WO2022075171A1 - 管ガラス、医薬品一次包装容器及びアルカリケイ酸塩ガラス - Google Patents

管ガラス、医薬品一次包装容器及びアルカリケイ酸塩ガラス Download PDF

Info

Publication number
WO2022075171A1
WO2022075171A1 PCT/JP2021/036097 JP2021036097W WO2022075171A1 WO 2022075171 A1 WO2022075171 A1 WO 2022075171A1 JP 2021036097 W JP2021036097 W JP 2021036097W WO 2022075171 A1 WO2022075171 A1 WO 2022075171A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
glass
iso
carried out
elution
Prior art date
Application number
PCT/JP2021/036097
Other languages
English (en)
French (fr)
Inventor
美樹 木村
元太 市野
裕太郎 若井
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to US18/023,825 priority Critical patent/US20240115461A1/en
Priority to CN202180068763.8A priority patent/CN116322598A/zh
Priority to JP2022555414A priority patent/JPWO2022075171A1/ja
Priority to EP21877472.7A priority patent/EP4227274A1/en
Publication of WO2022075171A1 publication Critical patent/WO2022075171A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/078Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/20Compositions for glass with special properties for chemical resistant glass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/05Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/40Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03C2201/42Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn containing titanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/54Doped silica-based glasses containing metals containing beryllium, magnesium or alkaline earth metals

