WO2022070367A1 - 管のねじ継手およびその接続方法 - Google Patents

管のねじ継手およびその接続方法 Download PDF

Info

Publication number
WO2022070367A1
WO2022070367A1 PCT/JP2020/037353 JP2020037353W WO2022070367A1 WO 2022070367 A1 WO2022070367 A1 WO 2022070367A1 JP 2020037353 W JP2020037353 W JP 2020037353W WO 2022070367 A1 WO2022070367 A1 WO 2022070367A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
shoulder
pin
coupling
inch
Prior art date
Application number
PCT/JP2020/037353
Other languages
English (en)
French (fr)
Inventor
正樹 吉川
城吾 後藤
誠二 尾▲崎▼
秀雄 佐藤
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to PCT/JP2020/037353 priority Critical patent/WO2022070367A1/ja
Priority to BR112023005702A priority patent/BR112023005702A2/pt
Priority to US18/044,990 priority patent/US20230383875A1/en
Priority to JP2021528462A priority patent/JP7248117B2/ja
Priority to CA3190633A priority patent/CA3190633A1/en
Publication of WO2022070367A1 publication Critical patent/WO2022070367A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/001Screw-threaded joints; Forms of screw-threads for such joints with conical threads
    • F16L15/004Screw-threaded joints; Forms of screw-threads for such joints with conical threads with axial sealings having at least one plastically deformable sealing surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/04Screw-threaded joints; Forms of screw-threads for such joints with additional sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/06Screw-threaded joints; Forms of screw-threads for such joints characterised by the shape of the screw-thread
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/08Screw-threaded joints; Forms of screw-threads for such joints with supplementary elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Definitions

