WO2022073413A1 - 超声波诊断设备、超声波图像的生成方法及存储介质 - Google Patents

超声波诊断设备、超声波图像的生成方法及存储介质 Download PDF

Info

Publication number
WO2022073413A1
WO2022073413A1 PCT/CN2021/119039 CN2021119039W WO2022073413A1 WO 2022073413 A1 WO2022073413 A1 WO 2022073413A1 CN 2021119039 W CN2021119039 W CN 2021119039W WO 2022073413 A1 WO2022073413 A1 WO 2022073413A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
probe
image
main control
component
Prior art date
Application number
PCT/CN2021/119039
Other languages
English (en)
French (fr)
Inventor
骆磊
Original Assignee
达闼机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 达闼机器人有限公司 filed Critical 达闼机器人有限公司
Priority to EP21824279.0A priority Critical patent/EP4008266A4/en
Priority to JP2021578195A priority patent/JP7299359B2/ja
Priority to US17/562,825 priority patent/US20220125410A1/en
Publication of WO2022073413A1 publication Critical patent/WO2022073413A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • A61B8/145Echo-tomography characterised by scanning multiple planes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • A61B8/4263Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient using sensors not mounted on the probe, e.g. mounted on an external reference frame
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/466Displaying means of special interest adapted to display 3D data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5246Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from the same or different imaging techniques, e.g. color Doppler and B-mode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/56Details of data transmission or power supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image
    • G06T2207/101363D ultrasound image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30168Image quality inspection