Definitions

  • the present invention relates to tube glass, primary pharmaceutical packaging containers and alkaline silicate glass.
  • borosilicate glass which has high chemical durability and excellent visibility, has been used for primary pharmaceutical packaging containers (glass containers) such as vials and ampoules.
  • Primary pharmaceutical packaging containers such as vials and ampoules are produced by being processed into a container shape and then slowly cooled in a slow cooling furnace heated near the slow cooling point in order to remove residual strain. ..
  • a method of processing into a container shape there is a method of molding the mouth, neck, and bottom while locally heating the tube glass with a burner or the like.
  • evaporation of alkaline borate is generated from the glass surface when the burner is heated, and may be condensed and deposited on the inner surface of the container to form a heterogeneous layer.
  • the formation of this heterogeneous layer significantly reduces the chemical durability and hydrolysis resistance of the glass, and the alkaline component in the glass may elute during storage of the chemical solution, causing a change in pH or deterioration of the chemical solution. It also causes a phenomenon (delamination) in which the foreign layer is peeled off from the inner surface of the container and insoluble foreign matter called flakes is generated in the chemical solution.
  • Patent Document 1 proposes to suppress the evaporation of alkaline borate during burning of a burner by removing B 2 O 3 from the glass composition of the glass container.
  • the glass containing no B 2 O 3 has a high high temperature viscosity, the content of Na 2 O that lowers the high temperature viscosity is high.
  • the amount of alkali eluted from the glass increases, which may cause a problem of inducing a change in the pH of the chemical solution. If the pH of the chemical solution changes, the original performance of the chemical solution may not be exhibited.
  • delamination often occurs when a glass container is filled with a chemical solution using a citric acid buffer solution, a phosphate buffer solution, or the like, which behaves like a strong alkaline even in the vicinity of neutrality, and stored. Therefore, the alkali resistance of the glass container is important for suppressing delamination.
  • Alzheimer's disease By the way, in recent years, the number of patients with Alzheimer's disease is increasing. Ingestion of aluminum ions is cited as one of the causes of Alzheimer's disease. When aluminum ions eluted from a glass container are taken up and accumulated in the body, the risk of developing Alzheimer's disease may increase.
  • the aluminum ion eluted from the glass may react with the phosphate buffer solution to generate an insoluble foreign substance.
  • Patent Document 2 proposes borosilicate glass that does not contain Al 2 O 3 in the glass composition in order to suppress the elution of aluminum ions. However, since this glass contains B 2 O 3 in the glass composition, evaporation of the alkaline borate during container processing cannot be sufficiently suppressed.
  • An object of the present invention is to reduce the amount of alkali borate evaporated during burning of a burner, the risk of developing Alzheimer's disease, and to make aluminum ions eluted from glass, which have high alkali resistance and are less likely to cause changes in the pH of the chemical solution. It is an object of the present invention to provide tube glass, primary pharmaceutical packaging container and alkaline silicate glass, which are not likely to generate insoluble foreign matter due to the effect.
  • the present inventor can solve the above-mentioned problems by conducting various experiments, substantially removing B 2 O 3 and Al 2 O 3 from the glass composition, and increasing the alkali resistance to a predetermined level.
  • the tube glass of the present invention is a tube glass made of an alkali silicate glass , and does not substantially contain B2O3 and Al2O3 in the glass composition , and is in ISO 695 ( 199105-15 ). It is characterized in that the mass reduction amount ⁇ (mg / dm 2 ) when the conforming alkali resistance test is carried out is class A1.
  • substantially free of B 2 O 3 and Al 2 O 3 in the glass composition means that the content of B 2 O 3 in the glass composition is 0.5 mol% or less and Al 2 It means that the content of O 3 is 0.5 mol% or less.
  • the "alkali resistance test according to ISO 695 (199105-15)" can be carried out by the method described in the column of Examples.
  • the total cation mass QC (mg / dm 2 ) of the elution component per unit surface area when the elution test with an acidic solution is carried out is preferably 1.6 or less.
  • the total cation mass QC (mg / dm 2 ) of the elution component per unit surface area when the elution test for an acidic solution is carried out can be calculated by the method described in the column of "Measurement of acid resistance". ..
  • the value QO converted assuming that each eluted component is an oxide of each eluted component can also be calculated by the method described in the column of "Measurement of acid resistance", and the QO is preferably 3.1 or less.
  • the hydrochloric acid consumption amount H (mL / g) until the eluate is neutralized when the alkaline component is eluted according to ISO 720 (1985) is ISO 720 (1985). It is preferably class HGA1 or HGA2 in.
  • the "hydrochloric acid consumption until the eluate is neutralized when the alkaline component is eluted according to ISO 720 (1985)" can be measured by the method described in the column of Examples.
  • the tube glass of the present invention has a glass composition of SiO 2 50 to 88%, Li 2 O + Na 2 O + K 2 O 0.1 to 20%, TiO 20 to 20%, ZrO 2 0.005 in mol%. It preferably contains ⁇ 12% and is substantially free of B 2 O 3 and Al 2 O 3 .
  • Li 2 O + Na 2 O + K 2 O means the total amount of Li 2 O, Na 2 O and K 2 O.
  • the tube glass of the present invention preferably has a Na 2 O content of 0 to 20 mol% in the glass composition.
  • the tube glass of the present invention preferably has a K2O content of 0 to 20 mol% in the glass composition.
  • the tube glass of the present invention preferably has a content of MgO + CaO + SrO + BaO in the glass composition of 0.1 to 10 mol%.
  • MgO + CaO + SrO + BaO means the total amount of MgO, CaO, SrO and BaO.
  • the tube glass of the present invention preferably has an optical path length of 1 mm and an average transmittance of 60% or more at a wavelength of 400 to 800 nm.
  • the "average transmittance at an optical path length of 1 mm and a wavelength of 400 to 800 nm" can be measured with a commercially available spectrophotometer.
  • the tube glass of the present invention has ⁇ (hydrochloric acid consumption H when the water resistance test conforming to ISO 720 is carried out) ⁇ 10 + (total elution components per unit surface surface when the elution test with an acidic solution is carried out).
  • Cationic mass QC) ⁇ 10 + mass reduction amount ⁇ when performing an alkali resistance test based on ISO 695) ⁇ , that is, a chemical resistance factor represented by the sum of 10 times H, 10 times QC, and ⁇ .
  • the value is preferably 98.5 or less.
  • the tube glass of the present invention is preferably used for a primary packaging container for pharmaceutical products, an instrument for physics and chemistry, and a corrosion-resistant pipe for a chemical plant.
  • the primary pharmaceutical packaging container of the present invention is a primary pharmaceutical packaging container made by processing a tube glass, and the tube glass is the above-mentioned tube glass.
  • the alkaline silicate glass of the present invention does not substantially contain B 2 O 3 and Al 2 O 3 in the glass composition, and ⁇ (hydrochloric acid consumption H when the water resistance test conforming to ISO 720 is carried out).
  • ⁇ 10+ total cation mass QC of elution components per unit surface area when performing elution test against acidic solution
  • ⁇ 10+ mass reduction amount ⁇ when performing alkali resistance test according to ISO 695) ⁇ , that is, It is characterized in that the chemical resistance factor value represented by the sum of 10 times H, 10 times QC and ⁇ is 98.5 or less.
  • the alkali silicate glass of the present invention has a glass composition of SiO 260 to 88%, K 2 O 0.1 to 20%, CaO 0 to 6.5%, and TiO 2 0.1 in mol%. It contains ⁇ 20% and ZrO 2 0.005 ⁇ 12%, and has a molar ratio of TiO 2 / (Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO) of 0.3 to 3.5 and a molar ratio of K 2 O / ZrO 2 of 0. It is characterized by having 9 or more and substantially free of B 2 O 3 and Al 2 O 3 .
  • Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO means the total amount of Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO and BaO.
  • TiO 2 / (Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO) is the value obtained by dividing the content of TiO 2 by the total amount of Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO and BaO.
  • K 2 O / ZrO 2 means a value obtained by dividing the content of K 2 O by the content of ZrO 2 .
  • the mass reduction amount ⁇ (mg / dm 2 ) when the alkali resistance test based on ISO 695 (199105-15) is carried out is class A1.
  • the total cation mass QC (mg / dm 2 ) of the elution component per unit surface area when the elution test with an acidic solution is carried out is 1.6 or less.
  • the hydrochloric acid consumption amount H (mL / g) until the eluate is neutralized when the alkaline component is eluted according to ISO 720 (1985) is ISO 720. It is preferably class HGA1 or HGA2 in (1985).
  • the "hydrochloric acid consumption until the eluate is neutralized when the alkaline component is eluted according to ISO 720 (1985)" can be measured by the method described in the column of Examples.
  • the alkaline silicate glass of the present invention does not substantially contain B 2 O 3 and Al 2 O 3 in the glass composition, and ⁇ (hydrochloric acid consumption H when the water resistance test conforming to ISO 720 is carried out).
  • ⁇ 10+ total cation mass QC of elution components per unit surface area when performing elution test against acidic solution
  • ⁇ 10+ mass reduction amount ⁇ when performing alkali resistance test according to ISO 695) ⁇ , that is, It is characterized in that the chemical resistance factor value represented by the sum of 10 times H, 10 times QC and ⁇ is 98.5 or less.
  • the alkali silicate glass of the present invention does not substantially contain B 2 O 3 and Al 2 O 3 in the glass composition, and in mol%, SiO 266 % or more and less than 84%, MgO + CaO + SrO + BaO 10% or less, It contains ZrO 2 8.5% or less, and has a molar ratio (Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO) / SiO 2 of 0.4 or less.
  • "Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO” means the total amount of Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO and BaO.
  • (Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO) / SiO 2 means a value obtained by dividing the total amount of Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO and BaO by SiO 2 .
  • the mass reduction amount ⁇ (mg / dm 2 ) when the alkali resistance test based on ISO 695 (199105-15) is carried out is class A1.
  • the total cation mass QC (mg / dm 2 ) of the elution component per unit surface area when the elution test with an acidic solution is carried out is 1.6 or less.
  • the hydrochloric acid consumption amount H (mL / g) until the eluate is neutralized when the alkaline component is eluted according to ISO 720 (1985) is ISO 720. It is preferably class HGA1 or HGA2 in (1985).
  • the "hydrochloric acid consumption until the eluate is neutralized when the alkaline component is eluted according to ISO 720 (1985)" can be measured by the method described in the column of Examples.
  • the alkali silicate glass of the present invention has a glass composition of 266% or more and less than 84%, B 2 O 31% or less, Al 2 O 3 1 % or less, MgO + CaO + SrO + BaO 10% or less, in terms of glass composition. It contains ZrO 2 8.5% or less, and has a molar ratio (Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO) / SiO 2 of 0.4 or less.
  • the alkali silicate glass of the present invention preferably has a mass reduction amount ⁇ (mg / dm 2 ) of class A1 when an alkali resistance test based on ISO 695 (199105-15) is carried out.
  • the total cation mass QC (mg / dm 2 ) of the elution component per unit surface area when the elution test with an acidic solution is carried out is 1.6 or less.
  • the hydrochloric acid consumption amount H (mL / g) until the eluate is neutralized when the alkaline component is eluted according to ISO 720 (1985) is ISO 720. It is preferably class HGA1 or HGA2 in (1985).
  • the tube has high alkali resistance, reduces the amount of alkali borate evaporated when the burner is heated, reduces the risk of developing Alzheimer's disease, and does not generate insoluble foreign matter due to aluminum ions eluted from the glass.
  • Glass, pharmaceutical primary packaging and alkaline silicate glass can be provided.
  • the graph shows the mol% of SiO 2 of various glasses on the horizontal axis and the total cation mass QC (mg / dm 2 ) of the elution components per unit area on the vertical axis.
  • the tube glass of the present invention is an alkali silicate glass, and has a glass composition of mol%, SiO 2 50 to 88%, Li 2 O + Na 2 O + K 2 O 0.1 to 20%, and TiO 20 to 20%. , ZrO 2 0.005-12 % , preferably free of B2O3 and Al2O3 .
  • % notation means mol% unless otherwise specified.
  • SiO 2 is a component that forms the skeleton of glass, and is a component that enhances chemical resistance, particularly acid resistance.
