ° C. is poor and the impact resistance is lacking.
  • Comparative Example 6 since the amount of the polyamide-based elastomer (A) is smaller than the range of the present invention and the amount of the aromatic polyamide (C) is large, MFR, tensile yield strain, tensile fracture nominal strain, and Charpy impact strength. It can be seen that the value of is poor and the molding processability, toughness, and impact resistance are lacking.

Abstract

Provided is a polyamide resin composition from which a molded article that is tough and flexible and has excellent impact resistance can be obtained. The polyamide resin composition according to the present invention contains, in 100 mass% of the polyamide resin composition, 15-35 mass% of a polyamide-based elastomer (A), 40-79 mass% of an aliphatic polyamide resin (B) in which the average number of carbon atoms per one amide group is more than 6, 0.1-35 mass% of an aromatic polyamide resin (C), and 0-10 mass% of an aliphatic polyamide resin (D) in which the average number of carbon atoms per one amide group is not more than 6.

Description

ポリアミド樹脂組成物Polyamide resin composition
 本発明は、ポリアミド樹脂組成物に関する。 The present invention relates to a polyamide resin composition.
 ポリアミド樹脂の柔軟性や耐衝撃性を改良する目的で、ポリアミド樹脂にポリアミド系エラストマーを配合したポリアミド樹脂組成物が報告されている(特許文献1参照)。 A polyamide resin composition in which a polyamide resin is blended with a polyamide resin has been reported for the purpose of improving the flexibility and impact resistance of the polyamide resin (see Patent Document 1).
 このポリアミド系エラストマーを配合したポリアミド樹脂組成物に磁性粉末を混合して、プラスチックマグネットとして知られている磁性材樹脂複合材料とすることが報告されている(特許文献2参照)。 It has been reported that a magnetic powder is mixed with a polyamide resin composition containing this polyamide-based elastomer to obtain a magnetic resin composite material known as a plastic magnet (see Patent Document 2).
 磁性材樹脂複合材料は、OA機器、モーター、アクチュエーター、センサー等に幅広く使用されている。磁性材樹脂複合材料には、磁気特性に優れることが求められるが、そのためには、磁性粉末を多量に配合しても、磁性粉末が良好に分散することが求められる。 Magnetic resin composite materials are widely used in OA equipment, motors, actuators, sensors, etc. The magnetic material resin composite material is required to have excellent magnetic properties, and for that purpose, it is required that the magnetic powder is well dispersed even if a large amount of the magnetic powder is blended.
 さらには、上記幅広い用途に使用されるために、磁性材樹脂複合材料には、機械特性その他の物性が求められる。
 磁性材樹脂複合材料の成形加工性と機械特性とを両立させるために、磁性粉末とポリアミド樹脂とエポキシ化合物とを含む磁性材樹脂複合材料が知られている(特許文献3参照)。
 磁性材樹脂複合材料の耐熱性を向上させるために、磁性粉末と芳香族ポリアミド樹脂とを含む磁性材樹脂複合材料が知られている(特許文献4参照)。
Furthermore, in order to be used in the above-mentioned wide range of applications, the magnetic material resin composite material is required to have mechanical properties and other physical properties.
A magnetic resin composite material containing a magnetic powder, a polyamide resin, and an epoxy compound is known in order to achieve both moldability and mechanical properties of the magnetic resin composite material (see Patent Document 3).
In order to improve the heat resistance of the magnetic material resin composite material, a magnetic material resin composite material containing a magnetic powder and an aromatic polyamide resin is known (see Patent Document 4).
特開2004-352789号公報Japanese Unexamined Patent Publication No. 2004-352789 特開2004-352792号公報Japanese Unexamined Patent Publication No. 2004-352792 特開2009-57524号公報Japanese Unexamined Patent Publication No. 2009-57524 特開2003-342468号公報Japanese Patent Application Laid-Open No. 2003-342468
 特許文献3の磁性材樹脂複合材料は、ポリアミド樹脂のアミノ基とエポキシ樹脂のエポキシ基との反応により、剛直で柔軟性に欠ける複合樹脂が生成する可能性があり、ポリアミド樹脂の末端カルボキシル基と末端アミノ基との比を特定の範囲にする必要があった。
 特許文献4の磁性材樹脂複合材料は、柔軟性に乏しかった。特許文献1のポリアミド樹脂組成物及び特許文献2の磁性材樹脂複合材料は、さらなる強靭さが求められた。
In the magnetic resin composite material of Patent Document 3, the reaction between the amino group of the polyamide resin and the epoxy group of the epoxy resin may generate a rigid and inflexible composite resin, which may be combined with the terminal carboxyl group of the polyamide resin. It was necessary to set the ratio with the terminal amino group to a specific range.
The magnetic material resin composite material of Patent Document 4 has poor flexibility. Further toughness was required for the polyamide resin composition of Patent Document 1 and the magnetic material resin composite material of Patent Document 2.
 本発明は、成形加工性が良好である上に、強靭で、柔軟性があり、耐衝撃性に優れる成形品を得ることのできるポリアミド樹脂組成物を提供することを課題とする。 An object of the present invention is to provide a polyamide resin composition which has good molding processability, is tough, has flexibility, and can obtain a molded product having excellent impact resistance.
 本発明は、例えば以下の[1]~[8]である。
[1]ポリアミド樹脂組成物100質量%中、ポリアミド系エラストマー(A)15~35質量%、アミド基1個に対する平均炭素原子数が6超である脂肪族ポリアミド樹脂(B)40~79質量%、芳香族ポリアミド樹脂(C)0.1~35質量%及びアミド基1個に対する平均炭素原子数が6以下である脂肪族ポリアミド樹脂(D)0~10質量%を含むポリアミド樹脂組成物。
[2]ポリアミド系エラストマー(A)が、ポリエーテル構造を有する[1]のポリアミド樹脂組成物。
[3]密度が、1.02g/cm以上である[1]又は[2]のポリアミド樹脂組成物。
[4]ISO 1133に準拠して190℃、1.00kgの荷重で測定したMFRが15g/10分未満である[1]~[3]のいずれかのポリアミド樹脂組成物。
[5]ポリアミド系エラストマー(A)が、下記式(1)で表されるアミノカルボン酸化合物及び/又は下記式(2)で表されるラクタム化合物に由来する構成単位、下記式(3)で表されるXYX型トリブロックポリエーテルジアミン化合物に由来する構成単位、並びに下記式(4)で表されるジカルボン酸化合物に由来する構成単位を含む重合体である[1]~[4]のいずれかのポリアミド樹脂組成物。
Figure JPOXMLDOC01-appb-C000005

[但し、Rは、炭化水素鎖を含む連結基を表す。]
Figure JPOXMLDOC01-appb-C000006

[但し、Rは、炭化水素鎖を含む連結基を表す。]
Figure JPOXMLDOC01-appb-C000007

[但し、xは1~20の整数、yは4~50の整数、zは1~20の整数を表す。]
Figure JPOXMLDOC01-appb-C000008

[但し、Rは、炭化水素鎖を含む連結基を表し、mは0または1である。]
[6][1]~[5]のいずれかのポリアミド樹脂組成物の成形品。
[7][1]~[5]のいずれかのポリアミド樹脂組成物と磁性粉末とを含む磁性材樹脂複合材料。
[8][7]の磁性材樹脂複合材料の成形品。
The present invention is, for example, the following [1] to [8].
[1] In 100% by mass of the polyamide resin composition, 15 to 35% by mass of the polyamide-based elastomer (A) and 40 to 79% by mass of the aliphatic polyamide resin (B) having an average carbon atom number of more than 6 per amide group. , A polyamide resin composition containing 0.1 to 35% by mass of the aromatic polyamide resin (C) and 0 to 10% by mass of the aliphatic polyamide resin (D) having an average carbon atom number of 6 or less per amide group.
[2] The polyamide resin composition of [1], wherein the polyamide-based elastomer (A) has a polyether structure.
[3] The polyamide resin composition of [1] or [2] having a density of 1.02 g / cm 3 or more.
[4] The polyamide resin composition according to any one of [1] to [3], which has an MFR of less than 15 g / 10 minutes measured at 190 ° C. and a load of 1.00 kg in accordance with ISO 1133.
[5] The polyamide-based elastomer (A) is a structural unit derived from an aminocarboxylic acid compound represented by the following formula (1) and / or a lactam compound represented by the following formula (2), according to the following formula (3). Any of [1] to [4], which is a polymer containing a structural unit derived from the XYX-type triblock polyetherdiamine compound represented by the compound and a structural unit derived from the dicarboxylic acid compound represented by the following formula (4). Polyamide resin composition.
Figure JPOXMLDOC01-appb-C000005

[However, R 1 represents a linking group containing a hydrocarbon chain. ]
Figure JPOXMLDOC01-appb-C000006

[However, R 2 represents a linking group containing a hydrocarbon chain. ]
Figure JPOXMLDOC01-appb-C000007

[However, x represents an integer of 1 to 20, y represents an integer of 4 to 50, and z represents an integer of 1 to 20. ]
Figure JPOXMLDOC01-appb-C000008

[However, R 3 represents a linking group containing a hydrocarbon chain, and m is 0 or 1. ]
[6] A molded product of the polyamide resin composition according to any one of [1] to [5].
[7] A magnetic resin composite material containing the polyamide resin composition according to any one of [1] to [5] and a magnetic powder.
[8] A molded product of the magnetic resin composite material of [7].
 本発明のポリアミド樹脂組成物は、成形加工性が良好である上に、強靭で、柔軟性があり、耐衝撃性に優れる成形品を得ることができる。 The polyamide resin composition of the present invention has good molding processability, and can obtain a molded product that is tough, flexible, and has excellent impact resistance.
 本発明は、ポリアミド樹脂組成物100質量%中、ポリアミド系エラストマー(A)15~35質量%、アミド基1個に対する平均炭素原子数が6超である脂肪族ポリアミド樹脂(B)40~79質量%、芳香族ポリアミド樹脂(C)0.1~35質量%及びアミド基1個に対する平均炭素原子数が6以下である脂肪族ポリアミド樹脂(D)0~10質量%を含むポリアミド樹脂組成物に関する。 In the present invention, in 100% by mass of the polyamide resin composition, 15 to 35% by mass of the polyamide-based elastomer (A) and 40 to 79% by mass of the aliphatic polyamide resin (B) having an average carbon atom number of more than 6 per amide group. %, 0.1 to 35% by mass of the aromatic polyamide resin (C), and 0 to 10% by mass of the aliphatic polyamide resin (D) having an average carbon atom number of 6 or less per amide group. ..
<ポリアミド系エラストマー(A)>
 ポリアミド樹脂組成物は、ポリアミド系エラストマー(A)を含む。
 ポリアミド樹脂組成物は、ポリアミド系エラストマー(A)を含むことにより、その成形品は優れた柔軟性を奏する。
 ポリアミド系エラストマー(A)は、ハードセグメントとソフトセグメントを有し、ハードセグメントがポリアミドの構造を有する。ポリアミド系エラストマーのソフトセグメントはポリエーテル構造を有することが好ましく、ポリエーテルジアミン化合物に由来する構成単位を有することがより好ましい。ソフトセグメントとしてポリエーテル構造を有するポリアミド系エラストマーとしては、ハードセグメントとソフトセグメントをエステル結合で結合したポリエーテルエステルアミドエラストマー、ハードセグメントとソフトセグメントをアミド結合で結合したポリエーテルポリアミドエラストマーが挙げられる。本発明の効果発現の観点、耐加水分解性に優れ、安定性の観点から、ハードセグメントとソフトセグメントをアミド結合で結合したポリエーテルポリアミドエラストマーが好ましい。
<Polyamide-based elastomer (A)>
The polyamide resin composition contains a polyamide-based elastomer (A).
Since the polyamide resin composition contains the polyamide-based elastomer (A), the molded product exhibits excellent flexibility.
The polyamide-based elastomer (A) has a hard segment and a soft segment, and the hard segment has a polyamide structure. The soft segment of the polyamide-based elastomer preferably has a polyether structure, and more preferably has a structural unit derived from a polyether diamine compound. Examples of the polyamide-based elastomer having a polyether structure as a soft segment include a polyether ester amide elastomer in which a hard segment and a soft segment are bonded by an ester bond, and a polyether polyamide elastomer in which a hard segment and a soft segment are bonded by an amide bond. From the viewpoint of exhibiting the effect of the present invention, excellent in hydrolysis resistance, and from the viewpoint of stability, a polyether polyamide elastomer in which a hard segment and a soft segment are bonded by an amide bond is preferable.
 ハードセグメントにおけるポリアミド構造は、ジアミンとジカルボン酸からなるナイロン塩、下記式(1)で表されるアミノカルボン酸化合物及び下記式(2)で表されるラクタム化合物からなる群から選択される少なくとも1種であるポリアミド形成性モノマーに由来する構成単位を有する重縮合体が好ましい。 The polyamide structure in the hard segment is at least one selected from the group consisting of a nylon salt composed of a diamine and a dicarboxylic acid, an aminocarboxylic acid compound represented by the following formula (1), and a lactam compound represented by the following formula (2). A polycondensate having a structural unit derived from the seed polyamide-forming monomer is preferred.
Figure JPOXMLDOC01-appb-C000009

[但し、Rは、炭化水素鎖を含む連結基を表す。]
Figure JPOXMLDOC01-appb-C000009

[However, R 1 represents a linking group containing a hydrocarbon chain. ]
Figure JPOXMLDOC01-appb-C000010

