WO2014203952A1 - 展開構造物への高周波給電方式 - Google Patents
展開構造物への高周波給電方式 Download PDFInfo
- Publication number
- WO2014203952A1 WO2014203952A1 PCT/JP2014/066237 JP2014066237W WO2014203952A1 WO 2014203952 A1 WO2014203952 A1 WO 2014203952A1 JP 2014066237 W JP2014066237 W JP 2014066237W WO 2014203952 A1 WO2014203952 A1 WO 2014203952A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- waveguide
- flange
- choke
- loss
- gap
- Prior art date
Links
- 238000000034 method Methods 0.000 claims description 22
- 230000007246 mechanism Effects 0.000 description 16
- 230000005540 biological transmission Effects 0.000 description 15
- 238000011161 development Methods 0.000 description 6
- 238000005452 bending Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 230000005672 electromagnetic field Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/06—Movable joints, e.g. rotating joints
- H01P1/062—Movable joints, e.g. rotating joints the relative movement being a rotation
- H01P1/063—Movable joints, e.g. rotating joints the relative movement being a rotation with a limited angle of rotation
- H01P1/064—Movable joints, e.g. rotating joints the relative movement being a rotation with a limited angle of rotation the axis of rotation being perpendicular to the transmission path, e.g. hinge joint
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/04—Fixed joints
- H01P1/042—Hollow waveguide joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/222—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles for deploying structures between a stowed and deployed state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/222—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles for deploying structures between a stowed and deployed state
- B64G1/2221—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles for deploying structures between a stowed and deployed state characterised by the manner of deployment
- B64G1/2222—Folding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P3/00—Waveguides; Transmission lines of the waveguide type
- H01P3/12—Hollow waveguides
- H01P3/127—Hollow waveguides with a circular, elliptic, or parabolic cross-section
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/02—Coupling devices of the waveguide type with invariable factor of coupling
- H01P5/022—Transitions between lines of the same kind and shape, but with different dimensions
- H01P5/024—Transitions between lines of the same kind and shape, but with different dimensions between hollow waveguides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/08—Means for collapsing antennas or parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/27—Adaptation for use in or on movable bodies
- H01Q1/28—Adaptation for use in or on aircraft, missiles, satellites, or balloons
- H01Q1/288—Satellite antennas
Definitions
- the present invention relates to a method for supplying high-frequency power to a deployment structure.
- FIG. 1 shows an example in which a flexible waveguide described in Patent Document 1 is used at a development location.
- a flexible waveguide has a higher high-frequency loss than a rigid waveguide.
- the high-frequency loss of the flexible waveguide is resistive and causes an increase in system noise temperature due to noise load for the receiving system.
- Even if it is flexible, its resistance bending torque is not negligible, and tends to increase in a low temperature environment, and has a large uncertainty. For this reason, the use of a flexible waveguide is often a problem in the design and testing of deployment mechanisms.
- the second method is a method using a rotary joint in which waveguides fixed to two structures rotating around a certain axis are coupled in high frequency using axial symmetry around the rotation axis. It is.
- FIG. 4 is an example of a rotary joint using a coaxial cable
- FIG. 5 is an example of a rotary joint using a circular waveguide (Non-Patent Document 1).
- the rectangular waveguide TE10 mode used for transmission is converted into an axially symmetric mode such as a circular waveguide TM01 mode or a coaxial TEM mode, but there is a high-frequency loss associated with the mode conversion. .
- the hinge shaft as a deployment mechanism responsible for load and position accuracy and the rotary shaft of the rotary joint responsible for electrical characteristics are coaxial, increasing the complexity of the mechanism.
- the direction of the high-frequency power supply is orthogonal to the deployment axis.
- the direction of the high-frequency waveguide must be changed twice at right angles, which increases the mechanism.
- the problem to be solved by the present invention is to use a simple deployment mechanism for a deployment structure such as an antenna mounted on an artificial satellite without using a flexible feeding path that becomes a resistance torque during deployment.