  • the content of SiO 2 is preferably 50% or more, 55% or more, 60% or more, 65% or more, 66% or more, 70% or more, 72% or more, particularly 74% or more, preferably 88% or less. 85% or less, less than 84%, 83% or less, 81% or less, 79% or less, especially 77% or less. If the content of SiO 2 is too small, the structure of the glass becomes fragile and the chemical resistance tends to decrease. On the other hand, if the content of SiO 2 is too large, the meltability tends to decrease. Further, since the viscosity of the molten glass becomes high, it becomes difficult to process the molten glass into tube glass.
  • the content of Li 2 O + Na 2 O + K 2 O is preferably 0.1% or more, 0.5% or more, 1% or more, 3% or more, 5% or more, 6% or more, 7% or more, especially 8% or more. It is preferably 20% or less, 19.5% or less, 19% or less, 16% or less, 14% or less, 12% or less, 11% or less, 10.5% or less, and particularly 10% or less. If the content of Li 2 O + Na 2 O + K 2 O is too small, the viscosity of the glass becomes high, and the productivity and workability of the tube glass may decrease. On the other hand, if the content of Li 2 O + Na 2 O + K 2 O is too large, the amount of alkali eluted from the glass increases, and the pH of the chemical solution is likely to change.
  • Li 2 O is a component that lowers the viscosity of glass and enhances meltability and moldability.
  • the content of Li 2 O is preferably 0% or more, 0.1% or more, particularly 2% or more, and preferably 10% or less, 8% or less, 6% or less, less than 4%, 3.5% or less. 3% or less, especially 2.5% or less. If the content of Li 2 O is too large, the amount of alkali eluted from the glass will increase, and the pH of the chemical solution will easily change.
  • Na 2 O is a component that lowers the viscosity of glass and enhances meltability and moldability.
  • the content of Na 2 O is preferably 0% or more, 0.1% or more, 3% or more, particularly 4% or more, preferably 20% or less, 18% or less, 16% or less, especially 13% or less. be. If the content of Na 2 O is too large, the amount of alkali elution from the glass increases, and the pH of the chemical solution is likely to change. In addition, devitrified crystals containing SiO 2 -Na 2 O-ZrO 2 may precipitate, which may reduce the productivity of the tube glass.
  • K 2 O is a component that lowers the viscosity of glass and enhances meltability and moldability.
  • the content of K2O is preferably 0 % or more, 0.1% or more, 3% or more, 5% or more, 7% or more, particularly 8% or more, and preferably 20% or less, 18% or less, 15 % Or less, 12% or less, 11.5% or less, especially 11% or less. If the content of K2O is too large, the amount of alkali elution from the glass increases, and the pH of the chemical solution is likely to change.
  • TiO 2 is a component that lowers the viscosity of glass and enhances chemical resistance, particularly alkali resistance.
  • the content of TiO 2 is preferably 0% or more, 0.1% or more, 1% or more, 2% or more, 2.5% or more, 3% or more, 4.4% or more, 5% or more, 6% or more. , Especially 7% or more, preferably 20% or less, 18% or less, 16% or less, 15% or less, 14% or less, 12% or less, 11% or less, 10% or less, 9.5% or less, 9%. Below, especially 8.5% or less. If the content of TiO 2 is too small, the viscosity of the glass becomes high, and the productivity and processability of the tube glass may decrease. On the other hand, if the content of TiO 2 is too large, the coloring of the tube glass tends to be strengthened, and the glass may be devitrified to reduce the productivity and processability of the tube glass.
  • ZrO 2 is a component that enhances chemical resistance, particularly alkali resistance. It is also one of the components that may elute into the glass component as an impurity from the refractory material used in the melting equipment. Exceptionally, if the glass composition is substantially free of ZrO 2 , the risk to health can be reduced. In addition, “substantially free of ZrO 2 in the glass composition” means that the content of ZrO 2 in the glass composition is 0.005 mol% or less. The content of ZrO 2 is preferably 0% or more, 0.001% or more, 0.005% or more, 0.01%, 0.05% or more, 0.1% or more, 1% or more, 2.0%.
  • B 2 O 3 is a component that lowers the viscosity of glass and enhances meltability and moldability.
  • B 2 O 3 is a component that may evaporate together with the alkaline component in the glass and contaminate the inner surface of the container due to the burning of the burner during processing of the container. Therefore, the content of B 2 O 3 should be regulated to a level that is substantially free (0.5% or less), preferably 0.4% or less, and particularly 0.3% or less.
  • B 2 O 3 may be intentionally added in the range of 1% or less.
  • Al 2 O 3 is a component that enhances chemical resistance and is a component that suppresses devitrification. However, if the content of Al 2 O 3 is too large, it may be eluted as aluminum ions in the drug solution and taken into the body by injection or the like. Aluminum ions taken up by the body may increase the risk of developing Alzheimer's disease. Further, if the phosphate buffer solution is stored in a glass container containing Al 2 O 3 , the aluminum ion eluted from the glass may react with the phosphate buffer solution to generate an insoluble foreign substance. Therefore, the content of Al 2 O 3 should be substantially free, that is, regulated to 0.5% or less, preferably 0.4% or less, particularly 0.3% or less.
  • the refractory material used in the melting equipment may contain Al 2 O 3 .
  • Al 2 O 3 derived from a refractory may be mixed, and Al 2 O 3 may be unintentionally mixed in the glass.
  • Al 2 O 3 is contained in the range of 1% or less. But it may be.
  • Al 2 O 3 may be contained in the range of 1% or less.
  • the content of MgO + CaO + SrO + BaO is preferably 12% or less, 10% or less, 8.5% or less, 8% or less, 7% or less, 6% or less, 5% or less, 4.5% or less, 4% or less, 3.8% or less, 2% or less, 1.5% or less, especially 1.3% or less. If the content of MgO + CaO + SrO + BaO is too small, the viscosity of the glass becomes high, and the productivity and processability of the tube glass may decrease. On the other hand, if the content of MgO + CaO + SrO + BaO is too large, the amount of alkali eluted from the glass increases, and the pH of the chemical solution is likely to change.
  • MgO is a component that lowers the viscosity of glass and enhances meltability and moldability.
  • the content of MgO is preferably 5% or less, 4.8% or less, 4% or less, 3.5% or less, 3% or less, 2% or less, 1.5% or less, and particularly preferably 1% or less. Is 0% or more, 0.05% or more, 0.1% or more, and particularly 0.3% or more. If the content of MgO is too small, the viscosity of the glass becomes high, and the productivity and processability of the tube glass may decrease. On the other hand, if the content of MgO is too large, the amount of alkali eluted from the glass increases, and the pH of the chemical solution is likely to change.
  • CaO is a component that lowers the viscosity of glass and enhances meltability and moldability.
  • the CaO content is preferably 7% or less, 6.5% or less, 5% or less, 4.5% or less, 3.8% or less, 3.5% or less, 3% or less, 2% or less, 1. It is 8% or less, 1.5% or less, particularly 1% or less, preferably 0% or more, 0.1%, 0.5% or more, 0.7% or more, and particularly 1% or more. If the CaO content is too low, the viscosity of the glass becomes high, and the productivity and processability of the tube glass may decrease. On the other hand, if the CaO content is too high, the amount of alkali eluted from the glass increases, and the pH of the chemical solution is likely to change.
  • SrO is a component that lowers the viscosity of glass and enhances meltability and moldability.
  • the content of SrO is preferably 5% or less, 4.7% or less, 4% or less, 3.3% or less, 3% or less, 2% or less, 1.6% or less, and particularly 1% or less. If the content of SrO is too large, the amount of alkali eluted from the glass increases, and the pH of the chemical solution is likely to change.
  • BaO is a component that lowers the viscosity of glass and enhances meltability and moldability.
  • the BaO content is preferably 5% or less, 4.7% or less, 4% or less, 3.3% or less, 3% or less, 2% or less, 1.6% or less, and particularly preferably 1% or less. Is 0% or more, 0.05% or more, 0.1% or more, and particularly 0.3% or more. If the content of BaO is too small, the viscosity of the glass becomes high, and the productivity and processability of the tube glass may decrease. On the other hand, if the content of BaO is too large, the amount of alkali eluted from the glass increases, and the pH of the chemical solution is likely to change. Further, in the case of a chemical solution containing a sulfate, there is a possibility that it precipitates as barium sulfate and an insoluble foreign substance is generated.
  • ZnO is a component that lowers the viscosity of glass and enhances meltability and moldability, but if the amount added is too large, devitrification resistance and chemical durability may decrease. Preferably, it is 10% or less, 8% or less, 6% or less, 4.9% or less, 4.5% or less, 4% or less, 3% or less, 2.5% or less, particularly 2% or less, and 0% or more. , 0.5% or more, 1% or more, especially 1.5% or more.
  • Fe 2 O 3 is a component mixed as an impurity and is a component that enhances the coloring of glass.
  • the content of Fe 2 O 3 is preferably 0.1% or less, more preferably 0.09% or less, particularly preferably 0.08% or less, preferably 0% or more, and more preferably 0.001%. As mentioned above, it is particularly preferably 0.003% or more. If the content of Fe 2 O 3 is too large, the coloring of the glass becomes too strong. The smaller the content of Fe 2 O 3 is, the more the coloring can be suppressed, which is preferable. turn into.
  • SnO 2 is a component that acts as a clarifying agent.
  • the SnO 2 content is preferably 3% or less, 2% or less, more preferably 1% or less, particularly preferably 0.5% or less, preferably 0% or more, 0.001% or more, still more preferably. It is 0.005% or more, particularly preferably 0.01% or more. If the content of SnO 2 is too small, the amount of residual bubbles in the tube glass increases, and the appearance quality tends to deteriorate. On the other hand, if the content of SnO 2 is too large, the glass tends to be colored and the permeability tends to decrease.
  • each component is preferably 3% or less, 2% or less, 1.5% or less, 1% or less, 0.8% or less, 0.5% or less, 0.3% or less, particularly 0. It is 1% or less, preferably 0.001% or more, and particularly 0.003% or more. If the content of each component is too high, the risk of equipment corrosion and environmental pollution increases. On the other hand, if the content of each component is too small, the amount of residual bubbles in the tube glass increases, and the appearance quality tends to deteriorate.
  • the molar ratio TiO 2 / (Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO) is preferably 0.3 or more, 0.5 or more, 0.7 or more, 0.9 or more, 1 or more, particularly 1.1 or more, and is preferable. Is 5.5 or less, 3.5 or less, 3 or less, 2.5 or less, 2 or less, 1.5 or less, and particularly 1.3 or less. By doing so, the effect of improving the water resistance can be obtained more efficiently.
  • the molar ratio K 2 O / ZrO 2 is preferably 0.1 or more, 0.3 or more, 0.5 or more, 0.7 or more, 0.8 or more, 0.85 or more, 0.9 or more and 100 or less. .. By doing so, the effect of improving the alkali resistance can be obtained more efficiently.
  • the molar ratio (Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO) / SiO 2 is preferably 0.4 or less, 0.35 or less, 0.30 or less, 0.28 or less, 0.26 or less, 0.25 or less, particularly. 0.23 or less, preferably 0 or more, greater than 0, 0.05 or more, 0.1 or more, 0.1 or more, particularly 0.15 or more.
  • HfO 2 , SO 3 , Y 2 O 3 , and P 2 O 5 may each be contained up to 0.5% as impurities, and it is particularly preferable to contain 0.001 to 0.1%.
  • Cr 2 O 3 , PbO, La 2 O 3 , Bi 2 O 3 , MoO 3 , WO 3 , Nb 2 O 3 , and PbO 2 are also impurities of 3% or less, 2% or less, 1% or less, respectively. It may be added in an amount of less than%, particularly 0.5% or less.
  • components such as H 2 , CO 2 , CO, H 2 O, He, Ne, Ar, and N 2 may each be contained up to 0.1%.
  • the amount of precious metal elements such as Pt, Rh, Au, and Ir mixed in is preferably 500 ppm or less, more preferably 300 ppm or less, respectively.
  • the tube glass of the present invention preferably has the following characteristics.
  • ⁇ (hydrochloric acid consumption H when the water resistance test conforming to ISO 720 is carried out) ⁇ 10 + (total cation mass QC of the elution component when the elution test with an acidic solution is carried out) ⁇ 10 + (Mass reduction amount ⁇ when the alkali resistance test conforming to ISO 695 was carried out) ⁇ that is, the chemical resistance factor value is represented by the sum of 10 times H, 10 times QC and ⁇ , preferably 98. 5 or less, 90 or less, 80 or less, 70 or less, 60 or less, 50 or less, 45 or less, especially 40 or less. If the chemical resistance factor value is too large, the chemical resistance tends to decrease.
  • the mass reduction amount ⁇ (mg / dm 2 ) when the alkali resistance test conforming to ISO 695 (199105-15) was carried out is preferably 140 or less, 100 or less, 75 or less, 60 or less, 45 or less, 35 or less, It is 30 or less, especially 27 or less. If the mass reduction amount ⁇ is too large, the alkali resistance becomes low. If the mass reduction amount ⁇ (mg / dm 2 ) is 75 or less, it is classified as Class A1.
  • the total cation mass QC (mg / dm 2 ) of the elution component when the elution test with an acidic solution was carried out is preferably 3 or less, 2.5 or less, 2 or less, 1.7 or less, 1.5 or less, particularly 1 It is 0.3 or less.
  • Hydrochloric acid consumption H (mL / g) until the eluate is neutralized when the alkaline component is eluted according to ISO 720 (1985) is preferably 0.5 or less, 0.4 or less, 0. 3 or less, 0.2 or less, particularly 0.1 or less. If the hydrochloric acid consumption H is too large, the water resistance becomes low. If the hydrochloric acid consumption H is 0.1 or less, it is class HGA1, and if it is 0.85 or less, it is class HGA2.