  • the present invention relates to a threaded joint used for connecting an oil well pipe including a tubing and a casing used for exploration and production of an oil well or a gas well, and a steel pipe applied to a geothermal well using high temperature steam for power generation.
  • the present invention relates to a threaded joint for steel pipes in which pins connected by threads from both ends of the ring are brought into contact with each other at the center of the inner surface of the coupling.
  • Threaded joints are widely used to connect steel pipes used in petroleum industry equipment such as oil country tubular goods.
  • Oil well pipes called casings and tubing are used for drilling and production of crude oil and natural gas wells, and the connection is conventionally the threaded joint 100 specified in the API (American Petroleum Association) 5B standard shown in FIG. 1A. Has been used.
  • FIG. 1B is a schematic explanatory view of a threaded joint 200 for oil country tubular goods in a coupling type and in which the shoulder portions 201 at the tip of the pin are in contact with each other, which is a vertical sectional view of the threaded joint 200 of a circular pipe.
  • the threaded joint 200 usually includes a tapered screw 203 at each pipe 202 and a shoulder portion 201 at the tip of the pin, which is also called a torque shoulder portion.
  • the threaded joint 200 does not have the seal portion 302 as in the premium joint.
  • the joint called the coupling 204 is provided with a taper screw 205 at both ends, and the taper screw 205 is screwed with the taper screw 203 machined at the pipe end of the pipe 202.
  • the coupling 204 does not have the shoulder portion 303 as in the premium joint.
  • the taper threads 203 and 205 are important for tightly fixing the fitting, and inserting the pin 206 with the taper thread 203 into the coupling 204 also with the taper thread 205 causes radial interference. Pin 206 is fixed in the coupling 204.
  • the coupling 204 includes a male screw member called a pin 206 and a corresponding female screw member.
  • One pin 206a and the other pin 206b connected to the coupling 204 are machined with a male thread as a taper screw 203 on the outer surface thereof, and each has a shoulder portion 201 at the tip thereof.
  • the opposing coupling 204 has a female thread on its inner surface as a tapered thread 205 that can be screwed into a male thread.
  • one pin 206a is pre-tightened at the factory until it reaches the axial center position of the coupling 204, the other pin 206b is locally tightened, and one pin 206a already tightened at the factory.
  • the shoulder portion 201 of one pin 206a also serves as a stopper that provides an appropriate tightening stop position for the other pin 206b when the other pin 206b is tightened in the field.
  • the shoulder surfaces at the tips of both pins come into direct contact with each other to form a high tightening torque, and the pipe 202 and the threaded joint 200 rotate while excavating a horizontal well. You can propel in the well.
  • API5B Threading, Gauging, and Inspection of Casing, Tubing, and Line Pipe Threads published December 1, 2017
  • API7G Recommended Practice for Drill Stem Design and Operating Limits published December 1, 1998
  • the premium joint shown in FIG. 2 is composed of three regions, a screw portion 301, a seal portion 302, and a shoulder portion 303, each of which has a separate function.
  • a screw portion 301 since it has an independent sealing part 302, it is highly airtight even under a high load combined load, but it has high processing dimensional accuracy and high price, so it is generally used in difficult environments such as deep sea development. Therefore, it is hard to say that it is a suitable threaded joint that satisfies both price and performance for shale development.
  • the pin 101 of the API BTC screw which is the general purpose screw of FIG. 1A
  • the coupling 102 are connected only by screw fitting, as compared with the threaded joint 100 of FIG. 1B.
  • the threaded joint 200 in which the shoulder portions 201 at the tip of the pin abut against each other is rational in generating a high tightening torque.
  • the tips of the pins 206 inserted from both tube ends of the coupling 204 are not necessarily in contact with each other, and are strictly strict. Is biased. This uneven contact causes excessive strong contact on the inner diameter side or the outer diameter side of the shoulder surface, which is the end surface of the shoulder portion 201 at the tip of the pin, in the process of tightening the screw, and the plastic deformation of the shoulder surface causes the tightening torque. It occurs from a low stage and increases the risk of reduced yield torque (see paragraph 15) and galling (metal-to-metal seizure) during tightening.
  • FIGS. 3A to 3C schematically show the cross section of the shoulder portion 201 immediately before the contact at the portion A in FIG. 1B.
  • Factors that affect the state of contact of the shoulder portion 201 at the tip of the pin are as follows, although the degree of influence varies. 1) Deflection of the pin tip downward (inner surface side of the pipe) due to the diameter reduction due to the fitting of the screw 2) Vertical processing finish of the shoulder surface 3) Thread taper angle difference between the pin 206 and the coupling 204 4) Above 2 ) And 3) difference between A pin side and B pin side
  • this contact method affects the basic performance of the following threaded joints.
  • Yield torque in the process of tightening the pins 206 to both ends of the coupling 204, the plastic deformation of the shoulder surface that resists tightening progresses, and the relationship between the tightening torque and the tightening rotation speed becomes the starting point showing non-linearity.
  • ii) Tightening and tightening performance (seizure does not occur up to the specified number of times even if the threaded joint 200 is repeatedly tightened and tightened with a torque set below the yield torque).
  • Airtightness (after tightening the threaded joint 200, gas or water as a pressure medium does not leak from the joint even if a combined load of axial tension / compression, internal pressure, and external pressure is applied).
  • the center of the coupling has a shoulder portion overhanging on the inner diameter side of the pipe, and is coupled with the outer peripheral surface of the nose portion of the pin.
  • the shoulder portion of the pin and the shoulder portion of the coupling come into contact with each other and tighten to a predetermined torque.
  • the shoulder portion of the coupling paired with the shoulder portion of the pin is a machined surface, and a contact state with relatively little variation can be obtained.
  • the premium joint having the above structure requires extremely high dimensional accuracy for each member, which increases the manufacturing cost.
  • the screw interference amount of the premium joint shown in Patent Document 3 is controlled to be less than half the dimension of the API BTC screw of Non-Patent Document 1.
  • the screw interference amount on the factory tightening side is set to the on-site tightening side in order to prevent the screw joint on the factory tightening side from turning around when tightening on site.
  • the feature is that the tightening torque can be set higher than that on the on-site tightening side by making it larger than the screw interference amount in advance, and the effect of the contact surface on the threaded joint performance is not focused on.
  • the present invention has been made in view of the above-mentioned actual conditions, and is provided at the tip of a pin inserted from both ends of A and B in addition to a high tightening torque for a threaded joint in which the shoulder portions at the tip of the pin are in contact with each other.
  • the contact surface is affected by the vertical workability of the shoulder part and the angle of the thread taper, the shoulder angle for avoiding excessive plastic deformation of the shoulder surface and maintaining and improving the performance of the threaded joint. It is an object of the present invention to provide a threaded joint in which the relationship between the thread taper angle and the thread taper angle is specified under suitable conditions, and a method for connecting the threaded joint.
  • a pin provided with a male threaded male thread on the outer peripheral surface of the tip of the first steel pipe, and a female threaded thread screwed with the male thread on the inner peripheral surfaces of both ends of the second steel pipe. It is a threaded joint including a coupling provided with, and is configured so that the shoulder surfaces of the tips of the pins come into contact with each other when the male threads of the pins are screwed into the female threads at both ends of the coupling.
  • the relationship between the shoulder angle parameter and the screw taper angle parameter for the coupling and the two pins inserted from both ends of the coupling is defined by the following equation (1).
  • the pin which is screw-fitted to the coupling, is first tightened to one of the couplings.
  • the position is controlled in the axial center of the coupling with a jig indicating the tightening stop position of the one pin inserted from the end side of the coupling, and then the one pin and the other pin are tightened by tightening the other pin.
  • the shoulder is taken into consideration the difference in the thread taper angle between the two pins inserted into the coupling and the coupling. It shows a suitable range of shoulder angle parameters for the two pins that directly affect the abutment. Therefore, according to the present invention, stress concentration and plastic deformation are avoided due to strong contact due to uneven contact between the shoulder surfaces of the pins, which contributes to stabilization and improvement of the tightening torque performance and airtightness performance of the threaded joint. be able to.
  • the present invention is not a special screw (premium joint), there is no long sealing portion and the cutting length and the processing time can be short, so that the cost competitiveness and versatility are high. Further, the present invention provides seizure resistance and airtightness to the shoulder portion, which has only the function of generating high torque, as compared with the conventional threaded joint in which the shoulder surfaces are in contact with each other as shown in FIG. 1B. It is possible to have both, and thus the tightening and tightening performance and the airtightness performance can be improved.
  • FIG. 6 is a cross-sectional view showing still another example of a conventional threaded joint.
  • It is a conceptual diagram for demonstrating the form of contact between shoulder portions, and shows the case where the shoulder surface of the B pin is relatively perpendicular to the shoulder surface of the A pin.
  • It is a conceptual diagram for demonstrating the form of contact between shoulder portions, and shows the case where the shoulder surface of B pin is inclined to the negative side with respect to the shoulder surface of A pin.
  • It is a conceptual diagram for demonstrating the form of contact between shoulder portions and shows the case where the shoulder surface of pin B is inclined to the positive side relatively with respect to the shoulder surface of pin A.
  • the present inventors set the tightening torque to a torque as high as the yield torque or less, and then set the shoulder angle ⁇ of the pin tip and the pin. It has been found that it is effective to specify a suitable relationship between the screw taper angle ⁇ of the coupling screw.
  • FIG. 4 shows the shoulder angle parameter ⁇
  • FIGS. 5A and 5B show the screw taper angle parameter ⁇ .
  • the shoulder angle is set to 0 ° when cut at a right angle, and the inclination of the shoulder surface that opens the space on the outer diameter side of the shoulder is positive (Positive), and the opposite is negative (Negative). As, it is expressed here. Since each of the two pins has a shoulder, if the shoulder angle of the pin on the A end side (referred to as the A pin for convenience) is ⁇ A and the shoulder angle of the pin on the B end side (referred to as the B pin for convenience) is ⁇ B, the shoulder is shouldered.
  • the screw taper angle difference will be explained.
  • the thread taper a design value indicating the gradient is set, but in actual manufacturing, the thread taper has a tolerance range. If there is an angle difference between the thread taper of the pin and the coupling, the coupling generally has an outer diameter larger than the outer diameter of the pipe body and a pipe thickness thicker than the pipe body pipe thickness, so that the rigidity is high and the coupling screw. Forced to tilt along the tapered surface.
  • the pin and the coupling generally have the same value as a taper screw.
  • the API BTC screw of Non-Patent Document 1 has a taper of 1/16.
  • the 1/16 taper represents an inclination in which the diameter decreases by 0.0625 inch in the radial direction when traveling 1 inch in the axial direction, which is 3.5763 ° when converted into an angle.
  • the reason for considering the difference in thread taper angle is that the taper screw fits in the pin and the coupling during the tightening process, and the pin advances in the direction of the pipe axis in the coupling, but the rigidity of the coupling is higher than that of the pin. This is because the shoulder surface, which is the end surface of the pin installed in front of the threaded portion, is forcibly tilted along the taper of the coupling thread surface by the amount of the angle difference of the pin screw taper.
  • the shoulder portion at the tip of the pin faces downward due to the diameter reduction of the pin as shown in FIGS. Even if the shoulder surface at the tip of the pin is manufactured vertically as designed, it will bend toward the inner surface of the pipe), and when the shoulder surfaces of the pins come into contact with each other, contact will start from the outer diameter side of the shoulder surface and gradually. The inner diameter side of the shoulder comes into contact with the shoulder.
  • FIGS. 7A and 7B the tightening torque and the tightening rotation when the A pin is first screwed to the center of the A end side of the coupling to the center in the axial direction of the coupling and then the B pin is fitted from the B end side. Show the relationship between numbers.
  • the position indicated by the arrow in the figure represents the yield torque of each case (the starting point where the plastic deformation of the shoulder surface progresses and the relationship between the tightening torque and the tightening rotation speed indicates non-linearity).
  • FIGS. 8A to 8C show the axial stress distribution in the region near the shoulder when the B pin reaches the reference position CL (a position symmetrical with respect to the center of the coupling) of each case.
  • the shoulder angle parameter ⁇ 0 ° as the initial value
  • the shoulder bends downward (on the inner surface side of the pipe) due to the diameter reduction due to the fitting of the screw, so that a slight strong contact is made to the outer diameter side of the shoulder.
  • the contact is made over the entire shoulder surface.
  • FIG. 9 shows the contact pressure distribution of the shoulder surface at the yield torque of each case.
  • the shoulder angle parameter is negative as in case 1
  • the yield torque is such that the outer diameter of the shoulder comes into contact in advance and there is also deflection toward the inner diameter side of the pipe due to screw interference.
  • Plastic deformation progresses with the movement toward the A pin side, and as shown in FIG. 7B, it is lower than that of Case 0 and Case 2.
  • This method of contact is the basic performance of threaded joints: (i) Yield torque (in the process of tightening pins at both ends of the coupling, the plastic deformation of the shoulder surface that resists tightening progresses, and the tightening torque and tightening The torque at which the relationship between the number of revolutions is the starting point indicating non-linearity), (ii) Tightening and tightening performance (even if the threaded joint is repeatedly tightened and tightened with the specified torque, seizure does not occur up to the specified number of times), ( iii) The present invention affects the airtightness (gas and water as a pressure medium do not leak from the joint even when a combined load of axial tension / compression, internal pressure, and external pressure is applied after tightening the threaded joint).
  • the threaded joint is tightened with a high tightening torque, a high contact pressure is generated on the shoulder contact surface, and the airtightness is improved.
  • the high contact pressure on the contact surface and the bias of the contact pressure distribution cause local plastic deformation and increase the risk of seizure between metals due to the tightening and tightening of the threaded joint.
  • the contact pressure on the shoulder contact surface is low, so the risk of seizure between metals during tightening and tightening of the threaded joint is low.
  • the contact pressure of the shoulder contact surface is low, the airtight state cannot be maintained due to the pressure of the internal fluid acting on the threaded joint itself or the combined load of the pressure and the axial tensile load.
  • the seizure resistance and the airtightness have contradictory properties, and it is further important to make the contact state of the contact surface suitable.
  • the threaded joint 1 according to the embodiment of the present invention described below is based on the above-mentioned ideas, means, and methods.
  • FIG. 10 shows the threaded joint 1 according to the embodiment of the present invention.
  • the threaded joint 1 is a pin 3 provided with a male thread 2 which is a male tapered screw on the outer peripheral surface of the tip of the first steel pipe, and a female screwed with the male screw 2 on the inner peripheral surfaces of both ends of the second steel pipe.
  • a coupling 5 provided with a female thread 4 which is a taper thread.
  • the threaded joint 1 is configured so that the shoulder surfaces 6 at the tips of the pins 3 come into contact with each other when the male threads 2 of the pins 3 are screwed into the female threads 4 at both ends of the coupling 5.
  • this embodiment Similar to the API BTC screw (hereinafter, also referred to as the prior art) of Non-Patent Document 1, this embodiment also has a screw taper of 1/16 in design.
  • the 1/16 taper represents an inclination in which the diameter decreases by 0.0625 inch in the radial direction when traveling 1 inch in the axial direction, which is 3.5763 ° when converted into an angle.
  • tolerances are set for the thread taper.
  • the thread taper tolerance is 0.0610inch / inch to 0.066inch / inch (3.4907 ° to 3.77 °) for pin threads (male thread 2) and cups.
  • the ring screw (female screw 4) is 0.060 inch / inch to 0.067 inch / inch (3.4336 ° to 3.8330 °).
  • the aim of the screw taper is 0.0625 inch / inch (3.5763 °) for both the pin 3 and the coupling 5.
  • the coupling 5 When there is an angle difference in the screw taper, the coupling 5 generally has a pipe thickness larger than the pipe body outer diameter and a pipe thickness larger than the pipe body pipe thickness, so that the coupling 5 has high rigidity, and the screw taper of the pin 3 is a cup.
  • An angle change occurs along the thread taper surface of the ring 5 by the amount of the angle difference.
  • the shoulder part at the tip of the pin screw corresponds to the difference of 0.006 inch. 0.17 ° Shoulder surface tilts to the positive side.
  • the shoulder part at the tip of the pin screw corresponds to the difference of 0.006 inch. 0.17 ° Shoulder surface 6 will be tilted to the negative side.
  • the inclination of the screw taper of the pin 3 is made shallow and the inclination of the screw taper of the coupling 5 is made deep, so that the inclination of the screw taper of the pin 3 is made deep.
  • a difference was intentionally made in the aim of the taper to weaken the contact.
  • the pin screw of this embodiment has a screw taper aim of 0.062 inch / inch (3.5478 °), the tolerance range is 0.0610 inch / inch to 0.066 inch / inch (3.4907 ° to 3.77 °), and the coupling screw has a screw taper aim of 0.064 inch.
  • the taper is / inch (3.6619 °) with a narrow tolerance of 0.063inch / inch to 0.066inch / inch (3.6049 ° to 3.7760 °).
  • SSC sulfuride stress corrosion cracking
  • the screw taper angle parameter ⁇ affects the shoulder angle in the range of ⁇ 0.17 ° ⁇ ⁇ + 0.29 ° in the combination of the screw taper.
  • the shoulder surface 6 of the A pin and the B pin was blasted, and the surface roughness was set to 63 to 190 ⁇ inch (1.6 to 4.8 ⁇ m) in Ra. That is, the surface roughness Ra of the shoulder surface 6 is 63 ⁇ inch (1.6 ⁇ m) ⁇ Ra ⁇ 190 ⁇ inch (4.8 ⁇ m).
  • the lubricant was thinly and evenly applied not only to the screw portions but also to the blasted shoulder surface 6.
  • FIG. 11 shows a comparison between the conventional technique shown in FIG. 1A and the screw interference amount of the present embodiment. Due to the fitting of the pin threaded portion and the threaded portion of the coupling 5, the surface pressure at the contact surface is proportional to the amount of screw interference from the shrink fitting type (Shrink Fit theory). Further, if the surface pressure is regarded as an evenly distributed load W generated over the threaded portion, and if the pin cross section is linearly approximated as a cantilever as shown in FIGS. 6A and 6B, the deflection is proportional to the amount of screw interference. It can be seen that the downward deflection (on the inner surface side of the pipe) of the pin tip is, after all, proportional to the amount of screw interference due to the diameter reduction accompanying the fitting of the screw.
  • the amount of screw interference is smaller than that of the prior art, and the value thereof is the same as the screw representative diameter of the pin (same as the screw diameter E7 at the L7 position of the prior art screw.
  • Non-Patent Document 1 The value divided by ( Figure 1, page 11 of Figure 1) was set to 0.0045, and the screw interference ratio between the pin and the coupling screw, that is, the screw fitting ratio, was kept constant regardless of the outer diameter size of the pipe body. That is, in the present embodiment, the design value of the screw fitting ratio is 0.0045, and the actual screw fitting ratio is 0.0032 or more and 0.0059 or less from the tolerance of the screw interference amount (+/- 0.006 ′′).
  • the dimensions of the screws of the present application indicate the dimensions after threading, which shall be measured and confirmed before tightening.
  • the relationship between the shoulder angle parameter ⁇ and the screw taper angle parameter ⁇ is more preferably defined by the following equation (3). That is, it is more reliable to adjust ⁇ on the plus (positive) side.
  • the yield torque can be set higher as shown in FIGS. 7A and 7B. 0 ° ⁇ 2.0 ° ⁇ ⁇ ⁇ Equation (3)
  • T Yield torque [ft-lbf]
  • TS Shouldering torque [inch-lbf]
  • D Delta torque [inch-lbf]
  • P c Contact pressure in the threads [psi]
  • E 7 Thread pitch Dia.
  • L 4 Thread length [inch]
  • w Coupling OD [inch]
  • d Pipe inner diameter / Pipe ID [inch]
  • D bv Bevel diameter / Bevel Dia.
  • ⁇ m Thread interference on dia.
  • the evaluation value of the yield torque is 23,410 ft-lbf (31,740 Nm).
  • the actual value in the yield torque test conducted on the threaded joint 1 of the actual pipe is 28,000 ft-lbf (37,960 Nm) or more, which enables a safe and practical evaluation.
  • the maximum tightening torque is 19,890 ft-lbf (26,970 Nm), which is 85% of the yield torque obtained by the evaluation formula, for the threaded joint 1 having the specifications shown in Table 2.
  • the maximum tightening torque of the API BTC screw of Non-Patent Document 1 with the same diameter and thickness is 4,700 ft-lbf (6,370 N-m), and the tightening torque of the shoulder contact type screw joint 1 is not. It can be seen that it can be tightened with a higher torque than the contact type threaded joint.
  • FIG. 12 shows the threaded joint 1 of the present embodiment so that the axial position of the A pin after tightening does not reach or exceed the axial center of the coupling 5.
  • the jig 7 serving as a stopper is inserted in advance from the end face of the coupling 5 on the B end side on the opposite side, so that the shoulder at the tip of the A pin is shouldered. It is preferable to use a position adjusting jig 7 capable of appropriately arranging the surface 6 in the center of the inner surface of the coupling.
  • the A pin is tightened in advance by position control, so that the shoulder surface 6 of the A pin and the B pin come into contact as intended at the center of the inner surface of the coupling even if there are various variations. Can be done.
  • Table 2 shows the specifications of the pipe and coupling used in the screw test.
  • Table 3 shows the shoulder angles ⁇ A and ⁇ B of the A pin and the B pin and the screw taper angle ⁇ PA, ⁇ PB, and the screw taper on the A end side and the B end side of the coupling 5
  • the angles ⁇ CA and ⁇ CB were measured, and the following performance was evaluated using these test pieces.
  • the design value of the screw fitting ratio was 0.0045, and the actual screw fitting ratio of the test piece was 0.0032 to 0.0059 due to the tolerance of the screw interference amount (+/- 0.006 ”). As shown in Fig.
  • the design value of the screw fitting ratio differs depending on the outer diameter, and the tolerance of the screw interference amount (+0.006 ”/ -0.010”) is wide, so the actual screw fitting ratio is 0.0036 to 0.0083.
  • the surface roughness Ra of the shoulder surface was set to 63 to 190 ⁇ inch (1.6 to 4.8 ⁇ m).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
  • Earth Drilling (AREA)
  • Mutual Connection Of Rods And Tubes (AREA)

