WO2022071488A1 - 弾性波装置 - Google Patents

弾性波装置 Download PDF

Info

Publication number
WO2022071488A1
WO2022071488A1 PCT/JP2021/036135 JP2021036135W WO2022071488A1 WO 2022071488 A1 WO2022071488 A1 WO 2022071488A1 JP 2021036135 W JP2021036135 W JP 2021036135W WO 2022071488 A1 WO2022071488 A1 WO 2022071488A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic wave
wave device
electrode
film
piezoelectric layer
Prior art date
Application number
PCT/JP2021/036135
Other languages
English (en)
French (fr)
Inventor
翔 永友
和則 井上
峰文 大内
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2022071488A1 publication Critical patent/WO2022071488A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present invention relates to an elastic wave device.
  • spurious can be suppressed by adjusting the width and thickness of the electrodes, the distance between the centers of adjacent electrodes, and the like.
  • trying to satisfy the conditions for suppressing spurious may impair the degree of freedom in design.
  • An object of the present invention is to provide an elastic wave device capable of increasing the degree of freedom in design capable of suppressing spurious.
  • the elastic wave device has a first main surface and a second main surface facing each other, and has a piezoelectric layer made of lithium niobate or lithium tantalate, and the first main surface of the piezoelectric layer.
  • An IDT electrode provided on the surface and having a plurality of electrode fingers, and a mass addition film provided on the second main surface of the piezoelectric layer and having a plurality of periodically arranged protrusions.
  • a first concave portion is formed on a first main surface facing each other and a first main surface of a support substrate having a second main surface.
  • the sacrificial layer removing step of removing the sacrificial layer through the through hole is provided, the thickness of the piezoelectric layer is d, and the distance between the centers of adjacent electrode fingers among the plurality of electrode fingers is p, d.
  • an elastic wave device capable of increasing the degree of freedom in design capable of suppressing spurious.
  • FIG. 1 is a front sectional view of an elastic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a plan view of the elastic wave device according to the first embodiment of the present invention.
  • FIG. 3 is a bottom view showing a mass-added film on the piezoelectric layer according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing the relationship between the thickness ratio te / d, the duty ratio, and the maximum electromechanical coupling coefficient sp_kt2Max in the spurious mode in the elastic wave device of the comparative example.
  • FIG. 4 is a diagram showing the relationship between the thickness ratio te / d, the duty ratio, and the maximum electromechanical coupling coefficient sp_kt2Max in the spurious mode in the elastic wave device of the comparative example.
  • FIG. 5 is a diagram showing the relationship between the thickness ratio te / d, the duty ratio, and the maximum electromechanical coupling coefficient sp_kt2Max in the spurious mode in the elastic wave device according to the first embodiment.
  • 6 (a) to 6 (d) show a first recess forming step, a sacrificial layer forming step, a second recess forming step, and a mass addition film in an example of the method for manufacturing an elastic wave device according to the first embodiment. It is a schematic front sectional view for demonstrating the formation process.
  • FIG. 7 (a) to 7 (d) show a piezoelectric substrate bonding step, a piezoelectric layer forming step, a through hole forming step, an electrode forming step, and sacrifice in an example of the method for manufacturing an elastic wave device according to the first embodiment.
  • FIG. 8 is a front sectional view of an elastic wave device according to a first modification of the first embodiment of the present invention.
  • FIG. 9 is a front sectional view of an elastic wave device according to a second modification of the first embodiment of the present invention.
  • FIG. 10 is a schematic front sectional view showing the vicinity of a pair of electrode fingers in the third modification of the first embodiment of the present invention.
  • FIG. 11 is a schematic front sectional view showing the vicinity of a pair of electrode fingers in the fourth modification of the first embodiment of the present invention.
  • FIG. 12 is a schematic front sectional view showing the vicinity of a pair of electrode fingers in the fifth modification of the first embodiment of the present invention.
  • 13 (a) and 13 (b) are adjacent to each other for explaining a protective film forming step in an example of a method for manufacturing an elastic wave device according to a fifth modification of the first embodiment of the present invention. It is a schematic front sectional view which shows the vicinity of two matching 2nd recesses.
  • FIG. 14 is a front sectional view of the elastic wave device according to the second embodiment of the present invention.
  • FIG. 15 (a) to 15 (e) show a mass addition film forming step, a sacrificial layer forming step, a bonding layer forming step, and a supporting substrate bonding step in an example of the method for manufacturing an elastic wave device according to a second embodiment.
  • FIG. 17 is a front sectional view of an elastic wave device according to a modified example of the second embodiment of the present invention.
  • FIG. 18 (a) and 18 (b) are two adjacent pieces for explaining a protective film forming step in an example of a method for manufacturing an elastic wave device according to a modified example of the second embodiment of the present invention. It is a schematic front sectional view which shows the vicinity of the mass addition film of.
  • FIG. 19 is a front sectional view of an elastic wave device according to a third embodiment of the present invention.
  • 20 (a) and 20 (b) are schematic front sectional views for explaining an acoustic multilayer film forming step in an example of the method for manufacturing an elastic wave device according to a third embodiment of the present invention. be.
  • FIG. 21 is a front sectional view of the elastic wave device according to the fourth embodiment of the present invention.
  • FIG. 22 is a bottom view showing a mass-added film on the piezoelectric layer according to the fourth embodiment of the present invention.
  • FIG. 23 is a bottom view showing a mass-added film on the piezoelectric layer according to the fifth embodiment of the present invention.
  • FIG. 24 is a diagram showing the relationship between duty_e, duty_m and the maximum electromechanical coupling coefficient sp_kt2Max in spurious mode when both the IDT electrode and the mass addition film are made of Al.
  • FIG. 25 is a diagram showing the relationship between duty_e, duty_m and the maximum electromechanical coupling coefficient sp_kt2Max in spurious mode when the IDT electrode is made of Al and the mass addition film is made of SiO 2 .
  • FIG. 24 is a diagram showing the relationship between duty_e, duty_m and the maximum electromechanical coupling coefficient sp_kt2Max in spurious mode when the IDT electrode is made of Al and the mass addition film is made of SiO 2 .
  • FIG. 26 (a) is a schematic perspective view showing the appearance of an elastic wave device using a bulk wave in a thickness slip mode
  • FIG. 26 (b) is a plan view showing an electrode structure on a piezoelectric layer
  • FIG. 27 is a cross-sectional view of a portion along the line AA in FIG. 26 (a).
  • FIG. 28 (a) is a schematic front sectional view for explaining a Lamb wave propagating in the piezoelectric film of the elastic wave device
  • FIG. 28 (b) is a thickness slip propagating in the piezoelectric film in the elastic wave device.
  • It is a schematic front sectional view for explaining the bulk wave of a mode.
  • FIG. 29 is a diagram showing the amplitude direction of the bulk wave in the thickness slip mode.
  • FIG. 30 is a diagram showing resonance characteristics of an elastic wave device using a bulk wave in a thickness slip mode.
  • FIG. 31 is a diagram showing the relationship between d / 2p and the specific band as a resonator when the distance between the centers of adjacent electrodes is p and the thickness of the piezoelectric layer is d.
  • FIG. 32 is a plan view of an elastic wave device that utilizes a bulk wave in a thickness slip mode.
  • FIG. 33 is a diagram showing a map of the specific band with respect to Euler angles (0 °, ⁇ , ⁇ ) of LiNbO 3 when d / p is brought as close to 0 as possible.
  • FIG. 34 is a diagram showing the relationship between d / 2p and the metallization ratio MR.
  • FIG. 1 is a front sectional view of an elastic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a plan view of the elastic wave device according to the first embodiment. Note that FIG. 1 is a cross-sectional view taken along the line I-I in FIG.
  • the elastic wave device 10 has a piezoelectric substrate 12 and an IDT electrode 11.
  • the piezoelectric substrate 12 has a support substrate 14 as a support member and a piezoelectric layer 16.
  • a piezoelectric layer 16 is provided on the support substrate 14.
  • the support substrate 14 has a first main surface 14a and a second main surface 14b.
  • the first main surface 14a and the second main surface 14b face each other.
  • the first main surface 14a is provided with a recess 14c.
  • the recess 14c is the first recess in the present invention.
  • the support substrate 14 has a support portion 14d.
  • the support portion 14d is a portion that surrounds the recess 14c and supports the piezoelectric layer 16.
  • the piezoelectric layer 16 is provided on the support portion 14d so as to close the recess 14c.
  • the recess 14c is a hollow portion in the support member. The cavity is surrounded by the support substrate 14 and the piezoelectric layer 16.
  • the piezoelectric layer 16 has a first main surface 16a and a second main surface 16b.
  • the first main surface 16a and the second main surface 16b face each other.
  • the second main surface 16b is the main surface on the support substrate 14 side.
  • the piezoelectric layer 16 is made of lithium niobate such as LiNbO 3 or lithium tantalate such as LiTaO 3 .
  • the fact that a certain member is made of a certain material includes the case where a trace amount of impurities is contained so as not to deteriorate the electrical characteristics of the elastic wave device.
  • the IDT electrode 11 is provided on the first main surface 16a of the piezoelectric layer 16.
  • the IDT electrode 11 has a first bus bar 22 and a second bus bar 23, and a plurality of first electrode fingers 24 and a plurality of second electrode fingers 25.
  • the first bus bar 22 and the second bus bar 23 face each other.
  • the first electrode finger 24 is the first electrode in the present invention.
  • the plurality of first electrode fingers 24 are periodically arranged. One end of each of the plurality of first electrode fingers 24 is connected to the first bus bar 22.
  • the second electrode finger 25 is the second electrode in the present invention.
  • the plurality of second electrode fingers 25 are periodically arranged. One end of each of the plurality of second electrode fingers 25 is connected to the second bus bar 23.
  • the plurality of first electrode fingers 24 and the plurality of second electrode fingers 25 are interleaved with each other.
  • a wiring electrode is also provided on the first main surface 16a. The wiring electrode is electrically connected to the IDT electrode 11.
  • the direction in which the adjacent first electrode finger 24 and the second electrode finger 25 face each other is defined as the electrode finger facing direction.
  • the electrode finger facing direction is orthogonal to the direction in which the plurality of first electrode fingers 24 and the plurality of second electrode fingers 25 extend.
  • the first electrode finger 24 and the second electrode finger 25 may be simply referred to as an electrode finger.
  • the region where adjacent electrode fingers overlap each other when viewed from the electrode finger facing direction is the crossing region D.
  • the crossover region D is a region of the IDT electrode 11 including the electrode finger at one end to the electrode finger at the other end in the direction facing the electrode finger. More specifically, the crossover region D extends from the outer edge of the electrode finger at one end in the direction facing the electrode finger to the outer edge of the electrode finger at the other end in the direction facing the electrode finger. including.
  • the elastic wave device 10 has a plurality of excitation regions C.
  • the excitation region C is also a region where adjacent electrode fingers overlap each other when viewed from the electrode finger facing direction.
  • Each excitation region C is a region between a pair of electrode fingers. More specifically, the excitation region C is a region from the center of one electrode finger in the direction facing the electrode finger to the center of the other electrode finger in the direction facing the electrode finger. Therefore, the crossover region D includes a plurality of excitation regions C.
  • the entire crossing region D of the IDT electrode 11 overlaps with the recess 14c of the support substrate 14.
  • at least a part of the IDT electrode 11 may overlap with the recess 14c.
  • planar view refers to the direction seen from above in FIG.
  • bottom view refers to the direction seen from below in FIG.
  • the elastic wave is excited by applying an AC voltage to the IDT electrode 11.
  • the elastic wave device 10 is configured to be able to use bulk waves in a thickness slip mode, such as a thickness slip primary mode.
  • the bulk wave in the thickness slip mode is excited in each excitation region C.
  • d / p is 0.5 or less. This preferably excites the bulk wave in the thickness slip mode.
  • a plurality of mass-adding films 15 are provided on the second main surface 16b of the piezoelectric layer 16.
  • the plurality of mass-added films 15 are arranged in the recesses 14c of the support substrate 14.
  • each mass addition film 15 is configured as a convex portion.
  • the plurality of mass addition films 15 are periodically provided.
  • Each mass addition film 15 overlaps with each electrode finger in a plan view. More specifically, the entire mass-added film 15 overlaps with each electrode finger in a plan view. However, it is sufficient that at least a part of the mass addition film 15 overlaps with the electrode finger in a plan view.
  • the period in which a plurality of convex portions are provided means the distance between the centers of adjacent convex portions.
  • the period in which a plurality of electrode fingers are provided means the distance between the centers of the first electrode finger 24 and the second electrode finger 25 that are adjacent to each other.
  • FIG. 3 is a bottom view showing the mass addition film on the piezoelectric layer in the first embodiment.
  • the mass-added film 15 is shown with hatching. The same applies to other bottom views.
  • the plurality of mass-adding films 15 are arranged within a range overlapping the crossover region D in a plan view.
  • the plurality of mass-added films 15 may reach outside the above range.
  • the mass addition film 15 is made of silicon oxide. More specifically, the mass addition film is made of SiO 2 .
  • the material of the mass addition film 15 is not limited to the above, and for example, silicon nitride such as SiN or tantalum pentoxide such as Ta 2 O 5 can be used.
  • a metal such as the material of the mass addition film 15, a metal such as Al or Cu can be used.
  • the feature of this embodiment is that it has the following configuration. 1) A plurality of mass-added films 15 configured as convex portions are periodically arranged on the second main surface 16b of the piezoelectric layer 16. 2) In a plan view, at least a part of the mass addition film 15 as a convex portion overlaps with at least a part of the electrode finger. As a result, the degree of freedom in design that can suppress spurious can be increased. The details are shown below by comparing the present embodiment and comparative examples.
  • the comparative example is different from the present embodiment in that the mass addition film 15 is not provided on the second main surface 16b of the piezoelectric layer 16.
  • the maximum electromechanical coupling coefficient of the spurious mode was obtained every time the thickness ratio of the electrode finger, the thickness ratio of the piezoelectric layer, and the duty ratio were changed.
  • the thickness of the electrode finger is te
  • the thickness of the piezoelectric layer is d
  • the ratio of the thickness te of the electrode finger and the thickness d of the piezoelectric layer is the thickness ratio te / d
  • the maximum electromechanical coupling coefficient in spurious mode is sp_kt2Max.
  • FIG. 4 is a diagram showing the relationship between the thickness ratio te / d, the duty ratio, and the maximum electromechanical coupling coefficient sp_kt2Max in the spurious mode in the elastic wave device of the comparative example.
  • FIG. 5 is a diagram showing the relationship between the thickness ratio te / d, the duty ratio, and the maximum electromechanical coupling coefficient sp_kt2Max in the spurious mode in the elastic wave device according to the first embodiment.
  • the duty ratio is expressed as duty.
  • the maximum electromechanical coupling coefficient sp_kt2Max in the spurious mode can be suppressed to less than 0.3% under certain conditions.
  • the conditions under which the spurious mode can be suppressed are limited, and the degree of freedom in design is low.
  • the range of conditions under which the spurious mode can be suppressed is wide.
  • the maximum electromechanical coupling coefficient sp_kt2Max in the spurious mode is limited to the duty ratio near 0.18 to 0.23 or 0.27. Is less than 0.3.
  • the duty ratio ranges from 0.17 to 0.33, which is the maximum electricity in the spurious mode.
  • the mechanical coupling coefficient sp_kt2Max is less than 0.3.
  • the degree of freedom in design capable of suppressing spurious can be increased.
  • the following is an example of the manufacturing method of the first embodiment.
  • 6 (a) to 6 (d) show a first recess forming step, a sacrificial layer forming step, a second recess forming step, and a mass addition film in an example of the method for manufacturing an elastic wave device according to the first embodiment. It is a schematic front sectional view for demonstrating the formation process. 7 (a) to 7 (d) show a piezoelectric substrate bonding step, a piezoelectric layer forming step, a through hole forming step, an electrode forming step, and sacrifice in an example of the method for manufacturing an elastic wave device according to the first embodiment. It is a schematic front sectional view for demonstrating a layer removal process.
  • a recess 14c as a first recess is formed on the first main surface 14a of the support substrate 14.
  • the recess 14c can be formed by, for example, a RIE (Reactive Ion Etching) method.
  • the sacrificial layer 27 is formed in the recess 14c.
  • a plurality of recesses 28 are formed in the sacrificial layer 27 by, for example, etching.
  • the recess 28 is the second recess in the present invention.
  • a plurality of recesses 28 are periodically arranged in the sacrificial layer 27.
  • a mass addition film 15 is provided in each recess 28.
  • the mass addition film 15 can be provided by, for example, a sputtering method or a vacuum vapor deposition method.
