WO2022073275A1 - 一种门冬胰岛素30混悬液的制备方法 - Google Patents

一种门冬胰岛素30混悬液的制备方法 Download PDF

Info

Publication number
WO2022073275A1
WO2022073275A1 PCT/CN2020/126395 CN2020126395W WO2022073275A1 WO 2022073275 A1 WO2022073275 A1 WO 2022073275A1 CN 2020126395 W CN2020126395 W CN 2020126395W WO 2022073275 A1 WO2022073275 A1 WO 2022073275A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulin aspart
suspension
solution
insulin
stirring
Prior art date
Application number
PCT/CN2020/126395
Other languages
English (en)
French (fr)
Inventor
王玮
贡光杰
陈松
张昊宁
Original Assignee
南京汉欣医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京汉欣医药科技有限公司 filed Critical 南京汉欣医药科技有限公司
Publication of WO2022073275A1 publication Critical patent/WO2022073275A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/28Insulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics

Definitions

  • the invention belongs to the field of pharmaceutical preparations, and in particular relates to a preparation method of insulin aspart 30 suspension.
  • Diabetes mellitus is a common metabolic disease. According to information released by the International Diabetes Federation (IDF) in 2014, the number of people with diabetes in the world has exceeded 387 million and is expected to exceed 592 million by 2035. Clinically, diabetes can be mainly divided into type I diabetes (Type I diabetes mellitus, T1DM) and type II diabetes (Type II diabetes mellitus, T2DM). Insulin is the only hormone that can lower blood sugar in the body. When the islet beta cells in the body are damaged and insulin in the body is insufficient to regulate blood sugar, exogenous insulin needs to be supplemented. Exogenous insulin mainly includes animal insulin, recombinant human insulin and insulin analogs.
  • Insulin aspart is a new type of insulin analog. Its structural features and advantages are that the 28th position of the human insulin B chain is changed to aspartic acid by genetic engineering, resulting in the ability to polymerize insulin monomers. It is beneficial to the rapid dissociation of the hexameric complex, thereby accelerating the onset time. But this is different from normal physiological insulin secretion. Normal physiological insulin includes postprandial insulin and basal insulin. There will be a peak of insulin secretion after a meal, while insulin is in a relatively flat range at other times.
  • the slow-release agent protamine sulfate was added to the formulation of insulin aspart injection, and a suspension of insulin aspart 30 was developed, which was composed of part of soluble fast-acting insulin and part of it combined with long-acting protamine.
  • the composition of crystalline insulin aspart is basically consistent with human physiological insulin secretion.
  • Patent application CN101035557A discloses a preparation method of a pharmaceutical preparation comprising crystalline insulin aspart and dissolved insulin aspart, by mixing an acidic insulin aspart protamine solution with an alkaline buffer solution to form a suspension, and then allowing to stand crystals form.
  • the crystallization method disclosed in this patent is obtained by standing, but the technical characteristics of crystallization temperature, crystallization time, and crystallization pH value are not specified.
  • the patent does not specify the crystal form of protamine zinc insulin and how to prepare it to obtain pellets. uniform diameter crystals and other related information.
  • Patent CN1198643C discloses the preparation method of protamine insulin aspart liquid preparation, by adding alkaline buffer solution to acidic insulin aspart protamine solution to form a suspension, and then placed at 28 °C ⁇ 32 °C temperature, 2 days. ⁇ 6 days for crystals to form.
  • the temperature is relatively high and the standing time is long, which is not conducive to large-scale industrial production.
  • Insulin aspart is a protein drug, which tends to agglomerate under the action of long-term heat and physical and mechanical stress, which increases the polymer protein impurities and reduces the biological activity.
  • the effect of physical and mechanical stress makes the formed crystals easily broken. Therefore, the crystallization in the prior art is for standing crystallization, and long-time stirring crystallization is not used.
  • the standing crystallization time is long, the process energy consumption is large, and undesired impurities will be brought to the preparation. Therefore, there is an urgent need to find a new preparation preparation process that satisfies suitable temperature at the same time, short standing time, low process energy consumption, good crystallinity of the obtained product, uniform particle size and few impurities.
  • the object of the present invention is to provide a new kind of product which can satisfy the suitable temperature and the crystallization time is short, the process energy consumption is small, the obtained product has good crystallinity, uniform particle size and few impurities. Preparation process of insulin aspart 30 suspension.
  • a preparation method of insulin aspart 30 suspension comprising the following steps:
  • the stirring paddles used in the stirring process are paddles with small shear force, including anchor paddles, propellers, frame paddles, and the like.
  • the stirring speed of the stirring paddle is controlled at 40-80 rpm, preferably 50-60 rpm.
  • the crystallization temperature is controlled at 22-25°C.
  • the crystallization time is controlled within 12-18h.
  • the pH of the mixed solution after the solution A is mixed with the solution B is controlled at 7.2-7.4.
  • the formulation of the insulin aspart 30 suspension is any known formulation disclosed in the prior art.
  • step (1) the mass ratio of disodium hydrogen phosphate dihydrate, sodium chloride, glycerol, phenol and m-cresol is 1.25:0.88:8:0.75:1.72.
  • step (2) the mass ratio of insulin aspart, protamine sulfate, zinc chloride, glycerol, and phenol is 3.5:0.32:0.0196:8:0.75.
  • the mass ratio of glycerol in the above step (1) to the glycerol in the step (2) can also be 1:3 to 3:1; the mass ratio of the phenol in the step (1) to the phenol in the step (2) The ratio may also be 1:3 to 3:1.
  • step (i) the mass ratio of disodium hydrogen phosphate dihydrate, sodium chloride, glycerol, and phenol is 1.25:0.88:4:0.6.
  • step (ii) the mass ratio of insulin aspart, protamine sulfate, zinc chloride, glycerol, and phenol is 3.5:0.32:0.0196:4:0.6.
  • step (iv) the mass ratio of glycerol, phenol and m-cresol is 8:0.3:1.72.
  • the mass ratio of the glycerol in the above step (i) to the glycerol in the step (ii) and the glycerol in the step (iii) can also be (1 ⁇ 3):(1 ⁇ 3):2; the above steps
  • the mass ratio of the phenol in (i) to the phenol in the step (ii) and the phenol in the step (iii) can also be (1-2):(1-2):(1-3).
  • the present invention also provides the application of the above preparation method in the preparation of a medicine for treating diabetes.
  • the invention utilizes the action of insulin aspart and protamine sulfate to form crystals to form a suspension of insulin aspart 30, which is basically consistent with human physiological insulin secretion.
  • the present invention has the following advantages:
  • the crystallization temperature is lower, the crystallization time is short, the crystallization time can be shortened to 10-24h, and the process energy consumption is small; and the prepared insulin aspart 30 suspension
  • the liquid impurity content is small, which improves the safety of medication.
  • the insulin aspart 30 suspension prepared by the present invention has simple process and high repeatability, and is suitable for large-scale industrial production.
  • FIG. 1 Crystallographic diagram of the insulin aspart 30 suspension prepared in Example 1.
  • FIG. 2 Crystallographic diagram of the insulin aspart 30 suspension prepared in Example 2.
  • FIG. 3 is a crystal diagram of the insulin aspart 30 suspension prepared in Example 3.
  • FIG. 3 is a crystal diagram of the insulin aspart 30 suspension prepared in Example 3.
  • FIG. 4 Crystallographic diagram of the insulin aspart 30 suspension prepared in Example 4.
  • FIG. 5 Crystallographic diagram of the insulin aspart 30 suspension prepared in Example 5.
  • FIG. 1 Crystallographic diagram of the insulin aspart 30 suspension prepared in Example 6.
  • FIG. 7 is a crystal diagram of the insulin aspart 30 suspension prepared by method 1 of Comparative Example 1.
  • FIG. 7 is a crystal diagram of the insulin aspart 30 suspension prepared by method 1 of Comparative Example 1.
  • FIG. 8 is a crystal diagram of the insulin aspart 30 suspension prepared by method 2 of Comparative Example 1.
  • FIG. 8 is a crystal diagram of the insulin aspart 30 suspension prepared by method 2 of Comparative Example 1.