Abstract

ショルダー面の過剰な塑性変形を回避し、ねじ継手の性能を維持・向上させるためのショルダー角度やねじテーパー角度の関係を好適な条件に規定したねじ継手を提供する。 第1の鋼管の先端の外周面に雄のテーパーねじである雄ねじが設けられたピンと、第2の鋼管の両端の内周面に前記雄ねじと螺合する雌のテーパーねじである雌ねじが設けられたカップリングとを含むねじ継手であって、前記カップリングの両端の雌ねじのそれぞれに前記ピンの雄ねじを螺合させた際に、前記ピンの先端のショルダー面同士が接触するよう構成されたねじ継手において、カップリングと前記カップリングの両端から挿入された2つのピンについてのショルダー角度パラメータとねじテーパー角度パラメータの関係が下記式(1)で定義され、下記式(2)で求められるイールドトルクの60%以上85%以下の締付けトルクで締付けられるねじ継手。 -1.5°≦Δθ―Δω≦2.0° ・・・式(1)

Description

管のねじ継手およびその接続方法
 本発明は、油井やガス井の探査や生産に使用されるチュービングおよびケーシングを包含する油井管や発電に高温蒸気を使う地熱井戸に適用する鋼管等の接続に用いるねじ継手に関するものであり、カップリングの両端からねじ接続されるピン同士がカップリングの内面中央で当接する形式の鋼管用ねじ継手に関する。
 ねじ継手は、油井管など石油産業設備に使用される鋼管の接続に広く使用されている。原油、天然ガス井戸の掘削、生産用にはケーシングおよびチュービングと呼ばれる油井管が使われるが、その接続には、従来、図1Aに示すAPI(米国石油協会)5B規格に規定されたねじ継手100が使用されてきた。
 しかし、近年の原油や天然ガスの井戸の4,000~10,000mへの深井戸化と、海洋や極地などの難環境での井戸開発への対応のためには、ISO13679やAPI5C5のCAL4(Connection Application Level 4)で規定される試験に合格することができるような、より性能の高いねじ継手が必要とされる。そこで、これらの用途に対しては、高い引張、圧縮、曲げ、内圧、および、外圧等の複合荷重を受けても気密性を保つことができる、例えば、図2や特許文献3に示すプレミアムジョイントと呼ばれるねじ継手300が用いられている。
 一方で、近年、シェールオイルおよびシェールガスを採取するための、深さ2,000~3,000mと陸上の比較的浅い井戸の開発も進んでいる。シェール開発では、頁岩(シェール)層に沿って水平坑井を掘削する際に、パイプおよび継手を回転させながら挿入するため、例えば図1Bや特許文献1、2に示すような、締付けトルクを高く設定できるピン先端ショルダー部同士を当接する形式の油井管用のねじ継手200が使用される場合がある。
 図1Bは、カップリング形式でかつピン先端のショルダー部201同士を当接する形式の油井管用のねじ継手200の模式的説明図であり、これは円管のねじ継手200の縦断面図となっている。ねじ継手200は、通常、各パイプ202にテーパーねじ203とピン先端にトルクショルダー部とも称されるショルダー部201とを備える。ねじ継手200には、プレミアムジョイントにあるようなシール部302は存在しない。また、カップリング204といわれる継手には、両端にテーパーねじ205を備えており、このテーパーねじ205は、パイプ202の管端に加工されたテーパーねじ203と螺合する。カップリング204には、プレミアムジョイントにあるようなショルダー部303は存在しない。テーパーねじ203、205は、管継手をタイトに固定するために重要であり、テーパーねじ203付きのピン206を同じくテーパーねじ205付きのカップリング204に挿入することで、径方向に干渉が生じてカップリング204内でピン206が固定される。
 カップリング204は、ピン206と呼ばれる雄ねじ部材と対応する雌ねじ部材を備える。カップリング204に接続される一方のピン206aと他方のピン206bは、その外面にテーパーねじ203として雄ねじが加工され、その先端にはそれぞれショルダー部201を有する。相対するカップリング204は、その内面に雄ねじと螺合することができるテーパーねじ205として雌ねじを有している。例えば、一方のピン206aは予め工場にてカップリング204の軸方向の中央の位置に到達するまで締付けておき、反対側のピン206bは現地で締付けて、既に工場で締付けてある一方のピン206aのショルダー部201と当接し、締付けを完了する。一方のピン206aのショルダー部201は現地での他方のピン206bの締付け時に、他方のピン206bの適正な締付け停止位置となるストッパの役目も担う。現地での締付けの結果、両方のピン先端のショルダー面同士が直接当接することで、高い締付けトルクが形成されて、水平坑井を掘削する際においても、パイプ202およびねじ継手200が回転しながら坑井の中を推進することが出来る。
特開2004-76843号公報 米国特許公開第2004/118569号明細書 特許第4930647号公報
API5B Threading、 Gauging、 and Inspection of Casing、 Tubing、 and Line Pipe Threads、2017年12月1日発行 API7G Recommended Practice for Drill Stem Design and Operating Limits、1998年12月1日発行
 図2に示すプレミアムジョイントは、ねじ部301、シール部302、ショルダー部303の3領域で構成されており、それぞれに機能が分離されている。特に独立したシール部302を有することから、高負荷の複合荷重下でも気密性が高い一方で、加工の寸法精度が高く、価格も高いので、深海の開発など難環境での使用が一般的であり、シェール開発には価格と性能の両方を満たす好適なねじ継手とは言い難い。
 シェール開発では、頁岩(シェール)層に沿って水平坑井を掘削する際に、パイプおよび継手を回転させながら挿入するため、締付けトルクの高いねじ継手が好まれ、高いトルクに抗する受圧面の高応力による塑性変形に耐える一方で、ねじ継手の耐焼付き性能や気密性も要求される。シェール開発向けのねじ継手には、価格と高トルク、耐焼付き性能、気密性能といった継手性能のバランスを図る必要がある。
 ねじの締付けに高トルクが必要となる井戸では、図1Aの汎用ねじであるAPIBTCねじのピン101とカップリング102がねじ嵌合のみで接続されているねじ継手100と比較して、図1Bのピン206とカップリング204のねじ嵌合に加えて、ピン先端のショルダー部201同士を当接する形式のねじ継手200は、高い締付けトルクを発生する上で合理的である。
 しかしながら、カップリング204の両方の管端(便宜上、片方をA端、他端をB端とも呼ぶ)からそれぞれ挿入されたピン206の先端は、必ずしも理想的には当接しておらず、厳密には偏当たりしている。この偏当たりは、ねじの締付けの過程において、ピン先端のショルダー部201の端面であるショルダー面の内径側、あるいは外径側に過剰な強接触を生ぜしめ、ショルダー面の塑性変形が締付けトルクの低い段階から発生し、イールドトルク(15段落参照)の低下や締付け中にゴーリング(金属同士の焼付き)が発生するリスクを高める。
 A、B両端のピン先端のショルダー部201の当接の形態を、一方のピン206a(便宜上、Aピンとも呼ぶ)のショルダー面を基準に他方のピン206b(便宜上、Bピンとも呼ぶ)の相対的位置関係として図3A~Cに示す。図3A~Cは、図1BのA部での当接直前のショルダー部201の断面を模式化して示している。
 ピン先端のショルダー部201の当接の状態に影響を与える因子として、影響の度合いの大小はあるものの、以下が考えられる。
1)ねじの嵌合に伴う縮径によって、ピン先端の下向き(管内面側)へのたわみ
2)ショルダー面の垂直加工仕上げ度
3)ピン206とカップリング204のねじテーパー角度差
4)上記2)と3)のAピン側とBピン側との差異
 また、この当接の仕方は、以下のねじ継手の基本性能に影響を及ぼす。
i)イールドトルク(カップリング204の両端にピン206を締付けていく過程で、締付けに抵抗するショルダー面の塑性変形が進み、締付けトルクと締付け回転数の関係が非線形性を示す開始点となるトルク)
ii)締付け締戻し性能(イールドトルク以下に設定したトルクで、ねじ継手200を繰返し締付け締戻ししても所定の回数まで焼付きが生じない)
iii)気密性能(ねじ継手200を締付けた後に、軸方向引張・圧縮、内圧、外圧の複合荷重を負荷しても圧力媒体となるガスや水が継手から漏れない)
 特許文献3で提案されているようなT&C(Thread and Coupling)形式のプレミアムジョイントでは、カップリングの中央には管の内径側に張り出したショルダー部を有し、ピンのノーズ部外周面とカップリングの内周面とのメタル-メタル接触によるねじ嵌合に引き続いて、ピンのショルダー部とカップリングのショルダー部が当接し、所定のトルクまで締付ける。ピン先端ショルダー部同士を当接する形式のねじ継手と比べて、ピンのショルダー部と対となるカップリングのショルダー部は機械加工面であり、相対的にばらつきの少ない接触状態が得られる。しかし、前記構造によるプレミアムジョイントは、各部材に極めて高い寸法精度が要求されるため、製造コストが増加する。例えば、特許文献3で示されるプレミアムジョイントのねじ干渉量は、非特許文献1のAPIBTCねじの半分以下の寸法に管理している。
 特許文献1で提案されているねじ継手は、現地での締付けの際に、工場で締付けた側の供廻りを防止するために、工場側で締付けるピンをカップリングの軸方向の中央位置よりも反対側の範囲まで締付けることで予め高いトルクで締付けておくことを特徴としており、当接面がねじ継手性能に及ぼす効果に着目したものではない。
 また、特許文献2で提案されているねじ継手は、やはり現地での締付けの際に、工場で締付けた側の供廻りを防止するために、工場で締付ける側のねじ干渉量を現地締付け側のねじ干渉量よりも予め大きくすることで、締付けトルクが現地締付け側と比較して高く設定できることを特徴としており、当接面がねじ継手性能に及ぼす効果に着目したものではない。
