WO2022073334A1 - 高空作业机器人、控制系统以及控制方法 - Google Patents
高空作业机器人、控制系统以及控制方法 Download PDFInfo
- Publication number
- WO2022073334A1 WO2022073334A1 PCT/CN2021/088781 CN2021088781W WO2022073334A1 WO 2022073334 A1 WO2022073334 A1 WO 2022073334A1 CN 2021088781 W CN2021088781 W CN 2021088781W WO 2022073334 A1 WO2022073334 A1 WO 2022073334A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative pressure
- chassis
- aerial work
- crawler
- work robot
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 26
- 238000004140 cleaning Methods 0.000 claims abstract description 19
- 230000007246 mechanism Effects 0.000 claims abstract description 16
- 230000000903 blocking effect Effects 0.000 claims abstract description 12
- 229920001971 elastomer Polymers 0.000 claims description 12
- 230000001360 synchronised effect Effects 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 4
- 239000000463 material Substances 0.000 abstract description 5
- 238000001179 sorption measurement Methods 0.000 description 10
- 238000004590 computer program Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000011010 flushing procedure Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J5/00—Manipulators mounted on wheels or on carriages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J5/00—Manipulators mounted on wheels or on carriages
- B25J5/005—Manipulators mounted on wheels or on carriages mounted on endless tracks or belts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D57/00—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
- B62D57/02—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
- B62D57/024—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members specially adapted for moving on inclined or vertical surfaces
Definitions
- the invention relates to the field of aerial robots, in particular to an aerial work robot, a control method and a control system.
- aerial work equipment When maintaining or cleaning high-altitude equipment such as glass curtain walls, aerial work equipment is often used.
- the existing aerial work equipment is adsorbed on the vertical metal wall by electromagnet contact, and at the same time uses the crawler to push the machine to move; or uses a multi-leg negative pressure suction cup, which is adsorbed on the vertical wall by suction cup or closed cavity to form negative pressure. Or on the glass wall, while using alternately opening and closing different negative pressure chambers to move the negative pressure foot to move.
- the device is only suitable for the wall surface composed of magnetic materials, electricity is required to maintain the adsorption force, and the electromagnet itself is heavy, resulting in a large self-weight of the device; and the multi-leg suction cup is used. structure, it is necessary to set up multiple walking feet, which not only leads to complex product structure and complicated control strategy, but also the movement mode is intermittent, resulting in slow moving speed and affecting work efficiency.
- the present invention provides an aerial work robot, which at least partially solves the problems existing in the prior art.
- an aerial work robot comprising: a chassis, the chassis has at least two negative pressure chambers, and each negative pressure chamber is acted by an independent negative pressure motor to form a negative pressure environment ; Negative pressure sensor, fixed on the chassis and communicated with the corresponding negative pressure chamber; two sets of crawler running mechanisms, two sets of crawler running mechanisms are installed on both sides of the chassis; cleaning components, cleaning components are arranged at the front end of the chassis and located in Between the two groups of crawler walking mechanisms; the water blocking component is arranged at the rear end of the chassis, and the water blocking component extends along the width direction of the chassis.
- the aerial work robot realizes adsorption on the wall surface to be cleaned through the negative pressure cavity, which can reduce the weight of the aerial work robot and facilitate adsorption.
- the material of the wall surface there is no restriction on the material of the wall surface, and the versatility is better.
- the aerial work robot realizes adsorption on the wall through the negative pressure cavity.
- the movement on the wall surface is realized by the crawler traveling mechanism, the cleaning component can clean the wall surface, and the water blocking component can achieve the function of blocking water, preventing the cleaning water from being left and causing the wall surface to be fouled.
- each negative pressure chamber forms a negative pressure environment through an independent negative pressure motor.
- another negative pressure chamber can provide adsorption force. , to prevent the aerial work robot from falling off the wall, and improve the stability and reliability of the work.
- the aerial work robot further comprises: a rubber scraper, movably arranged on the chassis and located between the cleaning component and the water blocking component; a scraper driving device, connected with the scraper through a transmission structure, the scraper The driving device can drive the scraper to extend from the lower side of the chassis, or make the scraper retract into the chassis.
- the aerial work robot further comprises: a rotating rod, which is rotatably arranged on the upper side of the chassis, an attitude detection sensor is provided between the rotating rod and the chassis, and the rotating rod and the safety cable are connected by a tension detection sensor.
- the crawler traveling mechanism includes: a crawler motor, which is installed on the chassis; a crawler synchronous wheel, which is rotatably arranged on the chassis and is connected to the crawler motor; on the track synchronous wheel.
- the technical solution of the second aspect of the present invention provides a control method for the aerial work robot in any of the technical solutions of the first aspect.
- the control method includes: obtaining a remote control command, and adjusting the speed of the crawler motor according to the remote control command; The pressure in the pressure chamber is adjusted, and the speed of the negative pressure motor is adjusted according to the pressure in the negative pressure chamber.
- the remote control command is obtained, and the speed of the crawler motor is adjusted according to the remote control command, which specifically includes: when the remote control command is turning, determining the turning path, and respectively determining the rotation speed of the two track motors according to the turning path.
- the aerial work robot further includes an LED light and a buzzer
- the control method further includes: acquiring the working state of the aerial work robot; determining the working mode of the LED light and the buzzer according to the working state ; Control the LED lights and the buzzer to work according to the determined working mode.
- the technical solution of the third aspect of the present invention provides a control system for the aerial work robot in any of the technical solutions of the first aspect.
- the command adjusts the speed of the crawler motor; the negative pressure chamber adjustment unit is used to obtain the pressure in the negative pressure chamber and adjust the speed of the negative pressure motor according to the pressure in the negative pressure chamber.