Definitions

  • the embodiments of the present application relate to the field of ultrasound, and in particular, to an ultrasound diagnostic device, a method for generating an ultrasound image, and a storage medium.
  • the collected images are 2D ultrasonic slice data
  • the professional doctor makes a diagnosis based on the 2D ultrasonic slice images
  • the saved data is also one or several 2D ultrasonic slice images.
  • the human body is a three-dimensional individual.
  • professional doctors can obtain 2D ultrasound slice images that can best reflect the disease through manipulation and experience, not all doctors can find the most ideal 2D ultrasound slice images in the ultrasound examination operation.
  • doctors in towns and villages may seldom or never use ultrasonic diagnostic equipment. If they need to obtain 2D ultrasonic slice images that accurately reflect the lesions, it will take a long time to train each organ. It is difficult to just provide remote guidance.
  • the method allows it to obtain the correct 2D ultrasound slice images, which makes it difficult to realize the remote diagnosis scene of ultrasound, and has not been able to be promoted on a large scale.
  • the purpose of some embodiments of the present application is to provide an ultrasonic diagnostic device, a method for generating ultrasonic images, and a storage medium, so that users can obtain images that accurately reflect the lesion without professional knowledge, thereby reducing the difficulty of using the ultrasonic diagnostic device.
  • the embodiments of the present application provide an ultrasonic diagnostic device, including: an ultrasonic probe, a probe image acquisition component, and a main control component respectively connected to the ultrasonic probe and the acquisition component; the ultrasonic probe is used for The detection object on the operating table is continuously scanned to obtain the corresponding ultrasonic image and transmit the ultrasonic image to the main control component; the acquisition component is arranged above the operating table, and the shooting direction of the acquisition component faces the operating table and the shooting range is covering the operating table; the acquisition component is used to acquire a probe image including the ultrasonic probe in real time when the ultrasonic probe is running, and transmit the probe image to the main control component; the main control component uses according to the probe image, stitching the ultrasonic image to generate an ultrasonic stereoscopic image of the detection object.
  • the embodiment of the present application also provides a method for generating an ultrasonic image, which includes: when detecting that the ultrasonic probe is running, controlling the acquisition component located above the operating table to acquire the probe image including the ultrasonic probe in real time; Continuously scanned ultrasonic images; according to the probe images, splicing continuous ultrasonic images to generate ultrasonic stereoscopic images of the detection object.
  • Embodiments of the present application further provide a computer-readable storage medium storing a computer program, and when the computer program is executed by a processor, a method for generating an ultrasonic image is implemented.
  • the ultrasonic probe is used to continuously scan the detection object located on the operating table, and at the same time, the acquisition component is arranged above the operating table, and the shooting direction of the acquisition component faces the operating table and shoots
  • the scope covers the operation console.
  • the acquisition component can acquire the probe image including the ultrasonic probe in real time, and send the acquired probe image to the main control component.
  • the main control component can acquire the probe image and the ultrasonic image corresponding to the probe scan in real time, so that the The image stitches the continuously acquired ultrasonic images to form an ultrasonic three-dimensional image; since the generated ultrasonic three-dimensional image is a three-dimensional image, the three-dimensional image can display more picture details of the detection object, and can be used to view the ultrasonic wave as needed.
  • Stereoscopic images do not require the user to have professional ultrasonic operation knowledge, which improves the use scene of the ultrasonic diagnostic equipment.
  • FIG. 1 is a structural block diagram of an ultrasonic diagnostic apparatus provided in a first embodiment of the present application
  • FIG. 2 is a schematic diagram of an ultrasonic diagnostic apparatus provided in a second embodiment of the present application.
  • FIG. 3 is a schematic diagram of a moving direction of an ultrasonic probe according to a second embodiment of the present application.
  • FIG. 4 is a schematic diagram of an ultrasonic image arrangement according to a second embodiment of the present application.
  • FIG. 5 is a schematic diagram of another ultrasonic image arrangement according to the second embodiment of the present application.
  • FIG. 6 is a schematic diagram of an ultrasonic stereoscopic image provided according to the second embodiment of the present application.
  • FIG. 7 is a schematic diagram of an ultrasound image of a specified slice provided in the second embodiment of the present application.
  • FIG. 8 is a structural block diagram of an ultrasonic diagnostic apparatus provided in a third embodiment of the present application.
  • FIG. 9 is a schematic diagram of an ultrasonic diagnostic apparatus provided in a third embodiment of the present application.
  • FIG. 10 is a schematic diagram of a projection effect of an ultrasonic diagnostic device provided in a third embodiment of the present application.
  • Fig. 11 is the effect schematic diagram of the projection scanning path of a kind of ultrasonic diagnostic equipment provided in the third embodiment of the present application.
  • FIG. 12 is a schematic diagram of an ultrasonic image arrangement according to the third embodiment of the present application.
  • FIG. 13 is a flowchart of a method for generating an ultrasonic image provided in the fourth embodiment of the present application.
  • the first embodiment of the present application relates to an ultrasonic diagnostic device.
  • the ultrasonic diagnostic device 10 includes: an ultrasonic probe 101, a collection component 102, and a main control component 103; its structural block diagram is shown in FIG.
  • the main control assembly is connected, and the ultrasonic probe 101 is used to continuously scan the detection object 30 located on the operating table 20 to obtain corresponding ultrasonic images and transmit the ultrasonic images to the main control assembly 103;
  • Location, the shooting direction of the acquisition component 102 faces the console 20 and the shooting range covers the console 20;
  • the acquisition component 102 is used to acquire the probe image including the ultrasonic probe 101 in real time when the ultrasonic probe 101 is running, and transmit the probe image to the main control component 103;
  • the main control component 103 is used for splicing the ultrasonic images according to the probe images to generate an ultrasonic stereoscopic image of the detection object.
  • the ultrasonic probe is used to continuously scan the detection object located on the operating table, and the acquisition component is arranged at a position above the operating table.
  • the shooting direction of the acquisition component faces the operating table and the shooting range covers the operating table.
  • the acquisition component can acquire the probe image including the ultrasonic probe in real time, and send the acquired probe image to the main control component.
  • Image stitching to form an ultrasonic three-dimensional image since the generated ultrasonic three-dimensional image is a three-dimensional image, the three-dimensional image can display more picture details of the detection object. Using this, the ultrasonic three-dimensional image can be viewed as needed, without the need for users With professional knowledge of ultrasonic operation, the use scene of the ultrasonic diagnostic equipment is improved.
  • the second embodiment of the present application relates to an ultrasonic diagnostic apparatus.
  • This embodiment is a specific introduction to the ultrasonic diagnostic apparatus in the first embodiment.
  • the following describes the arrangement positions of the components in the ultrasonic diagnostic equipment with reference to FIG. 2 .
  • the operating table A is used to assist the detection object to maintain a stable state
  • the operating table A may be a hospital bed or the like.
  • the operating table A after the inspection object is placed can be parallel to the horizontal plane.
  • the test object can lie flat on the operating table, and the ultrasonic probe connected to the main control assembly 103 scans the test object to obtain an ultrasonic image; wherein, the ultrasonic probe 101 can include: a two-dimensional probe or 3D probes.
  • a collection component 102 is disposed directly above the console A.
  • the collection component 102 is used for real-time imaging of the ultrasound probe.
  • the collection component 102 may include at least one camera, and the camera may be a 2D camera or a 3D camera.
  • the shooting direction of the acquisition component 102 faces the operating table A, and the shooting range covers the entire operating table to ensure that the acquisition component 102 can photograph the camera no matter how the ultrasonic probe 101 moves during the scanning process.
  • the ultrasonic probe 101 and the acquisition component 102 are both connected in communication with the main control component 103, and the connection mode may be a wireless connection or a wired connection.
  • the main control assembly 103 is not shown in FIG. 2 , the main control assembly 103 may be disposed above the console A, or may be disposed at other positions, and the main control assembly 103 may include a processor, such as a computer device.
  • the operation process of the ultrasonic diagnostic equipment is as follows: when the main control component 103 detects the operation of the ultrasonic probe, it controls the acquisition component to start capturing images in real time; the ultrasonic images scanned by the ultrasonic probe 101 are transmitted to the main control component in real time. Similarly, The acquisition component 102 transmits the probe image captured in real time to the main control component 103 .
  • the main control component 103 can synchronize the operation of the acquisition component 102 and the ultrasound probe 101 by setting a synchronization clock.
  • the ultrasonic probe 101 After the ultrasonic probe 101 touches the detection object, it can send prompt information that the ultrasonic probe 101 is activated to the main control component 103, and the main control component 103 can start the acquisition component 102 to perform real-time shooting after acquiring the prompt information.
  • a time label representing the scanning time can be added to each ultrasound image according to the sequence of the scanning time.
  • a time label representing the shooting time can be added to each probe image; the same time can be searched through the time label. The corresponding probe image in the lower ultrasound image.
  • the main control component 103 is specifically configured to: obtain the probe position and probe angle of the ultrasonic probe in the preset three-dimensional space coordinate system according to the received probe image; The ultrasonic image currently scanned by the ultrasonic probe 101 is placed on the probe position; if it is detected that the ultrasonic probe 101 finishes scanning, each ultrasonic image located in the three-dimensional space coordinate system is spliced to generate an ultrasonic stereoscopic image.
  • a three-dimensional space coordinate system can be preset, and any position in the three-dimensional space coordinate system can be taken as the probe position corresponding to the ultrasonic probe 101 in the three-dimensional space coordinate system, or any angle can be taken as the preset three-dimensional space coordinate system.
  • the initial probe angle in the space coordinate system can be preset, and any position in the three-dimensional space coordinate system can be taken as the probe position corresponding to the ultrasonic probe 101 in the three-dimensional space coordinate system, or any angle can be taken as the preset three-dimensional space coordinate system. The initial probe angle in the space coordinate system.
  • Mode 1 After acquiring the probe image, the main control component 103 can identify the position of the ultrasound probe 101 in the probe image. Since the shooting direction of the acquisition component 102 is fixed, the camera in the acquisition component 102 is fixed. According to the position corresponding to the three-dimensional space coordinate system when the ultrasonic probe 101 is activated, the current probe position of the ultrasonic probe in the three-dimensional space coordinate system can be obtained, and the probe angle is obtained in a similar manner.
  • the initial probe position is set to (x0, y0, z0), and the probe angle at the initial time t0 is set to ( ⁇ 0, ⁇ 0, ⁇ 0) to identify the probe image corresponding to the time t1.
  • the ultrasonic probe is obtained, and the position of the ultrasonic probe in the probe image is obtained. According to the corresponding relationship between the position of the ultrasonic probe relative to the image at the initial time t0 and the initial probe position (x0, y0, z0), it can be determined.
  • the ultrasonic probe at the time of t1 can be determined.
  • Probe angle The acquired probe position is the absolute position, and the probe angle is the absolute angle.
  • Method 2 The relative position change of the ultrasound probe can be obtained through the difference between the probe image at the current moment and the probe image at the previous moment, and the current moment can be determined according to the relative position change and the absolute coordinates of the ultrasound probe at the previous moment.
  • the probe position of the ultrasonic probe similarly, the angle change of the ultrasonic probe can also be obtained, and the probe angle of the ultrasonic probe at the current moment can be determined according to the relative angle change and the probe angle of the ultrasonic probe at the previous moment.
  • the ultrasonic image can be placed on the probe position according to the probe angle.
  • the ultrasonic probe continuously scans the detection object, and each ultrasonic image is placed in the three-dimensional space coordinate system according to the probe position of the ultrasonic probe. For each ultrasound image, an ultrasound stereo image is generated.
  • the ultrasonic probe can scan the human leg according to the moving direction B as shown in Figure 3, and the human leg is the detection object.
  • the ultrasonic probe is a 2D probe