 本発明は、上記実状に鑑みてなされたものであり、ピン先端のショルダー部同士を当接する形式のねじ継手について、高い締付けトルクに加えて、A、B両端から挿入されるピンの先端にある当接面がショルダー部の垂直加工度、ねじテーパーの角度の影響を受けることを考慮した上で、ショルダー面の過剰な塑性変形を回避し、ねじ継手の性能を維持・向上させるためのショルダー角度やねじテーパー角度の関係を好適な条件に規定したねじ継手とその接続方法を提供することを目的とする。
 上記目的を達成するため、本発明の技術は、以下のように記載される。
[1]第1の鋼管の先端の外周面に雄のテーパーねじである雄ねじが設けられたピンと、第2の鋼管の両端の内周面に前記雄ねじと螺合する雌のテーパーねじである雌ねじが設けられたカップリングとを含むねじ継手であって、前記カップリングの両端の雌ねじのそれぞれに前記ピンの雄ねじを螺合させた際に、前記ピンの先端のショルダー面同士が接触するよう構成されたねじ継手において、
 カップリングと前記カップリングの両端から挿入された2つのピンについてのショルダー角度パラメータとねじテーパー角度パラメータの関係が下記式(1)で定義され、
 下記式(2)で求められるイールドトルクの60%以上85%以下の締付けトルクで締付けられるねじ継手。
-1.5°≦Δθ―Δω≦2.0° ・・・式(1)
Δθ:2つのピンの締付け前のショルダー角度θA、θBの和で構成するショルダー角度パラメータ(Δθ=θA+θB)
Δω:カップリングと2つのピンの締付け前のねじテーパー角度差ΔωA、ΔωBの和で構成するねじテーパー角度パラメータ(Δω=ΔωA+ΔωB)
Figure JPOXMLDOC01-appb-M000002
T:イールドトルク[ft-lbf]
S:ショルダリングトルク[inch-lbf]
D:デルタトルク[inch-lbf]
c:ねじ接触圧[psi]
t:ねじ摩擦係数(=0.035)
s:ねじ摩擦係数(=0.080)
7:ねじピッチ径[inch]
4:ねじ長[inch]
w:カップリング外径[inch]
d:パイプ内径[inch]
bv:ベベル径[inch]
P:ねじリード(=1/TPI)[inch]
ρm:ねじ干渉量[inch]
s:ショルダー断面積(=π(Dbv 2-d2)/4)[inch2
t:平均ねじ半径(=E7/2)[inch]
s:平均ショルダー半径(=(Dbv+d)/4)
Θ:ねじフランク角[deg.]
E:ヤング率[psi]
Ym:材料の降伏応力[psi]
[2]前記関係が下記式(3)で定義される、上記[1]に記載のねじ継手。
0°<Δθ―Δω≦2.0° ・・・式(3)
[3]ショルダー角度パラメータΔθが、-1.21°≦Δθ≦1.83°である、上記[1]または[2]に記載のねじ継手。
[4]ねじ嵌合比が0.0032以上0.0059以下である、上記[1]~[3]のいずれか1項に記載のねじ継手。
[5]上記[1]~[4]のいずれか1項に記載のねじ継手を接続するために、先に前記カップリングとねじ嵌合する一方の前記ピンの締付けを、前記カップリングの一方の端側から挿入した前記一方のピンの締付け停止位置を示す治具で前記カップリングの軸方向中央に位置制御して、その後、他方の前記ピンの締付けで前記一方のピンと前記他方のピンのショルダー面同士を当接する、ねじ継手の接続方法。
 本発明は、ねじ継手の耐焼付き性や気密性にショルダー当接面の接触状態が重要なことに鑑み、カップリングに挿入される2つのピンとカップリングのねじテーパー角度差を考慮しつつ、ショルダー当接に直接影響を及ぼす2つのピンのショルダー角度パラメータの好適な範囲を示している。したがって、本発明によれば、ピン同士のショルダー面の偏当りによる強接触で応力集中や塑性変形が生じることを回避して、ねじ継手の締付けトルク性能と気密性能の安定化と向上に寄与することができる。また、本発明は、特殊ねじ(プレミアムジョイント)ではないので、長いシール部がなく切削する長さやその加工時間が短くて済み、もって、コスト競争力、汎用性が高い。また、本発明は、図1Bに示すようなショルダー面同士を当接する形式の従来のねじ継手と比べても、高トルクを発生する機能のみを担っていたショルダー部に耐焼付き性と気密性を併せ持つことを可能とし、もって、締付け締戻し性能と気密性能を向上することができる。
従来のねじ継手の一例を示す断面図である。 従来のねじ継手の他の例を示す断面図である。 従来のねじ継手のさらなる他の例を示す断面図である。 ショルダー部同士の当接の形態を説明するための概念図であり、Bピンのショルダー面がAピンのショルダー面に対して相対的に垂直な場合を示す。 ショルダー部同士の当接の形態を説明するための概念図であり、Bピンのショルダー面がAピンのショルダー面に対して相対的に負の側に傾いている場合を示す。 ショルダー部同士の当接の形態を説明するための概念図であり、Bピンのショルダー面がAピンのショルダー面に対して相対的に正の側に傾いている場合を示す。 ショルダー角度パラメータΔθを説明するための説明図である。 ねじテーパー角度を説明するための説明図である。 ねじテーパー角度差パラメータΔωを説明するための説明図である。 ショルダー角度パラメータΔθに対するねじ干渉量の影響を説明するための説明図である。 ショルダー角度パラメータΔθに対するねじ干渉量の影響を説明するための説明図である。 締付けトルクと締付け回転数の関係を示すグラフである。 図7Aの一部拡大図である。 ケース0でのショルダー近傍領域の軸方向応力分布を示す断面図である。 ケース1でのショルダー近傍領域の軸方向応力分布を示す断面図である。 ケース2でのショルダー近傍領域の軸方向応力分布を示す断面図である。 各ケースのイールドトルクにおけるショルダー面の接触圧分布を示すグラフである。 本発明の実施形態の一例であるねじ継手の一部を示す断面図である。 従来技術と本実施形態のねじ干渉量を比較して示すグラフである。 本実施形態のねじ継手の接続方法の一例を示す断面図である。 ショルダー面での最大接触圧とΔθ―Δωとの関係を示すFEAの結果を示すグラフである。
 以下、図面を参照して、本発明の実施形態について例示説明する。
 本発明者らはピン先端のショルダー部を当接する形式のねじ継手について、種々の検討を行った結果、イールドトルク以下の高いトルクに締付けトルクを設定した上で、ピン先端のショルダー角度θとピンとカップリングねじのねじテーパー角度ωの好適な関係を規定することが効果的であることを見出した。
 図4にショルダー角度パラメータΔθを、図5A、Bにねじテーパー角度パラメータΔωを示す。
 ショルダー角度の設定は、図4に示すように、直角に切削加工された場合を0°とし、ショルダー外径側に空間が開くショルダー面の傾きを正(Positive)、その反対を負(Negative)として、ここでは表現する。2つのピンのそれぞれにショルダーがあるので、A端側のピン(便宜上、Aピンと呼ぶ)のショルダー角度をθA、B端側のピン(便宜上、Bピンと呼ぶ)のショルダー角度をθBとすると、ショルダー角度パラメータΔθはΔθ=θA+θBとなる。
 次にねじテーパー角度差について説明する。ねじテーパーは、その勾配を示す設計値が設定されるが、現実の製造ではねじテーパーに公差範囲がある。ピンとカップリングのねじテーパーに角度差があると、一般的にはカップリングはパイプ本体外径よりも大きな外径とパイプ本体管厚よりも厚い管厚を有するので剛性が高く、カップリングのねじテーパー面に沿って強制的に傾く。
 ピンとカップリングはテーパーねじとして、同じ値を持つのが一般的であり、例えば非特許文献1のAPIBTCねじでは、1/16のテーパーをもつ。1/16テーパーとは、軸方向に1inch進むと、径方向に0.0625inchだけ直径が小さくなる傾きを表しており、角度に換算すると3.5763°である。ねじテーパー角度差を考慮するのは、ピンとカップリングが締付け過程でテーパーねじの嵌合が進み、ピンはカップリング内で管軸方向に進んで行くが、ピンと比べてカップリングの剛性が高いので、カップリングねじ面のテーパーに沿って、ピンねじテーパーがその角度差の分だけ、ねじ部前方に設置されたピンの端面であるショルダー面が強制的に傾くからである。
 図5A、Bに示すように、ピンのねじテーパ角度ωPAがωCAよりも浅い場合(PSBF)、ピンはカップリングねじ面に沿って、下向き(内径側)に傾く。他方、ピンのねじテーパ角度ωPAがωCAよりも深い場合(PFBS)、ピンはカップリングねじ面に沿って、上向き(外径側)に傾く。ねじテーパー角度差の設定は、AピンとカップリングA端側のねじテーパー角度差ΔωA、同様にBピンとカップリングB端側のねじテーパー角度差ΔωBがあり、ピンねじがカップリングねじ面に沿って、図中の下向きに傾く方向を正に定義すると、ΔωA=ωCA-ωPAとなり、同様に、ΔωB=ωCB-ωPBとなる。A,Bの2つのピンとそれに対応するカップリングのA、B端側の両方を考慮し、ねじテーパー角度差パラメータΔωはΔω=ΔωA+ΔωBとなる。
 ねじテーパー角度差パラメータの正の値が大きいほど、ねじ部前方に設置されたピン端面のショルダー面が下向きに傾き、ショルダー内径側に空間が開く傾きとなる。また、ピン先端のショルダー部は、ねじの嵌合に伴うねじ干渉量によって、焼嵌め理論(Shrink Fit Theorem)からも類推できるように、図6A、Bのようにピンの縮径によっても下向き(管内面側)にたわみ、仮にピン先端のショルダー面が設計通りに垂直で製造された場合でも、ピン同士のショルダー面が当接する際には、ショルダー面の外径側から接触を開始し、徐々にショルダー内径側が接触する形態となる。なお、図6Bに示すたわみ角度αは、α=WL3/6EIで算出され、等分布荷重Wは、焼き嵌め式から算出されるねじ干渉量δ、接触径D、内径ID、外径ODの関数となる。
 本発明者らは、ショルダー角度パラメータΔθを変数とする複数の数値解析(FEA:Finite Element Analysis)を実施し、ねじ継手性能に及ぼす影響について知見を得た。代表例として、ケース0、ケース1、ケース2の解析結果について、順に説明する。
ケース0:ショルダー角度パラメータΔθ=0°
ケース1:ショルダー角度パラメータΔθ=-2°
ケース2:ショルダー角度パラメータΔθ=+2°