[但し、Rは、炭化水素鎖を含む連結基を表す。]
Figure JPOXMLDOC01-appb-C000010

[However, R 2 represents a linking group containing a hydrocarbon chain. ]
 上記式(1)において、Rは、炭素数2~20の脂肪族基、脂環族基及び/又は芳香族基を含む二価の炭化水素基であることが好ましく、より好ましくは炭素数3~18の上記炭化水素基であり、さらに好ましくは炭素数4~15の上記炭化水素基であり、さらにより好ましくは炭素数10~15の上記炭化水素基であり、特に好ましくは炭素数10~15のアルキレン基である。 In the above formula (1), R 1 is preferably a divalent hydrocarbon group containing an aliphatic group having 2 to 20 carbon atoms, an alicyclic group and / or an aromatic group, and more preferably a carbon number. The hydrocarbon group having 3 to 18 carbon atoms, more preferably the hydrocarbon group having 4 to 15 carbon atoms, still more preferably the hydrocarbon group having 10 to 15 carbon atoms, and particularly preferably 10 carbon atoms. ~ 15 alkylene groups.
 アミノカルボン酸化合物(1)としては、6-アミノカプロン酸、7-アミノヘプタン酸、8-アミノオクタン酸、10-アミノデカン酸、11-アミノウンデカン酸、12-アミノドデカン酸等の炭素数5~20の脂肪族ω-アミノカルボン酸等が挙げられる。 Examples of the aminocarboxylic acid compound (1) include 6-aminocaproic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 10-aminodecanoic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and the like having 5 to 20 carbon atoms. The aliphatic ω-aminocarboxylic acid of the above can be mentioned.
 式(2)において、Rは、炭素数3~20の脂肪族基、脂環族基及び/又は芳香族基を含む二価の炭化水素基であることが好ましく、より好ましくは炭素数3~18の上記炭化水素基であり、さらに好ましくは炭素数4~15の上記炭化水素基であり、さらにより好ましくは炭素数10~15の上記炭化水素基であり、特に好ましくは炭素数10~15のアルキレン基である。 In the formula (2), R 2 is preferably a divalent hydrocarbon group containing an aliphatic group having 3 to 20 carbon atoms, an alicyclic group and / or an aromatic group, and more preferably having 3 carbon atoms. The hydrocarbon group having 18 to 18, more preferably the hydrocarbon group having 4 to 15 carbon atoms, still more preferably the hydrocarbon group having 10 to 15 carbon atoms, and particularly preferably 10 to 15 carbon atoms. It is an alkylene group of 15.
 ラクタム化合物(2)としては、ε-カプロラクタム、ω-エナントラクタム、ω-ウンデカラクタム、ω-ラウリルラクタム、2-ピロリドン等の炭素数4~20の脂肪族ラクタム等が挙げられる。 Examples of the lactam compound (2) include aliphatic lactams having 4 to 20 carbon atoms such as ε-caprolactam, ω-enantractam, ω-undecalactam, ω-lauryl lactam, and 2-pyrrolidone.
 これらの中でも、低吸水による寸法安定性、耐薬品性、機械特性の観点からω-ラウリルラクタム、11-アミノウンデカン酸又は12-アミノドデカン酸が好ましい。 Among these, ω-lauric lactam, 11-aminoundecanoic acid or 12-aminododecanoic acid are preferable from the viewpoint of dimensional stability due to low water absorption, chemical resistance, and mechanical properties.
 ナイロン塩におけるジアミンとしては、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチルヘキサン-1,6-ジアミン、2,4,4-トリメチルヘキサン-1,6-ジアミン、3-メチルペンタン-1,5-ジアミン等の炭素数2~20の脂肪族ジアミン等のジアミン化合物が挙げられる。 Examples of diamines in the nylon salt include ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2. Diamines such as aliphatic diamines having 2 to 20 carbon atoms such as 4-trimethylhexane-1,6-diamine, 2,4,4-trimethylhexane-1,6-diamine, 3-methylpentane-1,5-diamine Examples include compounds.
 ナイロン塩におけるジカルボン酸としては、脂肪族、脂環族及び芳香族ジカルボン酸から選ばれる少なくとも一種のジカルボン酸又はこれらの誘導体を用いることができる。 As the dicarboxylic acid in the nylon salt, at least one dicarboxylic acid selected from aliphatic, alicyclic and aromatic dicarboxylic acids or a derivative thereof can be used.
 ジカルボン酸の具体例としては、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸などの炭素数2~25の直鎖脂肪族ジカルボン酸、又は、トリグリセリドの分留により得られる不飽和脂肪酸を二量化した炭素数14~48の二量化脂肪族ジカルボン酸(ダイマー酸)及びこれらの水素添加物(水添ダイマー酸)などの脂肪族ジカルボン酸、1,4-シクロヘキサンジカルボン酸などの脂環族ジカルボン酸、および、テレフタル酸、イソフタル酸などの芳香族ジカルボン酸を挙げることができる。ダイマー酸及び水添ダイマー酸としては、クローダ社製商品名「プリポール1004」、「プリポール1006」、「プリポール1009」、「プリポール1013」などを用いることができる。 Specific examples of the dicarboxylic acid include linear aliphatic dicarboxylic acids having 2 to 25 carbon atoms such as oxalic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid. Alternatively, an aliphatic dicarboxylic acid such as a dimerized aliphatic dicarboxylic acid (dimeric acid) having 14 to 48 carbon atoms obtained by distilling an unsaturated fatty acid obtained by distilling triglyceride and a hydrogenated product thereof (hydrogenated dicarboxylic acid). , 1,4-Cyclohexanedicarboxylic acid and other alicyclic dicarboxylic acids, and aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid. As the dimer acid and hydrogenated dimer acid, trade names "Pripole 1004", "Pripole 1006", "Pripole 1009", "Pripole 1013" and the like manufactured by Croda International can be used.
 ハードセグメントは、両末端基にカルボキシル基を有するポリアミドから誘導することもでき、その場合ハードセグメントは、ポリアミド構造と、脂肪族ジカルボン酸、脂環族ジカルボン酸及び芳香族ジカルボン酸からなる群より選ばれる少なくとも1種のジカルボン酸(4)に由来する構成単位とを含むセグメントでもある。 The hard segment can also be derived from a polyamide having a carboxyl group at both terminal groups, in which case the hard segment is selected from the group consisting of a polyamide structure and an aliphatic dicarboxylic acid, an alicyclic dicarboxylic acid and an aromatic dicarboxylic acid. It is also a segment containing a structural unit derived from at least one dicarboxylic acid (4).
Figure JPOXMLDOC01-appb-C000011

[但し、Rは、炭化水素鎖を含む連結基を表し、mは0または1である。]
Figure JPOXMLDOC01-appb-C000011

[However, R 3 represents a linking group containing a hydrocarbon chain, and m is 0 or 1. ]
 ジカルボン酸化合物(4)としては、脂肪族、脂環族及び芳香族ジカルボン酸から選ばれる少なくとも一種のジカルボン酸又はこれらの誘導体を用いることができる。 As the dicarboxylic acid compound (4), at least one dicarboxylic acid selected from aliphatic, alicyclic and aromatic dicarboxylic acids or a derivative thereof can be used.
 式(4)において、Rは、炭素数1~20の脂肪族基、脂環族基及び/又は芳香族基を含む二価の炭化水素基であることが好ましく、より好ましくは炭素数1~15の上記炭化水素基であり、さらに好ましくは炭素数2~12の上記炭化水素基であり、さらにより好ましくは炭素数4~10の上記炭化水素基であり、特に好ましくは炭素数4~10のアルキレン基である。
 上記式(4)で表されるジカルボン酸化合物の具体例としては、ジアミン化合物とジカルボン酸化合物からなるナイロン塩のジカルボン酸化合物として例示した化合物を挙げることができる。
In the formula (4), R 3 is preferably a divalent hydrocarbon group containing an aliphatic group having 1 to 20 carbon atoms, an alicyclic group group and / or an aromatic group, and more preferably 1 carbon atom. The hydrocarbon group having up to 15 carbon atoms, more preferably the hydrocarbon group having 2 to 12 carbon atoms, still more preferably the hydrocarbon group having 4 to 10 carbon atoms, and particularly preferably 4 to 10 carbon atoms. It is an alkylene group of 10.
Specific examples of the dicarboxylic acid compound represented by the above formula (4) include a compound exemplified as a dicarboxylic acid compound of a nylon salt composed of a diamine compound and a dicarboxylic acid compound.
 ジカルボン酸(4)の存在下、上記ポリアミド形成性モノマーを、常法により、開環重合又は重縮合させることによって両末端にカルボキシル基を有するポリアミドを得ることができる。ハードセグメントのジカルボン酸は、分子量調整剤として使用することができる。 In the presence of the dicarboxylic acid (4), the above-mentioned polyamide-forming monomer can be obtained by ring-opening polymerization or polycondensation by a conventional method to obtain a polyamide having carboxyl groups at both ends. The hard segment dicarboxylic acid can be used as a molecular weight modifier.
 ハードセグメントの数平均分子量は、300~15000であることが好ましく、柔軟性、成形加工性の観点から300~6000であることがより好ましい。本明細書において、数平均分子量は、ゲルパーミエーションクロマトグラフィーにより求めた値である。 The number average molecular weight of the hard segment is preferably 300 to 15,000, and more preferably 300 to 6000 from the viewpoint of flexibility and moldability. In the present specification, the number average molecular weight is a value obtained by gel permeation chromatography.
 ソフトセグメントは、ポリエーテル構造を有することが好ましく、ポリエーテル構造の構成単位としては、炭素数2~4のオキシアルキレンが好ましい。オキシアルキレンのアルキレン基は、炭素数2~4の直鎖状または分枝状のアルキレン基が好ましく、エチレン基、n-プロピレン基、i-プロピレン基、1-メチルエチレン基、2-メチルエチレン基、n-ブチレン基、1-メチルプロピレン基、2-メチルプロピレン基、ジメチルエチレン基、エチルエチレン基等が挙げられる。ポリエーテル構造の構成単位は1種単独でも、2種以上でもよいが、2種以上が好ましい。ソフトセグメントのポリエーテル構造としては、具体的には、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、XYX型トリブロックポリエーテル等が挙げられる。これらは、1種単独で又は2種以上を用いることができる。
 XYX型トリブロックポリエーテルは、例えば以下の化学式で表させる構造が挙げられる。
Figure JPOXMLDOC01-appb-C000012

(式中、xは1~20の整数、yは4~50の整数、及びzは1~20の整数をそれぞれ表す。)
The soft segment preferably has a polyether structure, and the constituent unit of the polyether structure is preferably an oxyalkylene having 2 to 4 carbon atoms. The alkylene group of oxyalkylene is preferably a linear or branched alkylene group having 2 to 4 carbon atoms, and is preferably an ethylene group, an n-propylene group, an i-propylene group, a 1-methylethylene group, or a 2-methylethylene group. , N-butylene group, 1-methylpropylene group, 2-methylpropylene group, dimethylethylene group, ethylethylene group and the like. The structural unit of the polyether structure may be one kind alone or two or more kinds, but two or more kinds are preferable. Specific examples of the soft segment's polyether structure include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, and XYX-type triblock polyether. These can be used alone or in combination of two or more.
Examples of the XYX-type triblock polyether have a structure represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000012

(In the formula, x represents an integer of 1 to 20, y represents an integer of 4 to 50, and z represents an integer of 1 to 20.)
 上記式(5)において、x及びzは、それぞれ独立して、1~18の整数が好ましく、1~16の整数がより好ましく、1~14の整数がさらに好ましく、1~12の整数が特に好ましい。また、yは、5~45の整数が好ましく、6~40の整数がより好ましく、7~35の整数がさらに好ましく、8~30の整数が特に好ましい。
 これらのポリエーテルの末端にアンモニア等を反応させることによってポリエーテルジアミン化合物を得ることができる。ソフトセグメントの数平均分子量は、200~6000であることが好ましく、650~2000であることがより好ましい。
 XYX型トリブロックポリエーテルジアミン化合物は、例えば下記式(3)で表される。
In the above formula (5), x and z are each independently preferably an integer of 1 to 18, more preferably an integer of 1 to 16, further preferably an integer of 1 to 14, and particularly preferably an integer of 1 to 12. preferable. Further, y is preferably an integer of 5 to 45, more preferably an integer of 6 to 40, further preferably an integer of 7 to 35, and particularly preferably an integer of 8 to 30.
A polyether diamine compound can be obtained by reacting the ends of these polyethers with ammonia or the like. The number average molecular weight of the soft segment is preferably 200 to 6000, more preferably 650 to 2000.
The XYX type triblock polyether diamine compound is represented by, for example, the following formula (3).
Figure JPOXMLDOC01-appb-C000013