  • each ultrasonic image is placed in the ultrasonic probe according to the probe position of the ultrasonic probe.
  • an ultrasonic image arrangement diagram as shown in FIG. 4 is formed.
  • Each ultrasonic image is a tomogram of the leg.
  • the slice spacing will also vary.
  • the sampling frequency of the ultrasonic probe is high, which can form an ultrasonic image array with very small actual interval.
  • each frame of ultrasonic image has a certain width
  • each frame of ultrasonic image after scanning is a cube slice of a certain width, which is a three-dimensional image of a tomographic section of the leg, as shown in Figure 5. Since each acquisition has width information, if the ultrasonic probe 101 moves slowly, there will be overlapping parts of the images in two adjacent samplings, and the data of the overlapping parts should be exactly the same; therefore, after splicing each ultrasonic image, we get A three-dimensional semi-transparent dense point cloud image forms three-dimensional point cloud data, and the ultrasonic three-dimensional image of the leg is obtained as shown in Figure 6.
  • the ultrasonic diagnostic apparatus 10 further includes: a display connected to the main control component; the display is used for displaying an ultrasonic stereoscopic image; the main control component 103 is further used for, when an instruction instructing to display an ultrasonic image of a specified slice is detected, The ultrasonic stereo image is cut, and the ultrasonic image of the specified slice is generated and transmitted to the display.
  • the display may be an ordinary display or a holographic image display, and the display may display the stereoscopic ultrasound image. If the user needs to observe the ultrasonic image of the designated slice, he can input the information of the designated slice through the input device. After the main control component receives the instruction, it will cut the ultrasonic stereo image, generate the ultrasonic image of the designated slice, and transmit it to the display. , the ultrasound image of the designated slice is displayed on the monitor, and the designated slice is slice 1 and slice 2 as shown in FIG. 7 .
  • the third embodiment of the present application relates to an ultrasonic diagnostic apparatus.
  • This embodiment is an improvement to the first embodiment or the second embodiment.
  • the main improvement lies in that, in this embodiment, the ultrasonic diagnostic apparatus further includes: a projection assembly 104 .
  • the structural block diagram of the ultrasonic diagnostic equipment is shown in FIG. 8 .
  • FIG. 9 the arrangement positions of the components in the ultrasonic diagnostic equipment will be described.
  • the projection assembly 104 is arranged above the console A, and the projection assembly 104 is respectively connected to the capture assembly 102 and the main control assembly 103 ;
  • the projection group 104 can be a general projection device, and the projection assembly 104 can be connected to the main control assembly 103 wirelessly or wiredly.
  • the acquisition component 102 is further configured to photograph the detection object, acquire a first image and transmit the first image to the main control component 103; the main control component 103 generates a designated scanning area image including the designated scanning area of the detection object according to the first image ;
  • the projection component 104 projects the image of the designated scanning area on the detection object.
  • a designated scanning area may be set in the main control component 103 in advance, and the designated scanning area may be the organ to be detected.
  • a sensor can be set on the console A, the sensor is used to detect whether there is a detection object on the console A, and the detection result is sent to the main control component 103, and the main control component 103 receives a message used to indicate that there is a detection object on the console A.
  • start the acquisition component 102 to photograph the detection object and transmit the first image to the main control component 103 .
  • the main control component 103 generates a designated scanning area image including the designated scanning area of the detection object according to the position of the detection object in the first image and the preset to-be-detected organ or to-be-measured position.
  • the main control component 103 sends the image of the designated scanning area to the projection component 104, and the projection component 104 projects the image of the designated scanning area on the detection object. area image.
  • the main control component 103 can also set the projection parameters of the projection component 104 according to the designated area image and the position of the detection object in the first image, so that the corresponding designated scanning area image can be projected when different detection objects are detected .
  • the designated scanning area may also be an organ to be tested, and the image of the designated scanning area may be an image of an organ corresponding to the detection object, and the organ image may be projected at the position of the organ to be tested of the detection object.
  • the main control component 103 is further configured to: generate a scan path image for indicating the movement of the ultrasound probe according to the specified scan area, and send the scan path image to the projection component 104; the projection component 104 is further configured to: detect the object Project the scan path image on top.
  • the projected scanning path can be the arrow in the dotted box in Figure 11. After the scanning path is projected, the user can control the ultrasound probe to scan the designated scanning area according to the scanning path.
  • the main control component 103 is further configured to: after detecting that the ultrasound probe 101 finishes scanning, if it is detected that the overlapped part of the coverage area formed by all the ultrasound images and the specified scanning area is smaller than the specified scanning area, output the first error indication and/or, if it is detected that there is a blurred image in the ultrasound image, outputting second error indication information.
  • the ultrasonic probe 101 if it is detected that the ultrasonic probe 101 leaves the surface of the detection object, it is determined that the ultrasonic probe ends scanning. Before splicing each ultrasonic image, it can be detected whether the overlapping part of the coverage area formed by all ultrasonic images and the designated scanning area is smaller than the designated scanning area. In addition, it is also possible to detect whether there is a blurred image in the acquired ultrasonic image, and if so, output second error indication information.
  • the first error indication information includes: the image of the missing area, and the sum of the missing area and the overlapping part is greater than or equal to the specified scanning area;
  • the second error indication information includes: the shooting position of the blurred image; the projection component is also used for projecting the missing area on the detection object The image of the area; or, the projection component is also used for projecting the image representing the shooting position on the detection object.
  • the user can re-scan the missing area or re-scan the shooting position according to the image projected by the projection component, so as to obtain an accurate ultrasonic image; the accuracy of the subsequently generated ultrasonic stereo image is improved.
  • the ultrasound image E and the ultrasound image F if the scanning frequency is higher than the preset frequency, it is not necessary to tilt. If the scanning frequency is lower than the preset frequency, it can be instructed to increase the scanning frequency to scan the specified scanning area again.
  • the fourth embodiment of the present application relates to a method for generating an ultrasonic image, which is applied to ultrasonic diagnostic equipment, and the process is shown in FIG. 13 :
  • Step 401 When detecting the operation of the ultrasonic probe, control the acquisition component located above the operating table to acquire the probe image including the ultrasonic probe in real time.
  • a collection component is provided at a position above the operating table, and the collection component may be a camera, the lens of the camera faces the operating table, and the shooting field of view of the camera covers the operating table.
  • the acquisition component and the ultrasonic probe are both connected to the main control component in communication, and the communication connection may be a wireless connection or a wired connection.
  • the operation of the ultrasonic probe is triggered, and when the operation of the ultrasonic probe is detected, the acquisition component located above the operating table is controlled to acquire the probe image including the ultrasonic probe in real time.
  • Step 402 Continuously acquire ultrasonic images of the ultrasonic probe continuously scanning the detection object.
  • the ultrasonic image scanned by the ultrasonic probe at the corresponding moment is acquired synchronously.
  • Step 403 According to the probe image, splicing consecutive ultrasonic images to generate an ultrasonic stereoscopic image of the detection object.
  • the probe position and probe angle of the ultrasonic probe in the preset three-dimensional space coordinate system are obtained; in the three-dimensional space coordinate system, the ultrasonic image scanned by the current ultrasonic probe is placed on the probe according to the probe angle. If it is detected that the ultrasound probe ends scanning, each ultrasound image located in the three-dimensional space coordinate system is spliced to generate an ultrasound stereo image.
  • the three-dimensional space coordinate system can be preset, and any position in the three-dimensional space coordinate system can be taken as the initial probe position in the three-dimensional space coordinate system when the ultrasonic probe is started, or any angle can be taken as the preset three-dimensional space.
  • the initial probe angle in the coordinate system can be preset, and any position in the three-dimensional space coordinate system can be taken as the initial probe position in the three-dimensional space coordinate system when the ultrasonic probe is started, or any angle can be taken as the preset three-dimensional space. The initial probe angle in the coordinate system.
  • Mode 1 After acquiring the probe image, the main control component 103 can identify the position of the ultrasound probe 101 in the probe image. Since the shooting direction of the acquisition component 102 is fixed, the camera in the acquisition component 102 is fixed. According to the position corresponding to the three-dimensional space coordinate system when the ultrasonic probe 101 is activated, the current probe position of the ultrasonic probe in the three-dimensional space coordinate system can be obtained, and the probe angle is obtained in a similar manner.
  • the initial probe position is set to (x0, y0, z0), and the probe angle at the initial time t0 is set to ( ⁇ 0, ⁇ 0, ⁇ 0) to identify the probe image corresponding to the time t1.
  • the ultrasonic probe is obtained, and the position of the ultrasonic probe in the probe image is obtained. According to the corresponding relationship between the position of the ultrasonic probe relative to the image at the initial time t0 and the initial probe position (x0, y0, z0), it can be determined.
  • the ultrasonic probe at the time of t1 can be determined.
  • Probe angle The acquired probe position is the absolute position, and the probe angle is the absolute angle.
  • Method 2 The relative position change of the ultrasound probe can be obtained through the difference between the probe image at the current moment and the probe image at the previous moment, and the current moment can be determined according to the relative position change and the absolute coordinates of the ultrasound probe at the previous moment.
  • the probe position of the ultrasonic probe similarly, the angle change of the ultrasonic probe can also be obtained, and the probe angle of the ultrasonic probe at the current moment can be determined according to the relative angle change and the probe angle of the ultrasonic probe at the previous moment.
  • the ultrasonic image can be placed on the probe position according to the probe angle.
  • the ultrasonic probe continuously scans the detection object, and each ultrasonic image is placed in the three-dimensional space coordinate system according to the probe position of the ultrasonic probe. For each ultrasound image, an ultrasound stereo image is generated.
  • the main control component in the ultrasonic diagnostic equipment may include a memory and a processor, a memory connected in communication with at least one processor; wherein, the memory stores instructions executable by the at least one processor, and the instructions are executed by the at least one processor , so that at least one processor can execute the above-mentioned method for generating an ultrasonic image.
  • the memory and the processor are connected by a bus.
  • the bus may include any number of interconnected buses and bridges.
  • the bus links one or more processors and various circuits of the memory together.
  • the bus may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface between the bus and the transceiver.
  • a transceiver may be a single element or multiple elements, such as multiple receivers and transmitters, providing a means for communicating with various other devices over a transmission medium.
  • the data processed by the processor is transmitted on the wireless medium through the antenna, and further, the antenna also receives the data and transmits the data to the processor.
  • the processor is responsible for managing the bus and general processing, and can also provide various functions, including timing, peripheral interface, voltage regulation, power management, and other control functions. Instead, memory may be used to store data used by the processor in performing operations.
  • the fifth embodiment of the present application relates to a computer-readable storage medium, which stores a computer program, and when the computer program is executed by a processor, realizes a method for generating an ultrasonic image.
  • a storage medium includes several instructions to make a device (which may be a A single-chip microcomputer, a chip, etc.) or a processor (processor) executes all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, removable hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Graphics (AREA)
  • General Engineering & Computer Science (AREA)
  • Vascular Medicine (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种涉及超声领域的超声波诊断设备、超声波图像的生成方法及存储介质。超声波诊断设备(10),包括:超声探头(101)、探头图像的采集组件(102)以及分别与超声探头(101)和采集组件(102)连接的主控组件(103);超声探头(101)用于对位于操作台上的检测对象进行连续扫描,获取对应的超声波图像并将超声波图像传输至主控组件(103);采集组件(102)用于在超声探头(101)运行时实时获取包含超声探头(101)的探头图像;主控组件(103)用于根据探头图像,拼接超声波图像以生成检测对象的超声波立体图像。使用者无需专业知识也可以获取到准确反映病灶的图像,降低超声诊断设备的使用难度。

