WO2022074812A1 - 伝送線路構成体及び展開型平面アンテナ - Google Patents

伝送線路構成体及び展開型平面アンテナ Download PDF

Info

Publication number
WO2022074812A1
WO2022074812A1 PCT/JP2020/038251 JP2020038251W WO2022074812A1 WO 2022074812 A1 WO2022074812 A1 WO 2022074812A1 JP 2020038251 W JP2020038251 W JP 2020038251W WO 2022074812 A1 WO2022074812 A1 WO 2022074812A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission line
waveguide
antenna
line body
flange
Prior art date
Application number
PCT/JP2020/038251
Other languages
English (en)
French (fr)
Inventor
成洋 中本
徹 深沢
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022555218A priority Critical patent/JP7233620B2/ja
Priority to PCT/JP2020/038251 priority patent/WO2022074812A1/ja
Publication of WO2022074812A1 publication Critical patent/WO2022074812A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/04Fixed joints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines

Definitions

  • the present disclosure relates to a transmission line structure including a plurality of transmission line bodies for transmitting high frequency signals, and a deployable planar antenna including a transmission line structure.
  • the deployable planar antenna is used as a large planar antenna mounted on an artificial satellite, and due to the limited storage space of the rocket, multiple panels are transported to outer space in a folded state, and multiple panels are transported in outer space. Be expanded. In the deployed state in which a plurality of panels are deployed, the high frequency signal transmitted or received by the antenna provided on each panel is transmitted between the panels.
  • Patent Document 1 One of the methods using a rigid waveguide is shown in Patent Document 1.
  • the deployable structure in the antenna or the like mounted on the artificial satellite shown in Patent Document 1 is fixed to the choke flange provided at the end of the waveguide fixed to one of the adjacent panels and to the other adjacent panel.
  • the cover flanges provided at the ends of the waveguides are configured to face each other with a gap.
  • the present disclosure solves the above-mentioned problems, and can transmit a high-frequency signal between an adjacent first transmission line body and a second transmission line body while suppressing high-frequency loss, and can perform the transmission of the first transmission line body. It is an object of the present invention to obtain a transmission line structure in which the thickness of the second transmission line body is reduced.
  • the transmission line structure according to the present disclosure includes an adjacent first transmission line body and a second transmission line body, and each of the first transmission line body and the second transmission line body internally transmits a high-frequency signal.
  • the dielectric substrate of the first transmission line body extends from the base portion located inside the waveguide and flange of the first transmission line body to the outside of the end face of the flange of the first transmission line body.
  • the flange of the first transmission line body or the second One of the flanges of the transmission line body is a choke flange, and the other flange is a cover flange.
  • the signal line of the first transmission line body has an extension line arranged opposite to the signal line of the second transmission line body, so that the first transmission line body and the second transmission line body are arranged.
  • High-frequency signals can be transmitted to and from, and high-frequency signals can be transmitted by suppressing high-frequency loss with choke flanges. Since the suspended line is configured with the signal line as an internal conductor, it is possible to obtain a transmission line structure in which the thickness of the first transmission line body and the second transmission line body is reduced.
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG.
  • FIG. 3 is a cross-sectional view taken along the line III-III of FIG.
  • FIG. 3 is a bird's-eye view showing a state in which the connection between the first transmission line body and the second transmission line body in the transmission line configuration according to the first embodiment is disconnected.
  • It is a vertical sectional view which shows the transmission line structure which concerns on Embodiment 2.
  • FIG. FIG. 3 is a bird's-eye view showing a state in which the connection between the first transmission line body and the second transmission line body in the transmission line configuration according to the second embodiment is disconnected.
  • FIG. 3 is a bird's-eye view showing a state in which the connection between the first transmission line body and the second transmission line body in the transmission line configuration according to the third embodiment is disconnected.
  • FIG. 3 is a bird's-eye view showing a state in which the connection between the first transmission line body and the second transmission line body in the transmission line configuration according to the fourth embodiment is disconnected. It is a bird's-eye view which shows the transmission line structure which concerns on Embodiment 5.
  • 9 is a cross-sectional view taken along the line XX of FIG. It is a partial vertical sectional view of the 1st dielectric substrate in the transmission line structure which concerns on Embodiment 5.
  • FIG. 9 is a cross-sectional view taken along the line XII-XII of FIG. FIG.
  • FIG. 3 is a bird's-eye view showing a state in which the connection between the first transmission line body and the second transmission line body in the transmission line configuration according to the fifth embodiment is disconnected. It is a bird's-eye view which shows the deployable plane antenna which concerns on Embodiment 6. It is a cross-sectional view of XV-XV of FIG. FIG. 3 is a bird's-eye view showing a state in which the connection between the first transmission line body and the second transmission line body in the transmission line configuration according to the sixth embodiment is disconnected. It is a bird's-eye view which shows the deployable plane antenna which concerns on Embodiment 7. It is a bird's-eye view which shows the deployable plane antenna which concerns on Embodiment 8.
  • Embodiment 1 The transmission line configuration 100 according to the first embodiment will be described with reference to FIGS. 1 to 4.
  • the transmission line configuration 100 used for the deployable planar antenna mounted on the artificial satellite will be described below as an example.
  • a high frequency signal is transmitted to the transmission line structure 100.
  • the transmission line configuration 100 for transmitting the high frequency signal when the deployable planar antenna transmits the high frequency signal will be described as an example.
  • the transmission line configuration 100 that transmits the high-frequency signal has the same configuration.
  • the transmission line structure 100 includes an adjacent first transmission line body 10a and a second transmission line body 10b.
  • the first transmission line body 10a and the second transmission line body 10b each have a waveguide 1 through which a high-frequency signal is transmitted, a flange 2 provided at the opposite end of the waveguide 1, and a conductor.
  • the dielectric substrate 3 provided along the direction in which the high-frequency signal is transmitted, that is, the direction indicated by the reference numeral A in the figure, and either the front surface or the back surface of the dielectric substrate 3 A suspended line 5, which is a so-called square coaxial line, has a signal line 4 formed along a direction in which a high-frequency signal is transmitted, a waveguide 1 as an outer conductor, and a signal line 4 as an inner conductor. do.
  • the high frequency signal means a high frequency signal transmitted inside the waveguide 1.
  • the waveguide 1 is a metal waveguide having an upper side wall and a lower side wall located on the long side, and a right side wall and a left side wall located on the short side, and having a rectangular cross-sectional shape with both ends open. be.
  • the waveguide 1 is not limited to a rectangular cross-sectional shape, and may be a waveguide having a circular or elliptical cross-sectional shape.
  • the flange 2 has openings having the same diameter at both ends communicating with the space portion of the waveguide 1, and the outer diameter is larger than the outer diameter of the waveguide 1, and the flange 2 has a plate shape integrally formed with the waveguide 1. It is a metal body.
  • the first flange 2a of the first transmission line body 10a is a choke flange.
  • the first flange 2a as a choke flange is arranged on the opening surface so as to surround the opening edge at a position of 1/4 wavelength ( ⁇ / 4) of the high frequency signal from the opening edge, and the depth is 1 of the high frequency signal.
  • It has a choke groove 2a0 having a / 4 wavelength ( ⁇ / 4). That is, as shown in FIGS. 2 and 4, the choke groove 2a0 is provided on the first flange 2a so that the depth direction thereof is parallel to the tube axis direction of the first waveguide 1a. It is a long and narrow groove, and is provided so as to surround the cross section of the first waveguide 1a.
  • the choke groove 2a0 is provided at a position ⁇ / 4 of the high frequency signal in the vertical outer direction from each side of the cross section of the first waveguide 1a, and the depth thereof is ⁇ / of the high frequency signal. It is 4.
  • the second flange 2b of the second transmission line body 10b is a cover flange.
  • the opening surface of the second flange 2b as the cover flange is a flat surface.
  • the first transmission line body 10a and The second transmission line body 10b are arranged to face each other, the first transmission line body 10a and The second transmission line body 10b is in a connected state with respect to the high frequency signal transmitted inside.
  • 1 to 3 show the connection state between the first transmission line body 10a and the second transmission line body 10b
  • FIG. 4 shows the connection between the first transmission line body 10a and the second transmission line body 10b. It shows the state of being.
  • the first flange 2a may be a cover flange and the second flange 2b may be a choke flange.
  • the first flange 2a In the connected state of the first transmission line body 10a and the second transmission line body 10b in which the opening surface of the first flange 2a and the opening surface of the second flange 2b are arranged to face each other, the first flange 2a When a gap is generated between the opening surface in the second flange 2b and the opening surface in the second flange 2b, the gap and the choke groove 2a0 can be regarded as a kind of transmission line.
  • the input impedance when the bottom surface side is viewed from the open end of the choke groove 2a0 is a very large impedance because the depth of the choke groove 2a0 is ⁇ / 4 of the high frequency signal.
  • the transmission line regarded by the gap and the choke groove 2a0 can be regarded as a transmission line in which a very large impedance is connected in parallel at a position ⁇ / 4 away from the connection point P shown in FIG.
  • the input impedance when the choke groove 2a0 side is seen from the connection point P can be regarded as a very small value, that is, a state of being electrically short-circuited. Therefore, even if a gap is generated between the opening surface of the first flange 2a and the opening surface of the second flange 2b, leakage of the electromagnetic field from the gap is prevented. Therefore, the high frequency signal input from the first suspended line 5a is efficiently transmitted to the second suspended line 5b.
  • the connection point P is the position of the opening edge of the first flange 2a.
  • the dielectric substrate 3 is a printed circuit board arranged inside the waveguide 1 so that its plane direction is parallel to the tube axis direction of the waveguide 1. That is, the front surface and the back surface of the dielectric substrate 3 are parallel to the upper side wall and the lower side wall of the waveguide 1, and the right side wall and the left side wall of the waveguide 1 corresponding to the right side surface and the left side surface of the dielectric substrate 3 respectively. It is fixed to the inner surface of.
  • the second dielectric substrate 3b of the second transmission line body 10b has a thickness of the first dielectric substrate 3a from the first dielectric substrate 3a of the first transmission line body 10a. It is fixed at a lower position by the amount.
  • the first dielectric substrate 3a may be fixed at a position lower than that of the second dielectric substrate 3b by the thickness of the second dielectric substrate 3b.
  • the first dielectric substrate 3a has a base portion 3a1 located inside the first waveguide 1a and the first flange 2a, and outside the end faces of the base portion 3a1 to the first flange 2a, from the width of the base portion 3a1. It extends with a narrow width and has a stretched portion 3a2 facing the second dielectric substrate 3b of the second transmission line body 10b.
  • the length of the base portion 3a1 of the first dielectric substrate 3a is equal to the sum of the length of the side wall of the first waveguide 1a and the length of the first flange 2a.
  • the length of the stretched portion 3a2 of the first dielectric substrate 3a is slightly longer than the 1/4 wavelength ( ⁇ / 4) of the high frequency signal.
  • the length of the second dielectric substrate 3b is equal to the sum of the length of the side wall of the second waveguide 1b and the length of the second flange 2b. Therefore, in the connected state of the first transmission line body 10a and the second transmission line body 10b in which the opening surface of the first flange 2a and the opening surface of the second flange 2b are arranged to face each other, FIG. 3 shows. As shown, the stretched portion 3a2 of the first dielectric substrate 3a is inserted inside the second suspended line 5b, and the back surface of the stretched portion 3a2 of the first dielectric substrate 3a is the second dielectric substrate 3b. It is placed in contact with the surface. The length of the contact portion is approximately ⁇ / 4.
  • the signal line 4 is a metal pattern formed on the surface of the dielectric substrate 3 by vapor deposition or the like.
  • the signal line 4 is a high-frequency signal line that extends parallel to the tube axis direction of the waveguide 1 and has both ends open.
  • the signal line 4 may be formed on the back surface of the dielectric substrate 3.
  • the first signal line 4a is located at the main line 4a1 located at the base portion 3a1 of the first dielectric substrate 3a and the extended portion 3a2 of the first dielectric substrate 3a, and is arranged to face the second signal line 4b. It has an extension line 4a2 to be formed.
  • the first signal line 4a having the main line 4a1 and the extension line 4a2 extends from one end of the base 3a1 to the other end of the base 3a1 at the center of the surface of the base 3a1 and the extension 3a2 in the width direction. It is formed linearly to the other end of 3a2.
  • the second signal line 4b is formed linearly from one end to the other end at the center of the surface of the second dielectric substrate 3b in the width direction. Therefore, in the connected state of the first transmission line body 10a and the second transmission line body 10b, the extended line 4a2 of the first signal line 4a is inserted inside the second suspended line 5b, and the first signal line is inserted.
  • the extension line 4a2 of 4a is arranged to face the second signal line 4b via the extension portion 3a2. That is, the extension line 4a2 and the second signal line 4b are arranged so as to run in parallel with each other across the extension portion 3a2.
  • the lengths arranged facing each other are ⁇ / 4 of the high frequency signal.
  • the extended line 4a2 and the second signal line 4b form a so-called interdigital type coupled line, and the high frequency signal input from the first suspended line 5a is transmitted to the second suspended line 5b. Will be done.
  • the transmission efficiency at this time is improved as compared with the conventional method using a rigid waveguide.
  • the first suspended line 5a to the second suspended line 5a are suspended.
  • the amount of high-frequency signal transmitted to the line 5b can be controlled.
  • the transmission efficiency of the high frequency signal from the first suspended line 5a to the second suspended line 5b Can be improved.
  • the line width of the second signal line 4b running in parallel with the extension line 4a2 and the extension line 4a2 narrower than the line width of the main line 4a1, the first suspended line 5a to the second suspended line 5a are used.
  • the transmission efficiency of the high frequency signal to 10 can be improved.
  • the line width of the portion of the second signal line 4b that does not run parallel to the extended line 4a2 is the same as the line width of the main line 4a1.
  • the signal line 4 is not limited to a metal pattern formed linearly from one end to the other end of the dielectric substrate 3 in the center of the surface of the dielectric substrate 3 in the width direction, and the dielectric substrate 3 is not limited to the metal pattern. It has a metal pattern extending from one end to the other end at an angle with respect to the longitudinal direction, or at least one of bending or branching in order to realize at least one of distribution or synthesis of a high frequency signal. It may be formed by a metal pattern.
  • the stretched line 4a2 and the second signal are used.
  • the lines 4b are arranged so as to run in parallel facing each other with the second dielectric substrate 3b interposed therebetween. Further, in the case where the first dielectric substrate 3a is located below the second dielectric substrate 3b and the signal line 4 is formed on the surface of the dielectric substrate 3, the stretched line 4a2 and the second signal are used.
  • the lines 4b are arranged so as to run in parallel facing each other with the second dielectric substrate 3b interposed therebetween.
  • the stretched line 4a2 and the second signal are arranged so as to run in parallel facing each other with the extension portion 3a2 interposed therebetween.
  • the first transmission line body 10a and the second transmission line body 10b have a first transmission line in which the opening surface of the first flange 2a and the opening surface of the second flange 2b are arranged so as to face each other.
  • the body 10a and the second transmission line body 10b are connected to each other.
  • the high frequency signal input from one end of the first suspended line 5a propagates inside the first suspended line 5a and reaches the connection portion between the first suspended line 5a and the second suspended line 5b. Entered.
  • a high frequency current flows through the first signal line 4a.
  • the electromagnetic field generated by the high frequency current flowing through the extended line 4a2 of the first signal line 4a is such that the extended line 4a2 and the second signal line 4b running in parallel with the extended line 4a2 form an interdigital coupling line.
  • the extension line 4a2 and the second signal line 4b running in parallel with the extension line 4a2 are coupled.
  • a high frequency current is excited in the second signal line 4b, and the high frequency signal input from the first suspended line 5a is transmitted to the second suspended line 5b.