  • the liquid phase temperature is preferably 1300 ° C. or lower, 1250 ° C. or lower, 1200 ° C. or lower, 1150 ° C. or lower, and particularly 1100 ° C. or lower.
  • the glass tends to be devitrified during processing into tube glass.
  • the coefficient of thermal expansion is an important parameter indicating thermal shock resistance.
  • the coefficient of thermal expansion in the temperature range of 30 to 380 ° C. is preferably 85 ⁇ 10 -7 / ° C. or less, particularly 45 to 80 ⁇ 10 -7 / ° C. If the coefficient of thermal expansion is too high, the thermal impact resistance tends to decrease.
  • the temperature at 10 2.5 dPa ⁇ s is preferably 1650 ° C. or lower, 1600 ° C. or lower, 1590 ° C. or lower, 1580 ° C. or lower, and particularly 1570 ° C. or lower. If the temperature at 10 2.5 dPa ⁇ s is too high, it becomes difficult to melt the glass.
  • the temperature at 10 4.0 dPa ⁇ s is preferably 1350 ° C. or lower, 1300 ° C. or lower, 1290 ° C. or lower, 1280 ° C. or lower, 1270 ° C. or lower, and particularly 1265 ° C. or lower. If the temperature at 10 4.0 dPa ⁇ s is too high, it becomes difficult to process the tube glass.
  • the average transmittance at an optical path length of 1 mm and a wavelength of 400 to 800 nm is preferably 60% or more, 70% or more, 75% or more, and particularly 85% or more. If the average transmittance at an optical path length of 1 mm and a wavelength of 400 to 800 nm is too low, it becomes difficult to visually recognize the deterioration of the drug.
  • a glass batch is prepared by blending glass raw materials so as to obtain a desired glass composition.
  • this glass batch was continuously put into a melting kiln at 1550 to 1700 ° C. to melt and clarify it, and then the obtained molten glass was wound around a rotating refractory while blowing air from the tip of the refractory.
  • the glass is pulled out in a tubular shape from the tip.
  • the drawn tubular glass is cut to a predetermined length to obtain a glass tube.
  • the glass tube thus obtained is used for manufacturing vials and ampoules.
  • the primary pharmaceutical packaging container of the present invention is a primary pharmaceutical packaging container made by processing a tube glass, and the tube glass is the above-mentioned tube glass.
  • the alkaline silicate glass of the present invention does not substantially contain B 2 O 3 and Al 2 O 3 in the glass composition, and ⁇ when a water resistance test based on ISO 720 is carried out.
  • the alkali silicate glass of the present invention has a glass composition of SiO 260 to 88%, K 2 O 0.1 to 20%, Ca O 0 to 6.5%, in mol%.
  • It contains TiO 2 0.1 to 20% and ZrO 2 0.1 to 12%, and has a molar ratio of TiO 2 / (Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO) of 0.3 to 3.5 and a molar ratio of K 2 O /. It is characterized in that ZrO 2 is 0.9 or more and does not substantially contain B 2 O 3 and Al 2 O 3 .
  • the technical features of the alkali silicate glass of the present invention are the same as the technical features of the tube glass of the present invention, and detailed description thereof will be omitted here.
  • the alkaline silicate glass of the present invention has B 2 O 3 of 1% or less and Al 2 O 3 of 1% or less in the glass composition, and ⁇ (ISO 720 compliant water resistance).
  • the alkali silicate glass of the present invention has a glass composition of 266% or more and less than 84%, B 2 O 31% or less, Al 2 O 31 % or less, in mol%. It is characterized by containing MgO + CaO + SrO + BaO 10% or less and ZrO 2 8.5% or less, and having a molar ratio (Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO) / SiO 2 of 0.4 or less.
  • the technical features of the alkali silicate glass of the present invention are the same as the technical features of the tube glass of the present invention, and detailed description thereof will be omitted here.
  • Tables 1 to 11 show examples (samples No. 1 to 14, 16 to 28, 30 to 107) and comparative examples (samples No. 15 and 29) of the present invention.
  • the values in parentheses in the table are predicted values by factor calculation of each component.
  • This raw material batch was placed in a 300 cc platinum crucible and melted in an electric furnace heated to 1600 ° C. The melting time was 20 hours, and the molten glass was stirred 1 hour after all the raw material batches were put into the crucible and 4 hours before pouring. After the completion of the second stirring, the temperature of the electric furnace was raised to 1650 ° C. and clarification was performed. After that, the molten glass is poured onto a carbon plate and molded into a plate shape while being rapidly cooled using a metal roller so that the wall thickness becomes 5 mm. After molding into a plate shape or an ingot shape having a wall thickness of 15 mm. , Each sample was obtained.
  • the glass powder remaining on the 300 ⁇ m sieve was transferred to a beaker, 30 mL of acetone was poured, and ultrasonic cleaning was performed for 1 minute. The supernatant was discarded and the same work was repeated 5 times. Then, 30 mL of acetone was poured into a beaker, and the work of lightly shaking by hand and discarding only the supernatant liquid was repeated three times.
  • the mouth of the beaker was covered with aluminum foil, holes were made in multiple places, and the beaker was dried in an oven at 120 ° C. for 20 minutes. Then, the glass powder was taken out and cooled in a desiccator for 30 minutes.
  • the obtained glass powder was weighed at 10 g ⁇ 0.0005 g using an electronic balance, placed in a 250 mL quartz flask, and 50 mL of ultrapure water was added.
  • a quartz flask filled with only 50 mL of ultrapure water was also prepared as a blank.
  • the mouth of the quartz flask was closed with a quartz container, placed in an autoclave and held at 100 ° C. for 10 minutes, and then heat-treated at 121 ° C. for 30 minutes. At this time, the temperature was raised at 1 ° C./min from 100 ° C. to 121 ° C., and cooled at 0.5 ° C./min from 121 ° C. to 100 ° C.
  • the quartz flask was taken out and allowed to stand in a tray containing ultrapure water to cool for 30 minutes. After cooling, the eluate in the quartz flask was transferred to a conical beaker. 15 mL of ultrapure water was collected with a whole pipette, poured into a flask, lightly shaken, and only the supernatant was poured into a conical beaker. The same work was repeated twice. The same operation was performed on the blank to obtain an eluate. 0.05 mL each of the methyl red solution was added dropwise to the eluate.
  • the detailed experimental procedure of the acid resistance test is as follows. First, prepare a sample with a total surface area of 25 to 30 cm 2 with all glass surfaces mirror-polished, and as a pretreatment, prepare the sample with hydrofluoric acid (40% by mass) and hydrochloric acid (2 mol / L) in a volume ratio of 1: 9. It was immersed in the mixed solution so as to be, and stirred with a magnetic stirrer for 10 minutes. Then the sample was taken out and the length of the sample was measured. Then, after performing ultrasonic cleaning for 1 minute three times in ultrapure water, ultrasonic cleaning for 1 minute was performed twice in ethanol. The sample was then dried in an oven at 110 ° C.
  • the PTFE container was removed from the oven, the lid was quickly opened, and the sample was removed using resin tweezers. After that, the lid was closed and the mixture was cooled to room temperature.
  • the mass B (g) of the obtained hydrochloric acid was measured, and the analysis value Cn ( ⁇ g / mL) of each component concentration in the eluate was analyzed by ICP emission spectrometry. From the total surface area Acm 2 of the sample, the total cation mass QC (mg / dm 2 ) of the elution component per unit area was calculated by the following formula 1. Further, the total oxide mass QO (mg / dm 2 ) per unit area of the elution component was calculated by assuming the elution component as an oxide by the following formula 2.
  • d means the hydrochloric acid density (g / cm 3 ) after the test, ⁇ means multiplication, and / means division.
  • Total oxide mass QO B / 10 / A / d ⁇ ⁇ ⁇ Cn ⁇ En / F n / M n ⁇ of the elution component per unit area, where A is the total surface area of the sample (cm 2 ). ), B means the amount of hydrochloric acid (g) obtained after the test, Cn means the analysis value ( ⁇ g / mL) of each component concentration in the solution, and d means the hydrochloric acid density (g) after the test.
  • En means the oxide formula amount of the cation atom of the elution component (eg, the formula amount of SiO 2 in the case of Si ), and F n represents the elution component as an oxide, which is an oxide substance.
  • the amount is 1 mol, it means the mol ratio of the content of the elution component cation atom (eg, Si is 1 for SiO 2 , K is 2 for K 2 O), and Mn means the atomic weight of the elution component cation atom.
  • ⁇ ⁇ Cn ⁇ En / F n / M n ⁇ means that Cn is multiplied by En and the value obtained by dividing F n and M n is added for each component, and ⁇ means multiplication. And / means division.
  • Alkali resistance was evaluated by a method according to ISO 695 (1991). The detailed test procedure is as follows. First, a sample with a total surface area of 15 cm 2 with all glass surfaces mirror-polished was prepared, and as a pretreatment, the sample was mixed with hydrofluoric acid (40% by mass) and hydrochloric acid (2 mol / L) in a volume ratio of 1: 9. It was immersed in the mixed solution so as to be, and stirred with a magnetic stirrer for 10 minutes. Then the sample was taken out and the length of the sample was measured. Then, after performing ultrasonic cleaning for 1 minute three times in ultrapure water, ultrasonic cleaning for 1 minute was performed twice in ethanol.
  • the sample was then dried in an oven at 110 ° C. for 1 hour and cooled in a desiccator for 30 minutes.
  • the mass m 1 of the sample thus obtained was measured and recorded with an accuracy of ⁇ 0.1 mg.
  • put 800 mL of a solution of 1 mol / L sodium hydroxide aqueous solution and 0.5 mol / L sodium carbonate aqueous solution in a volume ratio of 1: 1 in a stainless steel container and boil using an electric heater.
  • the sample was heated to the above, and the sample suspended by a platinum wire was added and held for 3 hours.
  • the opening of the container lid was closed with a gasket and a cooling tube.
  • the sample is taken out and immersed in a beaker containing 500 mL of 1 mol / L hydrochloric acid three times, then ultrasonically cleaned in ultrapure water for one minute three times, and ultrasonically cleaned in ethanol for one minute. I went there times.
  • the washed sample was further dried in an oven at 110 ° C. for 1 hour and cooled in a desiccator for 30 minutes. The mass m 2 of the sample thus treated was measured and recorded to an accuracy of ⁇ 0.1 mg.
  • the chemical resistance factor values are the water-resistant hydrochloric acid consumption H performed according to ISO720, the total cation mass QC (mg / dm 2 ) of the elution component per unit surface area when the dissolution test for an acidic solution was carried out, and ISO695. It was calculated by the following formula 4 using the mass reduction amount ⁇ per unit area of the alkali resistance test conducted according to the above. In addition, QC (mg / dm 2 ) was used as the acid resistance score when calculating the chemical resistance factor value.
  • the liquid phase temperature measurement is as follows. A platinum boat of about 120 ⁇ 20 ⁇ 10 mm was filled with the crushed sample and placed in an electric furnace having a linear temperature gradient for 24 hours. After that, the crystal precipitation location was specified by microscopic observation, the temperature corresponding to the crystal precipitation location was calculated from the temperature gradient graph of the electric furnace, and this temperature was taken as the liquid phase temperature.
  • the high temperature viscosity was measured by the platinum ball pulling method.
  • the viscosity curve of glass was obtained from the high temperature viscosity and the viscosity calculation formula of Fulcher, and the temperature corresponding to 10 2.5 dPa ⁇ s, 10 3.0 dPa ⁇ s, and 10 4.0 dPa ⁇ s was obtained from this viscosity curve. ..
  • ⁇ Measurement of transmittance> As for the transmittance, a tube glass having a wall thickness of 1 mm was processed into a strip shape, and the transmittance was measured at 400 to 800 nm using a spectrophotometer. A spectrophotometer V-670 (installed with an integrating sphere) manufactured by JASCO Corporation was used as the measuring device.
  • Samples 1 to 14, 16 to 28, and 30 to 107 substantially do not contain B 2 O 3 and Al 2 O 3 in the glass composition, and the factor values of chemical resistance are high. It was small. On the other hand, sample No. 15 and 29 did not contain ZrO 2 in the glass composition, and therefore had low alkali resistance.
  • FIG. 1 is a graph showing mol% of SiO 2 of various glasses on the horizontal axis and total cation mass QC (mg / dm 2 ) of elution components per unit area on the vertical axis.
  • total cation mass QC mg / dm 2
  • the tube glass and alkaline silicate glass of the present invention can be suitably used for primary pharmaceutical packaging containers such as ampoules, vials, prefilled syringes and cartridges. It can also be used as a physics and chemistry instrument such as a beaker and a flask. Furthermore, it can be used as an inner wall material for corrosion-resistant pipes in chemical plants that require corrosion resistance. In addition to the above applications, the alkali silicate glass of the present invention can be used for various applications requiring alkali resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