[但し、xは1~20の整数、yは4~50の整数、zは1~20の整数を表す。]
Figure JPOXMLDOC01-appb-C000013

[However, x represents an integer of 1 to 20, y represents an integer of 4 to 50, and z represents an integer of 1 to 20. ]
 上記式(3)において、x及びzは、それぞれ独立して、1~18の整数が好ましく、1~16の整数がより好ましく、1~14の整数がさらに好ましく、1~12の整数が特に好ましい。また、yは、5~45の整数が好ましく、6~40の整数がより好ましく、7~35の整数がさらに好ましく、8~30の整数が特に好ましい。 In the above formula (3), x and z are each independently preferably an integer of 1 to 18, more preferably an integer of 1 to 16, further preferably an integer of 1 to 14, and particularly preferably an integer of 1 to 12. preferable. Further, y is preferably an integer of 5 to 45, more preferably an integer of 6 to 40, further preferably an integer of 7 to 35, and particularly preferably an integer of 8 to 30.
 上記ハードセグメントと上記ソフトセグメントとの組み合わせとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組み合わせを挙げることができる。この中でも、ラウリルラクタムの開環重縮合体/ポリエチレングリコールの組み合わせ、ラウリルラクタムの開環重縮合体/ジカルボン酸由来の構成単位/ポリプロピレングリコールの組み合わせ、ラウリルラクタムの開環重縮合体/ジカルボン酸由来の構成単位/ポリテトラメチレンエーテルグリコールの組み合わせ、ラウリルラクタムの開環重縮合体/ジカルボン酸由来の構成単位/XYX型トリブロックポリエーテルの組み合わせ、12-アミノドデカン酸由来の構成単位/ジカルボン酸由来の構成単位/XYX型トリブロックポリエーテルの組み合わせが好ましく、12-アミノドデカン酸由来の構成単位/ジカルボン酸由来の構成単位//XYX型トリブロックポリエーテルの組み合わせ、ラウリルラクタムの開環重縮合体/XYX型トリブロックポリエーテルの組み合わせが特に好ましい。これらの組み合わせにおいて、ポリエーテルは、ポリエーテルジアミン由来の構成単位であることが好ましい。 As the combination of the hard segment and the soft segment, each combination of the hard segment and the soft segment mentioned above can be mentioned. Among these, the combination of lauryl lactam ring-opened polycondensate / polyethylene glycol, lauryl lactam ring-opened polycondensate / dicarboxylic acid-derived building block / polypropylene glycol combination, lauryl lactam ring-opened polycondensate / dicarboxylic acid-derived Constituent unit / Condensation of polytetramethylene ether glycol, Opened polycondensate of lauryl lactam / Condensation unit derived from dicarboxylic acid / Combination of XYX type triblock polyether, Constituent unit derived from 12-aminododecanoic acid / Derived from dicarboxylic acid Condensation unit of XYX type triblock polyether is preferable, a combination of 12-aminododecanoic acid-derived constituent unit / dicarboxylic acid-derived constituent unit // XYX type triblock polyether combination, and a ring-opened polycondensate of lauryl lactam. A combination of / XYX type triblock polyether is particularly preferable. In these combinations, the polyether is preferably a building block derived from the polyether diamine.
 上記ハードセグメントと上記ソフトセグメントとの割合(質量比)は、ハードセグメント/ソフトセグメント=95/5~20/80であることが好ましい。この範囲であれば、成形体からのブリードアウトを回避しやすく、十分な柔軟性も確保しやすい。ハードセグメント/ソフトセグメント(質量比)は、95/5~25/75であることがより好ましい The ratio (mass ratio) between the hard segment and the soft segment is preferably hard segment / soft segment = 95/5 to 20/80. Within this range, it is easy to avoid bleeding out from the molded product, and it is easy to secure sufficient flexibility. The hard segment / soft segment (mass ratio) is more preferably 95/5 to 25/75.
 なお、本発明において、ハードセグメントとソフトセグメントとの割合(質量比)は、各セグメントを構成するモノマー成分の配合量を基準として算出される値である。通常、得られるポリアミドエラストマーのハードセグメントとソフトセグメントの割合(質量比)は、各セグメントを構成するモノマー成分の配合量を基準として算出される値と等しい。 In the present invention, the ratio (mass ratio) between the hard segment and the soft segment is a value calculated based on the blending amount of the monomer components constituting each segment. Usually, the ratio (mass ratio) of the hard segment and the soft segment of the obtained polyamide elastomer is equal to the value calculated based on the blending amount of the monomer components constituting each segment.
 上記ハードセグメント/ソフトセグメント(質量比)が上記範囲より小さい場合、ポリアミド成分の結晶性が低くなる場合があり、強度、弾性率などの機械特性が低下するので好ましくない場合がある。上記ハードセグメント/ソフトセグメント(質量比)が上記範囲より大きい場合、ゴム弾性や柔軟性などのエラストマーとしての機能、性能が発現しにくくなるために好ましくない場合がある。 If the hard segment / soft segment (mass ratio) is smaller than the above range, the crystallinity of the polyamide component may be lowered, and the mechanical properties such as strength and elastic modulus may be lowered, which may not be preferable. When the hard segment / soft segment (mass ratio) is larger than the above range, it may not be preferable because the function and performance as an elastomer such as rubber elasticity and flexibility are difficult to be exhibited.
 以上のようなポリアミド系エラストマーの市販品としては、例えば、ダイセル・エボニック社製商品名「ダイアミド(登録商標)」シリーズ、ARKEMA社製商品名「Pebax」シリーズ、エムスケミー・ジャパン社製商品名「グリルフレックス(登録商標)EBG」、「グリルフレックス(登録商標)ELG」、「グリロン(登録商標)ELX」、宇部興産株式会社製商品名「UBESTA XPA(登録商標)」シリーズ等が挙げられる。 Commercially available products of the above-mentioned polyamide-based elastomers include, for example, the product name "Dyamide (registered trademark)" series manufactured by Daicel Ebonic, the product name "Pebax" series manufactured by ARKEMA, and the product name "Grill" manufactured by MSMEM Japan. Examples include "Flex (registered trademark) EBG", "Grillflex (registered trademark) ELG", "Grillon (registered trademark) ELX", and Ube Kosan Co., Ltd. trade name "UBESTA XPA (registered trademark)" series.
 この中でも、本発明の効果発現の観点、耐加水分解性に優れる観点から、宇部興産株式会社製商品名「UBESTA XPA(登録商標)」シリーズが好ましい。 Among these, the product name "UBESTA XPA (registered trademark)" series manufactured by Ube Kosan Co., Ltd. is preferable from the viewpoint of exhibiting the effect of the present invention and excellent in hydrolysis resistance.
 ポリアミド系エラストマー(A)は、単独でも、2種以上を併用してもよい。 The polyamide elastomer (A) may be used alone or in combination of two or more.
 ポリアミド系エラストマー(A)の重合度には特に制限はないが、JIS K 6920-2に準拠し、ポリアミド系エラストマー0.25gを試薬特級品のm-クレゾール50mlに溶解させ、25℃で測定した相対粘度が、1.10~5.00であることが好ましく、1.50~4.50であることがより好ましく、1.50~3.00であることが特に好ましい The degree of polymerization of the polyamide-based elastomer (A) is not particularly limited, but in accordance with JIS K6920-2, 0.25 g of the polyamide-based elastomer was dissolved in 50 ml of m-cresol, which is a special reagent product, and measured at 25 ° C. The relative viscosity is preferably 1.10 to 5.00, more preferably 1.50 to 4.50, and particularly preferably 1.50 to 3.00.
 ポリアミド系エラストマー(A)の硬度(ショアD)は、柔軟性の観点から、好ましくは15~70の範囲、さらに好ましくは18~70の範囲、より好ましくは20~70の範囲、特に好ましいのは25~70の範囲のものである。 From the viewpoint of flexibility, the hardness (shore D) of the polyamide-based elastomer (A) is preferably in the range of 15 to 70, more preferably in the range of 18 to 70, more preferably in the range of 20 to 70, and particularly preferably in the range of 20 to 70. It is in the range of 25 to 70.
 ポリアミド系エラストマー(A)の好ましい態様は、上記式(1)で表されるアミノカルボン酸化合物及び/又は上記式(2)で表されるラクタム化合物由来の構成単位、上記式(3)で表されるXYX型トリブロックポリエーテルジアミン化合物由来の構成単位、並びに上記式(4)で表されるジカルボン酸化合物由来の構成単位を含む重合体である。 A preferred embodiment of the polyamide-based elastomer (A) is a structural unit derived from an aminocarboxylic acid compound represented by the above formula (1) and / or a lactam compound represented by the above formula (2), represented by the above formula (3). It is a polymer containing the structural unit derived from the XYX type triblock polyether diamine compound and the structural unit derived from the dicarboxylic acid compound represented by the above formula (4).
 好ましい態様のポリアミド系エラストマー(A)の製造方法として、一例を挙げると、
ポリアミド形成性モノマー、XYX型トリブロックポリエーテルジアミン及びジカルボン酸の三成分を、加圧及び/又は常圧下で溶融重合し、必要に応じさらに減圧下で溶融重合する工程からなる方法を用いることができ、さらにポリアミド形成性モノマー、XYX型トリブロックポリエーテルジアミン及びジカルボン酸の三成分を同時に、加圧及び/又は常圧下で溶融重合し、必要に応じさらに減圧下で溶融重合する工程からなる方法を用いることができる。なお、ポリアミド形成性モノマーとジカルボン酸の二成分を先に重合させ、ついで、XYX型トリブロックポリエーテルジアミンを重合させる方法も利用できる。
 ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール等から誘導されるポリエーテル構成単位をソフトセグメントとして有するポリアミドエラストマーについても同様の製造方法が挙げられる。
As an example of a method for producing the polyamide-based elastomer (A) in a preferred embodiment,
A method consisting of a step of melt-polymerizing a polyamide-forming monomer, an XYX-type triblock polyetherdiamine, and a dicarboxylic acid under pressure and / or normal pressure, and further melt-polymerizing under reduced pressure, if necessary, can be used. A method comprising the steps of simultaneously melt-polymerizing the three components of a polyamide-forming monomer, an XYX-type triblock polyetherdiamine, and a dicarboxylic acid under pressure and / or normal pressure, and further melt-polymerizing under reduced pressure as necessary. Can be used. A method of first polymerizing the two components of the polyamide-forming monomer and the dicarboxylic acid and then polymerizing the XYX-type triblock polyether diamine can also be used.
A similar production method can be mentioned for a polyamide elastomer having a polyether structural unit derived from polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol or the like as a soft segment.
 ポリアミドエラストマーの製造は、重合温度が好ましくは150~300℃、さらに好ましくは160~280℃、特に好ましくは180~250℃で行うことができる。重合温度が上記温度より低い場合、重合反応が遅くなりやすく、上記温度より高い場合、熱分解が起きやすく良好な物性のポリマーが得られない場合がある。 The polyamide elastomer can be produced at a polymerization temperature of preferably 150 to 300 ° C, more preferably 160 to 280 ° C, and particularly preferably 180 to 250 ° C. When the polymerization temperature is lower than the above temperature, the polymerization reaction tends to be slow, and when the polymerization temperature is higher than the above temperature, thermal decomposition is likely to occur and a polymer having good physical properties may not be obtained.
 ポリアミドエラストマーは、ポリアミド形成性モノマーとしてω-アミノカルボン酸を使用する場合、常圧溶融重合又は常圧溶融重合とそれに続く減圧溶融重合の工程からなる方法で製造することができる。 When ω-aminocarboxylic acid is used as the polyamide-forming monomer, the polyamide elastomer can be produced by a method consisting of a normal pressure melt polymerization or a normal pressure melt polymerization followed by a vacuum melt polymerization step.
 一方、ポリアミド形成性モノマーとしてラクタム化合物、又はジアミン化合物とジカルボン酸化合物から合成されるもの及び/若しくはそれらの塩を用いる場合には、適量の水を共存させ、0.1~5MPaの加圧下での溶融重合とそれに続く常圧溶融重合及び/又は減圧溶融重合からなる方法で製造することができる。 On the other hand, when a lactam compound or a compound synthesized from a diamine compound and a dicarboxylic acid compound and / or a salt thereof is used as the polyamide-forming monomer, an appropriate amount of water is allowed to coexist and the pressure is 0.1 to 5 MPa. It can be produced by a method consisting of the melt polymerization of the above, followed by the atmospheric melt polymerization and / or the vacuum melt polymerization.
 ポリアミドエラストマーは、重合時間が通常0.5~30時間で製造することができる。重合時間が上記範囲より短いと、分子量の上昇が不十分となりやすく、長いと熱分解による着色等が起こりやすく、いずれの場合も所望の物性を有するポリエーテルアミドエラストマーが得られない場合がある。 The polyamide elastomer can be produced with a polymerization time of usually 0.5 to 30 hours. If the polymerization time is shorter than the above range, the increase in molecular weight tends to be insufficient, and if it is long, coloring due to thermal decomposition or the like is likely to occur, and in either case, a polyetheramide elastomer having desired physical properties may not be obtained.
 ポリアミドエラストマーの製造は、回分式でも、連続式でも実施することができ、またバッチ式反応釜、一槽式ないし多槽式の連続反応装置、管状連続反応装置等を単独であるいは適宜組み合わせて用いることができる。 The production of the polyamide elastomer can be carried out by a batch type or a continuous type, and a batch type reaction kettle, a single-tank or multi-tank continuous reaction device, a tubular continuous reaction device, or the like is used alone or in combination as appropriate. be able to.
 ポリアミドエラストマーの製造の際に、必要に応じて分子量調節や成形加工時の溶融粘度安定のために、ラウリルアミン、ステアリルアミン、ヘキサメチレンジアミン、メタキシリレンジアミン等のモノアミン及びジアミン、酢酸、安息香酸、ステアリン酸、アジピン酸、セバシン酸、ドデカン二酸等のモノカルボン酸、或はジカルボン酸等を添加することができる。
 これらの使用量は、最終的に得られるエラストマーの相対粘度が1.10~5.00の範囲になるように適宜添加することが好ましい。
During the production of polyamide elastomers, monoamines such as laurylamine, stearylamine, hexamethylenediamine, and methoxylylenediamine, and diamines, acetic acids, and benzoic acids are used to adjust the molecular weight and stabilize the melt viscosity during molding, if necessary. , Monocarboxylic acid such as stearic acid, adipic acid, sebacic acid, dodecanedioic acid, dicarboxylic acid and the like can be added.
It is preferable to appropriately add these amounts so that the relative viscosity of the finally obtained elastomer is in the range of 1.10 to 5.00.
 上記のモノアミン及びジアミン、モノカルボン酸及びジカルボン酸等の添加量は、得られるポリアミドエラストマーの特性を阻害されない範囲とするのが好ましい。 The amount of the above monoamine and diamine, monocarboxylic acid, dicarboxylic acid and the like added is preferably in a range that does not impair the characteristics of the obtained polyamide elastomer.
 ポリアミドエラストマーの製造の際に、必要に応じて触媒として、リン酸、ピロリン酸、ポリリン酸等を、また触媒と耐熱剤の両方の効果をねらって亜リン酸、次亜リン酸、及びこれらのアルカリ金属塩、アルカリ土類金属塩等の無機系リン化合物を添加することができる。添加量は、通常、仕込み原料に対して50~3000ppmである。 In the production of polyamide elastomer, phosphoric acid, pyrophosphoric acid, polyphosphoric acid, etc. are used as catalysts as necessary, and phosphorous acid, hypophosphorous acid, and these are used for the effects of both catalysts and heat resistant agents. Inorganic phosphorus compounds such as alkali metal salts and alkaline earth metal salts can be added. The addition amount is usually 50 to 3000 ppm with respect to the charged raw material.
 ポリアミド樹脂組成物100質量%中、ポリアミド系エラストマー(A)の含有量は15~35質量%であり、15~30質量%が好ましく、20~30質量%がより好ましい。ポリアミド系エラストマー(A)の含有量が上記範囲にあると、柔軟性と強靭性を併せ持ち、耐衝撃性に優れる成形品を得ることができる。 The content of the polyamide-based elastomer (A) in 100% by mass of the polyamide resin composition is 15 to 35% by mass, preferably 15 to 30% by mass, and more preferably 20 to 30% by mass. When the content of the polyamide-based elastomer (A) is within the above range, a molded product having both flexibility and toughness and excellent impact resistance can be obtained.
<アミド基1個に対する平均炭素原子数が6超である脂肪族ポリアミド樹脂(B)>
 ポリアミド樹脂組成物は、アミド基1個に対する平均炭素原子数が6超である脂肪族ポリアミド樹脂(B)(以下、「脂肪族ポリアミド樹脂(B)」ともいう。)を含む。
 ポリアミド樹脂組成物は、アミド基1個に対する平均炭素原子数が6超である脂肪族ポリアミド樹脂(B)を含むと、成形加工性を向上させやすくなり、かつ、成形品の柔軟性及び機械特性を向上させやすくなる。また、ポリアミド樹脂は、低吸水性であるため、他の熱可塑性樹脂よりも、耐加水分解性に優れる。
 脂肪族ポリアミド樹脂としては、脂肪族ホモポリアミド樹脂及び脂肪族共重合ポリアミド樹脂が挙げられる。脂肪族ホモポリアミド樹脂は、脂肪族モノマー由来の1種類の構成単位からなるポリアミド樹脂である。脂肪族ホモポリアミド樹脂は、1種類のラクタム及び当該ラクタムの加水分解物であるアミノカルボン酸の少なくとも一方からなるものであってもよく、1種類のジアミンと1種類のジカルボン酸との組合せからなるものであってもよい。脂肪族共重合ポリアミド樹脂は、脂肪族モノマー由来の2種以上の構成単位からなるポリアミド樹脂である。脂肪族共重合ポリアミド樹脂は、ジアミンとジカルボン酸の組合せ、ラクタム及びアミノカルボン酸からなる群から選択される2種以上の共重合体である。ここで、ジアミンとジカルボン酸の組み合わせは、1種類のジアミンと1種類のジカルボン酸の組合せで1種類のモノマーとみなす。
<Alphatic polyamide resin (B) having an average carbon atom number of more than 6 for one amide group>
The polyamide resin composition contains an aliphatic polyamide resin (B) having an average carbon atom number of more than 6 per amide group (hereinafter, also referred to as “aliphatic polyamide resin (B)”).
When the polyamide resin composition contains the aliphatic polyamide resin (B) having an average carbon atom number of more than 6 per amide group, it becomes easy to improve the molding processability, and the flexibility and mechanical properties of the molded product are easily improved. It becomes easy to improve. Further, since the polyamide resin has low water absorption, it is superior in hydrolysis resistance to other thermoplastic resins.
Examples of the aliphatic polyamide resin include an aliphatic homopolyamide resin and an aliphatic copolymerized polyamide resin. The aliphatic homopolyamide resin is a polyamide resin composed of one kind of constituent unit derived from an aliphatic monomer. The aliphatic homopolyamide resin may be composed of at least one of one kind of lactam and aminocarboxylic acid which is a hydrolyzate of the lactam, and is composed of a combination of one kind of diamine and one kind of dicarboxylic acid. It may be a thing. The aliphatic copolymerized polyamide resin is a polyamide resin composed of two or more kinds of constituent units derived from an aliphatic monomer. The aliphatic copolymerized polyamide resin is two or more copolymers selected from the group consisting of a combination of diamine and dicarboxylic acid, lactam and aminocarboxylic acid. Here, the combination of diamine and dicarboxylic acid is regarded as one kind of monomer by the combination of one kind of diamine and one kind of dicarboxylic acid.
 アミド基1個に対する平均炭素原子数が6超である脂肪族ホモポリアミド樹脂とは、構成単位がラクタム及びアミノカルボン酸である場合は、構成単位の炭化水素鎖の炭素原子数が6を超えることをいう。構成単位がジアミンとジカルボン酸の組合せである場合は、ジアミンの炭化水素鎖の炭素原子数にポリアミド中のジアミンのモル濃度を乗じた値と、ジカルボン酸の炭化水素鎖の炭素原子数にポリアミド中のジカルボン酸のモル濃度を乗じた値との和が6を超えることをいう。
 たとえば、ポリテトラメチレンセバカミド(ポリアミド410)は、テトラメチレンジアミンがポリアミド中67モル%未満であれば、アミド基1個に対する平均炭素原子数が6超である脂肪族ホモポリアミド樹脂である。また、67モル%以上であれば、後述するアミド基1個に対する平均炭素原子数が6以下である脂肪族ホモポリアミド樹脂である。
An aliphatic homopolyamide resin having an average number of carbon atoms per amide group of more than 6 means that when the constituent units are lactam and aminocarboxylic acid, the number of carbon atoms in the hydrocarbon chain of the constituent units exceeds 6. To say. When the constituent unit is a combination of diamine and dicarboxylic acid, the value obtained by multiplying the number of carbon atoms of the diamine hydrocarbon chain by the molar concentration of diamine in the polyamide and the number of carbon atoms of the diamine hydrocarbon chain in the polyamide It means that the sum with the value obtained by multiplying the molar concentration of the dicarboxylic acid of is more than 6.