  • the piezoelectric substrate 26 is joined to the first main surface 14a of the support substrate 14.
  • a bonding layer may be provided between the first main surface 14a of the support substrate 14 and the piezoelectric substrate 26.
  • the support substrate 14 and the piezoelectric substrate 26 may be directly bonded.
  • the thickness of the piezoelectric substrate 26 is adjusted. More specifically, the thickness of the piezoelectric substrate 26 is reduced by grinding or polishing the main surface side of the piezoelectric substrate 26 that is not joined to the support substrate 14.
  • a grind, a CMP (Chemical Mechanical Polishing) method, an ion slicing method, or the like can be used.
  • the piezoelectric layer 16 is obtained.
  • the piezoelectric layer 16 is provided with a through hole 16c so as to reach the sacrificial layer 27.
  • the through hole 16c can be formed by, for example, the RIE method.
  • the IDT electrode 11 and the wiring electrode 29 are provided on the first main surface 16a of the piezoelectric layer 16.
  • the IDT electrode 11 is formed so that at least a part of the mass addition film 15 and at least a part of the electrode finger overlap each other in a plan view.
  • the IDT electrode 11 is formed so that d / p is 0.5 or less.
  • the IDT electrode 11 and the wiring electrode 29 can be provided by, for example, a sputtering method or a vacuum vapor deposition method.
  • the sacrificial layer 27 is removed through the through hole 16c. More specifically, the sacrificial layer 27 in the recess 14c of the support substrate 14 is removed by flowing the etching solution through the through hole 16c. This forms a cavity. From the above, the elastic wave device 10 is obtained.
  • each of the plurality of mass-added films 15 is a convex portion in the present invention.
  • the period in which the convex portion is provided is the same as the period in which the plurality of electrode fingers of the IDT electrode 11 are provided. Therefore, in a plan view, all the convex portions overlap with all the electrode fingers. As a result, the degree of freedom in design that can suppress spurious can be increased more reliably.
  • the configuration of the mass addition film 15 is not limited to the above.
  • the first to fourth modifications of the first embodiment in which only the configuration of the mass-added film 15 is different from the first embodiment, will be shown. Also in the first to fourth modifications, the degree of freedom of design capable of suppressing spurious can be increased as in the first embodiment.
  • the convex portion formed by the mass addition film 15 does not overlap with some of the electrode fingers in a plan view. More specifically, in this modification, the period in which the convex portion is provided is twice the period in which the plurality of electrode fingers of the IDT electrode 11 are provided. As described above, for example, when n is a natural number, the period in which the convex portion is provided may be n times the period in which the plurality of electrode fingers are provided. In other words, the distance between the centers of the adjacent convex portions may be n times the distance between the centers of the adjacent electrode fingers. Alternatively, the period in which the convex portion is provided may be 1 / n times the period in which the plurality of electrode fingers are provided.
  • one convex portion composed of the mass addition film 15 overlaps with a plurality of electrode fingers in a plan view. More specifically, in this modification, one convex portion overlaps with two electrode fingers in a plan view. Also in this modification, as in the first modification, the period in which the convex portion is provided is twice the period in which the plurality of electrode fingers of the IDT electrode 11 are provided. However, as in the first embodiment, it is preferable that the period in which the convex portion is provided is the same as the period in which the plurality of electrode fingers are provided.
  • the mass addition film 35 is provided on the entire surface of the second main surface 16b of the piezoelectric layer 16.
  • the mass addition film 35 has a plurality of convex portions 35a. Each convex portion 35a overlaps with each electrode finger in a plan view.
  • the side surface of the mass-adding film 15 configured as a convex portion extends perpendicularly to the bottom surface of the mass-adding film 15.
  • the bottom surface of the convex portion is a surface on the piezoelectric layer 16 side among the surfaces facing each other in the thickness direction.
  • the side surface of the convex portion is a surface connected to a surface facing each other in the thickness direction.
  • the angle formed by the side surface and the bottom surface of the convex portion 35a is an acute angle.
  • the angle formed by the side surface and the bottom surface of the convex portion 35a may be 90 ° or an obtuse angle.
  • the angle formed by the side surface and the bottom surface may be an acute angle or an obtuse angle.
  • the mass addition film 35 is provided on the entire surface of the second main surface 16b of the piezoelectric layer 16.
  • the mass addition film 35 may be provided on a part of the second main surface 16b.
  • the mass addition film 35 is provided so as to cover the portion overlapping the crossover region D in a plan view.
  • the intermediate film 34 is provided between the mass addition film 15 and the second main surface 16b of the piezoelectric layer 16.
  • the material of the interlayer film 34 is different from the material of the mass addition film 15.
  • a dielectric such as silicon oxide, silicon nitride, or tantalum oxide can be used.
  • a metal may be used as the material of the interlayer film 34.
  • FIG. 12 is a schematic front sectional view showing the vicinity of a pair of electrode fingers in the fifth modification of the first embodiment.
  • a protective film 33 is provided on the second main surface 16b of the piezoelectric layer 16 so as to cover the mass addition film 15.
  • the mass-added film 15 is unlikely to be damaged.
  • the degree of freedom in design capable of suppressing spurious can be increased.
  • the protective film 33 for example, silicon oxide, silicon nitride, silicon oxynitride, or the like can be used.
  • a protective film forming step is performed between the second concave portion forming step shown in FIG. 6 (c) and the mass addition film forming step shown in FIG. 6 (d). Just do it. More specifically, after the second recess forming step, the protective film 33 is formed on the sacrificial layer 27 as shown in FIG. 13 (a). At this time, the protective film 33 is also formed in the recess 28.
  • the protective film 33 can be formed by, for example, a sputtering method or a vacuum vapor deposition method. After that, as shown in FIG. 13B, the mass addition film 15 may be formed in the recess 28.
  • FIG. 14 is a front sectional view of the elastic wave device according to the second embodiment.
  • This embodiment is different from the first embodiment in that the support member 43 has the support substrate 44 and the bonding layer 45, and the support substrate 44 is not provided with a recess.
  • the bonding layer 45 joins the piezoelectric layer 16 and the support substrate 44. More specifically, the bonding layer 45 is provided on the support substrate 44. A piezoelectric layer 16 is provided on the bonding layer 45.
  • the elastic wave device of the present embodiment has the same configuration as the elastic wave device 10 of the first embodiment.
  • the joint layer 45 is provided with a recess 45c.
  • a piezoelectric layer 16 is provided so as to close the recess 45c.
  • the recess 45c is a hollow portion in the support member 43. The cavity is surrounded by the bonding layer 45 and the piezoelectric layer 16.
  • the material of the bonding layer 45 for example, silicon oxide, silicon nitride, silicon oxynitride, or the like can be used.
  • a plurality of mass-adding films 15 are arranged in the recess 45c of the bonding layer 45. Also in this embodiment, the plurality of mass-adding films 15 are periodically arranged on the second main surface 16b of the piezoelectric layer 16, and the mass-adding film 15 as a convex portion is the electrode finger in a plan view. It overlaps at least partly. Thereby, as in the first embodiment, the degree of freedom in design capable of suppressing spurious can be increased.
  • the following is an example of a method for manufacturing an elastic wave device according to a second embodiment.
  • 15 (a) to 15 (e) show a mass addition film forming step, a sacrificial layer forming step, a bonding layer forming step, and a supporting substrate bonding step in an example of the method for manufacturing an elastic wave device according to a second embodiment. It is a schematic front sectional view for demonstrating. 16 (a) to 16 (c) explain a piezoelectric layer grinding step, a through hole forming step, an electrode forming step, and a sacrificial layer removing step in an example of the method for manufacturing an elastic wave device according to a second embodiment. It is a schematic front sectional view for this.
  • the piezoelectric substrate 26 is prepared.
  • the piezoelectric substrate 26 has a first main surface 26a and a second main surface 26b.
  • the first main surface 26a and the second main surface 26b face each other.
  • a plurality of mass-adding films 15 are periodically provided on the second main surface 26b.
  • a mass addition film having a plurality of convex portions may be formed. In this case, it suffices if a plurality of convex portions are periodically arranged.
  • a sacrificial layer 27 is formed on the second main surface 26b of the piezoelectric substrate 26 so as to cover the plurality of mass-added films 15.
  • the sacrificial layer 27 is patterned by, for example, etching. Further, the sacrificial layer 27 is flattened.
  • a bonding layer 45 is formed on the second main surface 26b of the piezoelectric substrate 26 so as to cover at least the sacrificial layer 27.
  • the sacrificial layer 27 also covers the second main surface 26b.
  • the bonding layer 45 can be formed by, for example, a sputtering method or a vacuum vapor deposition method.
  • the joining layer 45 is flattened. For flattening the joint layer 45, for example, a grind or a CMP method may be used.
  • the support substrate 14 is bonded to the main surface of the bonding layer 45 on the opposite side of the piezoelectric substrate 26.
  • the piezoelectric layer 16 is obtained as shown in FIG. 16A.
  • the piezoelectric layer 16 is provided with a through hole 16c so as to reach the sacrificial layer 27.
  • the piezoelectric layer grinding step for obtaining the piezoelectric layer 16 and the through hole forming step can be performed in the same manner as the above-mentioned example of the manufacturing method of the elastic wave device 10 according to the first embodiment.
  • the IDT electrode 11 and the wiring electrode 29 are provided on the first main surface 16a of the piezoelectric layer 16.
  • the sacrificial layer 27 is removed through the through hole 16c.
  • the protective film 33 may be provided as in the fifth modification of the first embodiment.
  • a protective film 33 is provided on the second main surface 16b of the piezoelectric layer 16 so as to cover the plurality of mass addition films 15. In this case, the mass-added film 15 is unlikely to be damaged. Further, as in the second embodiment, the degree of freedom in design capable of suppressing spurious can be increased.
  • the protective film 33 is provided integrally with the bonding layer 45.
  • a protective film forming step is performed between the mass addition film forming step shown in FIG. 15 (a) and the sacrificial layer forming step shown in FIG. 15 (b). good. More specifically, after the mass addition film forming step, as shown in FIG. 18A, a protective film 33 is formed on the second main surface 26b of the piezoelectric substrate 26 so as to cover the mass addition film 15. do. Next, as shown in FIG. 18B, the sacrificial layer 27 may be formed on the protective film 33.
  • FIG. 19 is a front sectional view of the elastic wave device according to the third embodiment.
  • This embodiment is different from the second embodiment in that the support member 83 has the support substrate 44 and the acoustic multilayer film 82. Except for the above points, the elastic wave device of the present embodiment has the same configuration as the elastic wave device of the second embodiment.
  • the acoustic multilayer film 82 is laminated on the second main surface 16b of the piezoelectric layer 16.
  • the acoustic multilayer film 82 has a laminated structure of low acoustic impedance layers 82a, 82c, 82e having a relatively low acoustic impedance and high acoustic impedance layers 82b, 82d having a relatively high acoustic impedance.
  • the bulk wave in the thickness slip mode can be confined in the piezoelectric layer 16 without using the cavity 9 in the elastic wave device 10.
  • the number of layers of the low acoustic impedance layers 82a, 82c, 82e and the high acoustic impedance layers 82b, 82d is not particularly limited. It is sufficient that at least one high acoustic impedance layer 82b, 82d is arranged on the side farther from the piezoelectric layer 16 than the low acoustic impedance layers 82a, 82c, 82e.
  • the low acoustic impedance layers 82a, 82c, 82e and the high acoustic impedance layers 82b, 82d can be made of an appropriate material as long as the relationship of the acoustic impedance is satisfied.
  • the material of the low acoustic impedance layers 82a, 82c, 82e silicon oxide, silicon nitride, or the like can be mentioned.
  • examples of the material of the high acoustic impedance layers 82b and 82d include alumina, silicon nitride, and metal.
  • the acoustic multilayer film 82 covers a plurality of mass-added films 15. More specifically, the low acoustic impedance layer 82a in the acoustic multilayer film 82 covers the plurality of mass addition films 15. Further, also in the present embodiment, the plurality of mass-adding films 15 are periodically arranged on the second main surface 16b of the piezoelectric layer 16, and the mass-adding film 15 as a convex portion is an electrode in a plan view. It overlaps with at least part of the finger. Thereby, as in the second embodiment, the degree of freedom in design capable of suppressing spurious can be increased.
  • an acoustic multilayer film forming step may be performed instead of the step of patterning the sacrificial layer and the step of forming the bonding layer shown in FIG. 15 (c). More specifically, in the sacrificial layer forming step shown in FIG. 15B, the sacrificial layer 27 to be a low acoustic impedance layer is formed. The sacrificial layer 27 is not removed even in the subsequent steps. Next, the sacrificial layer 27 is flattened. For flattening the sacrificial layer, for example, a grind or a CMP method may be used. In FIG. 20A, the sacrificial layer 27 formed at this time is shown as the low acoustic impedance layer 82a.
  • the high acoustic impedance layer and the low acoustic impedance layer are alternately laminated on the low acoustic impedance layer 82a. More specifically, the high acoustic impedance layer 82b, the low acoustic impedance layer 82c, the high acoustic impedance layer 82d, and the low acoustic impedance layer 82e are laminated in this order. As a result, the acoustic multilayer film 82 is obtained.
  • the high acoustic impedance layer and the low acoustic impedance layer can be formed by, for example, a sputtering method or a vacuum vapor deposition method. After that, the support substrate 44 may be joined to the acoustic multilayer film 82.
  • the sacrificial layer 27 which is a high acoustic impedance layer may be formed.
  • the low acoustic impedance may be laminated on the sacrificial layer 27.
  • the acoustic multilayer film 82 may have at least one low acoustic impedance layer and at least one high acoustic impedance layer. Therefore, depending on the material of the sacrificial layer 27, at least one of the high acoustic impedance layer and the low acoustic impedance layer may be provided on the sacrificial layer 27.
  • the present embodiment differs from the first embodiment in that the mass addition film 55 has a grating shape. Further, the present embodiment is different from the first embodiment in that the mass addition film 55 overlaps the support portion 14d of the support substrate 14 in a plan view. Except for the above points, the elastic wave device of the present embodiment has the same configuration as the elastic wave device 10 of the first embodiment.
  • the mass addition film 55 has a frame-shaped portion 55b and a plurality of convex portions 55a.
  • the plurality of convex portions 55a are arranged within a range that overlaps with the crossover region D in a plan view.
  • the frame-shaped portion 55b is located in a plan view other than the portion overlapping the crossover region D. Both ends of each convex portion 55a in a direction parallel to the direction in which the electrode finger extends are connected to the frame-shaped portion 55b.
  • the plurality of convex portions 55a are periodically arranged on the second main surface 16b of the piezoelectric layer 16, and the convex portions 55a are the electrode fingers in a plan view. It overlaps with at least a part of. Thereby, as in the first embodiment, the degree of freedom in design capable of suppressing spurious can be increased.
  • heat dissipation can be improved. This is due to the following reasons.
  • heat is generated in the excitation region C. This heat can be propagated from the convex portion 55a of the mass addition film 55 to the frame-shaped portion 55b.
  • the frame-shaped portion 55b overlaps with the support portion 14d of the support substrate 14 in a plan view. As a result, heat can be propagated from the mass addition film 55 to the support substrate 14.
  • the frame-shaped portion 55b of the mass-added film 55 is provided on the entire portion of the second main surface 16b of the piezoelectric layer 16 that overlaps with the support portion 14d of the support substrate 14 in a plan view. As a result, the path for propagating heat can be widened, and the heat dissipation can be further improved.
  • the thermal resistance was compared between the case where the mass addition film 55 was made of AlN and the comparative example.
  • the comparative example is different from the present embodiment in that the mass addition film 15 is not provided on the second main surface 16b of the piezoelectric layer 16.
  • the thermal resistance standardized by the thermal resistance of the comparative example is defined as the normalized thermal resistance.
  • the normalized thermal resistance of the comparative example is 100%.
  • the standardized thermal resistance of the elastic wave device of the present embodiment according to the comparison was 59%. As described above, in the present embodiment, the thermal resistance can be lowered.
  • the convex portion 55a is connected to the frame-shaped portion 55b, and the frame-shaped portion 55b overlaps with the support portion 14d of the support substrate 14 in a plan view. Thereby, the structural strength of the mass addition film 55 can be increased.
  • the mass addition film 65 has a first comb-shaped portion 65A and a second comb-shaped portion 65B, and both the first comb-shaped portion 65A and the second comb-shaped portion 65B are made of metal. It is different from the first embodiment. Further, the present embodiment is different from the first embodiment in that at least one of the first comb-shaped portion 65A and the second comb-shaped portion 65B is connected to the signal potential. Except for the above points, the elastic wave device of the present embodiment has the same configuration as the elastic wave device 10 of the first embodiment.