 図7A、Bに、カップリングのA端側に先ずAピンをカップリングの軸方向の中央までねじ嵌合させた後に、B端側からBピンを嵌合させた際の締付けトルクと締付け回転数の関係を示す。図中の矢印が示す位置が、各ケースのイールドトルク(ショルダー面の塑性変形が進み、締付けトルクと締付け回転数の関係が非線形性を示す開始点)を表している。
 図8A~Cに各ケースの基準位置CL(カップリング中央の線対称となる位置)にBピンが到達したときにおけるショルダー近傍領域の軸方向応力分布を示す。ケース0では、初期値としてショルダー角度パラメータθ=0°であっても、ねじの嵌合に伴って縮径によって下向き(管内面側)にたわむことにより、ショルダー外径側に若干の強接触がみられるものの、ショルダー面全域にわたって接触していることが分かる。ケース1では、初期値としてショルダー角度パラメータθ=-2°の設定であり、なおかつ前述のねじの嵌合によるたわみ変形による変位もあり、基準位置CLの段階で既にショルダー外径側に強接触が発生し、ショルダー内径側は未だ接触していない状態を示している。ケース2では、初期値としてショルダー角度パラメータθ=+2°の設定であり、前述のねじの嵌合によるたわみ変形によるショルダー外径側の接触を回避し、ケース0、ケース1と異なり、ショルダー内径側から接触を開始している。
 図9には、各ケースのイールドトルクにおけるショルダー面の接触圧分布を示す。イールドトルクは、ケース1のようにショルダー角度パラメータが負の場合に、ショルダー外径が先行して当接することと更にねじ干渉による管の内径側へのたわみもあることから、締付けによるBピンのAピン側への移動とともに塑性変形が進行し、図7Bに示すように、ケース0、ケース2と比べて低くなっている。
 これら代表3ケースのFEAの結果から分かるように、図8A~Cと図9のショルダー面近傍の軸方向応力分布とショルダー面の接触圧分布は、ショルダー当接面のわずかな角度の違いによって、接触の傾向や応力状態が異なる知見が得られた。この当接の仕方は、ねじ継手の基本性能である、(i)イールドトルク(カップリングの両端にピンを締付けていく過程で、締付けに抵抗するショルダー面の塑性変形が進み、締付けトルクと締付け回転数の関係が非線形性を示す開始点となるトルク)、(ii)締付け締戻し性能(所定のトルクでねじ継手を繰返し締付け締戻ししても所定の回数まで焼付きが生じない)、(iii)気密性能(ねじ継手を締付けた後に、軸方向引張・圧縮、内圧、外圧の複合荷重を負荷しても圧力媒体となるガスや水が継手から漏れない)に影響を与えるので、本発明者らはピン先端のショルダー部同士を当接するねじ継手において、後述するようにピン先端のショルダー角度パラメータΔθとピンとカップリングねじのねじテーパー角度差Δωの好適な関係を見出すこととなった。
 一般的に、高い締付けトルクでねじ継手を締付ければ、ショルダー当接面に高い接触圧が発生して、気密性能は向上する。しかしながら、接触面の高い接触圧や接触圧分布の偏りは、局所的な塑性変形を生ぜしめるとともに、ねじ継手の締付け締戻しで金属同士の焼付きのリスクを高める。低い締付けトルクでねじ継手を締付ければ、ショルダー当接面の接触圧は低いので、ねじ継手の締付け締戻しで金属同士の焼付きのリスクは低くなる。しかしながら、ショルダー当接面の接触圧が低いと、ねじ継手に作用する内部流体の圧力そのものや、その圧力と軸方向引張荷重との複合荷重により気密状態が保持出来なくなる。このように、耐焼付き性能と気密性能は相反する性質を有しており、なお一層、当接面の接触状態を好適な条件にすることが重要であることが分かる。
 以下に説明する本発明の実施形態に係るねじ継手1は、以上のような考え方、手段、方法に基づくものである。
 図10に本発明の実施形態に係るねじ継手1を示す。ねじ継手1は、第1の鋼管の先端の外周面に雄のテーパーねじである雄ねじ2が設けられたピン3と、第2の鋼管の両端の内周面に雄ねじ2と螺合する雌のテーパーねじである雌ねじ4が設けられたカップリング5とを含む。また、ねじ継手1は、カップリング5の両端の雌ねじ4のそれぞれにピン3の雄ねじ2を螺合させた際に、ピン3の先端のショルダー面6同士が接触するよう構成されている。
[ねじテーパー角度ωとねじテーパー角度パラメータΔω]
 本実施形態も非特許文献1のAPIBTCねじ(以下、従来技術とも呼ぶ)と同様に、設計上は1/16のねじテーパーを有している。1/16テーパーとは、軸方向に1inch進むと、径方向に0.0625inchだけ直径が小さくなる傾きを表しており、角度に換算すると3.5763°である。現実の製造ではねじテーパーに公差が設定されており、例えばAPIBTCねじでは、ねじテーパーの公差は、ピンねじ(雄ねじ2)は0.0610inch/inch~0.066inch/inch(3.4907°~3.776°)、カップリングねじ(雌ねじ4)は0.060inch/inch~0.067inch/inch(3.4336°~3.8330°)としている。なお、APIBTCねじの場合、ねじテーパーの狙いはピン3とカップリング5ともに0.0625inch/inch(3.5763°)となっている。
 ねじテーパーに角度差があると、一般的にカップリング5は、パイプ本体外径よりも大きな外径とパイプ本体管厚よりも大きい管厚を有するので剛性が高く、ピン3のねじテーパーはカップリング5のねじテーパー面に沿って角度差の分だけ角度変化が生じる。カップリングねじのテーパーの傾きが最も浅い0.060inch/inchに対して、ピンねじのテーパーの傾きが深い0.066inch/inchの組合せのときには、ピンねじの先端のショルダー部は、その0.006inch差に相当する0.17°ショルダー面が正側に傾く。カップリングねじのテーパーの傾きが最も深い0.067inch/inchに対して、ピンねじのテーパーの傾きが浅い0.0610inch/inchの組合せのときには、ピンねじの先端のショルダー部は、その0.006inch差に相当する0.17°ショルダー面6が負側に傾くことになる。一方のピン3であるAピンと他方のピン3であるBピン、それに対応するカップリング5のAピンに対応する端側であるA端側、Bピンに対応する端側であるB端側の2つのねじ部(雌ねじ4)が存在するので、ねじテーパーの組合せでねじテーパー角度パラメータΔωは、-0.34°≦Δω≦+0.34°の範囲でショルダー角度に影響を与えることになる。
 本実施形態では、カップリング端部に発生する高い周方向応力を低減する目的で、ピン3のねじテーパーの傾きを浅く、カップリング5のねじテーパーの傾きを深くして、カップリング端部の接触を弱めるために意図的にテーパーの狙いに差異を設けた。本実施形態のピンねじはねじテーパーの狙い0.062inch/inch(3.5478°)で公差範囲は0.0610inch/inch~0.066inch/inch(3.4907°~3.776°)、カップリングねじはねじテーパーの狙い0.064inch/inch(3.6619°)で狭幅公差の0.063inch/inch~0.066inch/inch(3.6049°~3.7760°)のテーパーとしている。周方向応力の低減は、敷設した油井管がサワー環境に晒される場合に、ねじ継手1のカップリング5がSSC(硫化物応力腐食割れ)によりカップリング外表面の軸方向にき裂が発生・進展し、カップリング5が破断することを防止する一つの設計要素となる。
 本実施形態の場合、ねじテーパーの組合せでねじテーパー角度パラメータΔωは、-0.17°≦Δω≦+0.29°の範囲でショルダー角度に影響を与えることになる。
[ショルダー角度θとショルダー角度パラメータΔθ]
 本実施形態のねじ継手1は、ピン3同士が当接する形式なので、ピン先端のショルダー角度の設定は、直接的に接触状態に影響を及ぼす。ショルダー角度の設定は、図4に示すように、直角に切削加工された場合を0°とし、ショルダー外径側に空間が開くショルダー面の傾きを“正”、その反対を“負”として、ここでは表現する。2つのピン3のそれぞれにショルダー部があるので、Aピンのショルダー角度をθA、Bピンのショルダー角度をθBとすると、ショルダー角度パラメータΔθはΔθ=θA+θBとなる。
 Δθの式の構成から、A、Bピンの2つのショルダー部の外径側に空間が開くのが“正”、ショルダー部の内径側に空間が開くのが“負”である。この傾きθおよびΔθは正にしても、負にしても大きすぎると、ショルダー部の外径側あるいは内径側に応力集中が発生し、局部的な塑性変形が発生する。これはねじ継手1の繰返し締付け締戻しにおける耐焼付き性能に影響を及ぼす。
  後述の実験(実施例)により、ショルダー角度パラメータΔθとねじテーパー角度パラメータΔωの好適な関係は、下記式(1)で定義されることが分かった。
-1.5°≦Δθ―Δω≦2.0° ・・・式(1)
 既述のねじテーパー角度差パラメータΔωの検討で、Δωが-0.17°≦Δω≦+0.29°なので、Δθに好適な範囲が存在し、-1.21°≦Δθ≦1.83°であればテーパー角度差によらず、設定トルクの下で耐焼付き性と気密性を有する。
 また、耐焼付き性を向上させるために、AピンとBピンのショルダー面6にはブラスト処理を施し、表面粗度をRaで63~190μinch(1.6~4.8μm)に設定した。つまり、ショルダー面6の表面粗さRaは、63μinch(1.6μm)≦Ra≦190μinch(4.8μm)である。ねじの締付けの際には、潤滑剤を予めねじ部だけでなく、ブラスト処理を施したショルダー面6にも薄く均等に塗布した。
[ねじ干渉量]
 ピン先端のショルダー面6の当接の状態に影響を与える因子として、既述の図6A、Bに示すように、ねじの嵌合に伴う縮径によって、ピン先端の下向き(管内面側)へのたわみがある。図11に、図1Aに示す従来技術と本実施形態のねじ干渉量を比較して示す。ピンねじ部とカップリング5のねじ部の嵌合により、その接触面での面圧は焼嵌め式(Shrink Fit理論)からねじ干渉量に比例する。また、その面圧をねじ部にわたって発生する等分布荷重Wとみなせば、図6A、Bに示すようにピン断面を片持ち梁として一次近似すると、たわみはねじ干渉量に比例する。ねじの嵌合に伴う縮径によって、ピン先端の下向き(管内面側)のたわみは、結局、ねじ干渉量に比例することが分かる。