本発明の管ガラスは、アルカリケイ酸塩ガラスからなる管ガラスであって、ガラス組成中にB2O3及びAl2O3を実質的に含まず、ISO 695(199105-15)に準拠した耐アルカリ性試験を実施した際の質量減少量ρ(mg/dm2)がクラスA1であることを特徴とする。

Description

管ガラス、医薬品一次包装容器及びアルカリケイ酸塩ガラス
 本発明は管ガラス、医薬品一次包装容器及びアルカリケイ酸塩ガラスに関する。
 従来、バイアルやアンプル等の医薬品一次包装容器(ガラス容器)には、化学的耐久性が高く、視認性に優れたホウケイ酸ガラスが使用されている。
 バイアルやアンプル等の医薬品一次包装容器は、容器形状に加工された後、残留歪を除去するために、徐冷点付近に加熱された徐冷炉の中で徐冷処理されることにより、作製される。
特開2017-218353号公報 特許第6400168号公報
 容器形状への加工方法として、管ガラスを局所的にバーナー等で加熱しながら、口部、首部、底部を成形する方法がある。バーナー加熱による加工では、バーナー加熱時にガラス表面からアルカリホウ酸塩の蒸発物が発生し、容器内面に凝縮・堆積して異質層を形成することがある。この異質層の形成によってガラスの化学的耐久性や加水分解抵抗性が著しく低下し、薬液の保存中にガラス中のアルカリ成分が溶出し、薬液のpH変化や変質等を引き起こす虞がある。また容器内面から異質層が剥離して、薬液中にフレークスと言われる不溶性異物が発生する現象(デラミネーション)の原因にもなる。
 このため、特許文献1では、ガラス容器のガラス組成からBを除くことにより、バーナー加熱時のアルカリホウ酸塩の蒸発を抑制することが提案されている。しかし、Bを含まないガラスは、高温粘度が高いため、高温粘度を低下させるNaOの含有量が多くなる。その結果、ガラスからのアルカリ溶出量が多くなり、薬液のpH変化を誘発するという問題が発生する虞がある。薬液がpH変化すると、薬液本来の性能を発揮できなくする虞がある。
 また、デラミネーションは、中性付近であっても強いアルカリ性のような挙動を示すクエン酸緩衝液やリン酸緩衝液等を用いた薬液をガラス容器に充填、保存した際に生じることが多い。よって、ガラス容器の耐アルカリ性はデラミネーションを抑制する上で重要である。
 ところで、近年、アルツハイマー病患者が増大しつつある。アルツハイマー病の原因の一つとして、アルミニウムイオンの摂取が挙げられている。ガラス容器から溶出したアルミニウムイオンが体内に取り込まれて、蓄積されると、アルツハイマー病の発症リスクが高くなる可能性がある。
 また、Alを含むガラス容器にリン酸緩衝液を保存しておくと、ガラスから溶出したアルミニウムイオンとリン酸緩衝液が反応して不溶性異物が生じることがある。
 特許文献2では、アルミニウムイオンの溶出を抑制するため、ガラス組成中にAlを含まないホウケイ酸ガラスが提案されている。しかし、このガラスは、ガラス組成中にBを含むため、容器加工時のアルカリホウ酸塩の蒸発を十分に抑制することができない。
 本発明の目的は、耐アルカリ性が高く、バーナー加熱時のアルカリホウ酸塩の蒸発量、アルツハイマー病の発症リスクを低減し、更には薬液のpH変化を生じさせ難く、ガラスから溶出したアルミニウムイオンに起因する不溶性異物が生成する虞のない管ガラス、医薬品一次包装容器及びアルカリケイ酸塩ガラスを提供することである。
 本発明者は、種々の実験を行い、ガラス組成からB及びAlを実質的に除いた上で、耐アルカリ性を所定のレベルまで高めることにより、上記課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明の管ガラスは、アルカリケイ酸塩ガラスからなる管ガラスであって、ガラス組成中にB及びAlを実質的に含まず、ISO 695(199105-15)に準拠した耐アルカリ性試験を実施した際の質量減少量ρ(mg/dm)がクラスA1であることを特徴とする。なお、「ガラス組成中にB及びAlを実質的に含まず」とは、ガラス組成中のBの含有量が0.5モル%以下であり、且つAlの含有量が0.5モル%以下であることを意味する。「ISO 695(199105-15)に準拠した耐アルカリ性試験」は、実施例の欄に記載した方法で行うことができる。
 また、本発明の管ガラスでは、酸性溶液に対する溶出試験を実施した際の単位表面積当たりの溶出成分の総カチオン質量QC(mg/dm)は1.6以下が好ましい。なお、酸性溶液に対する溶出試験を実施した際の単位表面積当たりの溶出成分の総カチオン質量QC(mg/dm)の算出は、「耐酸性の測定」の欄に記載した方法で行うことができる。また、各溶出成分が各溶出成分の酸化物であると仮定し換算した値QOに関しても「耐酸性の測定」の欄に記載した方法で算出でき、QOは3.1以下が好ましい。
 また、本発明の管ガラスでは、ISO 720(1985)に準じてアルカリ成分を溶出させた際の溶出液が中和されるまでの塩酸消費量H(mL/g)が、ISO 720(1985)におけるクラスHGA1又はHGA2であることが好ましい。なお、「ISO 720(1985)に準じてアルカリ成分を溶出させた際の溶出液が中和されるまでの塩酸消費量」は、実施例の欄に記載した方法で測定することができる。
 また、本発明の管ガラスは、ガラス組成として、モル%で、SiO 50~88%、LiO+NaO+KO 0.1~20%、TiO 0~20%、ZrO 0.005~12%を含有し、B及びAlを実質的に含まないことが好ましい。なお、「LiO+NaO+KO」は、LiO、NaO及びKOの合量を意味する。
 また、本発明の管ガラスは、ガラス組成中のNaOの含有量が0~20モル%であることが好ましい。
 また、本発明の管ガラスは、ガラス組成中のKOの含有量が0~20モル%であることが好ましい。
 また、本発明の管ガラスは、ガラス組成中のMgO+CaO+SrO+BaOの含有量が0.1~10モル%であることが好ましい。なお、「MgO+CaO+SrO+BaO」は、MgO、CaO、SrO及びBaOの合量を意味する。
 また、本発明の管ガラスは、光路長1mm、波長400~800nmにおける平均透過率が60%以上であることが好ましい。なお、「光路長1mm、波長400~800nmにおける平均透過率」は、市販の分光光度計で測定可能である。
 また、本発明の管ガラスは、{(ISO 720に準拠した耐水性試験を実施した際の塩酸消費量H)×10+(酸性溶液に対する溶出試験を実施した際の単位表面積当たりの溶出成分の総カチオン質量QC)×10+(ISO 695に準拠した耐アルカリ性試験を実施した際の質量減少量ρ)}、すなわち、Hの10倍とQCの10倍とρの和で表される耐薬品性ファクター値が98.5以下であることが好ましい。
 また、本発明の管ガラスは、医薬品一次包装容器、理化学用器具、化学プラント用耐腐食配管に用いることが好ましい。
 本発明の医薬品一次包装容器は、管ガラスを加工してなる医薬品一次包装容器であって、管ガラスが、上記の管ガラスであることを特徴とする。
 本発明のアルカリケイ酸塩ガラスは、ガラス組成中にB及びAlを実質的に含まず、{(ISO 720に準拠した耐水性試験を実施した際の塩酸消費量H)×10+(酸性溶液に対する溶出試験を実施した際の単位表面積当たりの溶出成分の総カチオン質量QC)×10+(ISO 695に準拠した耐アルカリ性試験を実施した際の質量減少量ρ)}、すなわち、Hの10倍とQCの10倍とρの和で表される耐薬品性ファクター値が98.5以下であることを特徴とする。
 また、本発明のアルカリケイ酸塩ガラスは、ガラス組成として、モル%で、SiO 60~88%、KO 0.1~20%、CaO 0~6.5%、TiO 0.1~20%、ZrO 0.005~12%を含有し、モル比TiO/(LiO+NaO+KO+MgO+CaO+SrO+BaO)が0.3~3.5、モル比KO/ZrOが0.9以上であり、B及びAlを実質的に含まないことを特徴とする。なお、「LiO+NaO+KO+MgO+CaO+SrO+BaO」はLiO、NaO、KO、MgO、CaO、SrO及びBaOの合量を意味する。「TiO/(LiO+NaO+KO+MgO+CaO+SrO+BaO)」は、TiOの含有量を、LiO、NaO、KO、MgO、CaO、SrO及びBaOの合量で除した値を意味する。「KO/ZrO」は、KOの含有量をZrOの含有量で除した値を意味する。
 また、本発明のアルカリケイ酸塩ガラスでは、ISO 695(199105-15)に準拠した耐アルカリ性試験を実施した際の質量減少量ρ(mg/dm)がクラスA1であることが好ましい。
 また、本発明のアルカリケイ酸塩ガラスでは、酸性溶液に対する溶出試験を実施した際の単位表面積当たりの溶出成分の総カチオン質量QC(mg/dm)が1.6以下であることが好ましい。
 また、本発明のアルカリケイ酸塩ガラスでは、ISO 720(1985)に準じてアルカリ成分を溶出させた際の溶出液が中和されるまでの塩酸消費量H(mL/g)が、ISO 720(1985)におけるクラスHGA1又はHGA2であることが好ましい。なお、「ISO 720(1985)に準じてアルカリ成分を溶出させた際の溶出液が中和されるまでの塩酸消費量」は、実施例の欄に記載した方法で測定することができる。
 本発明のアルカリケイ酸塩ガラスは、ガラス組成中にB及びAlを実質的に含まず、{(ISO 720に準拠した耐水性試験を実施した際の塩酸消費量H)×10+(酸性溶液に対する溶出試験を実施した際の単位表面積当たりの溶出成分の総カチオン質量QC)×10+(ISO 695に準拠した耐アルカリ性試験を実施した際の質量減少量ρ)}、すなわち、Hの10倍とQCの10倍とρの和で表される耐薬品性ファクター値が98.5以下であることを特徴とする。
また、本発明のアルカリケイ酸塩ガラスは、ガラス組成中にB及びAlを実質的に含まず、モル%で、SiO 66%以上84%未満、MgO+CaO+SrO+BaO 10%以下、ZrO 8.5%以下を含有し、モル比(LiO+NaO+KO+MgO+CaO+SrO+BaO)/SiOが0.4以下であることを特徴とする。なお、「LiO+NaO+KO+MgO+CaO+SrO+BaO」はLiO、NaO、KO、MgO、CaO、SrO及びBaOの合量を意味する。「(LiO+NaO+KO+MgO+CaO+SrO+BaO)/SiO」は、LiO、NaO、KO、MgO、CaO、SrO及びBaOの合量を、SiOで除した値を意味する。
 また、本発明のアルカリケイ酸塩ガラスでは、ISO 695(199105-15)に準拠した耐アルカリ性試験を実施した際の質量減少量ρ(mg/dm)がクラスA1であることが好ましい。
 また、本発明のアルカリケイ酸塩ガラスでは、酸性溶液に対する溶出試験を実施した際の単位表面積当たりの溶出成分の総カチオン質量QC(mg/dm)が1.6以下であることが好ましい。
 また、本発明のアルカリケイ酸塩ガラスでは、ISO 720(1985)に準じてアルカリ成分を溶出させた際の溶出液が中和されるまでの塩酸消費量H(mL/g)が、ISO 720(1985)におけるクラスHGA1又はHGA2であることが好ましい。なお、「ISO 720(1985)に準じてアルカリ成分を溶出させた際の溶出液が中和されるまでの塩酸消費量」は、実施例の欄に記載した方法で測定することができる。
 また、本発明のアルカリケイ酸塩ガラスは、ガラス組成として、モル%で、SiO 66%以上84%未満、B 1%以下、Al 1%以下、MgO+CaO+SrO+BaO 10%以下、ZrO 8.5%以下を含有し、モル比(LiO+NaO+KO+MgO+CaO+SrO+BaO)/SiOが0.4以下であることを特徴とする。
 また、本発明のアルカリケイ酸塩ガラスは、ISO 695(199105-15)に準拠した耐アルカリ性試験を実施した際の質量減少量ρ(mg/dm)がクラスA1であることが好ましい
 また、本発明のアルカリケイ酸塩ガラスは、酸性溶液に対する溶出試験を実施した際の単位表面積当たりの溶出成分の総カチオン質量QC(mg/dm)が1.6以下であることが好ましい。
 また、本発明のアルカリケイ酸塩ガラスは、ISO 720(1985)に準じてアルカリ成分を溶出させた際の溶出液が中和されるまでの塩酸消費量H(mL/g)が、ISO 720(1985)におけるクラスHGA1又はHGA2であることが好ましい。
 本発明によれば、耐アルカリ性が高く、バーナー加熱時のアルカリホウ酸塩の蒸発量、アルツハイマー病の発症リスクを低減し、ガラスから溶出したアルミニウムイオンに起因する不溶性異物が生成する虞のない管ガラス、医薬品一次包装容器及びアルカリケイ酸塩ガラスを提供することができる。
横軸に各種ガラスのSiOのモル%、縦軸に単位面積当たりの溶出成分の総カチオン質量QC(mg/dm)を示したグラフである。
 以下、本発明の好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。
本発明の管ガラスは、アルカリケイ酸塩ガラスであり、ガラス組成として、モル%で、SiO 50~88%、LiO+NaO+KO 0.1~20%、TiO 0~20%、ZrO 0.005~12%を含有し、B及びAlを実質的に含まないことが好ましい。以下、上記のように各成分の組成範囲を限定した理由を述べる。なお、各成分の含有量の説明において、特に断りがない限り、%表示はモル%を意味する。
 SiOは、ガラスの骨格を形成する成分であり、耐薬品性、特に耐酸性を高める成分である。SiOの含有量は、好ましくは50%以上、55%以上、60%以上、65%以上、66%以上、70%以上、72%以上、特に74%以上であり、好ましくは88%以下、85%以下、84%未満、83%以下、81%以下、79%以下、特に77%以下である。SiOの含有量が少な過ぎると、ガラスの構造が脆弱になり、耐薬品性が低下し易くなる。一方、SiOの含有量が多過ぎると、溶融性が低下し易くなる。また溶融ガラスの粘度が高くなるため、管ガラスへの加工が困難になる。
 LiO+NaO+KOの含有量は、好ましくは0.1%以上、0.5%以上、1%以上、3%以上、5%以上、6%以上、7%以上、特に8%以上であり、好ましくは20%以下、19.5%以下、19%以下、16%以下、14%以下、12%以下、11%以下、10.5%以下、特に10%以下である。LiO+NaO+KOの含有量が少な過ぎると、ガラスの粘度が高くなり、管ガラスの生産性や加工性が低下する虞がある。一方、LiO+NaO+KOの含有量が多過ぎると、ガラスからのアルカリ溶出量が多くなり、薬液のpH変化を生じさせ易くなる。
 LiOは、ガラスの粘度を低下させて、溶融性、成形性を高める成分である。LiOの含有量は、好ましくは0%以上、0.1%以上、特に2%以上であり、好ましくは10%以下、8%以下、6%以下、4%未満、3.5%以下、3%以下、特に2.5%以下である。LiOの含有量が多過ぎると、ガラスからのアルカリ溶出量が多くなり、薬液のpH変化を生じさせ易くなる。
 NaOは、ガラスの粘度を低下させて、溶融性、成形性を高める成分である。NaOの含有量は、好ましくは0%以上、0.1%以上、3%以上、特に4%以上であり、好ましくは20%以下、18%以下、16%以下、特に13%以下である。NaOの含有量が多過ぎると、ガラスからのアルカリ溶出量が多くなり、薬液のpH変化を生じさせ易くなる。また、SiO-NaO-ZrOを含む失透結晶が析出し、管ガラスの生産性が低下する虞がある。
 KOは、LiOとNaOと同様に、ガラスの粘度を低下させて、溶融性、成形性を高める成分である。KOの含有量は、好ましくは0%以上、0.1%以上、3%以上、5%以上、7%以上、特に8%以上であり、好ましくは20%以下、18%以下、15%以下、12%以下、11.5%以下、特に11%以下である。KOの含有量が多過ぎると、ガラスからのアルカリ溶出量が多くなり、薬液のpH変化を生じさせ易くなる。