  • the shape of the mass addition film 65 is the same as the shape of the IDT electrode 11. More specifically, the first comb-shaped portion 65A has a plurality of first convex portions 65a and a first common connecting portion 65b. In a plan view, the shape of each first convex portion 65a is the same as the shape of each first electrode finger 24, and the shape of the first common connection portion 65b is the same as the shape of the first bus bar 22. One end of each of the plurality of first convex portions 65a is connected to the first common connection portion 65b.
  • the second comb-shaped portion 65B has a plurality of second convex portions 65c and a second common connecting portion 65d.
  • each second convex portion 65c is the same as the shape of each second electrode finger 25, and the shape of the second common connection portion 65d is the same as the shape of the second bus bar 23.
  • One end of each of the plurality of second convex portions 65c is connected to the second common connection portion 65d.
  • the plurality of first convex portions 65a and the plurality of second convex portions 65c are interleaved with each other. Therefore, the mass addition film 65 is an IDT electrode.
  • the plurality of first convex portions 65a and the plurality of second convex portions 65b are a plurality of electrode fingers. In the following, the first convex portion 65a and the second convex portion 65b may be simply referred to as a convex portion.
  • the first comb-shaped portion 65A of the mass addition film 65 overlaps with the first bus bar 22 of the IDT electrode 11 and the plurality of first electrode fingers 24.
  • the second comb-shaped portion 65B overlaps the second bus bar 23 and the plurality of second electrode fingers 25.
  • the mass addition film 65 is made of metal, and the first common connection portion 65b and the second common connection portion 65d overlap with the support portion 14d of the support substrate 14 in a plan view. Therefore, the heat dissipation can be improved as in the fourth embodiment.
  • the potential of the mass addition film 65 is in phase with the potential of the IDT electrode 11, and the mass addition film 65 and the IDT electrode 11 face each other.
  • the electrode finger connected to the signal potential and the convex portion connected to the ground potential face each other.
  • the electrode finger connected to the ground potential and the convex portion connected to the signal potential face each other.
  • the electrode finger connected to the signal potential and the convex portion connected to the signal potential are in phase.
  • the capacitance of the elastic wave device can be increased. Therefore, the size of the elastic wave device for obtaining a desired capacitance can be reduced, and the size of the elastic wave device can be reduced.
  • the size of the elastic wave device in the comparative example is 100%.
  • the comparative example is different from the present embodiment in that the mass addition film 65 is not provided on the second main surface 16b of the piezoelectric layer 16. In this embodiment, for example, the size of the elastic wave device can be set to about 89%.
  • the mass addition film 65 may be made of a dielectric. In this case as well, the degree of freedom in design that can suppress spurious can be increased.
  • the relationship between the coverage of the crossed region D covered by the electrode finger of the IDT electrode 11 and the coverage of the mass addition film 65 with the spurious was determined.
  • the coverage is a ratio of the area of the electrode finger or the mass addition film 65 overlapping the crossover region D in a plan view to the area of the crossover region D.
  • the following shows the results when both the IDT electrode 11 and the mass addition film 65 are made of Al, and when the IDT electrode 11 is made of Al and the mass addition film 65 is made of SiO 2 .
  • the crossing region D is formed in the direction in which the electrode finger extends.
  • the relationship between the coverage ratio by the IDT electrode 11 and the coverage ratio by the mass addition film 65 is represented by the duty ratio of the IDT electrode 11 and the duty ratio of the mass addition film 65.
  • the duty ratio of the IDT electrode 11 is duty_e
  • the duty ratio of the mass addition film 65 is duty_m.
  • FIG. 24 is a diagram showing the relationship between duty_e, duty_m and the maximum electromechanical coupling coefficient sp_kt2Max in spurious mode when both the IDT electrode and the mass addition film are made of Al.
  • FIG. 25 is a diagram showing the relationship between duty_e, duty_m and the maximum electromechanical coupling coefficient sp_kt2Max in spurious mode when the IDT electrode is made of Al and the mass addition film is made of SiO 2 .
  • the alternate long and short dash line B1 in FIG. 24 shows the relationship between duty_e and duty_m in which the mass addition by the IDT electrode 11 to the crossover region D is the same as the mass addition by the mass addition film 65 to the crossover region D.
  • the film thicknesses of the IDT electrode 11 and the mass addition film 65 are the same. The same applies to the alternate long and short dash line B2 in FIG. 25.
  • the range of conditions under which the maximum electromechanical coupling coefficient sp_kt2Max in the spurious mode can be reduced is wide in the vicinity of the alternate long and short dash line B1.
  • the range of conditions under which the maximum electromechanical coupling coefficient sp_kt2Max in the spurious mode can be reduced is wide in the vicinity of the alternate long and short dash line B2.
  • the degree of freedom in design capable of suppressing spurious can be increased. Further, by making the mass addition by the IDT electrode 11 to the crossover region D to the same level as the mass addition by the mass addition film 65 to the crossover region D, spurious can be suppressed more reliably. can.
  • parameters such as the IDT electrode 11, the mass addition film 65, and the crossover region D are defined as follows.
  • the resonator area is the area of the crossover region D in a plan view.
  • the resonator area is Sr
  • the total mass of the plurality of electrode fingers in the crossing region D is Mf
  • the total mass of the mass addition film 65 in the region overlapping the crossing region D in a plan view is Mm.
  • the thickness of the mass-added film 65 is tm
  • the density of the mass-added film 65 is ⁇ m
  • the total area of the plurality of convex portions of the mass-added film 65 in a plan view is Sm
  • the above-mentioned is due to the plurality of convex portions of the mass-added film 65.
  • the coverage is Cm.
  • Cm Sm / Sr.
  • the mass ratio a is preferably in the range of 1 ⁇ 0.5, more preferably in the range of 1 ⁇ 0.3, and further preferably in the range of 1 ⁇ 0.1. As a result, spurious can be suppressed more reliably even when the duty ratio of the IDT electrode 11 or the mass addition film 65 varies in production.
  • the support member in the following example corresponds to the support substrate in the present invention.
  • FIG. 26 (a) is a schematic perspective view showing the appearance of an elastic wave device using a bulk wave in a thickness slip mode
  • FIG. 26 (b) is a plan view showing an electrode structure on a piezoelectric layer
  • FIG. 27 is a cross-sectional view of a portion along the line AA in FIG. 26 (a).
  • the elastic wave device 1 has a piezoelectric layer 2 made of LiNbO 3 .
  • the piezoelectric layer 2 may be made of LiTaO 3 .
  • the cut angle of LiNbO 3 and LiTaO 3 is Z-cut, but may be rotary Y-cut or X-cut.
  • the thickness of the piezoelectric layer 2 is not particularly limited, but in order to effectively excite the thickness slip mode, it is preferably 40 nm or more and 1000 nm or less, and more preferably 50 nm or more and 1000 nm or less.
  • the piezoelectric layer 2 has first and second main surfaces 2a and 2b facing each other.
  • the electrode 3 and the electrode 4 are provided on the first main surface 2a.
  • the electrode 3 is an example of the “first electrode”
  • the electrode 4 is an example of the “second electrode”.
  • a plurality of electrodes 3 are connected to the first bus bar 5.
  • the plurality of electrodes 4 are connected to the second bus bar 6.
  • the plurality of electrodes 3 and the plurality of electrodes 4 are interleaved with each other.
  • the electrode 3 and the electrode 4 have a rectangular shape and have a length direction.
  • the electrode 3 and the adjacent electrode 4 face each other in a direction orthogonal to the length direction. Both the length direction of the electrodes 3 and 4 and the direction orthogonal to the length direction of the electrodes 3 and 4 are directions intersecting with each other in the thickness direction of the piezoelectric layer 2.
  • the electrode 3 and the adjacent electrode 4 face each other in the direction of crossing in the thickness direction of the piezoelectric layer 2.
  • the length directions of the electrodes 3 and 4 may be replaced with the directions orthogonal to the length directions of the electrodes 3 and 4 shown in FIGS. 26 (a) and 26 (b). That is, in FIGS. 26 (a) and 26 (b), the electrodes 3 and 4 may be extended in the direction in which the first bus bar 5 and the second bus bar 6 are extended. In that case, the first bus bar 5 and the second bus bar 6 extend in the direction in which the electrodes 3 and 4 extend in FIGS. 26 (a) and 26 (b).
  • a pair of structures in which the electrode 3 connected to one potential and the electrode 4 connected to the other potential are adjacent to each other are provided in a direction orthogonal to the length direction of the electrodes 3 and 4.
  • the case where the electrode 3 and the electrode 4 are adjacent to each other does not mean that the electrode 3 and the electrode 4 are arranged so as to be in direct contact with each other, but that the electrode 3 and the electrode 4 are arranged so as to be spaced apart from each other. Point to. Further, when the electrode 3 and the electrode 4 are adjacent to each other, the electrode connected to the hot electrode or the ground electrode, including the other electrodes 3 and 4, is not arranged between the electrode 3 and the electrode 4.
  • This logarithm does not have to be an integer pair, and may be 1.5 pairs, 2.5 pairs, or the like.
  • the distance between the centers of the electrodes 3 and 4, that is, the pitch is preferably in the range of 1 ⁇ m or more and 10 ⁇ m or less.
  • the width of the electrodes 3 and 4, that is, the dimensions of the electrodes 3 and 4 in the opposite direction are preferably in the range of 50 nm or more and 1000 nm or less, and more preferably in the range of 150 nm or more and 1000 nm or less.
  • the distance between the centers of the electrodes 3 and 4 is the center of the dimension (width dimension) of the electrode 3 in the direction orthogonal to the length direction of the electrode 3 and the electrode 4 in the direction orthogonal to the length direction of the electrode 4. It is the distance connected to the center of the dimension (width dimension) of.
  • the direction orthogonal to the length direction of the electrodes 3 and 4 is the direction orthogonal to the polarization direction of the piezoelectric layer 2. This does not apply when a piezoelectric material having another cut angle is used as the piezoelectric layer 2.
  • “orthogonal” is not limited to the case of being strictly orthogonal, and is substantially orthogonal (the angle formed by the direction orthogonal to the length direction of the electrodes 3 and 4 and the polarization direction is, for example, 90 ° ⁇ 10 °). Within the range).
  • a support member 8 is laminated on the second main surface 2b side of the piezoelectric layer 2 via an insulating layer 7.
  • the insulating layer 7 and the support member 8 have a frame-like shape and have openings 7a and 8a as shown in FIG. 27.
  • the cavity 9 is provided so as not to interfere with the vibration of the excitation region C of the piezoelectric layer 2. Therefore, the support member 8 is laminated on the second main surface 2b via the insulating layer 7 at a position where it does not overlap with the portion where at least one pair of electrodes 3 and 4 are provided.
  • the insulating layer 7 may not be provided. Therefore, the support member 8 may be directly or indirectly laminated on the second main surface 2b of the piezoelectric layer 2.
  • the insulating layer 7 is made of silicon oxide. However, in addition to silicon oxide, an appropriate insulating material such as silicon nitride or alumina can be used.
  • the support member 8 is made of Si. The plane orientation of Si on the surface of the piezoelectric layer 2 side may be (100), (110), or (111). It is desirable that Si constituting the support member 8 has a high resistance having a resistivity of 4 k ⁇ or more. However, the support member 8 can also be configured by using an appropriate insulating material or semiconductor material.
  • Examples of the material of the support member 8 include piezoelectric materials such as aluminum oxide, lithium tantalate, lithium niobate, and crystal, alumina, magnesia, sapphire, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mulite, and steer.
  • Various ceramics such as tight and forsterite, dielectrics such as diamond and glass, and semiconductors such as gallium nitride can be used.
  • the plurality of electrodes 3, 4 and the first and second bus bars 5, 6 are made of an appropriate metal or alloy such as an Al or AlCu alloy.
  • the electrodes 3 and 4 and the first and second bus bars 5 and 6 have a structure in which an Al film is laminated on a Ti film.
  • An adhesive layer other than the Ti film may be used.
  • an AC voltage is applied between the plurality of electrodes 3 and the plurality of electrodes 4. More specifically, an AC voltage is applied between the first bus bar 5 and the second bus bar 6.
  • d / p is 0. It is said to be 5 or less. Therefore, the bulk wave in the thickness slip mode is effectively excited, and good resonance characteristics can be obtained. More preferably, d / p is 0.24 or less, in which case even better resonance characteristics can be obtained.
  • the Q value is unlikely to decrease even if the logarithm of the electrodes 3 and 4 is reduced in order to reduce the size. This is because the propagation loss is small even if the number of electrode fingers in the reflectors on both sides is reduced. Further, the reason why the number of the electrode fingers can be reduced is that the bulk wave in the thickness slip mode is used. The difference between the lamb wave used in the elastic wave device and the bulk wave in the thickness slip mode will be described with reference to FIGS. 28 (a) and 28 (b).
  • FIG. 28 (a) is a schematic front sectional view for explaining a Lamb wave propagating in a piezoelectric film of an elastic wave device as described in Patent Document 1.
  • the wave propagates in the piezoelectric film 201 as shown by an arrow.
  • the first main surface 201a and the second main surface 201b face each other, and the thickness direction connecting the first main surface 201a and the second main surface 201b is the Z direction.
  • the X direction is the direction in which the electrode fingers of the IDT electrodes are lined up.
  • the wave propagates in the X direction as shown in the figure.
  • the piezoelectric film 201 vibrates as a whole because it is a plate wave, the wave propagates in the X direction, so reflectors are arranged on both sides to obtain resonance characteristics. Therefore, a wave propagation loss occurs, and the Q value decreases when the size is reduced, that is, when the logarithm of the electrode fingers is reduced.
  • the wave is generated by the first main surface 2a and the second main surface of the piezoelectric layer 2. It propagates substantially in the direction connecting 2b, that is, in the Z direction, and resonates. That is, the X-direction component of the wave is significantly smaller than the Z-direction component. Since the resonance characteristic is obtained by the propagation of the wave in the Z direction, the propagation loss is unlikely to occur even if the number of electrode fingers of the reflector is reduced. Further, even if the logarithm of the electrode pair consisting of the electrodes 3 and 4 is reduced in order to promote miniaturization, the Q value is unlikely to decrease.
  • FIG. 29 schematically shows a bulk wave when a voltage at which the electrode 4 has a higher potential than that of the electrode 3 is applied between the electrode 3 and the electrode 4.
  • the first region 451 is a region of the excitation region C between the virtual plane VP1 orthogonal to the thickness direction of the piezoelectric layer 2 and dividing the piezoelectric layer 2 into two, and the first main surface 2a.
  • the second region 452 is a region of the excitation region C between the virtual plane VP1 and the second main surface 2b.
  • the elastic wave device 1 at least one pair of electrodes consisting of the electrodes 3 and 4 is arranged, but since the waves are not propagated in the X direction, they are composed of the electrodes 3 and 4.
  • the number of pairs of electrodes does not have to be multiple. That is, it is only necessary to provide at least one pair of electrodes.
  • the electrode 3 is an electrode connected to a hot potential
  • the electrode 4 is an electrode connected to a ground potential.
  • the electrode 3 may be connected to the ground potential and the electrode 4 may be connected to the hot potential.
  • at least one pair of electrodes is an electrode connected to a hot potential or an electrode connected to a ground potential as described above, and is not provided with a floating electrode.
  • FIG. 30 is a diagram showing the resonance characteristics of the elastic wave device shown in FIG. 27.
  • the design parameters of the elastic wave device 1 that has obtained this resonance characteristic are as follows.
  • Insulation layer 7 1 ⁇ m thick silicon oxide film.
  • Support member 8 Si.
  • the length of the excitation region C is a dimension along the length direction of the electrodes 3 and 4 of the excitation region C.
  • d / p is more preferably 0.5 or less. Is 0.24 or less. This will be described with reference to FIG.
  • the ratio band is less than 5% even if d / p is adjusted.
  • the specific band can be set to 5% or more by changing d / p within that range. That is, a resonator having a high coupling coefficient can be constructed.
  • the specific band can be increased to 7% or more.
  • a resonator having a wider specific band can be obtained, and a resonator having a higher coupling coefficient can be realized. Therefore, it can be seen that by setting d / p to 0.5 or less, a resonator having a high coupling coefficient can be configured by utilizing the bulk wave in the thickness slip mode.
  • FIG. 34 is a diagram showing the relationship between d / 2p, the metallization ratio MR, and the specific band.
  • various elastic wave devices having different MRs from d / 2p were configured, and the specific band was measured.
  • the portion shown with hatching on the right side of the broken line E in FIG. 34 is a region having a specific band of 17% or less.
  • the spurious can be suitably reduced by adjusting the film thickness of the piezoelectric layer 2 and the dimensions of the electrodes 3 and 4.