- a simple deployment mechanism for a deployment structure such as an antenna mounted on an artificial satellite without using a flexible feeding path that becomes a resistance torque during deployment.
- 1st invention of this application for solving the above-mentioned subject is a high frequency electric power feeding system which feeds a high frequency via a plurality of waveguides among a plurality of parts which constitute a deployment structure, A first waveguide having a choke flange fixed to a first part of the unfolded structure; A second waveguide having a cover flange fixed to a second part of the unfolded structure; When the unfolded structure is in the unfolded state, the choke flange and the cover flange face each other, and a plurality of parts of the unfolded structure are interposed via the first and second waveguides. It is characterized in that high-frequency power is supplied.
- the first waveguide is directly fixed to the first component, and the second waveguide is It is directly fixed to the second part.
- the first part and the second part are connected to respective movable parts of the hinge, and deployed by the operation of the hinge.
- the first waveguide and the second waveguide are integrally formed with each movable part of the hinge.
- the shape of the choke groove of the choke flange can be circular, but if this shape is composed of a non-circular curve, the loss of the high-frequency signal can be reduced better.
- FIG. 6A shows a cross-sectional view at the center point of the long side of the rectangular waveguide
- FIG. 6B shows a perspective view and a coordinate system.
- FIG. 6A is a cross-sectional view taken along the yz plane of FIG.
- the left and right waveguides for feeding are opposed to each other with a gap at a point AA '.
- the left waveguide flange in FIG. 6A is provided with a groove, and the other right waveguide flange is flat. This flat waveguide flange is called a cover flange.
- the gap between the two waveguides can be regarded as a transmission line, and the wavelength of the transmission mode is ⁇ .
- ⁇ is substantially equal to the in-tube wavelength of the feeding waveguide.
- a groove having a depth (BC) of about ⁇ / 4 is provided in the left waveguide at a point B that is about ⁇ / 4 away from the point A.
- the groove BC can also be regarded as a similar transmission line. In such a structure, the transmission line BC is connected in series at the point B to the transmission line ABD formed by the gap.
- the transmission line BC is short-circuited by a conductor at point C and has an extremely low impedance.
- This impedance is converted by the transmission line at a point B away from ⁇ / 4, resulting in an extremely high impedance.
- the impedance at the point B of the synthesized transmission line becomes a very high value due to this extremely high series impedance BC.
- the high-frequency current flowing through the waveguide surface (wall current on the waveguide surface) flows smoothly in the form of a displacement current with a gap, and the transmission mode of the feeding waveguide is not disturbed. Maintained.
- the choke flange with the groove around the waveguide has a short-circuit effect due to the conductor at the bottom of the groove, due to the transmission line in the groove depth direction and the groove radial direction, even if there is a physical gap,
- the location can be equivalently reduced in impedance, and high-frequency leakage and loss in the gap can be effectively reduced.
- it is caused by leakage of a high-frequency electromagnetic field and does not add resistive noise.
- choke operation works effectively in the entire recommended frequency range (usually 1.3 to 1.9 times the cutoff frequency).
- Rectangular waveguide WR-90 / R100 (opening 22.86 ⁇ 10.16mm) with standard rectangular flange with choke groove (SQUARE FLANGE CHOKE, CBR100) and flat rectangular flange (SQUARE FLANGE PLAIN, UBR100)
- the same standard waveguide was used.
- the long side direction of the rectangular waveguide is defined as the x axis
- the short side direction is defined as the y axis
- the propagation direction of the waveguide is defined as the z axis (see FIG. 6B).
- the two waveguide end faces are parallel to each other and are spaced from each other by a distance ⁇ x in the x-axis direction, ⁇ y in the y-axis direction, and ⁇ z in the z-axis direction from the contact position where the regular waveguides are in close contact.
- the arrangement of two waveguides with such a gap is shown in FIG.
- FIG. 9 shows the “loss due to the gap” as a function of the gap ⁇ z in the z-axis direction (the scale of the horizontal axis shows the figure) as a function of the gap ⁇ z in the z-axis direction. Note that this is different from 8).