 本実施形態は、図11に示すように、従来技術と比べてねじ干渉量が小さく、その値はピンのねじ代表径(従来技術ねじのL7位置でのねじ径E7と同じ。非特許文献1のFigure1、11頁参照)で除した値で0.0045とし、パイプ本体の外径サイズによらず、ピンとカップリングねじのねじ干渉量比、つまりねじ嵌合比を一定とした。すなわち、本実施形態では、ねじ嵌合比は0.0045を設計値とし、ねじ干渉量の公差(+/-0.006”)から実際のねじ嵌合比は0.0032以上0.0059以下とした。本発明のねじ干渉量によるショルダー面6の傾きは、最大0.01度であることをFEAで確認し、ねじの嵌合に伴う縮径によって、ピン先端の下向き(管内面側)のたわみによるショルダー面6の傾きを無視出来るレベルに低減した。すなわち、ねじ嵌合比は0.0032以上0.0059以下とすることが、より確実に効果を得ることができる。なお、ショルダー面6の傾きを無視出来るレベルである限り、実際のねじ嵌合比は0.0032以上0.0059以下に限らない。
 なお、本願のねじの寸法は、特段の断りがない限り、ねじ切り加工後の寸法を示し、これは締付け前に測定して確認されるものとする。
 ねじの締付けによりショルダー面が内径側(負の側)に傾くことを考慮すると、ショルダー角度パラメータΔθとねじテーパー角度パラメータΔωの関係は、より好ましくは下記式(3)で定義される。すなわち、Δθ―Δωをプラス(正)側で調節する方がより確実に効果を得ることができる。正側で調節することで、図7A、Bに示すようにイールドトルクをより高めに設定することができる。
0°<Δθ―Δω≦2.0° ・・・式(3)
[締付けトルクT]
 カップリング5の両端からねじ接続されるピン3同士がカップリング5の軸方向の中央で当接する形式の鋼管用のねじ継手1のイールドトルクについて、本発明者らは、調査、実験の結果、非特許文献2のAPI7G Recommended Practice for Drill Stem Design and Operating Limits のAPPENDIX-Aに示される以下の式の変数をピン当接形式のねじ継手1にも適用することで安全側に評価出来ることを見出した。
Figure JPOXMLDOC01-appb-M000003
ここで、各パラメータを以下に示す。
T:イールドトルク/Yield torque[ft-lbf]
S:ショルダリングトルク/Shouldering torque[inch-lbf]
D:デルタトルク/Delta torque[inch-lbf]
c:ねじ接触圧/Contact pressure in the threads[psi]
t:ねじ摩擦係数/Friction coefficient of threads(=0.035)
s:ねじ摩擦係数/Friction coefficient of threads(=0.080)
7:ねじピッチ径/Thread pitch Dia.[inch]
4:ねじ長/Thread length[inch]
w:カップリング外径/Coupling OD[inch]
d:パイプ内径/Pipe ID[inch]
bv:ベベル径/Bevel Dia.[inch]
P:ねじリード/Lead of thread(=1/TPI)[inch]
ρm:ねじ干渉量/Thread interference on dia.[inch]
s:ショルダー断面積/Shoulder cross section(=π(Dbv 2-d2)/4)[inch2
t:平均ねじ半径/Average mean thread radius(=E7/2)[inch]
s:平均ショルダー半径/Mean shoulder radius(=(Dbv+d)/4)
Θ:ねじフランク角/Thread flank angle[deg.]
E:ヤング率/Young's modulus[psi]
Ym:材料の降伏応力/Material yield stress[psi]
 例えば、本実施形態のねじ継手1で、以下の表1に示す諸元の場合には、イールドトルクの評価値は、23,410 ft-lbf(31,740 N-m)となる。実管のねじ継手1で実施したイールドトルク試験での実績値は、28,000 ft-lbf(37,960N-m)以上であり、安全側でかつ実用的な評価が出来る。本実施形態のねじ継手1では、表2の諸元をもつねじ継手1について、評価式で得られるイールドトルクの85%となる、19,890 ft-lbf(26,970 N-m)を最大締付けトルクとした。これは、潤滑剤の個体差による摩擦係数のばらつき、現地締付け時の温度、湿度、水分などの締付け環境のばらつきを主に考慮した。参考に、非特許文献1のAPIBTCねじの同径同厚で同一強度の最大締付けトルクは4,700 ft-lbf(6,370N-m)であり、ショルダー当接形式のねじ継手1の締付けトルクが、非当接形式のねじ継手と比べて高いトルクで締付け可能であることが分かる。
Figure JPOXMLDOC01-appb-T000004
[締付け方法]
 カップリング5の両端からねじ嵌合によって挿入されるピン3のショルダー面6同士の接触状態が、本実施形態のねじ継手1の性能に重要であるので、ピン3とカップリング5の締付けには留意が必要である。ねじ継手1の締付けに際しては、ピン3とカップリング5の両方のねじ表面とショルダー面6あるいはどちらか一方のねじ表面とショルダー面6に潤滑剤を均等に塗布して、金属同士の直接の接触とならないように締付けを行う。しかしながら、潤滑剤の個体差による摩擦係数の差異、締付け機械のパイプとカップリング5の掴む位置、公差範囲内ではあっても各ねじデザイン要素のばらつきなどによって、締付けトルクが同じであっても、カップリング5内に収まるピン3の軸方向位置がカップリング5の軸方向の中央(Center Line)からずれる可能性がある。
 Aピンの締付け後の軸方向位置が、カップリング5の軸方向の中央よりも未達となったり、あるいは超過したりすることがないように、本実施形態のねじ継手1では、図12に示すように、工場で締付けるA端側のピン3を締付ける際に、反対側となるB端側のカップリング5の端面からストッパとなる治具7を予め挿入することでAピンの先端のショルダー面6をカップリング内面中央に適正に配置できる位置調整用の治具7を使うことが好ましい。つまり、本実施形態のねじ継手1を接続する際は、先にカップリング5とねじ嵌合する一方のピン3(Aピン)の締付けを、カップリング5の一方の端側(A端側)から挿入した一方のピン3(Aピン)の締付け停止位置を示す治具7でカップリング5の軸方向中央に位置制御して、その後、他方のピン3(Bピン)の締付けで一方のピン(Aピン)と他方のピン(Bピン)のショルダー面6同士を当接するのが好ましい。これによりBピンのねじ締付けでは、予めAピンが位置制御で締付けてあるので、前記各種のばらつきがあってもカップリング内面中央でAピンとBピンのショルダー面6が意図したように接触することが出来る。
 本実施形態の効果を実施例に基づいて説明する。
 表2にねじ試験に用いたパイプとカップリングの諸元を示す。この諸元を有する試験体の作製後に、表3に示すように、AピンとBピンのショルダー角度θA、θBとねじテーパー角度ωPA、ωPB、カップリング5のA端側とB端側のねじテーパー角度ωCA、ωCBを測定し、これらの試験体を用いて、以下の性能を評価した。ねじ嵌合比は、0.0045を設計値とし、ねじ干渉量の公差(+/-0.006”)から試験体の実際のねじ嵌合比は0.0032~0.0059となった。なお、従来例のAPIBTCねじでは、図11に示したように外径によりねじ嵌合比の設計値が異なり、また、ねじ干渉量の公差(+0.006”/-0.010”)も広いので実際のねじ嵌合比は0.0036~0.0083となる。また、ショルダー面の表面粗さRaは、63~190μinch(1.6~4.8μm)に設定した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
[繰返し締付け締戻し試験]
 ねじ部およびショルダー部に、潤滑剤を塗布し、継手の締付け締戻し試験を最大10回繰返し行った。各回の締戻し後にねじ部とショルダー部の焼付きの有無を確認した。各回の締付けトルクは、表2、表3の諸元で58段落で説明した締付けトルク19,890 ft-lbf(26,970 N-m)を最大、締付けトルク14,050 ft-lbf(19,050 N-m)を最小の合格範囲として各回の締付けを行った。つまり、式(2)で求められるイールドトルクの60%以上85%以下の締付けトルクで各回の締付けを行った。繰返し締付け締戻し試験を10回問題なく完了した試験体について、次の気密試験を実施した。
[気密試験]
 繰返し締付け締戻し試験後の試験体を再度締付けて、ISO13679:2002年版のCAL2のシリーズB気密試験を行った。最大引張はAPI5CTのP110規格の最小降伏応力の95%に相当する荷重、最大圧縮は60%に相当する荷重を試験体に負荷した。気密試験は、ISO13679:2002年版に示す各荷重点で定められた軸力と圧力を負荷して、内部からの漏れの有無を確認しつつ実行した。表4に繰返し締付け締戻し試験と気密試験の結果を合わせて示す。比較例では繰返し締付け締戻し試験で焼付きが発生しているが、式(1)に適合する本発明例に係る試験体はいずれも繰返し締付け締戻し試験と気密試験の両方で合格している。
[FEA結果]
 なお、別途実施したFEAの結果においても、図13に示すように、ショルダー角度パラメータΔθとねじテーパー角度パラメータΔωの関係が式(1)を満たす場合に、ショルダー面での最大接触圧が顕著に低下していることが確認されている。つまり、図13に示す結果は、ショルダー角度パラメータとねじテーパー角度パラメータを好適範囲に設定することが、耐焼付き性の向上に寄与する最大接触圧(と最大接触圧が生じる部分の周辺の接触圧分布)の低減に効果的であることを示している。また、上記実験ではパイプ外径5.5inchのものを使用したが、4.5~7inchのものでも同様の結果が得られることが確認されている。
1 ねじ継手
2 雄ねじ
3 ピン
4 雌ねじ
5 カップリング
6 ショルダー面
7 治具