- the crawler track adjustment unit specifically includes: a turning adjustment unit, the turning adjustment unit is used to determine a turning path when the remote control command is turning, and respectively determine the rotational speed of the two crawler motors according to the turning path.
- the aerial work robot further includes an LED light and a buzzer
- the control system further includes: a working state acquisition unit for acquiring the working state of the aerial work robot; a working mode determination unit for According to the working state, the working mode of the LED light and the buzzer is determined; the working mode control unit is used to control the LED light and the buzzer to work according to the determined working mode.
- FIG. 1 is a top view of an aerial work robot according to an embodiment of the present invention.
- FIG. 2 is a side view of an aerial work robot according to an embodiment of the present invention.
- FIG. 3 is a top view of a partial structure of an aerial work robot according to an embodiment of the present invention.
- FIG. 4 is a bottom view of an aerial work robot according to an embodiment of the present invention.
- FIG. 5 is a schematic flowchart of a control method according to an embodiment of the present invention.
- an embodiment of the present invention provides an aerial work robot, including: a chassis 1, the chassis 1 has at least two negative pressure chambers 2, and each negative pressure chamber 2 passes through an independent negative pressure.
- the motor 15 acts to form a negative pressure environment; the negative pressure sensor 16 is fixed on the chassis 1 and communicates with the corresponding negative pressure chamber 2; Two sides; cleaning assembly, the cleaning assembly is arranged at the front end of the chassis 1 and is located between the two groups of crawler traveling mechanisms 3;
- the aerial work robot realizes adsorption on the wall surface to be cleaned through the negative pressure cavity 2, which can reduce the weight of the aerial work robot and facilitate adsorption.
- the material of the wall surface there is no restriction on the material of the wall surface, and the versatility is better.
- the aerial work robot realizes adsorption on the wall surface through the negative pressure chamber 2 .
- the movement on the wall surface is realized by the crawler running mechanism 3, the cleaning component can clean the wall surface, and the water blocking component 4 can realize the function of blocking water, preventing the cleaning water from being left and causing the wall surface to be fouled.
- each negative pressure chamber 2 forms a negative pressure environment through an independent negative pressure motor 15.
- another negative pressure chamber 2. It can provide adsorption force, prevent the aerial work robot from falling off the wall, and improve the stability and reliability of the work.
- the aerial work robot further comprises: a rubber scraper 5, which is movably arranged on the chassis 1 and is located between the cleaning assembly and the water blocking assembly 4; a scraper driving device 6, which is connected with the scraper through a transmission structure Connected, the scraper driving device 6 can drive the scraper to extend from the lower side of the chassis 1 , or make the scraper retract into the chassis 1 .
- the scraper driving device 6 can drive the scraper to protrude from the lower side of the chassis 1, so as to scrape the water stains on the wall surface.
- the scraper driving device 6 can drive the scraper to retract into the chassis 1, so that the scraper can be retracted into the chassis 1, which can reduce the friction between the aerial work robot and the wall, which is convenient for the aerial work robot Go fast.
- the scraper driving device 6 is a motor
- the rubber scraper 5 is slidably arranged on the chassis
- the motor and the rubber scraper 5 are connected by a rack and pinion, and when the motor is forward and reversed, the gear drives the rack in a straight line Reciprocating movement to make the rubber scraper 5 protrude from the lower side of the chassis 1 , or retract the rubber scraper 5 into the chassis 1 .
- the chassis 1 is provided with a through groove, and the rubber scraper is embedded in the through groove and can slide along the through groove, so as to realize the sliding arrangement of the rubber scraper 5 on the chassis 1 .
- the aerial work robot further comprises: a rotating rod 7, which is rotatably arranged on the upper side of the chassis 1, an attitude detection sensor is provided between the rotating rod 7 and the chassis 1, and the rotating rod 7 and the safety cable pass the tension force Check the sensor connection.
- the attitude of the aerial work robot can be detected, so as to facilitate the attitude adjustment of the aerial work robot.
- the attitude sensor is an angle sensor.
- an electrical slip ring 14 is provided at the part where the chassis 1 is connected to the rotating rod 7 , and the electrical slip ring 14 is connected with an external power supply to realize the power supply or charging of the aerial work robot as a whole.
- the electrical slip ring 14 is an existing structure, which will not be repeated here.
- the crawler traveling mechanism 3 includes: a crawler motor 31 installed on the chassis 1; Transmission connection; crawler belt 33, the crawler belt 33 is sleeved on the crawler belt synchronous wheel 32.
- the bottom of the chassis 1 further has a nozzle, which is connected to an external water source through a water pipe, and when flushing is required, the nozzle is turned on to flush the wall surface.
- the nozzle is located between the two crawler running gears 3 and on the front side of the rubber scraper 5 .
- a solenoid valve is provided at the nozzle portion, and when flushing is required, the solenoid valve is opened to enable the nozzle to open; after flushing, the solenoid valve is disconnected and the nozzle is closed.
- a water tank is fixed on the chassis, the water tank is connected with the nozzle through a water pipe, and a micro water pump is arranged between the water tank and the water pipe, so as to realize flushing through the nozzle.
- a micro water pump is arranged between the water tank and the water pipe, so as to realize flushing through the nozzle.
- the outer layer of the crawler belt 33 is an adhesive layer or a polyurethane layer, so as to increase the frictional force between the crawler belt 33 and the wall surface, so as to facilitate the aerial work robot to travel on the wall surface.
- An embodiment of the second aspect of the present invention provides a control method for the aerial work robot in any of the embodiments of the first aspect.