  • the length of the extension line 4a2 and the second signal line 4b facing each other is ⁇ / 4, and the line width of the second signal line 4b running in parallel with the extension line 4a2 and the extension line 4a2 is the main line 4a1. Since it is made thinner than the line width of, the transmission efficiency of the high frequency signal from the first suspended line 5a to the second suspended line 5b is improved as compared with the conventional method using a rigid waveguide. ..
  • first flange 2a is a choke flange, leakage of the electromagnetic field can be prevented from the gap between the opening surface of the first flange 2a and the opening surface of the second flange 2b, and the first suspended.
  • the high frequency signal input from the line 5a is efficiently transmitted to the second suspended line 5b.
  • the first dielectric substrate 3a of the first transmission line body 10a is the first waveguide of the first transmission line body 10a.
  • a base portion 3a1 located inside the tube 1a and the first flange 2a, and extending from the base portion 3a1 to the outside of the end face of the first flange 2a of the first transmission line body 10a, the second transmission line body 10b.
  • the extension portion 3a2 facing the second dielectric substrate 3b is provided, and the first signal line 4a of the first transmission line body 10a is the base portion of the first dielectric substrate 3a of the first transmission line body 10a.
  • the main line 4a1 located in 3a1 and the extension portion 3a2 of the first dielectric substrate 3a of the first transmission line body 10a are located opposite to the second signal line 4b of the second transmission line body 10b. Since it is assumed that the transmission line 4a2 is provided, the extension portion 3a2 of the first dielectric substrate 3a of the first transmission line body 10a and the second transmission line body 10b running in parallel with the extension portion 3a2.
  • the signal line 4b of the above forms an interdigital type coupling line, and enables connection of a high frequency signal between the first suspended line 5a and the second suspended line 5b.
  • the first flange is used.
  • the transmission line body 10a of 1 and the second transmission line body 10b leakage of an electromagnetic field from a gap between the opening surface of the first flange 2a and the opening surface of the second flange 2b is prevented.
  • the high-frequency signal input from the first suspended line 5a can be efficiently transmitted to the second suspended line 5b.
  • the first suspended line 5a and the second suspended line 5b do not have a cutoff frequency for the basic mode used for transmitting a high frequency signal, unlike the conventional method using a rigid waveguide.
  • the width or height of the first waveguide 1a and the second waveguide 1b can be made smaller than the waveguide used in the conventional method using a rigid waveguide. That is, the thickness of the transmission line by the first transmission line body 10a and the second transmission line body 10b in the transmission line structure 100 according to the first embodiment is used in the conventional method using a rigid waveguide. It can be made smaller than a waveguide.
  • Embodiment 2 The transmission line configuration 100 according to the second embodiment will be described with reference to FIGS. 5 and 6.
  • the transmission line configuration 100 according to the second embodiment is different from the transmission line configuration 100 according to the first embodiment in that a hinge 20 is provided, and is the same in other respects.
  • FIGS. 5 and 6 the same reference numerals as those given in FIGS. 1 to 4 indicate the same or corresponding portions.
  • the hinge 20 has a rotating shaft 21 and two pieces 22 and 23, and one piece 22 of the two pieces 22 and 23 is located on the lower side surface of the first transmission line body 10a in the first flange 2a.
  • the other piece 23 of the one piece 22 and 23 is mounted on the lower side surface of the second transmission line body 10b in the second flange 2b.
  • the first transmission line body 10a and the second transmission line body 10b are relatively rotated about the rotation shaft 21, and the opening surface and the first flange 20 of the first transmission line body 10a in the first flange 2a.
  • the transmission line body 10b of 2 is made expandable to a position where the opening surfaces of the second flange 2b face each other.
  • the state in which the opening surface of the first flange 2a and the opening surface of the second flange 2b are arranged so as to face each other is the connection state of the first transmission line body 10a and the second transmission line body 10b.
  • the state in which the lower side surface of the first flange 2a and the lower side surface of the second flange 2b face each other is the folded state of the first transmission line body 10a and the second transmission line body 10b. be. That is, the first transmission is performed by rotating one transmission line body 180 degrees around the rotation axis 21 of the hinge 20 from the folded state in which the first transmission line body 10a and the second transmission line body 10b overlap.
  • the line body 10a and the second transmission line body 10b are connected to each other. In short, the first transmission line body 10a and the second transmission line body 10b are refracted and retracted and expanded by the hinge 20.
  • the space of the waveguide 1 is provided so that the stretched portion 3a2 of the first dielectric substrate 3a in the first transmission line body 10a does not come into contact with the opening surface of the second flange 2b in the second transmission line body 10b. It has been decided.
  • the transmission line configuration 100 according to the second embodiment also has the following effects 1) to 3) as in the transmission line configuration 100 according to the first embodiment.
  • the opening surface in the first flange 2a is in a connected state between the first transmission line body 10a and the second transmission line body 10b.
  • the effect of the choke groove 2a0 formed on the first flange 2a of the first transmission line body 10a causes the electromagnetic field to flow from the gap. Leakage can be prevented, and the high frequency signal input from the first suspended line 5a is efficiently transmitted to the second suspended line 5b.
  • Embodiment 3 The transmission line configuration 100 according to the third embodiment will be described with reference to FIG. 7.
  • the transmission line configuration 100 according to the third embodiment is different from the transmission line configuration 100 according to the second embodiment in that a slit 30 is provided in the second flange 2b of the second transmission line body 10b.
  • a slit 30 is provided in the second flange 2b of the second transmission line body 10b.
  • FIG. 7 the same reference numerals as those given in FIGS. 5 and 6 indicate the same or corresponding portions.
  • the slit 30 is a groove that communicates with the opening of the second flange 2b and is provided on the side of the second waveguide 1b from the opening surface in parallel with the transmission direction of the high frequency signal.
  • the first transmission line body is rotated 180 degrees around the rotation axis 21 of the hinge 20 from the folded state in which the first transmission line body 10a and the second transmission line body 10b overlap.
  • the stretched portion 3a2 of the first dielectric substrate 3a in the first transmission line body 10a passes through the slit 30 and the second suspended line 5b It is inserted inside and is arranged in a state where the back surface of the stretched portion 3a2 of the first dielectric substrate 3a is in contact with the front surface of the second dielectric substrate 3b.
  • the stretched portion 3a2 also passes through the slit 30 when rotating from the connected state to the folded state.
  • the slit 30 is a groove provided parallel to the transmission direction of the high frequency signal, the influence on the high frequency signal is small when the first transmission line body 10a and the second transmission line body 10b are connected.
  • the transmission line configuration 100 according to the third embodiment also has the same effect as the transmission line configuration 100 according to the second embodiment, and by providing the slit 30, the waveguide 1 and the flange 2 are provided.
  • the thickness that is, the thickness in the vertical direction can be further reduced, and the transmission line configuration 100 can be made thinner.
  • Embodiment 4 The transmission line configuration 100 according to the fourth embodiment will be described with reference to FIG.
  • the slit 30 in the second flange 2b of the second transmission line body 10b is changed to a slit 40 with respect to the transmission line structure 100 according to the third embodiment.
  • the points are different, and the other points are the same.
  • the same reference numerals as those given in FIG. 7 indicate the same or corresponding portions.
  • the slit 40 is a groove that communicates with the opening of the second flange 2b and is provided from the opening surface to the side surface of the second flange 2b on the side of the second waveguide 1b in parallel with the transmission direction of the high frequency signal. ..
  • the first transmission line body is rotated 180 degrees around the rotation axis 21 of the hinge 20 from the folded state in which the first transmission line body 10a and the second transmission line body 10b overlap.
  • the stretched portion 3a2 of the first dielectric substrate 3a in the first transmission line body 10a passes through the slit 40, and the second suspended line 5b It is inserted inside and is arranged in a state where the back surface of the stretched portion 3a2 of the first dielectric substrate 3a is in contact with the front surface of the second dielectric substrate 3b.
  • the stretched portion 3a2 also passes through the slit 40 when rotating from the connected state to the folded state.
  • the slit 40 is a groove provided parallel to the transmission direction of the high frequency signal, the influence on the high frequency signal is small when the first transmission line body 10a and the second transmission line body 10b are connected.
  • the transmission line configuration 100 according to the fourth embodiment also has the same effect as the transmission line configuration 100 according to the third embodiment, and the slit 40 penetrates from the side surface of the second flange 2b to the opening. Therefore, the thickness of the waveguide 1 and the flange 2, that is, the thickness in the vertical direction can be further reduced, and the transmission line configuration 100 can be made thinner.
  • the transmission line configuration 100 according to the fifth embodiment will be described with reference to FIGS. 9 to 13.
  • the transmission line configuration 100 according to the fifth embodiment divides the waveguide 1 into two parts, a waveguide upper portion and a waveguide lower portion, and a flange, with respect to the transmission line configuration 100 according to the first embodiment. 2 is also divided into two parts, an upper part and a lower part of the flange, and is divided into two parts, an upper part and a lower part, so that the structure of the waveguide 3 is changed, and the other points are the same.
  • the same reference numerals as those given in FIGS. 1 to 4 indicate the same or corresponding portions.
  • the first waveguide 1a is composed of a first waveguide upper portion 1a1 and a first waveguide lower portion 1a2.
  • the second waveguide 1b is composed of a second waveguide upper portion 1b1 and a second waveguide lower portion 1b2.
  • the first waveguide upper part 1a1, the first waveguide lower part 1a2, the second waveguide upper part 1b1 and the second waveguide lower part 1b2 are U-shaped with rectangular grooves, respectively. It is a metal block.
  • the shape of the groove is not limited to a rectangular shape, and the cross-sectional shape may be a semicircle or a semi-elliptical shape.
  • the first flange 2a is composed of a first flange upper portion 2a1 and a first flange lower portion 2a2.
  • the first flange upper portion 2a1 has openings of the same diameter at both ends communicating with the space portion of the first waveguide upper portion 1a1, and the first waveguide upper portion 1a1 is connected to one end of the first waveguide upper portion 1a1.
  • It is a plate-shaped metal body extending outward at a right angle from the opening edge of the upper portion 1a1 and integrally formed with the first waveguide upper portion 1a1.
  • the first flange lower portion 2a2 has openings of the same diameter at both ends communicating with the space portion of the first waveguide lower portion 1a2, and the first waveguide lower portion 1a2 has an opening at one end thereof. It is a plate-shaped metal body extending outward at a right angle from the opening edge of the lower portion 1a2 and integrally formed with the first waveguide lower portion 1a2.
  • the second flange 2b is composed of a second flange upper portion 2b1 and a second flange lower portion 2b2.
  • the second flange upper portion 2b1 has openings of the same diameter at both ends communicating with the space portion of the second waveguide upper portion 1b1, and the second waveguide upper portion 1b1 has a second waveguide at one end.
  • It is a plate-shaped metal body extending outward at a right angle from the opening edge of the upper portion 1b1 and integrally formed with the second waveguide upper portion 1b1.
  • the second flange lower portion 2b2 has openings of the same diameter at both ends communicating with the space portion of the second waveguide lower portion 1b2, and the second waveguide lower portion 1b2 has an opening at one end thereof. It is a plate-shaped metal body extending outward at a right angle from the opening edge of the lower portion 1b2 and integrally formed with the second waveguide lower portion 1b2.
  • the first flange 2a configured by the first flange upper portion 2a1 and the first flange lower portion 2a2 is a choke flange.
  • the first flange upper portion 2a1 constituting the choke flange is arranged on the opening surface so as to surround the opening edge at a position of 1/4 wavelength ( ⁇ / 4) of the high frequency signal from the opening edge, and the depth is the high frequency signal. It has a choke groove 2a01 which is an elongated groove having a wavelength ( ⁇ / 4) of 1/4 of the above.
  • the first flange lower portion 2a2 constituting the choke flange is arranged on the opening surface so as to surround the opening edge at a position of 1/4 wavelength ( ⁇ / 4) of the high frequency signal from the opening edge, and the depth is the high frequency signal. It has a choke groove 2a02 which is an elongated groove having a wavelength ( ⁇ / 4) of 1/4 of the above.
  • the second flange 2b composed of the second flange upper portion 2b1 and the second flange lower portion 2b2 is a cover flange having a flat opening surface.
  • the first dielectric substrate 3a has a base portion 3a1 located inside the first waveguide 1a and the first flange 2a, and outside the end faces of the base portion 3a1 to the first flange 2a, from the width of the base portion 3a1.
  • the stretched portion 3a2 extending with a narrow width and facing the second dielectric substrate 3b of the second transmission line body 10b, the first waveguide upper portion 1a1 and the first waveguide lower portion 1a2.
  • the peripheral edge portion 3a3 does not exist in the portion where the choke groove 2a01 and the choke groove 2a02 are located.
  • the first surface-side contact surface pattern 50a1 is a metal pattern formed on the surface of the peripheral edge portion 3a3 of the first dielectric substrate 3a by vapor deposition or the like.
  • the first back surface side contact surface pattern 50a2 is a metal pattern formed on the back surface of the peripheral edge portion 3a3 of the first dielectric substrate 3a by vapor deposition or the like, and has the same shape as the first front surface side contact surface pattern 50a1. ..
  • the first front surface side contact surface pattern 50a1 and the first back surface side contact surface pattern 50a2 are formed so as to surround the choke groove 2a01 and the choke groove 2a02.
  • the plurality of first vias 60a are formed on the peripheral edge portion 3a3 of the first dielectric substrate 3a at regular intervals, and electrically form the first front surface side contact surface pattern 50a1 and the first back surface side contact surface pattern 50a2. Connect to.
  • the arrangement spacing of the plurality of first vias 60a is sufficiently smaller than the wavelength ⁇ of the high frequency signal, and can be regarded as a pseudo conductor wall over the entire circumference.
  • the first via 60a is formed so as to surround the choke groove 2a01 and the choke groove 2a02.
  • the first waveguide upper portion 1a1 and the first flange upper portion 2a1 and the first waveguide lower portion 1a2 and the first flange lower portion 2a2 are fixed with the peripheral edge portion 3a3 of the first dielectric substrate 3a interposed therebetween. ..
  • the first waveguide upper part 1a1-first front surface side contact surface pattern 50a1-the plurality of first vias 60a-the first back surface side contact surface pattern 50a2-the first waveguide lower part 1a2 are electric.
  • the first waveguide 1a is configured.
  • first flange upper portion 2a1-the first front surface side contact surface pattern 50a1-the plurality of first vias 60a-the first back surface side contact surface pattern 50a2-the first flange lower portion 2a2 are electrically connected. It constitutes the first flange 2a.
  • the choke groove 2a01 and the choke groove 2a02 are arranged so as to face each other with the peripheral edge portion 3a3 interposed therebetween, and are choked by the choke groove 2a01, the choke groove 2a02, and the plurality of first vias 60a surrounding the choke groove 2a01 and the choke groove 2a02.
  • the groove 2a0 is configured and has the same configuration as the choke groove 2a0 in the transmission line configuration 100 according to the first embodiment.
  • the first waveguide upper portion 1a1-the first front surface side contact surface pattern 50a1-the plurality of first vias 60a-the first back surface side contact surface pattern 50a2-the first waveguide lower portion 1a2 are external conductors.
  • the first suspended line 5a which is a so-called rectangular coaxial line, has the first signal line 4a as an internal conductor.
  • the second dielectric substrate 3b has a base portion 3b1 located inside the second waveguide 1b and the second flange 2b, and a second waveguide upper portion 1b1 and a second guide on the outer periphery of the base portion 3b1. It is a printed circuit board having a width at the end face of the waveguide lower portion 1b2 and a peripheral edge portion 3b3 extending by the width at the end faces of the second flange upper portion 2b1 and the second flange lower portion 2b2.
  • the second dielectric substrate 3b has the second front surface side contact surface pattern 50b1 on the front surface of the peripheral edge portion 3b3 of the second dielectric substrate 3b and the second surface side contact surface pattern 50b1 on the back surface.
  • the back surface side contact surface pattern 50b2 forms a plurality of second vias 60b that electrically connect the second front surface side contact surface pattern 50b1 and the second back surface side contact surface pattern 50b2.
  • the second waveguide upper portion 1b1 and the second flange upper portion 2b1 and the second waveguide lower portion 1b2 and the second flange lower portion 2b2 are fixed with the peripheral edge portion 3b3 of the second dielectric substrate 3b interposed therebetween. ..