  • FIG. 9 is a crystallization diagram of the insulin aspart 30 suspension prepared by method 3 of Comparative Example 1.
  • FIG. 9 is a crystallization diagram of the insulin aspart 30 suspension prepared by method 3 of Comparative Example 1.
  • FIG. 10 is an HPLC chromatogram of the related substances in the insulin aspart 30 suspension prepared in Example 1 for determination.
  • FIG. 11 is an HPLC chromatogram of the related substances in the insulin aspart 30 suspension prepared in Example 2 for determination.
  • FIG. 12 is an HPLC chromatogram of the related substances in the insulin aspart 30 suspension prepared in Example 3 for determination.
  • FIG. 13 is an HPLC chromatogram of the related substances in the insulin aspart 30 suspension prepared in Example 4 for determination.
  • FIG. 14 is an HPLC chromatogram of the related substances in the insulin aspart 30 suspension prepared in Example 5 for determination.
  • FIG. 15 is an HPLC chromatogram of the related substances in the insulin aspart 30 suspension prepared in Example 6 for determination.
  • FIG. 16 is an HPLC chromatogram of the determination of related substances in the insulin aspart 30 suspension prepared by method 1 of Comparative Example 1.
  • FIG. 16 is an HPLC chromatogram of the determination of related substances in the insulin aspart 30 suspension prepared by method 1 of Comparative Example 1.
  • Fig. 17 HPLC chromatogram of determination of related substances in the insulin aspart 30 suspension prepared by method 2 of Comparative Example 1.
  • FIG. 19 is an HPLC chromatogram of the determination of high molecular weight proteins in the insulin aspart 30 suspension prepared in Example 1.
  • FIG. 19 is an HPLC chromatogram of the determination of high molecular weight proteins in the insulin aspart 30 suspension prepared in Example 1.
  • FIG. 20 is an HPLC chromatogram of the determination of high molecular weight proteins in the insulin aspart 30 suspension prepared in Example 2.
  • FIG. 20 is an HPLC chromatogram of the determination of high molecular weight proteins in the insulin aspart 30 suspension prepared in Example 2.
  • FIG. 21 is an HPLC chromatogram of the determination of high molecular weight proteins in the insulin aspart 30 suspension prepared in Example 3.
  • FIG. 21 is an HPLC chromatogram of the determination of high molecular weight proteins in the insulin aspart 30 suspension prepared in Example 3.
  • FIG. 22 is an HPLC chromatogram of the determination of high molecular weight proteins in the insulin aspart 30 suspension prepared in Example 4.
  • FIG. 22 is an HPLC chromatogram of the determination of high molecular weight proteins in the insulin aspart 30 suspension prepared in Example 4.
  • FIG. 24 is an HPLC chromatogram of the determination of high molecular weight proteins in the insulin aspart 30 suspension prepared in Example 6.
  • FIG. 24 is an HPLC chromatogram of the determination of high molecular weight proteins in the insulin aspart 30 suspension prepared in Example 6.
  • FIG. 25 is an HPLC chromatogram of the determination of high molecular weight proteins in the insulin aspart 30 suspension prepared by method 1 of Comparative Example 1.
  • FIG. 25 is an HPLC chromatogram of the determination of high molecular weight proteins in the insulin aspart 30 suspension prepared by method 1 of Comparative Example 1.
  • FIG. 26 is an HPLC chromatogram for the determination of high molecular weight proteins in the insulin aspart 30 suspension prepared in Comparative Example 1 and Method 2.
  • FIG. 26 is an HPLC chromatogram for the determination of high molecular weight proteins in the insulin aspart 30 suspension prepared in Comparative Example 1 and Method 2.
  • Fig. 27 HPLC chromatogram of determination of high molecular weight protein in insulin aspart 30 suspension prepared by method 3 of Comparative Example 1.
  • Figure 28 Crystallographic diagram of the prepared insulin aspart 30 suspension when the stirring speed is greater than 80 rpm.
  • Prescription ingredients prescription content insulin aspart 35g glycerin 160g phenol 15g m-cresol 17.2g Zinc chloride 0.196g Sodium chloride 8.8g Disodium hydrogen phosphate dihydrate 12.5g Protamine Sulfate 3.2g
  • the above-mentioned suspension comprising the crystal is supplemented with water for injection to 10L; in the gained protamine zinc insulin aspart product, the soluble insulin content in the finished product is determined by high performance liquid chromatography as known, the dissolved insulin aspart and the crystal The weight ratio of insulin aspart is 30:70, which means that the insulin aspart 30 suspension is prepared.
  • the above-mentioned suspension comprising the crystal is supplemented with water for injection to 10L; in the gained protamine zinc insulin aspart product, it can be known that the weight ratio of the dissolved insulin aspart and the crystallized insulin aspart is 30: 70, which means that the insulin aspart 30 suspension is prepared.
  • the above-mentioned suspension comprising the crystal is supplemented with water for injection to 10L; in the gained protamine zinc insulin aspart product, it can be known that the weight ratio of the dissolved insulin aspart and the crystallized insulin aspart is 30: 70, which means that the insulin aspart 30 suspension is prepared.
  • Examples 3 to 6 show that by controlling key parameters such as appropriate stirring speed, crystallization temperature and crystallization time, rod-shaped crystals with uniform and stable particle size can be obtained in a short time.
  • the crystal diagrams of the insulin aspart 30 suspensions are shown in Figures 3-6. It can be seen that rod-shaped crystals were obtained in both suspensions, and the crystals were uniform in size with the naked eye.
  • the particle size of the products obtained in Examples 1-6 and Comparative Examples 1-3 was detected by using a new Patek laser particle size detector HELOS.
  • Table 2 Crystal morphology and particle size comparison table of suspensions prepared from Examples 1 to 6 and Comparative Example 1
  • the methods of Examples 1-6 can all form good rod-shaped crystals, and the obtained rod-shaped crystals are more stable in structure than needle-shaped crystals and are not easily broken;
  • the proportion of particle size, and the fluctuation range of the average particle size between different batches does not exceed 5%, indicating that the preparation method of the present invention is stable.
  • the preparation method provided by the present invention can obtain a crystal form with a uniform and stable particle size in a short time, which improves the stability of the preparation.
  • the preparation method provided by the present invention can reduce the impurities of the insulin aspart suspension, thereby improving the drug safety.
  • Table 4 Comparison table of high molecular weight proteins in suspensions prepared in Examples 1 to 6 and Example 1
  • the high molecular weight proteins of Examples 1-6 are equivalent to the Comparative Example Method 2, indicating that our preparation conditions, especially under the condition of 15-25 ° C, select low-shear stirring paddles, relatively no stirring paddles are used.
  • the static crystallization method of normal temperature combined with low temperature does not increase the content of high molecular weight protein, and the crystallization time is obviously shortened; the relevant substances and high molecular impurities in Examples 1-6 are smaller than the preparations prepared by Comparative Examples 1 and 3, indicating that we Compared with the static crystallization method at 25°C for 30h or the static crystallization method with a temperature as high as 30°C, the content of high molecular weight protein is obviously reduced. . Therefore, the preparation method provided by the present invention can reduce the high molecular weight protein content of the insulin aspart suspension, thereby improving the safety of medication.
  • Example 1-6 The products obtained in Example 1-6 are relatively stable when placed at 2-8 ° C for 1-3 months, and the impurities do not change much.
  • the specific storage stability is shown in Table 5 below:
  • the present invention found that when the stirring speed is greater than 80 rpm, the crystallization effect is poor, and the crystals are mostly fine crystals, as shown in Figure 28; Crystals were formed with poor crystal uniformity, as shown in FIG. 29 .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Diabetes (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Endocrinology (AREA)
  • Emergency Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Dispersion Chemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种门冬胰岛素30混悬液的制备方法,属于药物制剂领域。本发明利用剪切力较小的搅拌桨对门冬胰岛素的处方组成的混合物进行低速搅拌替代现有的静置结晶的方法,如锚式桨、螺旋桨、框式桨等,搅拌速度为40-80rpm、搅拌时间为12-18h,最终制备形成兼具速效与长效的门冬胰岛素30混悬液。