- the control method includes: obtaining a remote control command, and adjusting the rotation speed of the crawler motor 31 according to the remote control command; obtaining The pressure in the negative pressure chamber 2 is adjusted, and the rotational speed of the negative pressure motor 15 is adjusted according to the pressure in the negative pressure chamber 2 .
- the rotational speed of the negative pressure motor 15 can be adjusted according to the pressure in the negative pressure chamber 2 to maintain the pressure of the negative pressure chamber 2 stable and prevent the The aerial work robot fell off.
- the current speed of the negative pressure motor 15 is maintained; when the pressure in the negative pressure chamber 2 decreases, the speed of the negative pressure motor 15 is increased.
- the pressure of the negative pressure chamber 2 can be kept stable when the roughness of the wall surface changes.
- obtaining a remote control command, and adjusting the rotational speed of the crawler motor 31 according to the remote control command specifically includes: when the remote control command is turning, determining a turning path, and respectively determining the rotation speed of the two track motors 31 according to the turning path. Rotating speed.
- the turning path is determined by the required control command, and the rotational speed of the two motors is determined according to the turning path, so as to realize the turning through the differential speed.
- the aerial work robot further includes an LED light and a buzzer
- the control method further includes: acquiring the working state of the aerial work robot; determining the working mode of the LED light and the buzzer according to the working state ; Control the LED lights and the buzzer to work according to the determined working mode.
- the working modes of LED lights and buzzers can be used to indicate different working states of the aerial work robot.
- control method includes: step S102, initializing the hardware module; step S104, loading the saved control parameters; step S106, initializing the control parameters; step S108, obtaining the remote control command, and according to the remote control command The rotational speed of the crawler motor 31 is adjusted.
- the radius determines the rotational speed of the crawler motor 31 . That is, when the aerial work robot turns, the rotational speeds of the two crawler motors 31 are respectively determined according to the required speed and turning radius, so as to realize the turning of the aerial work robot. Meanwhile, when the aerial work robot moves straight forward, the rotational speeds of the two crawler motors 31 are the same.
- step S110 the pressure in the negative pressure chamber 2 is acquired, and the rotational speed of the negative pressure motor 15 is adjusted according to the pressure in the negative pressure chamber 2 .
- the rotational speed of the negative pressure motor 15 is adjusted according to the pressure of the negative pressure chamber 2, so that the rotational speed of the negative pressure motor 15 can be increased when the pressure of the negative pressure chamber 2 increases, so that the pressure in the negative pressure chamber 2 can be stabilized, and the high altitude
- the working robot can adsorb stably and prevent the aerial working robot from falling off.
- the controller controls the opening of the nozzle, and at the same time, the crawler traveling mechanism 3 works, the aerial work robot moves forward, and the wall of the nozzle is washed, and the rubber scraper 5 can scrape the water on the wall to realize the cleaning of the wall. .
- Step S112 obtain the working state of the aerial work robot, and determine the working mode of the LED light and the buzzer according to the working state; Step S114, control the LED light and the buzzer to work according to the determined working mode, so that the user can operate according to the LED light. And the working mode of the buzzer knows the working status of the aerial work robot.
- the nozzle When it is necessary to adjust the posture of the aerial work robot, the nozzle is closed, and the steering is realized by adjusting the rotational speed of the two crawler motors 31. After the posture is readjusted, the aerial work robot moves forward, and the nozzle is opened at the same time. Cleaned up.
- Step S116 download the working parameters of each actuator, and upload the working parameters.
- An embodiment of the third aspect of the present invention provides a control system for the aerial work robot in any embodiment of the first aspect, the control system includes: a crawler belt 33 adjustment unit, the crawler belt 33 adjustment unit is used to obtain remote control instructions, and The speed of the crawler motor 31 is adjusted according to the remote control command; the negative pressure chamber 2 adjustment unit, the negative pressure chamber 2 adjustment unit is used to obtain the pressure in the negative pressure chamber 2 and adjust the speed of the negative pressure motor 15 according to the pressure in the negative pressure chamber 2 .
- the rotational speed of the negative pressure motor 15 can be adjusted according to the pressure in the negative pressure chamber 2 to maintain the pressure of the negative pressure chamber 2 stable and prevent the The aerial work robot fell off.
- the current speed of the negative pressure motor 15 is maintained; when the pressure in the negative pressure chamber 2 decreases, the speed of the negative pressure motor 15 is increased.
- the pressure of the negative pressure chamber 2 can be kept stable when the roughness of the wall surface changes.
- the crawler 33 adjustment unit specifically includes: a turning adjustment unit, which is used to determine a turning path when the remote control command is turning, and respectively determine the rotational speed of the two crawler motors 31 according to the turning path.
- the turning path is determined by the required control command, and the rotational speed of the two motors is determined according to the turning path, so as to realize the turning through the differential speed.
- the aerial work robot further includes an LED light and a buzzer
- the control system further includes: a working state acquisition unit for acquiring the working state of the aerial work robot; a work mode determination unit for According to the working state, the working mode of the LED light and the buzzer is determined; the working mode control unit is used to control the LED light and the buzzer to work according to the determined working mode.
- the working modes of LED lights and buzzers can be used to indicate different working states of the aerial work robot.
- the terms “first”, “second” and “third” are only used for the purpose of description, and cannot be construed as indicating or implying relative importance; the term “multiple” refers to two or two above, unless otherwise expressly defined.
- the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense. For example, “connected” can be a fixed connection, a detachable connection, or an integral connection; “connected” can be It is directly connected or indirectly connected through an intermediary. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific situations.