  • the second waveguide upper part 1b1-the second front surface side contact surface pattern 50b1-the plurality of second vias 60b-the second back surface side contact surface pattern 50b2-the second waveguide lower part 1b2 are electric.
  • the second waveguide 1b is configured.
  • the second flange upper portion 2b1-the second front surface side contact surface pattern 50b1-the plurality of second vias 60b-the second back surface side contact surface pattern 50b2-the second flange lower portion 2b2 are electrically connected. It constitutes the second flange 2b.
  • the second waveguide upper portion 1b1-the second front surface side contact surface pattern 50b1-the plurality of second vias 60b-the second back surface side contact surface pattern 50b2-the second waveguide lower portion 1b2 are external conductors.
  • the second suspended line 5b which is a so-called rectangular coaxial line, has the second signal line 4b as an internal conductor.
  • the transmission line configuration 100 according to the fifth embodiment has the waveguide 1 and the flange 2 divided into two parts, an upper portion and a lower portion, with respect to the transmission line configuration 100 according to the first embodiment. It is substantially the same as the transmission line configuration 100 according to the first embodiment, and operates in the same manner.
  • the transmission line configuration 100 according to the fifth embodiment also has the following effects 1) to 3) as in the transmission line configuration 100 according to the first embodiment.
  • the choke groove 2a0 configured by the above can prevent leakage of the electromagnetic field from the gap between the opening surface of the first flange 2a and the opening surface of the second flange 2b.
  • the waveguide 1 and the flange 2 are divided into two parts, an upper part and a lower part, it is easy to assemble.
  • Modification 2 of the fifth embodiment In the transmission line configuration 100 according to the fifth embodiment, similarly to the transmission line configuration 100 according to the third embodiment, the lower side surface and the second side surface of the first transmission line body 10a in the first flange lower portion 2a2.
  • a hinge 20 is mounted between the transmission line body 10b and the lower side surface of the second flange lower portion 2b2, and further, the second transmission line is similar to the transmission line configuration 100 according to the third embodiment.
  • a slit 30 is formed in the second flange 2b of the body 10b, which is a groove that communicates with the opening of the second flange 2b and is provided on the side of the second waveguide 1b from the opening surface in parallel with the transmission direction of the high frequency signal.
  • Modification 3 of the fifth embodiment In the transmission line configuration 100 according to the fifth embodiment, similarly to the transmission line configuration 100 according to the fourth embodiment, the lower side surface and the second side surface of the first transmission line body 10a in the first flange lower portion 2a2.
  • a hinge 20 is mounted between the transmission line body 10b and the lower side surface of the second flange lower portion 2b2, and further, the second transmission line is similar to the transmission line configuration 100 according to the fourth embodiment.
  • the second flange 2b of the body 10b communicates with the opening of the second flange 2b, and extends to the side surface of the second flange 2b from the opening surface to the second waveguide 1b side in parallel with the transmission direction of the high frequency signal.
  • a slit 40 which is a provided groove, is provided.
  • Embodiment 6 The deployable planar antenna according to the sixth embodiment will be described with reference to FIGS. 14 to 16.
  • the deployable planar antenna according to the sixth embodiment is a phased array antenna, and the transmission line configuration 100 according to the second embodiment is used as a transmission line for transmitting a high frequency signal.
  • the same reference numerals as those given in FIGS. 1 to 6 indicate the same or corresponding portions.
  • the deployable planar antenna includes a transmission line structure 100, a first sub-array antenna 70a arranged in parallel with the first transmission line body 10a in the transmission line structure 100, and a first transmission line body 10a and a first.
  • the first antenna feeding unit 80a connecting the sub-array antenna 70a, the second sub-alley antenna 70b arranged in parallel with the second transmission line body 10b in the transmission line configuration 100, and the second transmission line.
  • a second antenna feeding unit 80b for connecting the body 10b and the second sub-alley antenna 70b is provided.
  • the sub-array antenna 70 is a waveguide feeding type which is a kind of an array antenna having a waveguide 71 for an antenna and a side wall of the waveguide 71 for an antenna, and in the sixth embodiment, a plurality of radiation elements 72 provided on the upper side wall. It is an array antenna, and is an array antenna in which a waveguide is used as a feeding circuit for distributing signals to several radiation elements.
  • the antenna waveguide 71 has an upper side wall and a lower side wall located on the long side, a right side wall and a left side wall located on the short side, and a front end wall and a rear end wall located at the end, and both ends are opened. It is a metal waveguide having a rectangular cross-sectional shape. The end of the antenna waveguide 71 is short-circuited by the conductor walls of the front end wall and the rear end wall.
  • the waveguide 1 is not limited to a rectangular cross-sectional shape, and may be a waveguide having a circular or elliptical cross-sectional shape.
  • Each of the plurality of radiating elements 72 is a slot made of an elongated opening formed in the upper side wall of the waveguide 71 for an antenna, and operates as a so-called waveguide slot antenna.
  • the first antenna feeding unit 80a is a feeding waveguide connecting the first waveguide 1a of the first transmission line body 10a and the first antenna waveguide 71a of the first sub-array antenna 70a. Is. One end of the first antenna feeding portion 80a is connected to the upper side wall of the first waveguide 1a of the first transmission line body 10a, and the other end is a guide for the first antenna of the first sub-array antenna 70a. A part of the high frequency signal connected to the lower side wall of the wave guide 71a and transmitted through the first waveguide 1a is guided to the first antenna waveguide 71a.
  • the first antenna feeding portion 80a serves as a connecting portion between the first suspended line 5a and the first antenna waveguide 71a.
  • the feeding waveguide constituting the first antenna feeding portion 80a is a metal waveguide having a rectangular cross-sectional shape.
  • the feeding waveguide is not limited to a rectangular cross-sectional shape, and may be a waveguide having a circular or elliptical cross-sectional shape.
  • the first antenna feeding portion 80a may be a slot having an elongated cross-sectional shape instead of the feeding waveguide, or may have a structure in which the waveguide and the slot are combined.
  • the second antenna feeding unit 80b is a feeding waveguide connecting the second waveguide 1b of the second transmission line body 10b and the second antenna waveguide 71b of the second sub-array antenna 70b. Is. One end of the second antenna feeding portion 80b is connected to the upper side wall of the second waveguide 1b of the second transmission line body 10b, and the other end is a guide for the second antenna of the second sub-array antenna 70b. A part of the high frequency signal connected to the lower side wall of the wave guide 71b and transmitted through the second waveguide 1b is guided to the second antenna waveguide 71b.
  • the second antenna feeding portion 80b serves as a connecting portion between the second suspended line 5b and the second antenna waveguide 71b.
  • the feeding waveguide constituting the second antenna feeding portion 80b is a metal waveguide having a rectangular cross-sectional shape.
  • the feeding waveguide is not limited to a rectangular cross-sectional shape, and may be a waveguide having a circular or elliptical cross-sectional shape.
  • the second antenna feeding unit 80b may be a slot having an elongated cross-sectional shape instead of the feeding waveguide, or may have a structure in which the waveguide and the slot are combined.
  • the plurality of first radiating elements 72a and the plurality of second radiating elements 72b are respectively adjusted.
  • the phase of the radio wave radiated from the antenna is set in a desired direction and in the same phase, and the main beam from the deployable planar antenna is directed in the desired direction.
  • the first antenna waveguide 71a is arranged parallel to the first waveguide 1a on the side opposite to the lower side wall of the first waveguide 1a to which the hinge 20 is mounted, and is a guide for the second antenna.
  • the wave guide 71b is arranged in parallel with the second waveguide 1b on the side opposite to the lower side wall of the second waveguide 1b to which the hinge 20 is mounted. That is, the first sub-array antenna 70a is arranged parallel to the first transmission line body 10a on the side opposite to the side of the first transmission line body 10a in the transmission line structure 100 to which the hinge 20 is mounted, and the second sub-array antenna 70a is arranged.
  • the sub-array antenna 70b is arranged in parallel with the second transmission line body 10b on the side opposite to the side of the second transmission line body 10b in the transmission line structure 100 to which the hinge 20 is mounted.
  • the first transmission line body 10a and the second transmission line body 10b, the first sub-array antenna 70a, and the second sub-array antenna 70b overlap each other one transmission is performed centering on the rotation shaft 21 of the hinge 20.
  • the first transmission line body 10a and the second transmission line body 10b are in a connected state arranged in a straight line, and the first sub-array antenna 70a and the second sub-array are set.
  • the antenna 70b is placed in a straight line and deployed.
  • the first sub-array antenna 70a and the second sub-array antenna 70b are refracted and retracted and expanded by the hinge 20.
  • the first transmission line body 10a and the second transmission line body 10b have a first transmission line in which the opening surface of the first flange 2a and the opening surface of the second flange 2b are arranged so as to face each other.
  • the body 10a and the second transmission line body 10b are connected to each other, and are deployed as a deployable planar antenna.
  • the high frequency signal input from one end of the first suspended line 5a propagates inside the first suspended line 5a.
  • a part of the high frequency signal propagating inside the first suspended line 5a is input to the first antenna waveguide 71a via the first antenna feeding unit 80a, and the high frequency signal is input to the first sub-array antenna 70a.
  • the first sub-array antenna 70a to which the high frequency signal is input propagates inside the waveguide 71a for the first antenna and is radiated into space from the first radiating element 72a.
  • the remaining high frequency signal propagating inside the first suspended line 5a is input to the connection portion between the first suspended line 5a and the second suspended line 10.
  • a high frequency current flows through the first signal line 4a.
  • the electromagnetic field generated by the high frequency current flowing through the extended line 4a2 of the first signal line 4a is such that the extended line 4a2 and the second signal line 4b running in parallel with the extended line 4a2 form an interdigital coupling line. , It is coupled to the extension line 4a2 and the second signal line 4b running in parallel with the extension line 4a2.
  • a high frequency current is excited in the second signal line 4b, and the high frequency signal input from the first suspended line 5a is transmitted to the second suspended line 5b.
  • first flange 2a is a choke flange, leakage of the electromagnetic field can be prevented from the gap between the opening surface of the first flange 2a and the opening surface of the second flange 2b, and the first suspended.
  • the high frequency signal input from the line 5a is efficiently transmitted to the second suspended line 5b.
  • a part of the high frequency signal input to the second suspended line 5b is input to the second antenna waveguide 71b via the second antenna feeding unit 80b, and the high frequency signal is input to the second sub-array antenna 70b. Is entered.
  • the second sub-array antenna 70b to which the high frequency signal is input propagates inside the waveguide for the second antenna 71b and is radiated into space from the second radiating element 72b.
  • the radio waves radiated into space from each of the plurality of first radiating elements 72a and the plurality of second radiating elements 72b are radiated in a desired direction and set in the same phase, and the main beam from the deployable planar antenna. Is emitted as a beam directed in the desired direction.
  • the first sub-array antenna 70a and the second sub-array antenna 70b are refracted and retracted and expanded by the hinge 20, and the second embodiment is It has the effects of 1) to 4) of the transmission line configuration 100.
  • a play occurs in the hinge 20, and in the connected state of the first transmission line body 10a and the second transmission line body 10b, between the opening surface of the first flange 2a and the opening surface of the second flange 2b. Even when a gap is generated, the effect of the choke groove 2a0 formed on the first flange 2a of the first transmission line body 10a can prevent leakage of the electromagnetic field from the gap, and input from the first suspended line 5a. The generated high frequency signal is efficiently transmitted to the second suspended line 5b.
  • the deployable planar antenna according to Embodiment 6 is a phased array antenna, and uses the transmission line configuration 100 according to Embodiment 2 as a transmission line for transmitting a high frequency signal.
  • the transmission line configuration 100 according to the second embodiment instead of the transmission line configuration 100 according to the second embodiment, the transmission line configuration 100 according to the third embodiment, the transmission line configuration 100 according to the fourth embodiment, and the modified example 1 of the fifth embodiment are present.
  • the transmission line configuration 100 according to the above, the transmission line configuration 100 according to the second modification of the fifth embodiment, and the transmission line configuration 100 according to the third modification of the fifth embodiment may be used.
  • Embodiment 7 The deployable planar antenna according to the seventh embodiment will be described with reference to FIG.
  • the deployable planar antenna according to the sixth embodiment uses a waveguide feeding type array antenna as the first sub-array antenna 70a and the second sub-array antenna 70b.
  • a probe-fed antenna which is a type of array antenna, is used, and the other points are the same.
  • FIG. 17 the same reference numerals as those given in FIGS. 14 to 16 indicate the same or corresponding portions.
  • the sub-array antenna 70 is a probe-fed antenna having a waveguide 71 for an antenna and a side wall of the waveguide 71 for an antenna, and in the seventh embodiment, a radiation element 73 which is a plurality of feeding probes provided so as to project from the upper side wall.
  • the antenna waveguide 71 has an insertion hole formed in the upper side wall thereof at the center position of a slit which is a radiation element 72 in the deployable planar antenna according to the sixth embodiment.
  • the feeding probe which is the first radiating element 73a, functions as a helical antenna, and one end thereof is inserted through an insertion hole formed in the first antenna waveguide 71a and inserted into the first antenna feeding portion 80a. Will be done.
  • the radiating element 73 is not limited to the helical antenna, and may have another antenna shape.
  • the deployable planar antenna according to the seventh embodiment uses a feeding probe as the radiation element 73 instead of the slot array antenna using the slot which is the radiation element 72 in the deployable plane antenna according to the sixth embodiment. It was changed to a probe-fed antenna.
  • the probe-fed antenna is used as the first sub-array antenna 70a and the second sub-array antenna 70b, it has the same effect as the deployable planar antenna according to the sixth embodiment.
  • Embodiment 8 The deployable planar antenna according to the eighth embodiment will be described with reference to FIG.
  • the deployable planar antenna according to the eighth embodiment uses the waveguide slot array antenna as the first sub-array antenna 70a and the second sub-array antenna 70b. , The difference is that the plane array antenna is used, and the other points are the same.
  • the same reference numerals as those given in FIGS. 14 to 16 indicate the same or corresponding portions.
  • the sub-array antenna 70 has a printed circuit board 74, a feeding line (not shown) formed on the printed circuit board 74, and a plurality of radiating elements 75 formed on the surface of the printed circuit board 74 in an array shape.
  • the first radiating element 75a functions as a patch antenna and is electromagnetically coupled to the first feeding line formed on the first printed circuit board 74a.
  • the second radiating element 75b functions as a patch antenna and is electromagnetically coupled to the second feeding line formed on the second printed circuit board 74b.
  • the radiating element 75 is not limited to the patch antenna, and may have another antenna shape.
  • the first antenna feeding unit 80a is a slot or a feeding waveguide connecting the first waveguide 1a of the first transmission line body 10a and the first feeding line of the first sub-array antenna 70a.
  • the second antenna feeding unit 80b is a slot or a feeding waveguide connecting the second waveguide 1b of the second transmission line body 10b and the second feeding line of the second sub-array antenna 70b. ..
  • the deployable planar antenna according to the eighth embodiment is changed to a planar array antenna instead of the waveguide slot array antenna in the deployable planar antenna according to the sixth embodiment.
  • the transmission line configuration according to the present disclosure is a transmission line for transmitting a high frequency signal for a beam radiated from a sub-array antenna in a deployable planar antenna which is a phased array antenna mounted on an artificial satellite, or a beam received by the sub-array antenna. It is suitable for transmission lines that transmit high-frequency signals.
  • 100 transmission line structure 10a first transmission line body, 10b second transmission line body, 1a first waveguide, 1b second waveguide, 2a first flange, 2b second flange , 2a0 choke groove, 2a01 first choke groove, 2a02 second choke groove, 3a first dielectric substrate, 3a1 base, 3a2 stretched portion, 3b second dielectric substrate, 4a first signal line, 4a1 Main line, 4a2 extension line, 4b second signal line, 5a first suspended line, 5b second suspended line, 20 waveguide, 21 rotation axis, 22, 23 pieces, 30, 40 slit, 70a first sub-array.