For example, polytetramethylene sebacamide (polyamide 410) is an aliphatic homopolyamide resin having an average carbon atom number of more than 6 per amide group when tetramethylenediamine is less than 67 mol% in polyamide. Further, if it is 67 mol% or more, it is an aliphatic homopolyamide resin having an average carbon atom number of 6 or less with respect to one amide group described later.
 アミド基1個に対する平均炭素原子数が6超である脂肪族共重合ポリアミド樹脂とは、上述のように共重合体を構成する各構成単位のアミド基1個に対する炭素原子数を求め、共重合体中の各構成単位のモル濃度と各構成単位のアミド基1個に対する炭素原子数を乗じた値の共重合体における平均炭素原子数が6を超えることをいう。 With respect to the aliphatic copolymerized polyamide resin having an average carbon atom number of more than 6 per amide group, the number of carbon atoms per amide group of each constituent unit constituting the copolymer is obtained as described above, and the copolymer weight is obtained. It means that the average number of carbon atoms in the copolymer, which is the product of the molar concentration of each structural unit in the coalescence and the number of carbon atoms for one amide group of each structural unit, exceeds 6.
 アミド基1個に対する平均炭素原子数が6超である脂肪族ホモポリアミド樹脂としてはポリウンデカンラクタム(ポリアミド11)、ポリラウリルラクタム(ポリアミド12)、ポリテトラメチレンドデカミド(ポリアミド412)、ポリペンタメチレンアゼラミド(ポリアミド59)、ポリペンタメチレンセバカミド(ポリアミド510)、ポリペンタメチレンドデカミド(ポリアミド512)、ポリヘキサメチレンスベラミド(ポリアミド68)、ポリヘキサメチレンアゼラミド(ポリアミド69)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリヘキサメチレンウンデカミド(ポリアミド611)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリヘキサメチレンテトラデカミド(ポリアミド614)、ポリヘキサメチレンヘキサデカミド(ポリアミド616)、ポリヘキサメチレンオクタデカミド(ポリアミド618)、ポリノナメチレンアジパミド(ポリアミド96)、ポリノナメチレンスベラミド(ポリアミド98)、ポリノナメチレンアゼラミド(ポリアミド99)、ポリノナメチレンセバカミド(ポリアミド910)、ポリノナメチレンドデカミド(ポリアミド912)、ポリデカメチレンアジパミド(ポリアミド106)、ポリデカメチレンスベラミド(ポリアミド108)、ポリデカメチレンアゼラミド(ポリアミド109)、ポリデカメチレンセバカミド(ポリアミド1010)、ポリデカメチレンドデカミド(ポリアミド1012)、ポリドデカメチレンアジパミド(ポリアミド126)、ポリドデカメチレンスベラミド(ポリアミド128)、ポリドデカメチレンアゼラミド(ポリアミド129)、ポリドデカメチレンセバカミド(ポリアミド1210)、ポリドデカメチレンドデカミド(ポリアミド1212)、ポリアミド122等が挙げられる。 Polyundecane lactam (polyamide 11), polylauryl lactam (polyamide 12), polytetramethylene dodecamide (polyamide 412), and polypentamethylene are examples of aliphatic homopolyamide resins having an average carbon atom number of more than 6 per amide group. Azelamide (polyamide 59), polypentamethylene sebacamide (polyamide 510), polypentamethylene dodecamide (polyamide 512), polyhexamethylene sveramide (polyamide 68), polyhexamethylene azelamide (polyamide 69), polyhexa Methylene sebacamide (polyamide 610), polyhexamethylene undecamide (polyamide 611), polyhexamethylene dodecamide (polyamide 612), polyhexamethylenetetradecamide (polyamide 614), polyhexamethylene hexadecamide (polyamide 616). ), Polyhexamethylene octadecamide (polyamide 618), polynonamethylene adipamide (polyamide 96), polynonamethylene sveramide (polyamide 98), polynonamethylene azelamide (polyamide 99), polynonamethylene sebacamide (Polyamide 910), Polynonamethylene dodecamide (Polyamide 912), Polydecamethylene adipamide (Polyamide 106), Polydecamethylene sveramide (Polyamide 108), Polydecamethylene azelamide (Polyamide 109), Polydecamethylene se. Bacamide (Polyamide 1010), Polydecamethylene dodecamide (Polyamide 1012), Polydodecamethylene adipamide (Polyamide 126), Polydodecamethylene sveramide (Polyamide 128), Polydodecamethylene azelamide (Polyamide 129), Polydodeca Examples thereof include methylene sebacamide (polyamide 1210), polydodecamethylene dodecamide (polyamide 1212), and polyamide 122.
 アミド基1個に対する平均炭素原子数が6超である脂肪族共重合ポリアミド樹脂としては、アミド基1個に対する平均炭素原子数が6超である脂肪族ホモポリアミド樹脂を形成する原料単量体を数種用いた共重合体に加え、カプロラクタム/ヘキサメチレンジアミノアゼライン酸共重合体(ポリアミド6/69)、カプロラクタム/ヘキサメチレンジアミノセバシン酸共重合体(ポリアミド6/610)、カプロラクタム/ヘキサメチレンジアミノウンデカンジカルボン酸共重合体(ポリアミド6/611)、カプロラクタム/ヘキサメチレンジアミノドデカンジカルボン酸共重合体(ポリアミド6/612)、カプロラクタム/アミノウンデカン酸共重合体(ポリアミド6/11)、カプロラクタム/ラウリルラクタム共重合体(ポリアミド6/12)、カプロラクタム/ヘキサメチレンジアミノアジピン酸/ラウリルラクタム共重合体(ポリアミド6/66/12)、カプロラクタム/ヘキサメチレンジアミノアジピン酸/ヘキサメチレンジアミノセバシン酸共重合体(ポリアミド6/66/610)、カプロラクタム/ヘキサメチレンジアミノアジピン酸/ヘキサメチレンジアミノドデカンジカルボン酸共重合体(ポリアミド6/66/612)等が挙げられる。
 これらの脂肪族ポリアミド樹脂(B)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
As the aliphatic copolymerized polyamide resin having an average carbon atom number of more than 6 for one amide group, a raw material monomer for forming an aliphatic homopolypolymer resin having an average carbon atom number of more than 6 for one amide group is used. In addition to the copolymers used in several kinds, caprolactam / hexamethylene diaminoazeline acid copolymer (polyamide 6/69), caprolactam / hexamethylene diaminosevacinic acid copolymer (polyamide 6/610), caprolactam / hexamethylene diaminoundecane. Dicarboxylic acid copolymer (polyamide 6/611), caprolactam / hexamethylene diaminododecanedicarboxylic acid copolymer (polyamide 6/612), caprolactam / aminoundecanoic acid copolymer (polyamide 6/11), caprolactam / lauryllactam Polymer (Polymer 6/12), Caprolactam / Hexamethylene diaminoadipic acid / Lauryl lactam copolymer (Polymer 6/66/12), Caprolactum / Hexamethylene diaminoadipic acid / Hexamethylene diaminosevacinic acid copolymer (Polymer 6) / 66/610), caprolactam / hexamethylenediaminoadipic acid / hexamethylenediaminododecanedicanoic acid copolymer (polyamide 6/66/612) and the like can be mentioned.
These aliphatic polyamide resins (B) may be used alone or in combination of two or more.
 これらの中でも、柔軟性の観点から、脂肪族ポリアミド樹脂(B)は、アミド基1個に対する平均炭素原子数が8~12のものが好ましく、10~12のものがより好ましい。ポリアミド11、ポリアミド12、ポリアミド612、ポリアミド611、ポリアミド610、ポリアミド6/12共重合体及びポリアミド6/66/12共重合体からなる群より選ばれる少なくとも1種であることが特に好ましい。 Among these, from the viewpoint of flexibility, the aliphatic polyamide resin (B) preferably has an average carbon atom number of 8 to 12 per amide group, and more preferably 10 to 12. It is particularly preferably at least one selected from the group consisting of polyamide 11, polyamide 12, polyamide 612, polyamide 611, polyamide 610, polyamide 6/12 copolymer and polyamide 6/66/12 copolymer.
 脂肪族ポリアミド樹脂(B)の重合度には特に制限はないが、JIS K 6933に準拠し、ポリアミド樹脂1gを96%濃硫酸100mlに溶解させ、25℃で測定した相対粘度が、1.10~5.00であることが好ましく、1.50~4.50であることがより好ましく、1.50~3.00であることが特に好ましい。 The degree of polymerization of the aliphatic polyamide resin (B) is not particularly limited, but in accordance with JIS K6933, 1 g of the polyamide resin is dissolved in 100 ml of 96% concentrated sulfuric acid, and the relative viscosity measured at 25 ° C. is 1.10. It is preferably ~ 5.00, more preferably 1.50 to 4.50, and particularly preferably 1.50 to 3.00.
 ポリアミド樹脂組成物100質量%中、アミド基1個に対する平均炭素原子数が6超である脂肪族ポリアミド樹脂(B)の含有量は40~79質量%であるが、45~77質量%が好ましく、50~75質量%がより好ましい。脂肪族ポリアミド樹脂(B)の含有量が上記範囲にあると、柔軟性と強靭性を併せ持ち、耐衝撃性に優れる成形品を得ることができる。 The content of the aliphatic polyamide resin (B) having an average carbon atom number of more than 6 per amide group in 100% by mass of the polyamide resin composition is 40 to 79% by mass, preferably 45 to 77% by mass. , 50-75% by mass is more preferable. When the content of the aliphatic polyamide resin (B) is within the above range, a molded product having both flexibility and toughness and excellent impact resistance can be obtained.
<芳香族ポリアミド樹脂(C)>
 ポリアミド樹脂組成物は、芳香族ポリアミド樹脂(C)を含む。
 ポリアミド樹脂組成物は、芳香族ポリアミド樹脂(C)を含むと、その剛直な構造により、強靭性及び耐衝撃性を向上させることができる。
 芳香族ポリアミド樹脂とは、芳香族系モノマー成分を少なくとも1成分含む芳香族ポリアミド樹脂であり、例えば、脂肪族ジカルボン酸と芳香族ジアミン、芳香族ジカルボン酸と脂肪族ジアミンまたは芳香族ジアミンと芳香族ジカルボン酸を原料とし、これらの重縮合によって得られるポリアミド樹脂である。
<Aromatic polyamide resin (C)>
The polyamide resin composition contains an aromatic polyamide resin (C).
When the polyamide resin composition contains the aromatic polyamide resin (C), its rigid structure can improve toughness and impact resistance.
The aromatic polyamide resin is an aromatic polyamide resin containing at least one aromatic monomer component, and is, for example, an aliphatic dicarboxylic acid and an aromatic diamine, an aromatic dicarboxylic acid and an aliphatic diamine, or an aromatic diamine and an aromatic. It is a polyamide resin obtained by polycondensation of dicarboxylic acid as a raw material.
 原料の脂肪族ジアミン及び脂肪族ジカルボン酸としては、前記の脂肪族共重合ポリアミド樹脂の説明で例示したものと同様のものが挙げられる。
 芳香族ジアミンとしては、メタキシリレンジアミン、パラキシリレンジアミン等が挙げられ、芳香族ジカルボン酸としては、ナフタレンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸等が挙げられる。
 これらの芳香族ジアミン及び芳香族ジカルボン酸は1種類単独で使用してもよいし、2種類以上を適宜組み合わせて使用してもよい。
Examples of the aliphatic diamine and the aliphatic dicarboxylic acid as raw materials include those similar to those exemplified in the above description of the aliphatic copolymerized polyamide resin.
Examples of the aromatic diamine include methoxylylenediamine and paraxylylenediamine, and examples of the aromatic dicarboxylic acid include naphthalenedicarboxylic acid, terephthalic acid, isophthalic acid and phthalic acid.
These aromatic diamines and aromatic dicarboxylic acids may be used alone or in combination of two or more.
 具体的な例としては、ポリノナンメチレンテレフタルアミド(ポリアミド9T)、ポリヘキサメチレンテレフタルアミド(ポリアミド6T)、ポリヘキサメチレンイソフタルアミド(ポリアミド6I)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミドコポリマー(ポリアミド66/6T)、ポリヘキサメチレンテレフタルアミド/ポリカプロアミドコポリマー(ポリアミド6T/6)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド66/6I)、ポリヘキサメチレンイソフタルアミド/ポリカプロアミドコポリマー(ポリアミド6I/6)、ポリドデカミド/ポリヘキサメチレンテレフタラミドコポリマー(ポリアミド12/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド66/6T/6I)、ポリヘキサメチレンアジパミド/ポリカプロアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド66/6/6I)、ポリヘキサメチレンテレフタルアミド/ ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド6T/6I)、ポリヘキサメチレンテレフタルアミド/ポリ(2-メチルペンタメチレンテレフタルアミド)コポリマー(ポリアミド6T/M5T)、ポリキシリレンアジパミド(ポリアミドMXD6)などが挙げられる。これらの芳香族ポリアミド(C)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Specific examples include polynonane methylene terephthalamide (polyamide 9T), polyhexamethylene terephthalamide (polyoxide 6T), polyhexamethylene isophthalamide (polyamide 6I), and polyhexamethylene adipamide / polyhexamethylene terephthalamide copolymer. (Polyamide 66 / 6T), Polyhexamethylene terephthalamide / Polycaproamide copolymer (Polyamide 6T / 6), Polyhexamethylene adipamide / Polyhexamethylene isophthalamide copolymer (Polyamide 66 / 6I), Polyhexamethylene isophthalamide / Polycaproamide copolymer (polyamide 6I / 6), polydodecamide / polyhexamethylene terephthalamide copolymer (polyamide 12 / 6T), polyhexamethylene adipamide / polyhexamethylene terephthalamide / polyhexamethylene isophthalamide copolymer (polyamide 66 / 6T / 6I), polyhexamethylene adipamide / polycaproamide / polyhexamethylene isophthalamide copolymer (polyamide 66/6 / 6I), polyhexamethylene terephthalamide / polyhexamethylene isophthalamide copolymer (polyoxide 6T / 6I), Examples thereof include polyhexamethylene terephthalamide / poly (2-methylpentamethylene terephthalamide) copolymer (polyamide 6T / M5T) and polyxylylene adipamide (polyamide MXD6). These aromatic polyamides (C) may be used alone or in combination of two or more.
 これらの中でも、耐衝撃性の観点から、モノマー成分を少なくとも2成分含む芳香族共重合ポリアミドが好ましく、芳香族モノマー成分を1種以上と脂肪族モノマー成分1種以上とが共重合した半芳香族ポリアミドがより好ましく、ポリヘキサメチレンテレフタルアミド/ ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド6T/6I)、ポリキシリレンアジパミド(ポリアミドMXD6)がさらに好ましい。 Among these, from the viewpoint of impact resistance, an aromatic copolymerized polyamide containing at least two monomer components is preferable, and a semi-aromatic polyamide obtained by copolymerizing one or more aromatic monomer components and one or more aliphatic monomer components. Polyamide is more preferable, and polyhexamethylene terephthalamide / polyhexamethylene isophthalamide copolymer (polyamide 6T / 6I) and polyxylylene adipamide (polyamide MXD6) are further preferable.
 芳香族ポリアミド樹脂(C)として、特に有用なものとしては、芳香族系モノマー成分を少なくとも2成分含む非晶性部分芳香族共重合ポリアミド樹脂が挙げられる。非晶性部分芳香族共重合ポリアミド樹脂としては、動的粘弾性の測定によって得られた絶乾時の損失弾性率のピーク温度によって求められたガラス転移温度が100℃ 以上の非晶性ポリアミドが好ましい。非晶性部分芳香族共重合ポリアミド樹脂としては、ポリヘキサメチレンテレフタルアミド/ ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド6T/6I)が挙げられる。
 ここで、非晶性とは、示差走査熱量計(DSC)で測定した結晶融解熱量が1cal/g以下であることをいう。
As the aromatic polyamide resin (C), particularly useful ones include an amorphous partially aromatic copolymerized polyamide resin containing at least two aromatic monomer components. As the amorphous partially aromatic copolymerized polyamide resin, an amorphous polyamide having a glass transition temperature of 100 ° C. or higher obtained by the peak temperature of the loss elastic modulus at the time of absolute drying obtained by measuring the dynamic viscoelasticity is used. preferable. Examples of the amorphous partially aromatic copolymerized polyamide resin include polyhexamethylene terephthalamide / polyhexamethylene isophthalamide copolymer (polyamide 6T / 6I).
Here, amorphous means that the amount of heat of crystal melting measured by a differential scanning calorimeter (DSC) is 1 cal / g or less.
 芳香族ポリアミド樹脂(C)の重合度には特に制限はないが、JIS K 6933に準拠し、ポリアミド樹脂1gを試薬特級品のm-クレゾール100mlに溶解させ、25℃で測定した相対粘度が、1.50~4.00であることが好ましく、1.80~2.50であることがより好ましい。 The degree of polymerization of the aromatic polyamide resin (C) is not particularly limited, but in accordance with JIS K6933, 1 g of the polyamide resin is dissolved in 100 ml of m-cresol, which is a special reagent product, and the relative viscosity measured at 25 ° C. is determined. It is preferably 1.50 to 4.00, more preferably 1.80 to 2.50.
 ポリアミド樹脂組成物100質量%中、芳香族ポリアミド樹脂(C)の含有量は0.1~35質量%であり、0.1~33質量%が好ましく、0.2~30質量%がより好ましい。芳香族ポリアミド樹脂(C)の含有量が上記範囲にあると、柔軟性を損なわないとともに、耐衝撃性に優れる。 The content of the aromatic polyamide resin (C) in 100% by mass of the polyamide resin composition is 0.1 to 35% by mass, preferably 0.1 to 33% by mass, and more preferably 0.2 to 30% by mass. .. When the content of the aromatic polyamide resin (C) is in the above range, the flexibility is not impaired and the impact resistance is excellent.
<アミド基1個に対する平均炭素原子数が6以下である脂肪族ポリアミド樹脂(D)>
 ポリアミド樹脂組成物は、任意に、アミド基1個に対する平均炭素原子数が6以下である脂肪族ポリアミド樹脂(D)(以下、「脂肪族ポリアミド樹脂(D)」ともいう。)を含むことが好ましい。
 ポリアミド樹脂組成物は、アミド基1個に対する平均炭素原子数が6以下である脂肪族ポリアミド樹脂(D)を含むと、芳香族ポリアミド(C)の配合を容易にすることができ、成型加工性の点から好ましい。
<Alphatic polyamide resin (D) having an average number of carbon atoms of 6 or less per amide group>
The polyamide resin composition may optionally contain an aliphatic polyamide resin (D) having an average carbon atom number of 6 or less per amide group (hereinafter, also referred to as “aliphatic polyamide resin (D)”). preferable.
When the polyamide resin composition contains an aliphatic polyamide resin (D) having an average carbon atom number of 6 or less per amide group, the aromatic polyamide (C) can be easily blended, and molding processability is possible. It is preferable from the viewpoint of.
 アミド基1個に対する平均炭素原子数が6以下である脂肪族ポリアミド樹脂(D)としては、ポリカプロラクタム(ポリアミド6)、ポリエチレンアジパミド(ポリアミド26)、ポリテトラメチレンスクシナミド(ポリアミド44)、ポリテトラメチレングルタミド(ポリアミド45)、ポリテトラメチレンアジパミド(ポリアミド46)、ポリテトラメチレンスベラミド(ポリアミド48)、ポリペンタメチレンスクシナミド(ポリアミド54)、ポリペンタメチレングルタミド(ポリアミド55)、ポリペンタメチレンアジパミド(ポリアミド56)、ポリヘキサメチレンアジパミド(ポリアミド66)、カプロラクタム/ヘキサメチレンジアミノアジピン酸共重合体(ポリアミド6/66)が挙げられる。これらの脂肪族ポリアミド樹脂(D)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの中でも、芳香族ポリアミド樹脂(C)との相溶性の観点から、ポリアミド6が好ましい。 Examples of the aliphatic polyamide resin (D) having an average carbon atom number of 6 or less per amide group include polycaprolactum (polyamide 6), polyethylene adipamide (polyamide 26), and polytetramethylene succinamide (polyamide 44). , Polytetramethylene glutamide (polyamide 45), polytetramethylene adipamide (polyamide 46), polytetramethylene sveramide (polyamide 48), polypentamethylene succinamide (polyamide 54), polypentamethylene glutamide (polyamide 54). 55), polypentamethylene adipamide (polyamide 56), polyhexamethylene adipamide (polyamide 66), caprolactam / hexamethylene diaminoadipic acid copolymer (polyamide 6/66). These aliphatic polyamide resins (D) may be used alone or in combination of two or more. Among these, polyamide 6 is preferable from the viewpoint of compatibility with the aromatic polyamide resin (C).
 脂肪族ポリアミド樹脂(D)の重合度には特に制限はないが、JIS K 6933に準拠し、ポリアミド樹脂1gを96%濃硫酸100mlに溶解させ、25℃で測定した相対粘度が、1.10~5.00であることが好ましく、1.50~4.20であることがより好ましい。 The degree of polymerization of the aliphatic polyamide resin (D) is not particularly limited, but in accordance with JIS K6933, 1 g of the polyamide resin is dissolved in 100 ml of 96% concentrated sulfuric acid, and the relative viscosity measured at 25 ° C. is 1.10. It is preferably 5.00 to 5.00, and more preferably 1.50 to 4.20.
 ポリアミド樹脂組成物100質量%中、アミド基1個に対する平均炭素原子数が6以下である脂肪族ポリアミド樹脂(D)の含有量は0~10質量%である。脂肪族ポリアミド樹脂(D)の含有量が上記範囲にあると、柔軟性が良好であるとともに、芳香族ポリアミド樹脂(C)の配合が容易となる。 The content of the aliphatic polyamide resin (D) having an average carbon atom number of 6 or less per amide group in 100% by mass of the polyamide resin composition is 0 to 10% by mass. When the content of the aliphatic polyamide resin (D) is in the above range, the flexibility is good and the aromatic polyamide resin (C) can be easily blended.