- embodiments of the present invention may be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
- computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
- These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
- the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
- any reference signs placed between parentheses shall not be construed as limiting the claim.
- the word “comprising” does not exclude the presence of elements or steps not listed in a claim.
- the word “a” or “an” preceding an element does not preclude the presence of a plurality of such elements.
- the invention can be implemented by means of hardware comprising several different components and by means of a suitably programmed computer. In a unit claim enumerating several means, several of these means may be embodied by one and the same item of hardware.
- the use of the words first, second, and third, etc. do not denote any order. These words can be interpreted as names.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Manipulator (AREA)
Abstract
一种高空作业机器人包括:底盘(1),底盘上具有至少两个负压腔(2),各负压腔分别通过独立的负压电机(15)作用,以形成负压环境;负压传感器(16),固设于底盘上且与对应的负压腔连通;两组履带行走机构(3),两组履带行走机构分别安装于底盘的两侧;清洁组件,清洁组件设置在底盘的前端并位于两组履带行走机构之间;挡水组件(4),设于底盘的后端,挡水组件沿底盘的宽度方向延伸。该高空作业机器人通过负压腔实现在待清洁的壁面上的吸附,能够减轻高空作业机器人的重量,便于吸附;同时对壁面的材料没有限制,通用性更好。、控制方法及控制系统。还提供一种用于高空作业机器人的控制方法和一种用于高空作业机器人的控制系统。
Description
本发明涉及高空机器人领域,尤其涉及一种高空作业机器人、一种控制方法以及一种控制系统。
在对玻璃幕墙等高空设备进行维护或清洁时,多会用到高空作业设备。现有高空作业设备通过电磁铁接触方式吸附在垂直的金属壁上,同时使用履带推动机器移动;或者采用多足负压吸盘,采用吸盘或密闭腔体形成负压的吸力方式吸附在垂直的墙壁或者玻璃壁上,同时使用交替开启和关闭不同负压腔移动负压足移动。
但是,在现有技术中,若采用电磁铁吸附方式,则设备只适用于磁性材料构成的壁面,维持吸附力需要电能,且电磁铁本身重量大,导致设备自重较大;而采用多足吸盘结构,则需要设置多个行走足,不仅导致产品结构复杂,控制策略繁复,且移动方式为间歇性,导致移动速度较慢,影响工作效率。
发明内容
有鉴于此,本发明提供一种高空作业机器人,至少部分解决现有技术中存在的问题。
为了实现上述目的,本发明的技术方案提供了一种高空作业机器人,包括:底盘,底盘上具有至少两个负压腔,各负压腔分别通过独立的负压电机作用,以形成负压环境;负压传感器,固设于底盘上且与对应的负压腔连通;两组履带行走机构,两组履带行走机构分别安装于底盘的两侧;清洁组件,清洁组件设置在底盘的前端并位于两组履带行走机构之间;挡水组件,设于底盘的后端,挡水组件沿底盘的宽度方向延伸。
本方案中,高空作业机器人通过负压腔实现在待清洁的壁面上的吸附,能够减轻高空作业机器人的重量,便于吸附。同时,对壁面的材料没有限制,通用性更好。
具体来说,高空作业机器人通过负压腔实现在壁面上的吸附。同时,通过履带行走机构实现在壁面上的移动,清洁组件能够对壁面进行清洁,挡水组件能够实现挡水的作用,防止清洁的水留下导致壁面污损。
还需指出,本方案中负压腔为至少两个,且每个负压腔分别通过独立的负压电机形成负压环境,当单个负压腔失效时,另一个负压腔能够提供吸附力,防止高空作业机器人从壁面上脱落,提高工作的稳定性和可靠性。
在上述技术方案中,优选地,高空作业机器人还包括:橡胶刮板,活动设于底盘上且位于清洁组件与挡水组件之间;刮板驱动装置,与刮板通过传动结构连接,刮板驱动装置能驱动刮板从底盘下侧伸出,或使刮板收回至底盘内。
在上述任一技术方案中,优选地,高空作业机器人还包括:旋转杆,转动设于底盘上侧,旋转杆与底盘之间具有姿态检测传感器,旋转杆与安全缆绳通过拉力检测传感器连接。
在上述任一技术方案中,优选地,履带行走机构包括:履带电机,履带电机安装于底盘上;履带同步轮,履带同步轮转动设于底盘上且与履带电机传动连接;履带,履带套设于履带同步轮上。
本发明第二方面的技术方案提供了一种控制方法,用于第一方面任一技术方案中的高空作业机器人,控制方法包括:获取遥控指令,并根据遥控指令调节履带电机的转速;获取负压腔内的压力,并根据负压腔内的压力调节负压电机的转速。
在上述技术方案中,优选地,获取遥控指令,并根据遥控指令调节履带电机的转速,具体包括:当遥控指令为转弯时,确定转弯路径,并根据转弯路径分别确定两个履带电机的转速。
在上述任一技术方案中,优选地,高空作业机器人还包括LED灯以及蜂鸣器,控制方法还包括:获取高空作业机器人的工作状态;根据工作状态,确定LED灯和蜂鸣器的工作模式;根据确定的工作模式控制LED灯以及蜂 鸣器工作。