Landscapes

  • Waveguides (AREA)
  • Waveguide Connection Structure (AREA)

Abstract

伝送線路構成体100は第1及び第2の伝送線路体10a、10bを備える。 第1及び第2の伝送線路体10a、10bそれぞれが、内部に高周波信号が伝送される導波管1と、導波管1の対向する端部に設けられたフランジ2と、導波管1の内部に、高周波信号が伝送される方向に沿って設けられた誘電体基板3と、誘電体基板3の一面に形成された信号線路4を有し、導波管1を外部導体、信号線路4を内部導体としたサスペンデッド線路5を構成する。 第1の伝送線路体10aの誘電体基板3aは、導波管1a及びフランジ2aの内部に位置する基部3a1と、基部3a1からフランジ2aの端面の外部に延在し、第2の伝送線路体10bの誘電体基板3bに対向する延伸部3a2を有する。 第1の伝送線路体10aの信号線路4aは、基部3a1に位置する本線路4a1と、延伸部3a2に位置し、第2の伝送線路体10bの信号線路4bと対向配置される延伸線路4a2を有する。 第1の伝送線路体10aのフランジ又は第2の伝送線路体10bのフランジの一方のフランジがチョークフランジであり、他方のフランジがカバーフランジである。

Description

伝送線路構成体及び展開型平面アンテナ
 本開示は、高周波信号が伝送される複数の伝送線路体を備えた伝送線路構成体、及び伝送線路構成体を備えた展開型平面アンテナに関する。
 展開型平面アンテナは、人工衛星に搭載される大型の平面アンテナとして用いられ、ロケットの収納スペースの制約上、複数のパネルが折りたたまれた状態で宇宙空間に輸送され、宇宙空間において複数のパネルが展開される。
 複数のパネルが展開された展開状態において、各パネルに設けられたアンテナが送信又は受信する高周波信号はパネル間で伝送される。
 各パネル間の高周波信号の伝送は、パネル間の信号伝送路の接続部に可撓性のあるフレキシブル導波管又は同軸ケーブルを用いる方法がある。
 近年、フレキシブル導波管及び同軸ケーブルは高周波損失が大きく、アンテナシステムの電力効率が低下するという観点から、リジッドな導波管を用いる方法が検討されている。
 リジッドな導波管を用いる方法の一つが特許文献1に示されている。
 特許文献1に示された人工衛星搭載のアンテナ等における展開構造物は、隣り合うパネルの一方に固定された導波管の端部に設けられたチョークフランジと、隣り合う他方のパネルに固定された導波管の端部に設けられたカバーフランジとが互いに間隙を有して対向して配置されるように構成されている。
特許第6501361号
 特許文献1に示される展開構造物を、ビーム走査が可能なフェーズドアレーアンテナにおける信号伝送路に適用した場合、以下のような課題があった。
 すなわち、特許文献1に示される展開構造物は、厚みが大きいため、アンテナが設けられた面と反対側の面に複数の信号伝送路を並走させるフェーズドアレーアンテナが大型になってしまう。
 本開示は上記課題を解決するもので、隣接する第1の伝送線路体と第2の伝送線路体との間の高周波信号の伝送を、高周波損失を抑制して行え、第1の伝送線路体と第2の伝送線路体の厚みを薄くした伝送線路構成体を得ることを目的とする。
 本開示に係る伝送線路構成体は、隣接する第1の伝送線路体及び第2の伝送線路体を備え、第1の伝送線路体及び第2の伝送線路体それぞれが、内部に高周波信号が伝送される導波管と、導波管の対向する端部に設けられたフランジと、導波管の内部に、高周波信号が伝送される方向に沿って設けられた誘電体基板と、誘電体基板の表面又は裏面のいずれか一方の面に、高周波信号が伝送される方向に沿って形成された信号線路を有し、導波管を外部導体、信号線路を内部導体としたサスペンデッド線路を構成し、第1の伝送線路体の誘電体基板は、第1の伝送線路体の導波管及びフランジの内部に位置する基部と、当該基部から第1の伝送線路体のフランジの端面の外部に延在し、第2の伝送線路体の誘電体基板に対向する延伸部を有し、第1の伝送線路体の信号線路は、第1の伝送線路体の誘電体基板の基部に位置する本線路と、第1の伝送線路体の誘電体基板の延伸部に位置し、第2の伝送線路体の信号線路と対向配置される延伸線路を有し、第1の伝送線路体のフランジ又は第2の伝送線路体のフランジの一方のフランジがチョークフランジであり、他方のフランジがカバーフランジである。
 本開示によれば、第1の伝送線路体の信号線路が第2の伝送線路体の信号線路と対向配置される延伸線路を有することにより、第1の伝送線路体と第2の伝送線路体との間の高周波信号の伝送を可能とし、チョークフランジにより高周波損失を抑制して高周波信号の伝送を行え、第1の伝送線路体及び第2の伝送線路体それぞれを、導波管を外部導体、信号線路を内部導体としたサスペンデッド線路を構成したものとしたので、第1の伝送線路体と第2の伝送線路体の厚みを薄くした伝送線路構成体を得ることができる。
実施の形態1に係る伝送線路構成体を示す鳥瞰図である。 図1のII-II断面図である。 図1のIII-III断面図である。 実施の形態1に係る伝送線路構成体における第1の伝送線路体と前記第2の伝送線路体との接続を解いた状態を示す鳥観図である。 実施の形態2に係る伝送線路構成体を示す縦断面図である。 実施の形態2に係る伝送線路構成体における第1の伝送線路体と前記第2の伝送線路体との接続を解いた状態を示す鳥観図である。 実施の形態3に係る伝送線路構成体における第1の伝送線路体と前記第2の伝送線路体との接続を解いた状態を示す鳥観図である。 実施の形態4に係る伝送線路構成体における第1の伝送線路体と前記第2の伝送線路体との接続を解いた状態を示す鳥観図である。 実施の形態5に係る伝送線路構成体を示す鳥瞰図である。 図9のX-X断面図である。 実施の形態5に係る伝送線路構成体における第1の誘電基板における部分縦断面図である。 図9のXII-XII断面図である。 実施の形態5に係る伝送線路構成体における第1の伝送線路体と前記第2の伝送線路体との接続を解いた状態を示す鳥観図である。 実施の形態6に係る展開型平面アンテナを示す鳥瞰図である。 図14のXV-XV断面図である。 実施の形態6に係る伝送線路構成体における第1の伝送線路体と前記第2の伝送線路体との接続を解いた状態を示す鳥観図である。 実施の形態7に係る展開型平面アンテナを示す鳥瞰図である。 実施の形態8に係る展開型平面アンテナを示す鳥瞰図である。
実施の形態1.
 実施の形態1に係る伝送線路構成体100を図1から図4を用いて説明する。
 人工衛星に搭載される展開型平面アンテナに用いられる伝送線路構成体100を例として以下に説明する。伝送線路構成体100は高周波信号が伝送される。この実施の形態1の説明では、展開型平面アンテナが高周波信号を送信する場合の、高周波信号を伝送する伝送線路構成体100を例にとり、説明する。
 展開型平面アンテナが高周波信号を受信する場合の、高周波信号を伝送する伝送線路構成体100も同様の構成である。
 伝送線路構成体100は、隣接する第1の伝送線路体10a及び第2の伝送線路体10bを備える。
 第1の伝送線路体10a及び第2の伝送線路体10bそれぞれが、内部に高周波信号が伝送される導波管1と、導波管1の対向する端部に設けられたフランジ2と、導波管1の内部に、高周波信号が伝送される方向、つまり、図に符号Aとして示す方向に沿って設けられた誘電体基板3と、誘電体基板3の表面又は裏面のいずれか一方の面に、高周波信号が伝送される方向に沿って形成された信号線路4を有し、導波管1を外部導体、信号線路4を内部導体とした、いわゆる方形同軸線路であるサスペンデッド線路5を構成する。
 なお、高周波信号は、以下の説明において、導波管1の内部に伝送される高周波信号を意味している。
 なお、本説明において、煩雑さを避けるため、第1の伝送線路体10a及び第2の伝送線路体10bの構成の説明において、同様の構成の説明においては「第1の」、「第2の」及び符号の添字a、bを削除して説明し、相違する構成及び別々に説明する必要がある場合は、第1の伝送線路体10aの構成には「第1の」を付して符号の添字aを添え、第2の伝送線路体10bの構成には「第2の」を付して符号の添字bを添えて説明する。
 導波管1は、長辺に位置する上側壁及び下側壁と、短辺に位置する右側壁及び左側壁を有し、両端が開口された断面形状が矩形である金属製の導波管である。
 なお、導波管1は断面形状が矩形に限られるものではなく、断面形状が円形又は楕円形の導波管であってもよい。
 フランジ2は、導波管1の空間部と連通した同径の開口を両端に有し、外径が導波管1の外径より大きく、導波管1と一体に形成された板状の金属体である。
 第1の伝送線路体10aの第1のフランジ2aはチョークフランジである。チョークフランジとしての第1のフランジ2aは、開口面に、開口縁から、高周波信号の1/4波長(λ/4)の位置に開口縁を囲うように配置され、深さが高周波信号の1/4波長(λ/4)となるチョーク溝2a0を有する。
すなわち、チョーク溝2a0は、図2及び図4に示すように、第1のフランジ2aに、その深さ方向が第1の導波管1aの管軸方向に対して平行になるように設けられた細長い溝であり、第1の導波管1aの断面の周りを囲うように設けられている。このとき、チョーク溝2a0は第1の導波管1aの断面の各辺から、垂直外側方向に高周波信号のλ/4離れた位置に設けられており、さらにその深さは高周波信号のλ/4である。
 第2の伝送線路体10bの第2のフランジ2bはカバーフランジである。カバーフランジとしての第2のフランジ2bは、開口面が平坦面である。
 第1の伝送線路体10aの第1のフランジ2aにおける開口面と第2の伝送線路体10bの第2のフランジ2bにおける開口面が対向して配置されると、第1の伝送線路体10aと第2の伝送線路体10bは、内部を伝送される高周波信号に対して接続状態となる。図1から図3は第1の伝送線路体10aと第2の伝送線路体10bとの接続状態を、図4は第1の伝送線路体10aと第2の伝送線路体10bとの接続を解いた状態を示している。
 なお、第1のフランジ2aがカバーフランジ、第2のフランジ2bがチョークフランジであってもよい。
 第1のフランジ2aにおける開口面と第2のフランジ2bにおける開口面が対向して配置された、第1の伝送線路体10aと第2の伝送線路体10bの接続状態において、第1のフランジ2aにおける開口面と第2のフランジ2bにおける開口面との間に間隙が生じた場合、当該間隙とチョーク溝2a0は一種の伝送線路とみなすことができる。チョーク溝2a0の開口端から底面側を見た入力インピーダンスは、チョーク溝2a0の深さが高周波信号のλ/4であることから、非常に大きいインピーダンスとなる。
 間隙とチョーク溝2a0によりみなされる伝送線路は、図3に示す接続点Pからλ/4離れた位置に非常に大きいインピーダンスが並列に接続された伝送線路とみなすことができる。
 その結果、接続点Pからチョーク溝2a0側を見た入力インピーダンスは、非常に小さい値、すなわち電気的に短絡された状態とみなすことができる。
 従って、第1のフランジ2aにおける開口面と第2のフランジ2bにおける開口面との間に間隙が生じた場合でも、当該間隙からの電磁界の漏洩は防止される。
 よって、第1のサスペンデッド線路5aから入力された高周波信号は、効率よく第2のサスペンデッド線路5bへと伝送される。
 なお、接続点Pは、第1のフランジ2aの開口縁の位置である。
 誘電体基板3は、その面方向が導波管1の管軸方向に対して平行となるように導波管1の内部に配置されたプリント基板である。すなわち、誘電体基板3の表面及び裏面が導波管1の上側壁及び下側壁と平行にされ、誘電体基板3の右側面及び左側面それぞれが対応した導波管1の右側壁及び左側壁の内面に固着される。
 第2の伝送線路体10bの第2の誘電体基板3bは、図3に示すように、第1の伝送線路体10aの第1の誘電体基板3aより第1の誘電体基板3aの厚さ分だけ低い位置に固着される。
 なお、第1の誘電体基板3aが、第2の誘電体基板3bより第2の誘電体基板3bの厚さ分だけ低い位置に固着されるものでもよい。
 第1の誘電体基板3aは、第1の導波管1a及び第1のフランジ2aの内部に位置する基部3a1と、基部3a1から第1のフランジ2aの端面の外部に、基部3a1の幅より細い幅で延在し、第2の伝送線路体10bの第2の誘電体基板3bに対向する延伸部3a2を有する。
 第1の誘電体基板3aの基部3a1の長さは、第1の導波管1aの側壁の長さと第1のフランジ2aの長さの和に等しい。
 第1の誘電体基板3aの延伸部3a2の長さは、高周波信号の1/4波長(λ/4)より若干長い長さである。
 第2の誘電体基板3bの長さは、第2の導波管1bの側壁の長さと第2のフランジ2bの長さの和に等しい。
 従って、第1のフランジ2aにおける開口面と第2のフランジ2bにおける開口面が対向して配置された、第1の伝送線路体10aと第2の伝送線路体10bの接続状態において、図3に示すように、第1の誘電体基板3aの延伸部3a2が第2のサスペンデッド線路5bの内部に挿入され、第1の誘電体基板3aの延伸部3a2の裏面が第2の誘電体基板3bの表面に接した状態で配置される。接触部分の長さは略λ/4である。
 信号線路4は、誘電体基板3の表面に蒸着などにより形成された金属パターンである。信号線路4は、導波管1の管軸方向と平行に延伸し、両端部が解放された高周波信号線路である。
 なお、信号線路4は、誘電体基板3の裏面に形成されたものでもよい。
 第1の信号線路4aは、第1の誘電体基板3aの基部3a1に位置する本線路4a1と、第1の誘電体基板3aの延伸部3a2に位置し、第2の信号線路4bと対向配置される延伸線路4a2を有する。