(ポリアミド樹脂の製造)
 ポリアミド樹脂の製造装置としては、バッチ式反応釜、一槽式ないし多槽式の連続反応装置、管状連続反応装置、一軸型混練押出機、二軸型混練押出機等の混練反応押出機等、公知のポリアミド製造装置が挙げられる。重合方法としては溶融重合、溶液重合や固相重合等の公知の方法を用い、常圧、減圧、加圧操作を繰り返して重合することができる。これらの重合方法は単独で、あるいは適宜、組合せて用いることができる。
(Manufacturing of polyamide resin)
Polyamide resin manufacturing equipment includes batch type reaction kettles, single-tank or multi-tank continuous reaction equipment, tubular continuous reaction equipment, uniaxial kneading extruders, kneading reaction extruders such as twin-screw kneading extruders, etc. A known polyamide production apparatus can be mentioned. As a polymerization method, a known method such as melt polymerization, solution polymerization or solid phase polymerization can be used, and polymerization can be carried out by repeating normal pressure, reduced pressure and pressurization operations. These polymerization methods can be used alone or in combination as appropriate.
 ポリアミド樹脂の末端アミノ基濃度は、フェノールとメタノールの混合溶媒に溶解させ中和滴定で求められる末端アミノ基濃度として、30μmol/g以上であることが好ましく、30μmol/g以上110μmol/g以下の範囲がより好ましく、30μmol/g以上70μmol/g以下の範囲がさらに好ましい。前記範囲であると、ポリアミド樹脂組成物の成形加工性が良好である。 The terminal amino group concentration of the polyamide resin is preferably 30 μmol / g or more, and is in the range of 30 μmol / g or more and 110 μmol / g or less, as the terminal amino group concentration obtained by neutralization titration by dissolving in a mixed solvent of phenol and methanol. Is more preferable, and a range of 30 μmol / g or more and 70 μmol / g or less is further preferable. Within the above range, the molding processability of the polyamide resin composition is good.
 ポリアミド樹脂が、末端アミノ基濃度の異なる2種以上のポリアミド樹脂を含む場合、ポリアミド樹脂における末端アミノ基濃度は、上記中和摘定で測定されるのが好ましいが、それぞれのポリアミド樹脂の末端アミノ基濃度とその混合比が判明している場合、それぞれの末端アミノ基濃度にその混合比を乗じた値を合計して算出される平均値を、ポリアミド樹脂の末端アミノ基濃度としてもよい。 When the polyamide resin contains two or more kinds of polyamide resins having different terminal amino group concentrations, the terminal amino group concentration in the polyamide resin is preferably measured by the above neutralization pruning, but the terminal amino of each polyamide resin is preferable. When the base concentration and the mixing ratio thereof are known, the average value calculated by multiplying the respective terminal amino group concentrations by the mixing ratio may be used as the terminal amino group concentration of the polyamide resin.
<その他の樹脂>
ポリアミド樹脂組成物は、本発明の目的を損なわない範囲で、ポリアミド系エラストマー及びポリアミド樹脂以外の熱可塑性樹脂を含んでいてもよい。ポリアミド系エラストマー及びポリアミド樹脂以外の熱可塑性樹脂は、ポリアミド樹脂組成物100質量%中、2質量%以下が好ましく、0~1.5質量%がより好ましい。
<Other resins>
The polyamide resin composition may contain a thermoplastic resin other than the polyamide elastomer and the polyamide resin as long as the object of the present invention is not impaired. The thermoplastic resin other than the polyamide-based elastomer and the polyamide resin is preferably 2% by mass or less, more preferably 0 to 1.5% by mass, based on 100% by mass of the polyamide resin composition.
<その他の成分>
 ポリアミド樹脂組成物は、本発明の目的を損なわない範囲で、前記成分以外の、染料、顔料、繊維状補強物、粒子状補強物、可塑剤、酸化防止剤、耐熱剤、発泡剤、耐候剤、結晶核剤、結晶化促進剤、離型剤、滑剤、帯電防止剤、難燃剤、難燃助剤、着色剤等の機能性付与剤等を適宜含有していてもよい。 
 任意の成分の含有量は、ポリアミド樹脂組成物100質量%中、好ましくは0.01~1質量%、より好ましくは0.05~0.5質量%である。
<Other ingredients>
The polyamide resin composition is a dye, a pigment, a fibrous reinforcing material, a particulate reinforcing material, a plasticizer, an antioxidant, a heat resistant agent, a foaming agent, and a weather resistant agent other than the above-mentioned components, as long as the object of the present invention is not impaired. , A crystal nucleating agent, a crystallization accelerator, a mold release agent, a lubricant, an antistatic agent, a flame retardant, a flame retardant aid, a functionalizing agent such as a colorant, and the like may be appropriately contained.
The content of the arbitrary component is preferably 0.01 to 1% by mass, more preferably 0.05 to 0.5% by mass in 100% by mass of the polyamide resin composition.
[ポリアミド樹脂組成物の製造方法]
 ポリアミド樹脂組成物の製造方法は特に制限されるものではなく、例えば次の方法を適用することができる。
 各成分の原材料の混合には、単軸、二軸押出機、バンバリーミキサー、ニーダー、及びミキシングロールなど通常公知の溶融混練機が用いられる。各成分の原材料を、タンブラーミキサーやブレンダーなど通常公知の混合機で、単純混合する方法も適用することができる。
[Manufacturing method of polyamide resin composition]
The method for producing the polyamide resin composition is not particularly limited, and for example, the following method can be applied.
A commonly known melt kneader such as a single-screw or twin-screw extruder, a Banbury mixer, a kneader, and a mixing roll is used for mixing the raw materials of each component. A method of simply mixing the raw materials of each component with a commonly known mixer such as a tumbler mixer or a blender can also be applied.
 例えば、二軸押出機を使用する場合は、全ての原材料を配合後、溶融混練する方法、一部の原材料を配合後、溶融混練し、更に残りの原材料を配合し溶融混練する方法、あるいは一部の原材料を配合後、溶融混練中にサイドフィーダーを用いて残りの原材料を混合する方法など、いずれの方法を用いてもよいが、全ての原材料を配合後、溶融混練する方法が好ましい。 For example, when using a twin-screw extruder, a method of blending all raw materials and then melt-kneading, a method of blending some raw materials, then melt-kneading, and then blending the remaining raw materials and melt-kneading, or one. Any method may be used, such as a method of mixing the remaining raw materials using a side feeder after blending the raw materials of the portion, but a method of blending all the raw materials and then melt-kneading is preferable.
(ポリアミド樹脂組成物のMFR)
 ポリアミド樹脂組成物のISO 1133に準拠して、温度190℃、荷重1.00kgで測定したMFR(メルトフローレート)は、15g/10分未満が好ましく、4g/10分以上15g/10分未満がより好ましく、7g/10分以上15g/10分未満がさらに好ましい。MFRがこの範囲にあると、ポリアミド樹脂の成形加工性が良好でありながら、得られる成形品の靭性を損なわない。
(MFR of Polyamide Resin Composition)
According to ISO 1133 of the polyamide resin composition, the MFR (melt flow rate) measured at a temperature of 190 ° C. and a load of 1.00 kg is preferably less than 15 g / 10 minutes, preferably 4 g / 10 minutes or more and less than 15 g / 10 minutes. More preferably, it is 7 g / 10 minutes or more and less than 15 g / 10 minutes. When the MFR is in this range, the moldability of the polyamide resin is good, but the toughness of the obtained molded product is not impaired.
(ポリアミド樹脂組成物の密度)
 ポリアミド樹脂組成物の密度は、1.02g/cm以上が好ましく、1.03~1.10g/cmがより好ましく、1.03~1.06g/cmがさらに好ましい。密度がこの範囲にあると、例えば、磁性粉末などの各種無機添加剤が均一分散しやすくなる傾向にある。ポリアミド樹脂組成物の密度は、各成分の密度に含有量(質量%)を乗じ、それらの和を求めたものである。各成分の密度はISO1183-3に準拠し測定した。
(Density of polyamide resin composition)
The density of the polyamide resin composition is preferably 1.02 g / cm 3 or more, more preferably 1.03 to 1.10 g / cm 3 , and even more preferably 1.03 to 1.06 g / cm 3 . When the density is in this range, various inorganic additives such as magnetic powder tend to be easily uniformly dispersed. The density of the polyamide resin composition is obtained by multiplying the density of each component by the content (% by mass) to obtain the sum of them. The density of each component was measured according to ISO1183-3.
 ポリアミド樹脂組成物は、脂肪族ポリアミド樹脂(B)、ポリアミド系エラストマー(A)及び芳香族ポリアミド樹脂(C)がそれぞれ異なる温度域でエネルギー吸収するため、幅広い温度領域で柔軟性を保つことができると考えられ、寸法変化による応力集中に起因するクラック発生を抑制することができると期待される。 Since the aliphatic polyamide resin (B), the polyamide-based elastomer (A) and the aromatic polyamide resin (C) each absorb energy in different temperature ranges, the polyamide resin composition can maintain flexibility in a wide temperature range. It is expected that the generation of cracks due to stress concentration due to dimensional changes can be suppressed.
[ポリアミド樹脂組成物の成形品及びその用途]
 ポリアミド樹脂組成物は、射出成形による射出成形品、押出成形による押出成形品、ブロー成形によるブロー成形品、回転成形による回転成形品の製造に好適に用いることができる。ポリアミド樹脂組成物は、射出成形性が良好であるので、射出成形による射出成形品により好適に用いることができる。
[Molded products of polyamide resin compositions and their uses]
The polyamide resin composition can be suitably used for manufacturing an injection molded product by injection molding, an extrusion molded product by extrusion molding, a blow molded product by blow molding, and a rotation molded product by rotation molding. Since the polyamide resin composition has good injection moldability, it can be more preferably used as an injection molded product by injection molding.
 ポリアミド樹脂組成物から射出成形による射出成形品を製造する方法については特に制限されず、公知の方法を利用することができる。 The method for producing an injection-molded product by injection molding from the polyamide resin composition is not particularly limited, and a known method can be used.
 ポリアミド樹脂組成物から押出成形により押出成形品を製造する方法については特に制限されず、公知の方法を利用することができる。 The method for producing an extruded product from the polyamide resin composition by extrusion molding is not particularly limited, and a known method can be used.
 ポリアミド樹脂組成物からブロー成形によりブロー成形品を製造する方法については特に制限されず、公知の方法を利用することができる。 The method for producing a blow-molded product from the polyamide resin composition by blow molding is not particularly limited, and a known method can be used.
 ポリアミド樹脂組成物から回転成形による回転成形品を製造する方法については特に制限されず、公知の方法を利用することができる。例えば国際公開公報2019/054109に記載の方法が参酌される。 The method for producing a rotary molded product by rotary molding from the polyamide resin composition is not particularly limited, and a known method can be used. For example, the method described in International Publication No. 2019/054109 is referred to.
 射出成形による射出成形品、押出成形による押出成形品、ブロー成形によるブロー成形品、及び回転成形による回転成形品としては、特に限定されないが、スポイラー、エアインテークダクト、インテークマニホールド、レゾネーター、燃料タンク、ガスタンク、作動油タンク、燃料フィラーチューブ、燃料デリバリーパイプ、その他各種ホース・チューブ・タンク類などの自動車部品、電動工具ハウジング、パイプ類などの機械部品を始め、タンク、チューブ、ホース、フィルム等の電気・電子部品、家庭・事務用品、建材関係部品、家具用部品など各種用途が好適に挙げられる。  The injection molded product by injection molding, the extrusion molded product by extrusion molding, the blow molded product by blow molding, and the rotary molded product by rotary molding are not particularly limited, but are not particularly limited, but are spoilers, air intake ducts, intake manifolds, resonators, fuel tanks, and the like. Electric parts such as gas tanks, hydraulic oil tanks, fuel filler tubes, fuel delivery pipes, other automobile parts such as hoses, tubes and tanks, electric tool housings, mechanical parts such as pipes, tanks, tubes, hoses, films, etc. -Various uses such as electronic parts, household / office supplies, building material-related parts, furniture parts, etc. are preferably mentioned. It was
 また、ポリアミド樹脂組成物は、ガスバリア性に優れるため、高圧ガスと接触する成形品、たとえば、高圧ガスに接するタンク、チューブ、ホース、フィルム等に好適に用いられる。前記ガスの種類としては、特に制限されず、水素、窒素、酸素、ヘリウム、メタン、ブタン、プロパン等が挙げられ、極性の小さいガスが好ましく、水素、窒素、メタンが特に好ましい。 Further, since the polyamide resin composition has excellent gas barrier properties, it is suitably used for molded products that come into contact with high-pressure gas, for example, tanks, tubes, hoses, films, etc. that come into contact with high-pressure gas. The type of the gas is not particularly limited, and examples thereof include hydrogen, nitrogen, oxygen, helium, methane, butane, and propane. Gases having a small polarity are preferable, and hydrogen, nitrogen, and methane are particularly preferable.
[ポリアミド樹脂組成物と磁性粉末とを含む磁性材樹脂複合材料]
 ポリアミド樹脂組成物は、磁性粉末と共に配合することで、磁性材樹脂複合材料として使用することができる。
 磁性粉末は、磁性を付与する機能を有し、プラスチック磁石に使用することができる公知の磁性粉末であれば、特に制限はなく、例えば、フェライト系磁性粉、アルニコ系磁性粉、希土類磁性粉等が挙げられる。フェライト系磁性粉としては、酸化鉄、炭酸バリウム等のバリウムフェライト系磁性粉、酸化鉄、炭酸ストロンチウム等のストロンチウムフェライト系磁性粉等が挙げられる。アルニコ系磁性粉としては、ニッケル、アルミニウム、コバルト、銅から成るアルニコ、ニッケル、アルミニウム、コバルト、銅、チタンから成るアルニコ等が挙げられる。希土類磁性粉としては、サマリウムコバルト、サマリウムコバルトのコバルト成分を銅、鉄、チタン、ジルコニウム、ハフニウム、ニオブ、タンタル等で置換した希土類コバルト磁石、ネオジウム- 鉄-ホウ素磁石等が挙げられる。これらは1種又は2種以上を用いることができる。
[Magnetic material resin composite material containing polyamide resin composition and magnetic powder]
The polyamide resin composition can be used as a magnetic material resin composite material by blending with the magnetic powder.
The magnetic powder is not particularly limited as long as it is a known magnetic powder that has a function of imparting magnetism and can be used for plastic magnets. For example, ferrite-based magnetic powder, alnico-based magnetic powder, rare earth magnetic powder, etc. Can be mentioned. Examples of the ferrite-based magnetic powder include barium-ferrium-based magnetic powder such as iron oxide and barium carbonate, and strontium-based magnetic powder such as iron oxide and strontium carbonate. Examples of the alnico-based magnetic powder include alnico made of nickel, aluminum, cobalt, and copper, alnico made of nickel, aluminum, cobalt, copper, and titanium. Examples of the rare earth magnetic powder include samarium cobalt, rare earth cobalt magnets in which the cobalt component of samarium cobalt is replaced with copper, iron, titanium, zirconium, hafnium, niobium, tantalum and the like, neodium-iron-boron magnets and the like. These can be used alone or in combination of two or more.
 磁性粉末の平均粒径は、0 .1~300μmであることが好ましく、0.1 ~ 200μmであることがより好ましく、0 .5 ~ 100μm であることがさらに好ましい。磁性粉末の平均粒径が、前記の値を超えると、磁性材樹脂複合材料の流動性や成形体の機械的強度が低下する場合がある。
 磁性粉末の配合量は、磁性材樹脂複合材料全体に対して、50~98質量% であることが好ましく、65~97質量% であることがより好ましく、70~95質量% であることがさらに好ましい。
The average particle size of the magnetic powder is 0. It is preferably 1 to 300 μm, more preferably 0.1 to 200 μm, and 0. It is more preferably 5 to 100 μm. If the average particle size of the magnetic powder exceeds the above value, the fluidity of the magnetic resin composite material and the mechanical strength of the molded body may decrease.
The blending amount of the magnetic powder is preferably 50 to 98% by mass, more preferably 65 to 97% by mass, and further preferably 70 to 95% by mass with respect to the entire magnetic material resin composite material. preferable.
 配合量が前記の値未満であると、残留磁束密度が低く、永久磁石用途としての実用性は小さいうえに、樹脂の流動特性に対する効果が小さくなる場合がある。一方、前記の値を超えると磁場配向性に劣り、樹脂成分の減少に伴う残留磁束密度の向上が見られない上に樹脂量が少ないため、流動性が劣り、これが混練及び成形工程にて充填不良等のトラブルを惹起させ、実用性に欠ける場合がある。 If the blending amount is less than the above value, the residual magnetic flux density is low, the practicality as a permanent magnet application is small, and the effect on the flow characteristics of the resin may be small. On the other hand, if it exceeds the above value, the magnetic field orientation is inferior, the residual magnetic flux density is not improved due to the decrease in the resin component, and the amount of resin is small, so that the fluidity is inferior. It may cause troubles such as defects and lack practicality.
 磁性粉末は、ポリアミド樹脂組成物に配合した際の分散性又は密着性を改良するために、磁性粉末をカップリング剤や表面改質剤であらかじめ処理してもよい。カップリング剤又は表面改質剤として、シラン系、チタネート系、アルミニウム系、亜リン酸エステルその他の有機リン化合物系、クロム系、メタクリレート系等の慣用のカップリング剤又は表面改質剤を使用できる。これらの種類は、バインダーとして用いる樹脂の種類により適宜最適なものを選択される。これらの中でも、ポリアミド樹脂との相溶性を高めるため、アミノ基含有シラン系化合物、チタネート系化合物であることがより好ましい。これらに加えて、添加剤として滑剤や安定剤等を使用し、磁性材樹脂複合材料の流動性、成形加工性や磁気特性を改良することも可能である。 The magnetic powder may be treated in advance with a coupling agent or a surface modifier in order to improve the dispersibility or adhesion when blended in the polyamide resin composition. As the coupling agent or surface modifier, conventional coupling agents or surface modifiers such as silane-based, titanate-based, aluminum-based, phosphite ester and other organic phosphorus compound-based, chromium-based, and methacrylate-based agents can be used. .. The optimum type of these is appropriately selected depending on the type of resin used as the binder. Among these, amino group-containing silane-based compounds and titanate-based compounds are more preferable in order to enhance compatibility with polyamide resins. In addition to these, it is also possible to use a lubricant, a stabilizer, or the like as an additive to improve the fluidity, molding processability, and magnetic properties of the magnetic resin composite material.
 磁性材樹脂複合材料は、本発明の目的を損なわない範囲で、前記成分以外の、染料、顔料、繊維状補強物、粒子状補強物、可塑剤、酸化防止剤、耐熱剤、発泡剤、耐候剤、結晶核剤、結晶化促進剤、離型剤、滑剤、安定剤、帯電防止剤、難燃剤、難燃助剤、着色剤等の機能性付与剤等を適宜含有していてもよい。 The magnetic resin composite material is a dye, a pigment, a fibrous reinforcing material, a particulate reinforcing material, a plasticizer, an antioxidant, a heat resistant agent, a foaming agent, and a weather resistant material other than the above-mentioned components, as long as the object of the present invention is not impaired. It may appropriately contain a functionalizing agent such as an agent, a crystal nucleating agent, a crystallization accelerator, a mold release agent, a lubricant, a stabilizer, an antistatic agent, a flame retardant, a flame retardant aid, and a coloring agent.
(磁性材樹脂複合材料の製造方法)
 磁性材樹脂複合材料は、ポリアミド樹脂組成物と磁性粉末とを、混合工程により混合し、さらに混練工程を経て製造される。また、ポリアミド樹脂組成物の各成分と磁性粉末とを直接混合工程により混合し、さらに混練工程を経て製造される。
 混合工程にて、磁性粉末と、ポリアミド樹脂組成物又はポリアミド樹脂組成物の各成分と、必要に応じて各種添加剤とを配合し、公知の方法で混合する。混合工程は、後記混練工程の前に行うことが好ましい。また、混合時に溶媒を使用する事は、カップリング剤及び滑剤を使用する際、均一に添加する意味で有効な手段となるが、必ずしも必要ではない。混合機は特に限定されるものではなく、リボンミキサー、V 型ミキサー、ロータリーミキサー、ヘンシェルミキサー、フラッシュミキサー、ナウタミキサー、タンブラー等が挙げられる。また、回転ボールミル、振動ボールミル、遊星ボールミル、ウエットミル、ジェツトミル、ハンマーミル、カッターミル等を用いて、添加、粉砕混合をする方法も有効である。