 TiOは、ガラスの粘度を低下させると共に、耐薬品性、特に耐アルカリ性を高める成分である。TiOの含有量は、好ましくは0%以上、0.1%以上、1%以上、2%以上、2.5%以上、3%以上、4.4%以上、5%以上、6%以上、特に7%以上であり、好ましくは20%以下、18%以下、16%以下、15%以下、14%以下、12%以下、11%以下、10%以下、9.5%以下、9%以下、特に8.5%以下である。TiOの含有量が少な過ぎると、ガラスの粘度が高くなり、管ガラスの生産性や加工性が低下する虞がある。一方、TiOの含有量が多過ぎると、管ガラスの着色が強まる傾向があることに加え、ガラスが失透して、管ガラスの生産性や加工性が低下する虞がある。
 ZrOは、耐薬品性、特に耐アルカリ性を高める成分である。また、溶融設備に使用される耐火物からの不純物としてガラス成分へ溶出する可能性のある成分の一つである。例外的に、ガラス組成中にZrOを実質的に含まない状態とすれば、健康に対するリスクを低減することができる。なお、「ガラス組成中にZrOを実質的に含まず」とは、ガラス組成中のZrOの含有量が0.005モル%以下であることを意味する。ZrOの含有量は、好ましくは0%以上、0.001%以上、0.005%以上、0.01%、0.05%以上、0.1%以上、1%以上、2.0%以上、2.5%以上、3%以上、3.5%以上、4.4%以上、特に5%以上、6%以上であり、好ましくは13%以下、10%以下、9%以下、8.5以下、7%以下、6%以下、特に5%以下である。ZrOの含有量が少な過ぎると、十分な耐薬品性が得られず、ガラスからの成分溶出量が多くなり、薬液を変質させる虞がある。一方、ZrOの含有量が多過ぎると、ガラスが失透して、管ガラスの生産性や加工性が低下する虞がある。
 Bは、ガラスの粘度を低下させて、溶融性、成形性を高める成分である。しかし、Bは、容器加工時のバーナー加熱により、ガラス中のアルカリ成分と共に蒸発し、容器内面を汚染する虞がある成分である。よって、Bの含有量は、実質的に含有しないレベル(0.5%以下)に規制すべきであり、好ましくは0.4%以下、特に0.3%以下である。
 なお、ガラスの粘度を低下させたい場合は、意図的にBを1%以下の範囲で添加してもよい。
 Alは、耐薬品性を高める成分であり、また失透を抑制する成分である。しかし、Alの含有量が多過ぎると、薬液中にアルミニウムイオンとして溶出し、注射等により体内に取り込まれてしまう可能性がある。体内に取り込まれたアルミニウムイオンはアルツハイマー病の発症リスクを高めてしまう可能性がある。また、Alを含むガラス容器にリン酸緩衝液を保存しておくと、ガラスから溶出してきたアルミニウムイオンとリン酸緩衝液が反応して不溶性異物が生じることがある。よって、Alの含有量は、実質的に含有しない、つまり0.5%以下に規制すべきであり、好ましくは0.4%以下、特に0.3%以下である。
 また、溶融設備に使用される耐火物にはAlを含む場合がある。この場合、耐火物由来のAlが混入し、ガラス中に意図せずにAlが混入する可能性があり、その際にはAlを1%以下の範囲で含んでもよい。他にも例外的に耐水性を高めたい場合もAlを1%以下の範囲で含んでもよい。
 上記成分以外にも、例えば、以下の成分を導入してもよい。
 MgO+CaO+SrO+BaOの含有量は、好ましくは以下、12%以下、10%以下、8.5%以下、8%以下、7%以下、6%以下、5%以下、4.5%以下、4%以下、3.8%以下、2%以下、1.5%以下、特に1.3%以下である。MgO+CaO+SrO+BaOの含有量が少な過ぎると、ガラスの粘度が高くなり、管ガラスの生産性や加工性が低下する虞がある。一方、MgO+CaO+SrO+BaOの含有量が多過ぎると、ガラスからのアルカリ溶出量が多くなり、薬液のpH変化を生じさせ易くなる。
 MgOは、ガラスの粘度を低下させて、溶融性、成形性を高める成分である。MgOの含有量は、好ましくは5%以下、4.8%以下、4%以下、3.5%以下、3%以下、2%以下、1.5%以下、特に1%以下であり、好ましくは0%以上、0.05%以上、0.1%以上、特に0.3%以上である。MgOの含有量が少な過ぎると、ガラスの粘度が高くなり、管ガラスの生産性や加工性が低下する虞がある。一方、MgOの含有量が多過ぎると、ガラスからのアルカリ溶出量が多くなり、薬液のpH変化を生じさせ易くなる。
 CaOは、ガラスの粘度を低下させて、溶融性、成形性を高める成分である。CaOの含有量は、好ましくは7%以下、6.5%以下、5%以下、4.5%以下、3.8%以下、3.5%以下、3%以下、2%以下、1.8%以下、1.5%以下、特に1%以下であり、好ましくは0%以上、0.1%、0.5%以上、0.7%以上、特に1%以上である。CaOの含有量が少な過ぎると、ガラスの粘度が高くなり、管ガラスの生産性や加工性が低下する虞がある。一方、CaOの含有量が多過ぎると、ガラスからのアルカリ溶出量が多くなり、薬液のpH変化を生じさせ易くなる。
 SrOは、ガラスの粘度を低下させて、溶融性、成形性を高める成分である。SrOの含有量は、好ましくは5%以下、4.7%以下、4%以下、3.3%以下、3%以下、2%以下、1.6%以下、特に1%以下である。SrOの含有量が多過ぎると、ガラスからのアルカリ溶出量が多くなり、薬液のpH変化を生じさせ易くなる。
 BaOは、ガラスの粘度を低下させて、溶融性、成形性を高める成分である。BaOの含有量は、好ましくは5%以下、4.7%以下、4%以下、3.3%以下、3%以下、2%以下、1.6%以下、特に1%以下であり、好ましくは0%以上、0.05%以上、0.1%以上、特に0.3%以上である。BaOの含有量が少な過ぎると、ガラスの粘度が高くなり、管ガラスの生産性や加工性が低下する虞がある。一方、BaOの含有量が多過ぎると、ガラスからのアルカリ溶出量が多くなり、薬液のpH変化を生じさせ易くなる。また、硫酸塩を含有する薬液の場合には、硫酸バリウムとして沈殿し不溶性異物が発生する可能性がある。
 ZnOは、ガラスの粘度を低下させて、溶融性、成形性を高める成分であるが、添加量が多過ぎると、耐失透性と化学的耐久性が低下する虞がある。好ましくは10%以下、8%以下、6%以下、4.9%未満、4.5%以下、4%以下、3%以下、2.5%以下、特に2%以下であり、0%以上、0.5%以上、1%以上、特に1.5%以上である。
 Feは、不純物として混入する成分であり、ガラスの着色を強める成分である。Feの含有量は、好ましくは0.1%以下、より好ましくは0.09%以下、特に好ましくは0.08%以下であり、好ましくは0%以上、より好ましくは0.001%以上、特に好ましくは0.003%以上である。Feの含有量が多過ぎると、ガラスの着色が強くなり過ぎる。Feの含有量は少ない程、着色を抑制できるため好ましいが、例えば0.003%を下回るような範囲にするには、高価な高純度原料を使用する必要があり、バッチコストが高くなってしまう。
 SnOは、清澄剤として作用する成分である。SnOの含有量は、好ましくは3%以下、2%以下、より好ましくは1%以下、特に好ましくは0.5%以下であり、好ましくは0%以上、0.001%以上、さらに好ましくは0.005%以上、特に好ましくは0.01%以上、である。SnOの含有量が少な過ぎると、管ガラス中の残存泡が多くなり、外観品位が低下し易くなる。一方、SnOの含有量が多過ぎると、ガラスが着色し、透過性が低下する傾向がある。
 SnO以外にも、SO、Cl、F、Sb等を清澄剤として使用することができる。これらは単一で使用してもよく、複数種類を混合して使用してもよい。また、各成分の含有量は、好ましくは3%以下、2%以下、1.5%以下、1%以下、0.8%以下、0.5%以下、0.3%以下、特に0.1%以下であり、好ましくは0.001%以上、特に0.003%以上である。各成分の含有量が多過ぎると、設備の腐食や環境汚染のリスクが高くなる。一方、各成分の含有量が少な過ぎると、管ガラス中の残存泡が多くなり、外観品位が低下し易くなる。
 モル比TiO/(LiO+NaO+KO+MgO+CaO+SrO+BaO)は、好ましくは0.3以上、0.5以上、0.7以上、0.9以上、1以上、特に1.1以上であり、好ましくは5.5以下、3.5以下、3以下、2.5以下、2以下、1.5以下、特に1.3以下である。このようにすれば、耐水性向上の効果がより効率的に得られる。
 モル比KO/ZrOは、好ましくは0.1以上、0.3以上、0.5以上、0.7以上、0.8以上、0.85以上、0.9以上100以下である。このようにすれば、耐アルカリ性向上の効果がより効率的に得られる。
モル比(LiO+NaO+KO+MgO+CaO+SrO+BaO)/SiOは、好ましくは0.4以下、0.35以下、0.30以下、0.28以下、0.26以下、0.25以下、特に、0.23以下、好ましくは0以上、0より大きく、0.05以上、0.1以上、0.1以上、特に0.15以上である。(LiO+NaO+KO+MgO+CaO+SrO+BaO)/SiOが高いと、ガラスの粘度が低下し加工しやすくなるが、アルカリ溶出量が高くなり、薬液のpHを変化させる虞があり、(LiO+NaO+KO+MgO+CaO+SrO+BaO)/SiOが低くなると、アルカリ溶出量は抑制されるが、ガラスの粘度が高くなり、加工性が低下する。
 また、HfO、SO、Y、Pは、不純物として、それぞれ0.5%まで含有させてもよく、特に0.001~0.1%含有させることが好ましい。
 他にもCr、PbO、La、Bi、MoO、WO、Nb、PbOも不純物としてそれぞれ3%以下、2%以下、1%以下、1%未満、特に0.5%以下で添加してもよい。
 また、不純物として、H、CO、CO、HO、He、Ne、Ar、N等の成分をそれぞれ0.1%まで含んでもよい。またPt、Rh、Au、Ir等の貴金属元素の混入量はそれぞれ500ppm以下、さらには300ppm以下であることが好ましい。
 本発明の管ガラスは、以下の特性を有することが好ましい。
 本発明の管ガラスにおいて、{(ISO 720に準拠した耐水性試験を実施した際の塩酸消費量H)×10+(酸性溶液に対する溶出試験を実施した際の溶出成分の総カチオン質量QC)×10+(ISO 695に準拠した耐アルカリ性試験を実施した際の質量減少量ρ)}、すなわち、耐薬品性ファクター値はHの10倍とQCの10倍とρの和で表され、好ましくは98.5以下、90以下、80以下、70以下、60以下、50以下、45以下、特に40以下である。耐薬品性ファクター値が大き過ぎると、耐薬品性が低下し易くなる。
 ISO 695(199105-15)に準拠した耐アルカリ性試験を実施した際の質量減少量ρ(mg/dm)は、好ましくは140以下、100以下、75以下、60以下、45以下、35以下、30以下、特に27以下である。質量減少量ρが大き過ぎると、耐アルカリ性が低くなる。なお、質量減少量ρ(mg/dm)が75以下であれば、クラスA1となる。
 酸性溶液に対する溶出試験を実施した際の溶出成分の総カチオン質量QC(mg/dm)は、好ましくは3以下、2.5以下、2以下、1.7以下、1.5以下、特に1.3以下である。
 ISO 720(1985)に準じてアルカリ成分を溶出させた際の溶出液が中和されるまでの塩酸消費量H(mL/g)は、好ましくは0.5以下、0.4以下、0.3以下、0.2以下、特に0.1以下である。塩酸消費量Hが大き過ぎると、耐水性が低くなる。なお、塩酸消費量Hが0.1以下であればクラスHGA1、0.85以下であればクラスHGA2となる。
 液相温度は、好ましくは1300℃以下、1250℃以下、1200℃以下、1150℃以下、特に1100℃以下である。液相温度が高くなると、管ガラスへの加工時に、ガラスが失透し易くなる。
 熱膨張係数は、耐熱衝撃性を示す重要なパラメータである。30~380℃の温度範囲における熱膨張係数は、好ましくは85×10-7/℃以下、特に45~80×10-7/℃である。熱膨張係数が高過ぎると、耐熱衝撃性が低下し易くなる。
 102.5dPa・sにおける温度は、好ましくは1650℃以下、1600℃以下、1590℃以下、1580℃以下、特に1570℃以下である。102.5dPa・sにおける温度が高過ぎると、ガラスを溶融し難くなる。
 104.0dPa・sにおける温度は、好ましくは1350℃以下、1300℃以下、1290℃以下、1280℃以下、1270℃以下、特に1265℃以下である。104.0dPa・sにおける温度が高過ぎると、管ガラスに加工し難くなる。
 光路長1mm、波長400~800nmにおける平均透過率が好ましくは60%以上、70%以上、75%以上、特に85%以上である。光路長1mm、波長400~800nmにおける平均透過率が低過ぎると、薬剤の変質を視認し難くなる。
 次に、本発明のガラス管を製造する方法を説明する。以下の説明は、ダンナー法を用いた例である。
 まず、所望のガラス組成になるように、ガラス原料を調合してガラスバッチを作製する。次いで、このガラスバッチを1550~1700℃の溶融窯に連続投入して溶融、清澄した後、得られた溶融ガラスを回転する耐火物上に巻きつけながら、耐火物先端部からエアを吹き出しつつ、当該先端部からガラスを管状に引き出す。引き出した管状ガラスを所定の長さに切断してガラス管を得る。このようにして得られたガラス管は、バイアルやアンプルの製造に供される。
 本発明の医薬品一次包装容器は、管ガラスを加工してなる医薬品一次包装容器であって、管ガラスが、上記の管ガラスであることを特徴とする。
 本発明のアルカリケイ酸塩ガラスは、別の態様として、ガラス組成中にB及びAlを実質的に含まず、{(ISO 720に準拠した耐水性試験を実施した際の塩酸消費量H)×10+(酸性溶液に対する溶出試験を実施した際の単位表面積当たりの溶出成分の総カチオン質量QC)×10+(ISO 695に準拠した耐アルカリ性試験を実施した際の質量減少量ρ)}で表される耐薬品性ファクター値が98.5以下であることを特徴とする。また、本発明のアルカリケイ酸塩ガラスは、別の態様として、ガラス組成として、モル%で、SiO 60~88%、KO 0.1~20%、CaO 0~6.5%、TiO 0.1~20%、ZrO 0.1~12%を含有し、モル比TiO/(LiO+NaO+KO+MgO+CaO+SrO+BaO)が0.3~3.5、モル比KO/ZrOが0.9以上であり、B及びAlを実質的に含まないことを特徴とする。本発明のアルカリケイ酸塩ガラスの技術的特徴は、本発明の管ガラスの技術的特徴と同様であり、ここでは詳細な説明を割愛する。
 また、本発明のアルカリケイ酸塩ガラスは、別の態様として、ガラス組成中のBが1%以下、Alが1%以下であり、{(ISO 720に準拠した耐水性試験を実施した際の塩酸消費量H)×10+(酸性溶液に対する溶出試験を実施した際の単位表面積当たりの溶出成分の総カチオン質量QC)×10+(ISO 695に準拠した耐アルカリ性試験を実施した際の質量減少量ρ)}で表される耐薬品性ファクター値が98.5以下であることを特徴とする。また、本発明のアルカリケイ酸塩ガラスは、別の態様として、ガラス組成として、モル%で、SiO 66%以上84%未満、B 1%以下、Al 1%以下、MgO+CaO+SrO+BaO 10%以下、ZrO 8.5%以下を含有し、モル比(LiO+NaO+KO+MgO+CaO+SrO+BaO)/SiOが0.4以下であることを特徴とする。本発明のアルカリケイ酸塩ガラスの技術的特徴は、本発明の管ガラスの技術的特徴と同様であり、ここでは詳細な説明を割愛する。
 以下、実施例に基づいて本発明を説明する。但し、本発明は以下の実施例に限定されるものではなく、以下の実施例は単なる例示である。
 表1~11は、本発明の実施例(試料No.1~14、16~28、30~107)及び比較例(試料No.15、29)を示している。なお、表中の括弧書きの数値は、各成分のファクター計算による予測値である。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000011
 