 本線路4a1と延伸線路4a2を有する第1の信号線路4aは、基部3a1及び延伸部3a2の表面の幅方向中央に、基部3a1の一端部から、基部3a1の他端部に延在した延伸部3a2の他端部まで直線的に形成されている。
 第2の信号線路4bは、第2の誘電体基板3bの表面の幅方向中央に、一端部から他端部まで直線的に形成されている。
 従って、第1の伝送線路体10aと第2の伝送線路体10bの接続状態において、第1の信号線路4aの延伸線路4a2が第2のサスペンデッド線路5bの内部に挿入され、第1の信号線路4aの延伸線路4a2が延伸部3a2を介して第2の信号線路4bに対向配置される。つまり、延伸線路4a2と第2の信号線路4bが延伸部3a2を挟んで、対向して並走するように配置される。対向配置される長さは高周波信号のλ/4である。
 要するに、延伸線路4a2と第2の信号線路4bとは、いわゆるインタデジタル型の結合線路を形成しており、第1のサスペンデッド線路5aから入力された高周波信号は、第2のサスペンデッド線路5bへ伝送される。この時の伝送効率は、リジッドな導波管を用いた従来の方法より向上している。
 また、延伸線路4a2と第2の信号線路4bの対向配置される長さ及び延伸線路4a2と第2の信号線路4bの線幅を調整することで、第1のサスペンデッド線路5aから第2のサスペンデッド線路5bへの高周波信号の伝送量(伝送効率)を制御することができる。
 延伸線路4a2と第2の信号線路4bが並走する部分の長さを高周波信号のλ/4にすることにより、第1のサスペンデッド線路5aから第2のサスペンデッド線路5bへの高周波信号の伝送効率を向上させることができる。
 また、延伸線路4a2と延伸線路4a2に並走する第2の信号線路4bの線幅を、本線路4a1の線幅に比べて細くすることで、第1のサスペンデッド線路5aから第2のサスペンデッド線路10への高周波信号の伝送効率を向上させることができる。
 なお、第2の信号線路4bにおける延伸線路4a2と並走しない部分の線幅は、本線路4a1の線幅と同じである。
 なお、信号線路4は、誘電体基板3の表面の幅方向中央に、誘電体基板3の一端部から他端部まで直線的に形成された金属パターンに限られるものではなく、誘電体基板3の一端部から他端部に長手方向に対して角度を有して延伸している金属パターン、又は、高周波信号の分配又は合成の少なくとも一方を実現するために、屈曲又は分岐の少なくとも一方を有する金属パターンによって形成されたものでもよい。
 なお、第2の誘電体基板3bを第1の誘電体基板3aの下に位置し、信号線路4を誘電体基板3の裏面に形成したものにあっては、延伸線路4a2と第2の信号線路4bが第2の誘電体基板3bを挟んで、対向して並走するように配置される。
 また、第1の誘電体基板3aを第2の誘電体基板3bの下に位置し、信号線路4を誘電体基板3の表面に形成したものにあっては、延伸線路4a2と第2の信号線路4bが第2の誘電体基板3bを挟んで、対向して並走するように配置される。
 さらに、第1の誘電体基板3aを第2の誘電体基板3bの下に位置し、信号線路4を誘電体基板3の裏面に形成したものにあっては、延伸線路4a2と第2の信号線路4bが延伸部3a2を挟んで、対向して並走するように配置される。
 次に動作について説明する。
 使用時、第1の伝送線路体10aと第2の伝送線路体10bは、第1のフランジ2aにおける開口面と第2のフランジ2bにおける開口面が対向して配置された、第1の伝送線路体10aと第2の伝送線路体10bの接続状態にされる。
 この接続状態において、第1のサスペンデッド線路5aの一端から入力された高周波信号は、第1のサスペンデッド線路5aの内部を伝搬し、第1のサスペンデッド線路5aと第2のサスペンデッド線路5bの接続部に入力される。
 この時、第1の信号線路4aに高周波電流が流れる。第1の信号線路4aの延伸線路4a2に流れる高周波電流によって生じる電磁界は、延伸線路4a2と延伸線路4a2に並走する第2の信号線路4bがインタデジタル型の結合線路を形成しているので、延伸線路4a2と延伸線路4a2に並走する第2の信号線路4bを結合する。その結果、第2の信号線路4bに高周波電流が励起され、第1のサスペンデッド線路5aから入力された高周波信号は、第2のサスペンデッド線路5bへと伝送される。
 延伸線路4a2と第2の信号線路4bが対向配置される長さが高周波信号のλ/4、延伸線路4a2と延伸線路4a2に並走する第2の信号線路4bの線幅を、本線路4a1の線幅に比べて細くしてあるので、第1のサスペンデッド線路5aから第2のサスペンデッド線路5bへの高周波信号の伝送効率が、リジッドな導波管を用いた従来の方法より向上している。
 また、第1のフランジ2aをチョークフランジにしてあるので、第1のフランジ2aにおける開口面と第2のフランジ2bにおける開口面との間における間隙から電磁界の漏洩が防止でき、第1のサスペンデッド線路5aから入力された高周波信号は、効率よく第2のサスペンデッド線路5bへと伝送される。
 以上に述べたように、実施の形態1に係る伝送線路構成体100は、第1の伝送線路体10aの第1の誘電体基板3aが、第1の伝送線路体10aの第1の導波管1a及び第1のフランジ2aの内部に位置する基部3a1と、基部3a1から第1の伝送線路体10aの第1のフランジ2aの端面の外部に延在し、第2の伝送線路体10bの第2の誘電体基板3bに対向する延伸部3a2を有し、第1の伝送線路体10aの第1の信号線路4aは、第1の伝送線路体10aの第1の誘電体基板3aの基部3a1に位置する本線路4a1と、第1の伝送線路体10aの第1の誘電体基板3aの延伸部3a2に位置し、第2の伝送線路体10bの第2の信号線路4bと対向配置される延伸線路4a2を有したものとしたので、第1の伝送線路体10aの第1の誘電体基板3aの延伸部3a2とこの延伸部3a2に並走する第2の伝送線路体10bの第2の信号線路4bがインタデジタル型の結合線路を形成し、第1のサスペンデッド線路5aと第2のサスペンデッド線路5bとの間の高周波信号の接続を可能としている。
 さらに、第1の伝送線路体10aの第1のフランジ2a又は第2の伝送線路体10bの第2のフランジ2bの一方のフランジがチョークフランジであり、他方のフランジがカバーフランジとしたので、第1の伝送線路体10aと第2の伝送線路体10bとの接続状態において、第1のフランジ2aにおける開口面と第2のフランジ2bにおける開口面との間における間隙からの電磁界の漏洩が防止でき、第1のサスペンデッド線路5aから入力された高周波信号は、効率よく第2のサスペンデッド線路5bへと伝送される。
 この時、第1のサスペンデッド線路5aと第2のサスペンデッド線路5bは、リジッドな導波管を用いた従来の方法と異なり、高周波信号の伝送に用いられる基本モードに対しては遮断周波数がないため、第1の導波管1aおよび第2の導波管1bの幅又は高さを、リジッドな導波管を用いた従来の方法に用いられる導波管に比べて小さくできる。
 すなわち、実施の形態1に係る伝送線路構成体100における第1の伝送線路体10aと第2の伝送線路体10bによる伝送線路の厚みが、リジッドな導波管を用いた従来の方法に用いられる導波管に比べて小さくできる。
実施の形態2.
 実施の形態2に係る伝送線路構成体100を図5及び図6を用いて説明する。
 実施の形態2に係る伝送線路構成体100は、実施の形態1に係る伝送線路構成体100に対して、ヒンジ20を設けた点が相違し、その他の点は同じである。
 なお、図5及び図6中において、図1から図4中に付された符号と同一符号は同一又は相当部分を示す。
 ヒンジ20は回転軸21と2つの片22、23を有し、2つの片22、23の一方の片22が第1の伝送線路体10aの第1のフランジ2aにおける下側の側面に、2つの片22、23の他方の片23が第2の伝送線路体10bの第2のフランジ2bにおける下側の側面に装着される。
 ヒンジ20は、回転軸21を中心に第1の伝送線路体10aと第2の伝送線路体10bが相対的に回転され、第1の伝送線路体10aの第1のフランジ2aにおける開口面と第2の伝送線路体10bの第2のフランジ2bにおける開口面が対面する位置へ展開可能にさせる。
 第1のフランジ2aにおける開口面と第2のフランジ2bにおける開口面が対向して配置された状態が、第1の伝送線路体10aと第2の伝送線路体10bの接続状態である。
 第1のフランジ2aにおける下側の側面と第2のフランジ2bにおける下側の側面が対向して配置された状態が、第1の伝送線路体10aと第2の伝送線路体10bの折り畳み状態である。
 すなわち、第1の伝送線路体10aと第2の伝送線路体10bが重なった折り畳み状態から、ヒンジ20の回転軸21を中心に一方の伝送線路体を180度回転させることにより、第1の伝送線路体10aと第2の伝送線路体10bが接続状態になる。
 要するに、第1の伝送線路体10aと第2の伝送線路体10bがヒンジ20により、屈折収納及び展開がなされる。
 第1の伝送線路体10aにおける第1の誘電体基板3aの延伸部3a2が、第2の伝送線路体10bにおける第2のフランジ2bの開口面に接触しないように、導波管1の空間が決定されている。
 実施の形態2に係る伝送線路構成体100においても、実施の形態1に係る伝送線路構成体100と同様に以下の効果1)から効果3)を有する。
 1)第1の伝送線路体10aの第1の誘電体基板3aの延伸部3a2とこの延伸部3a2に並走する第2の伝送線路体10bの第2の信号線路4bがインタデジタル型の結合線路を形成し、第1のサスペンデッド線路5aと第2のサスペンデッド線路5bとの間の高周波信号の接続を可能とする。
 2)第1の伝送線路体10aと第2の伝送線路体10bとの接続状態において、第1のフランジ2aにおける開口面と第2のフランジ2bにおける開口面との間における間隙からの電磁界の漏洩が防止できる。
 3)第1のサスペンデッド線路5aから入力された高周波信号は、効率よく第2のサスペンデッド線路5bへと伝送され、第1の伝送線路体10aと第2の伝送線路体10bによる伝送線路の厚みが小さくできる。
 特に、実施の形態2に係る伝送線路構成体100は、ヒンジ20に遊びが生じ、第1の伝送線路体10aと第2の伝送線路体10bの接続状態において、第1のフランジ2aにおける開口面と第2のフランジ2bにおける開口面との間に間隙が生じた場合においても、第1の伝送線路体10aの第1のフランジ2aに形成されたチョーク溝2a0の効果により、間隙から電磁界の漏洩が防止でき、第1のサスペンデッド線路5aから入力された高周波信号は、効率よく第2のサスペンデッド線路5bへと伝送される。
実施の形態3.
 実施の形態3に係る伝送線路構成体100を、図7を用いて説明する。
 実施の形態3に係る伝送線路構成体100は、実施の形態2に係る伝送線路構成体100に対して、第2の伝送線路体10bの第2のフランジ2bにスリット30を設けた点が相違し、その他の点は同じである。
 なお、図7中において、図5及び図6中に付された符号と同一符号は同一又は相当部分を示す。
 スリット30は、第2のフランジ2bの開口に連通し、開口面から第2の導波管1b側に高周波信号の伝送方向と平行に設けられた溝である。
 第1の伝送線路体10aと第2の伝送線路体10bが重なった折り畳み状態から、ヒンジ20の回転軸21を中心に一方の伝送線路体を180度回転させることにより、第1の伝送線路体10aと第2の伝送線路体10bが接続状態にされる際、第1の伝送線路体10aにおける第1の誘電体基板3aの延伸部3a2がスリット30を通過し、第2のサスペンデッド線路5bの内部に挿入され、第1の誘電体基板3aの延伸部3a2の裏面が第2の誘電体基板3bの表面に接した状態で配置される。
 接続状態から折り畳み状態へ回転する場合も延伸部3a2がスリット30を通過する。
 スリット30は高周波信号の伝送方向と平行に設けられた溝であるので、第1の伝送線路体10aと第2の伝送線路体10bが接続状態において、高周波信号への影響は小さい。
 実施の形態3に係る伝送線路構成体100においても、実施の形態2に係る伝送線路構成体100と同様の効果を有する他に、スリット30を設けたことにより、導波管1及びフランジ2の厚み、つまり、上下方向の厚みをさらに薄くでき、伝送線路構成体100を薄くできる。
実施の形態4.
 実施の形態4に係る伝送線路構成体100を、図8を用いて説明する。
 実施の形態4に係る伝送線路構成体100は、実施の形態3に係る伝送線路構成体100に対して、第2の伝送線路体10bの第2のフランジ2bにおけるスリット30をスリット40に変更した点が相違し、その他の点は同じである。
 なお、図8中において、図7中に付された符号と同一符号は同一又は相当部分を示す。
 スリット40は、第2のフランジ2bの開口に連通し、第2のフランジ2bの側面まで、開口面から第2の導波管1b側に高周波信号の伝送方向と平行に設けられた溝である。
 第1の伝送線路体10aと第2の伝送線路体10bが重なった折り畳み状態から、ヒンジ20の回転軸21を中心に一方の伝送線路体を180度回転させることにより、第1の伝送線路体10aと第2の伝送線路体10bが接続状態にされる際、第1の伝送線路体10aにおける第1の誘電体基板3aの延伸部3a2がスリット40を通過し、第2のサスペンデッド線路5bの内部に挿入され、第1の誘電体基板3aの延伸部3a2の裏面が第2の誘電体基板3bの表面に接した状態で配置される。
 接続状態から折り畳み状態へ回転する場合も延伸部3a2がスリット40を通過する。
 スリット40は高周波信号の伝送方向と平行に設けられた溝であるので、第1の伝送線路体10aと第2の伝送線路体10bが接続状態において、高周波信号への影響は小さい。