本发明第三方面的技术方案提供了一种控制系统,用于第一方面任一技术方案中的高空作业机器人,控制系统包括:履带调节单元,履带调节单元用于获取遥控指令,并根据遥控指令调节履带电机的转速;负压腔调节单元,负压腔调节单元用于获取负压腔内的压力,并根据负压腔内的压力调节负压电机的转速。
在上述技术方案中,优选地,履带调节单元具体包括:转弯调节单元,转弯调节单元用于当遥控指令为转弯时,确定转弯路径,并根据转弯路径分别确定两个履带电机的转速。
在上述任一技术方案中,优选地,高空作业机器人还包括LED灯以及蜂鸣器,控制系统还包括:工作状态获取单元,用于获取高空作业机器人的工作状态;工作模式确定单元,用于根据工作状态,确定LED灯和蜂鸣器的工作模式;工作模式控制单元,用于根据确定的工作模式控制LED灯以及蜂鸣器工作。
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是根据本发明的一个实施例的高空作业机器人的俯视图;
图2是根据本发明的一个实施例的高空作业机器人的侧视图;
图3是根据本发明的一个实施例的高空作业机器人部分结构的俯视图;
图4是根据本发明的一个实施例的高空作业机器人的仰视图;
图5是根据本发明的一个实施例的控制方法的流程示意图。
其中,图1至图5中的附图标记与部件名称之间的对应关系为:
1底盘,2负压腔,3履带行走机构,31履带电机,32履带同步轮,33履带,4挡水组件,41滚刷电机,42滚刷,5橡胶刮板,6刮板驱动装置,7旋转 杆,8外壳,9拉力传感器,10安全线缆连接扣,11主控制盒,12电器滑环,13姿态传感器,14电气滑环,15负压电机,16负压传感器,17环形海绵。
下面结合附图对本发明实施例进行详细描述。
需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合;并且,基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
需要说明的是,下文描述在所附权利要求书的范围内的实施例的各种方面。应显而易见,本文中所描述的方面可体现于广泛多种形式中,且本文中所描述的任何特定结构及/或功能仅为说明性的。基于本公开,所属领域的技术人员应了解,本文中所描述的一个方面可与任何其它方面独立地实施,且可以各种方式组合这些方面中的两者或两者以上。举例来说,可使用本文中所阐述的任何数目个方面来实施设备及/或实践方法。另外,可使用除了本文中所阐述的方面中的一或多者之外的其它结构及/或功能性实施此设备及/或实践此方法。
下面参照图1至图5描述根据本发明的一些实施例。
如图1至图4所示,本发明的实施例提供了一种高空作业机器人,包括:底盘1,底盘1上具有至少两个负压腔2,各负压腔2分别通过独立的负压电机15作用,以形成负压环境;负压传感器16,固设于底盘1上且与对应的负压腔2连通;两组履带行走机构3,两组履带行走机构3分别安装于底盘1的两侧;清洁组件,清洁组件设置在底盘1的前端并位于两组履带行走机构3之间;挡水组件4,设于底盘1的后端,挡水组件4沿底盘1的宽度方向延伸。
本方案中,高空作业机器人通过负压腔2实现在待清洁的壁面上的吸附,能够减轻高空作业机器人的重量,便于吸附。同时,对壁面的材料没有限制,通用性更好。
具体来说,高空作业机器人通过负压腔2实现在壁面上的吸附。同时,通过履带行走机构3实现在壁面上的移动,清洁组件能够对壁面进行清洁,挡水 组件4能够实现挡水的作用,防止清洁的水留下导致壁面污损。
还需指出,本方案中负压腔2为至少两个,且每个负压腔2分别通过独立的负压电机15形成负压环境,当单个负压腔2失效时,另一个负压腔2能够提供吸附力,防止高空作业机器人从壁面上脱落,提高工作的稳定性和可靠性。
在上述实施例中,优选地,高空作业机器人还包括:橡胶刮板5,活动设于底盘1上且位于清洁组件与挡水组件4之间;刮板驱动装置6,与刮板通过传动结构连接,刮板驱动装置6能驱动刮板从底盘1下侧伸出,或使刮板收回至底盘1内。
本方案中,当清洁组件工作时,刮板驱动装置6能驱动刮板从底盘1下侧伸出,从而能将壁面上的水渍刮净。当清洁组件停止工作时,刮板驱动装置6能驱动刮板收回至底盘1内,以使刮板收回至底盘1内,这样能减少高空作业机器人与壁面之间的摩擦力,便于高空作业机器人快速行进。
在一种可能的实施方式中,刮板驱动装置6为电机,橡胶刮板5滑动设置在底盘上,电机与橡胶刮板5通过齿轮齿条连接,电机正反转时,齿轮带动齿条直线往复运动,以使橡胶刮板5从底盘1下侧伸出,或使橡胶刮板5收回至底盘1内。
在一种可能的实施方式中,底盘1上设有通槽,橡胶刮板嵌入通槽内并能沿通槽滑动,以实现橡胶刮板5在底盘1上的滑动设置。
在上述任一实施例中,优选地,高空作业机器人还包括:旋转杆7,转动设于底盘1上侧,旋转杆7与底盘1之间具有姿态检测传感器,旋转杆7与安全缆绳通过拉力检测传感器连接。
本方案中,通过设置姿态传感器,能够检测高空作业机器人的姿态,以便于对高空作业机器人进行姿态调整。
在一种可能的实施方式中,姿态传感器为角度传感器。
进一步地,底盘1与旋转杆7连接的部位设有电气滑环14,电气滑环14与外接电源连接,以实现高空作业机器人整体的供电或充电。
其中,电气滑环14为现有结构,此处不再赘述。
在上述任一实施例中,优选地,履带行走机构3包括:履带电机31,履带电机31安装于底盘1上;履带同步轮32,履带同步轮32转动设于底盘1 上且与履带电机31传动连接;履带33,履带33套设于履带同步轮32上。
在上述任一实施例中,优选地,底盘1的底部还具有喷嘴,喷嘴通过水管与外接水源连接,在需要冲洗时,喷嘴开启,以对壁面进行冲洗。喷嘴位于两个履带行走机构3之间,且位于橡胶刮板5的前侧。
其中,在一种可能的实施方式中,喷嘴部位设置电磁阀,在需要进行冲洗时,电磁阀开启,以使喷嘴开启;在冲洗完毕后,电磁阀断开,喷嘴关闭。
在一种可替换的实施方式中,底盘上固设有水箱,水箱通过水管与喷嘴连接,水箱与水管之间具有微型水泵,以通过喷嘴实现冲洗。本方案中不必外接水源,适用性更好,高空作业机器人能进行大范围移动。
在一种可能的实施方式中,履带33的外层为胶层或聚氨酯层,以能增大履带33与壁面之间的摩擦力,便于高空作业机器人在壁面上行进。