Description

超声波诊断设备、超声波图像的生成方法及存储介质 技术领域
本申请实施例涉及超声波领域,特别涉及一种超声波诊断设备、超声波图像的生成方法及存储介质。
背景技术
当前的超声波诊断设备,采集的图像是2D超声波切片数据,专业医生根据此2D超声波切片图像进行诊断,保存的数据也是一个或几个2D超声波切片图像。
然而,人体为一个三维个体,虽然专业的医生通过手法和经验,能够得到最能反映病症的2D超声波切片图像,但并不是所有医生都能在超声检查操作中找到最理想位置的2D超声波切片图像,例如,乡镇的大夫可能很少使用或未使用过超声波诊断设备,若需要获取准确反映病灶的2D超声波切片图像,针对每个器官都需要很长时间的操作手法培训,很难仅仅通过远程指导的方法让其获取到正确的2D超声波切片图像,因此造成了超声的远程诊断场景实现困难,一直无法大规模推广起来。
发明内容
本申请部分实施例的目的在于提供一种超声波诊断设备、超声波图像的 生成方法及存储介质,使得使用者无需专业知识也可以获取到准确反映病灶的图像,降低超声诊断设备的使用难度。
本申请实施例提供了一种提供了一种超声波诊断设备,包括:超声探头、探头图像的采集组件以及分别与所述超声探头和所述采集组件连接的主控组件;超声探头用于对位于操作台上的检测对象进行连续扫描,获取对应的超声波图像并将超声波图像传输至主控组件;采集组件设置于操作台上方的位置,所述采集组件的拍摄方向面向所述操作台且拍摄范围覆盖所述操作台;所述采集组件用于在所述超声探头运行时实时获取包含所述超声探头的探头图像,并将所述探头图像传输至所述主控组件;所述主控组件用于根据所述探头图像,拼接所述超声波图像以生成所述检测对象的超声波立体图像。
本申请实施例还提供了一种超声波图像的生成方法,包括:在检测到超声探头运行时,控制位于操作台上方的采集组件实时获取包含超声探头的探头图像;同步获取超声探头对检测对象进行连续扫描的超声波图像;根据探头图像,拼接连续的超声图像,以生成检测对象的超声波立体图像。
本申请实施例还提供了一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现超声波图像的生成方法。
本申请实施例现对于现有技术而言,超声探头用于对位于操作台上的检测对象进行连续扫描,同时采集组件设置于操作台上方的位置,该采集组件的拍摄方向面向操作台且拍摄范围覆盖操作台,该采集组件可以实时获取包含超声探头的探头图像,将获取的探头图像发送至主控组件,主控组件可以实时获取探头图像以及对应探头扫描的超声波图像,从而可以根据该探头图像将连续获取的超声波图像拼接,形成超声波立体图像;由于生成的是超声波立体图像, 该超声波立体图像为三维图像,三维图像可以显示出检测对象更多图片细节,使用这可以根据需要查看该超声波立体图像,无需使用者具有专业的超声操作知识,提高了该超声波诊断设备的使用场景。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是根据本申请第一实施例中提供的一种超声波诊断设备的结构框图;
图2是根据本申请第二实施例中提供的一种超声波诊断设备的一种示意图;
图3是根据本申请第二实施例中提供的一种超声探头移动方向的示意图;
图4是根据本申请第二实施例中提供的一种超声波图像排列示意图;
图5是根据本申请第二实施例中提供的另一种超声波图像排列示意图;
图6是根据本申请第二实施例中提供的超声波立体图像示意图;
图7是根据本申请第二实施例中提供的指定切面的超声波图像的示意图;
图8是根据本申请第三实施例中提供的一种超声波诊断设备的结构框图;
图9是根据本申请第三实施例中提供的一种超声波诊断设备的一种示意图;
图10是根据本申请第三实施例中提供的一种超声波诊断设备的投影效果示意图;
图11是根据本申请第三实施例中提供的一种超声波诊断设备的投影扫 描路径的效果示意图;
图12是根据本申请第三实施例中提供的一种超声波图像排列示意图;
图13是根据本申请第四实施例中提供的一种超声波图像的生成方法的流程图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请部分实施例进行进一步详细说明。本领域的普通技术人员可以理解,在各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
本申请第一实施例涉及一种超声波诊断设备,该超声诊断设备10包括:超声探头101、采集组件102和主控组件103;其结构框图如图1所示,采集组件102和超声探头均与主控组件连接,超声探头101用于对位于操作台20上的检测对象30进行连续扫描,获取对应的超声波图像并将超声波图像传输至主控组件103;采集组件102设置于操作台20上方的位置,采集组件102的拍摄方向面向操作台20且拍摄范围覆盖操作台20;采集组件102用于在超声探头101运行时实时获取包含超声探头101的探头图像,并将探头图像传输至主控组件103;主控组件103用于根据探头图像,拼接超声波图像以生成检测对象的超声波立体图像。
本申请实施例中,超声探头用于对位于操作台上的检测对象进行连续扫描,同时采集组件设置于操作台上方的位置,该采集组件的拍摄方向面向操作台且拍摄范围覆盖操作台,该采集组件可以实时获取包含超声探头的探头图像,将获取的探头图像发送至主控组件,主控组件可以实时获取探头图像以及对应探头扫描的超声波图像,从而可以根据该探头图像将连续获取的超声波图像拼接,形成超声波立体图像;由于生成的是超声波立体图像,该超声波立体图像为三维图像,三维图像可以显示出检测对象更多图片细节,使用这可以根据需要查看该超声波立体图像,无需使用者具有专业的超声操作知识,提高了该超声波诊断设备的使用场景。
本申请第二实施例涉及一种超声波诊断设备。本实施例是对第一实施例中超声波诊断设备的具体介绍。下面结合附图2介绍该超声诊断设备中各组件的设置位置。
如图2所示,操作台A用于辅助检测对象保持平稳状态,例如,该操作台A可以是病床等。被放置检测对象后的操作台A可以平行于水平面。在进行超声波诊断过程中,检测对象可以平躺于该操作台上,与主控组件103连接的超声探头对检测对象进行扫描,以获得超声波图像;其中,该超声探头101可以包括:二维探头或三维探头。
在该操作台A的正上方的位置设置有采集组件102,该采集组件102用于实时拍摄超声探头,该采集组件102可以包括至少一个摄像头,摄像头可以是2D摄像头,也可以是3D摄像头。采集组件102中拍摄方向面向该操作台A,且拍摄范围覆盖整个操作台,以确保无论该超声探头101在扫描过程中如何移动,该采集组件102均可以拍摄到该摄像头。其中,该超声探头101以及采集 组件102均与主控组件103通信连接,连接方式可以是无线连接,也可以是有线连接。图2中并未示出主控组件103,该主控组件103可以是设置在操作台A的上方,也可以设置在其他位置,该主控组件103可以包括处理器,如,计算机设备。
该超声波诊断设备的运行过程如下:主控组件103在检测到超声探头运行时,控制该采集组件开始实时拍摄图像;超声探头101扫描得到的超声波图像,并实时传输至主控组件,同理,该采集组件102将实时拍摄的探头图像传输至该主控组件103。主控组件103可以通过设置同步时钟的方式,同步该采集组件102和超声探头101的运行。
超声探头101接触到检测对象后,可以向主控组件103发送超声探头101启动的提示信息,该主控组件103获取到该提示信息即可启动该采集组件102进行实时拍摄。
需要说明的是,可以根据扫描时间的先后顺序,为每个超声波图像添加表征扫描时间的时间标签,同理,可以为每个探头图像添加表征拍摄时间的时间标签;可以通过时间标签查找相同时刻下超声波图像中对应的探头图像。
在一个例子中,主控组件103具体用于:根据接收的探头图像,获取超声探头的在预设的三维空间坐标系中的探头位置和探头角度;在三维空间坐标系中按照探头角度,将当前超声探头101扫描的超声波图像置于探头位置上;若检测到超声探头101结束扫描,则拼接位于三维空间坐标系中的每个超声波图像,生成超声波立体图像。
具体地,可以预先设置三维空间坐标系,可以在该三维空间坐标系中的取任意位置作为超声探头101在该三维空间坐标系中对应的探头位置,也可以 取任意角度作为在预设的三维空间坐标系中初始的探头角度。
获取探头位置和探头角度的方式有多种,下面介绍其中两种获取探头位置和探头角度的方式:
方式一:主控组件103获取到探头图像后,可以识别该探头图像中的超声探头101在该探头图像中的位置,由于采集组件102的拍摄方向固定,采集组件102中的摄像头固定不动,根据超声探头101启动时在该三维空间坐标系所对应的位置,可以获取当前超声探头在该三维空间坐标系的探头位置,探头角度的获取方式类似。
例如,在该三维空间坐标系中将初始的探头位置被置为(x0,y0,z0),初始时刻t0的探头角度被置为(α0,β0,γ0)识别t1时刻对应的探头图像中的超声探头,并获取该超声探头在该探头图像中的位置,根据初始时刻t0超声探头相对于图像中的位置与初始的探头位置(x0,y0,z0)之间的对应关系,即可确定出在t1时刻探头的探头位置,同理根据初始时刻超声探头在探头图像中相对于检测对象的角度与初始的探头角度(α0,β0,γ0)的对应关系,可以确定出t1时刻该超声探头的探头角度。获取的探头位置为绝对位置,该探头角度为绝对角度。
方式二:可以通过当前时刻的探头图像与其前一时刻的探头图像之间的差异,获取超声探头的相对位置变化,根据相对位置变化以及前一时刻该超声探头的绝对坐标,即可确定当前时刻该超声探头的探头位置;同理,还可以获取超声探头的角度变化,根据相对的角度变化以及前一时刻该超声探头的探头角度,确定当前时刻该超声探头的探头角度。
在获取到该超声探头的探头位置和探头角度后,可以按照该探头角度, 将该超声波图像置于该探头位置上。
该超声探头不断对检测对象进行扫描,将每张超声波图像按照超声探头的探头位置放置于该三维空间坐标系中,在检测到该超声探头结束扫描之后,则可以拼接位于三维空间坐标系中的每个超声波图像,生成超声波立体图像。