- the two waveguides may actually be “shifted” without being completely opposed to each other in the cross-sectional direction, so the characteristics in that case will be described.
- the gap in the z direction is 1 mm or more ( ⁇ z> 1 mm)
- the loss is almost equal to that in the case where the gaps are directly facing.
- the gap in the z direction is 1 mm or less ( ⁇ z ⁇ 1 mm)
- an increase in resonance phenomenon-like loss depending on the frequency and the three-dimensional gap between the two waveguides was observed.
- the present invention employs a rigid waveguide power feeding system, which is the most compact and low-loss power feeding system in the microwave and millimeter wave regions.
- a rigid waveguide power feeding system which is the most compact and low-loss power feeding system in the microwave and millimeter wave regions.
- the method of converting to a flexible waveguide or cable avoids this from the viewpoint of remarkable high-frequency loss, resistance torque during deployment, and complexity of electrical instrumentation. .
- a choke flange and a cover flange are provided on the end faces of the two waveguides, and a system is proposed in which both face each other.
- the loss due to the gap between the waveguide cross sections generated at this time can be greatly reduced by using a choke flange.
- the loss is only 0.05 dB (1%) at .01 dB (0.2%), 1.0 mm ( ⁇ / 30), and 0.13 dB (3%) at 2 mm ( ⁇ / 15).
- the loss due to the gap is caused by the gap of the choke flange being deteriorated when the two waveguides are not completely facing each other and are shifted by about 0.3 mm ( ⁇ / 100) or more in the cross section. Loss increases. However, this phenomenon becomes negligibly small in a region where the gap in the z direction is 2 mm ( ⁇ / 15) or more. In the region where the gap in the z direction is 2 mm ( ⁇ / 15) or more, this phenomenon gradually becomes negligible, but the loss increases due to the gap in the z direction.
- Coarse precision deployment mechanism case Two waveguides face each other with an accuracy of ⁇ / 30 (about 1 mm in the X band) in the cross-sectional direction (x, y), and a gap of ⁇ / 15 (about 2 mm in the X band) in the propagation direction z Keep. Thereby, the loss due to the gap can be reduced to about 0.13 dB (about 3%).
- High-precision deployment mechanism case Two waveguides face each other with an accuracy of ⁇ / 100 (about 0.3 mm in the X band) in the cross-sectional direction (x, y), and ⁇ / 60 (0.5 mm in the X band) in the propagation direction z. Degree) Keep the following gap. Thereby, the loss due to the gap can be reduced to 0.01 dB (about 0.2%) or less in the X band.
- FIG. 10 and 11 show the structure of the developed part.
- the hinge of the deployment mechanism and the waveguide opening are integrated.
- the hinge and the waveguide opening are separated from each other.
- the present invention it is possible to solve a problem that has been a problem in the prior art when high-frequency power is supplied to a deployment structure. That is, since the flexible waveguide, the cable, and the rotary joint are not used, the design, manufacturing, and testing problems related to the resistance bending torque can be avoided. In particular, the deployment impact can be reduced by eliminating the resistance bending torque.
- a hollow waveguide is the transmission line with the smallest loss.
- the waveguide has good affinity with a Cassegrain antenna, which is a highly efficient antenna using microwaves and millimeter waves, and a waveguide slot antenna.
- waveguides have the major advantages described above, low-loss rigid waveguides are not flexible. There are many problems in outfitting.
- the conventional methods include i) a method using a flexible coaxial cable instead of a waveguide, ii) in order to avoid feeding loss, Alternatively, there is a method of mounting an electronic device such as a frequency converter, a phase shifter, a high-frequency transmitting high-power amplifier, or a receiving low-noise amplifier for each deployed antenna panel.
- an electronic device such as a frequency converter, a phase shifter, a high-frequency transmitting high-power amplifier, or a receiving low-noise amplifier for each deployed antenna panel.