(Manufacturing method of magnetic material resin composite material)
The magnetic material resin composite material is produced by mixing a polyamide resin composition and a magnetic powder in a mixing step, and further through a kneading step. Further, each component of the polyamide resin composition and the magnetic powder are directly mixed by a mixing step, and further manufactured through a kneading step.
In the mixing step, the magnetic powder, each component of the polyamide resin composition or the polyamide resin composition, and various additives, if necessary, are mixed and mixed by a known method. The mixing step is preferably performed before the kneading step described later. Further, the use of a solvent at the time of mixing is an effective means in terms of uniformly adding the coupling agent and the lubricant, but it is not always necessary. The mixer is not particularly limited, and examples thereof include a ribbon mixer, a V-type mixer, a rotary mixer, a Henschel mixer, a flash mixer, a Nauta mixer, and a tumbler. Further, it is also effective to add and grind and mix using a rotary ball mill, a vibrating ball mill, a planetary ball mill, a wet mill, a jet mill, a hammer mill, a cutter mill and the like.
 その際、磁性材樹脂複合体成形用ポリアミド樹脂組成物の形状は、ペレット、ビーズ、パウダー、ペースト状等、いずれでも良いが、混合物の均質性を高める意味で、粒度の細かい形態が望ましい。 At that time, the shape of the polyamide resin composition for molding the magnetic resin composite may be any of pellets, beads, powder, paste, etc., but a fine particle size is desirable in order to improve the homogeneity of the mixture.
 混練工程は、混合した磁性粉末、ポリアミド樹脂組成物及び任意の各種添加剤を、又は混合した磁性粉末、ポリアミド樹脂組成物の各成分及び任意の各種添加剤を、ブラベンダー等のバッチ式ニーダー、バンバリーミキサー、ヘンシェルミキサー、ヘリカルローター、ロール、一軸押出機、二軸押出機等を用いて50~400 ℃ の温度領域で混練する工程である。混練温度は、一般にポリアミド樹脂が溶融し、分解しない温度領域から選ばれる。混練物は、ストランドやシート状に押し出した後カッティング或いは、ホットカット、アンダーウオーターカット、もしくは冷却固化したブロック状の物を粉砕機にかける、といった方法でペレット状態やパウダー状態にして成形に供される。こうして磁性材樹脂複合材料を得ることができる。 In the kneading step, a mixed magnetic powder, a polyamide resin composition and any various additives are used, or a mixed magnetic powder, each component of the polyamide resin composition and any various additives are used in a batch kneader such as a brabender. This is a step of kneading in a temperature range of 50 to 400 ° C. using a Banbury mixer, a Henshell mixer, a helical rotor, a roll, a single-screw extruder, a twin-screw extruder, or the like. The kneading temperature is generally selected from a temperature range in which the polyamide resin melts and does not decompose. The kneaded product is extruded into a strand or sheet and then cut, hot-cut, underwater-cut, or a block-shaped material that has been cooled and solidified is crushed into pellets or powder. To. In this way, a magnetic material resin composite material can be obtained.
(磁性材樹脂複合材料の成形品及びその用途)
 混練工程で得られた磁性材樹脂複合材料から、磁性材樹脂複合材料の成形品を得るためには、更に成形加工処理を施す成形工程を行なう 。混合物を溶融混練しながらそのまま所望の形状に成形する一段成形法、混練工程の後、磁場をかけながら、射出成形、押出成形、圧縮成形等の慣用の方法により成形する成形工程を行なう二段成形法のどちらでも製造可能である。
 中でも高い磁気特性をもつ磁性材樹脂複合材料の成形品を製造する方法として、ペレット或いはパウダー状の磁性材樹脂複合材料を加熱溶融し、必要に応じ磁場をかけながら、射出成形、押出成形、圧縮成形する方法が挙げられる。押出成形の場合には、混練と共に行うこともできる。これらの成形法のなかで、特に射出成形法は、表面平滑性及び磁気特性に優れた磁性材樹脂複合体が得られることから有用性が大きい。射出成形、押出成形については、ポリアミド樹脂組成物の項で述べた内容が参照される。成形温度は、前記混練温度と同様である。
(Molded products of magnetic resin composite materials and their uses)
In order to obtain a molded product of the magnetic material resin composite material from the magnetic material resin composite material obtained in the kneading step, a molding process of further performing a molding process is performed. A one-step molding method in which the mixture is melt-kneaded and molded into a desired shape as it is, and a two-step molding in which a molding step is performed by a conventional method such as injection molding, extrusion molding, or compression molding while applying a magnetic field after the kneading step. It can be manufactured by either method.
Among them, as a method for producing a molded product of a magnetic material resin composite material having high magnetic properties, a pellet or powdery magnetic material resin composite material is heated and melted, and injection molding, extrusion molding, and compression are performed while applying a magnetic field as necessary. A method of molding can be mentioned. In the case of extrusion molding, it can also be performed together with kneading. Among these molding methods, the injection molding method is particularly useful because it can obtain a magnetic material resin composite having excellent surface smoothness and magnetic properties. For injection molding and extrusion molding, the contents described in the section of polyamide resin composition are referred to. The molding temperature is the same as the kneading temperature.
 成形品は、通常さらに着磁を行って、永久磁石としての性能を高める。着磁は通常行われる方法、例えば静磁場を発生する電磁石、パルス磁場を発生するコンデンサー着磁機等によって行われる。このときの磁場強度は、15kOe以上であることが好ましく、30kOe以上であることがより好ましい。 Molded products are usually further magnetized to improve their performance as permanent magnets. Magnetization is performed by a method usually performed, for example, an electromagnet that generates a static magnetic field, a condenser magnetizer that generates a pulse magnetic field, or the like. The magnetic field strength at this time is preferably 15 kOe or more, and more preferably 30 kOe or more.
 磁性材樹脂複合材料の成形品は、電磁機器、車載用電磁機器(電動機、発電機等)、玩具、事務機器、音響機器等に用いられる。 Molded products of magnetic resin composite materials are used for electromagnetic equipment, in-vehicle electromagnetic equipment (motors, generators, etc.), toys, office equipment, audio equipment, etc.
 以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
 実施例の測定値は、以下の測定方法で測定した値である。
<密度>
 各成分の密度に含有量(質量%)を乗じ、それらの和を求めたものである。各成分の密度はISO1183-3に準拠し測定した。
The measured values of the examples are the values measured by the following measuring methods.
<Density>
The density of each component is multiplied by the content (% by mass) to obtain the sum of them. The density of each component was measured according to ISO1183-3.
<MFR>
 ポリアミド樹脂組成物のMFR(メルトフローレート)は、ISO 1133に準拠して190℃、1.00kgの荷重で測定した。
得られたMFRの測定結果から、成形加工性を以下の基準で評価した。
◎:MFRが7g/10分以上15g/10分未満。
〇:MFRが4g/10分以上~7g/10分未満。
×:MFRが4g/10分未満又は15g/10分以上。 
<MFR>
The MFR (melt flow rate) of the polyamide resin composition was measured at 190 ° C. with a load of 1.00 kg in accordance with ISO 1133.
From the obtained MFR measurement results, the molding processability was evaluated according to the following criteria.
⊚: MFR is 7 g / 10 minutes or more and less than 15 g / 10 minutes.
〇: MFR is 4 g / 10 minutes or more and less than 7 g / 10 minutes.
X: MFR is less than 4 g / 10 minutes or 15 g / 10 minutes or more.
≪機械特性の評価≫
 下記1~3の機械特性の評価の全てが、〇又は◎のいずれかである場合は、成形品のクラック発生を抑制することが期待できる。
≪Evaluation of mechanical characteristics≫
When all of the evaluations of the mechanical properties 1 to 3 below are ◯ or ⊚, it can be expected to suppress the occurrence of cracks in the molded product.
1.強靭性
<引張降伏応力、引張降伏ひずみ、引張破壊呼びひずみ及び引張弾性率>
 ISO527-2/1A/50に準じて、島津製作所製自動伸び計AGX-AT/SIE-560SAを使用して、試験片(試験片の大きさ:10×170×4mm)の引張降伏応力及び引張降伏ひずみを、23℃、相対湿度50%RH、試験速度50mm/分で測定した。
 得られた引張降伏応力の測定結果から、強靭性を以下の基準で評価した。
◎:引張降伏応力が35MPa以上。
〇:引張降伏応力が32MPa以上35MPa未満。
×:引張降伏応力が32MPa未満。
 得られた引張降伏ひずみの測定結果から、強靭性を以下の基準で評価した。
◎:引張降伏ひずみが9%以上。
〇:引張降伏ひずみが7%以上9%未満。
×:引張降伏ひずみが7%未満。
 得られた引張破壊呼びひずみの測定結果から、強靭性を以下の基準で評価した。
◎:引張破壊呼びひずみが20%以上。
〇:引張破壊呼びひずみが14%以上20%未満。
×:引張破壊呼びひずみが14%未満。
 得られた引張弾性率の測定結果から、強靭性を以下の基準で評価した。
◎:引張弾性率が1100MPa以上。
〇:引張弾性率が1000MPa以上1100MPa未満。
×:引張弾性率が1000MPa未満。
1. 1. Toughness <Tensile yield stress, tensile yield strain, tensile fracture nominal strain and tensile modulus>
Tensile yield stress and tensile of test piece (test piece size: 10 x 170 x 4 mm) using Shimadzu automatic extensometer AGX-AT / SIE-560SA according to ISO527-2 / 1A / 50. Yield strain was measured at 23 ° C., relative humidity 50% RH, and test speed 50 mm / min.
From the measurement results of the obtained tensile yield stress, the toughness was evaluated according to the following criteria.
⊚: Tension yield stress is 35 MPa or more.
〇: The tensile yield stress is 32 MPa or more and less than 35 MPa.
X: The tensile yield stress is less than 32 MPa.
From the measurement results of the obtained tensile yield strain, the toughness was evaluated according to the following criteria.
⊚: Tension yield strain is 9% or more.
〇: Tensile yield strain is 7% or more and less than 9%.
X: The tensile yield strain is less than 7%.
From the obtained measurement results of tensile fracture nominal strain, toughness was evaluated according to the following criteria.
⊚: Tensile fracture nominal strain is 20% or more.
〇: Tensile fracture nominal strain is 14% or more and less than 20%.
X: Tensile fracture nominal strain is less than 14%.
From the obtained measurement results of tensile elastic modulus, toughness was evaluated according to the following criteria.
⊚: The tensile elastic modulus is 1100 MPa or more.
〇: The tensile elastic modulus is 1000 MPa or more and less than 1100 MPa.
X: The tensile elastic modulus is less than 1000 MPa.
2.柔軟性
<曲げ強さ及び曲げ弾性率>
 ISO178に準じて、島津製作所製全自動曲げ試験機AGX-AT/SIE-560SAを使用して、三点曲げモードでの試験片(試験片の大きさ:10×80×4mm)の最大曲げ強さ及び曲げ弾性率を、23℃、相対湿度50%RH、試験速度2mm/分で測定した。
 得られた曲げ強さの測定結果から、柔軟性を以下の基準で評価した。
◎:曲げ強さが45MPa以上。
〇:曲げ強さが39MPa以上45MPa未満。
×:曲げ強さが39MPa未満。
 得られた曲げ弾性率の測定結果から、柔軟性を以下の基準で評価した。
◎:曲げ弾性率が1100MPa以上。
〇:曲げ弾性率が1000MPa以上1100MPa未満。
×:曲げ弾性率が1000MPa未満。
2. 2. Flexibility <Flexural strength and flexural modulus>
Maximum bending strength of the test piece (test piece size: 10 x 80 x 4 mm) in the three-point bending mode using the fully automatic bending tester AGX-AT / SIE-560SA manufactured by Shimadzu Corporation in accordance with ISO178. The flexural modulus and flexural modulus were measured at 23 ° C., a relative humidity of 50% RH, and a test speed of 2 mm / min.
From the obtained measurement results of bending strength, flexibility was evaluated according to the following criteria.
⊚: Bending strength is 45 MPa or more.
〇: Flexural strength is 39 MPa or more and less than 45 MPa.
X: Flexural strength is less than 39 MPa.
From the obtained measurement results of flexural modulus, flexibility was evaluated according to the following criteria.
⊚: Bending elastic modulus is 1100 MPa or more.
〇: The flexural modulus is 1000 MPa or more and less than 1100 MPa.
X: The flexural modulus is less than 1000 MPa.
3.耐衝撃性
<シャルピー衝撃強さ>
 ISO179-1/1eAに準じて、安田精機製万能衝撃試験機No.141-PCを用いて、23℃及び-40℃において、Aノッチ入り厚み4mmの試験片(10×80×4mm)を用いてエッジワイズ衝撃試験を行った(n=10)。表1中、「C」は、完全破壊の意味である。
 得られた23℃のシャルピー衝撃強さの測定結果から、耐衝撃性を以下の基準で評価した。
◎:シャルピー衝撃強さが5kJ/m以上。
〇:シャルピー衝撃強さが4kJ/m以上5kJ/m未満。
×:シャルピー衝撃強さが4kJ/m未満。
 得られた-40℃のシャルピー衝撃強さの測定結果から、耐衝撃性を以下の基準で評価した。
◎:シャルピー衝撃強さが3kJ/m以上。
〇:シャルピー衝撃強さが2kJ/m以上3kJ/m未満。
×:シャルピー衝撃強さが2kJ/m未満。
3. 3. Impact resistance <Charpy impact strength>
According to ISO179-1 / 1eA, Yasuda Seiki's universal impact tester No. An edgewise impact test was performed using a 141-PC at 23 ° C. and −40 ° C. using a test piece (10 × 80 × 4 mm) having an A notch and a thickness of 4 mm (n = 10). In Table 1, "C" means complete destruction.
From the obtained measurement results of Charpy impact strength at 23 ° C, the impact resistance was evaluated according to the following criteria.
⊚: Charpy impact strength is 5 kJ / m 2 or more.
〇: Charpy impact strength is 4 kJ / m 2 or more and less than 5 kJ / m 2 .
X: Charpy impact strength is less than 4 kJ / m 2 .
From the obtained measurement results of Charpy impact strength at −40 ° C., the impact resistance was evaluated according to the following criteria.
⊚: Charpy impact strength is 3 kJ / m 2 or more.
〇: Charpy impact strength is 2 kJ / m 2 or more and less than 3 kJ / m 2 .
X: Charpy impact strength is less than 2 kJ / m 2 .
[製造例1:ポリアミド系エラストマーの製造]
 攪拌機、温度計、トルクメーター、圧力計、窒素ガス導入口、圧力調整装置及びポリマー取り出し口を備えた容量70リットルの圧力容器に、12-アミノドデカン酸(宇部興産株式会社製)8.00kg、アジピン酸(旭化成ケミカルズ株式会社製)1.49kg、上記式(3)(x=3、y=9、z=2)で表されるXYX型のトリブロックポリエーテルジアミン(HUNTSMAN社製、商品名:ELASTAMINE RT-1000)10.51kg、ヒンダードフェノール系酸化防止剤(BASFジャパン社製、商品名:イルガノックス(登録商標)245)0.06kg、及び次亜リン酸ナトリウム(太平化学産業株式会社製)0.03kgを仕込んだ。容器内を十分窒素置換したあと、1時間かけて室温から230℃まで昇温し重合を行った。
[Manufacturing Example 1: Production of Polyamide-based Elastomer]
12-Aminododecanoic acid (manufactured by Ube Kosan Co., Ltd.) 8.00 kg in a pressure container with a capacity of 70 liters equipped with a stirrer, thermometer, torque meter, pressure gauge, nitrogen gas inlet, pressure regulator and polymer outlet. Adipic acid (manufactured by Asahi Kasei Chemicals Co., Ltd.) 1.49 kg, XYX type triblock polyetherdiamine (manufactured by HUNTSMAN, trade name) represented by the above formula (3) (x = 3, y = 9, z = 2). : ELASTAMINE RT-1000) 10.51 kg, hindered phenolic antioxidant (manufactured by BASF Japan, trade name: Irganox (registered trademark) 245) 0.06 kg, and sodium hypophosphite (Taipei Chemical Industry Co., Ltd.) (Made) 0.03 kg was charged. After sufficiently replacing the inside of the container with nitrogen, the temperature was raised from room temperature to 230 ° C. over 1 hour to carry out polymerization.
[実施例1~11、比較例1~6]
 表1に記載した各成分をブレンダーにて10分間ブレンドし、各ブレンド組成物を得た。得られた各ブレンド組成物から、住友重機械工業製住友SG75射出成形機を使用して、上記機械特性の評価に用いる試験片を作製した。実施例1および実施例4~11の試験片は、射出成形機のシリンダー温度を250℃に設定し、実施例2および実施例3の試験片は、シリンダー温度を270℃に設定することにより試験片を作製した。比較例1については、シリンダー温度を210℃に設定し、比較例2~6はシリンダー温度を250℃に設定した。物性及び機械特性評価の結果を表1に示す。
 なお、表中の組成の単位は質量%であり、ポリアミド樹脂組成物全体を100質量%とする。
[Examples 1 to 11, Comparative Examples 1 to 6]
Each component listed in Table 1 was blended with a blender for 10 minutes to obtain each blend composition. From each of the obtained blend compositions, a test piece used for evaluating the above mechanical properties was prepared using a Sumitomo SG75 injection molding machine manufactured by Sumitomo Heavy Industries, Ltd. The test pieces of Examples 1 and 4 to 11 are tested by setting the cylinder temperature of the injection molding machine to 250 ° C., and the test pieces of Examples 2 and 3 are tested by setting the cylinder temperature to 270 ° C. Pieces were made. For Comparative Example 1, the cylinder temperature was set to 210 ° C., and for Comparative Examples 2 to 6, the cylinder temperature was set to 250 ° C. Table 1 shows the results of evaluation of physical properties and mechanical properties.
The unit of the composition in the table is mass%, and the entire polyamide resin composition is 100% by mass.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 実施例及び比較例で使用した材料は以下の通りである。
ポリアミド系エラストマー(A)
製造例1で製造したポリアミド系エラストマー(相対粘度:1.83)
脂肪族ポリアミド樹脂(B)
ポリアミド12(PA12):宇部興産株式会社製(相対粘度:1.60)
ポリアミド6/12(PA6/12=25/75質量比):宇部興産株式会社製(相対粘度:1.72)
脂肪族ポリアミド樹脂(D)
ポリアミド6(PA6):宇部興産株式会社製(相対粘度:2.47)
なお、上記ポリアミド樹脂(B)および(D)の相対粘度は、JIS K 6933に準拠し、ポリアミド樹脂1gを96%濃硫酸100mlに溶解させ、25℃で測定した値である。上記ポリアミド系エラストマー(A)の相対粘度は、JIS K 6920-2に準拠し、ポリアミド系エラストマー0.25gを試薬特級品のm-クレゾール50mlに溶解させ、25℃で測定した値である。
芳香族ポリアミド樹脂(C)
ポリアミド6T/6I(PA6T/6I):EMS-CHEMIE(Japan)株式会社製、製品名「Grivory(登録商標) G21」)
The materials used in the examples and comparative examples are as follows.
Polyamide-based elastomer (A)
Polyamide-based elastomer produced in Production Example 1 (relative viscosity: 1.83)
Aliphatic polyamide resin (B)
Polyamide 12 (PA12): manufactured by Ube Corporation (relative viscosity: 1.60)
Polyamide 6/12 (PA6 / 12 = 25/75 mass ratio): manufactured by Ube Kosan Co., Ltd. (relative viscosity: 1.72)
Aliphatic polyamide resin (D)
Polyamide 6 (PA6): manufactured by Ube Kosan Co., Ltd. (relative viscosity: 2.47)
The relative viscosities of the polyamide resins (B) and (D) are based on JIS K 6933, and are values measured at 25 ° C. with 1 g of the polyamide resin dissolved in 100 ml of 96% concentrated sulfuric acid. The relative viscosity of the above-mentioned polyamide-based elastomer (A) is a value measured at 25 ° C. in accordance with JIS K 6920-2 by dissolving 0.25 g of the polyamide-based elastomer in 50 ml of m-cresol, which is a special grade reagent.
Aromatic polyamide resin (C)
Polyamide 6T / 6I (PA6T / 6I): EMS-CHEMIE (Japan) Co., Ltd., product name "Grivory (registered trademark) G21")
 表1から、実施例1~11のポリアミド樹脂組成物は、成形加工性、強靭性、柔軟性及び耐衝撃性を兼ね備えることがわかる。
 比較例1は、ポリアミド系エラストマー(A)及び芳香族ポリアミド(C)を含まないため、引張降伏応力、引張破壊呼びひずみ及び引張弾性率は高いが、引張降伏ひずみ及び23℃でのシャルピー衝撃強さは低いため、破断しやすく、強靭性に欠ける。また、成形加工性も劣る。
 比較例2は、ポリアミド系エラストマー(A)の量が、本願発明の範囲よりも少ないため、引張破壊呼びひずみ、シャルピー衝撃強さの値が悪く、耐衝撃性に欠けることが分かる。
 比較例3は、脂肪族ポリアミド樹脂(B)の量が、本願発明の範囲よりも少ないため、引張降伏応力の値が低く、強靭性に欠ける。
 比較例4は、ポリアミド系エラストマー(A)の量が、本願発明の範囲よりも多いため、引張降伏応力、引張弾性率、曲げ強さ及び曲げ弾性率が低く、強靭性に欠けるとともに、柔軟性に欠ける。
 比較例5は、脂肪族ポリアミド樹脂(B)の量が、本願発明の範囲よりも多いため、23℃におけるシャルピー衝撃強さの値が悪く、耐衝撃性に欠けることが分かる。
 比較例6は、ポリアミド系エラストマー(A)の量が、本願発明の範囲よりも少なく、芳香族ポリアミド(C)の量が多いため、MFR、引張降伏ひずみ、引張破壊呼びひずみ、シャルピー衝撃強さの値が悪く、成形加工性、強靭性、及び耐衝撃性に欠けることが分かる。
 