例如,超声探头可以按照如图3所示的移动方向B对人体腿部进行扫描,人体腿部为检测对象,若超声探头为2D探头,将每张超声波图像按照超声探头的探头位置放置于该三维空间坐标系中,在检测到该超声探头结束扫描之后,形成如图4所示的超声波图像排列图,每张超声波图像都是腿部的一个断层图,根据超声探头101移动速度的变化,切面间隔也会不同。通常超声探头的采样频率高,可以形成实际间隔非常小的超声波图像排列图。拼接如图4所示排列的超声波图像,形成如图6所示的超声波立体图像。若超声探头的移动速度越慢,得到三维点云越密集,形成的超声波立体图像越准确。
若超声探头为3D探头,每一帧超声波图像具有一定的宽度,扫描后的每一帧超声波图像是一定宽度的立方体切片,都是腿部的一个断层三维图,如图5所示的形式,由于每次采集都具有宽度信息,若超声探头101移动速度慢,则相邻两次采样会存在图像重合部分,且重叠部分的数据应该是完全相同的;因此在拼接每一个超声波图像后,得到一个立体半透的致密点云图,形成三维点云数据,得到该腿部的超声波立体图像如图6所示。
在一个例子中,超声波诊断设备10还包括:与主控组件连接的显示器;显示器用于显示超声波立体图像;主控组件103还用于在检测到指示显示指定切面的超声波图像的指令时,对超声波立体图像进行切割,生成指定切面的超声波图像并传输至显示器。
具体地,该显示器可以普通显示器,也可以是全息影像显示器,该显示器显示该立体超声波立体图像。若使用者需要观察指定切面的超声波图像,可以通过输入装置输入指定切面的信息,主控组件接收到该指令后,对超声波立体图像进行切割,生成该指定切面的超声波图像,并传输至该显示器,由显示器显示该指定切面的超声波图像,指定切面如图7所示的切面1和切面2。
本申请第三实施例涉及一种超声波诊断设备。本实施例是对第一实施例或对第二实施例的改进,主要改进之处在于,本实施例中该超声波诊断设备还包括:投影组件104。该超声波诊断设备的结构框图如图8所示。下面结合附图9介绍该超声诊断设备中各组件的设置位置。
如图9所示,该投影组件104被设置于操作台A上方位置,投影组件104分别与采集组件102和主控组件103连接;该投影组件104的位置可以靠近采集组件102。该投影组104件可以为一般的投影设备,投影组件104可以与主控组件103无线连接也可以有线连接。
采集组件102还用于对检测对象进行拍摄,获取第一图像并将第一图像传输至主控组件103;主控组件103根据第一图像,生成包含检测对象的指定扫描区域的指定扫描区域图像;投影组件104在检测对象上投影指定扫描区域图像。
具体地,可以预先在主控组件103中设置指定扫描区域,该指定扫描区域可以为待检测的器官。可以在操作台A上设置传感器,传感器用于检测操作台A上是否存在检测对象,并将检测结果发送至主控组件103,主控组件103接收到用于指示操作台A上存在检测对象的指示信息后,启动该采集组件102对检测对象进行拍摄,并将该第一图像传输至该主控组件103。主控组件103 根据该第一图像中的检测对象在图像中的位置以及预设的待检测器官或待测位置,生成包含检测对象的指定扫描区域的指定扫描区域图像。主控组件103将该指定扫描区域图像发送至投影组件104,该投影组件104在该检测对象上投影出指定扫描区域图像,投影组件投影的效果如图10所示,方形框虚线框为指定扫描区域图像。
需要说明的是,主控组件103还可以根据该指定区域图像以及检测对象在第一图像中的位置,设置投影组件104的投影参数,使得在不同检测对象时可以投影出对应的指定扫描区域图像。
可以理解的是,该指定扫描区域还可以是待测器官,则该指定扫描区域图像可以是该检测对象对应的器官图像,可以在该检测对象的待测器官位置投影出该器官图像。
在一个例子中,主控组件103还用于:根据指定扫描区域生成用于指示超声探头移动的扫描路径图像,并将扫描路径图像发送至投影组件104;投影组件104还用于:在检测对象上投影扫描路径图像。
值得一提的是,投影出的扫描路径可以如图11中虚线框内的箭头,投影出扫描路径后,使用者可以控制超声探头按照该扫描路径对指定扫描区域进行扫描。
在一个例子中,主控组件103还用于:检测到超声探头101结束扫描后,若检测到所有超声波图像构成的覆盖区域与指定扫描区域的重叠部分小于指定扫描区域,则输出第一错误指示信息;和/或,若检测超声波图像中存在模糊图像,则输出第二错误指示信息。
具体地,若检测到该超声探头101离开检测对象的表面后,则确定该超 声探头结束扫描。在拼接每个超声波图像之前,可以检测所有超声波图像构成的覆盖区域与指定扫描区域的重叠部分是否小于指定扫描区域,若是,表明存在未扫描到的区域,则可以输出第一错误指示信息。另外,还可以检测获取的超声波图像中是否存在模糊图像,若是,则输出第二错误指示信息。第一错误指示信息包括:缺失区域的图像,缺失区域与重叠部分之和大于等于指定扫描区域;第二错误指示信息包括:拍摄模糊图像的拍摄位置;投影组件还用于在检测对象上投影缺失区域的图像;或者,投影组件还用于在检测对象上投影表征拍摄位置的图像。
使用者可以根据投影组件投影的图像,重新对缺失区域进行扫描或重新对拍摄位置进行扫描,从而得到准确的超声波图像;提高后续生成的超声波立体图像的准确性。
需要说明的是,按照探头角度排列得到的超声波图像排列图中,即使出现了倾斜,如图12所示中的超声波图像E和超声波图像F,若扫描频率高于预设频率,则可以不对倾斜的超声波图像进行处理,若扫描频率低于该预设频率,可以指示提高扫描频率重新对指定扫描区域进行扫描。
上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其算法和流程的核心设计都在该专利的保护范围内。
本申请第四实施例涉及一种超声波图像的生成方法,应用于超声波诊断设备,其流程如图13所示:
步骤401:在检测到超声探头运行时,控制位于操作台上方的采集组件 实时获取包含超声探头的探头图像。
具体地,操作台上方的位置设置有采集组件,该采集组件可以是摄像头,摄像头的镜头朝向该操作台,且摄像头的拍摄视野覆盖该操作台。其中,采集组件和超声探头均与主控组件通信连接,通信连接的方式可以是无线连接的方式,也可以是有线连接的方式。
超声探头接触检测对象表面时,触发该超声探头运行,在检测到该超声探头运行时,控制位于操作台上方的采集组件实时获取包含超声探头的探头图像。
步骤402:连续获取超声探头对检测对象进行连续扫描的超声波图像。
具体地,在获取探头图像时,同步获取对应时刻的超声探头扫描的超声波图像。
步骤403:根据探头图像,拼接连续的超声图像,以生成检测对象的超声波立体图像。
具体地,根据接收的探头图像,获取超声探头的在预设的三维空间坐标系中的探头位置和探头角度;在三维空间坐标系中按照探头角度,将当前超声探头扫描的超声波图像置于探头位置上;若检测到超声探头结束扫描,则拼接位于三维空间坐标系中的每个超声波图像,生成超声波立体图像。
可以预先设置三维空间坐标系,可以在该三维空间坐标系中的取任意位置作为超声探头启动时在该三维空间坐标系中的初始的探头位置,也可以取任意角度作为在预设的三维空间坐标系中初始的探头角度。
获取探头位置和探头角度的方式有多种,下面介绍其中两种获取探头位置和探头角度的方式:
方式一:主控组件103获取到探头图像后,可以识别该探头图像中的超声探头101在该探头图像中的位置,由于采集组件102的拍摄方向固定,采集组件102中的摄像头固定不动,根据超声探头101启动时在该三维空间坐标系所对应的位置,可以获取当前超声探头在该三维空间坐标系的探头位置,探头角度的获取方式类似。
例如,在该三维空间坐标系中将初始的探头位置被置为(x0,y0,z0),初始时刻t0的探头角度被置为(α0,β0,γ0)识别t1时刻对应的探头图像中的超声探头,并获取该超声探头在该探头图像中的位置,根据初始时刻t0超声探头相对于图像中的位置与初始的探头位置(x0,y0,z0)之间的对应关系,即可确定出在t1时刻探头的探头位置,同理根据初始时刻超声探头在探头图像中相对于检测对象的角度与初始的探头角度(α0,β0,γ0)的对应关系,可以确定出t1时刻该超声探头的探头角度。获取的探头位置为绝对位置,该探头角度为绝对角度。
方式二:可以通过当前时刻的探头图像与其前一时刻的探头图像之间的差异,获取超声探头的相对位置变化,根据相对位置变化以及前一时刻该超声探头的绝对坐标,即可确定当前时刻该超声探头的探头位置;同理,还可以获取超声探头的角度变化,根据相对的角度变化以及前一时刻该超声探头的探头角度,确定当前时刻该超声探头的探头角度。
在获取到该超声探头的探头位置和探头角度后,可以按照该探头角度,将该超声波图像置于该探头位置上。
该超声探头不断对检测对象进行扫描,将每张超声波图像按照超声探头的探头位置放置于该三维空间坐标系中,在检测到该超声探头结束扫描之后, 则可以接位于三维空间坐标系中的每个超声波图像,生成超声波立体图像。其中,该超声诊断设备中的主控组件可以包括存储器和处理器,与至少一个处理器通信连接的存储器;其中,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行上述超声波图像的生成方法。
存储器和处理器采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器和存储器的各种电路链接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器处理的数据通过天线在无线介质上进行传输,进一步,天线还接收数据并将数据传送给处理器。
处理器负责管理总线和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器可以被用于存储处理器在执行操作时所使用的数据。
本申请第五实施例涉及一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现超声波图像的生成方法。
本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U 盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (10)