本发明第二方面的实施例提供了一种控制方法,用于第一方面任一实施例中的高空作业机器人,控制方法包括:获取遥控指令,并根据遥控指令调节履带电机31的转速;获取负压腔2内的压力,并根据负压腔2内的压力调节负压电机15的转速。
本方案中,在高空作业机器人运动的过程中,当负压腔2内的压力波动时,能够根据负压腔2内的压力调节负压电机15转速,以维持负压腔2压力稳定,防止高空作业机器人脱落。
具体来说,当负压腔2压力在预设范围内时,维持负压电机15当前转速;当负压腔2内的压力降低,则提高负压电机15的转速。
通过本方案,能在壁面的粗糙度变化时维持负压腔2压力稳定。
在上述实施例中,优选地,获取遥控指令,并根据遥控指令调节履带电机31的转速,具体包括:当遥控指令为转弯时,确定转弯路径,并根据转弯路径分别确定两个履带电机31的转速。
本方案中,获取遥控指令后,通过要要控制指令确定转弯路径,并根据转弯路径确定两个电机的转速,以通过差速实现转弯。
在上述任一实施例中,优选地,高空作业机器人还包括LED灯以及蜂鸣器,控制方法还包括:获取高空作业机器人的工作状态;根据工作状态,确定LED灯和蜂鸣器的工作模式;根据确定的工作模式控制LED灯以及蜂鸣器工作。
本方案中,能利用LED灯和蜂鸣器的工作模式指示高空作业机器人的不同工作状态。
参照图5,在一种具体实施方式中,控制方法包括:步骤S102,初始化硬件模块;步骤S104,加载保存的控制参数;步骤S106,初始化控制参数;步骤S108,获取遥控指令,并根据遥控指令调节履带电机31的转速。
具体来说,获取遥控指令,进而确定高空作业机器人的目标姿态;根据姿态传感器确定高空作业机器人的当前姿态;随后根据当前姿态以及目标姿态确定所需航速和转向半径,最后根据所需航速和转向半径确定履带电机31的转速。即当高空作业机器人转向时,根据所需航速和转向半径,分别确定两个履带电机31的转速,以实现高空作业机器人的转向。同时,当高空作业机器人直线前进时,两个履带电机31的转速相同。
步骤S110,获取负压腔2内的压力,并根据负压腔2内的压力调节负压电机15的转速。
具体来说,在高空作业机器人移动的过程中,壁面的粗糙度会变化,进而影响负压腔2的密封。此时根据负压腔2的压力调节负压电机15的转速,以能在负压腔2的压力增大时增大负压电机15的转速,使负压腔2内压力稳定,进而使高空作业机器人能稳定吸附,防止高空作业机器人脱落。
在进行清洁时,控制器控制喷嘴开启,同时履带行走机构3工作,高空作业机器人向前移动,喷嘴壁面进行冲洗,同时橡胶刮板5能将壁面上的水刮净,以实现对壁面的清洁。
步骤S112,获取高空作业机器人的工作状态,根据工作状态,确定LED灯和蜂鸣器的工作模式;步骤S114,根据确定的工作模式控制LED灯以及蜂鸣器工作,从而能使用户根据LED灯以及蜂鸣器的工作模式知晓高空作业机器人的工作状态。
当需要调整高空作业机器人的姿态时,喷嘴关闭,通过调整两个履带电机31的转速实现转向,重新调整好姿态后,高空作业机器人向前运动,同时喷嘴开启,以此循环,直至将整体壁面清洁完毕。
步骤S116,下载各个执行器的工作参数,并上传工作参数。
本发明第三方面的实施例提供了一种控制系统,用于第一方面任一实施例中的高空作业机器人,控制系统包括:履带33调节单元,履带33调节单 元用于获取遥控指令,并根据遥控指令调节履带电机31的转速;负压腔2调节单元,负压腔2调节单元用于获取负压腔2内的压力,并根据负压腔2内的压力调节负压电机15的转速。
本方案中,在高空作业机器人运动的过程中,当负压腔2内的压力波动时,能够根据负压腔2内的压力调节负压电机15转速,以维持负压腔2压力稳定,防止高空作业机器人脱落。
具体来说,当负压腔2压力在预设范围内时,维持负压电机15当前转速;当负压腔2内的压力降低,则提高负压电机15的转速。
通过本方案,能在壁面的粗糙度变化时维持负压腔2压力稳定。
在上述实施例中,优选地,履带33调节单元具体包括:转弯调节单元,转弯调节单元用于当遥控指令为转弯时,确定转弯路径,并根据转弯路径分别确定两个履带电机31的转速。
本方案中,获取遥控指令后,通过要要控制指令确定转弯路径,并根据转弯路径确定两个电机的转速,以通过差速实现转弯。
在上述任一实施例中,优选地,高空作业机器人还包括LED灯以及蜂鸣器,控制系统还包括:工作状态获取单元,用于获取高空作业机器人的工作状态;工作模式确定单元,用于根据工作状态,确定LED灯和蜂鸣器的工作模式;工作模式控制单元,用于根据确定的工作模式控制LED灯以及蜂鸣器工作。
本方案中,能利用LED灯和蜂鸣器的工作模式指示高空作业机器人的不同工作状态。
在本发明中,术语“第一”、“第二”、“第三”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
本发明的描述中,需要理解的是,术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或单元必须具有特定的方 向、以特定的方位构造和操作,因此,不能理解为对本发明的限制。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个 流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
应当注意的是,在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的部件或步骤。位于部件之前的单词“一”或“一个”不排除存在多个这样的部件。本发明可以借助于包括有若干不同部件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
Claims (10)
- 一种高空作业机器人,其特征在于,包括:底盘,所述底盘上具有至少两个负压腔,各所述负压腔分别通过独立的负压电机作用,以形成负压环境;负压传感器,固设于所述底盘上且与对应的所述负压腔连通;两组履带行走机构,两组所述履带行走机构分别安装于所述底盘的两侧;清洁组件,所述清洁组件设置在所述底盘的前端并位于两组所述履带行走机构之间;挡水组件,设于所述底盘的后端,所述挡水组件沿所述底盘的宽度方向延伸。
- 根据权利要求1所述的高空作业机器人,其特征在于,还包括:橡胶刮板,活动设于所述底盘上且位于所述清洁组件与所述挡水组件之间;刮板驱动装置,与所述刮板通过传动结构连接,所述刮板驱动装置能驱动所述刮板从所述底盘下侧伸出,或使所述刮板收回至所述底盘内。