Abstract

スプリアスを抑制可能な設計の自由度を高めることができる、弾性波装置を提供する。 弾性波装置10は、対向し合う第1の主面16a及び第2の主面16bを有し、かつニオブ酸リチウムまたはタンタル酸リチウムからなる圧電層16と、圧電層16の第1の主面16aに設けられており、複数の電極指(第1,第2の電極指24,25)を有するIDT電極11と、圧電層16の第2の主面16bに設けられており、周期的に配置された複数の凸部を有する質量付加膜15とを備える。圧電層16の厚みをd、複数の電極指のうち隣り合う電極指の中心間距離をpとした場合、d/pが0.5以下である。平面視において、質量付加膜15の凸部の少なくとも一部が、電極指の少なくとも一部と重なっている。

Description

弾性波装置
 本発明は、弾性波装置に関する。
 従来、弾性波装置は携帯電話機のフィルタなどに広く用いられている。近年においては、下記の特許文献1に記載のような、厚み滑りモードのバルク波を用いた弾性波装置が提案されている。この弾性波装置においては、圧電層上に、対となる電極が設けられている。対となる電極は圧電層上において対向し合っており、かつ異なる電位に接続される。上記電極間に交流電圧を印加することにより、厚み滑りモードのバルク波を励振させている。
米国特許第10491192号明細書
 厚み滑りモードのバルク波を利用する場合には、電極の幅及び厚みや、隣り合う電極の中心間距離などを調整することにより、スプリアスを抑制し得る。しかしながら、スプリアスを抑制するための条件を満たそうとすると、設計の自由度が損なわれるおそれがある。
 本発明の目的は、スプリアスを抑制可能な設計の自由度を高めることができる、弾性波装置を提供することにある。
 本発明に係る弾性波装置は、対向し合う第1の主面及び第2の主面を有し、かつニオブ酸リチウムまたはタンタル酸リチウムからなる圧電層と、前記圧電層の前記第1の主面に設けられており、複数の電極指を有するIDT電極と、前記圧電層の前記第2の主面に設けられており、周期的に配置された複数の凸部を有する質量付加膜とを備え、前記圧電層の厚みをd、前記複数の電極指のうち隣り合う電極指の中心間距離をpとした場合、d/pが0.5以下であり、平面視において、前記質量付加膜の前記凸部の少なくとも一部が、前記電極指の少なくとも一部と重なっている。
 本発明に係る弾性波装置の製造方法のある広い局面では、互いに対向する第1の主面、及び、第2の主面を有する支持基板の前記第1の主面に第1凹部を形成する第1凹部形成工程と、前記第1凹部に犠牲層を形成する犠牲層形成工程と、前記犠牲層に、周期的に配置するように、複数の第2凹部を形成する第2凹部形成工程と、前記複数の第2凹部に質量付加膜を設ける質量付加膜形成工程と、前記支持基板の前記第1の主面に圧電基板を接合する圧電基板接合工程と、前記圧電基板を研削して圧電層を形成する圧電層形成工程と、前記圧電層を貫通する貫通孔を設ける貫通孔形成工程と、前記圧電層の前記支持基板とは反対側の主面に複数の電極指を有するIDT電極を形成する電極形成工程と、前記貫通孔を介して前記犠牲層を除去する犠牲層除去工程とを備え、前記圧電層の厚みをd、前記複数の電極指のうち隣り合う電極指の中心間距離をpとした場合、d/pが0.5以下であり、前記質量付加膜により複数の凸部が形成されており、平面視において、前記質量付加膜の前記凸部の少なくとも一部が、前記電極指の少なくとも一部と重なっている。
 本発明に係る弾性波装置の製造方法の他の広い局面では、互いに対向する第1の主面、及び、第2の主面を有する圧電基板の前記第2の主面に、周期的に配置された複数の凸部を有する質量付加膜を形成する質量付加膜形成工程と、前記質量付加膜を覆う犠牲層を形成する犠牲層形成工程と、少なくとも前記犠牲層を覆うように接合層を形成する接合層形成工程と、前記接合層の、前記圧電基板側とは反対側の主面に支持基板を接合する支持基板接合工程と、前記圧電基板を研削して圧電層を形成する圧電層研削工程と、前記圧電層を貫通する貫通孔を設ける貫通孔形成工程と、前記圧電層の前記支持基板とは反対側の主面に複数の電極指を有するIDT電極を形成する電極形成工程と、前記貫通孔を介して前記犠牲層を除去する犠牲層除去工程とを備え、前記圧電層の厚みをd、前記複数の電極指のうち隣り合う電極指の中心間距離をpとした場合、d/pが0.5以下であり、前記質量付加膜は複数の凸部を有しており、平面視において、前記質量付加膜の凸部の少なくとも一部が、前記電極指の少なくとも一部と重なっている。
 本発明によれば、スプリアスを抑制可能な設計の自由度を高めることができる、弾性波装置を提供することができる。
図1は、本発明の第1の実施形態に係る弾性波装置の正面断面図である。 図2は、本発明の第1の実施形態に係る弾性波装置の平面図である。 図3は、本発明の第1の実施形態における圧電層上の質量付加膜を示す底面図である。 図4は、比較例の弾性波装置における、厚み比te/d、デューティ比及びスプリアスモードの最大電気機械結合係数sp_kt2Maxの関係を示す図である。 図5は、第1の実施形態に係る弾性波装置における、厚み比te/d、デューティ比及びスプリアスモードの最大電気機械結合係数sp_kt2Maxの関係を示す図である。 図6(a)~図6(d)は、第1の実施形態に係る弾性波装置の製造方法の一例における、第1凹部形成工程、犠牲層形成工程、第2凹部形成工程及び質量付加膜形成工程を説明するための略図的正面断面図である。 図7(a)~図7(d)は、第1の実施形態に係る弾性波装置の製造方法の一例における、圧電基板接合工程、圧電層形成工程、貫通孔形成工程、電極形成工程及び犠牲層除去工程を説明するための略図的正面断面図である。 図8は、本発明の第1の実施形態の第1の変形例に係る弾性波装置の正面断面図である。 図9は、本発明の第1の実施形態の第2の変形例に係る弾性波装置の正面断面図である。 図10は、本発明の第1の実施形態の第3の変形例における1対の電極指付近を示す略図的正面断面図である。 図11は、本発明の第1の実施形態の第4の変形例における1対の電極指付近を示す略図的正面断面図である。 図12は、本発明の第1の実施形態の第5の変形例における1対の電極指付近を示す略図的正面断面図である。 図13(a)及び図13(b)は、本発明の第1の実施形態の第5の変形例に係る弾性波装置の製造方法の一例における、保護膜形成工程を説明するための、隣り合う2つの第2凹部付近を示す略図的正面断面図である。 図14は、本発明の第2の実施形態に係る弾性波装置の正面断面図である。 図15(a)~図15(e)は、第2の実施形態に係る弾性波装置の製造方法の一例における、質量付加膜形成工程、犠牲層形成工程、接合層形成工程及び支持基板接合工程を説明するための略図的正面断面図である。 図16(a)~図16(c)は、第2の実施形態に係る弾性波装置の製造方法の一例における、圧電層研削工程、貫通孔形成工程、電極形成工程及び犠牲層除去工程を説明するための略図的正面断面図である。 図17は、本発明の第2の実施形態の変形例に係る弾性波装置の正面断面図である。 図18(a)及び図18(b)は、本発明の第2の実施形態の変形例に係る弾性波装置の製造方法の一例における、保護膜形成工程を説明するための、隣り合う2個の質量付加膜付近を示す略図的正面断面図である。 図19は、本発明の第3の実施形態に係る弾性波装置の正面断面図である。 図20(a)及び図20(b)は、本発明の第3の実施形態に係る弾性波装置の製造方法の一例における、音響多層膜形成工程を説明するための、略図的正面断面図である。 図21は、本発明の第4の実施形態に係る弾性波装置の正面断面図である。 図22は、本発明の第4の実施形態における圧電層上の質量付加膜を示す底面図である。 図23は、本発明の第5の実施形態における圧電層上の質量付加膜を示す底面図である。 図24は、IDT電極及び質量付加膜の双方がAlからなる場合における、duty_e、duty_m及びスプリアスモードの最大電気機械結合係数sp_kt2Maxの関係を示す図である。 図25は、IDT電極がAlからなり、質量付加膜がSiOからなる場合における、duty_e、duty_m及びスプリアスモードの最大電気機械結合係数sp_kt2Maxの関係を示す図である。 図26(a)は、厚み滑りモードのバルク波を利用する弾性波装置の外観を示す略図的斜視図であり、図26(b)は、圧電層上の電極構造を示す平面図である。 図27は、図26(a)中のA-A線に沿う部分の断面図である。 図28(a)は、弾性波装置の圧電膜を伝搬するラム波を説明するための模式的正面断面図であり、図28(b)は、弾性波装置における、圧電膜を伝搬する厚み滑りモードのバルク波を説明するための模式的正面断面図である。 図29は、厚み滑りモードのバルク波の振幅方向を示す図である。 図30は、厚み滑りモードのバルク波を利用する弾性波装置の共振特性を示す図である。 図31は、隣り合う電極の中心間距離をp、圧電層の厚みをdとした場合のd/2pと共振子としての比帯域との関係を示す図である。 図32は、厚み滑りモードのバルク波を利用する弾性波装置の平面図である。 図33は、d/pを限りなく0に近づけた場合のLiNbOのオイラー角(0°,θ,ψ)に対する比帯域のマップを示す図である。 図34は、d/2pと、メタライゼーション比MRとの関係を示す図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 図1は、本発明の第1の実施形態に係る弾性波装置の正面断面図である。図2は、第1の実施形態に係る弾性波装置の平面図である。なお、図1は、図2中のI-I線に沿う断面図である。
 図1に示すように、弾性波装置10は、圧電性基板12と、IDT電極11とを有する。図2に示すように、圧電性基板12は、支持部材としての支持基板14と、圧電層16とを有する。支持基板14上に圧電層16が設けられている。
 支持基板14は第1の主面14a及び第2の主面14bを有する。第1の主面14a及び第2の主面14bは互いに対向している。第1の主面14aには凹部14cが設けられている。凹部14cは本発明における第1凹部である。さらに、支持基板14は支持部14dを有する。支持部14dは、凹部14cを囲んでおり、かつ圧電層16を支持している部分である。圧電層16は、凹部14cを塞ぐように、支持部14d上に設けられている。本実施形態では、この凹部14cが、支持部材における空洞部である。該空洞部は、支持基板14及び圧電層16により囲まれている。
 圧電層16は、第1の主面16a及び第2の主面16bを有する。第1の主面16a及び第2の主面16bは互いに対向している。第1の主面16a及び第2の主面16bのうち第2の主面16bが支持基板14側の主面である。圧電層16は、LiNbOなどのニオブ酸リチウム、またはLiTaOなどのタンタル酸リチウムからなる。なお、本明細書において、ある部材がある材料からなるとは、弾性波装置の電気的特性が劣化しない程度の微量な不純物が含まれる場合を含む。
 図2に示すように、圧電層16の第1の主面16aにIDT電極11が設けられている。IDT電極11は、第1のバスバー22及び第2のバスバー23と、複数の第1の電極指24及び複数の第2の電極指25とを有する。第1のバスバー22及び第2のバスバー23は互いに対向している。第1の電極指24は本発明における第1電極である。複数の第1の電極指24は周期的に配置されている。複数の第1の電極指24の一端はそれぞれ、第1のバスバー22に接続されている。第2の電極指25は本発明における第2電極である。複数の第2の電極指25は周期的に配置されている。複数の第2の電極指25の一端はそれぞれ、第2のバスバー23に接続されている。複数の第1の電極指24及び複数の第2の電極指25は互いに間挿し合っている。なお、図示しないが、第1の主面16aには、配線電極も設けられている。該配線電極は、IDT電極11に電気的に接続されている。
 隣り合う第1の電極指24及び第2の電極指25が互いに対向する方向を電極指対向方向とする。本実施形態では、電極指対向方向は、複数の第1の電極指24及び複数の第2の電極指25が延びる方向と直交している。以下においては、第1の電極指24及び第2の電極指25を単に電極指と記載することがある。
 電極指対向方向から見たときに、隣り合う電極指同士が重なり合う領域が交叉領域Dである。交叉領域Dは、IDT電極11の、電極指対向方向における一方端の電極指から他方端の電極指までを含む領域である。より具体的には、交叉領域Dは、上記一方端の電極指の、電極指対向方向における外側の端縁部から、上記他方端の電極指の、電極指対向方向における外側の端縁部までを含む。
 さらに、弾性波装置10は、複数の励振領域Cを有する。励振領域Cも、電極指対向方向から見たときに、隣り合う電極指同士が重なり合う領域である。なお、各励振領域Cはそれぞれ、1対の電極指間の領域である。より詳細には、励振領域Cは、一方の電極指の電極指対向方向における中心から、他方の電極指の電極指対向方向における中心までの領域である。よって、交叉領域Dは、複数の励振領域Cを含む。
 本実施形態では、平面視において、IDT電極11の交叉領域Dの全体が支持基板14の凹部14cと重なっている。もっとも、平面視において、IDT電極11の少なくとも一部が、凹部14cと重なっていればよい。本明細書において平面視とは、図1における上方から見る方向をいう。他方、底面視とは、図1における下方から見る方向をいう。
 弾性波装置10においては、IDT電極11に交流電圧を印加することにより、弾性波が励振される。弾性波装置10は、例えば厚み滑り1次モードなどの、厚み滑りモードのバルク波を利用可能なように構成されている。厚み滑りモードのバルク波は、各励振領域Cにおいて励振される。なお、本実施形態においては、圧電層の厚みをd、隣り合う電極指の中心間距離をpとした場合、d/pが0.5以下である。これにより、厚み滑りモードのバルク波が好適に励振される。
 図1に示すように、圧電層16の第2の主面16bには、複数の質量付加膜15が設けられている。複数の質量付加膜15は支持基板14の凹部14c内に配置されている。本実施形態では、各質量付加膜15が凸部として構成されている。複数の質量付加膜15は周期的に設けられている。各質量付加膜15は、平面視において、各電極指と重なっている。より具体的には、各質量付加膜15の全体が、平面視において、各電極指と重なっている。もっとも、質量付加膜15の少なくとも一部が、平面視において電極指と重なっていればよい。
 なお、凸部が設けられている周期のずれが±5%以内である場合には、周期的に含まれるものとする。複数の凸部が設けられている周期とは、隣り合う凸部の中心間距離をいう。他方、複数の電極指が設けられている周期とは、隣り合う第1の電極指24及び第2の電極指25の中心間距離をいう。
 図3は、第1の実施形態における圧電層上の質量付加膜を示す底面図である。なお、図3においては、質量付加膜15にハッチングを付して示す。他の底面図においても同様である。