Claims (5)

  1.  第1の鋼管の先端の外周面に雄のテーパーねじである雄ねじが設けられたピンと、第2の鋼管の両端の内周面に前記雄ねじと螺合する雌のテーパーねじである雌ねじが設けられたカップリングとを含むねじ継手であって、前記カップリングの両端の雌ねじのそれぞれに前記ピンの雄ねじを螺合させた際に、前記ピンの先端のショルダー面同士が接触するよう構成されたねじ継手において、
     カップリングと前記カップリングの両端から挿入された2つのピンについてのショルダー角度パラメータとねじテーパー角度パラメータの関係が下記式(1)で定義され、
     下記式(2)で求められるイールドトルクの60%以上85%以下の締付けトルクで締付けられるねじ継手。
    -1.5°≦Δθ―Δω≦2.0° ・・・式(1)
    Δθ:2つのピンの締付け前のショルダー角度θA、θBの和で構成するショルダー角度パラメータ(Δθ=θA+θB)
    Δω:カップリングと2つのピンの締付け前のねじテーパー角度差ΔωA、ΔωBの和で構成するねじテーパー角度パラメータ(Δω=ΔωA+ΔωB)
    Figure JPOXMLDOC01-appb-M000001
    T:イールドトルク[ft-lbf]
    S:ショルダリングトルク[inch-lbf]
    D:デルタトルク[inch-lbf]
    c:ねじ接触圧[psi]
    t:ねじ摩擦係数(=0.035)
    s:ねじ摩擦係数(=0.080)
    7:ねじピッチ径[inch]
    4:ねじ長[inch]
    w:カップリング外径[inch]
    d:パイプ内径[inch]
    bv:ベベル径[inch]
    P:ねじリード(=1/TPI)[inch]
    ρm:ねじ干渉量[inch]
    s:ショルダー断面積(=π(Dbv 2-d2)/4)[inch2
    t:平均ねじ半径(=E7/2)[inch]
    s:平均ショルダー半径(=(Dbv+d)/4)
    Θ:ねじフランク角[deg.]
    E:ヤング率[psi]
    Ym:材料の降伏応力[psi]
  2.  前記関係が下記式(3)で定義される、請求項1に記載のねじ継手。
    0°<Δθ―Δω≦2.0° ・・・式(3)
  3.  ショルダー角度パラメータΔθが、-1.21°≦Δθ≦1.83°である、請求項1または2に記載のねじ継手。
  4.  ねじ嵌合比が0.0032以上0.0059以下である、請求項1~3のいずれか1項に記載のねじ継手。
  5.  請求項1~4のいずれか1項に記載のねじ継手を接続するために、先に前記カップリングとねじ嵌合する一方の前記ピンの締付けを、前記カップリングの一方の端側から挿入した前記一方のピンの締付け停止位置を示す治具で前記カップリングの軸方向中央に位置制御して、その後、他方の前記ピンの締付けで前記一方のピンと前記他方のピンのショルダー面同士を当接する、ねじ継手の接続方法。
PCT/JP2020/037353 2020-09-30 2020-09-30 管のねじ継手およびその接続方法 WO2022070367A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2020/037353 WO2022070367A1 (ja) 2020-09-30 2020-09-30 管のねじ継手およびその接続方法
BR112023005702A BR112023005702A2 (pt) 2020-09-30 2020-09-30 Junta roscada de tubo e método de conexão para a mesma
US18/044,990 US20230383875A1 (en) 2020-09-30 2020-09-30 Threaded joint of pipe and method for connecting same
JP2021528462A JP7248117B2 (ja) 2020-09-30 2020-09-30 管のねじ継手およびその接続方法
CA3190633A CA3190633A1 (en) 2020-09-30 2020-09-30 Threaded joint of pipe and method for connecting same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/037353 WO2022070367A1 (ja) 2020-09-30 2020-09-30 管のねじ継手およびその接続方法