Description

一种门冬胰岛素30混悬液的制备方法 技术领域
本发明属于药物制剂领域,具体涉及一种门冬胰岛素30混悬液的制备方法。
背景技术
糖尿病(Diabetes mellitus,DM)是一种常见的代谢性疾病。根据国际糖尿病联合会(IDF)于2014年发布的信息,目前全球糖尿病人数已超过3.87亿人,预计到2035年将会超过5.92亿人。临床上,将糖尿病主要可分为I型糖尿病(Type I diabetes mellitus,T1DM)和II型糖尿病(Type II diabetes mellitus,T2DM)。胰岛素是唯一可降低体内血糖的激素,当机体内胰岛β细胞损伤,体内胰岛素不足以起到调控血糖时,就需要补充外源性胰岛素。外源性胰岛素主要有动物胰岛素、重组人胰岛素以及胰岛素类似物。动物胰岛素由于原料来源受限,临床应用易发生交叉免疫反应;重组人胰岛素生产技术虽然成熟,但起效时间长,体内半衰期短,病人依从性较差。为了提高病人依从性,主要从药代动力学角度对人胰岛素结构进行修饰,研制出胰岛素类似物:①提高胰岛素半衰期,主要包括已上市的甘精胰岛素、地特胰岛素等;②加快起效时间,主要包括已上市的门冬胰岛素、赖脯胰岛素。
门冬胰岛素(Insulin aspart),是一种新型胰岛素类似物,其结构特点及优势是通过基因工程手段将人胰岛素B链第28位脯氨酸改为天门冬氨酸,导致胰岛素单体聚合能力下降,有利于六聚体复合物快速解离,从而加快起效时间。但这与正常的生理性胰岛素分泌是不同的,正常生理性胰岛素包括餐后胰岛素和基础胰岛素,在餐后会出现胰岛素分泌的高峰,而其他时间段胰岛素处于相对平缓的范围内。为了模拟生理性胰岛素的分泌,在门冬胰岛素注射液处方中加入缓释剂硫酸鱼精蛋白,研制成门冬胰岛素30混悬液,即由部分可溶性速效胰岛素和部分与长效鱼精蛋白共结晶的门冬胰岛素组成,与人生理性胰岛素分泌基本相一致。
现阶段关于胰岛素混悬液的制备专利主要包括以下内容:
专利申请CN101035557A公开了一种包含结晶的门冬胰岛素和溶解的门冬胰岛素的药物制剂的制备方法,通过将酸性门冬胰岛素鱼精蛋白溶液与碱性的缓冲溶液混合形成悬浮液,然后静置形成结晶。该专利公开的结晶方法是通过静置得到的,但是并未明确结晶的温度、结晶时间、结晶pH值各个技术特征,同时该专利并未明确鱼精蛋白锌胰岛素晶体形态及如何制备才能得到粒径均一的晶体等相关信息。
专利申请US5547930A公开的处方中没有添加氯化钠溶液,公开的结晶方法是先在20℃放置24h,然后在4℃静置6天才能实现完全结晶。同时该专利公开通过常规的制备方法,需要一周左右时间才能实现完全结晶,耗时非常长。
专利CN1198643C公开了精蛋白门冬胰岛素液体制剂的制备方法,通过将碱性的缓冲溶液加入到酸性门冬胰岛素鱼精蛋白溶液中形成悬浮液,然后放置在28℃~32℃温度下,2天~6天以形成结晶。该温度较高,静置时间长,不利于工业化大生产。
门冬胰岛素为蛋白质类药物,在长时间的热和物理机械应力作用下有发生凝聚的趋势,使高分子蛋白类杂质增加,生物活性下降。同时,物理机械应力作用使形成的结晶容易破碎。因此现有技术结晶时为静置结晶,未使用长时间的搅拌结晶。但静置结晶时间较长,工艺能耗较大,而且会给制剂带来不希望的杂质。因此,急需寻找一种同时满足合适温度且静置时间短,工艺能耗小,所得的产品结晶度好,粒径均一,杂质少的新的制剂制备工艺。
发明内容
为了克服现有技术中存在的上述问题,本发明的目的在于提供一种能同时满足合适温度且结晶时间短,工艺能耗小,所得的产品结晶度好,粒径均一,杂质少的新的门冬胰岛素30混悬液的制备工艺。
为了实现上述目的,本发明提供如下第一种技术方案:一种门冬胰岛素30混悬液的制备方法,包括以下步骤:
(1)取适量二水合磷酸氢二钠、氯化钠、甘油、苯酚、间甲酚与注射用水混合,搅拌至澄清,调节pH为8-10,得到溶液A;
(2)取门冬胰岛素与硫酸鱼精蛋白、盐酸混合,搅拌至充分溶解,再与适量氯化锌、甘油、苯酚、注射用水混合,调节pH为2-3,得到溶液B;
(3)将溶液A与溶液B混合,并调节pH为7.0-8.0,在15-25℃的结晶温度下,搅拌10-24h结晶,得到包含结晶的混悬液;
(4)将上述包含结晶的混悬液与适量注射用水混合,得到门冬胰岛素30混悬液;或,
(i)取适量二水合磷酸氢二钠、氯化钠、甘油、苯酚与注射用水混合,搅拌至澄清,调节pH为8-10,得到溶液A;
(ii)取门冬胰岛素与硫酸鱼精蛋白、盐酸混合,搅拌至充分溶解,再与适量氯化锌、甘油、苯酚、注射用水混合,调节pH为2-3,得到溶液B;
(iii)将溶液A与溶液B混合,调节pH为7.0-8.0,在15-25℃的结晶温度下,搅拌10-24h结晶,得到包含结晶的混悬液;
(iv)将适量甘油、苯酚、间甲酚与注射用水混合,再加入上述包含结晶的混悬液,得到门冬胰岛素30混悬液。
作为本发明的进一步改进,所述的搅拌过程中所使用的搅拌桨为剪切力较小的桨,包括锚式桨、螺旋桨、框式桨等。
作为本发明的进一步改进,所述搅拌桨的搅拌速度控制在40-80rpm,优选为50-60rpm。
作为本发明的进一步改进,所述的结晶温度控制在22-25℃。
作为本发明的进一步改进,所述的结晶时间控制在12-18h。
作为本发明的进一步改进,所述溶液A与溶液B混合后的混合液的pH控制在7.2-7.4。
作为本发明的进一步改进,门冬胰岛素30混悬液的处方为任意现有公开的已知处方。
作为本发明的进一步改进,门冬胰岛素30混悬液的处方中各物质的质量比依次为:二水合磷酸氢二钠:氯化钠:氯化锌:甘油:苯酚:间甲酚:硫酸鱼精蛋白:门冬胰岛素=1.25:0.88:0.0196:16:1.5:1.72:0.32:3.5。
作为本发明的进一步改进,步骤(1)中,二水合磷酸氢二钠、氯化钠、甘油、苯酚、间甲酚的质量比为1.25:0.88:8:0.75:1.72。
作为本发明的进一步改进,步骤(2)中,门冬胰岛素、硫酸鱼精蛋白、氯化锌、甘油、苯酚的质量比为3.5:0.32:0.0196:8:0.75。
作为本发明的进一步改进,上述步骤(1)中甘油与步骤(2)中甘油的质量比还可以为1:3~3:1;步骤(1)中苯酚与步骤(2)中苯酚的质量比还可以为1:3~3:1。
作为本发明的进一步改进,步骤(i)中,二水合磷酸氢二钠、氯化钠、甘油、苯酚的质量比为1.25:0.88:4:0.6。
作为本发明的进一步改进,步骤(ii)中,门冬胰岛素、硫酸鱼精蛋白、氯化锌、甘油、苯酚的质量比为3.5:0.32:0.0196:4:0.6。