- a coaxial cable with high flexibility has a large high-frequency loss, and priority is given to ease of mounting at the expense of system performance.
- the method ii) is suitable for a system that requires an electronic radiation beam sweep, in which a variable phase shifter and a power amplifier must be installed in the immediate vicinity of each antenna element, and to supply a distance of 10 m or more. This is a large deployable antenna.
- An example of a field in which the present invention can be used is a technique for realizing a deployable antenna of about several meters that does not require electron sweep of an electromagnetic wave beam at low cost and light weight.
- a high-frequency transmission / reception device mounted on the satellite body is used to feed the waveguide with low loss using the technology of the present invention. This makes it possible to carry out earth observation and monitoring missions using microwave synthetic aperture radar using a small satellite with a storage space of 1 m or less when mounted on a rocket.
- FIG. 10 is a perspective view showing a deployment mechanism of the deployable antenna.
- reference numerals 1 and 2 are exactly the same as the deployment mechanism of the conventional deployable antenna.
- Reference numeral 5 denotes a hinge plate in which the hinge portion and the waveguide portion are integrated.
- One side A of the waveguide opening surface has a choke flange, and the other side B has a cover flange.
- the antenna panel 1 is unfolded by the action of the spiral spring 2 having the unfolding force, and the hinge plate 5 in which the hinge portion and the waveguide portion are integrated opposes the flange portions A and B between the waveguide opening surfaces.
- FIG. 11 is a perspective view showing a second embodiment of the present invention.
- reference numerals 1, 2 and 6 are the same as the deployment mechanism of the conventional deployable antenna. In particular, any deployment hinge mechanism may be used.
- One of the waveguide opening surfaces separately connected to the antenna panel has a choke flange and the other B has a cover flange.
- the antenna panel 1 is unfolded by the action of the spiral spring 2 having the unfolding force, and the hinge plate 5 in which the hinge portion and the waveguide portion are integrated opposes the flange portions A and B between the waveguide opening surfaces.
- Non-circular choke flange The choke groove of the choke flange described so far was circular as shown in FIG. In FIG. 12, the shape of this circular choke groove is ⁇ / 4 ( ⁇ is the direction from the midpoint of each of the long sides AB and CD of the rectangular ABCD, which is the cross section of the standard rectangular waveguide, to the direction perpendicular to the respective sides.
- the wavelength of the electromagnetic wave to be used is a circle with the smallest diameter passing through two points E and F that are separated from each other, and the depth of the choke groove is a groove of about ⁇ / 4 (see FIG. 6A).
- the distribution of the electromagnetic field inside the waveguide is the maximum near the center point of the long side.
- the choke groove is located at a position ⁇ / 4 away from the long side near the center point of the long side.
- the distance from the short side is shorter on the short side, this is rarely a problem in normal cases.
- higher characteristics are required in the hinge portion of the spacecraft deployment.
- there is actually a large loss as shown in the portion surrounded by an elliptical broken line in FIG.
- the inventors of the present application have found that when a non-circular choke groove as shown in FIG. 13 is provided on the choke flange, the characteristics are superior to those of the circular choke groove.
- the shape of the non-circular choke groove is such that, in a standard rectangular waveguide, from the midpoints of the long sides AB and CD of the rectangle ABCD and the short sides BC and DA, which are the cross sections of the waveguide, to the respective sides.
- it consists of a curve passing through the vicinity of four points E, F, G, and H separated by ⁇ / 4 in the vertical outer direction. This curve includes a curve other than a circle including an ellipse and an egg.
- the depth of the choke groove is about ⁇ / 4 as in the case of the circular choke groove.
- FIG. 14 is a diagram showing the results of an experiment comparing the loss of high-frequency signals when one flange is a circular choke flange and a non-circular choke flange.
- the non-circular choke flange hardly increases the resonant loss like the circular choke flange.
- the loss of the high frequency signal can be further reduced by using a non-circular choke flange instead of the circular choke flange.