Publications (1)

Publication Number Publication Date
WO2022070367A1 true WO2022070367A1 (ja) 2022-04-07

Family

ID=80949967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037353 WO2022070367A1 (ja) 2020-09-30 2020-09-30 管のねじ継手およびその接続方法

Country Status (5)

Country Link
US (1) US20230383875A1 (ja)
JP (1) JP7248117B2 (ja)
BR (1) BR112023005702A2 (ja)
CA (1) CA3190633A1 (ja)
WO (1) WO2022070367A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003512588A (ja) * 1999-10-21 2003-04-02 バローレック・マネスマン・オイル・アンド・ガス・フランス 外圧に耐えるねじ付パイプコネクタ
JP2012067908A (ja) * 2010-08-27 2012-04-05 Jfe Steel Corp 鋼管用ねじ継手
WO2018003455A1 (ja) * 2016-06-30 2018-01-04 新日鐵住金株式会社 管用ねじ継手及び管用ねじ継手の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6817633B2 (en) * 2002-12-20 2004-11-16 Lone Star Steel Company Tubular members and threaded connections for casing drilling and method
JP2006189089A (ja) * 2005-01-06 2006-07-20 Mitsubishi Plastics Ind Ltd 配管接合用標線記入治具及び配管の接合方法
JP2009243613A (ja) * 2008-03-31 2009-10-22 Sanki Eng Co Ltd 管体や継手の接続方法、及び管体接続用マーキングゲージ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003512588A (ja) * 1999-10-21 2003-04-02 バローレック・マネスマン・オイル・アンド・ガス・フランス 外圧に耐えるねじ付パイプコネクタ
JP2012067908A (ja) * 2010-08-27 2012-04-05 Jfe Steel Corp 鋼管用ねじ継手
WO2018003455A1 (ja) * 2016-06-30 2018-01-04 新日鐵住金株式会社 管用ねじ継手及び管用ねじ継手の製造方法

Also Published As

Publication number Publication date
CA3190633A1 (en) 2022-04-07
JPWO2022070367A1 (ja) 2022-04-07
US20230383875A1 (en) 2023-11-30
BR112023005702A2 (pt) 2023-04-25
JP7248117B2 (ja) 2023-03-29

Similar Documents

Publication Publication Date Title
JP4535064B2 (ja) 鋼管用ねじ継手
JP4492699B2 (ja) 鋼管用ねじ継手
JP5492885B2 (ja) 鋼管用ねじ継手
US4892337A (en) Fatigue-resistant threaded connector
WO2012002409A1 (ja) 管用ねじ継手
WO2009060552A1 (en) Threaded joint for steel pipes
WO2012118167A1 (ja) 管用ねじ継手
WO2015104739A1 (ja) 極厚肉油井管用ねじ継手
JPH0565756B2 (ja)
CN201103349Y (zh) 油套管螺纹接头
WO2022070367A1 (ja) 管のねじ継手およびその接続方法
JPWO2020070968A1 (ja) 鋼管用ねじ継手
WO2016113790A1 (ja) 管用ねじ継手
RU2728105C1 (ru) Резьбовое замковое коническое соединение бурильных труб и способ увеличения его несущей способности и ресурса работы
JP7421146B2 (ja) 鋼管用ねじ継手
JP2017072187A (ja) 油井管ケーシング用ねじ継手
WO2015015799A1 (ja) 油井管用ねじ継手
JP3287197B2 (ja) 油井管用ねじ継手
JP5967113B2 (ja) 管のねじ継手
JPH1096489A (ja) 耐外圧性に優れた油井管用ねじ継手
WO2020183860A1 (ja) ねじ継手
JP2705506B2 (ja) 油井管用ねじ継手
JP6051811B2 (ja) 管用ねじ継手
JP5803953B2 (ja) 管接続用ねじ継手
JP2013029174A (ja) 鋼管用ねじ継手

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021528462

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956295

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3190633

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18044990

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023005702

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023005702

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230328

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956295

Country of ref document: EP

Kind code of ref document: A1