 実施の形態4に係る伝送線路構成体100においても、実施の形態3に係る伝送線路構成体100と同様の効果を有する他に、スリット40が第2のフランジ2bの側面から開口まで貫通しているので、導波管1及びフランジ2の厚み、つまり、上下方向の厚みをさらに薄くでき、伝送線路構成体100を薄くできる。
実施の形態5.
 実施の形態5に係る伝送線路構成体100を図9から図13を用いて説明する。
 実施の形態5に係る伝送線路構成体100は、実施の形態1に係る伝送線路構成体100に対して、導波管1を導波管上部と導波管下部とに2分割するとともに、フランジ2もフランジ上部とフランジ下部とに2分割し、上部と下部に2分割することにより、誘電体基板3の構造を変更した点が相違し、その他の点は同じである。
 なお、図9から図13中において、図1から図4中に付された符号と同一符号は同一又は相当部分を示す。
 第1の導波管1aは、第1の導波管上部1a1と第1の導波管下部1a2とに構成される。
 第2の導波管1bは、第2の導波管上部1b1と第2の導波管下部1b2とに構成される。
 第1の導波管上部1a1と第1の導波管下部1a2と第2の導波管上部1b1と第2の導波管下部1b2は、それぞれ矩形状の溝を有したコの字状の金属製ブロックである。
 なお、溝の形状は、矩形状に限られるものではなく、断面形状が半円又は半楕円形であってもよい。
 第1のフランジ2aは、第1のフランジ上部2a1と第1のフランジ下部2a2とに構成される。
 第1のフランジ上部2a1は、第1の導波管上部1a1の空間部と連通した同径の開口を両端に有し、第1の導波管上部1a1の一端に、第1の導波管上部1a1の開口縁から外方に直角に延在して第1の導波管上部1a1と一体に形成された板状の金属体である。
 第1のフランジ下部2a2は、第1の導波管下部1a2の空間部と連通した同径の開口を両端に有し、第1の導波管下部1a2の一端に、第1の導波管下部1a2の開口縁から外方に直角に延在して第1の導波管下部1a2と一体に形成された板状の金属体である。
 第2のフランジ2bは、第2のフランジ上部2b1と第2のフランジ下部2b2とに構成される。
 第2のフランジ上部2b1は、第2の導波管上部1b1の空間部と連通した同径の開口を両端に有し、第2の導波管上部1b1の一端に、第2の導波管上部1b1の開口縁から外方に直角に延在して第2の導波管上部1b1と一体に形成された板状の金属体である。
 第2のフランジ下部2b2は、第2の導波管下部1b2の空間部と連通した同径の開口を両端に有し、第2の導波管下部1b2の一端に、第2の導波管下部1b2の開口縁から外方に直角に延在して第2の導波管下部1b2と一体に形成された板状の金属体である。
 第1のフランジ上部2a1と第1のフランジ下部2a2とに構成される第1のフランジ2aは、チョークフランジである。
 チョークフランジを構成する第1のフランジ上部2a1は、開口面に、開口縁から、高周波信号の1/4波長(λ/4)の位置に開口縁を囲うように配置され、深さが高周波信号の1/4波長(λ/4)となる細長い溝であるチョーク溝2a01を有する。
 チョークフランジを構成する第1のフランジ下部2a2は、開口面に、開口縁から、高周波信号の1/4波長(λ/4)の位置に開口縁を囲うように配置され、深さが高周波信号の1/4波長(λ/4)となる細長い溝であるチョーク溝2a02を有する。
 第2のフランジ上部2b1と第2のフランジ下部2b2とに構成される第2のフランジ2bは、開口面が平坦面であるカバーフランジである。
 第1の誘電体基板3aは、第1の導波管1a及び第1のフランジ2aの内部に位置する基部3a1と、基部3a1から第1のフランジ2aの端面の外部に、基部3a1の幅より細い幅で延在し、第2の伝送線路体10bの第2の誘電体基板3bに対向する延伸部3a2と、第1の導波管上部1a1と第1の導波管下部1a2の端面における幅と第1のフランジ上部2a1と第1のフランジ下部2a2の端面における幅分の長さが基部3a1の外周に延在した周縁部3a3を有するプリント基板である。
 周縁部3a3は、チョーク溝2a01及びチョーク溝2a02が位置する部分には存在しない。
 第1の表面側接触面パターン50a1は、第1の誘電体基板3aの周縁部3a3の表面に蒸着などにより形成された金属パターンである。第1の裏面側接触面パターン50a2は、第1の誘電体基板3aの周縁部3a3の裏面に蒸着などにより形成された金属パターンであり、第1の表面側接触面パターン50a1と同一形状である。
 第1の表面側接触面パターン50a1及び第1の裏面側接触面パターン50a2は、チョーク溝2a01及びチョーク溝2a02を取り囲むように形成される。
 複数の第1のビア60aは、第1の誘電体基板3aの周縁部3a3に一定間隔で形成され、第1の表面側接触面パターン50a1と第1の裏面側接触面パターン50a2とを電気的に接続する。
 複数の第1のビア60aの配列間隔は高周波信号の波長λに比べて十分小さくしてあり、全周に亘って疑似的に導体壁とみなせる。
 また、第1のビア60aは、チョーク溝2a01及びチョーク溝2a02を取り囲むように形成される。
 第1の導波管上部1a1及び第1のフランジ上部2a1と第1の導波管下部1a2及び第1のフランジ下部2a2が、第1の誘電体基板3aの周縁部3a3を挟んで固着される。
 その結果、第1の導波管上部1a1-第1の表面側接触面パターン50a1-複数の第1のビア60a-第1の裏面側接触面パターン50a2-第1の導波管下部1a2は電気的に接続され、第1の導波管1aを構成する。
 また、第1のフランジ上部2a1-第1の表面側接触面パターン50a1-複数の第1のビア60a-第1の裏面側接触面パターン50a2-第1のフランジ下部2a2は電気的に接続され、第1のフランジ2aを構成する。
 チョーク溝2a01とチョーク溝2a02は互いに周縁部3a3を挟んで対向して配置され、チョーク溝2a01と、チョーク溝2a02と、チョーク溝2a01及びチョーク溝2a02を取り囲む複数の第1のビア60aとによりチョーク溝2a0を構成し、実施の形態1に係る伝送線路構成体100におけるチョーク溝2a0と同等の構成になる。
 また、第1の導波管上部1a1-第1の表面側接触面パターン50a1-複数の第1のビア60a-第1の裏面側接触面パターン50a2-第1の導波管下部1a2を外部導体、第1の信号線路4aを内部導体とした、いわゆる方形同軸線路である第1のサスペンデッド線路5aを構成する。
 第2の誘電体基板3bは、第2の導波管1b及び第2のフランジ2bの内部に位置する基部3b1と、基部3b1の外周に、第2の導波管上部1b1と第2の導波管下部1b2の端面における幅と第2のフランジ上部2b1と第2のフランジ下部2b2の端面における幅分延在した周縁部3b3を有するプリント基板である。
 第2の誘電体基板3bは、第1の誘電体基板3aと同様に、第2の誘電体基板3bの周縁部3b3の表面に第2の表面側接触面パターン50b1が、裏面に第2の裏面側接触面パターン50b2が、第2の表面側接触面パターン50b1と第2の裏面側接触面パターン50b2とを電気的に接続する複数の第2のビア60bが形成される。
 第2の導波管上部1b1及び第2のフランジ上部2b1と第2の導波管下部1b2及び第2のフランジ下部2b2が、第2の誘電体基板3bの周縁部3b3を挟んで固着される。
 その結果、第2の導波管上部1b1-第2の表面側接触面パターン50b1-複数の第2のビア60b-第2の裏面側接触面パターン50b2-第2の導波管下部1b2は電気的に接続され、第2の導波管1bを構成する。
 また、第2のフランジ上部2b1-第2の表面側接触面パターン50b1-複数の第2のビア60b-第2の裏面側接触面パターン50b2-第2のフランジ下部2b2は電気的に接続され、第2のフランジ2bを構成する。
 また、第2の導波管上部1b1-第2の表面側接触面パターン50b1-複数の第2のビア60b-第2の裏面側接触面パターン50b2-第2の導波管下部1b2を外部導体、第2の信号線路4bを内部導体とした、いわゆる方形同軸線路である第2のサスペンデッド線路5bを構成する。
 実施の形態5に係る伝送線路構成体100は、実施の形態1に係る伝送線路構成体100に対して、導波管1及びフランジ2を上部と下部とに2分割しているものの、実施の形態1に係る伝送線路構成体100と実質的に同じであり、同じ動作をする。
 実施の形態5に係る伝送線路構成体100においても、実施の形態1に係る伝送線路構成体100と同様に以下の1)から3)の効果を有する。
 1)第1の伝送線路体10aの第1の誘電体基板3aの延伸部3a2とこの延伸部3a2に並走する第2の伝送線路体10bの第2の信号線路4bがインタデジタル型の結合線路を形成し、第1のサスペンデッド線路5aと第2のサスペンデッド線路5bとの間の高周波信号の接続を可能とする。
 2)第1の伝送線路体10aと第2の伝送線路体10bとの接続状態において、チョーク溝2a01と、チョーク溝2a02と、チョーク溝2a01及びチョーク溝2a02を取り囲む複数の第1のビア60aとにより構成されるチョーク溝2a0により、第1のフランジ2aにおける開口面と第2のフランジ2bにおける開口面との間における間隙からの電磁界の漏洩が防止できる。
 3)第1のサスペンデッド線路5aから入力された高周波信号は、効率よく第2のサスペンデッド線路5bへと伝送され、第1の伝送線路体10aと第2の伝送線路体10bによる伝送線路の厚みが小さくできる。
 さらに、導波管1及びフランジ2を上部と下部とに2分割しているので、組み立てが容易である。
実施の形態5の変形例1
 実施の形態5に係る伝送線路構成体100において、実施の形態2に係る伝送線路構成体100と同様に、回転軸21と2つの片22、23を有するヒンジ20を、2つの片22、23の一方の片22が第1の伝送線路体10aの第1のフランジ下部2a2における下側の側面に、2つの片22、23の他方の片23が第2の伝送線路体10bの第2のフランジ下部2b2における下側の側面に装着する。
実施の形態5の変形例2
 実施の形態5に係る伝送線路構成体100において、実施の形態3に係る伝送線路構成体100と同様に、第1の伝送線路体10aの第1のフランジ下部2a2における下側の側面と第2の伝送線路体10bの第2のフランジ下部2b2における下側の側面との間に、ヒンジ20を装着し、さらに、実施の形態3に係る伝送線路構成体100と同様に、第2の伝送線路体10bの第2のフランジ2bに、第2のフランジ2bの開口に連通し、開口面から第2の導波管1b側に高周波信号の伝送方向と平行に設けられた溝であるスリット30を設ける。
実施の形態5の変形例3
 実施の形態5に係る伝送線路構成体100において、実施の形態4に係る伝送線路構成体100と同様に、第1の伝送線路体10aの第1のフランジ下部2a2における下側の側面と第2の伝送線路体10bの第2のフランジ下部2b2における下側の側面との間に、ヒンジ20を装着し、さらに、実施の形態4に係る伝送線路構成体100と同様に、第2の伝送線路体10bの第2のフランジ2bに、第2のフランジ2bの開口に連通し、第2のフランジ2bの側面まで、開口面から第2の導波管1b側に高周波信号の伝送方向と平行に設けられた溝であるスリット40を設ける
実施の形態6.
 実施の形態6に係る展開型平面アンテナを、図14から図16を用いて説明する。
 実施の形態6に係る展開型平面アンテナは、フェーズドアレーアンテナであり、実施の形態2に係る伝送線路構成体100を高周波信号の伝送を行う伝送線路として用いたものである。
 図14から図16中において、図1から図6中に付された符号と同一符号は同一又は相当部分を示す。
 展開型平面アンテナは、伝送線路構成体100と、伝送線路構成体100における第1の伝送線路体10aに平行に配置された第1のサブアレーアンテナ70aと、第1の伝送線路体10aと第1のサブアレーアンテナ70aとを接続する第1のアンテナ用給電部80aと、伝送線路構成体100における第2の伝送線路体10bに平行に配置された第2のサブアレーアンテナ70bと、第2の伝送線路体10bと第2のサブアレーアンテナ70bとを接続する第2のアンテナ用給電部80bとを備える。
 サブアレーアンテナ70はアンテナ用導波管71とアンテナ用導波管71の側壁、この実施の形態6では上側壁に設けられた複数の放射素子72を有するアレーアンテナの一種である導波管給電型アレーアンテナであり、導波管をいくつかの放射素子に対して信号を分配する給電回路とするアレーアンテナである。
 アンテナ用導波管71は、長辺に位置する上側壁及び下側壁と、短辺に位置する右側壁及び左側壁、端部に位置する前端壁及び後端壁を有し、両端が開口された断面形状が矩形である金属製の導波管である。アンテナ用導波管71は、その端部が前端壁及び後端壁の導体壁によって短絡されている。
 第1の伝送線路体10aと第2の伝送線路体10bが接続状態、つまり、展開状態において、第1のアンテナ用導波管71aと第2のアンテナ用導波管71bは一直線上に配置され、第1のアンテナ用導波管71aの後端壁と第2のアンテナ用導波管71bの前端壁が対向する。
 なお、導波管1は断面形状が矩形に限られるものではなく、断面形状が円形又は楕円形の導波管であってもよい。
 複数の放射素子72はそれぞれ、アンテナ用導波管71の上側壁に形成された細長い開口からなるスロットであり、いわゆる導波管スロットアンテナとして動作する。
 第1のアンテナ用給電部80aは、第1の伝送線路体10aの第1の導波管1aと第1のサブアレーアンテナ70aの第1のアンテナ用導波管71aを接続する給電用導波管である。