From Table 1, it can be seen that the polyamide resin compositions of Examples 1 to 11 have molding processability, toughness, flexibility and impact resistance.
Since Comparative Example 1 does not contain the polyamide-based elastomer (A) and the aromatic polyamide (C), the tensile yield stress, the tensile fracture nominal strain and the tensile elastic modulus are high, but the tensile yield strain and the Charpy impact strength at 23 ° C. Since it is low, it is easily broken and lacks toughness. In addition, the molding processability is also inferior.
In Comparative Example 2, since the amount of the polyamide-based elastomer (A) is smaller than the range of the present invention, it can be seen that the values of tensile fracture nominal strain and Charpy impact strength are poor and the impact resistance is poor.
In Comparative Example 3, since the amount of the aliphatic polyamide resin (B) is smaller than the range of the present invention, the value of the tensile yield stress is low and the toughness is lacking.
In Comparative Example 4, since the amount of the polyamide-based elastomer (A) is larger than the range of the present invention, the tensile yield stress, the tensile elastic modulus, the bending strength and the bending elastic modulus are low, and the toughness is lacking and the flexibility is obtained. Lacking.
In Comparative Example 5, since the amount of the aliphatic polyamide resin (B) is larger than the range of the present invention, it can be seen that the value of Charpy impact strength at 23 ° C. is poor and the impact resistance is lacking.
In Comparative Example 6, since the amount of the polyamide-based elastomer (A) is smaller than the range of the present invention and the amount of the aromatic polyamide (C) is large, MFR, tensile yield strain, tensile fracture nominal strain, and Charpy impact strength. It can be seen that the value of is poor and the molding processability, toughness, and impact resistance are lacking.