  1. 一种超声波诊断设备,其特征在于,包括:超声探头、采集组件以及分别连接所述超声探头和所述采集组件的主控组件;
    所述超声探头用于对位于操作台上的检测对象进行连续扫描,获取对应的超声波图像并将所述超声波图像传输至所述主控组件;
    所述采集组件设置于所述操作台上方的位置,所述采集组件的拍摄方向面向所述操作台且拍摄范围覆盖所述操作台;
    所述采集组件用于在所述超声探头运行时实时获取包含所述超声探头的探头图像,并将所述探头图像传输至所述主控组件;
    所述主控组件用于根据所述探头图像,拼接所述超声波图像以生成所述检测对象的超声波立体图像。
  2. 如权利要求1所述的超声波诊断设备,其特征在于,所述主控组件具体用于:
    根据接收的所述探头图像,获取所述超声探头的在预设的三维空间坐标系中的探头位置和探头角度;
    在所述三维空间坐标系中按照所述探头角度,将当前所述超声探头扫描的超声波图像置于所述探头位置上;
    若检测到所述超声探头结束扫描,则拼接位于所述三维空间坐标系中的每个所述超声波图像,生成所述超声波立体图像。
  3. 如权利要求1或2所述的超声波诊断设备,其特征在于,所述超声波诊断设备还包括:设置于所述操作台上方位置的投影组件,所述投影组件分别与所述采集组件和所述主控组件连接;
    所述采集组件还用于对所述检测对象进行拍摄,获取第一图像并将所述第一图像传输至所述主控组件;
    所述主控组件根据所述第一图像,生成包含所述检测对象的指定扫描区域的指定扫描区域图像;
    所述投影组件在所述检测对象上投影所述指定扫描区域图像。
  4. 如权利要求1至3中任一项所述的超声波诊断设备,其特征在于,所述主控组件还用于:
    检测到所述超声探头结束扫描后,若检测到所有超声波图像构成的覆盖区域与所述指定扫描区域的重叠部分小于所述指定扫描区域,则输出第一错误指示信息;和/或,
    若检测所述超声波图像中存在模糊图像,则输出第二错误指示信息。
  5. 如权利要求4所述的超声波诊断设备,其特征在于,所述第一错误指示信息包括:缺失区域的图像,所述缺失区域与所述重叠部分之和大于等于所述指定扫描区域;
    所述第二错误指示信息包括:拍摄所述模糊图像的拍摄位置;
    所述投影组件还用于在所述检测对象上投影所述缺失区域的图像;或者,所述投影组件还用于在所述检测对象上投影表征所述拍摄位置的图像。
  6. 如权利要求1至5中任一项所述的超声波诊断设备,其特征在于,所述主控组件还用于:
    根据所述指定扫描区域生成用于指示所述超声探头移动的扫描路径图像,并将所述扫描路径图像发送至所述投影组件;
    所述投影组件还用于:在所述检测对象上投影所述扫描路径图像。
  7. 如权利要求1至6中任一项所述的超声波诊断设备,其特征在于,所述超声探头包括:二维探头或三维探头。
  8. 权利要求1至7中任一项所述的超声波诊断设备,其特征在于,所述超声波诊断设备还包括:与所述主控组件连接的显示器;
    所述显示器用于显示所述超声波立体图像;
    所述主控组件还用于在检测到指示显示指定切面的超声波图像的指令时,对所述超声波立体图像进行切割,生成所述指定切面的超声波图像并传输至所述显示器。
  9. 一种超声波图像的生成方法,其特征在于,包括:
    在检测到超声探头运行时,控制位于操作台上方的采集组件实时获取包含所述超声探头的探头图像;
    同步获取所述超声探头对检测对象进行连续扫描的超声波图像;
    根据所述探头图像,拼接连续的所述超声图像,以生成所述检测对象的超声波立体图像。
  10. 一种计算机可读存储介质,存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求9所述的超声波图像的生成方法。
PCT/CN2021/119039 2020-10-10 2021-09-17 超声波诊断设备、超声波图像的生成方法及存储介质 WO2022073413A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21824279.0A EP4008266A4 (en) 2020-10-10 2021-09-17 ULTRASONIC DIAGNOSTIC DEVICE, METHOD FOR GENERATION OF AN ULTRASONIC IMAGE AND STORAGE MEDIA
JP2021578195A JP7299359B2 (ja) 2020-10-10 2021-09-17 超音波診断装置、超音波画像の生成方法及び記憶媒体
US17/562,825 US20220125410A1 (en) 2020-10-10 2021-12-27 Ultrasonic diagnostic device, method for generating ultrasonic image, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011079552.8A CN112155596B (zh) 2020-10-10 2020-10-10 超声波诊断设备、超声波图像的生成方法及存储介质
CN202011079552.8 2020-10-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/562,825 Continuation US20220125410A1 (en) 2020-10-10 2021-12-27 Ultrasonic diagnostic device, method for generating ultrasonic image, and storage medium