 本実施形態では、複数の質量付加膜15は、平面視において交叉領域Dと重なる範囲内に配置されている。なお、複数の質量付加膜15は上記範囲外に至っていてもよい。質量付加膜15は酸化ケイ素からなる。より具体的には質量付加膜はSiOからなる。もっとも、質量付加膜15の材料は上記に限定されず、例えば、SiNなどの窒化ケイ素またはTaなどの酸化タンタルなどを用いることもできる。あるいは、質量付加膜15の材料としては、AlまたはCuなどの金属を用いることもできる。
 本実施形態の特徴は、以下の構成を有することにある。1)凸部として構成された複数の質量付加膜15が、圧電層16の第2の主面16bに周期的に配置されていること。2)平面視において、凸部としての質量付加膜15の少なくとも一部が、電極指の少なくとも一部と重なっていること。それによって、スプリアスを抑制可能な設計の自由度を高めることができる。この詳細を、本実施形態及び比較例を比較することにより、以下において示す。
 比較例は、圧電層16の第2の主面16bに質量付加膜15が設けられていない点において、本実施形態と異なる。本実施形態及び比較例の弾性波装置において、電極指の厚み及び圧電層の厚み比と、デューティ比とを変化させる毎に、スプリアスモードの最大電気機械結合係数を求めた。なお、電極指の厚みをte、圧電層の厚みをd、電極指の厚みte及び圧電層の厚みdの比を厚み比te/d、スプリアスモードの最大電気機械結合係数をsp_kt2Maxとする。
 図4は、比較例の弾性波装置における、厚み比te/d、デューティ比及びスプリアスモードの最大電気機械結合係数sp_kt2Maxの関係を示す図である。図5は、第1の実施形態に係る弾性波装置における、厚み比te/d、デューティ比及びスプリアスモードの最大電気機械結合係数sp_kt2Maxの関係を示す図である。なお、図4及び図5では、デューティ比をdutyとして表記している。
 図4に示すように、比較例においても、一定の条件下においては、スプリアスモードの最大電気機械結合係数sp_kt2Maxを0.3%未満に抑制し得る。しかしながら、比較例においては、スプリアスモードを抑制し得る条件は限られており、設計の自由度は低い。
 これに対して、図5に示すように、第1の実施形態においては、スプリアスモードを抑制可能な条件の範囲が広いことがわかる。例えば、図4に示す比較例では、厚み比te/d=1.25においては、デューティ比が0.18~0.23付近または0.27付近に限り、スプリアスモードの最大電気機械結合係数sp_kt2Maxが0.3未満となる。一方で、第1の実施形態では、図5に示すように、厚み比te/d=1.25においては、デューティ比が0.17~0.33付近と広い範囲にわたり、スプリアスモードの最大電気機械結合係数sp_kt2Maxが0.3未満となる。このように、第1の実施形態においては、スプリアスを抑制可能な設計の自由度を高めることができる。
 以下において、第1の実施形態の製造方法の一例を示す。
 図6(a)~図6(d)は、第1の実施形態に係る弾性波装置の製造方法の一例における、第1凹部形成工程、犠牲層形成工程、第2凹部形成工程及び質量付加膜形成工程を説明するための略図的正面断面図である。図7(a)~図7(d)は、第1の実施形態に係る弾性波装置の製造方法の一例における、圧電基板接合工程、圧電層形成工程、貫通孔形成工程、電極形成工程及び犠牲層除去工程を説明するための略図的正面断面図である。
 図6(a)に示すように、支持基板14の第1の主面14aに、第1凹部としての凹部14cを形成する。凹部14cは、例えば、RIE(Reactive Ion Etching)法などにより形成することができる。次に、図6(b)に示すように、凹部14c内に犠牲層27を形成する。なお、犠牲層27を形成した後に、研磨などを行うことにより、支持基板14の第1の主面14a及び犠牲層27の面を好適に面一にすることができる。
 次に、図6(c)に示すように、例えばエッチングを行うことなどにより、犠牲層27に複数の凹部28を形成する。凹部28は本発明における第2凹部である。このとき、犠牲層27に、複数の凹部28を周期的に配置する。次に、各凹部28内に、図6(d)に示すように、質量付加膜15を設ける。質量付加膜15は、例えば、スパッタリング法または真空蒸着法などにより設けることができる。
 次に、図7(a)に示すように、支持基板14の第1の主面14aに、圧電基板26を接合する。なお、このとき、支持基板14の第1の主面14aと圧電基板26との間に接合層を設けてもよい。もっとも、支持基板14及び圧電基板26を直接的に接合してもよい。次に、圧電基板26の厚みを調整する。より具体的には、圧電基板26における、支持基板14に接合されていない主面側を研削または研磨することにより、圧電基板26の厚みを薄くする。圧電基板26の厚みの調整には、例えば、グラインド、CMP(Chemical Mechanical Polishing)法またはイオンスライス法などを用いることができる。これにより、図7(b)に示すように、圧電層16を得る。
 次に、圧電層16に、犠牲層27に至るように、貫通孔16cを設ける。貫通孔16cは、例えば、RIE法などにより形成することができる。次に、図7(c)に示すように、圧電層16の第1の主面16aにIDT電極11及び配線電極29を設ける。このとき、平面視において、質量付加膜15の少なくとも一部と、電極指の少なくとも一部とが重なるように、IDT電極11を形成する。さらにこのとき、圧電層の厚みをd、隣り合う電極指の中心間距離をpとした場合、d/pが0.5以下となるように、IDT電極11を形成する。IDT電極11及び配線電極29は、例えば、スパッタリング法または真空蒸着法などにより設けることができる。
 次に、貫通孔16cを介して犠牲層27を除去する。より具体的には、貫通孔16cからエッチング液を流入させることにより、支持基板14の凹部14c内の犠牲層27を除去する。これにより、空洞部を形成する。以上により、弾性波装置10を得る。
 図1に示すように、第1の実施形態では、複数の質量付加膜15のそれぞれが、本発明における凸部である。そして、凸部が設けられている周期は、IDT電極11の複数の電極指が設けられている周期と同じである。そのため、平面視において、全ての凸部が全ての電極指と重なっている。これにより、スプリアスを抑制可能な設計の自由度をより確実に高めることができる。もっとも、質量付加膜15の構成は上記に限定されない。以下において、質量付加膜15の構成のみが第1の実施形態と異なる、第1の実施形態の第1~第4の変形例を示す。第1~第4の変形例においても、第1の実施形態と同様に、スプリアスを抑制可能な設計の自由度を高めることができる。
 図8に示す第1の変形例においては、質量付加膜15により構成された凸部は、一部の電極指とは、平面視において重なっていない。より具体的には、本変形例においては、凸部が設けられた周期は、IDT電極11の複数の電極指が設けられた周期の2倍である。このように、例えばnを自然数としたときに、凸部が設けられた周期は、複数の電極指が設けられた周期のn倍であってもよい。言い換えれば、隣り合う凸部の中心間距離は、隣り合う電極指の中心間距離のn倍であってもよい。あるいは、凸部が設けられた周期は、複数の電極指が設けられた周期の1/n倍であってもよい。
 図9に示す第2の変形例においては、質量付加膜15により構成された1個凸部が、複数の電極指と、平面視において重なっている。より具体的には、本変形例では、1個の凸部が2本の電極指と平面視において重なっている。本変形例においても、第1の変形例と同様に、凸部が設けられた周期は、IDT電極11の複数の電極指が設けられた周期の2倍である。もっとも、第1の実施形態のように、凸部が設けられている周期は、複数の電極指が設けられている周期と同じであることが好ましい。
 図10に示す第3の変形例においては、質量付加膜35が圧電層16の第2の主面16bの全面に設けられている。質量付加膜35は、複数の凸部35aを有する。各凸部35aは、平面視において、各電極指と重なっている。
 ところで、図1に示すように、第1の実施形態においては、凸部として構成された質量付加膜15の側面は、質量付加膜15の底面と垂直に延びている。なお、凸部の底面とは、厚み方向において互いに対向する面のうち圧電層16側の面である。凸部の側面とは、厚み方向において互いに対向する面に接続されている面である。一方で、図10に示す第3の変形例においては、凸部35aの側面及び底面がなす角の角度は鋭角である。もっとも、凸部35aの側面及び底面がなす角の角度は、90°であってもよく、鈍角であってもよい。図1に示すような、凸部として構成された質量付加膜15においても、側面及び底面がなす角の角度は、鋭角であってもよく、鈍角であってもよい。
 上記のように、図10に示す本変形例では、質量付加膜35が圧電層16の第2の主面16bの全面に設けられている。なお、質量付加膜35は、第2の主面16bの一部に設けられていてもよい。この場合には、質量付加膜35は、平面視において、交叉領域Dと重なる部分を覆うように設けられていることが好ましい。それによって、各凸部35aの配置を、より確実に、平面視において、各電極指の交叉領域Dに位置する部分とが重なった配置とすることができる。
 図11に示す第4の変形例においては、質量付加膜15及び圧電層16の第2の主面16bの間に、中間膜34が設けられている。中間膜34の材料は、質量付加膜15の材料と異なる。中間膜34の材料としては、例えば、酸化ケイ素、窒化ケイ素または酸化タンタルなどの誘電体を用いることができる。中間膜34の材料として金属を用いても構わない。
 図12は、第1の実施形態の第5の変形例における1対の電極指付近を示す略図的正面断面図である。
 本変形例においては、圧電層16の第2の主面16bに、質量付加膜15を覆うように保護膜33が設けられている。この場合には、質量付加膜15が破損し難い。さらに、第1の実施形態と同様に、スプリアスを抑制可能な設計の自由度を高めることができる。なお、保護膜33には、例えば、酸化ケイ素、窒化ケイ素または酸窒化ケイ素などを用いることができる。
 本変形例の弾性波装置を得るに際し、例えば、図6(c)に示す第2凹部形成工程と、図6(d)に示す質量付加膜形成工程との間に、保護膜形成工程を行えばよい。より具体的には、第2凹部形成工程の後に、図13(a)に示すように、犠牲層27上に保護膜33を形成する。このとき、凹部28内にも保護膜33を形成する。保護膜33は、例えば、スパッタリング法または真空蒸着法などにより形成することができる。その後、図13(b)に示すように、凹部28内に質量付加膜15を形成すればよい。
 図14は、第2の実施形態に係る弾性波装置の正面断面図である。
 本実施形態は、支持部材43が支持基板44及び接合層45を有する点、及び支持基板44に凹部が設けられていない点において、第1の実施形態と異なる。接合層45は、圧電層16と支持基板44とを接合している。より具体的には、支持基板44上に接合層45が設けられている。接合層45上に圧電層16が設けられている。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置10と同様の構成を有する。
 接合層45には凹部45cが設けられている。凹部45cを塞ぐように、圧電層16が設けられている。本実施形態では、この凹部45cが、支持部材43における空洞部である。該空洞部は、接合層45及び圧電層16により囲まれている。接合層45の材料としては、例えば、酸化ケイ素、窒化ケイ素または酸窒化ケイ素などを用いることができる。
 接合層45の凹部45c内に、複数の質量付加膜15が配置されている。本実施形態においても、複数の質量付加膜15が、圧電層16の第2の主面16bに周期的に配置されており、平面視において、凸部としての質量付加膜15が、電極指の少なくとも一部と重なっている。それによって、第1の実施形態と同様に、スプリアスを抑制可能な設計の自由度を高めることができる。
 以下において、第2の実施形態に係る弾性波装置の製造方法の一例を示す。
 図15(a)~図15(e)は、第2の実施形態に係る弾性波装置の製造方法の一例における、質量付加膜形成工程、犠牲層形成工程、接合層形成工程及び支持基板接合工程を説明するための略図的正面断面図である。図16(a)~図16(c)は、第2の実施形態に係る弾性波装置の製造方法の一例における、圧電層研削工程、貫通孔形成工程、電極形成工程及び犠牲層除去工程を説明するための略図的正面断面図である。
 図15(a)に示すように、圧電基板26を用意する。圧電基板26は第1の主面26a及び第2の主面26bを有する。第1の主面26a及び第2の主面26bは互いに対向している。第2の主面26bに、複数の質量付加膜15を周期的に設ける。なお、このとき、複数の凸部を有する質量付加膜を形成してもよい。この場合には、複数の凸部が周期的に配置されていればよい。
 次に、図15(b)に示すように、圧電基板26の第2の主面26bに、複数の質量付加膜15を覆うように、犠牲層27を形成する。次に、図15(c)に示すように、犠牲層27を、例えばエッチングを行うことなどにより、パターニングする。さらに、犠牲層27を平坦化する。
 次に、図15(d)に示すように、圧電基板26の第2の主面26bに、少なくとも犠牲層27を覆うように、接合層45を形成する。なお、図15(d)に示す工程では、犠牲層27は第2の主面26bも覆っている。接合層45は、例えば、スパッタリング法または真空蒸着法などにより形成することができる。次に、接合層45を平坦化する。接合層45の平坦化に際しては、例えば、グラインドまたはCMP法などを用いればよい。
 次に、15(e)に示すように、接合層45の圧電基板26とは反対側の主面に、支持基板14を接合する。次に、圧電基板26の厚みを調整することにより、図16(a)に示すように、圧電層16を得る。次に、圧電層16に、犠牲層27に至るように、貫通孔16cを設ける。圧電層16を得る圧電層研削工程、及び貫通孔形成工程は、上述した、第1の実施形態に係る弾性波装置10の製造方法の例と同様に行うことができる。
 これ以降の工程も、上述した製造方法の例と同様に行うことができる。具体的には、図16(b)に示すように、圧電層16の第1の主面16aにIDT電極11及び配線電極29を設ける。次に、図16(c)に示すように、貫通孔16cを介して犠牲層27を除去する。
 ところで、本実施形態のように、支持部材43が接合層45を有する場合においても、第1の実施形態の第5の変形例と同様に、保護膜33が設けられていてもよい。図17に示す、第2の実施形態の変形例においては、圧電層16の第2の主面16bに、複数の質量付加膜15を覆うように保護膜33が設けられている。この場合には、質量付加膜15が破損し難い。さらに、第2の実施形態と同様に、スプリアスを抑制可能な設計の自由度を高めることができる。なお、本変形例では、保護膜33は、接合層45と一体として設けられている。
 本変形例の弾性波装置を得るに際し、例えば、図15(a)に示す質量付加膜形成工程と、図15(b)に示す犠牲層形成工程との間に、保護膜形成工程を行えばよい。より具体的には、質量付加膜形成工程の後に、図18(a)に示すように、圧電基板26の第2の主面26bに、質量付加膜15を覆うように、保護膜33を形成する。次に、図18(b)に示すように、保護膜33上に犠牲層27を形成すればよい。