 第1のアンテナ用給電部80aは、一端が第1の伝送線路体10aの第1の導波管1aの上側壁に接続され、他端が第1のサブアレーアンテナ70aの第1のアンテナ用導波管71aの下側壁に接続され、第1の導波管1aを伝送する高周波信号の一部を第1のアンテナ用導波管71aに導く。
 第1のアンテナ用給電部80aは、第1のサスペンデッド線路5aと第1のアンテナ用導波管71aとの接続部になる。
 第1のアンテナ用給電部80aを構成する給電用導波管は、断面形状が矩形である金属製の導波管である。
 なお、給電用導波管は断面形状が矩形に限られるものではなく、断面形状が円形又は楕円形の導波管であってもよい。
 また、第1のアンテナ用給電部80aは給電用導波管に替えて、細長い断面形状を有したスロットでもよく、また、導波管とスロットを組みわせた構造でもよい。
 第2のアンテナ用給電部80bは、第2の伝送線路体10bの第2の導波管1bと第2のサブアレーアンテナ70bの第2のアンテナ用導波管71bを接続する給電用導波管である。
 第2のアンテナ用給電部80bは、一端が第2の伝送線路体10bの第2の導波管1bの上側壁に接続され、他端が第2のサブアレーアンテナ70bの第2のアンテナ用導波管71bの下側壁に接続され、第2の導波管1bを伝送する高周波信号の一部を第2のアンテナ用導波管71bに導く。
 第2のアンテナ用給電部80bは、第2のサスペンデッド線路5bと第2のアンテナ用導波管71bとの接続部になる。
 第2のアンテナ用給電部80bを構成する給電用導波管は、断面形状が矩形である金属製の導波管である。
 なお、給電用導波管は断面形状が矩形に限られるものではなく、断面形状が円形又は楕円形の導波管であってもよい。
 また、第2のアンテナ用給電部80bは給電用導波管に替えて、細長い断面形状を有したスロットでもよく、また、導波管とスロットを組みわせた構造でもよい。
 第1の放射素子72a及び第2の放射素子72bの形状及び配置位置と、第1のサスペンデッド線路5aと第2のサスペンデッド線路5bにおける第1のアンテナ用給電部80aから第2のアンテナ用給電部80bまでの線路の長さと、第1のアンテナ用給電部80a及び第2のアンテナ用給電部80bの形状を調整し、複数の第1の放射素子72a及び複数の第2の放射素子72bのそれぞれから放射される電波の位相を、所望の方向にかつ同位相に設定し、展開型平面アンテナからのメインビームを所望の方向に指向させている。
第1のアンテナ用導波管71aは、ヒンジ20が装着された第1の導波管1aの下側壁と反対側に第1の導波管1aと平行に配置され、第2のアンテナ用導波管71bは、ヒンジ20が装着された第2の導波管1bの下側壁と反対側に第2の導波管1bと平行に配置される。
 すなわち、第1のサブアレーアンテナ70aは、ヒンジ20が装着された伝送線路構成体100における第1の伝送線路体10aの側と反対側に第1の伝送線路体10aに平行に配置され、第2のサブアレーアンテナ70bは、ヒンジ20が装着された伝送線路構成体100における第2の伝送線路体10bの側と反対側に第2の伝送線路体10bに平行に配置される。
 従って、第1の伝送線路体10a及び第2の伝送線路体10bと第1のサブアレーアンテナ70a及び第2のサブアレーアンテナ70bが重なった折り畳み状態から、ヒンジ20の回転軸21を中心に一方の伝送線路体を180度回転させることにより、第1の伝送線路体10aと第2の伝送線路体10bが一直線上に配置された接続状態にされ、かつ、第1のサブアレーアンテナ70aと第2のサブアレーアンテナ70bが一直線上に配置された展開状態にされる。
 要するに、第1のサブアレーアンテナ70aと第2のサブアレーアンテナ70bが、ヒンジ20により、屈折収納及び展開がなされる。
 次に動作について説明する。
 使用時、第1の伝送線路体10aと第2の伝送線路体10bは、第1のフランジ2aにおける開口面と第2のフランジ2bにおける開口面が対向して配置された、第1の伝送線路体10aと第2の伝送線路体10bの接続状態にされ、展開型平面アンテナとして展開状態にされる。
 この展開状態において、第1のサスペンデッド線路5aの一端から入力された高周波信号は、第1のサスペンデッド線路5aの内部を伝搬する。第1のサスペンデッド線路5aの内部を伝搬する高周波信号の一部が第1のアンテナ用給電部80aを介して第1のアンテナ用導波管71aに入力され、第1のサブアレーアンテナ70aに高周波信号が入力される。
 高周波信号が入力された第1のサブアレーアンテナ70aは、第1のアンテナ用導波管71aの内部を伝搬し、第1の放射素子72aから空間に放射される。
 一方、第1のサスペンデッド線路5aの内部を伝搬する残りの高周波信号は、第1のサスペンデッド線路5aと第2のサスペンデッド線路10の接続部に入力される。
 この時、第1の信号線路4aに高周波電流が流れる。第1の信号線路4aの延伸線路4a2に流れる高周波電流によって生じる電磁界は、延伸線路4a2と延伸線路4a2に並走する第2の信号線路4bがインタデジタル型の結合線路を形成しているので、延伸線路4a2と延伸線路4a2に並走する第2の信号線路4bと結合する。その結果、第2の信号線路4bに高周波電流が励起され、第1のサスペンデッド線路5aから入力された高周波信号は、第2のサスペンデッド線路5bへと伝送される。
 また、第1のフランジ2aをチョークフランジにしてあるので、第1のフランジ2aにおける開口面と第2のフランジ2bにおける開口面との間における間隙から電磁界の漏洩が防止でき、第1のサスペンデッド線路5aから入力された高周波信号は、効率よく第2のサスペンデッド線路5bへと伝送される。
 第2のサスペンデッド線路5bに入力された高周波信号の一部が、第2のアンテナ用給電部80bを介して第2のアンテナ用導波管71bに入力され、第2のサブアレーアンテナ70bに高周波信号が入力される。
 高周波信号が入力された第2のサブアレーアンテナ70bは、第2のアンテナ用導波管71bの内部を伝搬し、第2の放射素子72bから空間に放射される。
 複数の第1の放射素子72a及び複数の第2の放射素子72bのそれぞれから空間に放射される電波は、所望の方向にかつ同位相に設定されて放射され、展開型平面アンテナからのメインビームは所望の方向に指向されたビームとして放射される。
 以上に述べたように、実施の形態6に係る展開型平面アンテナは、第1のサブアレーアンテナ70aと第2のサブアレーアンテナ70bが、ヒンジ20により、屈折収納及び展開がなされ、実施の形態2に係る伝送線路構成体100が有する1)から4)の効果を有する。
 すなわち、
 1)第1の伝送線路体10aの第1の誘電体基板3aの延伸部3a2とこの延伸部3a2に並走する第2の伝送線路体10bの第2の信号線路4bがインタデジタル型の結合線路を形成し、第1のサスペンデッド線路5aと第2のサスペンデッド線路5bとの間の高周波信号の接続を可能とする。
 2)第1の伝送線路体10aと第2の伝送線路体10bとの接続状態において、第1のフランジ2aにおける開口面と第2のフランジ2bにおける開口面との間における間隙からの電磁界の漏洩が防止できる。
 3)第1のサスペンデッド線路5aから入力された高周波信号は、効率よく第2のサスペンデッド線路5bへと伝送され、第1の伝送線路体10aと第2の伝送線路体10bによる伝送線路の厚みが小さくできる。
 4)ヒンジ20に遊びが生じ、第1の伝送線路体10aと第2の伝送線路体10bの接続状態において、第1のフランジ2aにおける開口面と第2のフランジ2bにおける開口面との間に間隙が生じた場合においても、第1の伝送線路体10aの第1のフランジ2aに形成されたチョーク溝2a0の効果により、間隙から電磁界の漏洩が防止でき、第1のサスペンデッド線路5aから入力された高周波信号は、効率よく第2のサスペンデッド線路5bへと伝送される。
実施の形態6の変形例
 実施の形態6に係る展開型平面アンテナは、フェーズドアレーアンテナであり、高周波信号の伝送を行う伝送線路として実施の形態2に係る伝送線路構成体100を用いたものであるが、実施の形態2に係る伝送線路構成体100に替えて、実施の形態3に係る伝送線路構成体100、実施の形態4に係る伝送線路構成体100、実施の形態5の変形例1に係る伝送線路構成体100、実施の形態5の変形例2に係る伝送線路構成体100、実施の形態5の変形例3に係る伝送線路構成体100を用いたものでもよい。
実施の形態7.
 実施の形態7に係る展開型平面アンテナを、図17を用いて説明する。
 実施の形態7に係る展開型平面アンテナは、実施の形態6に係る展開型平面アンテナが第1のサブアレーアンテナ70a及び第2のサブアレーアンテナ70bとして導波管給電型アレーアンテナを用いたのに対して、アレーアンテナの一種であるプローブ給電型アンテナを用いた点が相違し、その他の点は同じである。
 なお、図17中において、図14から図16中に付された符号と同一符号は同一又は相当部分を示す。
 サブアレーアンテナ70はアンテナ用導波管71とアンテナ用導波管71の側壁、この実施の形態7では上側壁から突出して設けられた複数の給電プローブである放射素子73を有するプローブ給電型アンテナである。
 アンテナ用導波管71は、その上側壁に、実施の形態6に係る展開型平面アンテナにおける放射素子72であるスリットの中心位置に挿通穴が形成されている。
 第1の放射素子73aである給電プローブは、ヘリカルアンテナとして機能し、一端が、第1のアンテナ用導波管71aに形成された挿通穴から挿入されて第1のアンテナ用給電部80aに挿入される。
 第2の放射素子73bである給電プローブは、ヘリカルアンテナとして機能し、一端が、第2のアンテナ用導波管71bに形成された挿通穴から挿入されて第2のアンテナ用給電部80bに挿入される。
 なお、放射素子73はヘリカルアンテナに限られるものではなく、他のアンテナ形状であってもよい。
 要するに、実施の形態7に係る展開型平面アンテナは、実施の形態6に係る展開型平面アンテナにおける放射素子72であるスロットを用いたスロットアレーアンテナに替えて、放射素子73として給電プローブを用いたプローブ給電型アンテナに変更したものである。
 このように、第1のサブアレーアンテナ70a及び第2のサブアレーアンテナ70bとしてプローブ給電型アンテナを用いたものであっても、実施の形態6に係る展開型平面アンテナと同様の効果を有する。
実施の形態8.
 実施の形態8に係る展開型平面アンテナを、図18を用いて説明する。
 実施の形態8に係る展開型平面アンテナは、実施の形態6に係る展開型平面アンテナが第1のサブアレーアンテナ70a及び第2のサブアレーアンテナ70bとして導波管スロットアレーアンテナを用いたのに対して、平面アレーアンテナを用いた点が相違し、その他の点は同じである。
 なお、図18中において、図14から図16中に付された符号と同一符号は同一又は相当部分を示す。
 サブアレーアンテナ70は、プリント基板74と、プリント基板74に形成された給電線路(図示せず)と、プリント基板74の表面にアレー状に形成された複数の放射素子75を有する。
 第1の放射素子75aは、パッチアンテナとして機能し、第1のプリント基板74aに形成された第1の給電線路と電磁結合される。
 第2の放射素子75bは、パッチアンテナとして機能し、第2のプリント基板74bに形成された第2の給電線路と電磁結合される。
 なお、放射素子75はパッチアンテナに限られるものではなく、他のアンテナ形状であってもよい。
 第1のアンテナ用給電部80aは、第1の伝送線路体10aの第1の導波管1aと第1のサブアレーアンテナ70aの第1の給電線路を接続するスロット又は給電用導波管である。
 第2のアンテナ用給電部80bは、第2の伝送線路体10bの第2の導波管1bと第2のサブアレーアンテナ70bの第2の給電線路を接続するスロット又は給電用導波管である。
 要するに、実施の形態8に係る展開型平面アンテナは、実施の形態6に係る展開型平面アンテナにおける導波管スロットアレーアンテナに替えて、平面アレーアンテナに変更したものである。
 このように、第1のサブアレーアンテナ70a及び第2のサブアレーアンテナ70bとして平面アレーアンテナを用いたものであっても、実施の形態6に係る展開型平面アンテナと同様の効果を有する。
 なお、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 本開示に係る伝送線路構成体は、人工衛星に搭載されるフェーズドアレーアンテナである展開型平面アンテナにおけるサブアレーアンテナから放射するビームに対する高周波信号を伝送する伝送線路、又は、サブアレーアンテナが受信したビームに対する高周波信号を伝送する伝送線路に好適である。
 100 伝送線路構成体、10a 第1の伝送線路体、10b 第2の伝送線路体、1 a 第1の導波管、1b 第2の導波管、2a 第1のフランジ、2b 第2のフランジ、2a0 チョーク溝、2a01 第1のチョーク溝、2a02 第2のチョーク溝、3a 第1の誘電体基板、3a1 基部、3a2 延伸部、3b 第2の誘電体基板、4a 第1の信号線路、4a1 本線路、4a2 延伸線路、4b 第2の信号線路、5a 第1のサスペンデッド線路、5b 第2のサスペンデッド線路、20 ヒンジ、21 回転軸、22、23 片、30、40 スリット、70a 第1のサブアレーアンテナ、70b 第2のサブアレーアンテナ、71a 第1のアンテナ用導波管、71b 第2のアンテナ用導波管、72a、73a、75a 第1の放射素子、72b、73b、75b 第2の放射素子、80a 第1のアンテナ用給電部、80b 第2のアンテナ用給電部。