作为本发明的进一步改进,步骤(iv)中,甘油、苯酚、间甲酚的质量比为8:0.3:1.72。
作为本发明的进一步改进,上述步骤(i)中甘油与步骤(ii)中甘油、步骤(iii)中甘油的质量比还可以为(1~3):(1~3):2;上述步骤(i)中苯酚与步骤(ii)中苯酚、步骤(iii)中苯酚的质量比还可以为(1~2):(1~2):(1~3)。
本发明还提供了上述制备方法在制备治疗糖尿病的药物中的应用。
本发明利用门冬胰岛素与硫酸鱼精蛋白作用形成结晶,形成门冬胰岛素30混悬液,与人生理性胰岛素分泌基本相一致。
与现有技术相比,本发明具有以下优点:
1.本发明制备的门冬胰岛素30混悬液的方法中,结晶温度较低、结晶时间短,结晶时间可缩短至10-24h,工艺能耗小;且制备得到的门冬胰岛素30混悬液杂质含量较小,提高了用药的安全性。
2.本发明制备的门冬胰岛素30混悬液的过程中,选用低剪切力的搅拌桨,能形成良好的棒状结晶,所得棒状结晶相对现有制备得到的针状结晶结构更稳定,不易破碎;且本发明的 悬浮液的结晶度较好,粒径均一稳定,在7-8μm之间,不同批次之间粒径波动范围不超过5%,符合皮下给药要求,提高了制剂的稳定性。
3.本发明制备的门冬胰岛素30混悬液,工艺简单、重复性高,适合工业化大生产。
附图说明
图1实施例1制备得到的门冬胰岛素30混悬液的结晶图。
图2实施例2制备得到的门冬胰岛素30混悬液的结晶图。
图3实施例3制备得到的门冬胰岛素30混悬液的结晶图。
图4实施例4制备得到的门冬胰岛素30混悬液的结晶图。
图5实施例5制备得到的门冬胰岛素30混悬液的结晶图。
图6实施例6制备得到的门冬胰岛素30混悬液的结晶图。
图7对比例1方法1制备得到的门冬胰岛素30混悬液的结晶图。
图8对比例1方法2制备得到的门冬胰岛素30混悬液的结晶图。
图9对比例1方法3制备得到的门冬胰岛素30混悬液的结晶图。
图10测定实施例1制备得到的门冬胰岛素30混悬液中有关物质的HPLC色谱图。
图11测定实施例2制备得到的门冬胰岛素30混悬液中有关物质的HPLC色谱图。
图12测定实施例3制备得到的门冬胰岛素30混悬液中有关物质的HPLC色谱图。
图13测定实施例4制备得到的门冬胰岛素30混悬液中有关物质的HPLC色谱图。
图14测定实施例5制备得到的门冬胰岛素30混悬液中有关物质的HPLC色谱图。
图15测定实施例6制备得到的门冬胰岛素30混悬液中有关物质的HPLC色谱图。
图16测定对比例1方法1制备得到的门冬胰岛素30混悬液中有关物质的HPLC色谱图。
图17测定对比例1方法2制备得到的门冬胰岛素30混悬液中有关物质的HPLC色谱图。
图18测定对比例1方法3制备得到的门冬胰岛素30混悬液中有关物质的HPLC色谱图。
图19测定实施例1制备得到的门冬胰岛素30混悬液中高分子量蛋白质的HPLC色谱图。
图20测定实施例2制备得到的门冬胰岛素30混悬液中高分子量蛋白质的HPLC色谱图。
图21测定实施例3制备得到的门冬胰岛素30混悬液中高分子量蛋白质的HPLC色谱图。
图22测定实施例4制备得到的门冬胰岛素30混悬液中高分子量蛋白质的HPLC色谱图。
图23测定实施例5制备得到的门冬胰岛素30混悬液中高分子量蛋白质的HPLC色谱图。
图24测定实施例6制备得到的门冬胰岛素30混悬液中高分子量蛋白质的HPLC色谱图。
图25测定对比例1方法1制备得到的门冬胰岛素30混悬液中高分子量蛋白质的HPLC色谱图。
图26测定对比例1方法2制备得到的门冬胰岛素30混悬液中高分子量蛋白质的HPLC色谱图。
图27测定对比例1方法3制备得到的门冬胰岛素30混悬液中高分子量蛋白质的HPLC色谱图。
图28搅拌速度大于80rpm时,所制备得到的门冬胰岛素30混悬液的结晶图。
图29搅拌速度低于40rpm时,所制备得到的门冬胰岛素30混悬液的结晶图。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。所以,在本发明的方法前提下,对本发明的简单改进,均属本发明要求保护的范围。
实施例1
1.处方:
表1门冬胰岛素30混悬液的处方
处方成分 处方含量
门冬胰岛素 35g
甘油 160g
苯酚 15g
间甲酚 17.2g
氯化锌 0.196g
氯化钠 8.8g
二水合磷酸氢二钠 12.5g
硫酸鱼精蛋白 3.2g
2.溶液配制:
(1):称取12.5g处方量二水合磷酸氢二钠,8.8g处方量氯化钠,80g甘油,7.5g苯酚,17.2g处方量间甲酚,用4L注射用水溶解后搅拌至澄清,调pH 9.8,药液过0.22μm滤膜过滤除菌,得到溶液A,将其加入配液罐中;
(2):称取35g处方量门冬胰岛素,3.2g处方量硫酸鱼精蛋白,加入盐酸溶液溶解后,再加入0.196g处方量氯化锌,80g甘油,7.5g苯酚,用4L注射用水溶解后,调pH 2.5,药液过0.22μm滤膜过滤除菌,得到溶液B,将其加入配液罐中;
(3):将溶液A与溶液B搅拌混合均匀,调节pH为7.3,得到混合液;将上述混合液用螺带浆在25℃搅拌12h结晶,控制搅拌速度为55rpm,得到包含结晶的混悬液;
(4):将上述包含结晶的混悬液补充注射用水至10L;所得鱼精蛋白锌门冬胰岛素制品中,经过高效液相色谱测定成品中的可溶性胰岛素含量可知,溶解的门冬胰岛素与结晶的门冬胰岛素的重量比为30:70,即说明制备得到了门冬胰岛素30混悬液。
实施例2
1.处方同实施例1的处方一致。
2.溶液配制:
(i):称取12.5g处方量二水合磷酸氢二钠,8.8g处方量氯化钠,40g甘油,6g苯酚,用2.5L注射用水溶解后搅拌至澄清,调pH,9.8,药液过0.22μm滤膜过滤除菌,得到溶液A,将其加入配液罐中;
(ii):称取35g处方量门冬胰岛素,3.2g处方量硫酸鱼精蛋白,加入盐酸溶液溶解后,再加入0.196g处方量氯化锌,40g甘油,6g苯酚,然后用2.5L注射用水溶解后,调pH 2.5,药液过0.22μm滤膜过滤除菌,得到溶液B,将其加入配液罐中;
(iii):将溶液A与溶液B搅拌混合均匀,调节pH为7.3,得到混合液;将上述混悬液用螺带桨在25℃搅拌12h结晶,控制搅拌速度为55rpm,得到包含结晶的混悬液;
(iv):称取80g甘油,3g苯酚,17.2g处方量间甲酚,用5L注射用水溶解后,加入上述包含结晶的混悬液中;所得鱼精蛋白锌门冬胰岛素制品中,经过测定可知,溶解的门冬胰岛素与结晶的门冬胰岛素的重量比为30:70,即说明制备得到了门冬胰岛素30混悬液。