 図19は、第3の実施形態に係る弾性波装置の正面断面図である。
 本実施形態は、支持部材83が、支持基板44及び音響多層膜82を有する点において、第2の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置は第2の実施形態の弾性波装置と同様の構成を有する。
 本実施形態では、圧電層16の第2の主面16bに音響多層膜82が積層されている。音響多層膜82は、音響インピーダンスが相対的に低い低音響インピーダンス層82a,82c,82eと、音響インピーダンスが相対的に高い高音響インピーダンス層82b,82dとの積層構造を有する。音響多層膜82を用いた場合、弾性波装置10における空洞部9を用いずとも、厚み滑りモードのバルク波を圧電層16内に閉じ込めることができる。本実施形態においても、上記d/pを0.5以下とすることにより、厚み滑りモードのバルク波に基づく共振特性を得ることができる。なお、音響多層膜82においては、その低音響インピーダンス層82a,82c,82e及び高音響インピーダンス層82b,82dの積層数は特に限定されない。低音響インピーダンス層82a,82c,82eよりも、少なくとも1層の高音響インピーダンス層82b,82dが圧電層16から遠い側に配置されておりさえすればよい。
 上記低音響インピーダンス層82a,82c,82e及び高音響インピーダンス層82b,82dは、上記音響インピーダンスの関係を満たす限り、適宜の材料で構成することができる。例えば、低音響インピーダンス層82a,82c,82eの材料としては、酸化ケイ素または酸窒化ケイ素などを挙げることができる。また、高音響インピーダンス層82b,82dの材料としては、アルミナ、窒化ケイ素または金属などを挙げることができる。
 図19に示すように、音響多層膜82は、複数の質量付加膜15を覆っている。より具体的には、音響多層膜82における低音響インピーダンス層82aが、複数の質量付加膜15を覆っている。そして、本実施形態においても、複数の質量付加膜15が、圧電層16の第2の主面16bに周期的に配置されており、平面視において、凸部としての質量付加膜15が、電極指の少なくとも一部と重なっている。それによって、第2の実施形態と同様に、スプリアスを抑制可能な設計の自由度を高めることができる。
 本実施形態の弾性波装置を得るに際し、例えば、図15(c)に示す犠牲層をパターニングする工程及び接合層形成工程の代わりに、音響多層膜形成工程を行えばよい。より具体的には、図15(b)に示す犠牲層形成工程において、低音響インピーダンス層となる犠牲層27を形成する。なお、この後の工程においても、犠牲層27は除去されない。次に、犠牲層27を平坦化する。犠牲層の平坦化に際しては、例えば、グラインドまたはCMP法などを用いればよい。図20(a)においては、このときに形成した犠牲層27を、低音響インピーダンス層82aとして示している。
 次に、図20(b)に示すように、低音響インピーダンス層82a上に、高音響インピーダンス層及び低音響インピーダンス層を交互に積層する。より具体的には、高音響インピーダンス層82b、低音響インピーダンス層82c、高音響インピーダンス層82d及び低音響インピーダンス層82eをこの順序において積層する。これにより、音響多層膜82を得る。高音響インピーダンス層及び低音響インピーダンス層は、例えば、スパッタリング法または真空蒸着法などにより形成することができる。その後、音響多層膜82に支持基板44を接合すればよい。
 なお、犠牲層形成工程において、高音響インピーダンス層となる犠牲層27を形成してもよい。この場合には、犠牲層27上に低音響インピーダンスを積層すればよい。もっとも、音響多層膜82は、少なくとも1層の低音響インピーダンス層、及び少なくとも1層の高音響インピーダンス層を有していればよい。よって、犠牲層27の材料に応じて、犠牲層27上に、高音響インピーダンス層及び低音響インピーダンス層のうち少なくとも一方の層を設ければよい。
 図21は、第4の実施形態に係る弾性波装置の正面断面図である。図22は、第4の実施形態における圧電層上の質量付加膜を示す底面図である。
 図21及び図22に示すように、本実施形態は、質量付加膜55がグレーチング状である点において第1の実施形態と異なる。さらに本実施形態は、平面視において、質量付加膜55が支持基板14の支持部14dと重なっている点で第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置10と同様の構成を有する。
 図22に示すように、質量付加膜55は、枠状部55bと、複数の凸部55aとを有する。複数の凸部55aは、平面視において交叉領域Dと重なる範囲内に配置されている。枠状部55bは、平面視において、交叉領域Dと重なる部分以外に位置している。各凸部55aの、電極指が延びる方向と平行な方向における両端部は、枠状部55bに接続されている。
 図21に示すように、本実施形態においても、複数の凸部55aが、圧電層16の第2の主面16bに周期的に配置されており、平面視において、凸部55aが、電極指の少なくとも一部と重なっている。それによって、第1の実施形態と同様に、スプリアスを抑制可能な設計の自由度を高めることができる。
 さらに、本実施形態においては放熱性を高めることができる。これは以下の理由による。弾性波が励振されると、励振領域Cにおいて熱が生じる。この熱を、質量付加膜55の凸部55aから、枠状部55bに伝搬させることができる。枠状部55bは、平面視において支持基板14の支持部14dと重なっている。これにより、質量付加膜55から支持基板14に熱を伝搬させることができる。
 質量付加膜55の熱伝導率は圧電層16の熱伝導率よりも高いことが好ましい。より具体的には、質量付加膜55の材料には、例えば窒化ケイ素などの金属化合物や、AlまたはCuなどの金属を用いることが好ましい。それによって、放熱性をより一層高めることができる。なお、質量付加膜55が金属からなる場合、質量付加膜55は浮き電極であってもよい。浮き電極とは、いかなる電位にも接続されない電極である。
 質量付加膜55の枠状部55bは、圧電層16の第2の主面16bにおける、平面視において支持基板14の支持部14dと重なる部分の全体に設けられていることが好ましい。それによって、熱を伝搬させる経路を広げることができ、放熱性をより一層高めることができる。
 質量付加膜55がAlNからなる場合と、比較例とにおいて、熱抵抗を比較した。比較例は、圧電層16の第2の主面16bに質量付加膜15が設けられていない点において、本実施形態と異なる。比較例の熱抵抗によって規格化された熱抵抗を、規格化熱抵抗とする。比較例の規格化熱抵抗は100%である。これに対して、当該比較に係る本実施形態の弾性波装置の規格化熱抵抗は59%であった。このように、本実施形態においては、熱抵抗を低くすることができる。
 加えて、質量付加膜55においては、凸部55aが枠状部55bに接続されており、かつ枠状部55bが平面視において支持基板14の支持部14dと重なっている。それによって、質量付加膜55の構造上の強度を高めることができる。
 図23は、第5の実施形態における圧電層上の質量付加膜を示す底面図である。
 本実施形態は、質量付加膜65が第1の櫛形部65A及び第2の櫛形部65Bを有する点、及び第1の櫛形部65A及び第2の櫛形部65Bの双方が金属からなる点において、第1の実施形態と異なる。さらに本実施形態は、第1の櫛形部65A及び第2の櫛形部65Bのうち少なくとも一方が信号電位に接続される点において、第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置10と同様の構成を有する。
 平面視において、質量付加膜65の形状はIDT電極11の形状と同じである。より具体的には、第1の櫛形部65Aは、複数の第1の凸部65aと、第1の共通接続部65bとを有する。平面視において、各第1の凸部65aの形状が各第1の電極指24の形状と同じであり、第1の共通接続部65bの形状が第1のバスバー22の形状と同じである。複数の第1の凸部65aの一端がそれぞれ、第1の共通接続部65bに接続されている。第2の櫛形部65Bは、複数の第2の凸部65cと、第2の共通接続部65dとを有する。平面視において、各第2の凸部65cの形状が各第2の電極指25の形状と同じであり、第2の共通接続部65dの形状が第2のバスバー23の形状と同じである。複数の第2の凸部65cの一端がそれぞれ、第2の共通接続部65dに接続されている。複数の第1の凸部65a及び複数の第2の凸部65cは、互いに間挿し合っている。よって、質量付加膜65はIDT電極である。複数の第1の凸部65a及び複数の第2の凸部65bは、複数の電極指である。以下においては、第1の凸部65a及び第2の凸部65bを単に凸部と記載することがある。
 平面視において、質量付加膜65の第1の櫛形部65Aは、IDT電極11の第1のバスバー22及び複数の第1の電極指24と重なっている。平面視において、第2の櫛形部65Bは、第2のバスバー23及び複数の第2の電極指25と重なっている。
 本実施形態では、複数の第1の凸部65a及び第2の凸部65cが、圧電層16の第2の主面16bに周期的に配置されている。そして、平面視において、各第1の凸部65aが各第1の電極指24と重なっており、各第2の凸部65cが各第2の電極指25と重なっている。それによって、第1の実施形態と同様に、スプリアスを抑制可能な設計の自由度を高めることができる。なお、平面視において、質量付加膜65の形状及びIDT電極11の形状は同じではなくともよい。平面視において、第1の凸部65aの少なくとも一部及び第2の凸部65cの少なくとも一部が、電極指の少なくとも一部と重なっていればよい。
 加えて、質量付加膜65が金属からなり、かつ平面視において、第1の共通接続部65b及び第2の共通接続部65dが、支持基板14の支持部14dと重なっている。よって、第4の実施形態と同様に、放熱性を高めることができる。
 さらに、質量付加膜65の電位がIDT電極11の電位と同相であり、かつ質量付加膜65及びIDT電極11が互いに対向している。具体的には、例えば、信号電位に接続される電極指と、グラウンド電位に接続される凸部とが互いに対向している。グラウンド電位に接続される電極指と、信号電位に接続される凸部とが互いに対向している。そして、信号電位に接続される電極指及び信号電位に接続される凸部が同相である。これにより、弾性波装置の静電容量を大きくすることができる。よって、所望の静電容量を得るための弾性波装置の大きさを小さくすることができ、弾性波装置の小型化を進めることができる。例えば、比較例の弾性波装置のサイズを100%とする。なお、該比較例は、圧電層16の第2の主面16bに質量付加膜65が設けられていない点において本実施形態と異なる。本実施形態では、例えば、弾性波装置のサイズを89%程度とすることができる。
 なお、質量付加膜65は誘電体からなっていても構わない。この場合にも、スプリアスを抑制可能な設計の自由度を高めることができる。
 ここで、交叉領域DがIDT電極11の電極指により被覆されている被覆率、及び質量付加膜65により被覆されている被覆率と、スプリアスとの関係を求めた。被覆率とは、平面視において交叉領域Dと重なっている電極指または質量付加膜65の面積の、交叉領域Dの面積に対する比率である。以下において、IDT電極11及び質量付加膜65の双方がAlからなる場合、及びIDT電極11がAlからなり、質量付加膜65がSiOからなる場合の結果を示す。なお、質量付加膜65の第1の凸部65a及び第2の凸部65c並びに電極指における、平面視において交叉領域Dと重なっている部分はそれぞれ、電極指が延びる方向においては、交叉領域Dの全てを覆っている。よって、下記の図24及び図25においては、IDT電極11による被覆率及び質量付加膜65による被覆率の関係は、IDT電極11のデューティ比及び質量付加膜65のデューティ比により表わすものとする。IDT電極11のデューティ比をduty_e、質量付加膜65のデューティ比をduty_mとする。
 図24は、IDT電極及び質量付加膜の双方がAlからなる場合における、duty_e、duty_m及びスプリアスモードの最大電気機械結合係数sp_kt2Maxの関係を示す図である。図25は、IDT電極がAlからなり、質量付加膜がSiOからなる場合における、duty_e、duty_m及びスプリアスモードの最大電気機械結合係数sp_kt2Maxの関係を示す図である。図24中の一点鎖線B1は、交叉領域Dに対するIDT電極11による質量付加が、交叉領域Dに対する質量付加膜65による質量付加と同じとなる、duty_e及びduty_mの関係を示す。なお、IDT電極11及び質量付加膜65の膜厚は同じとしている。図25中の一点鎖線B2も同様である。
 図24に示すように、一点鎖線B1付近において、スプリアスモードの最大電気機械結合係数sp_kt2Maxを小さくできる条件の範囲が広いことがわかる。同様に、図25に示すように、一点鎖線B2付近において、スプリアスモードの最大電気機械結合係数sp_kt2Maxを小さくできる条件の範囲が広いことがわかる。上記各実施形態においても示したように、本発明によれば、スプリアスを抑制可能な設計の自由度を高めることができる。さらに、交叉領域Dに対するIDT電極11による質量付加に応じて、該質量付加と、交叉領域Dに対する質量付加膜65による質量付加とを同程度にすることにより、スプリアスをより確実に抑制することができる。
 ところで、IDT電極11、質量付加膜65及び交叉領域Dなどのパラメータを以下のように定義する。なお、以下において共振子面積とは、平面視における交叉領域Dの面積である。共振子面積をSr、複数の電極指の、交叉領域Dにおける質量の合計をMf、質量付加膜65の、平面視において交叉領域Dと重なる領域における質量の合計をMmとする。さらに、質量付加膜65の厚みをtm、質量付加膜65の密度をρm、質量付加膜65の複数の凸部の平面視における面積の合計をSm、質量付加膜65の複数の凸部による上記被覆率をCmとする。質量付加膜65の上記質量Mmの、複数の電極指の上記質量Mfに対する質量比をMm/Mf=aとする。なお、質量比aは、Mm=a×Mfとした際の係数である。これらのパラメータにおいて、以下の関係が成立する。
 まず、Cm=Sm/Srである。他方、Mm=ρm×tm×Sm=ρm×tm×Cm×Srである。この式から、Cm=Mm/(ρm×tm×Sr)の関係が成立する。そして、上記のように、Mm=a×Mfである。よって、Cm=a×Mf/(ρm×tm×Sr)の関係が成立する。
 質量比aは1±0.5の範囲内であることが好ましく、1±0.3の範囲内であることがより好ましく、1±0.1の範囲内であることがさらに好ましい。それによって、IDT電極11または質量付加膜65のデューティ比に製造ばらつきが生じた場合などにおいても、スプリアスをより確実に抑制することができる。なお、1個の凸部の被覆率をSm1、1本の電極指の被覆率をSf1としたときに、Sm1=Sf1×aであってもよい。