Claims (12)

  1.  隣接する第1の伝送線路体及び第2の伝送線路体を備え、
     前記第1の伝送線路体及び前記第2の伝送線路体それぞれが、
     内部に高周波信号が伝送される導波管と、
     前記導波管の対向する端部に設けられたフランジと、
     前記導波管の内部に、前記高周波信号が伝送される方向に沿って設けられた誘電体基板と、
     前記誘電体基板の表面又は裏面のいずれか一方の面に、前記高周波信号が伝送される方向に沿って形成された信号線路を有し、前記導波管を外部導体、前記信号線路を内部導体としたサスペンデッド線路を構成し、
     前記第1の伝送線路体の誘電体基板は、前記第1の伝送線路体の導波管及びフランジの内部に位置する基部と、当該基部から前記第1の伝送線路体のフランジの端面の外部に延在し、前記第2の伝送線路体の誘電体基板に対向する延伸部を有し、
     前記第1の伝送線路体の信号線路は、前記第1の伝送線路体の誘電体基板の基部に位置する本線路と、前記第1の伝送線路体の誘電体基板の延伸部に位置し、前記第2の伝送線路体の信号線路に対向配置される延伸線路を有し、
     前記第1の伝送線路体のフランジ又は前記第2の伝送線路体のフランジの一方のフランジがチョークフランジであり、他方のフランジがカバーフランジである伝送線路構成体。
  2.  前記導波管は、断面形状が矩形である金属からなる請求項1に記載の伝送線路構成体。
  3.  前記導波管は、断面形状が矩形であり、2つに分割された金属体からなり、
     前記フランジは、2つに分割された金属体からなり、
     前記誘電体基板は、前記導波管の2つの金属体の間及び前記フランジの2つの金属体との間に挟持された請求項1に記載の伝送線路構成体。
  4.  前記チョークフランジは、開口面に、開口縁から、前記高周波信号の1/4波長の位置に配置され、深さが前記高周波信号の1/4波長となるチョーク溝を有し、
     前記カバーフランジは、開口面が平坦面である請求項1から請求項3のいずれか1項に記載の伝送線路構成体。
  5.  前記第1の伝送線路体の信号線路における延伸線路の長さが前記高周波信号の1/4波長の長さである請求項1から請求項4のいずれか1項に記載の伝送線路構成体。
  6.  回転軸と2つの片を有し、前記2つの片の一方の片が前記第1の伝送線路体のフランジに、前記2つの片の他方の片が前記第2の伝送線路体のフランジに装着され、前記回転軸を中心に前記第1の伝送線路体と前記第2の伝送線路体が相対的に回転され、前記第1の伝送線路体のフランジにおける開口面と前記第2の伝送線路体のフランジにおける開口面が対面する位置へ展開可能にさせるヒンジを備えた請求項1から請求項5のいずれか1項に記載の伝送線路構成体。
  7.  前記第2の伝送線路体のフランジは、前記第1の伝送線路体の誘電体基板における延伸部が通過するスリットを有する請求項6に記載の伝送線路構成体。
  8.  請求項1から請求項5のいずれか1項に記載の伝送線路構成体と、
     前記伝送線路構成体における第1の伝送線路体に平行に配置された第1のサブアレーアンテナと、
     前記第1の伝送線路体と前記第1のサブアレーアンテナとを接続する第1のアンテナ用給電部と、
     前記伝送線路構成体における第2の伝送線路体に平行に配置された第2のサブアレーアンテナと、
     前記第2の伝送線路体と前記第1のサブアレーアンテナとを接続する第2のアンテナ用給電部と、
     を備えた展開型平面アンテナ。
  9.  請求項6又は請求項7に記載の伝送線路構成体と、
     前記ヒンジが装着された前記伝送線路構成体における第1の伝送線路体の側と反対側に、前記第1の伝送線路体に平行に配置された第1のサブアレーアンテナと、
     前記第1の伝送線路体と前記第1のサブアレーアンテナとを接続する第1のアンテナ用給電部と、
     前記ヒンジが装着された前記伝送線路構成体における第2の伝送線路体の側と反対側に、前記第2の伝送線路体に平行に配置された第2のサブアレーアンテナと、
     前記第2の伝送線路体と前記第2のサブアレーアンテナとを接続する第2のアンテナ用給電部と、
     を備えた展開型平面アンテナ。
  10.  前記第1のサブアレーアンテナ及び前記第2のサブアレーアンテナはそれぞれ、アンテナ用導波管とアンテナ用導波管の側壁に設けられた複数の放射素子を有するアレーアンテナであり、
     前記第1のアンテナ用給電部は、前記第1の伝送線路体の導波管と前記第1のサブアレーアンテナのアンテナ用導波管を接続するスロット又は給電用導波管であり、
     前記第2のアンテナ用給電部は、前記第2の伝送線路体の導波管と前記第2のサブアレーアンテナのアンテナ用導波管を接続するスロット又は給電用導波管である請求項8又は請求項9に記載の展開型平面アンテナ。
  11.  前記第1のサブアレーアンテナ及び第2のサブアレーアンテナにおける複数の放射素子はそれぞれ、スロット又はプローブ給電型のアンテナである請求項10に記載の展開型平面アンテナ。
  12.  前記第1のサブアレーアンテナ及び前記第2のサブアレーアンテナはそれぞれ、プリント基板と、プリント基板上に形成された給電線路と、複数の放射素子を有する平面アレーアンテナであり、
     前記第1のアンテナ用給電部は、前記第1の伝送線路体の導波管と前記第1のサブアレーアンテナの給電線路を接続するスロット又は給電用導波管であり、
     前記第2のアンテナ用給電部は、前記第2の伝送線路体の導波管と前記第2のサブアレーアンテナの給電線路を接続するスロット又は給電用導波管である請求項8又は請求項9に記載の展開型平面アンテナ。
PCT/JP2020/038251 2020-10-09 2020-10-09 伝送線路構成体及び展開型平面アンテナ WO2022074812A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022555218A JP7233620B2 (ja) 2020-10-09 2020-10-09 伝送線路構成体及び展開型平面アンテナ
PCT/JP2020/038251 WO2022074812A1 (ja) 2020-10-09 2020-10-09 伝送線路構成体及び展開型平面アンテナ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/038251 WO2022074812A1 (ja) 2020-10-09 2020-10-09 伝送線路構成体及び展開型平面アンテナ

Publications (1)

Publication Number Publication Date
WO2022074812A1 true WO2022074812A1 (ja) 2022-04-14

Family

ID=81126347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038251 WO2022074812A1 (ja) 2020-10-09 2020-10-09 伝送線路構成体及び展開型平面アンテナ

Country Status (2)

Country Link
JP (1) JP7233620B2 (ja)
WO (1) WO2022074812A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939509U (ja) * 1982-09-08 1984-03-13 三菱電機株式会社 人工衛星塔載用展開型アンテナ
JPH01307304A (ja) * 1988-06-06 1989-12-12 Nippon Hoso Kyokai <Nhk> アンテナ給電装置
WO2014203952A1 (ja) * 2013-06-19 2014-12-24 独立行政法人宇宙航空研究開発機構 展開構造物への高周波給電方式

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939509U (ja) * 1982-09-08 1984-03-13 三菱電機株式会社 人工衛星塔載用展開型アンテナ
JPH01307304A (ja) * 1988-06-06 1989-12-12 Nippon Hoso Kyokai <Nhk> アンテナ給電装置
WO2014203952A1 (ja) * 2013-06-19 2014-12-24 独立行政法人宇宙航空研究開発機構 展開構造物への高周波給電方式

Also Published As

Publication number Publication date
JPWO2022074812A1 (ja) 2022-04-14
JP7233620B2 (ja) 2023-03-06

Similar Documents

Publication Publication Date Title
US4370657A (en) Electrically end coupled parasitic microstrip antennas
US6271799B1 (en) Antenna horn and associated methods
JP4343982B2 (ja) 導波管ノッチアンテナ
US7541982B2 (en) Probe fed patch antenna
US6853351B1 (en) Compact high-power reflective-cavity backed spiral antenna
US7109928B1 (en) Conformal microstrip leaky wave antenna
JP4756481B2 (ja) アンテナ装置
JP5420654B2 (ja) バラン非実装の単純な給電素子を用いた広帯域の長スロットアレイアンテナ
JPS5827403A (ja) 平坦で薄いサ−キユラ−・アレイ・アンテナ
US20080303734A1 (en) Dielectric Leaky Wave Antenna
JP2009055613A (ja) 無線中継機アンテナ用複合素子及びこれを利用したダイポールアレイ円偏波アンテナ
WO2019211908A1 (ja) 導波管スロットアレーアンテナ
US20200203845A1 (en) Dual end-fed broadside leaky-wave antenna
CA3096346C (en) Array antenna apparatus and communication device
JP5495955B2 (ja) 導波管スロットアレーアンテナ
US20200388899A1 (en) Microstrip-to-waveguide transition and radio assembly
US9431715B1 (en) Compact wide band, flared horn antenna with launchers for generating circular polarized sum and difference patterns
RU2480870C1 (ru) Многодиапазонная антенна круговой поляризации с метаматериалом
JP2012129943A (ja) アンテナ装置
US7030826B2 (en) Microwave transition plate for antennas with a radiating slot face
JP2000196344A (ja) アンテナ装置
Nasir et al. Broadband dual‐podal multilayer Vivaldi antenna array for remote sensing applications
WO2022074812A1 (ja) 伝送線路構成体及び展開型平面アンテナ
GB2594935A (en) Modular high frequency device
KR100706615B1 (ko) 다층 유전체기판을 이용한 마이크로스트립 패치 안테나 및이를 이용한 배열 안테나

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956759

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555218

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956759

Country of ref document: EP

Kind code of ref document: A1