实施例1和实施例2的实验表明,在搅拌速度、结晶温度和结晶时间等关键参数控制相同的情况下,不同的辅料加料顺序对结果影响不大,实施例1和2制备得到的门冬胰岛素30混悬液的结晶图具体见附图1-2,可见两种悬浮液中均获得了棒状结晶。
实施例3
1.处方同实施例1的处方一致。
2.溶液配制:
(1):称取12.5g处方量二水合磷酸氢二钠,8.8g处方量氯化钠,80g甘油,7.5g苯酚,17.2g处方量间甲酚,用4L注射用水溶解后搅拌至澄清,调pH 9.5,药液过0.22μm滤膜过滤除菌,得到溶液A,将其加入配液罐中;
(2):称取35g处方量门冬胰岛素,3.2g处方量硫酸鱼精蛋白,加入盐酸溶液溶解后,再加入0.196g处方量氯化锌,80g甘油,7.5g苯酚,用4L注射用水溶解后,调pH 2.2,药液过0.22μm滤膜过滤除菌,得到溶液B,将其加入配液罐中;
(3):将溶液A与溶液B搅拌混合均匀,调节pH为7.2,得到混合液;将上述混合液用锚式浆在15℃搅拌24h结晶,控制搅拌速度为80rpm,得到包含结晶的混悬液;
(4):将上述包含结晶的混悬液补充注射用水至10L;所得鱼精蛋白锌门冬胰岛素制品中,经过测定可知,溶解的门冬胰岛素与结晶的门冬胰岛素的重量比为30:70,即说明制备得到了门冬胰岛素30混悬液。
实施例4
1.处方同实施例1的处方一致。
2.溶液配制:
(1):称取12.5g处方量二水合磷酸氢二钠,8.8g处方量氯化钠,80g甘油,7.5g苯酚,17.2g处方量间甲酚,用4L注射用水溶解后搅拌至澄清,调pH 8.5,药液过0.22μm滤膜过滤除菌,得到溶液A,将其加入配液罐中;
(2):称取35g处方量门冬胰岛素,3.2g处方量硫酸鱼精蛋白,加入盐酸溶液溶解后,再加入0.196g处方量氯化锌,80g甘油,7.5g苯酚,用4L注射用水溶解后,调pH 2.7,药液过0.22μm滤膜过滤除菌,得到溶液B,将其加入配液罐中;
(3):将溶液A与溶液B搅拌混合均匀,调节pH为8.0,得到混合液;将上述混合液用螺带浆在20℃搅拌15h结晶,控制搅拌速度为40rpm,得到包含结晶的混悬液;
(4):将上述包含结晶的混悬液补充注射用水至10L;所得鱼精蛋白锌门冬胰岛素制品中,经过测定可知,溶解的门冬胰岛素与结晶的门冬胰岛素的重量比为30:70,即说明制备得到了门冬胰岛素30混悬液。
实施例5
1.处方同实施例1的处方一致。
2.溶液配制:
(i):称取12.5g处方量二水合磷酸氢二钠,8.8g处方量氯化钠,40g甘油,6g苯酚,用2.5L注射用水溶解后搅拌至澄清,调pH 10.0,药液过0.22μm滤膜过滤除菌,得到溶液A,将其加入配液罐中;
(ii):称取35g处方量门冬胰岛素,3.2g处方量硫酸鱼精蛋白,加入盐酸溶液溶解后,再加入0.196g处方量氯化锌,40g甘油,6g苯酚,用2.5L注射用水溶解后,调pH 2.0,药液过0.22μm滤膜过滤除菌,得到溶液B,将其加入配液罐中;
(iii):将溶液A与溶液B搅拌混合均匀,调节pH为7.0,得到混悬液;将上述混悬液用锚式桨在22℃搅拌18h结晶,控制搅拌速度为60rpm,得到包含结晶的混悬液;
(iv):称取80g甘油,3g苯酚,17.2g处方量间甲酚,用5L注射用水溶解后,加入上述包含结晶的混悬液中;所得鱼精蛋白锌门冬胰岛素制品中,经过测定可知,溶解的门冬胰岛素与结晶的门冬胰岛素的重量比为30:70,即说明制备得到了门冬胰岛素30混悬液。
实施例6
1.处方同实施例1的处方一致。
2.溶液配制:
(i):称取12.5g处方量二水合磷酸氢二钠,8.8g处方量氯化钠,40g甘油,6g苯酚,用 2.5L注射用水溶解后搅拌至澄清,调pH 8.0,药液过0.22μm滤膜过滤除菌,得到溶液A,将其加入配液罐中;
(ii):称取35g处方量门冬胰岛素,3.2g处方量硫酸鱼精蛋白,加入盐酸溶液溶解后,再加入0.196g处方量氯化锌,40g甘油,6g苯酚,用2.5L注射用水溶解后,调pH 3.0,药液过0.22μm滤膜过滤除菌,得到溶液B,将其加入配液罐中;
(iii):将溶液A与溶液B搅拌混合均匀,调节pH为7.4,得到混悬液;将上述混悬液用锚式桨在24℃搅拌10h结晶,控制搅拌速度为50rpm,得到包含结晶的混悬液;
(iv):称取80g甘油,3g苯酚,17.2g处方量间甲酚,用5L注射用水溶解后,加入上述包含结晶的混悬液中;所得鱼精蛋白锌门冬胰岛素制品中,经过测定可知,溶解的门冬胰岛素与结晶的门冬胰岛素的重量比为30:70,即说明制备得到了门冬胰岛素30混悬液。
实施例3至实施例6的实验结果表明,控制合适的搅拌速度、结晶温度和结晶时间等关键参数,均可在短时间内可以得到粒径均一稳定的棒状结晶,实施例3和6制备得到的门冬胰岛素30混悬液的结晶图具体见附图3-6,可见两种悬浮液中均获得了棒状结晶,且肉眼可见结晶大小均匀。
对比例1
1.处方同实施例1的处方一致。
2.制备方法
方法1:按照专利CN101035557B的方法制备
a):称取12.5g处方量二水合磷酸氢二钠,8.8g处方量氯化钠,80g甘油,7.5g苯酚,17.2g间甲酚,用4L注射用水溶解后搅拌至澄清,调pH 2.5,药液过0.22μm滤膜过滤除菌,得到溶液A,将其加入配液罐中;
b):称取35g处方量门冬胰岛素,3.2g处方量硫酸鱼精蛋白,加入盐酸溶液溶解后,再加入0.196g处方量氯化锌,80g甘油,7.5g苯酚,用4L注射用水溶解后,调pH 9.8,药液过0.22μm滤膜过滤除菌,得到溶液B,将其加入配液罐中;
c):将溶液溶液A与溶液B搅拌混合均匀,调节pH为7.3,得到混合液;
d):将上述混合液在25℃直接静置30h,没有使用额外的搅拌桨进行搅拌,得到包含结晶的混悬液;
e):将上述包含结晶的混悬液补充注射用水至10L;所得鱼精蛋白锌门冬胰岛素制品中,溶解的门冬胰岛素与结晶的门冬胰岛素的重量比为30:70。
方法2:按照专利申请US5547930A方法制备
a):称取12.5g处方量二水合磷酸氢二钠,8.8g处方量氯化钠,80g甘油,7.5g苯酚,17.2g间甲酚,用4L注射用水溶解后搅拌至澄清,调pH 2.5,药液过0.22μm滤膜过滤除菌,得到溶液A,将其加入配液罐中;
b):称取35g处方量门冬胰岛素,3.2g处方量硫酸鱼精蛋白,加入盐酸溶液溶解后,再加入0.196g处方量氯化锌80g甘油,7.5g苯酚,用4L注射用水溶解后,调pH 9.8,药液过0.22μm滤膜过滤除菌,得到溶液B,将其加入配液罐中;