<評価用ガラスの作製>
 各ガラス組成になるように種々のガラス原料をガラス500g建てで調合、混合して原料バッチを得た。この原料バッチを300ccの白金坩堝に入れ、1600℃に加熱した電気炉内で溶融した。溶融時間は20時間、原料バッチを全て坩堝内に入れ終わってから1時間後と、流し出す4時間前に溶融ガラスの攪拌を行った。2回目の攪拌終了後に、電気炉を1650℃まで昇温し、清澄を行った。その後、溶融ガラスをカーボン板の上に流し出し、肉厚が5mmになるように、金属製のローラーを用いて急冷しながら板状に成形ロール成形または肉厚が15mmのインゴット状に成形した後、各試料を得た。
 <塩酸消費量Hの測定>
 各試料の塩酸消費量を以下のようにして測定した。試料の表面をエタノールで丁寧に拭き、アルミナ製の乳鉢と乳棒で試料を粉砕した後、ステンレス製の目開き710μm、425μm、300μmの3つの篩を用いて分級した。300μmの篩上に残ったガラス粉末は採取し、710μm、425μmの篩に残ったガラスは再度粉砕した。300μmの篩上のガラス粉末が10g以上になるまで同じ作業を繰り返した。300μmの篩上に残ったガラス粉末をビーカーへ移し、30mLのアセトンを注ぎ1分間超音波洗浄を行った。上澄み液を廃棄し、同じ作業を5回繰り返した。その後、30mLのアセトンをビーカーに注ぎ、手で軽くゆすり上澄み液だけを廃棄する作業を3回繰り返した。ビーカーの口をアルミホイルで覆い、複数個所穴を空けた後、120℃のオーブンで20分間乾燥させた。その後、ガラス粉末を取り出しデシケーター内で30分間冷却した。得られたガラス粉末を、電子天秤を用いて10g±0.0005gで秤量し、250mLの石英フラスコに入れ、超純水50mLを加えた。ブランクとして超純水50mLのみを充填した石英フラスコも準備した。石英フラスコの口を石英容器で塞ぎ、オートクレーブに入れて100℃で10分保持した後、121℃、30分間熱処理を行った。この時、100℃から121℃までは1℃/分で昇温し、121℃から100℃までは0.5℃/分で冷却した。95℃まで冷却後、石英フラスコを取り出し超純水が入ったトレイに静置させ30分間冷却した。冷却後、石英フラスコ内の溶出液をコニカルビーカーに移した。15mLの超純水をホールピペットで採取し、フラスコ内に注ぎ入れ、軽くゆすり上澄み液だけをコニカルビーカーに流し入れた。同様の作業を2回繰り返した。ブランクについても同様の操作を行い、溶出液を得た。溶出液にメチルレッド溶液をそれぞれ0.05mL滴下した。0.02mol/Lの塩酸を試料の溶出液に滴下し、ブランクと同じ色になったときの塩酸消費量を記録し、ガラス1g当たりの塩酸消費量H(mL/g)を算出した。
<耐酸性の測定>
 耐酸性試験の詳細な実験手順は以下の通りである。まず全てのガラス表面を鏡面研磨仕上げとした総表面積が25~30cmの試料を準備し、前処理として試料をフッ酸(40質量%)と塩酸(2mol/L)を体積比で1:9となるように混合した溶液に浸漬し、10分間マグネティックスターラーで攪拌した。次いで試料を取出し、試料の長さを計測した。その後、超純水中で1分間の超音波洗浄を3回行った後、エタノール中で1分間の超音波洗浄を2回行った。次に、試料を110℃のオーブンの中で1時間乾燥させ、デシケーター内で30分間冷却した。続いて120mL容積のPTFE製の密閉容器に6mol/L塩酸を65mL入れ、PTFE容器に蓋をして120℃に設定したオーブンに入れて90分間予熱した。その後、塩酸が入ったテフロン容器を取り出し、蓋を開け高温の塩酸溶液内に試料を浸漬させ、蓋を閉めて再びオーブンに戻した。120±2℃で6時間保持した。6時間後、オーブンからPTFE容器を取り出し、素早く蓋を開け、樹脂製のピンセットを用いて試料を取り出した。その後、蓋を閉めて室温まで冷却した。得られた塩酸の質量B(g)を計測し、溶出液中の各成分濃度分析値C(μg/mL)はICP発光分析にて行った。試料の総表面積Acmから、以下の式1により、単位面積当たりの溶出成分の総カチオン質量QC(mg/dm)を算出した。また、以下の式2により溶出成分を酸化物として仮定して溶出成分の単位面積当たりの総酸化物質量QO(mg/dm)を算出した。
 [式1]単位面積当たりの溶出成分の総カチオン質量QC=B/10/A/d×ΣCnであり、Aは試料の総表面積(cm)を意味し、Bは試験後に得られた塩酸質量(g)を意味し、Cは溶液中の各成分濃度分析値(μg/mL)を意味し、ΣCは溶液中の各成分濃度分析値(μg/mL)の和を意味し、dは試験後の塩酸密度(g/cm)を意味し、×は乗算を意味し、/は除算を意味する。
 [式2]単位面積当たりの溶出成分の総酸化物質量QO=B/10/A/d×Σ{Cn×E/F/M}であり、Aは試料の総表面積(cm)を意味し、Bは試験後に得られた塩酸質量(g)を意味し、Cは溶液中の各成分濃度分析値(μg/mL)を意味し、dは試験後の塩酸密度(g/cm)を意味し、Eは溶出成分のカチオン原子の酸化物式量(例 SiならSiOの式量)を意味し、Fは溶出成分を酸化物で表し、酸化物の物質量を1molとしたときの、溶出成分カチオン原子の含有量のmol比(例 SiならSiOで1、KならKOで2)を意味し、Mは溶出成分カチオン原子の原子量を意味し、Σ{Cn×E/F/M}はCnとEを乗算し、FとMを除算した値を各成分ごとに加算したものを意味し、×は乗算を意味し、/は除算を意味する。
<耐アルカリ性の測定>
 耐アルカリ性は、ISO 695(1991)に準拠した方法により評価した。詳細な試験手順は以下の通りである。まず、全てのガラス表面を鏡面研磨仕上げとした総表面積が15cmの試料を準備し、前処理として試料をフッ酸(40質量%)と塩酸(2mol/L)を体積比で1:9となるように混合した溶液に浸漬させ、10分間マグネティックスターラーで攪拌した。次いで試料を取り出し、試料の長さを計測した。その後、超純水中で1分間の超音波洗浄を3回行った後、エタノール中で1分間の超音波洗浄を2回行った。次に、試料を110℃のオーブンの中で1時間乾燥させ、デシケーター内で30分間冷却した。このようにして得られた試料の質量mを精度±0.1mgまで測定し、記録した。続いてステンレス製の容器に1mol/Lの水酸化ナトリウム水溶液と0.5mol/Lの炭酸ナトリウム水溶液を体積比で1:1となるように混合した溶液を800mL入れ、電熱器を用いて沸騰するまで加熱し、白金線で吊した試料を投入して3時間保持した。試験中の液量の減少を防ぐために、容器の蓋の開口部をガスケット及び冷却管で閉栓した。その後、試料を取り出し、1mol/Lの塩酸500mLの入ったビーカーに3回浸漬した後、超純水中で1分間の超音波洗浄を3回行い、エタノール中で1分間の超音波洗浄を2回行った。さらに洗浄した試料を110℃のオーブンの中で1時間乾燥し、デシケーター内で30分間冷却した。このようにして処理した試料の質量mを精度±0.1mgまで測定し、記録した。最後に、沸騰溶液に投入する前後の試料の質量m(mg)、m(mg)と試料の総表面積A(cm)から、式3により、単位面積当たりの質量減少量ρ(mg/dm)を算出した。
 [式3]単位面積当たりの質量減少量ρ=100×(m-m)/A
<耐薬品性ファクター値の算出方法>
 耐薬品性ファクター値は、ISO720に準じて行った耐水性の塩酸消費量H、酸性溶液に対する溶出試験を実施した際の単位表面積当たりの溶出成分の総カチオン質量QC(mg/dm)及びISO695に準じて行った耐アルカリ性試験の単位面積当たりの質量減少量ρを用いて、以下の式4によって算出した。また、耐薬品性ファクター値を算出する際の耐酸性のスコアはQC(mg/dm)を使用した。
 [式4]耐薬品性ファクター値=H×10+QC×10+ρ
<液相温度の測定>
 液相温度測定は以下の通りである。約120×20×10mmの白金ボートに粉砕した試料を充填し、線形の温度勾配を有する電気炉に24時間投入した。その後、顕微鏡観察にて結晶析出箇所を特定し、結晶析出箇所に対応する温度を電気炉の温度勾配グラフから算出し、この温度を液相温度とした。
<熱膨張係数の測定>
 線熱膨張係数は、20mm×5mmφに加工した試料を用いて、表中に示す温度域で測定した平均線熱膨張係数により評価した。測定にはNETZSCH製Dilatometerを用いた。
<低温粘度の測定>
 歪点、徐冷点及び軟化点はファイバーエロンゲーション法で測定したものである。
<高温粘度の測定>
 高温粘度は、白金球引き上げ法によって測定したものである。高温粘度とFulcherの粘度計算式からガラスの粘度曲線を求め、この粘度曲線から102.5dPa・s、103.0dPa・s、104.0dPa・sに相当する温度を求めた。
<透過率の測定>
 透過率は、肉厚1mmの管ガラスを短冊状に加工し、分光光度計を用いて400~800nmの透過率を測定した。測定装置には日本分光製分光光度計V-670(積分球設置)を用いた。
 表1~11から分かるように、試料1~14、16~28、30~107は、ガラス組成中にB及びAlを実質的に含まず、耐薬品性のファクター値が小さかった。一方、試料No.15、29は、ガラス組成中にZrOを含んでいないため、耐アルカリ性が低かった。
 図1は、横軸に各種ガラスのSiOのモル%、縦軸に単位面積当たりの溶出成分の総カチオン質量QC(mg/dm)を示したグラフである。図1から分かるように、SiOのモル%とQCには相関関係があり、SiOのモル%が高いとQCが小さくなり、耐酸性が良好になることが分かる。
 本発明の管ガラス及びアルカリケイ酸塩ガラスは、アンプル、バイアル、プレフィルドシリンジ、カートリッジ等の医薬品一次包装容器に好適に使用することができる。またビーカー、フラスコ等の理化学用器具として使用することができる。更に耐腐食性が要求される化学プラントの耐腐食配管の内壁材として使用することができる。また、本発明のアルカリケイ酸塩ガラスは、上記用途以外にも、耐アルカリ性が要求される種々の用途に使用可能である。