- Hinge 4 Flexible waveguide 5: Hinge plate 6: Choke flange 7: Cover flange
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- General Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Waveguide Aerials (AREA)
- Waveguide Connection Structure (AREA)
- Details Of Aerials (AREA)
Abstract
Description
前記展開構造物の第1の部品に固定された、チョークフランジを有する第1の導波管と、
前記展開構造物の第2の部品に固定された、カバーフランジを有する第2の導波管と、
を備え、前記展開構造物を展開状態にしたときに、前記チョークフランジと前記カバーフランジが対向し、前記第1及び第2の導波管を介して前記展開構造物の複数の部品の間で高周波を給電するようにしたことを特徴とする。
チョークフランジとして広く知られている構造について、図6を用いて説明する。図6(a)に、矩形導波管の長辺中央点での断面図を、同図(b)に斜視図と座標系を示す。ここで、図6(a)は、同図(b)のy-z平面で切った断面図である。図6(a)では、給電用の左右からの導波管が、点AA’において間隙を持って対向している。一方、図6(a)の左側の導波管のフランジには、溝が設置されており、もう一方の右側の導波管フランジは平坦である。この平坦な導波管フランジはカバーフランジという。
2つの導波管開口の間に間隙がある場合のチョークフランジの効果を説明する。以下では一例として、XXバンド (9.6GHz)の周波数を用いた場合について説明する。なお、他の周波数を用いた場合への一般化は、用いる波長と間隙の相対比を用いればよい。
本発明では、マイクロ波やミリ波領域で最もコンパクトで低損失な給電方式である、リジッドな導波管による給電方式を採用する。展開部への給電については、可撓性のある導波管やケーブルへの変換を行う方式は、著しい高周波損失、展開時の抵抗トルク、電気計装の煩雑さの点から、これを回避する。
断面方向(x,y)についてλ/30(Xバンドでは、1mm程度)の精度で2本の導波管を対向させて、伝搬方向zについてはλ/15(Xバンドでは2mm程度)の間隙を保つ。これにより、間隙による損失は、0.13dB程度(約3%)にできる。
断面方向(x,y)についてλ/100(Xバンドでは、0.3mm程度)の精度で2本の導波管を対向させて、伝搬方向zについてはλ/60(Xバンドでは0.5mm程度)以下の間隙を保つ。これにより、間隙による損失は、Xバンドでは0.01dB(約0.2%)以下に小さくできる。
この発明の一実施例を図について説明する。図10は展開型アンテナの展開機構を示す斜視図である。同図中、符号1,2は従来の展開型アンテナの展開機構部と全く同一のものである。5はヒンジ部と導波管部を一体化したヒンジプレートであり、導波管開口面の一方Aはチョークフランジを、他方Bはカバーフランジを有している。
以下、この発明の他の実施例を図について説明する。図11はこの発明の第2の実施例を示す斜視図である。同図中、符号1,2,6は従来の展開型アンテナの展開機構部と全く同一のものである。特にその展開ヒンジ機構はいかなるものでも良い。アンテナパネルに別途接続された、導波管開口面の一方Aはチョークフランジを、他方Bはカバーフランジを有している。
展開パネルの接合部以外の領域では、導波管以外の給電系を使用している場合でも、接続部で導波管に変換した後、接合部において、低損失で展開部に適した本方式を使用することが考えられる。
これまで説明したチョークフランジのチョーク溝は、図6(b)に示すように円形であった。この円形チョーク溝の形状は、図12において、規格矩形導波管の断面である長方形ABCDの長辺AB及びCDそれぞれの中点からそれぞれの辺に対して垂直外側方向にλ/4(λは使用する電磁波の波長)離れた2点E、F近傍を通る、直径が最小な円であり、チョーク溝の深さは、約λ/4の溝(図6(a)参照)である。
2:うずまきバネ
3:ヒンジ
4:可撓性導波管
5:ヒンジプレート
6:チョークフランジ
7:カバーフランジ
Claims (5)
- 展開構造物を構成する複数の部品の間で、複数の導波管を介して高周波を給電する高周波給電方式において、
前記展開構造物の第1の部品に固定された、チョークフランジを有する第1の導波管と、
前記展開構造物の第2の部品に固定された、カバーフランジを有する第2の導波管と、
を備え、前記展開構造物を展開状態にしたときに、前記チョークフランジと前記カバーフランジが対向し、前記第1及び第2の導波管を介して前記展開構造物の複数の部品の間で高周波を給電するようにしたことを特徴とする高周波給電方式。 - 前記第1の導波管は前記第1の部品に直接固定され、前記第2の導波管は前記第2の部品に直接固定されていることを特徴とする請求項1に記載の高周波給電方式。
- 前記第1の部品及び第2の部品はヒンジのそれぞれの可動部分に接続され、当該ヒンジの動作で展開可能とされており、前記第1の導波管及び第2の導波管は、前記ヒンジのそれぞれの可動部分と一体構造となっていることを特徴とする請求項1に記載の高周波給電方式。
- 前記チョークフランジのチョーク溝の形状は円形であることを特徴とする請求項1乃至3のうちいずれか一項に記載の高周波給電方式。
- 前記チョークフランジのチョーク溝の形状は非円形の曲線から構成されることを特徴とする請求項1乃至3のうちいずれか一項に記載の高周波給電方式。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/900,048 US10290913B2 (en) | 2013-06-19 | 2014-06-19 | Deployment structure comprised of flat panels with waveguides disposed therein, where the flat panels are rotated into engagement with each other to couple the waveguides |