Claims (8)

  1. ポリアミド樹脂組成物100質量%中、ポリアミド系エラストマー(A)15~35質量%、アミド基1個に対する平均炭素原子数が6超である脂肪族ポリアミド樹脂(B)40~79質量%、芳香族ポリアミド樹脂(C)0.1~35質量%及びアミド基1個に対する平均炭素原子数が6以下である脂肪族ポリアミド樹脂(D)0~10質量%を含むポリアミド樹脂組成物。 In 100% by mass of the polyamide resin composition, 15 to 35% by mass of the polyamide-based elastomer (A), 40 to 79% by mass of the aliphatic polyamide resin (B) having an average carbon atom number of more than 6 per amide group, aromatic. A polyamide resin composition containing 0.1 to 35% by mass of the polyamide resin (C) and 0 to 10% by mass of the aliphatic polyamide resin (D) having an average carbon atom number of 6 or less per amide group.
  2. ポリアミド系エラストマー(A)が、ポリエーテル構造を有する請求項1に記載のポリアミド樹脂組成物。 The polyamide resin composition according to claim 1, wherein the polyamide-based elastomer (A) has a polyether structure.
  3. 密度が、1.02g/cm以上である請求項1又は2に記載のポリアミド樹脂組成物。 The polyamide resin composition according to claim 1 or 2, wherein the density is 1.02 g / cm 3 or more.
  4. ISO 1133に準拠して190℃、1.00kgの荷重で測定したMFRが15g/10分未満である請求項1~3のいずれか1項に記載のポリアミド樹脂組成物。 The polyamide resin composition according to any one of claims 1 to 3, wherein the MFR measured at 190 ° C. and a load of 1.00 kg in accordance with ISO 1133 is less than 15 g / 10 minutes.
  5. ポリアミド系エラストマー(A)が、下記式(1)で表されるアミノカルボン酸化合物及び/又は下記式(2)で表されるラクタム化合物に由来する構成単位、下記式(3)で表されるXYX型トリブロックポリエーテルジアミン化合物に由来する構成単位、並びに下記式(4)で表されるジカルボン酸化合物に由来する構成単位を含む重合体である請求項1~4のいずれか1項に記載のポリアミド樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    [但し、Rは、炭化水素鎖を含む連結基を表す。]
    Figure JPOXMLDOC01-appb-C000002

    [但し、Rは、炭化水素鎖を含む連結基を表す。]
    Figure JPOXMLDOC01-appb-C000003

    [但し、xは1~20の整数、yは4~50の整数、zは1~20の整数を表す。]
    Figure JPOXMLDOC01-appb-C000004

    [但し、Rは、炭化水素鎖を含む連結基を表し、mは0または1である。]
    The polyamide-based polymer (A) is represented by the following formula (3), which is a structural unit derived from the aminocarboxylic acid compound represented by the following formula (1) and / or the lactam compound represented by the following formula (2). The invention according to any one of claims 1 to 4, which is a polymer containing a structural unit derived from an XYX-type triblock polyether diamine compound and a structural unit derived from a dicarboxylic acid compound represented by the following formula (4). Polyamide resin composition.
    Figure JPOXMLDOC01-appb-C000001

    [However, R 1 represents a linking group containing a hydrocarbon chain. ]
    Figure JPOXMLDOC01-appb-C000002

    [However, R 2 represents a linking group containing a hydrocarbon chain. ]
    Figure JPOXMLDOC01-appb-C000003

    [However, x represents an integer of 1 to 20, y represents an integer of 4 to 50, and z represents an integer of 1 to 20. ]
    Figure JPOXMLDOC01-appb-C000004

    [However, R 3 represents a linking group containing a hydrocarbon chain, and m is 0 or 1. ]
  6. 請求項1~5のいずれか1項に記載のポリアミド樹脂組成物の成形品。 The molded product of the polyamide resin composition according to any one of claims 1 to 5.
  7. 請求項1~5のいずれか1項に記載のポリアミド樹脂組成物と磁性粉末とを含む磁性材樹脂複合材料。 A magnetic material resin composite material containing the polyamide resin composition according to any one of claims 1 to 5 and a magnetic powder.
  8. 請求項7の磁性材樹脂複合材料の成形品。 A molded product of the magnetic material resin composite material of claim 7.
PCT/JP2021/036150 2020-10-05 2021-09-30 Polyamide resin composition WO2022075180A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022555419A JPWO2022075180A1 (en) 2020-10-05 2021-09-30
CN202180067512.8A CN116323759A (en) 2020-10-05 2021-09-30 Polyamide resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-168497 2020-10-05
JP2020168497 2020-10-05

Publications (1)

Publication Number Publication Date
WO2022075180A1 true WO2022075180A1 (en) 2022-04-14

Family

ID=81126857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036150 WO2022075180A1 (en) 2020-10-05 2021-09-30 Polyamide resin composition

Country Status (3)

Country Link
JP (1) JPWO2022075180A1 (en)
CN (1) CN116323759A (en)
WO (1) WO2022075180A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181711A1 (en) * 2022-03-23 2023-09-28 Ube株式会社 Polyamide resin composition, magnetic material resin composite material and molded article thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000248085A (en) * 1999-03-02 2000-09-12 Toyobo Co Ltd Polyamide film
JP2004352792A (en) * 2003-05-27 2004-12-16 Ube Ind Ltd Nylon resin composition, resin magnet and resin magnet part
WO2008123450A1 (en) * 2007-03-30 2008-10-16 Ube Industries, Ltd. Resin composition and molded article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000248085A (en) * 1999-03-02 2000-09-12 Toyobo Co Ltd Polyamide film
JP2004352792A (en) * 2003-05-27 2004-12-16 Ube Ind Ltd Nylon resin composition, resin magnet and resin magnet part
WO2008123450A1 (en) * 2007-03-30 2008-10-16 Ube Industries, Ltd. Resin composition and molded article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181711A1 (en) * 2022-03-23 2023-09-28 Ube株式会社 Polyamide resin composition, magnetic material resin composite material and molded article thereof

Also Published As

Publication number Publication date
JPWO2022075180A1 (en) 2022-04-14
CN116323759A (en) 2023-06-23

Similar Documents

Publication Publication Date Title
JP5722018B2 (en) Semi-aromatic molding composition and method of use
TWI615418B (en) Flame retardant polyamide resin composition
US20200317867A1 (en) Material for fused deposition modeling 3d printer and filament for fused deposition modeling 3d printer using the same
KR102516069B1 (en) Filled composition containing polyphenylene sulfide (PPS) and polyamide 6 (PA6)
JP2006002156A (en) Polymer mixture of aromatic polyamide and partial aromatic polyamide, its molded item and its use
JP2004352794A (en) Polyamide composition
KR100996397B1 (en) High-fluidity polyamide
EP3162855A1 (en) Polyamide resin composition and molded article comprising same
KR20160086862A (en) Polyamide composition
JP6507949B2 (en) Polyamide resin composition and molded article
EP3674345A1 (en) Polyamide resin composition and article comprising the same
JP6739143B2 (en) Tube connector based on polyamide composition
WO2022075180A1 (en) Polyamide resin composition
JP4106654B2 (en) Resin composition
EP3587472A1 (en) Amorphous polyamide resin and molded article
US20090264588A1 (en) Modified Polyamides Having Enchanced Flowability/Mechanical Properties and Molding Compositions Comprised Thereof
JP4161801B2 (en) Polyamide resin composition, resin magnet, resin magnet parts
KR101574090B1 (en) Thermoplastic resin composition and molded product including same
CA2299545A1 (en) Polyamide composition for welding
WO2023181711A1 (en) Polyamide resin composition, magnetic material resin composite material and molded article thereof
JP4144430B2 (en) Polyamide resin composition, molded product, resin magnet parts
KR102473867B1 (en) Use of Polyamide 6 (PA6) as Heat-Aging Stabilizer in Polymer Compositions Containing Polyphenylene Sulfide (PPS)
JP4106656B2 (en) Flame retardant-containing resin composition and molded article
JP2022149860A (en) Polyamide elastomer composition and molded article of the same
JP2023089326A (en) Polyamide resin composition and molding containing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877481

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555419

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877481

Country of ref document: EP

Kind code of ref document: A1