c):将溶液A与溶液B搅拌混合均匀,调节pH为7.3,得到混合液;
d):将上述混悬液先在20℃放置24h,然后在4℃静置6天结晶,得到包含结晶的混悬液;
e):将上述包含结晶的混悬液补充注射用水至10L;所得鱼精蛋白锌门冬胰岛素制品中,溶解的门冬胰岛素与结晶的门冬胰岛素的重量比为30:70。
方法3:按照专利CN1198643C方法制备
a):称取12.5g处方量二水合磷酸氢二钠,8.8g处方量氯化钠,80g甘油,7.5g苯酚,17.2g间甲酚,用4L注射用水溶解后搅拌至澄清,调pH 2.5,药液过0.22μm滤膜过滤除菌,得到溶液A,将其加入配液罐中;
b):称取35g处方量门冬胰岛素,3.2g处方量硫酸鱼精蛋白,加入盐酸溶液溶解后,再加入0.196g处方量氯化锌,80g甘油,7.5g苯酚,用4L注射用水溶解后,调pH 9.8,药液过0.22μm滤膜过滤除菌,得到溶液B,将其加入配液罐中;
c):将溶液A与溶液B搅拌混合均匀,调节pH为7.3,得到混合液;
d):将上述混悬液在30℃静置4d结晶,没有使用额外的搅拌桨进行搅拌,得到包含结晶的混悬液;
e):将上述包含结晶的混悬液补充注射用水至10L;所得鱼精蛋白锌门冬胰岛素制品中,溶解的门冬胰岛素与结晶的门冬胰岛素的重量比为30:70。
通过显微镜放大125 X 10倍检查法检查实施例1-6以及对比例方法1-3所得产品的结晶形状,结晶图分别如图1-9所示。结晶形态的具体结果见表2。
采用新帕泰克激光粒度检测仪HELOS检测实施例1-6,对比例方法1-3所得产品的粒度。
1)仪器参数设置
产品真密度1.0005g/cm 3
数据处理模式FREE
镜头R2:0.25/0.45…87.5μm
背景检测时间50s
2)实际检测的触发条件设定
Start:button、Valid:always、Stop:50s real time
Time base:100.0ms
3)检测及结果:
取40mL分散介质于留样池中,进行背景检测,分散介质背景应无干扰。取样品溶液80μL至盛有40mL分散介质的留样池中进行检测。具体如下表2所示。
表2:实施例1~6和对比例1制备得到的悬浮液的结晶形态及粒度对比表
对比项目 附图 结晶形态 粒径(μm)
实施例1 图1 完全结晶,棒状结晶 7.35
实施例2 图2 完全结晶,棒状结晶 7.26
实施例3 图3 完全结晶,棒状结晶 7.33
实施例4 图4 完全结晶,棒状结晶 7.71
实施例5 图5 完全结晶,棒状结晶 7.61
实施例6 图6 完全结晶,棒状结晶 7.87
对比例方法1 图7 有局部无定形沉淀,形成细小棒状结晶 5.33
对比例方法2 图8 有较多无定形沉淀,形成针状细长结晶 4.15
对比例方法3 图9 有少量无定形沉淀,形成的较小棒状结晶 5.68
由表1可见,实施例1-6的方法均能形成良好的棒状结晶,所得棒状结晶相对针状结晶的结构更稳定,不易破碎;且平均粒径均在7-8um之间,明显大于对比例的粒径,且不同批次之间平均粒径波动范围不超过5%,说明本发明制备方法稳定。对比例1的静置结晶的3种方法或多或少存在一些无定形沉淀,无法全部形成棒状的结晶,粒径在4.15-5.68um之间。因此本发明提供的制备方法可以在短时间内得到粒径均一稳定的结晶形态,提高了制剂的稳定性。
另外通过高效液相色谱法测定各实施例1-6和对比例1-3的杂质情况,具体如图10-图18所示,其中主峰含量、B28门冬胰岛素异构体(或B28异门冬胰岛素)、脱酰胺门冬胰岛素杂质、其它有关物质(或其它杂质)的含量可以直接从HPLC图谱中得到,汇总如表3所示。
表3:杂质对比表
Figure PCTCN2020126395-appb-000001
Figure PCTCN2020126395-appb-000002
由表2可见,实施例1-6有关物质的含量与对比例方法2相当,说明我们的制备条件,特别是在15-25℃的条件下选用低剪切力的搅拌桨,相对未用搅拌桨的常温结合低温的静置结晶方法,没有额外增加新的杂质种类和杂质含量,且结晶时间明显缩短,缩短至24h及以内;实施例1-6的杂质含量均小于对比例方法1和3制备的制剂,说明我们的制备条件,特别是在15-25℃的条件下选用低剪切力的搅拌桨,相比于25℃30h静置结晶或者温度高达30℃的静置结晶方法,杂质含量明显减少。因此,本发明提供的制备方法可以降低门冬胰岛素混悬液的杂质,从而提高用药安全性。
通过高效液相色谱法测定各实施例1-6和对比例1-3的高分子量蛋白质的含量情况,具体如图19-图20所示,其中高分子量蛋白质的含量也是利用HPLC方法得到,汇总如表4所示。
表4:实施例1~6和实施例1制备得到的悬浮液中高分子量蛋白质对比表
对比项目 附图 主峰 高分子量蛋白质
实施例1 图19 99.90 0.10
实施例2 图20 98.89 0.11
实施例3 图21 99.90 0.10
实施例4 图22 98.89 0.11
实施例5 图23 98.89 0.11
实施例6 图24 99.90 0.10
对比例方法1 图25 99.77 0.23
对比例方法2 图26 99.87 0.13
对比例方法3 图27 99.64 0.36
由表4可见,实施例1-6高分子量蛋白质与对比例方法2相当,说明我们的制备条件,特别是在15-25℃的条件下选用低剪切力的搅拌桨,相对未用搅拌桨的常温结合低温的静置结晶方法,没有额外增加高分子量蛋白质的含量,且结晶时间明显缩短;实施例1-6有关物质及高分子杂质均小于对比例方法1和3制备的制剂,说明我们的制备条件,特别是在15-25℃的条件下选用低剪切力的搅拌桨,相比于25℃30h静置结晶或者温度高达30℃的静置结晶方法,高分子量蛋白质的含量明显减少。因此本发明提供的制备方法可以降低门冬胰岛素混悬液的高分子量蛋白质的含量,从而提高用药安全性。
实施例1-6所得产品在2-8℃放置1-3个月均较稳定,杂质变化不大,具体贮存稳定性如下表5所示:
表5:实施例1-6产品的贮存稳定性
Figure PCTCN2020126395-appb-000003
此外,本发明研究发现,当搅拌速度大于80rpm时,结晶效果较差,结晶大多为细小晶体,如图28所示;当搅拌速度过小,低于40rpm时,则存在较多门冬胰岛素未形成结晶,且结晶均匀性较差,如图29所示。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (10)