- 根据权利要求1所述的高空作业机器人,其特征在于,还包括:旋转杆,转动设于所述底盘上侧,所述旋转杆与所述底盘之间具有姿态检测传感器,所述旋转杆与安全缆绳通过拉力检测传感器连接。
- 根据权利要求1至3中任一项所述的高空作业机器人,其特征在于,所述履带行走机构包括:履带电机,所述履带电机安装于所述底盘上;履带同步轮,所述履带同步轮转动设于所述底盘上且与所述履带电机传动连接;履带,所述履带套设于所述履带同步轮上。
- 一种控制方法,用于如权利要求1至4中任一项所述的高空作业机器人,其特征在于,包括:获取遥控指令,并根据所述遥控指令调节履带电机的转速;获取负压腔内的压力,并根据所述负压腔内的压力调节负压电机的转速。
- 根据权利要求5所述的控制方法,其特征在于,所述获取遥控指令,并根据所述遥控指令调节所述履带电机的转速,具体包括:当所述遥控指令为转弯时,确定转弯路径,并根据转弯路径分别确定两 个所述履带电机的转速。
- 根据权利要求5所述的控制方法,其特征在于,高空作业机器人还包括LED灯以及蜂鸣器,所述控制方法还包括:获取高空作业机器人的工作状态;根据所述工作状态,确定所述LED灯和所述蜂鸣器的工作模式;根据确定的所述工作模式控制所述LED灯以及所述蜂鸣器工作。
- 一种控制系统,用于如权利要求1至4中任一项所述的高空作业机器人,其特征在于,包括:履带调节单元,所述履带调节单元用于获取遥控指令,并根据所述遥控指令调节所述履带电机的转速;负压腔调节单元,所述负压腔调节单元用于获取负压腔内的压力,并根据所述负压腔内的压力调节负压电机的转速。
- 根据权利要求8所述的控制系统,其特征在于,所述履带调节单元具体包括:转弯调节单元,所述转弯调节单元用于当所述遥控指令为转弯时,确定转弯路径,并根据转弯路径分别确定两个所述履带电机的转速。
- 根据权利要求8所述的控制系统,其特征在于,高空作业机器人还包括LED灯以及蜂鸣器,所述控制系统还包括:工作状态获取单元,用于获取高空作业机器人的工作状态;工作模式确定单元,用于根据所述工作状态,确定所述LED灯和所述蜂鸣器的工作模式;工作模式控制单元,用于根据确定的所述工作模式控制所述LED灯以及所述蜂鸣器工作。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011076085.3 | 2020-10-10 | ||
CN202011076085.3A CN112123316A (zh) | 2020-10-10 | 2020-10-10 | 高空作业机器人、控制系统以及控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022073334A1 true WO2022073334A1 (zh) | 2022-04-14 |
Family
ID=73844080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/088781 WO2022073334A1 (zh) | 2020-10-10 | 2021-04-21 | 高空作业机器人、控制系统以及控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112123316A (zh) |
WO (1) | WO2022073334A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115402438A (zh) * | 2022-09-15 | 2022-11-29 | 哈尔滨工业大学重庆研究院 | 一种自调控吸附式飞行机器人及其吸附方法 |
CN115402439A (zh) * | 2022-09-15 | 2022-11-29 | 哈尔滨工业大学重庆研究院 | 一种l形吸附式飞行机器人及其吸附方法 |
CN119036516A (zh) * | 2024-06-07 | 2024-11-29 | 华田智能机器人(南通)有限公司 | 一种自适应机器人 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112123316A (zh) * | 2020-10-10 | 2020-12-25 | 北京黑蚁兄弟科技有限公司 | 高空作业机器人、控制系统以及控制方法 |
CN115336939B (zh) * | 2022-09-21 | 2024-09-10 | 北京史河科技有限公司 | 一种多腔负压吸附幕墙清洗机器人 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0710188B1 (en) * | 1993-05-18 | 2001-10-24 | ARVI Inc | Robotic apparatus |
CN101863025A (zh) * | 2010-04-15 | 2010-10-20 | 上海应用技术学院 | 爬壁机器人 |
CN103832500A (zh) * | 2012-11-22 | 2014-06-04 | 上海市闵行区知识产权保护协会 | 一种机器壁虎 |
CN108991982A (zh) * | 2017-11-24 | 2018-12-14 | 北京黑蚁兄弟科技有限公司 | 一种刮条升降机构 |
CN110151072A (zh) * | 2019-06-24 | 2019-08-23 | 广西科技大学 | 一种鼓风式履带清洁机器人 |
CN112123316A (zh) * | 2020-10-10 | 2020-12-25 | 北京黑蚁兄弟科技有限公司 | 高空作业机器人、控制系统以及控制方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2512557Y (zh) * | 2001-12-28 | 2002-09-25 | 吴志明 | 履带式多吸盘爬壁机器人 |
KR101222869B1 (ko) * | 2010-12-31 | 2013-01-16 | 박일우 | 인형극을 위한 로봇 장치 |
CN103802905A (zh) * | 2012-11-07 | 2014-05-21 | 王也 | 多腔体螃蟹式负压爬壁机器人 |