KR1020167001408A KR102136445B1 (ko) | 2013-06-19 | 2014-06-19 | 고주파 급전 기능을 갖는 전개 구조물 |
EP14813047.9A EP3012903B1 (en) | 2013-06-19 | 2014-06-19 | System for feeding high-frequency waves to deployment structure |
JP2015522968A JP6501361B2 (ja) | 2013-06-19 | 2014-06-19 | 展開構造物への高周波給電方式 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013128851 | 2013-06-19 | ||
JP2013-128851 | 2013-06-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014203952A1 true WO2014203952A1 (ja) | 2014-12-24 |
Family
ID=52104678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/066237 WO2014203952A1 (ja) | 2013-06-19 | 2014-06-19 | 展開構造物への高周波給電方式 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10290913B2 (ja) |
EP (1) | EP3012903B1 (ja) |
JP (1) | JP6501361B2 (ja) |
KR (1) | KR102136445B1 (ja) |
WO (1) | WO2014203952A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018515049A (ja) * | 2015-04-29 | 2018-06-07 | ユーレコ テクノロジーズ リミテッドEureco Technologies Limited | 展開可能無線周波数伝送線路 |
JP2019026246A (ja) * | 2017-06-29 | 2019-02-21 | ザ・ボーイング・カンパニーThe Boeing Company | ビークルの通信システム及び方法 |
JP2020155843A (ja) * | 2019-03-18 | 2020-09-24 | 国立研究開発法人宇宙航空研究開発機構 | アンテナ装置 |
WO2022074812A1 (ja) * | 2020-10-09 | 2022-04-14 | 三菱電機株式会社 | 伝送線路構成体及び展開型平面アンテナ |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9970517B2 (en) * | 2015-07-28 | 2018-05-15 | Northrop Grumman Systems Corporation | Satellite boom hinge actuator using drive chain with flexible and rigid characteristics |
FR3060867B1 (fr) | 2016-12-20 | 2019-05-17 | Thales | Architecture de bloc sources deployable, antenne compacte et satellite comportant une telle architecture |
USD892092S1 (en) * | 2018-11-05 | 2020-08-04 | Shenzhen 1byone Technology Co., Ltd. | Antenna |
US10938153B2 (en) * | 2018-11-06 | 2021-03-02 | Optim Microwave Inc. | Waveguide quick-connect mechanism, waveguide window/seal, and portable antenna |
KR20210108793A (ko) * | 2020-02-26 | 2021-09-03 | 삼성전자주식회사 | 무접점 무선 전력 및 데이터 통신 전송 구조를 포함하는 전자 장치 |
JP2022125444A (ja) * | 2021-02-17 | 2022-08-29 | 古野電気株式会社 | 導波管接続構造 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06296108A (ja) | 1993-04-07 | 1994-10-21 | Mitsubishi Electric Corp | 展開型アンテナの展開機構 |
JP2005340963A (ja) * | 2004-05-24 | 2005-12-08 | Toyo Seikan Kaisha Ltd | マイクロ波電力供給方法 |
JP2009171488A (ja) * | 2008-01-21 | 2009-07-30 | Kyocera Corp | 導波管接続構造、導波管接続板および導波管変換器 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2476621A (en) * | 1942-11-06 | 1949-07-19 | Westinghouse Electric Corp | Cavity joint |
US2632807A (en) * | 1945-09-18 | 1953-03-24 | Harry A Kirkpatrick | Wave guide joint |
US2463347A (en) * | 1946-05-08 | 1949-03-01 | Aron Walter | Adjustable wave guide joint |