Claims (26)

  1.  アルカリケイ酸塩ガラスからなる管ガラスであって、ガラス組成中にB及びAlを実質的に含まず、ISO 695(199105-15)に準拠した耐アルカリ性試験を実施した際の質量減少量ρ(mg/dm)がクラスA1である、管ガラス。
  2.  酸性溶液に対する溶出試験を実施した際の単位表面積当たりの溶出成分の総カチオン質量QC(mg/dm)が1.6以下である、請求項1に記載の管ガラス。
  3.  ISO 720(1985)に準じてアルカリ成分を溶出させた際の溶出液が中和されるまでの塩酸消費量H(mL/g)が、ISO 720(1985)におけるクラスHGA1又はHGA2である、請求項1又は請求項2に記載の管ガラス。
  4.  ガラス組成として、モル%で、SiO 50~88%、LiO+NaO+KO 0.1~20%、TiO 0~20%、ZrO 0.005~12%を含有し、B及びAlを実質的に含まない、請求項1~請求項3の何れかに記載の管ガラス。
  5.  ガラス組成中のNaOの含有量が0~20モル%である、請求項1~請求項4の何れかに記載の管ガラス。
  6.  ガラス組成中のKOの含有量が0~20モル%である、請求項1~請求項5の何れかに記載の管ガラス。
  7.  ガラス組成中のMgO+CaO+SrO+BaOの含有量が0.1~10モル%である、請求項1~請求項6の何れかに記載の管ガラス。
  8.  光路長1mm、波長400~800nmにおける平均透過率が60%以上である、請求項1~請求項7の何れかに記載の管ガラス。
  9. {(ISO 720に準拠した耐水性試験を実施した際の塩酸消費量H)×10+(酸性溶液に対する溶出試験を実施した際の単位表面積当たりの溶出成分の総カチオン質量QC)×10+(ISO 695に準拠した耐アルカリ性試験を実施した際の質量減少量ρ)}で表される耐薬品性ファクター値が98.5以下である、請求項1~請求項8の何れかに記載の管ガラス。
  10.  医薬品一次包装材料、理化学用器具、化学プラント用耐腐食配管に用いる、請求項1~請求項9の何れかに記載の管ガラス。
  11.  管ガラスを加工してなる医薬品一次包装容器であって、管ガラスが、請求項1~請求項10の何れかに記載の管ガラスである、医薬品一次包装容器。
  12.  ガラス組成中にB及びAlを実質的に含まず、{(ISO 720に準拠した耐水性試験を実施した際の塩酸消費量H)×10+(酸性溶液に対する溶出試験を実施した際の単位表面積当たりの溶出成分の総カチオン質量QC)×10+(ISO 695に準拠した耐アルカリ性試験を実施した際の質量減少量ρ)}で表される耐薬品性ファクター値が98.5以下である、アルカリケイ酸塩ガラス。
  13.  ガラス組成として、モル%で、SiO 60~88%、KO 0.1~20%、CaO 0~6.5%、TiO 0.1~20%、ZrO 0.005~12%を含有し、モル比TiO/(LiO+NaO+KO+MgO+CaO+SrO+BaO)が0.3~3.5、モル比KO/ZrOが0.9以上であり、B及びAlを実質的に含まない、アルカリケイ酸塩ガラス。
  14.  ISO 695(199105-15)に準拠した耐アルカリ性試験を実施した際の質量減少量ρ(mg/dm)がクラスA1である、請求項12又は請求項13に記載のアルカリケイ酸塩ガラス。
  15.  酸性溶液に対する溶出試験を実施した際の単位表面積当たりの溶出成分の総カチオン質量QC(mg/dm)が1.6以下である、請求項12~請求項14の何れかに記載のアルカリケイ酸塩ガラス。
  16.  ISO 720(1985)に準じてアルカリ成分を溶出させた際の溶出液が中和されるまでの塩酸消費量H(mL/g)が、ISO 720(1985)におけるクラスHGA1又はHGA2である、請求項12~請求項15の何れかに記載のアルカリケイ酸塩ガラス。
  17.  ガラス組成中にB及びAlを実質的に含まず、{(ISO 720に準拠した耐水性試験を実施した際の塩酸消費量H)×10+(酸性溶液に対する溶出試験を実施した際の単位表面積当たりの溶出成分の総カチオン質量QC)×10+(ISO 695に準拠した耐アルカリ性試験を実施した際の質量減少量ρ)}で表される耐薬品性ファクター値が98.5以下である、アルカリケイ酸塩ガラス。
  18.  ガラス組成中にB及びAlを実質的に含まず、モル%で、SiO 66%以上84%未満、MgO+CaO+SrO+BaO 10%以下、ZrO 8.5%以下を含有し、モル比(LiO+NaO+KO+MgO+CaO+SrO+BaO)/SiOが0.4以下である、アルカリケイ酸塩ガラス。
  19.  ISO 695(199105-15)に準拠した耐アルカリ性試験を実施した際の質量減少量ρ(mg/dm)がクラスA1である、請求項17又は請求項18に記載のアルカリケイ酸塩ガラス。
  20.  酸性溶液に対する溶出試験を実施した際の単位表面積当たりの溶出成分の総カチオン質量QC(mg/dm)が1.6以下である、請求項17~請求項19の何れかに記載のアルカリケイ酸塩ガラス。
  21.  ISO 720(1985)に準じてアルカリ成分を溶出させた際の溶出液が中和されるまでの塩酸消費量H(mL/g)が、ISO 720(1985)におけるクラスHGA1又はHGA2である、請求項17~請求項20の何れかに記載のアルカリケイ酸塩ガラス。
  22.  ガラス組成中のBが1%以下、Alが1%以下であり、{(ISO 720に準拠した耐水性試験を実施した際の塩酸消費量H)×10+(酸性溶液に対する溶出試験を実施した際の単位表面積当たりの溶出成分の総カチオン質量QC)×10+(ISO 695に準拠した耐アルカリ性試験を実施した際の質量減少量ρ)}で表される耐薬品性ファクター値が98.5以下である、アルカリケイ酸塩ガラス。
  23.  ガラス組成として、モル%で、SiO 66%以上84%未満、B 1%以下、Al 1%以下、MgO+CaO+SrO+BaO 10%以下、ZrO 8.5%以下を含有し、モル比(LiO+NaO+KO+MgO+CaO+SrO+BaO)/SiOが0.4以下である、アルカリケイ酸塩ガラス。
  24.  ISO 695(199105-15)に準拠した耐アルカリ性試験を実施した際の質量減少量ρ(mg/dm)がクラスA1である、請求項22又は請求項23に記載のアルカリケイ酸塩ガラス。
  25.  酸性溶液に対する溶出試験を実施した際の単位表面積当たりの溶出成分の総カチオン質量QC(mg/dm)が1.6以下である、請求項22~請求項24の何れかに記載のアルカリケイ酸塩ガラス。
  26.  ISO 720(1985)に準じてアルカリ成分を溶出させた際の溶出液が中和されるまでの塩酸消費量H(mL/g)が、ISO 720(1985)におけるクラスHGA1又はHGA2である、請求項22~請求項25の何れかに記載のアルカリケイ酸塩ガラス。
PCT/JP2021/036097 2020-10-06 2021-09-30 管ガラス、医薬品一次包装容器及びアルカリケイ酸塩ガラス WO2022075171A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/023,825 US20240115461A1 (en) 2020-10-06 2021-09-30 Tube glass, primary packaging container for pharmaceutical preparations, and alkali silicate glass
CN202180068763.8A CN116322598A (zh) 2020-10-06 2021-09-30 管玻璃、医药品一次包装容器及碱硅酸盐玻璃
JP2022555414A JPWO2022075171A1 (ja) 2020-10-06 2021-09-30
EP21877472.7A EP4227274A1 (en) 2020-10-06 2021-09-30 Tube glass, pharmaceutical primary packaging container, and alkali silicate glass

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020169058 2020-10-06
JP2020-169058 2020-10-06
JP2020-217407 2020-12-25
JP2020217407 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022075171A1 true WO2022075171A1 (ja) 2022-04-14

Family

ID=81125990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036097 WO2022075171A1 (ja) 2020-10-06 2021-09-30 管ガラス、医薬品一次包装容器及びアルカリケイ酸塩ガラス

Country Status (5)

Country Link
US (1) US20240115461A1 (ja)
EP (1) EP4227274A1 (ja)
JP (1) JPWO2022075171A1 (ja)
CN (1) CN116322598A (ja)
WO (1) WO2022075171A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024166806A1 (ja) * 2023-02-06 2024-08-15 日本電気硝子株式会社 医薬品容器用ガラス及び医薬品容器用ガラス管

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0146187A1 (en) * 1983-12-20 1985-06-26 Koninklijke Philips Electronics N.V. Glass composition suitable for use in a fluorescent lamp
JPH06157072A (ja) * 1992-11-20 1994-06-03 Nippon Electric Glass Co Ltd 耐蝕性ガラス繊維
JPH08104536A (ja) * 1994-07-14 1996-04-23 Ohara Inc 光学ガラス
JP2010507557A (ja) * 2006-10-25 2010-03-11 サン ゴバン ヴェトロテックス フランス ソシエテ アノニム ガラス強化ヤーン製造のための、化学媒体に対して抵抗性を有するガラス組成物
JP2015093820A (ja) * 2013-11-14 2015-05-18 日本電気硝子株式会社 医療容器用ガラス
JP2017218353A (ja) 2016-06-09 2017-12-14 日本電気硝子株式会社 医薬品容器用ガラス及び医薬品容器用ガラス管
JP6400168B2 (ja) 2016-09-22 2018-10-03 ショット アクチエンゲゼルシャフトSchott AG アルミニウム不含ホウケイ酸ガラス
JP2020100547A (ja) * 2018-12-24 2020-07-02 ショット グラス テクノロジーズ (スゾウ) カンパニー リミテッドSchott Glass Technologies (Suzhou) Co., Ltd. 高強度の飲用器具

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0146187A1 (en) * 1983-12-20 1985-06-26 Koninklijke Philips Electronics N.V. Glass composition suitable for use in a fluorescent lamp
JPH06157072A (ja) * 1992-11-20 1994-06-03 Nippon Electric Glass Co Ltd 耐蝕性ガラス繊維
JPH08104536A (ja) * 1994-07-14 1996-04-23 Ohara Inc 光学ガラス
JP2010507557A (ja) * 2006-10-25 2010-03-11 サン ゴバン ヴェトロテックス フランス ソシエテ アノニム ガラス強化ヤーン製造のための、化学媒体に対して抵抗性を有するガラス組成物
JP2015093820A (ja) * 2013-11-14 2015-05-18 日本電気硝子株式会社 医療容器用ガラス
JP2017218353A (ja) 2016-06-09 2017-12-14 日本電気硝子株式会社 医薬品容器用ガラス及び医薬品容器用ガラス管
JP6400168B2 (ja) 2016-09-22 2018-10-03 ショット アクチエンゲゼルシャフトSchott AG アルミニウム不含ホウケイ酸ガラス
JP2020100547A (ja) * 2018-12-24 2020-07-02 ショット グラス テクノロジーズ (スゾウ) カンパニー リミテッドSchott Glass Technologies (Suzhou) Co., Ltd. 高強度の飲用器具

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024166806A1 (ja) * 2023-02-06 2024-08-15 日本電気硝子株式会社 医薬品容器用ガラス及び医薬品容器用ガラス管

Also Published As

Publication number Publication date
EP4227274A1 (en) 2023-08-16
US20240115461A1 (en) 2024-04-11
CN116322598A (zh) 2023-06-23
JPWO2022075171A1 (ja) 2022-04-14

Similar Documents

Publication Publication Date Title
JP6694167B2 (ja) 医薬容器用ホウケイ酸ガラス
CN106687422B (zh) 医药容器用硼硅酸盐玻璃及医药容器用玻璃管
JP6811941B2 (ja) 医薬容器用ホウケイ酸ガラス
JP2024133712A (ja) 医薬品容器用ガラス、これを用いた医薬品容器用ガラス管及び医薬品容器
WO2022075171A1 (ja) 管ガラス、医薬品一次包装容器及びアルカリケイ酸塩ガラス
JP2000351649A (ja) 基板用ガラスおよびガラス基板
JP7495668B2 (ja) 医薬品容器用ガラス、これを用いた医薬品容器用ガラス管及び医薬品容器
JPWO2017115728A1 (ja) 医薬品容器用アルミノホウケイ酸ガラスの製造方法
WO2014069177A1 (ja) 医薬用ガラス及び医薬用ガラス管
JP7118587B2 (ja) 医薬容器用ホウケイ酸ガラス
JP2014237562A (ja) 医薬容器用ホウケイ酸ガラス
JP2017048091A (ja) 医薬容器用ホウケイ酸ガラス
WO2021220801A1 (ja) 医薬品容器用ガラス、医薬品容器用ガラス管及び医薬品容器
JP2017057096A (ja) 医薬容器用ガラス管
JP6653073B2 (ja) 医薬容器用ホウケイ酸ガラス
WO2024166806A1 (ja) 医薬品容器用ガラス及び医薬品容器用ガラス管
JPWO2020137779A1 (ja) 医薬用ガラス容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877472

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555414

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021877472

Country of ref document: EP

Effective date: 20230508