Publications (1)

Publication Number Publication Date
WO2022073413A1 true WO2022073413A1 (zh) 2022-04-14

Family

ID=73868008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119039 WO2022073413A1 (zh) 2020-10-10 2021-09-17 超声波诊断设备、超声波图像的生成方法及存储介质

Country Status (5)

Country Link
US (1) US20220125410A1 (zh)
EP (1) EP4008266A4 (zh)
JP (1) JP7299359B2 (zh)
CN (1) CN112155596B (zh)
WO (1) WO2022073413A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112155595B (zh) * 2020-10-10 2023-07-07 达闼机器人股份有限公司 超声波诊断设备、超声探头、图像的生成方法及存储介质
CN112155596B (zh) * 2020-10-10 2023-04-07 达闼机器人股份有限公司 超声波诊断设备、超声波图像的生成方法及存储介质
CN113081032B (zh) * 2021-03-23 2023-03-14 北京维声科技有限公司 人体器官扫描图像生成系统及超声诊断系统
CN114209354A (zh) * 2021-12-20 2022-03-22 深圳开立生物医疗科技股份有限公司 一种超声图像的显示方法、装置、设备及可读存储介质
CN115327541B (zh) * 2022-10-12 2023-03-14 中国人民解放军国防科技大学 阵列扫描全息穿透成像方法及手持全息穿透成像雷达系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131053A (ja) * 2008-12-02 2010-06-17 Konica Minolta Medical & Graphic Inc 超音波画像診断システムおよび超音波画像診断システムを動作させるプログラム
JP2014121434A (ja) * 2012-12-21 2014-07-03 Toshiba Corp 超音波診断装置およびその収集状態表示方法
US20150051489A1 (en) * 2011-12-18 2015-02-19 Calin Caluser Three Dimensional Mapping Display System for Diagnostic Ultrasound Machines
US20150057546A1 (en) * 2013-08-26 2015-02-26 Samsung Medison Co., Ltd. Method of generating body marker and ultrasound diagnosis apparatus using the same
CN106659474A (zh) * 2014-08-28 2017-05-10 三星电子株式会社 用于自诊断和远程诊断的超声诊断设备以及操作超声诊断设备的方法
CN108403146A (zh) * 2018-03-20 2018-08-17 余夏夏 基于多传感器信息融合的三维超声成像方法及装置
CN110418610A (zh) * 2017-03-16 2019-11-05 皇家飞利浦有限公司 确定引导信号和用于为手持式超声换能器提供引导的系统
CN110584714A (zh) * 2019-10-23 2019-12-20 无锡祥生医疗科技股份有限公司 超声融合成像方法、超声装置及存储介质
CN110974299A (zh) * 2019-12-31 2020-04-10 上海杏脉信息科技有限公司 超声扫查机器人系统、超声扫查方法及介质
CN112155595A (zh) * 2020-10-10 2021-01-01 达闼机器人有限公司 超声波诊断设备、超声探头、图像的生成方法及存储介质
CN112155596A (zh) * 2020-10-10 2021-01-01 达闼机器人有限公司 超声波诊断设备、超声波图像的生成方法及存储介质