CN106218745A (zh) * | 2016-08-30 | 2016-12-14 | 湖南千智机器人科技发展有限公司 | 一种负压型爬壁机器人的负压自适应调节装置 |
CN108523785B (zh) * | 2018-04-13 | 2020-12-18 | 常州工学院 | 一种气动玻璃幕墙清洗机器人 |
CN213471175U (zh) * | 2020-10-10 | 2021-06-18 | 北京黑蚁兄弟科技有限公司 | 高空作业机器人和控制系统 |
-
2020
- 2020-10-10 CN CN202011076085.3A patent/CN112123316A/zh active Pending
-
2021
- 2021-04-21 WO PCT/CN2021/088781 patent/WO2022073334A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0710188B1 (en) * | 1993-05-18 | 2001-10-24 | ARVI Inc | Robotic apparatus |
CN101863025A (zh) * | 2010-04-15 | 2010-10-20 | 上海应用技术学院 | 爬壁机器人 |
CN103832500A (zh) * | 2012-11-22 | 2014-06-04 | 上海市闵行区知识产权保护协会 | 一种机器壁虎 |
CN108991982A (zh) * | 2017-11-24 | 2018-12-14 | 北京黑蚁兄弟科技有限公司 | 一种刮条升降机构 |
CN110151072A (zh) * | 2019-06-24 | 2019-08-23 | 广西科技大学 | 一种鼓风式履带清洁机器人 |
CN112123316A (zh) * | 2020-10-10 | 2020-12-25 | 北京黑蚁兄弟科技有限公司 | 高空作业机器人、控制系统以及控制方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115402438A (zh) * | 2022-09-15 | 2022-11-29 | 哈尔滨工业大学重庆研究院 | 一种自调控吸附式飞行机器人及其吸附方法 |
CN115402439A (zh) * | 2022-09-15 | 2022-11-29 | 哈尔滨工业大学重庆研究院 | 一种l形吸附式飞行机器人及其吸附方法 |
CN119036516A (zh) * | 2024-06-07 | 2024-11-29 | 华田智能机器人(南通)有限公司 | 一种自适应机器人 |
Also Published As
Publication number | Publication date |
---|---|
CN112123316A (zh) | 2020-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022073334A1 (zh) | 高空作业机器人、控制系统以及控制方法 | |
CN105730173B (zh) | 一种水陆空墙壁四栖机器人 | |
RU2397690C1 (ru) | Пылесос с возможностью автоматического перемещения и контроля положения и способ управления пылесосом | |
CN105667779B (zh) | 可栖息于不同倾角墙壁的智能飞行机器人 | |
CN109528068B (zh) | 一种玻璃清洁机器人 | |
US20250188761A1 (en) | Pool cleaner with drive motor navigation capabilities | |
CN206537386U (zh) | 可调整步幅的吸盘式爬壁机器人 | |
CN110039509B (zh) | 一种智能家庭机器人及其方法 | |
CN205553833U (zh) | 一种水陆空墙壁四栖机器人 | |
JP2017038873A (ja) | 走行装置 | |
CN216907760U (zh) | 清洗机器人 | |
CN108253227B (zh) | 一种应用于水库涵管的管道机器人 | |
US11713635B2 (en) | Mobility platform for efficient downhole navigation of robotic device | |
CN110871857A (zh) | 一种可自主上壁的飞行爬壁机器人及其使用方法 | |
KR102073828B1 (ko) | 등반 로봇 및 이를 이용한 등반 방법 | |
CN112315389A (zh) | 一种玻璃幕墙清洁机器人 | |
JP2006524155A (ja) | 端面、特にガラス端面用の自動登り走行機構 | |
Choi et al. | Windoro: The world's first commercialized window cleaning robot for domestic use | |
CN218112821U (zh) | 一种爬壁结构及其爬壁机器人 | |
CN213471175U (zh) | 高空作业机器人和控制系统 | |
CN117060839A (zh) | 光伏机器人的控制方法 | |
JP6517536B2 (ja) | クローラ走行装置 | |
KR20220044316A (ko) | 로봇 청소기 | |
CN102825988B (zh) | 一种两栖移动机器人平台 | |
CN213963245U (zh) | 一种玻璃幕墙清洁机器人 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21876857 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21876857 Country of ref document: EP Kind code of ref document: A1 |