GB902128A (en) * | 1959-08-19 | 1962-07-25 | Decca Ltd | Improvements in or relating to waveguide couplings |
JPS5746501A (en) | 1980-09-04 | 1982-03-17 | Nec Corp | Heat insulating device of waveguide |
FR2522883A1 (fr) * | 1982-03-05 | 1983-09-09 | Thomson Csf | Joint pivotant pour guides d'ondes hyperfrequences |
DE3727198C1 (de) * | 1987-08-14 | 1989-03-02 | Georg Dr-Ing Spinner | Verbindungselement fuer Hohlleiter |
GB2247571A (en) | 1990-09-01 | 1992-03-04 | Siemens Plessey Electronic | Waveguide joint for a microwave antenna |
FR2676598B1 (fr) | 1991-05-14 | 1993-07-23 | Thomson Csf | Liaison hyperfrequence mobile a guide d'ondes. |
JP2005340964A (ja) | 2004-05-24 | 2005-12-08 | Toyo Seikan Kaisha Ltd | マイクロ波供給システム |
JP4584193B2 (ja) * | 2006-06-15 | 2010-11-17 | 三菱電機株式会社 | 導波管の接続構造 |
JP5531960B2 (ja) | 2008-08-29 | 2014-06-25 | 日本電気株式会社 | 導波管接続構造および導波管接続方法 |
DE102010014864B4 (de) | 2010-04-13 | 2013-06-20 | Astrium Gmbh | Hohlleiterverbindung für ein Antennensystem und Antennensystem |
-
2014
- 2014-06-19 KR KR1020167001408A patent/KR102136445B1/ko active IP Right Grant
- 2014-06-19 JP JP2015522968A patent/JP6501361B2/ja active Active
- 2014-06-19 EP EP14813047.9A patent/EP3012903B1/en active Active
- 2014-06-19 WO PCT/JP2014/066237 patent/WO2014203952A1/ja active Application Filing
- 2014-06-19 US US14/900,048 patent/US10290913B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06296108A (ja) | 1993-04-07 | 1994-10-21 | Mitsubishi Electric Corp | 展開型アンテナの展開機構 |
JP2005340963A (ja) * | 2004-05-24 | 2005-12-08 | Toyo Seikan Kaisha Ltd | マイクロ波電力供給方法 |
JP2009171488A (ja) * | 2008-01-21 | 2009-07-30 | Kyocera Corp | 導波管接続構造、導波管接続板および導波管変換器 |
Non-Patent Citations (2)
Title |
---|
See also references of EP3012903A4 |
SPC TECHNICAL REPORT, 2006, pages 35 - 43 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018515049A (ja) * | 2015-04-29 | 2018-06-07 | ユーレコ テクノロジーズ リミテッドEureco Technologies Limited | 展開可能無線周波数伝送線路 |
JP2019026246A (ja) * | 2017-06-29 | 2019-02-21 | ザ・ボーイング・カンパニーThe Boeing Company | ビークルの通信システム及び方法 |
JP7118732B2 (ja) | 2017-06-29 | 2022-08-16 | ザ・ボーイング・カンパニー | ビークルの通信システム及び方法 |
JP2020155843A (ja) * | 2019-03-18 | 2020-09-24 | 国立研究開発法人宇宙航空研究開発機構 | アンテナ装置 |
JP7283678B2 (ja) | 2019-03-18 | 2023-05-30 | 国立研究開発法人宇宙航空研究開発機構 | アンテナ装置 |
WO2022074812A1 (ja) * | 2020-10-09 | 2022-04-14 | 三菱電機株式会社 | 伝送線路構成体及び展開型平面アンテナ |
JPWO2022074812A1 (ja) * | 2020-10-09 | 2022-04-14 | ||
JP7233620B2 (ja) | 2020-10-09 | 2023-03-06 | 三菱電機株式会社 | 伝送線路構成体及び展開型平面アンテナ |
Also Published As
Publication number | Publication date |
---|---|
JP6501361B2 (ja) | 2019-04-17 |
EP3012903B1 (en) | 2021-03-31 |
US20160218408A1 (en) | 2016-07-28 |
JPWO2014203952A1 (ja) | 2017-02-23 |