  1. 一种门冬胰岛素30混悬液的制备方法,其特征在于:所述包括以下步骤:
    (1)取适量二水合磷酸氢二钠、氯化钠、甘油、苯酚、间甲酚与注射用水混合,搅拌至澄清,调节pH为8-10,得到溶液A;
    (2)取门冬胰岛素与硫酸鱼精蛋白、盐酸混合,搅拌至充分溶解,再与适量氯化锌、甘油、苯酚、注射用水混合,调节pH为2-3,得到溶液B;
    (3)将溶液A与溶液B混合,并调节pH为7.0-8.0,在15-25℃的结晶温度下,搅拌10-24h结晶,得到包含结晶的混悬液;
    (4)将上述包含结晶的混悬液与适量注射用水混合,得到门冬胰岛素30混悬液;或,
    (i)取适量二水合磷酸氢二钠、氯化钠、甘油、苯酚与注射用水混合,搅拌至澄清,调节pH为8-10,得到溶液A;
    (ii)取门冬胰岛素与硫酸鱼精蛋白、盐酸混合,搅拌至充分溶解,再与适量氯化锌、甘油、苯酚、注射用水混合,调节pH为2-3,得到溶液B;
    (iii)将溶液A与溶液B混合,调节pH为7.0-8.0,在15-25℃的结晶温度下,搅拌10-24h结晶,得到包含结晶的混悬液;
    (iv)将适量甘油、苯酚、间甲酚与注射用水混合,再加入上述包含结晶的混悬液,得到门冬胰岛素30混悬液。
  2. 如权利要求1所述的一种门冬胰岛素30混悬液的制备方法,其特征在于:所述搅拌过程中所使用的搅拌桨为锚式桨、螺旋桨、框式桨中的任一种。
  3. 如权利要求2所述的一种门冬胰岛素30混悬液的制备方法,其特征在于:所述的搅拌桨的搅拌速度为40-80rpm。
  4. 如权利要求3所述的一种门冬胰岛素30混悬液的制备方法,其特征在于:所述的搅拌桨的搅拌速度为50-60rpm。
  5. 如权利要求1~4任一项所述的一种门冬胰岛素30混悬液的制备方法,其特征在于:所述的结晶温度控制在22-25℃。
  6. 如权利要求1~5任一项所述的一种门冬胰岛素30混悬液的制备方法,其特征在于:所述的结晶时间控制在12-18h。
  7. 如权利要求1~6任一项所述的一种门冬胰岛素30混悬液的制备方法,其特征在于:所述的溶液A与溶液B混合后的混合液的pH控制在7.2-7.4。
  8. 如权利要求1~7任一项所述的一种门冬胰岛素30混悬液的制备方法,其特征在于:门冬胰岛素30混悬液的处方中各物质的质量比依次为:二水合磷酸氢二钠:氯化钠:氯化锌: 甘油:苯酚:间甲酚:硫酸鱼精蛋白:门冬胰岛素=1.25:0.88:0.0196:16:1.5:1.72:0.32:3.5。
  9. 权利要求1~8任一项所述的一种门冬胰岛素30混悬液的制备方法制备得到的门冬胰岛素30混悬液。
  10. 权利要求1~8任一项所述的一种门冬胰岛素30混悬液的制备方法在制备治疗糖尿病的药物中的应用。
PCT/CN2020/126395 2020-10-10 2020-11-04 一种门冬胰岛素30混悬液的制备方法 WO2022073275A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011088818.5A CN114306577B (zh) 2020-10-10 2020-10-10 一种门冬胰岛素30混悬液的制备方法
CN202011088818.5 2020-10-10