 以下において、厚み滑りモードの詳細を説明する。以下の例における支持部材は、本発明における支持基板に相当する。
 図26(a)は、厚み滑りモードのバルク波を利用する弾性波装置の外観を示す略図的斜視図であり、図26(b)は、圧電層上の電極構造を示す平面図であり、図27は、図26(a)中のA-A線に沿う部分の断面図である。
 弾性波装置1は、LiNbOからなる圧電層2を有する。圧電層2は、LiTaOからなるものであってもよい。LiNbOやLiTaOのカット角は、Zカットであるが、回転YカットやXカットであってもよい。圧電層2の厚みは、特に限定されないが、厚み滑りモードを効果的に励振するには、40nm以上、1000nm以下であることが好ましく、50nm以上、1000nm以下であることがより好ましい。圧電層2は、対向し合う第1,第2の主面2a,2bを有する。第1の主面2a上に、電極3及び電極4が設けられている。ここで電極3が「第1電極」の一例であり、電極4が「第2電極」の一例である。図26(a)及び図26(b)では、複数の電極3が、第1のバスバー5に接続されている。複数の電極4は、第2のバスバー6に接続されている。複数の電極3及び複数の電極4は、互いに間挿し合っている。電極3及び電極4は、矩形形状を有し、長さ方向を有する。この長さ方向と直交する方向において、電極3と、隣りの電極4とが対向している。電極3,4の長さ方向、及び、電極3,4の長さ方向と直交する方向はいずれも、圧電層2の厚み方向に交叉する方向である。このため、電極3と、隣りの電極4とは、圧電層2の厚み方向に交叉する方向において対向しているともいえる。また、電極3,4の長さ方向が図26(a)及び図26(b)に示す電極3,4の長さ方向に直交する方向と入れ替わってもよい。すなわち、図26(a)及び図26(b)において、第1のバスバー5及び第2のバスバー6が延びている方向に電極3,4を延ばしてもよい。その場合、第1のバスバー5及び第2のバスバー6は、図26(a)及び図26(b)において電極3,4が延びている方向に延びることとなる。そして、一方電位に接続される電極3と、他方電位に接続される電極4とが隣り合う1対の構造が、上記電極3,4の長さ方向と直交する方向に、複数対設けられている。ここで電極3と電極4とが隣り合うとは、電極3と電極4とが直接接触するように配置されている場合ではなく、電極3と電極4とが間隔を介して配置されている場合を指す。また、電極3と電極4とが隣り合う場合、電極3と電極4との間には、他の電極3,4を含む、ホット電極やグラウンド電極に接続される電極は配置されない。この対数は、整数対である必要はなく、1.5対や2.5対などであってもよい。電極3,4間の中心間距離すなわちピッチは、1μm以上、10μm以下の範囲が好ましい。また、電極3,4の幅、すなわち電極3,4の対向方向の寸法は、50nm以上、1000nm以下の範囲であることが好ましく、150nm以上、1000nm以下の範囲であることがより好ましい。なお、電極3,4間の中心間距離とは、電極3の長さ方向と直交する方向における電極3の寸法(幅寸法)の中心と、電極4の長さ方向と直交する方向における電極4の寸法(幅寸法)の中心とを結んだ距離となる。
 また、弾性波装置1では、Zカットの圧電層を用いているため、電極3,4の長さ方向と直交する方向は、圧電層2の分極方向に直交する方向となる。圧電層2として他のカット角の圧電体を用いた場合には、この限りでない。ここにおいて、「直交」とは、厳密に直交する場合のみに限定されず、略直交(電極3,4の長さ方向と直交する方向と分極方向とのなす角度が例えば90°±10°の範囲内)でもよい。
 圧電層2の第2の主面2b側には、絶縁層7を介して支持部材8が積層されている。絶縁層7及び支持部材8は、枠状の形状を有し、図27に示すように、開口部7a,8aを有する。それによって、空洞部9は、圧電層2の励振領域Cの振動を妨げないために設けられている。従って、上記支持部材8は、少なくとも1対の電極3,4が設けられている部分と重ならない位置において、第2の主面2bに絶縁層7を介して積層されている。なお、絶縁層7は設けられずともよい。従って、支持部材8は、圧電層2の第2の主面2bに直接または間接に積層され得る。
 絶縁層7は、酸化ケイ素からなる。もっとも、酸化ケイ素の他、酸窒化ケイ素、アルミナなどの適宜の絶縁性材料を用いることができる。支持部材8は、Siからなる。Siの圧電層2側の面における面方位は(100)や(110)であってもよく、(111)であってもよい。支持部材8を構成するSiは、抵抗率4kΩ以上の高抵抗であることが望ましい。もっとも、支持部材8についても適宜の絶縁性材料や半導体材料を用いて構成することができる。
 支持部材8の材料としては、例えば、酸化アルミニウム、タンタル酸リチウム、ニオブ酸リチウム、水晶などの圧電体、アルミナ、マグネシア、サファイア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライトなどの各種セラミック、ダイヤモンド、ガラスなどの誘電体、窒化ガリウムなどの半導体などを用いることができる。
 上記複数の電極3,4及び第1,第2のバスバー5,6は、Al、AlCu合金などの適宜の金属もしくは合金からなる。本実施形態では、電極3,4及び第1,第2のバスバー5,6は、Ti膜上にAl膜を積層した構造を有する。なお、Ti膜以外の密着層を用いてもよい。
 駆動に際しては、複数の電極3と、複数の電極4との間に交流電圧を印加する。より具体的には、第1のバスバー5と第2のバスバー6との間に交流電圧を印加する。それによって、圧電層2において励振される厚み滑りモードのバルク波を利用した、共振特性を得ることが可能とされている。また、弾性波装置1では、圧電層2の厚みをd、複数対の電極3,4のうちいずれかの隣り合う電極3,4の中心間距離をpとした場合、d/pは0.5以下とされている。そのため、上記厚み滑りモードのバルク波が効果的に励振され、良好な共振特性を得ることができる。より好ましくは、d/pは0.24以下であり、その場合には、より一層良好な共振特性を得ることができる。
 弾性波装置1では、上記構成を備えるため、小型化を図ろうとして、電極3,4の対数を小さくしたとしても、Q値の低下が生じ難い。これは、両側の反射器における電極指の本数を少なくしても、伝搬ロスが少ないためである。また、上記電極指の本数を少なくできるのは、厚み滑りモードのバルク波を利用していることによる。弾性波装置で利用したラム波と、上記厚み滑りモードのバルク波の相違を、図28(a)及び図28(b)を参照して説明する。
 図28(a)は、特許文献1に記載のような弾性波装置の圧電膜を伝搬するラム波を説明するための模式的正面断面図である。ここでは、圧電膜201中を矢印で示すように波が伝搬する。ここで、圧電膜201では、第1の主面201aと、第2の主面201bとが対向しており、第1の主面201aと第2の主面201bとを結ぶ厚み方向がZ方向である。X方向は、IDT電極の電極指が並んでいる方向である。図28(a)に示すように、ラム波では、波が図示のように、X方向に伝搬していく。板波であるため、圧電膜201が全体として振動するものの、波はX方向に伝搬するため、両側に反射器を配置して、共振特性を得ている。そのため、波の伝搬ロスが生じ、小型化を図った場合、すなわち電極指の対数を少なくした場合、Q値が低下する。
 これに対して、図28(b)に示すように、弾性波装置1では、振動変位は厚み滑り方向であるから、波は、圧電層2の第1の主面2aと第2の主面2bとを結ぶ方向、すなわちZ方向にほぼ伝搬し、共振する。すなわち、波のX方向成分がZ方向成分に比べて著しく小さい。そして、このZ方向の波の伝搬により共振特性が得られるため、反射器の電極指の本数を少なくしても、伝搬損失は生じ難い。さらに、小型化を進めようとして、電極3,4からなる電極対の対数を減らしたとしても、Q値の低下が生じ難い。
 なお、厚み滑りモードのバルク波の振幅方向は、図29に示すように、圧電層2の励振領域Cに含まれる第1領域451と、励振領域Cに含まれる第2領域452とで逆になる。図29では、電極3と電極4との間に、電極4が電極3よりも高電位となる電圧が印加された場合のバルク波を模式的に示してある。第1領域451は、励振領域Cのうち、圧電層2の厚み方向に直交し圧電層2を2分する仮想平面VP1と、第1の主面2aとの間の領域である。第2領域452は、励振領域Cのうち、仮想平面VP1と、第2の主面2bとの間の領域である。
 上記のように、弾性波装置1では、電極3と電極4とからなる少なくとも1対の電極が配置されているが、X方向に波を伝搬させるものではないため、この電極3,4からなる電極対の対数は複数対ある必要はない。すなわち、少なくとも1対の電極が設けられてさえおればよい。
 例えば、上記電極3がホット電位に接続される電極であり、電極4がグラウンド電位に接続される電極である。もっとも、電極3がグラウンド電位に、電極4がホット電位に接続されてもよい。本実施形態では、少なくとも1対の電極は、上記のように、ホット電位に接続される電極またはグラウンド電位に接続される電極であり、浮き電極は設けられていない。
 図30は、図27に示す弾性波装置の共振特性を示す図である。なお、この共振特性を得た弾性波装置1の設計パラメータは以下の通りである。
 圧電層2:オイラー角(0°,0°,90°)のLiNbO、厚み=400nm。
 電極3と電極4の長さ方向と直交する方向に視たときに、電極3と電極4とが重なっている領域、すなわち励振領域Cの長さ=40μm、電極3,4からなる電極の対数=21対、電極間中心距離=3μm、電極3,4の幅=500nm、d/p=0.133。
 絶縁層7:1μmの厚みの酸化ケイ素膜。
 支持部材8:Si。
 なお、励振領域Cの長さとは、励振領域Cの電極3,4の長さ方向に沿う寸法である。
 本実施形態では、電極3,4からなる電極対の電極間距離は、複数対において全て等しくした。すなわち、電極3と電極4とを等ピッチで配置した。
 図30から明らかなように、反射器を有しないにも関わらず、比帯域が12.5%である良好な共振特性が得られている。
 ところで、上記圧電層2の厚みをd、電極3と電極4との電極の中心間距離をpとした場合、前述したように、本実施形態では、d/pは0.5以下、より好ましくは0.24以下である。これを、図31を参照して説明する。
 図30に示した共振特性を得た弾性波装置と同様に、但しd/2pを変化させ、複数の弾性波装置を得た。図31は、このd/2pと、弾性波装置の共振子としての比帯域との関係を示す図である。
 図31から明らかなように、d/2pが0.25を超えると、すなわちd/p>0.5では、d/pを調整しても、比帯域は5%未満である。これに対して、d/2p≦0.25、すなわちd/p≦0.5の場合には、その範囲内でd/pを変化させれば、比帯域を5%以上とすることができ、すなわち高い結合係数を有する共振子を構成することができる。また、d/2pが0.12以下の場合、すなわちd/pが0.24以下の場合には、比帯域を7%以上と高めることができる。加えて、d/pをこの範囲内で調整すれば、より一層比帯域の広い共振子を得ることができ、より一層高い結合係数を有する共振子を実現することができる。従って、d/pを0.5以下とすることにより、上記厚み滑りモードのバルク波を利用した、高い結合係数を有する共振子を構成し得ることがわかる。
 図32は、厚み滑りモードのバルク波を利用する弾性波装置の平面図である。弾性波装置80では、圧電層2の第1の主面2a上において、電極3と電極4とを有する1対の電極が設けられている。なお、図32中のKが交叉幅となる。前述したように、本発明の弾性波装置では、電極の対数は1対であってもよい。この場合においても、上記d/pが0.5以下であれば、厚み滑りモードのバルク波を効果的に励振することができる。
 図33は、d/pを限りなく0に近づけた場合のLiNbOのオイラー角(0°,θ,ψ)に対する比帯域のマップを示す図である。図33のハッチングを付して示した部分が、少なくとも5%以上の比帯域が得られる領域であり、当該領域の範囲を近似すると、下記の式(1)、式(2)及び式(3)で表される範囲となる。
 (0°±10°,0°~20°,任意のψ)  …式(1)
 (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
 (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180°,任意のψ)  …式(3)
 従って、上記式(1)、式(2)または式(3)のオイラー角範囲の場合、比帯域を十分に広くすることができ、好ましい。圧電層2がタンタル酸リチウム層である場合も同様である。
 図34は、d/2pと、メタライゼーション比MRと、比帯域との関係を示す図である。上記弾性波装置において、d/2pと、MRが異なる様々な弾性波装置を構成し、比帯域を測定した。図34の破線Eの右側のハッチングを付して示した部分が、比帯域が17%以下の領域である。比帯域が17%以下である場合には、圧電層2の膜厚や電極3,4の寸法などを調整することにより、スプリアスを好適に小さくすることができる。ハッチングを付した領域と、付していない領域との境界は、MR=3.5(d/2p)+0.075で表される。すなわち、MR=1.75(d/p)+0.075である。従って、好ましくは、MR≦1.75(d/p)+0.075である。その場合には、比帯域を17%以下としやすい。より好ましくは、図9中の一点鎖線E1で示すMR=3.5(d/2p)+0.05の右側の領域である。すなわち、MR≦1.75(d/p)+0.05であれば、比帯域を確実に17%以下にすることができる。
1…弾性波装置
2…圧電層
2a…第1の主面
2b…第2の主面
3,4…電極
5,6…第1,第2のバスバー
7…絶縁層
7a…開口部
8…支持部材
8a…開口部
9…空洞部
10…弾性波装置
11…IDT電極
12…圧電性基板
14…支持基板
14a,14b…第1,第2の主面
14c…凹部
14d…支持部
15…質量付加膜
16…圧電層
16a,16b…第1,第2の主面
16c…貫通孔
22,23…第1,第2のバスバー
24,25…第1,第2の電極指
26…圧電基板
26a,26b…第1,第2の主面
27…犠牲層
28…凹部
29…配線電極
33…保護膜
34…中間膜
35…質量付加膜
35a…凸部
43…支持部材
44…支持基板
45…接合層
45c…凹部
55…質量付加膜
55a…凸部
55b…枠状部
65…質量付加膜
65A,65B…第1,第2の櫛形部
65a…第1の凸部
65b…第1の共通接続部
65c…第2の凸部
65d…第2の共通接続部
80…弾性波装置
82…音響多層膜
82a,82c,82e…低音響インピーダンス層
82b,82d…高音響インピーダンス層
83…支持部材
201…圧電膜
201a,201b…第1,第2の主面
451,452…第1,第2領域
C…励振領域
D…交叉領域
VP1…仮想平面