EP3012903A4 (en) | 2017-03-15 |
US10290913B2 (en) | 2019-05-14 |
EP3012903A1 (en) | 2016-04-27 |
KR20160021285A (ko) | 2016-02-24 |
KR102136445B1 (ko) | 2020-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014203952A1 (ja) | 展開構造物への高周波給電方式 | |
Cheng et al. | Millimeter-wave substrate integrated waveguide multibeam antenna based on the parabolic reflector principle | |
US9276302B2 (en) | Waveguide rotary joint including half-height waveguide portions | |
WO2002029927A1 (en) | Dual band multimode coaxial tracking feed | |
Kuznetcov et al. | Printed leaky-wave antenna with aperture control using width-modulated microstrip lines and TM surface-wave feeding by SIW technology | |
US11309623B2 (en) | Antenna device | |
US9136607B2 (en) | Antenna beam steering through waveguide mode mixing | |
US9470732B2 (en) | Compact spacecraft antenna field aperture load coupler | |
Mirmozafari et al. | A multibeam tapered cylindrical Luneburg lens | |
Ferreras et al. | A 94 ghz monopulse duplexing horn antenna for a 3-d tracking radar | |
Cheng et al. | Metasurface concept for mm-wave wideband circularly polarized horns design | |
US10097285B2 (en) | Single E-probe reduced aperture waveguide coupler | |
Dong et al. | Generation of plane spiral orbital angular momentum microwave with ring dielectric resonator antenna | |
Park et al. | Millimeter-Wave monopulse filtenna array with directive dielectric resonators | |
Ladu et al. | High‐performance cryogenic fractal 180° hybrid power divider with integrated directional coupler | |
US5877660A (en) | Phase shifting device with rotatable cylindrical case having driver means on the end walls | |
Soothar et al. | A miniaturized broadband and high gain planar vivaldi antenna for future wireless communication applications | |
Dorbath et al. | Single-fed additively manufactured conical horn antenna with circular polarization for millimeter-wave applications | |
WO2016176717A1 (en) | Improved dielectric rod antenna | |
Liu et al. | Tapered slot antenna array for 5g wireless communication systems | |
Darvazehban et al. | Wide band multi-beam cylindrical lens | |
KR101557781B1 (ko) | 다중모드 모노펄스 파라볼라 안테나용 급전혼조립체 | |
Robertson et al. | High Gaussicity feedhorns for sub-/millimeter wave applications | |
CN214336912U (zh) | 一种Vivaldi天线 | |
Zhang et al. | Wideband turnstile junction coaxial waveguide orthomode transducer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14813047 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015522968 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20167001408 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014813047 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14900048 Country of ref document: US |