Publications (1)

Publication Number Publication Date
WO2022073275A1 true WO2022073275A1 (zh) 2022-04-14

Family

ID=81032492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126395 WO2022073275A1 (zh) 2020-10-10 2020-11-04 一种门冬胰岛素30混悬液的制备方法

Country Status (2)

Country Link
CN (1) CN114306577B (zh)
WO (1) WO2022073275A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547930A (en) * 1993-06-21 1996-08-20 Novo Nordisk A/S AspB28 insulin crystals
CN1284876A (zh) * 1997-12-23 2001-02-21 伊莱利利公司 用于控制血液葡萄糖的不溶性组合物
WO2006082204A1 (en) * 2005-02-02 2006-08-10 Novo Nordisk A/S Insulin derivatives
CN105899190A (zh) * 2014-01-09 2016-08-24 赛诺菲 门冬胰岛素的稳定化药物制剂
CN108096185A (zh) * 2017-12-20 2018-06-01 珠海冀百康生物科技有限公司 一种速效胰岛素制剂及其制备方法
CN108778246A (zh) * 2016-01-07 2018-11-09 美药星制药股份有限公司 胰岛素和胰岛素类似物的高纯度可吸入颗粒及其高效制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI780236B (zh) * 2013-02-04 2022-10-11 法商賽諾菲公司 胰島素類似物及/或胰島素衍生物之穩定化醫藥調配物
CN108114270B (zh) * 2018-02-06 2019-08-20 美药星(南京)制药有限公司 一种门冬胰岛素注射液的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547930A (en) * 1993-06-21 1996-08-20 Novo Nordisk A/S AspB28 insulin crystals
CN1284876A (zh) * 1997-12-23 2001-02-21 伊莱利利公司 用于控制血液葡萄糖的不溶性组合物
WO2006082204A1 (en) * 2005-02-02 2006-08-10 Novo Nordisk A/S Insulin derivatives
CN105899190A (zh) * 2014-01-09 2016-08-24 赛诺菲 门冬胰岛素的稳定化药物制剂
CN108778246A (zh) * 2016-01-07 2018-11-09 美药星制药股份有限公司 胰岛素和胰岛素类似物的高纯度可吸入颗粒及其高效制备方法
CN108096185A (zh) * 2017-12-20 2018-06-01 珠海冀百康生物科技有限公司 一种速效胰岛素制剂及其制备方法

Also Published As

Publication number Publication date
CN114306577B (zh) 2024-04-09
CN114306577A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
EP0705275B1 (en) Asp-b28 insulin crystals
US5547930A (en) AspB28 insulin crystals
EP0910402B1 (en) Insulin preparations containing mannitol
US5948751A (en) X14-mannitol
JP4610503B2 (ja) ペプチドの持続放出
PT2289539E (pt) Preparações de insulina desprovidas de zinco ou pobres em zinco e que têm uma estabilidade melhorada
CN113248591B (zh) 一种门冬胰岛素结晶工艺
WO2022142350A1 (zh) 一种注射填充材料及制备工艺
WO2022073275A1 (zh) 一种门冬胰岛素30混悬液的制备方法
US7713351B2 (en) Method for crystallization of proteins using polysaccharides
CN102199206B (zh) 快速起效且在酸性条件下稳定的胰岛素类似物及其制剂
Brange Insulin preparations
CN105535942B (zh) 一种赖脯胰岛素硫酸鱼精蛋白制剂的制备方法及其制备的赖脯胰岛素硫酸鱼精蛋白制剂
CN113384529B (zh) 一种门冬胰岛素注射液及其制备方法
CN114747515B (zh) 一种促进海马交配的方法
US20220289811A1 (en) A formulation of insulin based on crystal-seeding in hydrogels and method thereof
Balschmidt et al. ASP B28 insulin crystals
CN112717119A (zh) 一种西曲瑞克药物组合物及其制备方法
RU2204411C2 (ru) Инсулиновые препараты, содержащие углеводы
Balschmidt et al. Asp B28 insulin compositions
CN105753962A (zh) 一种胸腺法新晶体及其药物组合物
CN117819530A (zh) 一种基于钙离子掺杂的碳点和自触发缓释体系及其制备方法和应用
CN114376968A (zh) 一种缩宫素注射液的生产工艺
CN117815366A (zh) 一种含硫元素和bFGF的复合纳米颗粒的制备及其在创面修复中的应用
WO2020144606A1 (en) Preparative crystallization of recombinant human insulin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956590

Country of ref document: EP

Kind code of ref document: A1