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248074B1 (en) * 1997-09-30 2001-06-19 Olympus Optical Co., Ltd. Ultrasonic diagnosis system in which periphery of magnetic sensor included in distal part of ultrasonic endoscope is made of non-conductive material
CN100469321C (zh) * 2005-11-28 2009-03-18 香港理工大学 三维超声波检测方法
EP2314223A4 (en) * 2008-07-15 2017-03-01 Hitachi, Ltd. Ultrasound diagnostic device and method for displaying probe operation guide of the same
JP5284123B2 (ja) * 2009-01-20 2013-09-11 株式会社東芝 超音波診断装置および位置情報取得プログラム
JP2011182933A (ja) * 2010-03-08 2011-09-22 Toshiba Corp 超音波診断装置及び関心領域設定用制御プログラム
KR20130110033A (ko) * 2012-03-27 2013-10-08 삼성메디슨 주식회사 초음파 진단 장치 및 그 동작 방법
JP2013208412A (ja) * 2012-03-30 2013-10-10 Sony Corp 超音波処理装置およびプローブ支持装置
JP2013255658A (ja) 2012-06-12 2013-12-26 Toshiba Corp 超音波診断装置
US20160100821A1 (en) 2013-04-30 2016-04-14 Tractus Corporation Hand-held imaging devices with position and/or orientation sensors for complete examination of tissue
EP2807978A1 (en) * 2013-05-28 2014-12-03 Universität Bern Method and system for 3D acquisition of ultrasound images
JP2015156907A (ja) * 2014-02-21 2015-09-03 株式会社東芝 超音波診断装置および超音波プローブ
US20150327841A1 (en) * 2014-05-13 2015-11-19 Kabushiki Kaisha Toshiba Tracking in ultrasound for imaging and user interface
KR101635731B1 (ko) * 2014-05-15 2016-07-05 한국과학기술연구원 사람의 체내 구조물을 가시화하는 가시화 시스템 및 방법
CN105361908B (zh) * 2014-08-26 2019-08-06 无锡祥生医疗科技股份有限公司 超声诊断设备及扫描方法
US20190000318A1 (en) * 2015-12-28 2019-01-03 Metritrack, Inc. System and method for the coregistration of medical image data
JP6843639B2 (ja) 2016-03-07 2021-03-17 キヤノンメディカルシステムズ株式会社 超音波診断装置及び超音波診断支援装置
CA3022157C (en) * 2016-04-26 2022-05-17 Telefield Medical Imaging Limited An ultrasound imaging method and device with incremental imaging for target
US10729409B2 (en) * 2016-07-26 2020-08-04 Canon Medical Systems Corporation Medical image processing apparatus and medical image processing method
CN106923862B (zh) * 2017-03-17 2020-11-27 苏州佳世达电通有限公司 一种超声扫描导引装置及超声扫描导引方法
JP6879039B2 (ja) * 2017-05-08 2021-06-02 コニカミノルタ株式会社 超音波診断装置、合成画像の表示方法及びプログラム
EP3485816A1 (en) * 2017-11-21 2019-05-22 Koninklijke Philips N.V. Method and apparatus for guiding an ultrasound probe
CN109452953A (zh) * 2018-09-26 2019-03-12 深圳达闼科技控股有限公司 一种调整检测位置的方法、装置、超声探头以及终端
CN110060337B (zh) * 2019-04-25 2021-03-02 飞依诺科技(苏州)有限公司 颈动脉超声扫查三维重建方法及系统
US11246569B2 (en) * 2020-03-09 2022-02-15 Verdure Imaging, Inc. Apparatus and method for automatic ultrasound segmentation for visualization and measurement

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131053A (ja) * 2008-12-02 2010-06-17 Konica Minolta Medical & Graphic Inc 超音波画像診断システムおよび超音波画像診断システムを動作させるプログラム
US20150051489A1 (en) * 2011-12-18 2015-02-19 Calin Caluser Three Dimensional Mapping Display System for Diagnostic Ultrasound Machines
JP2014121434A (ja) * 2012-12-21 2014-07-03 Toshiba Corp 超音波診断装置およびその収集状態表示方法
US20150057546A1 (en) * 2013-08-26 2015-02-26 Samsung Medison Co., Ltd. Method of generating body marker and ultrasound diagnosis apparatus using the same
CN106659474A (zh) * 2014-08-28 2017-05-10 三星电子株式会社 用于自诊断和远程诊断的超声诊断设备以及操作超声诊断设备的方法
CN110418610A (zh) * 2017-03-16 2019-11-05 皇家飞利浦有限公司 确定引导信号和用于为手持式超声换能器提供引导的系统
CN108403146A (zh) * 2018-03-20 2018-08-17 余夏夏 基于多传感器信息融合的三维超声成像方法及装置
CN110584714A (zh) * 2019-10-23 2019-12-20 无锡祥生医疗科技股份有限公司 超声融合成像方法、超声装置及存储介质
CN110974299A (zh) * 2019-12-31 2020-04-10 上海杏脉信息科技有限公司 超声扫查机器人系统、超声扫查方法及介质
CN112155595A (zh) * 2020-10-10 2021-01-01 达闼机器人有限公司 超声波诊断设备、超声探头、图像的生成方法及存储介质
CN112155596A (zh) * 2020-10-10 2021-01-01 达闼机器人有限公司 超声波诊断设备、超声波图像的生成方法及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4008266A4 *

Also Published As

Publication number Publication date
CN112155596A (zh) 2021-01-01
EP4008266A4 (en) 2022-10-12
US20220125410A1 (en) 2022-04-28
JP7299359B2 (ja) 2023-06-27
EP4008266A1 (en) 2022-06-08
CN112155596B (zh) 2023-04-07
JP2023501849A (ja) 2023-01-20

Similar Documents

Publication Publication Date Title
WO2022073413A1 (zh) 超声波诊断设备、超声波图像的生成方法及存储介质
US11911214B2 (en) System and methods for at home ultrasound imaging
US9173715B2 (en) Ultrasound CT registration for positioning
CN107708571B (zh) 一种超声成像系统及方法
US10433709B2 (en) Image display device, image display method, and program
JP6974354B2 (ja) 同期された表面および内部腫瘍検出
US9713508B2 (en) Ultrasonic systems and methods for examining and treating spinal conditions
WO2014034948A1 (ja) 超音波診断装置及び画像処理方法
US20050020902A1 (en) Apparatus and method for three-dimensional imaging
US20090080742A1 (en) Image display device and image display program storage medium
US20150320391A1 (en) Ultrasonic diagnostic device and medical image processing device
JPWO2010055816A1 (ja) 超音波診断装置、超音波診断装置の規格画像データ生成方法
JP6833533B2 (ja) 超音波診断装置および超音波診断支援プログラム
WO2022073410A1 (zh) 超声波诊断设备、超声探头、图像的生成方法及存储介质
JP2006246974A (ja) リファレンス像表示機能を有する超音波診断装置
US10102638B2 (en) Device and method for image registration, and a nontransitory recording medium
US20210275146A1 (en) Apparatus and method for automatic ultrasound segmentation for visualization and measurement
KR100875620B1 (ko) 초음파 영상 시스템 및 방법
JP2010051615A (ja) 磁気共鳴イメージング装置
JP2021137344A (ja) 医療用画像処理装置、医療用画像処理装置の制御方法、及びプログラム
US11995818B2 (en) Synchronized surface and internal tumor detection
US20220084239A1 (en) Evaluation of an ultrasound-based investigation
US20170061611A1 (en) Image alignment device, method, and program
TW201304737A (zh) 多點定位之輔助透視方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021578195

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021824279

Country of ref document: EP

Effective date: 20211230

NENP Non-entry into the national phase

Ref country code: DE