Claims (20)

  1.  対向し合う第1の主面及び第2の主面を有し、かつニオブ酸リチウムまたはタンタル酸リチウムからなる圧電層と、
     前記圧電層の前記第1の主面に設けられており、複数の電極指を有するIDT電極と、
     前記圧電層の前記第2の主面に設けられており、周期的に配置された複数の凸部を有する質量付加膜と、
    を備え、
     前記圧電層の厚みをd、前記複数の電極指のうち隣り合う電極指の中心間距離をpとした場合、d/pが0.5以下であり、
     平面視において、前記質量付加膜の前記凸部の少なくとも一部が、前記電極指の少なくとも一部と重なっている、弾性波装置。
  2.  前記d/pが0.24以下である、請求項1に記載の弾性波装置。
  3.  前記IDT電極の前記複数の電極指が設けられている周期と、前記質量付加膜の前記複数の凸部が設けられている周期とが同じである、請求項1または2に記載の弾性波装置。
  4.  空洞部と、前記圧電層を支持している支持部と、を有する支持基板をさらに備え、
     前記質量付加膜が、平面視において、前記支持部の少なくとも一部に重なっている、請求項1~3のいずれか1項に記載の弾性波装置。
  5.  支持基板と、
     前記圧電層と前記支持基板とを接合しており、空洞部を有する接合層と、
    をさらに備える、請求項1~3のいずれか1項に記載の弾性波装置。
  6.  前記質量付加膜の熱伝導率が、前記圧電層の熱伝導率よりも高い、請求項1~5のいずれか1項に記載の弾性波装置。
  7.  前記質量付加膜がIDT電極であり、前記複数の凸部が複数の電極指である、請求項1~6のいずれか1項に記載の弾性波装置。
  8.  前記質量付加膜を覆っている保護膜をさらに備える、請求項1~7のいずれか1項に記載の弾性波装置。
  9.  前記複数の電極指が延びる方向と直交する方向から見たときに、隣り合う前記電極指同士が重なり合う領域が交叉領域であり、前記交叉領域の平面視における面積を共振子面積Srとし、前記質量付加膜の厚みをtm、前記質量付加膜の密度をρm、前記複数の凸部の平面視における面積の合計をSm、前記複数の凸部の前記交叉領域における被覆率をCm、Cm=Sm/Srとし、前記交叉領域における前記複数の電極の質量の合計をMfとし、係数をaとしたときに、Cm=a×Mf/(ρm×tm×Sr)であり、
     前記係数aの値が1±0.5の範囲内である、請求項1~8のいずれか1項に記載の弾性波装置。
  10.  前記係数aの値が1±0.3の範囲内である、請求項9に記載の弾性波装置。
  11.  前記係数aの値が1±0.1の範囲内である、請求項10に記載の弾性波装置。
  12.  前記圧電層を貫通する貫通孔を有する、請求項1~11のいずれかに記載の弾性波装置。
  13.  隣り合う前記電極指同士が対向している方向に見たときに、隣り合う前記電極指同士が重なり合う領域である励振領域に対する、前記励振領域内の前記電極指の面積の割合であるメタライゼーション比MRが、MR≦1.75(d/p)+0.075を満たす、請求項1~12のいずれか1項に記載の弾性波装置。
  14.  前記圧電層を構成しているニオブ酸リチウムまたはタンタル酸リチウムのオイラー角(φ,θ,ψ)が、以下の式(1)、式(2)または式(3)の範囲にある、請求項1~13のいずれか1項に記載の弾性波装置。
     (0°±10°,0°~20°,任意のψ)  …式(1)
     (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
     (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180°,任意のψ)  …式(3)
  15.  前記圧電層を構成しているニオブ酸リチウムまたはタンタル酸リチウムのオイラー角(φ,θ,ψ)が、図33において、ハッチングを付して示す領域内にある、請求項1~14のいずれか1項に記載の弾性波装置。
  16.  互いに対向する第1の主面、及び、第2の主面を有する支持基板の前記第1の主面に第1凹部を形成する第1凹部形成工程と、
     前記第1凹部に犠牲層を形成する犠牲層形成工程と、
     前記犠牲層に、周期的に配置するように、複数の第2凹部を形成する第2凹部形成工程と、
     前記複数の第2凹部に質量付加膜を設ける質量付加膜形成工程と、
     前記支持基板の前記第1の主面に圧電基板を接合する圧電基板接合工程と、
     前記圧電基板を研削して圧電層を形成する圧電層形成工程と、
     前記圧電層を貫通する貫通孔を設ける貫通孔形成工程と、
     前記圧電層の前記支持基板とは反対側の主面に複数の電極指を有するIDT電極を形成する電極形成工程と、
     前記貫通孔を介して前記犠牲層を除去する犠牲層除去工程と、
    を備え、
     前記圧電層の厚みをd、前記複数の電極指のうち隣り合う電極指の中心間距離をpとした場合、d/pが0.5以下であり、
     前記質量付加膜により複数の凸部が形成されており、
     平面視において、前記質量付加膜の前記凸部の少なくとも一部が、前記電極指の少なくとも一部と重なっている、弾性波装置の製造方法。
  17.  前記圧電基板接合工程において、前記支持基板の前記第1の主面と前記圧電基板との間に接合層を設ける、請求項16に記載の弾性波装置の製造方法。
  18.  前記第2凹部形成工程と前記質量付加膜形成工程との間に、前記第2凹部に保護膜を形成する保護膜形成工程をさらに備える、請求項16または17に記載の弾性波装置の製造方法。
  19.  互いに対向する第1の主面、及び、第2の主面を有する圧電基板の前記第2の主面に、周期的に配置された複数の凸部を有する質量付加膜を形成する質量付加膜形成工程と、
     前記質量付加膜を覆う犠牲層を形成する犠牲層形成工程と、
     少なくとも前記犠牲層を覆うように接合層を形成する接合層形成工程と、
     前記接合層の、前記圧電基板側とは反対側の主面に支持基板を接合する支持基板接合工程と、
     前記圧電基板を研削して圧電層を形成する圧電層研削工程と、
     前記圧電層を貫通する貫通孔を設ける貫通孔形成工程と、
     前記圧電層の前記支持基板とは反対側の主面に複数の電極指を有するIDT電極を形成する電極形成工程と、
     前記貫通孔を介して前記犠牲層を除去する犠牲層除去工程と、
    を備え、
     前記圧電層の厚みをd、前記複数の電極指のうち隣り合う電極指の中心間距離をpとした場合、d/pが0.5以下であり、
     前記質量付加膜は複数の凸部を有しており、
     平面視において、前記質量付加膜の凸部の少なくとも一部が、前記電極指の少なくとも一部と重なっている、弾性波装置の製造方法。
  20.  前記質量付加膜形成工程と前記犠牲層形成工程との間に、前記質量付加膜を覆う保護膜を形成する保護膜形成工程をさらに備える、請求項19に記載の弾性波装置の製造方法。
PCT/JP2021/036135 2020-10-02 2021-09-30 弾性波装置 WO2022071488A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063086646P 2020-10-02 2020-10-02
US63/086,646 2020-10-02

Publications (1)

Publication Number Publication Date
WO2022071488A1 true WO2022071488A1 (ja) 2022-04-07

Family

ID=80950494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036135 WO2022071488A1 (ja) 2020-10-02 2021-09-30 弾性波装置

Country Status (1)

Country Link
WO (1) WO2022071488A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059674A1 (fr) * 2006-11-13 2008-05-22 Murata Manufacturing Co., Ltd. Elément d'onde interne acoustique, dispositif d'onde interne acoustique et leur procédé de fabrication
JP2010109949A (ja) * 2008-10-31 2010-05-13 Murata Mfg Co Ltd 電子デバイスの製造方法および圧電デバイスの製造方法
JP2010154505A (ja) * 2008-11-19 2010-07-08 Ngk Insulators Ltd ラム波装置
JP2012005106A (ja) * 2010-05-17 2012-01-05 Murata Mfg Co Ltd 複合圧電基板の製造方法および圧電デバイス
WO2015137054A1 (ja) * 2014-03-14 2015-09-17 株式会社村田製作所 弾性波装置
US20170214381A1 (en) * 2016-01-22 2017-07-27 Rf Micro Devices, Inc. Guided wave devices with selectively thinned piezoelectric layers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059674A1 (fr) * 2006-11-13 2008-05-22 Murata Manufacturing Co., Ltd. Elément d'onde interne acoustique, dispositif d'onde interne acoustique et leur procédé de fabrication
JP2010109949A (ja) * 2008-10-31 2010-05-13 Murata Mfg Co Ltd 電子デバイスの製造方法および圧電デバイスの製造方法
JP2010154505A (ja) * 2008-11-19 2010-07-08 Ngk Insulators Ltd ラム波装置
JP2012005106A (ja) * 2010-05-17 2012-01-05 Murata Mfg Co Ltd 複合圧電基板の製造方法および圧電デバイス
WO2015137054A1 (ja) * 2014-03-14 2015-09-17 株式会社村田製作所 弾性波装置
US20170214381A1 (en) * 2016-01-22 2017-07-27 Rf Micro Devices, Inc. Guided wave devices with selectively thinned piezoelectric layers

Similar Documents

Publication Publication Date Title
WO2022085581A1 (ja) 弾性波装置
WO2023002858A1 (ja) 弾性波装置及びフィルタ装置
WO2021246447A1 (ja) 弾性波装置
WO2022044869A1 (ja) 弾性波装置
US20230327634A1 (en) Acoustic wave device
WO2023002823A1 (ja) 弾性波装置
WO2022102596A1 (ja) 弾性波装置
WO2022138328A1 (ja) 弾性波装置
WO2022071488A1 (ja) 弾性波装置
WO2022102619A1 (ja) 弾性波装置
WO2022131216A1 (ja) 弾性波装置
WO2023002822A1 (ja) 弾性波装置及びその製造方法
WO2022255304A1 (ja) 圧電バルク波装置及びその製造方法
WO2023224072A1 (ja) 弾性波装置
WO2022249926A1 (ja) 圧電バルク波装置及びその製造方法
WO2023204250A1 (ja) 弾性波装置
WO2023106334A1 (ja) 弾性波装置
WO2023195409A1 (ja) 弾性波装置および弾性波装置の製造方法
WO2023190697A1 (ja) 弾性波装置
WO2022131076A1 (ja) 弾性波装置
WO2024043343A1 (ja) 弾性波装置
WO2022210687A1 (ja) 弾性波装置
WO2023058713A1 (ja) 弾性波素子の製造方法および弾性波素子
US20240048115A1 (en) Acoustic wave device and method of manufacturing acoustic wave device
WO2022211103A1 (ja) 弾性波装置及び弾性波装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP